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ABSTRACT
To reduce latency and communication overhead of asynchronous

Byzantine Fault Tolerance (BFT) consensus, an optimistic path is

often added, with Ditto and BDT as state-of-the-art representatives.

These protocols first attempt to run an optimistic path that is typi-

cally adapted from partially-synchronous BFT and promises good

performance in good situations. If the optimistic path fails to make

progress, these protocols switch to a pessimistic path after a time-

out, to guarantee liveness in an asynchronous network. This design

crucially relies on an accurate estimation of the network delay Δ to

set the timeout parameter correctly. A wrong estimation of Δ can

lead to either premature or delayed switching to the pessimistic

path, hurting the protocol’s efficiency in both cases.

To address the above issue, we propose ParBFT, which employs a

parallel optimistic path. As long as the leader of the optimistic path

is non-faulty, ParBFT ensures low latency without requiring an

accurate estimation of the network delay. We propose two variants

of ParBFT, namely ParBFT1 and ParBFT2, with a trade-off between

latency and communication. ParBFT1 simultaneously launches the

two paths, achieves lower latency under a faulty leader, but has a

quadratic message complexity even in good situations. ParBFT2

reduces the message complexity in good situations by delaying the

pessimistic path, at the cost of a higher latency under a faulty leader.

Experimental results demonstrate that ParBFT outperforms Ditto or

BDT. In particular, when the network condition is bad, ParBFT can

reach consensus through the optimistic path, while Ditto and BDT

suffer from path switching and have to make progress using the

pessimistic path.
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1 INTRODUCTION
Over the past decade, the increasing popularity of blockchain [38,

55, 66] has brought considerate attention back to the Byzantine
Fault Tolerance (BFT) consensus protocols [34, 65, 67]. In general, a

BFT consensus protocol ensures multiple replicas reach agreement,

even if a fraction of them may behave arbitrarily (called Byzantine

replicas) [44]. BFT consensus protocols can be roughly divided into

three categories based on their timing assumptions: synchronous

ones, partially synchronous ones, and asynchronous ones. Among

the three categories, asynchronous protocols offer the strongest

robustness to unpredictable network conditions [27, 37, 50]. How-

ever, asynchronous BFT protocols are rarely deployed in production

for performance reasons [46]. More specifically, compared to their

synchronous and partially synchronous counterparts, asynchro-

nous BFT protocols have higher latency (larger number of rounds)

and higher communication overheads, even when all replicas are

non-faulty and the network condition is good.

To remedy the inferior performance of asynchronous BFT, a num-

ber of works introduce an optimistic path [43, 57], with Ditto [33]

and BDT [46] as recent representatives. At a high level, these proto-

cols typically have two paths: an optimistic partially synchronous

path driven by a leader and a pessimistic path that works in asyn-

chrony. The system first attempts to run the optimistic path, which

has low latency and smaller communication overhead. If the op-

timistic path fails to make progress, the protocol falls back to the

pessimistic path after a timeout event. After one or more agreement

instances on the pessimistic path, the protocol will switch back to

the optimistic path. Since only one path is being executed at any

given time, we call this design the serial-path paradigm.

https://doi.org/10.1145/3576915.3623101
https://doi.org/10.1145/3576915.3623101
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Table 1: Consensus performance comparison. As for the serial-path protocols (i.e., Ditto and BDT), the performance is measured
with the protocol starting from the optimistic path, which is the default in these protocols. The number of total replicas is
denoted as 𝑛, and the actual number of faulty replicas is denoted as 𝑡 .

Δ is needed

Latency Message complexity

Non-faulty leader

Faulty leader

Non-faulty leader

Faulty leader

𝛿 ≤ Δ 𝛿 > Δ 𝛿 ≤ Δ 𝛿 > Δ

Ditto [33] Yes 5𝛿 2Δ + 16𝛿 2Δ + 16𝛿 𝑂 (𝑡𝑛) 𝑂 (𝑛2 ) 𝑂 (𝑛2 )
BDT [46] Yes 5𝛿 2Δ + 25𝛿 2Δ + 25𝛿 𝑂 (𝑡𝑛) 𝑂 (𝑛2 ) 𝑂 (𝑛2 )
ParBFT1 No 5𝛿 5𝛿 22𝛿 𝑂 (𝑛2 ) 𝑂 (𝑛2 ) 𝑂 (𝑛2 )
ParBFT2 Yes 5𝛿 5𝛿 2Δ + 25𝛿 𝑂 (𝑡𝑛) 𝑂 (𝑛2 ) 𝑂 (𝑛2 )
∗
Both BDT and ParBFT can be implemented using various protocols for the two paths. We use provable broadcast protocols to implement the optimistic path, which is identical

to Bolt-sCAST described in [46], and choose sMVBA [36] for the pessimistic path. We use an ABA protocol adapted from [1], whose worst-case latency is 9𝛿 in expectation.

∗∗
When the optimistic path uses the chain structure, the timeout parameter in Ditto/BDT/ParBFT2 is set to 2Δ, an upper bound on the round trip delay.

The serial-path paradigm has several drawbacks. First, it requires

a good estimation of network latency, usually denoted Δ, to set

the timer accordingly. It is quite challenging to get the parameter

Δ right. When the leader is Byzantine, the optimistic path cannot

make any progress, and the fallback to the pessimistic path should

ideally be launched as soon as possible. A large value of Δwill delay

the fallback and hurt latency. On the contrary, if Δ is mistakenly set

too small, the timeout and fallback events will be triggered prema-

turely, potentially disrupting a non-faulty leader on the optimistic

path who is about to make progress.

Moreover, when to switch back to the optimistic path is also a

tough decision. If the switch is performed too late since the network

has healed, the protocol has unnecessarily stayed on the pessimistic

path for too long. Conversely, switching back too hastily while the

network condition remains poor is meaningless and wasteful as the

optimistic path still cannot make progress. This may even cause

frequent back-and-forth switches, making the protocol even slower

than simply running the pessimistic path alone. For some contexts,

Ditto [33] opts for the hasty approach and performs the switch back

whenever a single agreement instance on the pessimistic path is

finished. BDT [46] similarly uses a hasty switch in their pseudocode.

Although BDT mentions that other heuristics can be used for the

switch back, designing these heuristics is also a tricky task.

To address these challenges regarding path switches, we propose

an alternative paradigm for adding optimistic paths to asynchro-

nous BFT: running the two paths in parallel. At a high level, by

running the two paths in parallel, replicas can reach a decision as

soon as one of the two paths succeeds. This enables the protocol to

gracefully handle both good and bad network conditions and avoid

the drawbacks of the serial-path paradigm. To be more concrete,

we propose ParBFT that runs a partially synchronous optimistic

path and an asynchronous pessimistic path in parallel. The two

paths may each produce an output (called candidates). ParBFT then

leverages an Asynchronous Binary Agreement (ABA) algorithm to

reach an agreement between these two candidates. The last key

design element of ParBFT is a shortcut mechanism: if the leader

is non-faulty and the network is good, all replicas will decide at

the end of the optimistic path and directly advance to the next

instance, without the need to execute the ABA algorithm or even

the pessimistic path. This makes ParBFT’s performance in the good

situation similar to the serial-path paradigm.

We present two variants of ParBFT, which we call ParBFT1 and

ParBFT2, that give a trade-off between latency and communication.

ParBFT1 launches the two paths simultaneously; this variant offers

better latency under a Byzantine leader but suffers from quadratic

message complexity even in a good situation. On the contrary,

ParBFT2 delays the launch of the pessimistic path, and as a result,

reduces the message complexity to linear in a good situation at the

cost of higher latency under a Byzantine leader.

As shown in Table 1, prior works Ditto [33] and BDT [46] achieve

a low latency of 5𝛿 (𝛿 represents the actual network delay) only

when the leader is non-faulty and the parameter Δ is estimated

correctly (i.e., 𝛿 ≤ Δ). In contrast, ParBFT1 and ParBFT2 achieve

a good latency of 5𝛿 as long as the leader of the optimistic path is

non-faulty, regardless of whether Δ is estimated correctly or not. As

mentioned, ParBFT1makes a sacrifice on the message complexity in

the good situation: when the leader is non-faulty and the estimation

of Δ is correct, ParBFT1 incurs quadratic communication. ParBFT2

avoids this problem by delaying the launch of the pessimistic path

by 5Δ time: this reduces the communication complexity in the good

case back to 𝑂 (𝑡𝑛)1 (𝑡 and 𝑛 represent the number of actual faulty

replicas and total replicas, respectively) but increases the latency

under a Byzantine leader by that amount.

We also note that while ParBFT1 does not need the parameter

Δ at all, ParBFT2 brings back the parameter of Δ. But unlike prior
works, the penalty for an incorrect estimation of Δ is much smaller.

Concretely, when Δ is set too small, i.e., Δ < 𝛿 , ParBFT2 only

incurs an increase in the communication cost, while prior works

incur much longer latency, increased communication cost, and the

potential problem of back-and-forth switching.

We implement both variants of ParBFT and conduct extensive

experiments to evaluate their performance in comparison with

prior works. Our implementations use the chain-based paradigm in

which different agreement instances are pipelined to improve the

throughput. The experiments are divided into three parts, corre-

sponding to three different scenarios. The first part mimics a good

situation where the leader is non-faulty and the network is good.

1
A number of prior works [33, 46, 68] claim𝑂 (𝑛) communication in the good case.

But upon closer inspection, they ignored the cost of retrieving the committed data.

In more detail, a replica that commits on the linear optimistic path has to respond to

retrieval requests from other replicas who have not, or claim to have not, received the

committed data. This adds a factor of 𝑡 to the communication overhead, since each

faulty replica can send such a retrieval request to all non-faulty replicas. See [59, 64]

for a more thorough discussion on this issue.
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In the second part, we simulate a slow network by intentionally

delaying messages while assuming a non-faulty leader. Finally, in

the third part, we introduce a faulty leader by delaying proposals

from the leader.

The experimental results demonstrate that, under good situa-

tions, ParBFT2 performs comparably well to Ditto and BDT, as all

three protocols can commit through the optimistic path. As ex-

pected, as the number of replicas increases, the performance of

ParBFT1 deteriorates due to its quadratic message complexity. In

the situation of a slow network, where the delay is set larger than

Δ, ParBFT1 and ParBFT2 exhibit significantly lower latency com-

pared to Ditto and BDT. ParBFT achieves lower latency because it

can commit through the optimistic path even if the network delay

is wrongly estimated, whereas Ditto or BDT must switch to the

pessimistic path. In the case of a faulty leader, all protocols will

commit through the pessimistic path. However, ParBFT1 offers

lower latency than Ditto, BDT, and ParBFT2, because it launches

the pessimistic path immediately without waiting for a timeout

event.

To sum up, wemake the following contributions in this paper.We

first identify major limitations of current serial-path asynchronous

protocols: they rely on accurate estimates of network latency to

appropriately switch between the two paths. We then propose a

new paradigm called ParBFT that runs the two paths in parallel to

address these limitations. Two variants of ParBFT are presented,

offering a trade-off between latency and communication overhead.

Finally, we implement our protocols and conduct comprehensive

experiments to demonstrate their advantages.

The remainder of this paper is structured as follows. In Section 2,

we introduce the model used in our work and present some prelim-

inaries that will serve as building blocks to our protocols. Section 3

outlines the main idea of parallel paths by describing a preliminary

version named ParBFT0. In Section 4 and Section 5, we elaborate on

the two actual variants of ParBFT that provide a trade-off between

latency and communication overhead. More implementation details

(including chain-based versions of ParBFT) and evaluation results

are presented in Section 6. We discuss related work in Section 7

and conclude the paper in Section 8.

2 MODELS AND PRELIMINARIES
2.1 Models and definitions
We consider a distributed system consisting of 𝑛 = 3𝑓 + 1 replicas,
among which up to 𝑓 can misbehave in an arbitrary manner, i.e.,

they can be Byzantine. Each replica has a unique identity denoted

as 𝑝𝑖 (0 ≤ 𝑖 < 𝑛). All the Byzantine replicas are under the control of

an adversary who can coordinate their actions. Each pair of replicas

is connected through a reliable link, which will eventually deliver

every message, but the network is asynchronous, meaning that any

message can be delayed by the adversary arbitrarily. Leaders of the

optimistic path are selected by a predetermined order, e.g., simple

round-robin.

We assume a public-key infrastructure (PKI), which allows each

replica 𝑝𝑖 to be identified by a public key 𝑝𝑘𝑖 , and all the public

keys are known to all replicas. Corresponding to 𝑝𝑘𝑖 , each replica

holds its private key 𝑠𝑘𝑖 . We also assume a threshold cryptosystem

is established among the replicas, possibly via Distributed Key

Generation protocols [3, 24, 41], to enable threshold signatures. We

also assume a collision-resistant hash function. Finally, we assume

that the adversary has limited computational resources and cannot

break the PKI, the threshold cryptosystem, or the hash function.

For performance evaluation, we consider two types of situations:

good situations and bad situations. A good situation is when the

leader of the optimistic path is non-faulty and (if applicable) the

actual network delay 𝛿 is not greater than the estimated parameter

Δ. On the contrary, a bad situation is when the designated leader is

faulty or 𝛿 is larger than Δ. It is worth noting that since there is no

parameter of Δ in ParBFT0 or ParBFT1, the good and bad situations

depend solely on whether the designated leader is non-faulty.

A consensus protocol maintains a replicated log among all non-

faulty replicas. Each entry in the log corresponds to a request or

some submitted data from a client. Henceforth, we use the terms

“request” and “log entry” interchangeably. A correct consensus

protocol must guarantee safety and liveness, which are defined as

follows:

• Safety: If two non-faulty replicas commit two data 𝑑 and 𝑑′

at the same log position, then 𝑑 must be equal to 𝑑′.
• Liveness: If a client proposes a request 𝑟𝑒𝑞, 𝑟𝑒𝑞 will eventu-

ally be committed.

2.2 Preliminaries
In the design of ParBFT, we make use of Validated Asynchronous
Byzantine Agreement (VABA) protocols to implement the pessimistic

path and Asynchronous Binary Agreement (ABA) protocol to de-

cide between the outputs from the two paths. We utilize ABA in a

black-box manner and slightly modify VABA to let it output a proof

for the decided value. We refer to the modified VABA as Provable
VABA (PVABA). In this section, we present the interfaces of ABA

and PVABA and show how to modify a VABA protocol to a PVABA

protocol.

2.2.1 ABA interface. An ABA protocol is used to reach consensus

on a single bit [56, 63]. In an ABA protocol, each replica inputs a

Boolean value of 0 or 1, and ultimately, each non-faulty replica will

decide on the same bit value as the output. To be more precise, an

ABA protocol must satisfy the following three properties:

• Validity: If a non-faulty replica decides on a value 𝑣 , 𝑣 must

be input by at least one non-faulty replica.

• Agreement: If two non-faulty replicas decide on two values

𝑣 and 𝑣 ′ respectively, then 𝑣 = 𝑣 ′.
• Termination: If all non-faulty replicas complete inputting

values to the protocol, every non-faulty replica will eventu-

ally decide on a value.

• Integrity: No non-faulty replica decides twice.

Over the past few decades, various ABA protocols have been

proposed [1, 8, 31, 52]. We will use ABA in a black box.

2.2.2 VABA & PVABA interfaces. First, we describe the original
VABA interface. In a VABA protocol, each replica is allowed to

input an arbitrary value, and the protocol will eventually decide on

a value [15]. To prevent the protocol from deciding on an invalid

or trivial value, an external validation predicate 𝑄 is defined, and
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the output value must satisfy 𝑄 . More formally, a VABA protocol

must satisfy the properties as follows:

• External-validity: If a non-faulty replica decides on a value

𝑣 , 𝑄 (𝑣) must be True.

• Agreement: If two non-faulty replicas decide on two values

𝑣 and 𝑣 ′ respectively, then 𝑣 = 𝑣 ′.
• Termination: If all non-faulty replicas complete inputting

values to the protocol, every non-faulty replica will eventu-

ally decide on a value.

• Quality:The probability of deciding on a non-faulty replica’s
input is at least 1/2.

• Integrity: No non-faulty replica decides twice.

Decided values of a VABA protocol will be taken as inputs for

the final agreement of ParBFT. To prevent Byzantine replicas from

forging decided values, we further require the VABA protocol to

output a proof for the decided value. In other words, output from

the VABA protocol has the format of (𝑣, 𝜎), where 𝜎 is the proof

for the value 𝑣 . Each replica can verify the legitimacy of the VABA

output through an external validity predicate 𝑅(𝑣, 𝜎).
• Provability: If a non-faulty replica outputs (𝑣, 𝜎), then𝑅(𝑣, 𝜎) =
𝑡𝑟𝑢𝑒 . If a Byzantine replica outputs (𝑣, 𝜎) satisfying 𝑅(𝑣, 𝜎) =
𝑡𝑟𝑢𝑒 , then some non-faulty replica must have output (𝑣, 𝜎).

We note the differences between the two predicates: 𝑄 is to verify

the external validity of an input, while 𝑅 is to verify that a value is

indeed decided by the VABA instance.

The adapted VABA interface is named PVABA. Existing VABA

protocols [5, 15, 36, 47] can be easily modified into PVABA. Taking

AMS-VABA [5] or sMVBA [36] as examples, the proof 𝜎 can be set

as the View-change message (Line 22 of Algorithm 3 in [5]) or the

Halt message (Line 16 of Algorithm 5 in [36]), and the predicate

𝑅(𝑣, 𝜎) can be set as the threshold signature verification function.

When there is no ambiguity, we will simply use VABA to mean

PVABA in the remaining parts of this paper.

3 PARBFT DESIGN
Before delving into the final designs of ParBFT (i.e., ParBFT1 and

ParBFT2), we first introduce a preliminary variant named ParBFT0

in this section. ParBFT0 is meant to illustrate the basic idea of

running two parallel paths and is not designed for efficiency. As

such, ParBFT0 has higher latency and larger communication over-

head even in a good situation. But it demonstrates the feasibility of

removing the parameter Δ and the finicky path-switch mechanism.

3.1 Description of ParBFT0
The structure of ParBFT0 is illustrated in Figure 1. For brevity,

we omit the process of sending requests from clients, which is

similar to that in partially-synchronous protocols [18]: (1) The

client will first send the request to the leader on the optimistic

path initially; (2) If within a predetermined period, the request

cannot be successfully committed, the client will then broadcast the

request to all replicas. The protocol consists of two stages: parallel

paths and final agreement. In the first stage, an optimistic path and

a pessimistic path are launched simultaneously, and each replica

participates in both paths. The optimistic path can be implemented

using the normal-case protocol of many partially synchronous

Figure 1: The structure of ParBFT0

BFT works. To be concrete, we adopt the normal-case protocol of

SBFT [35], as it offers a low communication overhead of𝑂 (𝑡𝑛). The
pessimistic path can be constructed using any VABA protocol in a

black box.

We borrow the notion of Provable Broadcast (PB) from AMS-

VABA [5] or sMVBA [36] to describe the process of data broadcast

plus vote collection. In a PB instance, a broadcaster 𝑝𝑏 first broad-

casts its data 𝑑 along with a proof 𝜋 in the format of (𝑑, 𝜋) to each

replica. The proof 𝜋 is used to verify the validity of 𝑑 according to

a global predicate function. If the validation passes, a replica 𝑝𝑖 will

output a tuple (𝑑, 𝜋) locally and send its vote through a threshold

signature share 𝜌 on 𝑑 to 𝑝𝑏 . To aid presentation, we refer to the

replicas that send votes to the broadcaster in a PB instance as voters.
After collecting more than two-thirds of the shares, 𝑝𝑏 can combine

them into a final threshold signature 𝜎 and output the tuple (𝑑, 𝜎).
As Figure 1 illustrates, the optimistic path consists of two consec-

utive PB instances followed by an additional broadcast performed

by the leader (𝑝𝐿). For brevity, we refer to the two consecutive PBs
as one Strong Provable Broadcast (SPB) as defined in sMVBA [36]. In

an SPB instance, the broadcaster 𝑝𝑏 uses the output from the first

PB (PB1) as input for the second PB (PB2). In other words, 𝜋2 = 𝜎1
where 𝜎1 represents 𝑝𝑏 ’s output from PB1 and 𝜋2 denotes the proof
for 𝑑 in PB2. The broadcaster 𝑝𝑏 ’s output from SPB is exactly the

output from PB2. Moreover, in the additional broadcast after SPB,
𝑝𝑏 broadcasts its output from SPB, namely the tuple (𝑑, 𝜎2).

A replica returns from the optimistic path after receiving the

tuple of (𝑑, 𝜎2), marked by the green triangle in Figure 1. Recall

that in Section 2.2.2, a replica returning from the pessimistic path

(i.e., VABA) also possesses a tuple of (𝑑, 𝜎), which is marked by

the red triangle in Figure 1. The tuples returned from the two

parallel paths are referred to as candidates. We distinguish them

as optimistic candidates and pessimistic candidates, denoted by

(𝑑𝑜 , 𝜎𝑜 ) and (𝑑𝑝 , 𝜎𝑝 ), respectively. It is worth noting that (𝑑𝑜 , 𝜎𝑜 )
obtained by different replicas are identical, and the same holds true

for (𝑑𝑝 , 𝜎𝑝 ).
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Algorithm 1 FinAgr0: Final agreement protocol in ParBFT0 (for

replica 𝑝𝑖 )

1: Let 𝑣𝑖 denote the input (a candidate in the context of ParBFT0)

of 𝑝𝑖 and 𝑉𝑎𝑙𝐹𝑛 denote a global predicate function.

2: initialize 𝑣𝑎𝑙𝑠 [2] ← [⊥,⊥]
3: broadcast (FA, 𝑣𝑖 )
4: if 𝑣𝑖 is an optimistic candidate then:
5: 𝑣𝑎𝑙𝑠 [0] ← 𝑣𝑖
6: invoke ABA with 0

7: else:
8: 𝑣𝑎𝑙𝑠 [1] ← 𝑣𝑖
9: invoke ABA with 1

10: upon receiving (FA, 𝑣 𝑗 ) from 𝑝 𝑗 that 𝑉𝑎𝑙𝐹𝑛(𝑣 𝑗 ) = 𝑡𝑟𝑢𝑒 do:
11: if 𝑣 𝑗 is an optimistic candidate and 𝑣𝑎𝑙𝑠 [0] = ⊥ then:
12: 𝑣𝑎𝑙𝑠 [0] ← 𝑣 𝑗
13: else if 𝑣 𝑗 is a pessimistic candidate and 𝑣𝑎𝑙𝑠 [1] = ⊥ then:
14: 𝑣𝑎𝑙𝑠 [1] ← 𝑣 𝑗

15: upon receiving the output 𝑏 from ABA do:
16: wait until 𝑣𝑎𝑙𝑠 [𝑏] ≠ ⊥
17: output 𝑣𝑎𝑙𝑠 [𝑏]

In the second stage of ParBFT0, each replica takes the first can-

didate it obtains from the parallel paths as input for the final agree-

ment. The final agreement, described in Algorithm 1, is primarily im-

plemented based on a black-box ABA protocol, where 0 represents

the optimistic candidate (𝑑𝑜 , 𝜎𝑜 ) and 1 represents the pessimistic

candidate (𝑑𝑝 , 𝜎𝑝 ). A replica will first broadcast its candidate (Line

3) and then invoke the ABA protocol with the mapped bit (Lines

4-9). Once the ABA protocol outputs a decision bit, the replica waits

until the candidate corresponding to the decision bit is received

(Lines 10-14) and then outputs the candidate (Lines 15-17).

To reduce the number of communication rounds, the round of

broadcasting the candidate (Line 3 of Algorithm 1) can be merged

with the first round of ABA. Additionally, a replica only accepts

the candidate broadcast by others if it passes the check against a

global predicate function 𝑉𝑎𝑙𝐹𝑛 (Line 10 of Algorithm 1). If the

candidate is optimistic, 𝑉𝑎𝑙𝐹𝑛 is simply the verification function

of the threshold signature. If the candidate is pessimistic, 𝑉𝑎𝑙𝐹𝑛 is

precisely the predicate 𝑅(𝑣, 𝜎) mentioned in Section 2.2.2.

Note that a replica that returns from either path can immediately

stop participating in the other path. Besides, it is possible for a

replica to receive valid candidate (𝑑, 𝜎) from the final agreement

protocol before it returns from either path in the first stage. In such

a case, the replica can treat (𝑑, 𝜎) as its own candidate (as though

it has obtained (𝑑, 𝜎) from the first stage on its own), input (𝑑, 𝜎)
to the final agreement, and terminate both paths in the first stage.

3.2 Correctness analysis of ParBFT0
The correctness analysis of ParBFT0 includes two parts: safety and

liveness. Notably, each instance of the ParBFT0 protocol described

above is responsible for committing data at one log position. There-

fore, for safety, we only need to show that all non-faulty replicas

commit the same data from a given ParBFT0 instance. For liveness,

since each leader attempts to propose requests from clients, we

only need to show that each non-faulty replica is able to commit

from the ParBFT0 instance.

3.2.1 Safety. The safety analysis of ParBFT0 is straightforward

and relies on the safety guarantees provided by the SBFT, VABA,

and ABA protocols. According to the safety property of SBFT, all

optimistic candidates are identical, and according to the agreement

property of VABA, all pessimistic candidates are also identical. This

means that there can only be two distinct candidates taken as inputs

into the final agreement protocol, which are mapped to bits 0 and 1.

The ABA protocol ensures that all non-faulty replicas will output

the same bit. Thus, all non-faulty replicas will output the same

candidate from the final agreement protocol corresponding to the

ABA’s output bit. This guarantees the safety of ParBFT0.

3.2.2 Liveness. We refer to the execution of ParBFT to commit a

single decision as one instance. Within each instance, a client can

initially send the request to the leader of the optimistic path. If the

request does not get committed through the optimistic path for

some time, the client broadcasts the request to all replicas. Recall

that the leader of the optimistic path is predetermined in a round-

robin fashion. If the optimistic path under some non-faulty leader

succeeds, the client’s request will be committed. On the flip side, if

all instances with non-faulty leaders commit in the pessimistic path,

the quality property of VABA ensures with at least 1/2 probability

that a non-faulty replica’s input will be committed, which will in-

clude the client’s request. It remains to show that each consensus

instance will successfully commit. We will first establish a lemma.

Lemma 1. Every non-faulty replica in ParBFT0 will eventually
invoke the ABA protocol.

Proof. We establish this lemma through two cases.

Case 1: Some non-faulty replica 𝑝𝑖 outputs from the op-
timistic path. According to Algorithm 1, 𝑝𝑖 will broadcast its

optimistic candidate during the stage of final agreement. Therefore,

non-faulty replicas that have not yet output from either the opti-

mistic or the pessimistic path can receive an optimistic candidate

from 𝑝𝑖 . This ensures that every non-faulty replica will acquire a

candidate and invoke the ABA protocol.

Case 2: No non-faulty replica outputs from the optimistic
path. In this case, every non-faulty replica will keep running the

pessimistic path. The termination property of VABA guarantees that

each non-faulty replica will eventually output from the pessimistic

path and acquire a pessimistic candidate. Thus, each non-faulty

replica invokes the ABA protocol. □

Theorem 2. Every non-faulty replica in ParBFT0 can successfully
commit in each consensus instance.

Proof. Due to Lemma 1, every non-faulty replica will invoke

the ABA protocol. Subsequently, by the termination property of

ABA, every non-faulty replica will eventually output from the ABA

protocol. Based on the validity property of ABA, at least one non-

faulty replica must have inputted the same bit as the output bit.

That replica must have also broadcast the corresponding candidate.
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Therefore, each non-faulty replica will receive a candidate corre-

sponding to the output bit and commit that candidate value. This

concludes the proof of Theorem 2. □

3.3 Performance analysis of ParBFT0
We analyze the performance of ParBFT0 in terms of consensus

latency and communication overhead. To this end, we assume that

ABA and VABA are implemented based on the state-of-the-art ABY-

ABA [1] and sMVBA [36], respectively. The expected latency of

ABY-ABA is 4𝛿 in a good situation and 9𝛿 in a bad situation. The

expected latency of sMVBA is 6𝛿 in a good situation and 12𝛿 in a

bad situation.

If the leader is non-faulty, each replica will return from the

optimistic path first, which takes 5𝛿 . In addition, the ABA protocol

has an expected latency of 4𝛿 . Therefore, in the case of a non-faulty

leader, the expected latency of ParBFT0 is 9𝛿 . When the leader

is faulty, each replica will return from the pessimistic path first.

Consequently, the expected consensus latency of ParBFT0 is 21𝛿 :

12𝛿 from sMVBA and 9𝛿 from ABA. Regarding communication

overhead, since each replica broadcasts data on the pessimistic

path, ParBFT0 always has a message complexity of 𝑂 (𝑛2).

4 PARBFT1 WITH LOWER LATENCY
To reduce latency under a non-faulty leader, we propose ParBFT1,

which allows a replica to commit directly on the optimistic path

without going through the final agreement. This is achieved by

adding a shortcut on the optimistic path and a prepare phase to
exchange candidates before running ABA. We also modify the rule

of returning candidates from the optimistic path.

4.1 Description of ParBFT1
Figure 2 illustrates the structure of ParBFT1, where we open the box

of PB2 to show how a replica outputs a candidate in PB2. Compar-

ing it with ParBFT0 in Figure 1 highlights the difference of ParBFT1

from ParBFT0: a replica outputs a candidate from the optimistic

path after receiving (𝑑𝑜 , 𝜎1) in PB2, without waiting for (𝑑𝑜 , 𝜎2)
as in ParBFT0. Instead, upon receiving (𝑑𝑜 , 𝜎2), a replica can im-

mediately commit and exit the current ParBFT1 instance, marked

by 1 in Figure 2. This serves as a shortcut on the optimistic path,

eliminating the need to execute the final agreement and resulting in

an optimal latency of 5𝛿 , which is the same as Ditto or BDT. Algo-

rithm 2 outlines the pseudocode of the optimistic path in ParBFT1.

For brevity, we omit the validity check of data in the pseudocode.

As shown in Lines 11-12, a replica outputs the optimistic candidate

after receiving data from PB2. To ensure liveness, a replica will

broadcast a Halt message before exiting. Any replica that receives

a valid Halt message can take a shortcut to commit and exit the

current ParBFT1 instance as well. Pseudocode related to the deci-

sion and broadcast of Halt messages is shown in Lines 13-16 of

Algorithm 2.

The use of a shortcut rule may pose safety risks to the algorithm,

as some replicas may commit through the shortcut while others may

commit different data through the final agreement. To mitigate this

safety risk, we introduce a prepare phase to exchange candidates

before activating the ABA protocol. The prepare phase also provides
an additional shortcut for committing data without running an ABA

Figure 2: The structure of ParBFT1

Algorithm 2 OptPath1: Optimistic path protocol in ParBFT1 (for

replica 𝑝𝑖 , with 𝑝𝐿 as the leader)

1: Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 .

2: if 𝑝𝑖 = 𝑝𝐿 then:
3: 𝑑𝑜 ← 𝑣𝑖
4: activate PB1 as the broadcaster with (𝑑𝑜 ,⊥) as data
5: upon receiving (𝑑𝑜 , 𝜎1) from PB1 do:
6: activate PB2 as the broadcaster with (𝑑𝑜 , 𝜎1) as data
7: upon receiving (𝑑𝑜 , 𝜎2) from PB2 do:
8: broadcast (OPTH, 𝑑𝑜 , 𝜎2)
9: else:
10: activate PB1 and PB2 as a voter

11: upon receiving (𝑑𝑜 , 𝜎1) from PB2 do:
12: output the candidate (𝑑𝑜 , 𝜎1)

13: upon receiving (OPTH, 𝑑𝑜 , 𝜎2) from 𝑝𝐿 do:
14: commit 𝑑𝑜
15: broadcast (HALT, 𝑑𝑜 , 𝜎2) if has not
16: exit

protocol. The final agreement after adding the prepare phase is

described by Algorithm 3. Each replica will begin by broadcasting a

PREPmessage, which contains the candidate and a partial threshold

signature on the data (Lines 4-5 of Algorithm 3). The threshold is

set to 𝑛 − 𝑓 . Once a replica has received 𝑛 − 𝑓 valid PREP messages,

it checks whether it can commit using another shortcut, marked by

2 in Figure 2. If it cannot, the replica will prepare the input value

to the ABA protocol. In more detail, there are three cases:

Case 1: If all the 𝑛 − 𝑓 PREP messages contain optimistic candi-

dates (Lines 7-11 of Algorithm 3), the replica can construct a com-

plete threshold signature 𝜎 for 𝑑𝑜 based on the partial signatures

in the PREP messages. With a valid 𝜎 , the replica can commit 𝑑𝑜
directly without activating the ABA protocol. Also, the replica will

broadcast a Halt message containing (𝑑𝑜 , 𝜎) to help other replicas

commit 𝑑𝑜 .
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Algorithm 3 FinAgr: Final agreement protocol in ParBFT1 and

ParBFT2 (for replica 𝑝𝑖 )

1: Let 𝑣𝑖 represent an input value (a candidate in the context of

ParBFT1 or ParBFT2) of 𝑝𝑖 . 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒 and𝐶𝑜𝑚𝑏𝑖𝑛𝑒 denote the

threshold signature functions.

2: initialize 𝑣𝑎𝑙𝑠 [2] ← [⊥,⊥]
3: parse 𝑣𝑖 as (𝑡𝑎𝑔, 𝑑 , 𝜎)
4: 𝜌 ← 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒𝑛−𝑓 (𝑑, 𝑡𝑎𝑔)
5: broadcast (PREP, 𝑡𝑎𝑔, 𝑑 , 𝜎, 𝜌)

6: upon receiving 𝑛 − 𝑓 PREP messages do:
7: if all the 𝑛 − 𝑓 messages with tag OPT then:
8: 𝑆𝜌 ← all the 𝜌 from 𝑛 − 𝑓 messages

9: extract 𝑑𝑜 from one message

10: broadcast
(
HALT, 𝑑𝑜 ,𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑛−𝑓 (𝑆𝜌 , 𝑑𝑜 , OPT)

)
11: commit 𝑑𝑜 ; exit
12: else if at least one message with tag OPT then:
13: extract 𝑑𝑜 and 𝜎𝑜 from the message with tag OPT
14: broadcast (FA, 𝑑𝑜 , 𝜎𝑜 )
15: invoke ABA with 0

16: 𝑣𝑎𝑙𝑠 [0] ← (𝑑𝑜 , 𝜎𝑜 )
17: else:
18: extract 𝑑𝑝 and 𝜎𝑝 from one message

19: broadcast
(
FA, 𝑑𝑝 , 𝜎𝑝

)
20: invoke ABA with 1

21: 𝑣𝑎𝑙𝑠 [1] ← (𝑑𝑝 , 𝜎𝑝 )

22: // Same as Lines 10-17 of Algorithm 1 (FinAgr0)

Case 2: If all the 𝑛 − 𝑓 PREP messages contain pessimistic candi-

dates (Lines 17-21 of Algorithm 3), the replica will broadcast the

pessimistic candidate (𝑑𝑝 , 𝜎𝑝 ) and invoke the ABA protocol with 1.

Case 3: If both optimistic and pessimistic candidates are present

in these 𝑛 − 𝑓 PREP messages (Lines 12-16 of Algorithm 3), the

replica will broadcast the optimistic candidate and invoke the ABA

protocol with 0.

Pseudocode of ParBFT1 is given in Algorithm 4. Note that even

if a replica has obtained a candidate from the optimistic path, it will

continue the remaining parts of the optimistic path. However, like

in ParBFT0, a replica that obtains a candidate from either path will

terminate its participation in the other path (Lines 9-12 of Algo-

rithm 4). To speed up the progress, a replica can use the candidate

from the received PREP message as if it is obtained from the first

stage. In other words, the replica can construct and broadcast its

PREP message using the candidate received from others. Besides,

in Lines 4-7 of Algorithm 4, once a replica receives a valid Halt
message, it can commit immediately and exit the current ParBFT1

instance. If data is committed at the end of the final agreement

(Lines 14-16 of Algorithm 4), a replica is not necessary to broad-

cast a Halt message. This is because the ABA protocol in the final

agreement already includes a broadcast step that assists others in

obtaining the output from ABA and committing the data [1].

Algorithm 4 ParBFT1 protocol (for replica 𝑝𝑖 )

1: Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 .

2: activate OptPath1(𝑣𝑖 )
3: activate VABA(𝑣𝑖 )

4: upon receiving (HALT, 𝑑 , 𝜎) from 𝑝 𝑗 do:
5: commit 𝑑
6: broadcast (HALT, 𝑑 , 𝜎) if has not
7: exit

8: wait for the output (𝑑, 𝜎) from OptPath1 or VABA

9: if the output is an optimistic candidate then:
10: terminate the pessimistic path; 𝑡𝑎𝑔← OPT
11: else:
12: terminate the optimistic path; 𝑡𝑎𝑔← PES
13: activate FinAgr with (𝑡𝑎𝑔, 𝑑, 𝜎) if has not

14: wait for the output 𝑑 from FinAgr

15: commit 𝑑
16: exit

4.2 Correctness analysis
4.2.1 Safety. There are three points at which data can be com-

mitted in ParBFT1: the end of the optimistic path, the end of the

prepare phase, and the end of the final agreement. For brevity, we

refer to these three points as 𝑡1, 𝑡2, and 𝑡3, respectively. Next, we

will analyze the safety of ParBFT1 in three situations.

Situation 1: A non-faulty replica commits 𝑑 at 𝑡1. In this

situation, at least 𝑓 + 1 non-faulty replicas have returned from

the optimistic path, each of which will broadcast the optimistic

candidate in the prepare phase. Therefore, every replica will receive
at least one optimistic candidate among the 𝑛 − 𝑓 PREP messages,

and only Case 1 or Case 3 in Section 4.1 are possible. If a non-faulty

replica is in Case 1, it will commit 𝑑 directly. If it is in Case 3,

it will broadcast the optimistic candidate (i.e., 𝑑) and invoke the

ABA protocol with 0. In other words, each non-faulty replica will

invoke the ABA protocol with 0, provided that it has not exited at

𝑡1 or 𝑡2. According to the validity property of ABA, the data output

from ABA must be 0, and the data to be committed at 𝑡3 must be 𝑑 .

Therefore, safety is guaranteed in this situation.

Situation 2: A non-faulty replica commits 𝑑 at 𝑡2. According
to Case 1 in Section 4.1, at least 𝑓 + 1 non-faulty replicas must

have broadcast the optimistic candidate in the prepare phase. The
remaining analysis is identical to Situation 1.

Situation 3: A non-faulty replica commits 𝑑 at 𝑡3. If there are
other non-faulty replicas that commit at 𝑡1 or 𝑡2, safety is guaran-

teed based on the analysis of Situation 1 and Situation 2. Therefore,

we only need to consider the remaining situation where all the

non-faulty replicas commit at 𝑡3. According to the agreement prop-

erty of ABA, non-faulty replicas will get the same output bit from

ABA and thus commit the corresponding candidate. Since all the

optimistic (respectively, pessimistic) candidates are identical, safety

is guaranteed in this situation.
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4.2.2 Liveness. Similar to the liveness analysis in ParBFT0, the

liveness property of ParBFT1 is stated in Theorem 4, with its proof

relying on Lemma 3.

Lemma 3. In ParBFT1, if no non-faulty replica commits at 𝑡1 or 𝑡2,
every non-faulty replica will eventually invoke the ABA protocol.

Proof. This lemma is established through two cases.

Case 1: Some non-faulty replica 𝑝𝑖 outputs from the op-
timistic path. According to Algorithm 3, 𝑝𝑖 will broadcast its

optimistic candidate during the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase. Each non-faulty

replica will receive this optimistic candidate. This ensures that each

non-faulty replica can broadcast a PREP message and expect to re-

ceive at least 𝑛 − 𝑓 PREP messages during the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase. Then,

every non-faulty replica will invoke the ABA protocol.

Case 2: No non-faulty replica outputs from the optimistic
path. In this case, all non-faulty replicas will keep participating in

the pessimistic path, eventually obtaining a pessimistic candidate

according to the termination property of VABA. Every non-faulty

replica can then broadcast a PREP message and invoke the ABA

protocol after receiving 𝑛 − 𝑓 PREP messages. □

Theorem 4. Every non-faulty replica in ParBFT1 can successfully
commit in each consensus instance.

Proof. First, if some non-faulty replica 𝑝𝑖 commits at 𝑡1 or 𝑡2, it

will broadcast a Halt message. Every non-faulty replica will even-

tually receive this Haltmessage from 𝑝𝑖 , leading them to commit if

it has not yet. Next, if no non-faulty replica commits at 𝑡1 or 𝑡2, then

due to Lemma 3, each non-faulty replica will invoke the ABA proto-

col. The termination property of ABA ensures that each non-faulty

replica will eventually output from the ABA protocol. Based on the

validity property of ABA, at least one non-faulty replica must have

inputted the same bit as the output bit. According to Algorithm 3,

that replica must have also broadcast the corresponding candidate.

Therefore, each non-faulty replica will receive a candidate corre-

sponding to the output bit and commit that candidate value. This

concludes the proof of Theorem 4. □

4.3 Performance analysis
In a good situation with a non-faulty leader, a replica in ParBFT1

can commit at the end of the optimistic path, which has a latency

of 5𝛿 . In a bad situation characterized by a faulty leader, ParBFT1

takes 22𝛿 to reach consensus, slightly larger than 21𝛿 in ParBFT0,

due to the additional prepare phase. Furthermore, since the pes-

simistic path always results in quadratic communication overhead,

the optimistic path in ParBFT1 could be implemented using the

normal-case protocol of PBFT [18], where each replica sends the

vote to all replicas instead of only to the leader. This will give

ParBFT1 a latency of 3𝛿 under a non-faulty leader.

It is worth noting that if the adversary manipulates the network

only slightly, ParBFT1 can still commit in the optimistic path. To

be more specific, if 𝑓 + 1 or more non-faulty replicas obtain the

optimistic candidates earlier than pessimistic candidates, each non-

faulty replica will receive at least one PREP message containing the

optimistic candidate by the end of the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase. Consequently,

each non-faulty replica will invoke the ABA protocol with input 0.

As indicated by the validity property, the ABA protocol will output

Figure 3: The structure of ParBFT2

0 and each non-faulty replica will commit the optimistic candidate.

Furthermore, if all non-faulty replicas obtain optimistic candidates

earlier, they can even take a shortcut to commit the optimistic

candidate at the end of the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase, bypassing the need to

run the ABA protocol altogether.

However, since the pessimistic path is launched at the beginning,

ParBFT1 has a message complexity of 𝑂 (𝑛2), even when the leader

is non-faulty and the network is good, which is larger than the

𝑂 (𝑡𝑛) complexity of Ditto or BDT where 𝑡 is the actual number of

Byzantine replicas.

5 PARBFT2 WITH LOWER COMMUNICATION
To reduce the message complexity in good situations, we propose

ParBFT2, whose key idea is to delay the launch of the pessimistic

path by 5Δ. When it is in a good situation, the consensus can be

reached through the optimistic path in 5Δ, without running the

pessimistic path and avoiding the quadratic message complexity.

Although ParBFT2 reintroduces the parameter Δ, its negative ef-
fects are not as severe as those in prior works. To be more specific,

an incorrect estimation of Δ in Ditto or BDT can lead to premature

switching from the optimistic path to the pessimistic path, result-

ing in both high latency and large communication overhead. In

ParBFT2, incorrect estimation of Δ will only increase communica-

tion overhead. Furthermore, if the optimistic path is implemented

using the chain structure, as detailed in Section 6.1, the timer for

delaying the pessimistic path can be configured to 2Δ, same as in

Ditto or BDT.

5.1 Description of ParBFT2
Figure 3 illustrates the structure of ParBFT2, which delays launch-

ing the pessimistic path by 5Δ. The rationale behind this delay is

that, in a good situation, a replica is expected to commit on the

optimistic path within 5Δ. To be more specific, a replica that cannot

commit within this time period will check whether it has obtained

the optimistic candidate. If it has, the replica will activate the fi-

nal agreement with the optimistic candidate, avoiding the need to
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Algorithm 5 ParBFT2 protocol (for replica 𝑝𝑖 )

1: Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 .

2: 𝑏𝑑 ← false // 𝑏𝑑 indicates whether 𝑝𝑖 has broadcast data

3: activate OptPath2(𝑣𝑖 )

4: upon receiving (HALT, 𝑑 , 𝜎) from 𝑝 𝑗 do:
5: commit 𝑑
6: if 𝑏𝑑 then:
7: broadcast (HALT, 𝑑 , 𝜎) if has not
8: exit

9: wait until the timer of 5Δ expires

10: 𝑜𝑝1← OptPath2; 𝑏𝑑 ← true

11: if 𝑜𝑝1 ≠ ⊥ then:
12: parse 𝑜𝑝1 as (𝑑, 𝜎)
13: activate FinAgr with (OPT, 𝑑, 𝜎) if has not
14: else:
15: activate VABA(𝑣𝑖 )
16: wait for the output 𝑜𝑝2 from OptPath2 or VABA

17: parse 𝑜𝑝2 as (𝑑, 𝜎)
18: if 𝑜𝑝2 is an optimistic candidate then:
19: terminate the pessimistic path; 𝑡𝑎𝑔← OPT
20: else:
21: terminate the optimistic path; 𝑡𝑎𝑔← PES
22: activate FinAgr with (𝑡𝑎𝑔, 𝑑, 𝜎) if has not

23: wait for the output 𝑑 from FinAgr

24: commit 𝑑
25: exit

launch the pessimistic path. Otherwise, the replica will launch the

pessimistic path.

Algorithm 5 describes the ParBFT2 protocol. It differs from

ParBFT1 in that replicas do not activate the final agreement imme-

diately after obtaining an optimistic candidate. Instead, the final

agreement is activated only after the timer of 5Δ expires (Lines

9-13 of Algorithm 5), similar to the launch of the pessimistic path.

Additionally, a replica that commits on the optimistic path or re-

ceives a Haltmessage will not always broadcast a Haltmessage to

avoid introducing quadratic communication overhead. Instead, the

replica will check if it has already activated FinAgr or VABA before.

Only if this is true will it broadcast Halt messages. Furthermore,

to ensure that each non-faulty replica can commit, a replica that

has committed must send a Halt message to another replica 𝑝 𝑗 if

it receives a FinAgr or VABA message from 𝑝 𝑗 , even though it has

exited from the current ParBFT2 instance. It is worth noting that

the partially synchronous BFT protocols such as HotStuff also use

a similar design to help each non-faulty replica commit, where a

non-faulty replica 𝑝𝑖 responds to another replica 𝑝 𝑗 with the blocks

lacked by 𝑝 𝑗 .

In fact, ParBFT2 can be viewed as an intermediate protocol be-

tween the serial-path protocols (i.e., Ditto/BDT) and ParBFT1. At

one end of the spectrum, the serial-path protocols execute the opti-

mistic and pessimistic paths in a serial manner. At the other end of

the spectrum, ParBFT1 launches these two paths simultaneously

in parallel. As an intermediate design point, ParBFT2 launches the

Algorithm 6 OptPath2: Optimistic path protocol in ParBFT2 (for

replica 𝑝𝑖 , with 𝑝𝐿 as the leader)

1: Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 . 𝑏𝑑 is a variable shared

with Algorithm 5.

2: // Same as Lines 2-12 of Algorithm 2 (OptPath1)

3: upon receiving (OPTH, 𝑑𝑜 , 𝜎2) from 𝑝𝐿
4: commit 𝑑𝑜
5: if 𝑏𝑑 then:
6: broadcast (HALT, 𝑑 , 𝜎) if has not
7: exit

two paths in a partially parallel fashion, with the pessimistic path

being activated slightly later than the optimistic path.

5.2 Correctness analysis
It is evident that ParBFT2’s safety proof is identical to that of

ParBFT1, so we focus on liveness.

Theorem 5. Every non-faulty replica in ParBFT2 can successfully
commit in each consensus instance.

Proof. We refer to the three points to commit in ParBFT2 as 𝑡1,

𝑡2, and 𝑡3. We prove liveness by analyzing three cases.

Case 1: Some non-faulty replica 𝑝𝑖 commits at 𝑡1. If another
non-faulty replica 𝑝 𝑗 cannot commit at 𝑡1, it will trigger the execu-

tion of VABA and FinAgr. Then, 𝑝𝑖 will receive a VABA/FinAgr

message from 𝑝 𝑗 and will send a Halt message to help 𝑝 𝑗 commit

as well. Thus, every non-faulty replica can commit in this case.

Case 2: No non-faulty replica commits at 𝑡1, but some non-
faulty replica 𝑝𝑖 outputs from the optimistic path. In this

case, 𝑝𝑖 will broadcast its optimistic candidate during the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒

phase after the timer expires. Any non-faulty replica that has not

output from the stage of parallel paths can obtain an optimistic

candidate from 𝑝𝑖 . Therefore, every non-faulty replica broadcasts

a PREP message. If some non-faulty replica 𝑝 𝑗 manages to commit

at the end of the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase (i.e., 𝑡2), it will broadcast a HALT
message to help others commit as well. If no non-faulty replica

commits at 𝑡2, every non-faulty replica will advance to the ABA

protocol. The termination and validity properties of ABA ensure

that every non-faulty replica eventually commits, similar to the

proof of Theorem 4.

Case 3: No non-faulty replica commits at 𝑡1 or outputs
from the optimistic path. In this case, each non-faulty replica

will launch the pessimistic path after the timer expires. VABA’s ter-

mination property guarantees that each non-faulty replica can ob-

tain a pessimistic candidate. Subsequently, every non-faulty replica

will broadcast a PREP message and invoke the ABA protocol. The

remaining analysis is similar to Case 2.

To summarize, all non-faulty replicas in ParBFT2 commit. □

5.3 Performance analysis
In a good situation where the leader on the optimistic path is non-

faulty, ParBFT2 can achieve the same latency of 5𝛿 as ParBFT1. In

a bad situation involving a faulty leader, ParBFT2’s latency is 5Δ
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larger than ParBFT1, at an expected latency of 5Δ + 22𝛿 due to

the delay to the pessimistic path. However, by adopting the chain

structure and the pipelining technique described in Section 6.1 and

Appendix A in our full version [22], ParBFT2 can achieve a latency

of 2Δ + 25𝛿 under a faulty leader, which is the same as that of BDT.

Regarding the communication overhead, if it is in a good sit-

uation where the leader is non-faulty and 𝛿 ≤ Δ, ParBFT2 can

commit without launching the pessimistic path or activating the

final agreement protocol. As a result, ParBFT2 has a message com-

plexity of 𝑂 (𝑡𝑛), which is better than ParBFT1 and comparable to

Ditto or BDT. On the contrary, if it is in a bad situation, the message

complexity of ParBFT2 is 𝑂 (𝑛2), the same as ParBFT1, Ditto, and

BDT.

As can be seen from Table 1, a wrong estimation of Δ in ParBFT2

will only increase the message complexity without affecting the

consensus latency. We can think of ParBFT2 as making a trade-off

between latency and communication over ParBFT1. To be more

specific, ParBFT2 trades the larger latency under a Byzantine leader

for a smaller message complexity in a good situation.

6 IMPLEMENTATION AND EVALUATION
In this section, we first introduce the chain-based version of ParBFT,

which organizes data on the optimistic path into blocks that are

chained one by one and processed in a pipelined manner to improve

throughput. We then implement the chain-based system prototypes

of both variants (i.e., ParBFT1 and ParBFT2) and conduct extensive

experiments to evaluate their performance.

6.1 Chain-based ParBFT
In the previous description of ParBFT, we focused on a single in-

stance of consensus to illustrate our main ideas more clearly. We

can easily organize the data on the optimistic path across consec-

utive ParBFT instances into blocks and chain them together. This

allows us to pipeline the processing of these blocks to improve

throughput, as is commonly done in many partially-synchronous

protocols [13, 68].

In general, the chain-based ParBFT proceeds in epochs, with

blocks in an epoch indexed by increasing and successive height

numbers. On the optimistic path of an epoch, the leader 𝐿ℎ of height

ℎ will create a Quorum Certificate (𝑄𝐶ℎ−1) by combing the partial

threshold signatures on the block (𝐵ℎ−1) of height ℎ − 1. After

embedding 𝑄𝐶ℎ−1 in its newly created block 𝐵ℎ , 𝐿ℎ will broadcast

𝐵ℎ to other replicas. When a replica receives 𝐵ℎ , it will commit

the block 𝐵ℎ−2 and vote for 𝐵ℎ by sending its partial threshold

signature on 𝐵ℎ to the leader 𝐿ℎ+1 of height ℎ + 1. This optimistic

path is similar to Tendermint [13] or two-chain HotStuff [68], where

block processing is pipelined. The difference is that the chain-based

ParBFT also attempts to launch a pessimistic path and then the final

agreement protocol for each height, either immediately in ParBFT1

or delayed in ParBFT2. An epoch ends if any candidate from the

pessimistic path gets committed, at which point the protocol moves

on to the next epoch.

For chain-based ParBFT2, the timing parameter for delaying the

pessimistic path can be set to 2Δ, resulting in a latency of 2Δ + 25𝛿
under a faulty leader, as shown in Table 1. Due to space constraints,

we defer a detailed description of chain-based ParBFT to Appendix

A in our full version [22] From now on, we refer to the chain-based

ParBFT simply as ParBFT in the remainder of the paper when there

is no ambiguity.

6.2 Implementation and experimental details
We implement the chain-based version of ParBFT in Golang (v1.17).

Our implementation leverages several open-source libraries, in-

cluding kyber
2
for threshold signatures, go-msgpack

3
for network

communication, and gorpc
4
for synchronizing data payloads. We

choose the MMR version of the ABA protocol [52] for implemen-

tation due to its simplicity. We are aware that the MMR protocol

is vulnerable to liveness attacks if the adversary can arbitrarily

manipulate message deliveries. This problem has known solutions

[1, 48, 53], but it is not central to our paper.

Although there is an open-source implementation of BDT, it is

written in Python, which generally has worse performance than

Golang implementations. In addition, its pessimistic path uses

Dumbo-MVBA [37], which is no longer the state-of-the-art. To

ensure fairness, we implement our own version of BDT in Golang

and give it a more efficient MVBA subroutine (i.e., sMVBA [36]) as

its pessimistic path. For Ditto, we directly adopt its open-source

Rust implementation
5
. For a lack of better heuristics, we follow

the default configuration of BDT and Ditto that switch back to the

optimistic path once a single agreement decision is reached on the

pessimistic path.

We implement clients to send transactions to replicas at a rate

controlled by a tunable configuration parameter. Additionally, we

implement a mempool [32] to facilitate replicas to synchronize

the data blocks in the background without embedding them into

consensus messages. The payload size in the mempool is set to

512 KB. Each block proposal can contain hash digests of up to 32

payloads. Each hash digest is 32 bytes, making the maximum size

of a block proposal 1 KB.

In Ditto’s open-source implementation, a non-leader replica will

create and broadcast a payload only after receiving enough trans-

actions to fill a payload. This will lead to very large end-to-end

latency when the input rate is low. To address this problem, we add

an improvement on Ditto’s mempool implementation: in addition

to broadcasting a payload whenever it is full, a replica also broad-

casts a payload one second after broadcasting the previous payload,

even if the new payload is not full.

Our experiments are conducted in three different settings that

attempt to capture the three situations in Table 1: (1) a good situa-

tion where the leader of the optimistic path is non-faulty and the

network is good; (2) a situation with a non-faulty leader but a slow

network; and (3) a situation where the leader is faulty.

We focus on the performance metrics of throughput and end-

to-end latency. Throughput is calculated as the average number

of committed transactions per second, while end-to-end latency

is measured as the time it takes for a transaction to be committed

since the client sends that transaction.

Each experiment lasts for five minutes and is repeated three

times. Each data point in the rest of this section reports the average

2
https://github.com/dedis/kyber

3
https://github.com/hashicorp/go-msgpack

4
https://github.com/valyala/gorpc

5
https://github.com/danielxiangzl/Ditto
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Figure 4: Latency vs throughput in a good network

and is accompanied by error bars. The experiments are conducted

on Amazon Web Service (AWS). Each replica is implemented on an

m5d.2xlarge EC2 instance with 8 vCPUs, 32 GB memory, and a

network bandwidth of up to 10 Gbps. The replicas are distributed

across five AWS regions in a geo-distributed manner: US-East (N.

Virginia), US-West (N. California), Asia-Pacific (Sydney), EU (Stock-

holm), and Asia-Pacific (Tokyo).

6.3 Performance in a good situation
In this section, we compare the performance of different protocols in

a good situation. Specifically, we set the parameter Δ in Ditto, BDT,

and ParBFT2 to 500 ms (milliseconds), leading to a timer setting of

1,000 ms (2Δ), which is significantly larger than the actual network

delay. Our evaluation consists of two parts. Firstly, we analyze

the relationship between latency and throughput for three system

scales. Next, we conduct a more detailed comparison of latency

as the number of replicas increases when the input rate does not

saturate the system.

In the first part of our evaluation, we set the number of replicas

to 10, 19, and 40, respectively. The results are shown in Figure 4.

As anticipated, as the system scales up, all protocols exhibit a re-

duction in their peak throughput. For each replica count, ParBFT2

demonstrates a peak throughput comparable to BDT and Ditto.

ParBFT1 also delivers a similar peak throughput when there are

only 10 replicas, but as the system scales up, ParBFT1 shows worse

performance than others due to its quadratic communication in the

pessimistic path.

In the second part, we fix the input rate to 10,000 transactions

per second and vary the number of replicas from ten to forty. The

latency comparison is illustrated in Figure 5. Notably, Ditto, BDT,

and ParBFT2 exhibit excellent scalability as the replica count in-

creases, sustaining a 900∼1,000 ms latency with up to 40 replicas.

This is because in the good case, Ditto or BDT do not switch to

the pessimistic path, and ParBFT2 need not launch the pessimistic

path. On the other hand, ParBFT1 demonstrates poor scalability

as the replica count increases, again due to its quadratic message
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Figure 5: Latency comparison as the number of replicas in-
creases in a good network

complexity. It is worth noting that ParBFT1 has an advantage in

latency over other protocols when the number of replicas is small.

The reason is that replicas in ParBFT1 can promptly activate the

prepare phase within the final agreement protocol upon receiving

a subsequent block (or receiving output from PB1 in Figure 2). The

prepare phase empowers replicas to commit a block within one

round of communication, in contrast to the two rounds mandated

by the optimistic path.

6.4 Performance in a slow network
In this situation, we simulate a slow network by adding delays to

all messages. We introduce a new delay parameter 𝜁 . We note that

𝜁 represents an artificial delay added to all messages, so the final

message delay would be 𝜁 plus the original network delay. We fix

the number of replicas at sixteen and retain the same 500 ms value

of Δ as in Section 6.3. Our experiments include two parts: the first

part depicts the relationship between latency and throughput, while
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the second part explores how the latency changes as the artificial

delay 𝜁 increases.

For the first part, we try two 𝜁 values: 200 ms and 600 ms. The

results are given in Figure 6. When 𝜁 is 200 ms, all the protocols

exhibit similar performance. When 𝜁 is set to 600 ms, Ditto and

BDT suffer considerably worse performance compared to ParBFT1

or ParBFT2. This is the case where Ditto and BDT fail to commit

in their optimistic paths and switch to the pessimistic path after

the timeout is triggered. Although the timer also expires and the

pessimistic path is launched in ParBFT2, the optimistic path will

still finish faster than the pessimistic path, enabling ParBFT2 to

commit through the optimistic path, without having to finish the

entire pessimistic path.

In the second part, we fix the input rate to 10,000 transactions per

second and vary the value of 𝜁 from 0 ms to 700 ms in increments

of 100 ms. The experimental results are presented in Figure 7. As

shown, the performance of Ditto and BDT deteriorates significantly

when 𝜁 exceeds 500 ms. By contrast, the performance of ParBFT1

and ParBFT2 degrades in a gradual manner.

An interesting phenomenon captured by Figure 7 is the initial

lower latency of ParBFT1 compared to ParBFT2. As the value of 𝜁

increases, this latency difference becomes larger. However, eventu-

ally, the latency of ParBFT2 converges to a level similar to ParBFT1.

The reason for this trend is that at the start of small 𝜁 , ParBFT1

can benefit from early decision in the prepare phase in contrast to

ParBFT2, as we have discussed in Section 6.3. As 𝜁 increases from

0 ms to 400 ms, the benefits of one less communication round in

ParBFT1 become more and more significant, leading to an increas-

ing latency difference. However, when 𝜁 reaches 500 ms, the timer

in ParBFT2 expires and the prepare phase is activated. In this case,

ParBFT2 also benefits from the prepare phase, similar to ParBFT1,

and hence achieves comparable performance.

6.5 Performance under a faulty leader
In this section, we examine the situation where the leader is faulty.

Although a Byzantine faulty leader can behave arbitrarily, it is

reasonable to focus on a crashed or slow leader. This is because
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the leader’s power in ParBFT is limited to the optimistic path. The

worst disruption a faulty leader can cause is to spoil the optimistic

path, which can be achieved by simply crashing or being slow. Thus,

we delay the block proposals from the leader by a parameter of

𝜓 , through which we can observe the performance change under

different𝜓 values. For this group of experiments, we fix the number

of replicas at sixteen. The parameter Δ is configured at 250 ms,

resulting in a timer of 500 ms. Our experiments again include two

parts: the first part shows the relationship between latency and

throughput, and the second part analyzes the latency as a function

of𝜓 .

In the first part, we try two values of𝜓 : 400 ms and 2 seconds.

Experimental results are shown in Figure 8. From the figure, we see

that when𝜓 is set to 400 ms, both ParBFT1 and ParBFT2 demon-

strate superior performance compared to Ditto or BDT. In this case,

Ditto and BDT will switch to run the pessimistic path. Despite the
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timer also expiring in ParBFT2, ParBFT2 can still commit in the

optimistic path similar to the previous situation. When𝜓 is set to

2 seconds, all protocols resort to the pessimistic path to commit.

In this case, ParBFT1 outperforms the other protocols due to the

simultaneous launch of both two paths. In contrast, Ditto, BDT, and

ParBFT2 activate the pessimistic path only after a timer expires.

For the second part, we set the input rate to 10,000 transactions

per second while varying the value of𝜓 from 0 ms to 2,800 ms in

increments of 400 ms. The results of these experiments are shown in

Figure 9. We can immediately notice that the latency of all protocols

grows when the block proposals are delayed. Upon a more careful

comparison, we see that Ditto and BDT experience a sharp increase

in latency when𝜓 reaches 400 ms, due to the expiration of the timer

and consequent path switch. In contrast, the latency of ParBFT1

and ParBFT2 increases gradually, due to the early decision in the

prepare phase. Specifically, in the case of ParBFT2, a block can still

be committed at the end of the prepare phase, even after the timer

expires and the pessimistic path is launched when𝜓 exceeds 400 ms.

In terms of the final steady performance, all protocols demonstrate

a high latency, as a result of running the pessimistic path. However,

BDT and ParBFT2 exhibit slightly larger latency than Ditto, possibly

due to the additional usage of an ABA protocol.

7 RELATEDWORK
Based on different timing assumptions, BFT protocols can be classi-

fied into three categories: synchronous, partially-synchronous, and

asynchronous.

7.1 Synchronous BFT protocols
The pioneering works of Pease et al. [44, 54] introduce the prob-

lem of Byzantine agreement, originally in a synchronous network

where messages between non-faulty replicas are delivered in a

timely manner. Assuming a network delay upper bound (i.e., Δ),
early synchronous protocols coordinate all the replicas to proceed

in a lock-step manner [2, 9, 26, 29, 39]. However, this approach is

caught in a delicate dilemma between security and efficiency. If Δ
is set too small, the synchrony will be violated, and the protocol

will lose safety. On the other hand, if Δ is set too large, each lock-

step round will take a long time, causing unnecessary delays and

poor performance. For this reason, synchronous BFT consensus

protocols have long been considered impractical. Recent works

such as Sync HotStuff [4] alleviated this problem by embracing

a non-lockstep model of synchrony, enabling replicas to advance

more quickly to the next steps and minimizing the protocol’s perfor-

mance dependency on Δ. Despite the improvement, synchronous

protocols, including Sync HotStuff, still have their performance

fundamentally dependent on Δ and thus still face the dilemma of

incorrect estimation of Δ.

7.2 Partially-synchronous BFT protocols
The partial synchrony model proposed by Dwork et al. [28] opens

up a new avenue for BFT consensus protocol design. PBFT [18],

based on a partially synchrony model and using the view-based

design, becomes the de facto standard for practical BFT consensus

for over a decade. To reduce the (already low) latency of PBFT from

three rounds to two rounds, a range of works propose adding a

fast path. These include Zyzzyva [42], FastBFT [45], SBFT [35], and

Trebiz [21]. More recently, the emergence of blockchains inspires

further simplification of the view-based partially synchronous BFT

paradigm protocol with the new chain-based structures of blocks,

as seen in Tendermint [13], Casper FFG [14], HotStuff [68], and

Streamlet [19]. Although partially synchronous protocols exhibit

decent performance in the good case, they have recently been

criticized for being vulnerable to liveness attack [50]. To be more

specific, even with a non-faulty leader, the adversary may construct

an elaborate network scheduler that blocks messages to and from

the leader until the leader is demoted. This results in a loss of

liveness.

Aublin et al. propose a black-box framework to switch between

multiple protocols [7] to get their respective benefits. Their frame-

work adopts the serial-path paradigm. The two baselines considered

in our work, Ditto and BDT, can be viewed as concrete instantia-

tions of this framework.

Some recent works explore an orthogonal direction of employ-

ing multiple leaders to concurrently drive multiple consensus in-

stances [61, 62] to improve throughput. In contrast, ParBFT runs

two parallel paths within each single consensus instance to accel-

erate the instance.

7.3 Asynchronous BFT protocols
Research on the asynchronous BFT protocols dates back to the

1980s [8, 12, 17, 20]. Asynchronous BFT broadcast protocols enable

replicas to deliver the same message from a designated broadcaster,

with Bracha’s reliable broadcast [11] and Dolev’s consistent broad-

cast [25] being notable examples. These protocols are typically used

as subroutines in the Byzantine consensus or state machine replica-

tion protocols. The famous FLP impossibility states that asynchro-

nous BFT consensus protocols must make use of randomness [30].

Early works in this area include Ben-Or [8], Canetti-Rabin [17],

CKPS [15], and SINTRA [16]. Many works focus on the simpler

problem of agreeing on a single bit (0 or 1), also known as Asyn-
chronous Binary Agreement (ABA) [1, 8, 31, 52]. Recent practical
advances in asynchronous BFT include HoneybadgerBFT [50], the
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Dumbo family of protocols [36, 37, 47], and Directed Acyclic Graph
(DAG)-based protocols [23, 40, 58, 60].

Although asynchronous consensus protocols are more robust

than partially synchronous ones, they generally have inferior per-

formance. To match the performance of partially synchronous pro-

tocols, a number of works propose adding an optimistic path, which

is often adapted from a partially synchronous protocol, and use the

original asynchronous protocol as a pessimistic fallback [33, 46].

We have discussed the drawbacks of this design extensively, and it

is also the motivation of our work.

Some recent works combine synchronous and asynchronous

protocols to improve fault tolerance [6, 10, 49, 51]. It is well known

that asynchronous (and partially-synchronous) protocols tolerate

at most 𝑛/3 Byzantine faults while synchronous protocols toler-

ate up to 𝑛/2 Byzantine faults. These works aim to tolerate more

than 𝑛/3 Byzantine faults in the good case when the network hap-

pens to be synchronous. In contrast, ParBFT focuses on improving

performance in the good case.

8 CONCLUSION
The existing serial-path BFT consensus protocols can result in sig-

nificant latency if the network delay is incorrectly estimated. To

deal with this problem, we propose ParBFT, which runs the opti-

mistic and pessimistic paths in parallel. ParBFT can achieve a low

latency of 5𝛿 as long as the leader on the optimistic path is non-

faulty without requiring a correct estimation of the network delay.

We present two variants of ParBFT (i.e., ParBFT1 and ParBFT2) that

offer a trade-off between latency and communication overhead. To

improve system throughput, we also introduce the chain-based ver-

sion of ParBFT, which incorporates the chain structure and pipelin-

ing into the optimistic path. Our experimental results demonstrate

the efficiency of ParBFT.
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