Stealth Key Exchange and Confined Access to the Record
Protocol Data in TLS 1.3

Marc Fischlin

Cryptoplexity, Technische Universitdt Darmstadt, Germany
Www.cryptoplexity.de
marc.fischlin@tu-darmstadt.de

Abstract.

We show how to embed a covert key exchange sub protocol within a regular TLS 1.3 execution, generating
a stealth key in addition to the regular session keys. The idea, which has appeared in the literature
before, is to use the exchanged nonces to transport another key value. Our contribution is to give a
rigorous model and analysis of the security of such embedded key exchanges, requiring that the stealth
key remains secure even if the regular key is under adversarial control. Specifically for our stealth
version of the TLS 1.3 protocol we show that this extra key is secure in this setting under the common
assumptions about the TLS protocol.

As an application of stealth key exchange we discuss sanitizable channel protocols, where a designated
party can partly access and modify payload data in a channel protocol. This may be, for instance, an
intrusion detection system monitoring the incoming traffic for malicious content and putting suspicious
parts in quarantine. The noteworthy feature, inherited from the stealth key exchange part, is that
the sender and receiver can use the extra key to still communicate securely and covertly within the
sanitizable channel, e.g., by pre-encrypting confidential parts and making only dedicated parts available
to the sanitizer. We discuss how such sanitizable channels can be implemented with authenticated
encryption schemes like GCM or ChaChaPoly. In combination with our stealth key exchange protocol,
we thus derive a full-fledged sanitizable connection protocol, including key establishment, which perfectly
complies with regular TLS 1.3 traffic on the network level. We also assess the potential effectiveness of
the approach for the intrusion detection system Snort.

Keywords. Key exchange, secure channel, sanitization, TLS

1 Introduction

Common key exchange protocols allow two parties to agree on a session key. We investigate here the notion
of stealth key exchange where the parties can create another joint key, called the stealth key, within an
execution. The steps to generate this extra key are embedded covertly into the regular execution, such that
outsiders remain oblivious if the stealth mode has been used or not. The derived stealth key should be
secure even if an adversarial parties gets to know—or can even control— the regularly established session
key in such an execution.

Client Server Client Server
T <8 Zqg Y %Ly T <8 Zg Y % Ly
N¢ <5 {0,1}" Ng s {0,1}" a5 Zqg b5 Zqg
Nc <5 Embd (¢%) Ng <5 Embd (¢”)
]VCWgz]VCWgz
_ _
NS7gy NS7gy
— —
g" < Embd™*(Ny) g% < Embd™!(N¢)
o +$Sign(...) o +$Sign(...)
o, cert o, cert
— —
key < KDF (¢*¥, N¢, Ng,...) key < KDF (¢*¥, N¢, Ng,...)
stkey < KDF (gab,g”,gy, .)

Figure 1: Simplified version of TLS 1.3 (left) and stealth mode (right).

1.1 The Approach

The idea of building stealth key exchange protocols relies on the widespread deployment of nonces in
key exchange protocols, e.g., in TLS 1.3 each party sends a random 256-bit value in the Hello messages.
In terms of security these nonces should ensure that sessions are unique, but usually one does not need
to assume anything beyond this property. One can thus use these nonce values to embed further useful
information which can be used to derive the additional stealth key. This idea already appears in several
anti-censorship protocols like Telex [WWGHI1| and Decoy Routing [KEJ+11].EI

Let us concretely consider the TLS 1.3 key exchange in the (EC)DHE mode with server authentication.
For a simplified version of this protocol see (the left part of) Figure . Besides the client and server nonces
N¢ and Ng, the parties also run a Diffie-Hellman key exchange protocol (over an elliptic curve), deriving a
joint secret g*¥ from the parties’ shares ¢g* and g¥. This secret ¢g®¥ is then used in the key derivation step,
applied to nonces N¢g, Ng and additional information.

The idea is now to embed suitable elliptic curve points for yet another Diffie-Hellman key exchange in
the TLS 1.3 nonces. Specifically, both parties on top generate another Diffie-Hellman key ¢ by embedding
their corresponding shares ¢g¢ and g° into the nonces N and Ng. The stealth key is then computed as in
the original protocol, but by swapping the role of the Diffie-Hellman values and the nonces. That is, the
stealth key is now derived via the key derivation function, applied to the secret g? for “nonces” ¢* and g¥
(and the other data). See the right part of Figure

The final step is to make sure that the embedding of the extra Diffie-Hellman values remains hidden.
Here we use the Elligator proposal of Bernstein et al. [BHKL13| which allows to efficiently create ellip-
tic curve points which are statistically indistinguishable from uniform bit strings. We discuss the exact
embedding algorithms within. Once this is accomplished, we have implemented the stealthiness.

1.2 Applications

We briefly discuss here some applications of stealth key exchange. The applications partly also serve as a
motivation for our security model in the next subsection. We remark once more that we discuss related

!We give a comprehensive comparison to related works in Section [2] after having discussed the main ideas.

concepts in more detail in Section

The first application is a weak form of deniable communication. Since the stealth mode cannot be
distinguished from an actual key exchange execution, an outsider cannot know if the parties have agreed
on the extra key. If now the parties use this key to encrypt the communication upfront, before pushing it
through the channel secured by the actual session key, then they can claim to have sent random data.

Another application is to reduce the trust in Trusted Execution Environments (TEEs). Such environ-
ments nowadays usually support, among others, the generation, storage, and computation of Diffie-Hellman
keys. Hence, when used within a protocol like TLS, the user may hope to benefit from the additional se-
curity guarantees of the TEE (albeit the security of such TEEs may be weaker than expected, e.g., see
[CSEP20] for a discussion for TrustZone, for instance). When using the TEE, however, the user remains
oblivious about how the Diffie-Hellman keys are generated or stored within the TEE, or even if they are
leaked, opening up the possibility of key escrow. With a stealth key exchange the users may generate the
additional stealth key and pre-encrypt transmitted data under that key. In this sense the user profits from
a “good” TEEs and, at the same time, reduces the risk for a “bad” TEEE]

A third example where stealth key exchange may be useful is malware detection for TLS-encrypted
communication. So far, one had to share the session key with the middlebox (e.g., an intrusion detection
system) in order to allow scanning for potential threats. The sharing of ad-hoc session keys is a challenging
problem in itself, but so far practical approaches follow an all-or-nothing principle: either the middlebox
has access to the entire communication or no access at all. The stealth key exchange would allow the users
to use the extra stealth key to pre-encrypt parts of the communication and only give the middlebox access
to other parts. And it remains up to the users to decide which parts remain end-to-end encrypted. We
note that the actual implementation of this idea is far from trivial and presented more comprehensively
in Section [6] with a closer look at the potential integration into the intrusion detection system Snort in
Section [7

1.3 Security of Stealth Key Exchange

We next discuss what kind of security properties we expect from stealth key exchange protocols. This has
previously not been captured rigorously, according to common security models for key exchange. Intuitively,
there are two relevant properties. First, we demand that the stealth key is confidential, even if the session
key derived in the same execution is disclosed, or, following the TEE application example, even if the
adversary gets to influence the session key. Confidentiality of the stealth key here refers to the common
notion of indistinguishability from random. We also assume, vice versa, that the session key remains secure
if the stealth key is revealed. The second property of a stealth key exchange is that one cannot tell apart
executions in which a stealth key is generated from those running merely a regular key exchange execution.
This hides the fact whether a stealth key has been agreed upon or not.

We give a security definition in the game-based style of Bellare and Rogaway [BR94], capturing potential
correlations between the session key, the stealth key, and the stealthiness of the execution. That is, classical
key exchange protocols define confidentiality of the session key via a secret challenge bit b, determining if
the adversary gets to learn the session key (b = 0) or a random string instead (b = 1) in a challenge. The
task of the adversary is to predict the bit b. For our security definition we use the same challenge bit b to
seize all secrecy properties simultaneously: If the bit b is 0 then we let the parties run in stealth mode, and
also hand the adversary the session key resp. the stealth key if requested. If, on the other hand, the bit b
is 1, then the parties run in regular mode, and if the adversary asks to be challenged about a key then we
return a random (session or stealth) key instead.

*Note that our approach uses the random nonces to establish the stealth key. Hence, at least the nonce generation cannot
be outsourced to the TEE and its random generator.

We note that the security model with its session-centric view of one party’s communication in an
execution introduces some interesting effect for the stealthiness. That is, a party may start in stealth
mode, with the goal of establishing another key, whereas the intended communication partner does not and
instead runs in regular mode. Unless the two parties have already established a shared secret before, they
cannot secretly coordinate if they both want to run in stealth mode when the key exchange begins. They
can learn this after completion of the key exchange protocol, of course, for example, by trying to use the
extra key.

1.4 Stealth TLS 1.3

We next prove that the stealth version of TLS 1.3 satisfies the strong security guarantees of a stealth key
exchange protocol, when using an appropriate embedding. For the nonce embeddings we use Elligator 2
for Curve25519 [BHKL13|, since Curve25519 is also one of the recommended elliptic curves for TLS 1.3.
Hence, our security proof shows that the Elligator embedding allows to derive a stealth key which is as
secure as the regular TLS channel key (for Curve25519), and remains secure if the session key is leaked or
even determined by the adversary. In other words, deriving another fresh key within a given TLS 1.3 is
possible, and the fact that this extra key is derived cannot be spotted from the outside.

One could argue that stealth key exchange does not improve over the trivial solution to run another
execution with the partner, say, another TLS 1.3 exchange, to generate yet another key. However, such
extra executions may be easy to detect and may be prohibited, e.g., for political reasons. The stealth key
exchange mode, on the other hand, goes undetected. Another difference lies in the availability of the secret
to authorized parties. If a government enforces key escrow for any connection, then simply running two
instances would not allow to create a key shared only by the communication partners. We note that our
intrusion detection system case displays an example where (partial) access to the data may be desired.
Remarkably, the embedding technique can be used to provide such a trade-off. Finally, and this depends
on the embedding and the protocol, the stealth mode may be faster than two executions, especially in
terms of latency.

1.5 Sanitizable Channel Protocols

As a concrete application of the stealth version of TLS 1.3 we show how to lift the mode to accomplish
(controlled) sanitization for a TLS 1.3 channel. Going back to the intrusion detection example, we let the
sender and receiver run the stealth key exchange protocol, agreeing on the stealth key for establishing an
end-to-end protected connection, and letting the receiver use a static Diffie-Hellman part shared with the
detection system. The latter implies that detection system, also called sanitizer, and receiver and sender
all share the regular session key of the connection. We note that the static Diffie-Hellman share demolishes
forward secrecy of the regular key, but our security proof shows that the stealth key is nonetheless forward
secure.

The idea is now to let the sender and receiver use the stealth key to conceal information from the
sanitizer, protecting the inner data msec with the stealth key to derive an inner ciphertext cgec. Then the
sender inserts this inner ciphertext csec together with the accessible part mppin of the message through the
regular channel protocol for the session key. This allows the sanitizer to check for the plain part only, hiding
the msec-part from the sanitizer. In fact, we use a more fine-grained distinction into secure, confidential,
authenticated, and plain message parts.

We show the above approach is secure if the underlying authenticated encryption scheme is secure, in
a suitable model for sanitizable channels. We emphasize that the final ciphertexts are slightly longer than
if encrypting msec and mpjain directly, because the inner ciphertext csec also includes an authentication tag.
Nonetheless, when using either of the two suggested authenticated encryption methods in TLS 1.3, GCM

or ChaChaPoly, the final ciphertext is a legitimate ciphertext according to TLS 1.3 standards. Thus, when
executing the stealth key exchange protocol together with the sanitizable channel, this perfectly complies
with the TLS 1.3 standard on the network level.

An interesting feature for the sanitizable channel protocol is that we can preserve the stealthiness from
the key exchange to the channel protocol. This means that even the sanitizer cannot know if the sender
and receiver actually exchange additional messages in the inner ciphertext. For this we use a common
property of the authenticated encryption schemes, namely, that one cannot distinguish actual ciphertexts
created with the secret key from random bits. Our security model will capture this stealth property of the
sanitizable channel, such that our TLS 1.3 based solution, shown secure in this model, also provides this
extra feature.

We finally discuss how our sanitizable channel protocol could be integrated into a network intrusion
detection system like the open-source program Snort. Snort comes with a predefined set of rules for checking
network traffic, of which roughly half touch upon HTTP traffic. Suppose we grant Snort, as the sanitizer,
access to HT'TP meta-information like the header data by putting these data in the accessible part mpjain,
but hide the actual HT'TP content from Snort in the inner ciphertext csec. Then we can still cover a vast
majority of all HTTP-related rules in Snort but now work over encrypted communication.

2 Related Work

Our result relies on several ideas and techniques appearing in the literature. We discuss here —and delineate
from— the most relevant works.

2.1 Steganography

Stealth key exchange is related to steganographic techniques in cryptography which can be traced back
to Simmons’ work about the prisoner’s problem [Sim83]. The case of public-key steganography has been
studied extensively, starting with the initial idea mentioned in [AP98| [Cra98] to the first formalization
by von Ahn and Hopper [vHO04]. Several other works focusing on steganographic techniques for public-key
encryption followed, e.g., [BC05) [Hop05, [LK06, BLI18|. We note that only the work by von Ahn and Hopper
[vHO4] discusses key exchange but merely for passive adversaries; all other works in this realm consider
encryption.

The most important difference to our setting here is that steganographic schemes embed a message into
a regular communication, whereas stealth key exchange “only” aims to generate an extra key. This may
sound like a subtle difference but has crucial consequences for the design. Steganographic schemes often
embed bits of the message via rejection sampling [BC05|, such that for transmitting each bit covertly many
samples and one ciphertext are necessary. In fact, Dedic et al. [DIRR09] show that an exponential number
of samples is required unless one exploits specifics of the communication channel. We can bypass the lower
bounds since we are only interested in the partners agreeing on an additional secret key.

2.2 Embeddings

The idea of embedding elliptic curve points as bit strings in an indistinguishable way dates back to
Moéller [Mol04]. In his solution, he uses the fact that the z-coordinate of the point either denotes a
valid curve point or a valid point on the twist. This allows to represent public keys as random strings.
Moller’s idea has been used in StegoToros [WWY 12| to include stegographic techniques in TOR.

The most widely used embedding today is the Elligator approach of Bernstein et al. [BHKLI13|. It comes
in two flavors, Elligator 1 and Elligator 2. Elligator 1 is based on an approach by Fouque et al. [FJT13]
and works for some elliptic curves. Elligator 2 is more general and in particular works with Curve25519

one of the options in TLS 1.3 for elliptic curves. This is why we use Elligator 2 here. We also remark that
Bernstein et al. [BHKL13| discuss issues with the covertness of other elliptic curves available in TLS 1.3,
especially with NIST’s curve P-256 which may not easily yield almost uniform bit strings. The reason is
basically that the order of curve P-256 is not sufficiently close to a power of 2.

Tibouchi [Tib14] presents an improvement for Elligator, denoted as Elligator Squared, which overcomes
the issue of repeated sampling to find a suitable curve point and may thus be less vulnerable against
time-based side channels. Aranha et al. [AFQ™14] further improve the efficiency for Elligator Squared.
Unfortunately, the size of the embedded bit string in Elligator Squared is twice as large as in the Elligator
case, such that we could not embed it easily into the 256-bit nonce in TLS 1.3 for the same security level.
That is, we had to use a 128-bit curve instead, which provided at most 64 bits of security.

2.3 Analyses of TLS 1.3

TLS 1.3 [Resl8] has been developed between 2014 and 2018 by the IETF. The process has been accom-
panied by a number of scientific analyses during the standardization, both cryptographically [DEFGS15,
KMO™15, [KW16] as well as by formal methods and symbolic analyses [BBD™15, BFK16, DFK™17,
CHSv16, (CHH'17]. The most relevant analysis for us here is the one in [DFGST5| (see also [DFGS21]
for an updated version) as it uses a similar security model (but in the multi-stage setting). Noteworthy,
since we give a reduction to the security of the basic TLS 1.3 protocol, the latest results about tight security
proofs of TLS 1.3 [DG21] [DJ21] immediately transfer to our setting. Note that we do not investigate the
pre-shared key mode of TLS 1.3 such that corresponding tightness results as in [DDGJ22| do not apply to
our setting here.

For the sanitizable channel protocol we use that GCM is a secure authenticated encryption scheme with
associated data (AEAD) when used with a pseudorandom permutation [MV04] like AES in TLS 1.3. The
same holds for the composition of ChaCha20 and poly1305 [Prol4], assuming ChaCha20 is pseudorandom
and poly1305 is a universal hash function. In our security proof we use additional common properties of
such AEAD schemes, namely, that ciphertexts cannot be distinguished from random and that the length of
the ciphertext can be deduced from the length of the input message. Both AEAD schemes used in TLS 1.3
satisfy these properties (under the aforementioned assumptions).

2.4 Middleboxes

It is well known that end-to-end encrypted payload and packet inspection by middleboxes are usually
irreconcilable. Clearly, the privacy requirements of the users are very important. However, De Carné de
Carnavalet and van Oorschot [dCdCvO20| give an overview over cases where accessing secured data may
still be desirable. This includes legal reasons like lawful interception or fraud detection, security reasons like
malware download protection or intrusion detection, performance reasons like caching and compression,
and other reasons like parental control. Note that some cases are even in the interest of the end users.

A simple solution is to make sure that the middlebox has access to the channel key such it can access
the payload in clear. In previous TLS versions this could be implemented relatively smoothly by using
static keys in the key exchange, for which the middlebox knows the secret keys. But this, of course,
sacrifices forward security and was one of the reasons to forgo this option in TLS 1.3. Nonetheless, Green
et al. [GDH™17] describe a TLS 1.3 variant with static keys to resurrect accessibility, at the cost of forward
secrecy.

Another option is to split the end-to-end connection into two connections, one from each user to the
middlebox. However, De Carné de Carnavalet and Mannan [dCACM16| point out potential vulnerabilities
due to sloppy certificate checks of middleboxes. Other potential vulnerabilities are unwanted modifications
of the content or defaulting to weak cryptography due to the middleboxes. The middlebox-aware TLS

protocol maTLS [LSLT19| attenuates this by introducing auditable middleboxes, yet still breaking end-to-
end security.

More sophisticated alternatives for the middlebox problem are the BlindBox protocol [SLPR15| and the
recently proposed concept of zero-knowledge middleboxes (ZKMB) |[GAZT21|. In the (most basic version
of the) BlindBox protocol the sender sends encrypted tokens in addition to the protected communication,
secured under a token key derived also from the channel key. The middlebox holds a (secret) set of
detection rules in form of keywords. The client provides the middlebox at the beginning of the connection
with the encrypted versions of the keywords such that detection is possible. This is done obliviously,
without revealing the token key. The overhead of the cryptographic operations make BlindBox an order of
magnitude slower than original connections.

As pointed out by the authors of the ZKMB solution |[GAZT21| the issue with BlindBox is that it
modifies the actual connection protocol. Preserving the protocol structure is an important compatibility
property. The ZKMB protocol overcomes this limitation for showing policy compliance. The idea is
that the client and server establish a regular connection, and the client proves in zero-knowledge to the
middlebox that the encrypted payload obeys certain rules. Hence, the client-server connection entirely runs
the original connection protocol. Relying on recent progress in efficient zero-knowledge proofs the overhead
for long-lived connections is only a few milliseconds. For regular TLS connections the overhead in terms of
time and storage for precomputations is still significant, though.

Our stealth TLS 1.3 variant comes close in spirit to the multi-context TLS (mcTLS) solution [NSVT15].
In mcTLS the parties generate an end-to-end TLS connection but, at the same time, each party also
establishes a connection with the middlebox. This results in different symmetric keys, one shared between
the end points, and one shared between each party and the middle box. The different keys can now be
used to protect the payload in such a way that the middlebox is able to access data encrypted with the
key shared with the sending party, called context encryption in [NSV'15].

Our solution for middleboxes follows the same idea of using context encryption, but has several ad-
vantages. First, our solution does not need to modify the TLS 1.3 protocol on the outer layer; only the
pre-encryption the inner data inreases the length of the outer encryption (which remains a valid channel en-
cryption). This is an important compatibility property accomplished with the ZKMB protocol |GAZ™21].
Second, and related to the necessary but not necessarily sufficient compatibility property, we achieve
stealthiness (almost) for free. Third, mcTLS puts additional trust in the middlebox in terms of certificate
verifications.

Finally, let us remark that the BlindBox solution and especially the ZKMB protocol have an advantage
in terms of flexibility and security over our approach. Both protocols support checking of general properties
which are hidden from the middlebox. In contrast, our solution only allows for context encryption, dividing
the payload coarsely into visible and protected parts. In addition, the deployment of the (semi-)static keys
diminishes forward secrecy. In return, our solution blends in easily into the existing protocol and does not
require any modifications on the network layer.

2.5 Anti-censorship

Closely related to the issue of middleboxes in secure connections is the question of anti-censorhsip. The
idea of using covert data to prevent censorship has been put forward in several works before, and some
approaches share some of the techniques used here. Arguably, the most prominent examples in this regard
are Telex [WWGHI1], Cirripede [HNCB11], and Decoy Routing |[KEJT11]. All three approaches are based
on gimilar principles, but differ in details. The idea is to have a client in a TLS connection covertly trigger
a dedicated decoy server on the path to the actual server. This allows to bypass censorship since the decoy
server, once alerted, will contact the server on behalf of the client and relay the communication. In order
to do so, the client and the decoy server need to be establish a joint secret which the client uses in the

connection to the actual server and which is thus known to the decoy server. The approaches differ in the
way how the decoy server is triggered and how the joint secret between client and decoy server is computed.

Both Telex and Decoy Routing let the client embed a secret tag into nonce in a TLS connection.
Specifically, the client holds a public key ¢° of the decoy server and embeds ¢"|H(¢"®) in the nonce for
randomness r, hash function H, and a (short) Diffie-Hellman key ¢"*. The decoy server is able to detect
that the second half equals the hash while outsiders should not be able to distinguish the cases. The client
is then supposed to use KDF(g"®) as the secret in the key establishment with the server, such that the
decoy server also holds the session key. We note that the follow-up design of TapDance [WSH14| explicitly
uses Elligator 2 for the embedding.

Decoy Routing [KEJ™11] also uses the nonce in the client hello message to trigger a special event, but
relies on a pre-shared secret between client and station to embed the tag via HMAC. It also uses this pre-
shared secret to agree on the client’s secret in the connection. On the other hand, Cirripede [HNCBI11] once
more uses the Diffie-Hellman based approach, but uses a pre-shared secret during registration to ensure
that client and decoy server know the same connection secret.

The main difference to our work here is that all the aforementioned approaches are mainly interested
in the covertness to bypass censorship. In contrast, we are interested in the (combined) stealthiness and
key secrecy in an end-to-end connection, albeit our application examples show that third parties can get
involved if desired. Another difference is that we provide a rigorous cryptographic analysis of the achieved
properties. The final point is that we work with TLS 1.3 whereas the earlier proposals of course considered
earlier versions.

2.6 Anamorphic Encryption

Recently, Persiano et al. [PPY22] introduced the notion of anamorphic public-key encryption. The idea
is to allow the sender and receiver covertly transmit information, even if an observer gets to determine
the message to be sent, and gets access to the secret key of the recipient. Their approach is to have an
additional insdistinguishable key generation algorithm which, on top of the public and secret key, outputs
another special key, the double key. When sharing this double key with the sender, the two parties can
covertly communicate. Persiano et al. [PPY22] give constructions based on rejection sampling and based
on the Naor-Yung paradigm. In [KPPT23| the idea was extended to signature schemes.

Anamorphic encryption, like the approach of embedding information into nonces, displays similar ideas
to covertly communicate in the presence of observers. There are, nonetheless, major differences between our
work and anamorphic encryption. At foremost, we work in the domain of key exchange, implicitly solving
the question on how the stealth (or, double) key is securely shared between sender and receiver. Then, our
solution even works in the setting where the observer chooses the ephemeral secrets on the receiver’s side
(cf. the TEE example), whereas in anamorphic public-key encryption the receiver presents a suitable secret
key to the observer. A disadvantage of our solution is that, when referring to communication of data, our
embedding of the covertly sent messages in the channel protocol increases the length of the ciphertext,
such that we can hardly hide the fact that we are using a scheme with allows for covert communication.
In contrast, in anamorphic encryption the “anomorphic” ciphertexts are indistinguishable from the ones of
a given innocuous system.

2.7 Sanitizable Cryptography

The notion of sanitizable signature schemes has been introduced by Ateniese et al. [ACAMT05]. Such
schemes allow a designated party, called the sanitizer, to modify a signed message according to some
predefined rule, such that authenticity of the derived message is still verifiable. We lift here this idea to
channel protocols. As the intrusion detection system in our setting plays the role of the designated party

being able to make admissible changes to the payload, we use the term sanitizable channel here.

Many works in the area of sanitizable cryptography nowadays focus on signature schemes, with only a
few exceptions. One is the work by Fehr and Fischlin [FF15| which covers sanitizable signcryption schemes.
Such schemes combine (public-key) encryption with signatures, making sure that the sanitizer does not
learn the original message when sanitizing the signature, nor possibly even the resulting sanitized message.
The work does not investigate symmetric-key channel protocols.

Access control encryption, introduced by Damgard et al. [DHOI16] and subsequently extended by
[KW17, [FGKO17, WC21], also involves a sanitizer which ensures that only admissible information can
be passed from senders to receivers. Access control encryption rather implements the classical access con-
trol requirements (like the no-read rule and the no-write rule) and moreover aims to provide anonymity.
All of the aforementioned solutions are geared towards public-key cryptography and indeed use public-key
operations to achieve the security properties. Neither of the works looks into real-world channel protocols
with a single sender and receiver sharing a symmetric key.

2.8 Other Notions of Stealth Key Exchange

The term “stealth” has been used in connection with key exchange before, yet with different meanings.
Rafat [Rafl9] explicitly used the term stealth key exchange in order to describe a (plain) Diffie-Hellman
key exchange executed over a seemingly covert channel, such as a frequently changing web site. In a sense,
this means to execute a key exchange protocol over a steganographic communication channel. Patgiri and
Muppalaneni [PM22] propose an (unauthenticated) key exchange protocol, called Stealth, which runs four
Diffie-Hellman key exchanges and uses these keys to encrypt messages in a nested but unauthenticated form.
Neither of the proposals aims at embedding another key in an existing key exchange protocol execution,
nor provides a formal security analysis.

3 Security Model for Stealth Key Exchange

We start by presenting the security model for stealth key exchange. We follow the classical game-based
model of Bellare and Rogaway [BR94]. We only consider the single-stage setting where the parties agree
on a single session key upon termination of the key exchange phase. TLS 1.3, in contrast, is a so-called
multi-stage protocol [FG14] in which several keys are derived —and possibly deployed— during the key
exchange phase.

We assume that we are given a two-party key exchange protocol II. The protocol should be correct
in the sense that, if two parties faithfully execute the protocol then they derive the same session key. We
capture this more liberally by demanding that in such an execution the two parties output the same session
identifier sid which identifies connected sessions. The choice of sid is part of the protocol description. We
will later stipulate as a security requirement that identical session identifiers sid also imply identical session
keys.

3.1 Attack Model

We assume a set of user identities U, each user u being equipped with a key pair (sk,,, pk,,) generated at the
outset of the attack, together with a valid certificate cert,, containing the public key pk,. We assume that
algorithm KGen is used to create each certified key pair. The certificates and thus also the public keys are
known to the adversary. Let C be an initially empty set of corrupt users. If the adversary later corrupts a
user id € U then id is added to C. We note in the initialization of a session we allow a party’s identity to
be set to *, indicating that this party does not authenticate towards the other party. The understanding
here is that * matches any entry from U, i.e., id = * for any id € U and also * = x.

There is also a global bit b for defining security, chosen randomly at the outset and hidden from the
adversary. This bit determines if the adversary gets to see the actual (session or stealth) key or a random
value. Here, we assume that the session key and the stealth key are chosen according to some efficient
distributions Dyegylar T€SP. Dsteaich- The bit also decides if to run in stealth or regular mode, for sessions
where the adversary does not explicitly determine the choice.

Sessions capture the state of a communicating party within the key exchange protocols. They are
described by a tuple

(label, owner, party, partner, role, mode, state, sid,

key, stkey, isTested, isRevealed, isCorrPrtner) ,

where label is a unique administrative identifier, owner is a user identity, party and partner are the user
identities indicating the intended communication partners (with party € {owner,*}, where party = % or
partner = x denotes that the party does not authenticate), role € {initiator, responder} describes the role
of the session, mode € {regular,stealth} describes the mode, state € {accept, reject, running} the status of
the execution, sid the session identifier (initialized to L and set upon acceptance), key the session key
(initialized to L and set upon acceptance), stkey the stealth key (initialized to L and set upon acceptance
in mode stealth), Boolean values isTested and isRevealed (with sub types regular and stealth, all four entries
set to false in the beginning), and Boolean value isCorrPrtner initialized to false. We sometimes write
label.owner, label.partner etc. for the corresponding entries in the tuple for the unique identifier label.

The adversary can communicate with each session and change its status through oracle queries. We
highlight here two important aspects related to the stealthiness. One is that the adversary can, upon
initializing a session, determine the mode, i.e., if the session should execute a regular protocol execution
or run in stealth mode. But we also allow the adversary to leave this entry unspecified, in which case we
assign the mode according to the challenge bit b. We then need to prevent trivial attacks in which the
adversary checks (via Test or Reveal queries) if there exists a stealth key or not, thereby learning the secret
bit b.

The other important point refers to the independence of the stealth key from the session key. Since we
want the stealth key to be confidential even if the adversary has control over the cryptographic secrets for
the regular key exchange part (cf. the TEE example), we also admit the adversary to optionally provide
the ephemeral and long-term secrets upon session initialization. If the adversary chooses to do so, then
the session key is marked as revealed, but the stealth key can still be tested. We can also view this as a
possibility to disclose the secrets for deniability reasons, but still be able to use the stealth key securely. Like
session identifiers the precise definition of this auxiliary data is part of the protocol description, potentially
also causing the protocol to abort immediately if aux is not sound.

Init (owner, party, partner, role, [mode] , [aux]): Initializes a session for user owner € U, with party € {owner, *},
with intended partner partner € U U {x}, role, and if the optional argument mode is presented,
in the corresponding mode. If no mode is determined then we use mode < regular if b = 0
and mode ¢ stealth if b = 1. In this case, i.e., if no mode argument is passed on, we also set
isRevealed.stealth < true; else we still let isRevealed.stealth <~ false. This is to prevent trivial
attacks on the bit b by testing for the existence of a stealth key if no mode value is given.

Also set state < running, sid < key < stkey < | and isTested.regular < isTested.stealth <«
isRevealed.regular < false. If partner € C is corrupt then mark isCorrPrtner <— true, else isCorrPrtner <
false. Generate a new identifier label and store the passed values in the corresponding entries of
the tuple. If the optional argument aux is present then the party will use this value in the regular
session as auxiliary input, but we set isRevealed.regular < true; if no value aux is passed then the
party follows the protocol description. Returns label to the adversary.

10

Send (label,m): Sends protocol message m to the session with label. Here, m may be empty if the session
owner is the initiator and should start sending the first message. If the session label accepts when
processing the incoming message and changes to state state < accept, then label.sid must be set
according to the protocol description to a value different from 1. In this case, the session must
also set a session key label.key and, if run in stealth mode, label.mode = stealth, also a stealth key
label.stkey.

Corrupt (id): Takes as input a user identity id and returns skiy. Sets in all running sessions label.state =
running with this intended partner label.partner = id the corruption entry label.isCorrPrtner < true.
Note that completed sessions are not affected, in order to implement forward secrecy.

Reveal (label, mode): Takes as input a session label and a requested mode. If the session has not accepted,
label.state # accept, or has been revealed before, label.isRevealed.mode = true, then immediately
return L. Else, if the adversary wants to learn the session key, mode = regular, then return key and
set label.isRevealed.regular < true. If the adversary requests the stealth key, mode = stealth, and the
session has been run in stealth mode, label. mode = stealth, then return the stealth key stkey and set
label.isRevealed.stealth < true. In any other case return L.

Test (label, mode): Takes as input a session label and a requested mode. If the key has been tested before,
label.isTested.mode = true, or the session has not accepted, label.state # accept, then immediately
return L. Else, if b = 1 then return the session key key (if mode = regular) resp. the stealth key stkey
(if mode = stealth), where potentially stkey = L. If b = 0, on the other hand, pick a random key
k <% Dmode and return k. In either case, b =0 or b = 1, set label.isTested.mode < true.

We assume that the adversary eventually stops and outputs a guess b* for b. We denote by Expvsszﬁ’EKGenyu
the above experiment of adversary A against the key exchange protocol I, in which one first creates the
certified keys for the users in U via algorithm KGen, and picks a challenge bit b < {0, 1}, and then lets
the adversary interact with the oracles as specified above.

3.2 Security Requirements

We follow the common security notions for session matching and key secrecy. The matching property says
that identical session identifiers imply identical keys. Note that for stealth keys this can only hold if both
parties were running in stealth mode. Uniqueness refers to the fact that at most two sessions should be
partnered. The opposite role property states that in two partnered sessions one party takes the role of the
initiator and the other party the role of the responder. Authentication says that partnered sessions point
to the same intended partner. Note that here we use that * matches any identity from U (and x itself)
by definition, such that unauthenticated parties always obey this property. We remark that our session
matching coincides with the notion in [DFGS21] when considering only single-stage security for the final
keys.

Definition 3.1 (Session Matching) Let II be a stealth key exchange protocol for users U and key gen-

eration algorithm KGen, and A be an adversary. Consider erperiment E:L'piﬂéeﬁc;enu as above. Let

Emp%‘ﬁf&emu denote the event that any of the four following properties is violated during the execution of

the experiment:

Matching Keys: For any acceptingsessions label, label” with label.sid = label’.sid # | we have label.key =
label.key’ # L and, furthermore, if label.mode = label.mode = stealth, then also label.stkey =
label’.stkey # L.

11

Uniqueness: There do not exist three distinct acceptingsessions label, label’, label” such that label.sid =
label’.sid = label”.sid # L.

Opposite Roles: There do not exist distinct accepting sessions label, label” such that label.sid = label’.sid #
L but label.role = label’.role.

Authentication: For any distinct accepting sessions label, label’ with label.sid = label’.sid # L we have
label.party = label’.partner as well as label.partner = label’ .party.

For the common asymptotic security notions we demand that for any efficient adversary A the proba-
bility of Exp%}f&Gemu is negligible.

Since we subsume both key secrecy and the indistinguishability of regular and stealth executions under
one notion, we rather call the combined property indistinguishability. This property says that the adversary
cannot predict the challenge bit b significantly better than guessing. For this, we need to exclude some
trivial attacks, though. The first two properties say that a tested key in a session cannot be revealed, and
that the tested key cannot be revealed or tested in a partnered session. Recall that excluding testing on
both sides is usually an admissible strategy, since the adversary can already deduce the response for the
second test itself, as partnering is usually publicly verifiable.

The third property captures cases where the adversary could already know a tested key trivially. This
can either be because the partner is not authenticated (partner = x) or if the partner has been corrupted
before the session has been completed (isCorrPrtner = true). Recall that, if the adversary corrupts the
partner of a session after completion, then the isCorrPrtner predicate is not set. This ensures forward
secrecy. To strengthen the notion, we even allow corrupt or unauthenticated partners if the session has
been involved in an genuine execution run exclusively by the honest instance of the partner, i.e., if there is
another session label’ partnered with the tested session.

Definition 3.2 (Indistinguishability) Let II be a stealth key exchange protocol for users U and key

generation algorithm KGen, and A be an adversary. Consider erperiment Efﬂpff]ﬁeﬁcenu as above. The

adversary A wins the experiment Ea:pifﬁeﬁGen y» denoted as event Ea;pf&%vKGen’u being equal to 1, if b* =0

and, in addition, all the following points are satisfied:

No Reveal nor Test for the same key: For any accepting session label and any mode € {regular, stealth},
if label.isTested.mode = true then we have label.isRevealed.mode = false.

No Reveal nor Test on partner for tested key: For any accepting session label and any mode € {regular,
stealth} with label.isTested.mode = true there does not exist a session label’ # label with label.sid =
label’.sid such that label.isRevealed.mode = true or label'.isTested.mode = true (or both).

No tested key with unauthenticated or already corrupt partner (unless there is a matching
honest session): For any accepting session label and any mode € {regular, stealth} such that
label.isTested.mode = true, either label.partner # % and label.isCorrPrtner = false, or there exists an
accepting session label’ # label with label.sid = label’.sid.

In the usual asymptotic notation we would now demand that the protocol Il provides indistinguishability
(for U and KGen) if for any efficient adversary the probability of Expfélll}l,KGen,Z/{ returning 1 is at most
negligibly above %

12

4 Stealth TLS Version

We next describe our stealth version of TLS 1.3, called sTealS, and prove it to be secure. For this we
assume that the client and server use an elliptic curve for the Diffie-Hellman steps which supports efficient
embeddings. As a concrete example, the parties may use Curve25519 with Elligator 2 as explained in

Section

4.1 Protocol Description

We describe here the the case of both parties running either in regular or in stealth mode. A schematic
protocol description can be found in Figure[2] If only one party runs in stealth mode it still tries to compute
the stealth key as described within, and will succeed with overwhelming probability to compute another
key—although the other party does not hold the stealth key.

The protocol follows the idea outlined in the introduction. In regular mode it executes a (EC)DHE-
variant of the TLS 1.3 protocol with optional authentication of the parties. The protocol starts with the
parties computing the early secrets (keYying, K€Ycers> K€Y eems) from the pre-shared key (preset to O for the
(EC)DHE case). Since we are only interested in the the stealthiness of the final traffic application keys (for
client and server), denoted as key_,.s and keyg,. in the protocol, we assume that all intermediate keys are
made immediately available to the adversary (which can be formally implemented in multi-stage settings
via a Reveal query).

The actual protocol execution start with the client sending a client hello message CH, which includes
a 256-bit nonce N¢, and a client key share CKS carrying a Diffie-Hellman contribution g*. In the regular
mode the client picks the nonce N¢ randomly, whereas in stealth mode N¢ is the embedding of another
Diffie-Hellman share ¢g®. We note that some mild restrictions on g% apply, i.e., it must be suitable for the
embedding (see Section . We write a <$ E, for the sampling according to this restriction. The server
answers accordingly with the server hello SH and (random or embedded) Nonce Ng and server key share
SKS with value g¥. We remark that, formally, the key share messages are part of the hello messages but it
is convenient for us to make them explicit. We also require that Diffie-Hellman shares like ¢g* and ¢¥ can
be represented with 256 bits, as is the case for example for Curve25519.

The authentication is done via signatures o¢ on the client side resp. og on the server side for the
data exchanged so far. When sending this signature in the client certificate verify message CCV the client
also includes the certificate in the CCERT message. Analogously for the server (which goes first to save a
round trip). We note that we assume that the other party checks the signature and the certificate, and
also that the certificate identity matches the pre-specified peer identity. These messages are protected
under the handshake traffic secrets of the client (keyy,.s) and server (keyg,.s), respectively. Once more we
assume that these intermediate keys are handed to the adversary, such that we can in particular decrypt
the actually exchanged protocol messages.

The parties also use message authentication keys keyepry and keygpry to compute a MAC over the
communication data. Unlike the signature step this part is mandatory. However, remarkably it does not
serve a basic security purpose for the security of the keys [DFGS21]. In particular, we again assume that
the keys, derived from the handshake secrets are available to the adversary.

The final step is to compute the session key key, given by the client application traffic secret key...s and
the server application traffic secret keyg,... The additional exporter master secret key,,, and resumption
master secret key,, . are once more irrelevant for us and can be made available to the adversary. The stealth
key is now computed by swapping the nonces and the Diffie-Hellman shares, i.e., using nonces NJ < g*
and Ng < ¢¥ and key shares g% < Embd2_516(NC) and g® < Embd2_516(N5) with Diffie-Hellman key ¢g%°. Run
the signature steps and the key derivation steps as in the original protocol for these swapped values.

Since we give a reduction for our stealth version to TLS 1.3 directly, we do not detail the multiple

13

Client

(keYpina: KeYcers s keVeens) <~ KDF(?early’, 0, CH)

Reveal (KeYpna: KeYaes KeYoons)
€T 3 Zq // eph
compute g* € {0,1}?%
regular: N s {0,1}2%6
stealth: a < I,

Ng <5 Embdase (%)

Server

y<$Zq | eph
compute g¥ € {0,1}?%¢
regular:Ng s {0,1}2%
stealth: b <s E,

N <% Embdass (g°)

CH: N¢
CKS: ¢g°

SH: Ng
SKS : g¥

(keYcness KeYenes > keYermy, keyspry) < KDF(*hs?, g, CH..SKS)

Reveal (keYcyss, keYones: keYorn: KeYspoy)
[os < Sign (skg, CH..SCERT)]

7s + MAC(keyggqy, CH..SCV)
[SCERT : {certs}]

[scv: {os}]
{SFIN: 75}

[check SCERT, o]
[o¢ s Sign (sk¢, CH..CCERT)]
7o + MAC(keygpry, CH..CCV)
[CCERT : {cert¢}]

[cev: {oc}] [check CCERT,o¢|
CFIN : {r¢}

(keYcars: KeYsars: KeYens: KeYrns) <= KDF('ms?, g™, CH..CFIN)
key < (keycat57 ke}’sats)

CH* ¢ Embdagss(g”), SH* < Embdysg(g¥), CKS* < g%, SKS* « ¢°
(KeY ' arss KeYiats: KYing, keyins) + KDF (*ms?, g°", CH*|CKS*|SH*|SKS*|..CFIN)
stkey < (Keycars: KeVaars)

sid < (CH, CKS, SH, SKS, [SCERT, og], SFIN, [CCERT, o], CFIN)

Figure 2: Stealth version of TLS 1.3. Here [] denote optional authentication steps of the parties, and {} denote protocol
messages secure under the handshake traffic secret keys. We note that the exponents a and b are chosen from a suitable subset
Eq C Z4 which allow for embedding the curve points into strings (see Section [4.2)).

14

key derivation steps in the protocol. Instead, we represent them abstractly as a key derivation function
KDF(>derive’, IKM, context), applied in a certain derivation context ’derive’ for intermediate keying
material IKM (in our setting, a Diffie-Hellman value) and context information, namely the transcript hash
over all previously exchanged communication data. In TLS 1.3 this key derivation is implemented via
nested executions of the HKDF key derivation function.

For the desciption of security game it remains to specify the session identifier and the admissible
auxiliary input aux. As in [DFGS2I] the session identifier is given by the communication transcript,

sid = (CH, CKS, SH, SKS, [SCERT, o'g], SFIN, [CCERT, o], CFIN),

containing the authentication data if the parties authenticate.

For the auxiliary information we demand that aux = (eph,sk) contains the ephemeral Diffie-Hellman
secret x € Zg to be used, as well as the long-term signing key sk of the party if authentication is required
and Init is called with party # * (else sk = L is admissible). We also require that secret keys are uniquely
determined given the public key, and that the correctness of the secret key can be checked efficiently. This
holds for example for the ECDSA algorithm or the RSA-PSS algorithm (if the secret key is given in the
factorization-based representation), and assuming the collision resistance of the deployed hash function,
also for EADSA. All these algorithms are proposed by TLS 1.3 as admissible signature algorithms [Res1§].
We let the protocol immediately abort if the input aux contains improper values in this regard. If the data
are sound then the party can execute the protocol entirely with these given cryptographic values.

4.2 Embedding

We briefly discuss one option for the embedding algorithm Embd here. It closely follows the Elligator 2
approach in [BHKLI3|. This embedding can be applied for instance to Curve25519 [Ber06] which is one
of the elliptic curve options in TLS 1.3 [Resl8|. Other options exist, such as Elligator 1. Abstractly we
need that the random mapping Embd maps a large portion of the elliptic curve points to a string which is
statistically close to a uniform string. We denote by AE_,, the statistical distance to uniformly distributed
n-bit strings.

Curve25519 is the elliptic curve y? = 2% + Az? + Br mod g for A = 486662, B = 1, and prime
q = 22°° —19. For this curve Bernstein et al. [BHKLI3| design an injective mapping ¢ : S — FE(F,)
from a set S of strings to the elliptic curve. Here the set S can be described by a standard encoding o
of bit strings of length b = |logq| = 254 into elements from F,, namely, o(zo...2p—1) = > ;2. We
assume that each string is encoded with leading 0’s to consist of exactly b bits. Now S is defined as
S =0o"1({0,1,...,(qg — 1)/2}). Note that by the choice of ¢q these are all bit strings of length 254, except
for a negligible subset.

Given S and o, one can define the embedding ¢ : F, — E(F,) as follows. Let u be a non-square in [,
(like u = 2 for Curve25519) and ,/ be a square-root function over Fy (e.g., taking the element from 0 to

(q — 1)/2 for the two roots a, —a for some a?). Let x : F, — {£1,0} defined as x(a) = a9~1/2 indicate if
a is zero (x(a) = 0), a non-zero square (x(a) = 1), or a non-square (x(a) = —1). For any r € F; set

v —A/(1+ur), € — x(v* + Av? + Bv),
4 ev—(1—eA/2,y + —eVx3 + A2? + Bu.

Then ¢(r) = (z,y) describes the curve point for r. One additionally sets 1(0) = (0,0) such that 1 is now
defined over [F,.

Set ¢ := 9 o 0. For the inverse 1)~1 : ¢(F,;) — F, define , /]Fg as the set of preimages of squares under

15

Vo and
V=a/(@+A) ye,/F
~@+Ajuz) y¢\[F

This also defines the inverse ¢t ™! := ¢~ 109~ 1. Note that since ¢ is injective around half of the elliptic curve
points have a preimage under v. Hence, when picking an elliptic curve point we need on the average two
attempts to find a point in the range of .

For our application to stealth TLS we are not entirely done yet. Recall that ¢ maps 254-bit strings to
elliptic curve points such that, when applying ¥~! to a suitable random curve point P, we get an almost
uniform 254-bit string. Our algorithm Embdasg(P) now simply computes ¢! (P) and appends two random
high-order bits. The (deterministic) inverse Embdazs(s) drops these two bits and applies ¢ to the remaining
string.

As pointed out in [BHKLI3] the sampling via 1»~! and thus via Embdasg is statistically close to uniform.
This is due to the fact that the order of the field is 225° — 19 and thus (g + 1)/2 very close to 22°4. Another
point is that the actual Curve25519 works in a prime order subgroup (with cofactor 8), such that extra
care must be taken to hide public keys in strings if using the genuine Curve25519 algorithms. One option
is then to use a base point generating the full group instead, the other option is to add a low-order point
to the Curve25519 point. See Loup Valliant’s page elligator.org for more implementation details. Let
us point out that the deployment of the embedding may introduce timing-based side channels. Since the
embedding is computationally more expensive than simply picking nonces, this may reveal if the party runs
in stealth mode via time measurements. We neglect this issue here since previous analyses of TLS 1.3 did
not counsider such side channels or randomness leakage either.

(2, y)

4.3 Advanced Security Features

As explained, our goal is not to re-prove TLS security, but instead to give a reduction from the indistin-
guishability our stealth variant to the key secrecy of the regular version of TLS. By construction, the stealth
key computation can be thought of as a TLS version in which we swap the nonce and curve point for deriv-
ing the key. It is therefore natural to define a swapped version of TLS, denoted swTLS 1.3, which already
includes the exchange of the two values for computing the key. Our security proof will then use a reduction
to the regular TLS 1.3 protocol for attacking the session key, and to the swapped version swTLS51.3 for
attacking the stealth key. Both protocols are required to provide key secrecy against adversary which can
determine nonces, as we discuss first.

Key Indistinguishability against Nonce-Setting Adversaries. The first requirement, for both
TLS 1.3 and swTLS 1.3, says that key secrecy still holds if we let the adversary determine the nonce value
in executions of the honest parties. This appears to be a reasonable assumption in light of previous results
about TLS1.3. That is, Dowling et al. [DFGS21] do not make any assumptions about the nonces in the
key secrecy proof (but only for session matching). Davis and Giinther [DG21] only require that the pair
of nonce and ephemeral group element is unique in their tight key secrecy proof. If we let the adversary

determine the nonce then the minor term for collisions in their security bound decreases from §2-27256. %

to S2 - % for the number S of executions. Only the result by Diemert and Jager [DJ21] in their tightness
result about key secrecy uses that the nonces are unique.

Formally, we need to specify how an adversary B can interact with the standard TLS protocol, and
here we mean our stealth TLS protocol in mode regular (with the intermediate keys being immediately
exposed). Adversary B is also allowed to choose nonces. The experiment is almost identical to our model
for stealth attacks, with two exceptions:

16

e Init, Reveal, and Test do not take an additional input mode (since TLS 1.3 only runs in regular mode).

e |nit does not take the optional aux input. Instead, it takes an optional nonce input which the session
owner then uses as a nonce in the protocol execution. The stipulation here is that B never chooses
the same value nonce twice.

We note that formally we can subsume the changes under our model by always requiring mode = regular for
each oracle call and session, and by interpreting the optional aux as the optional nonce input. The latter
is admissible because it depends on the protocol what to do with this input, if present. We accordingly
write Expéf(ﬁeﬁégsu (NS for nonce setting) for the adversary winning this experiment in predicting the

challenge bit b and obeying the other restrictions.

The Swapped TLS Protocol. We next discuss the swTLS 1.3 variant and its security. In this variant
we exchange the nonce in the hello messages with the key share value in all subsequent evaluations of the
signature algorithm and the key derivation function. In our presentation of the core protocol messages
where the hello message only consists of the nonce:

CH|CKS|SH|SKS — CKS|CH|SKS|SH

in all applications of KDF and of Sign. Again, strictly speaking the key shares are part of the hello messages.
According to that terminology we exchange the key share entry with the nonce entry in the hello messages.
We leave all other steps unchanged, including also session identifiers.

We note that we do not require TLS 1.3 to be secure in the original and in the swapped order simul-
taneously. Indeed, this infringes with any of the known proofs in [DEGS21l, DG21, [DJ21] which require
the input to the signature to be unique, whereas adaptive swapping could easily violate this. We only
require that both TLS1.3 and swTLS 1.3 are individually secure according to the nonce-setting key secrecy
experiment above.

Once more, consulting [DFEGS21], IDG21], the security proofs show key secrecy (in the nonce-setting
scenario) for swTLS 1.3 as well, assuming the hardness of the underlying Diffie-Hellman problem and security
of the deployed cryptographic primitives. The reason is that these proofs rely on abstract collision-resistance
of the hash function for the transcript hash used in key derivation and signing. Since (bijectively) changing
the order of the inputs does not infringe with collision resistance, these results also show security of the
swapped version.

Another property of swTLS 1.3 we require is that we are also able to swap nonce values nonce with elliptic
curve points Z in the hello messages. For this we extract the nonce-embedded point Embd,, ! (nonce) again,
and vice versa interpret the point Z as a 256-bit nonce value. The latter is possible by assumption about
the deployed group and holds for instance for Curve25519. This swapping has the effect that we now work
with a Diffie-Hellman problem over “embeddable” points only. Nevertheless, it is reasonable to assume
for Curve25519 and Elligator 2 that the problem is still hard, since half of the points allow for such an
embedding.

5 Security Proof of Stealth TLS 1.3

We show security of our stealth protocol. We note that correctness of sTealS holds obviously. If two parties
faithfully execute the protocol, then they obtain the same session identifier. With the session matching
property below it follows that they also have the same session and stealth keys then.

17

5.1 Session Matching

Proposition 5.1 Let sTealS be the stealth TLS 1.8 protocol (for a set of users U and key generation
algorithm KGen). Then for any adversary A initializing at most S sessions we have

1
Match 2 —
Pr[Gamey i s keenu] < 5% P 27"+ S - AEmbds

where n = 256 is the nonce length, q is the size of the underlying elliptic curve, and A¢ .4 is the statistical
distance from uniform for the embedding algorithm in sTealS.

Proof. We have to show the four properties, matching keys, uniqueness, opposite roles, and authentication.
For matching keys note that identical session identifiers

sid = (CH, CKS, SH, SKS, [SCERT, o], SFIN, [CCERT, o], CFIN)

imply that the Diffie-Hellman shares are identical, as well as all the other inputs to the key derivation
function, such that the parties derive the same keys. Note that this also holds for the stealth key for
which we swap the key share and nonce entries. The other property which holds unconditionally is the
authentication property: If a party authenticates for entry id # %, then it needs to provide a certificate
with the correct identity, else the other party aborts. Since the certificate is part of the session identifier sid
for authentication, it follows that the identity entries match for identical session identifiers. For unauthen-
ticated parties the entry * matches any other value anyway, such that, overall, the authentication property
holds in all cases.

Next we show uniqueness and the opposite-roles property simultaneously. For this we first assume, in
a thought experiment, that for sessions in stealth mode the nonces are not generated by the embedding
algorithm but are chosen as random strings. Since we have at most S sessions and the statistical distance of
this modification for each session is at most Ag, 4, this can increase the adversary’s success probability by
at most S - Ag, 4. For this modified protocol we can now apply the same line of reasoning as in [DFGS21],
saying that the probability of a collision among two client sessions (initiated with role = initiator) or two
server sessions (initiated with role = responder) on the random nonces (of length n = 256) and random
group elements (for group size ¢) is at most S? - % -27™. Only if both entries match the session identifiers
can be identical. But this means that we cannot have threefold collisions among any kind of sessions
resp. colliding sid for identical roles, except with that probability. O

5.2 Indistinguishability

The indistinguishability proof is more elaborate. Recall that we reduce the security of the stealth protocol
to the security of TLS1.3 resp. swTLS1.3 in the nonce-setting scenario. For the theorem’s statement it
is convenient to denote by Adv’ 11 geny = Pr [EXPXA,H,KGen,L{ = 1] — % the advantage over the guessing
probability for any type of experiment.

Theorem 5.2 For any key generation KGen algorithm and and user setU, and any adversary A initializing
at most S sessions, there exist adversaries B and C (with roughly the same efficiency as A) such that

Ind
Adv.A,sTeaLS,KGen,Z/{

Secrecy-NS Secrecy-NS n
< 25 (Ad'”B,TLsm,KGen,u + Ad"’c,swnsm,KGen,u) + .5 Afmpd

where n = 256, q is the order of the group, and AR, .4 s the statistical distance from uniform for the
embedding algorithm in sTeal§.

18

Proof. We proceed in a number of game hops. Let Game; be the i-th game in the sequence of games,

starting with Gameg being Expf}llgTeastKGenM. We will eventually turn Gameg into a game Games

which is either Explsgefrrfg%'gicen 1 Or Expgescvfﬁ’lfﬁ's]\g KGeny» and account for the differences in the games by

collecting the probabilities. For this we let Adv, := Pr[Game;] — % be the corresponding advantages in
the game.

Game;. Our first step is to use the embedding algorithm also in the regular mode. That is, in Game;
in each session with mode = regular, instead of picking the nonce N < {0,1}" randomly, pick some
¢ <% E; C Zq and compute N as N «$ Embd,,(¢¢). The only difference to stealth executions is that we
do not use the covert key in the following. The difference to Gamey is given by the statistical distance
between the two sampling procedures, times the maximal number S of sessions:

AdVO S AdV]_ + S - AITELmbd

Games. In the next game hop we assume that the adversary only makes a single Test oracle query for a
session, and announces at the beginning for which number ¢ of initialized session this will happen and also
what type of mode the query will be (regular or stealth). Denote this type prediction by mode,. It follows
by a hybrid argument (see for example [DFGS21, Appendix A]) that the reduction to a single Test query
will increase the advantage by a factor S at most, and predicting the type by guessing it will incur a factor

2. Hence,
Advy; <25 - Advs.

We next bound the adversary’s success probability in the two cases, a Test call for the regular session
key and for the stealth key.

Bounding the Case mode, = regular. When testing the session key, we turn the adversary A against
sTealS into one B against TLS1.3, obeying the necessary restrictions in experiment Explsg(?%rfg'g’i(;emu.
Note that B also knows the correct initialization number ¢, on which the Test call is made, from the
beginning on. Algorithm B is also aware of the fact that the Test query is for the session key.

Adversary B runs a black-box simulation of A, essentially relaying all communication between A and

the oracles, with the following changes:

e If A requests to initialize any session, then our adversary B first checks the validity of the inputs, e.g.,
that the sk entry in the potential aux = (eph, sk) input is only L if no authentication occurs, party = *,
and otherwise that it constitutes a matching secret key to the public key. For any mismatch B
immediately returns 1, emulating perfectly the protocol description for invalid aux. Else, B initializes
a new session in its experiment, but samples ¢ < E, C Z, and passes nonce <$ Embd, (¢°) as the
optional nonce argument. The knowledge of ¢ allows B to later compute the stealth key for this
session (once the session has accepted) and to reveal it.

Note that if A does not provide the optional argument mode upon initialization, with the intention to
make it depend on the secret bit b, then isRevealed.stealth would be set to true in the attack and lead
to an answer L in a Reveal query for that session. Hence, B can ignore this case of an undetermined
argument mode, since B can answer Reveal queries for the stealth key with L and since the (only)
Test query is for a regular key. If the adversary initializes the t-th session, to be tested later, then
we may assume that no optional argument aux = (eph, sk) is passed on, else the security experiment
would set isRevealed.regular <— true and this session could not be successfully tested on the regular
key anymore.

19

In any case adversary B stores aux for the session (if provided) and returns the administrative identifier
label to A.

e If the adversary A calls Send(label, m) for some session then B forwards this request to its own Send
oracle, with one exception: If upon initialization adversary A has provided auxiliary information
aux = (eph,sk) then our algorithm B does not forward the Send request, but instead computes the
answer locally with the help of all the data.

e If adversary A makes a Corrupt(id) call the B forwards this call to its own game, and returns the
answer.

e If the adversary A calls Reveal(label, mode) then, for mode = regular, adversary B makes a call to
Reveal(label) in its own game and hands back the response. If, on the other hand mode = stealth,
then B either answers L if the session has not accepted or if label.isRevealed.stealth = true (e.g., if
upon initialization of the session no mode has been specified). Or, B locally computes the stealth
key stkey with the help of the communication data and the exponent ¢ for creating the nonce in the
session, and returns the key.

e If A makes the Test(label,mode) call then it must be for mode = regular and B can simply forward
the request as Test(label) to its own game, and return the answer.

This describes our adversary B. We first note that B provides a perfect simulation of Games when
interacting with the TLS 1.3 protocol (in the nonce-setting case). We finally need to check the freshness
conditions, and show that if A in its attack is successful then so is B in its attack. To see this consider the
three cases:

No Test and Reveal for same session: We note that B would only make a Reveal query to the ¢-th session
if A would do so in its simulation. But then A would not be successful either. Note that if A provided
aux = (eph, sk) upon initializing the ¢-th session, and B would run a local copy instead, then in the
game label.isRevealed.regular would be set to true, such that A could not win. We conclude that B
only violates this property if A does.

No Test and Reveal for partner: Assume that there is a partnered session to the ¢-th session. If A made
a Reveal query to the partner, or provided aux = (eph,sk) in the partner session, then it cannot
succeed anymore for the t-th session. Since B would only make a Reveal query to a partner if A did,
and not even initiate a partner session if receiving aux from A, it follows that B merely violates this
property if A does.

No corrupt partner, and no unauthenticated partner unless there is another matching hon-
est execution: Here we observe that, according to the other two cases, if B would not initiate the
matching honest execution, this can only be because it received aux from A upon initialization and
instead run a local copy. But then this would infringe with the second property, because then the
other execution in A’s game would set isRevealed.regular to true when handing over aux. It follows
that B obeys this property if A does.

In summary, we have now shown how to turn any successful A into a successful nonce-setting attacker B
against TLS, such that we can bound the case mode;, = regular by

Secrecy-NS
Adv; < AdVB,TLs 1.3,KGenU

in case mode, = regular.

20

Bounding the Case mode, = stealth. Next assume that mode, = stealth. In this case we build an
adversary C attacks the swapped swTLS 1.3 protocol. The reduction C is very similar to B above, but
instead swaps the nonces and curve points when relaying communication (such that the internal change of
the input order in the transcript hash of swTLS 1.3 eventually mimics the attack of A on the stealth TLS
version in Gamey):

e Whenever C receives an Init query of A with input aux = (eph, sk), then C checks that either party = x*
or that sk is the unique secret key to the public key pk of that user. If not, then C immediately aborts
this session and returns L, as in the protocol description for invalid aux. Else C asks to initiate a
session of swTLS1.3 and sets the nonce value in this initialization to be nonce + ¢P". Note that,
unlike B, our algorithm C here does not run this session locally, but instead calls the game to execute
the session for the given nonce. This is where we need the security against nonce-setting adversaries.
The session will thus choose an “embeddable” curve point Z as its share and use the (same) signature
key sk to sign, when progressing in the execution. For a given value aux algorithm C internally notes
that isRevealed.regular <— true for this session, according to the attack model. If A does not hand
over aux upon initialization, then C chooses ¢ and sets the nonce to nonce <— ¢¢ when calling Init in
its game. In this case isRevealed.regular <— false in the internal simulation of C.

In either case, C knows the secret exponent for the nonce value and can thus compute a stealth key
if required to do so. We remark that if A does not provide an input mode for this initialization, then
C sets isRevealed.stealth <+ true according to the game anyway, and can later answer Reveal queries
for the stealth key easily with L. The same holds if mode = regular is passed on, in which case the
session is not supposed to be able to compute a stealth key. Hence, the only case where C needs to
provide the stealth key is when mode = stealth is used by A for initialization.

e Whenever C receives an incoming protocol message for a party, via a Send query of A, and this
message contains a nonce nonce € {0,1}" and a curve point Z as hello and key share entries, then
C computes nonce’ < Z and Z’ < Embd, !(nonce), and forwards the message with nonce’ and Z’
instead of nonce and Z to its Send oracle. If C receives a message containing a nonce nonce and curve
point Z as a response from a Send call, then C swaps the two values analogously, nonce’ «<— Z and
7' + Embd,, ! (nonce), before handing the answer back to .A. Note that we can view a curve point Z
as an n-bit string by assumption about the curve, allowing C to move the curve point to the nonce
entry.

e A Corrupt(id) query of A in the simulation is immediately relayed in C’s game.

e For a Reveal(label, mode) query of A our algorithm C can either compute the correct answer for mode =
regular, because C knows that isRevealed.regular = true or, if isRevealed.regular = false, knows the
ephemeral secret. If, on the other hand, mode = stealth then C calls its external Reveal(label) oracle
for swTLS 1.3 to get the answer. Since C swaps nonces and curve points on the external interface, and
the swTLS 1.3 protocol swaps the input to the transcript hash, it follows that the external session key
corresponds to the internal stealth key in A’s simulation.

e The Test query of A for the ¢t-th session and mode = stealth, adversary C makes the Test query in its
game to get the answer.

The simulation is perfect by construction. The swapping of nonces and points on C’s interface between
A and swTLS 1.3, combined with the input re-ordering for signing in swTLS 1.3, ensures that the stealth
key from A’s point of view correspond exactly to the session keys in swTLS 1.3. We observe that this uses
the fact that the signature key sk is uniquely determined by the public key, such that A’s expectation to
use the given (and correct) sk for signing matches the key used in the swTLS 1.3 protocol. Hence, if A

21

predicts the challenge bit b in Games for the case mode, = stealth, then so does C against swTLS1.3. It
remains to argue that C, analogously to B, does not violate the freshness conditions:

No Test and Reveal for same session: Algorithm C only makes a Reveal query to the ¢-th session if A
does so in the simulation for the stealth key; in any other case C can answer based on its local data.
In case of such a Reveal query of A, however, A could not win.

No Test and Reveal for partner: Next presume that there is a partnered session to the ¢-th session. If A
made a Reveal query to the partner session for the stealth key, then it could not win anymore when
testing the stealth key in the t-th session. However, in any other case, C would not make a Reveal
query to a partner, because all other Reveal queries are for unpartnered sessions.

No corrupt partner, and no unauthenticated partner unless there is another matching hon-
est execution: Here we use the fact that C initializes exactly the same sessions as A does. Hence, if
C violates any of the properties, then so does A. It follows that C does not infringe with this property
unless A does.

We have thus shown that we can transfer any successful adversary A into a successful nonce-setting attacker
C against swTLS 1.3, such that we can bound the case mode, = stealth by

Secrecy-NS
Advy < Adve g 1513 KGen -

This concludes the proof. O

On the Auxiliary Input Information. Let us revisit the auxiliary information aux = (eph, sk) in our
security model, potentially passed on by adversary A upon initialization. The secret key argument sk may
be equal to L if the session owner does not authenticate, party = %, in which case only the ephemeral
secret eph enters the protocol execution. In our TEE example we assume that such secrets are stored and
maintained by a trusted environment and are never handed out; the TEE would perform all operations
involving these secrets in its protected space. Indeed, in our reductions the algorithms do not need to know
eph explicitly. Tt would suffice that the adversary, representing the TEE, would give ¢*P" and perform the
Diffie-Hellman computations involving eph, on behalf of the reductions, and merely hand back the result.
However, this would significantly increase the complexity of the security model since we would then have
to determine when to call for the adversary’s assistance.

The case of the secret signing key sk # | is more delicate. If we would ask the adversary instead to sign
the data with the protected key sk if required, then our reduction B would still succeed, but our reduction
C to the swapped version would not work anymore. The reason is that C uses the external instance of
the swTLS 1.3 protocol to run the simulated instance. By checking that sk is correct and the fact that
it is up to C to compute the signature, the reduction can simply use the externally given signature from
the swTLS 1.3 instance. Hence, besides refining the model, one would also need to follow a different proof
strategy if one would like to allow for adversarial signatures.

6 Sanitizable Stealth Channels

We next discuss the notion of sanitizable channels. Readers who are merely interested in the idea of how
to derive a lightweight and read-only sanitizable channel in TLS 1.3 may skip this section and consult
Appendix [A] instead.

The terminology of sanitizable channels follows the case of signature schemes [ACAMTO05]| where a
designated party can make admissible modifications to a signed message. In sanitizable channels the sender

22

and receiver exclusively share a stealth key stkey, e.g., generated in stealth mode in the key exchange step,
as well as a channel key chkey. The channel key is also available to the sanitizing party like an intrusion
detection system on the receiver’s side. Knowledge of the channel key chkey enables the sanitizer to read
or write (parts of the transmitted payload), whereas the stealth key still allows the parties to communicate
securely from end to end. In addition, we expect the entire message to be protected from outsiders in the
common way.

We first present the general design of such sanitizable channels. In Section we discuss the specific
case of the TLS 1.3 record protocol and how one can support partly access for the sanitizer. The latter
corresponds to the application example for Intrusion Detection Systems presented in Section

6.1 Preliminaries

Messages and Modifications. Any message m = (Msec, Mconfs Mauth, Mplain) transmitted over the sani-
tizable channel may consist of four parts:

® Mgec I8 the part transmitted securely between the end points, confidential, authenticated, and inac-
cessible to the sanitizer.

® Meonf 1S the part hidden from the sanitizer, but which the sanitizer may modify, e.g., for pruning
encrypted data in transit.

® M, 1S the part which the sanitizer can read but not modify undetectedly, e.g., to check for viruses
in that part.

® Mypiain is fully available to the sanitizer and can be modified, e.g., to be able to detach viruses if
detected.

It is convenient to write |m|y = |m/|y if the lengths of each components in the two message vectors match,
Le., if [Mmsec| = |mgec‘7 [Meconf| = ’m/confya [Mauth| = |m;uth’7 and ’mplain’ = |m;)|ain"

We assume that the admissible sanitization operation are captured via a set MOD which contains
modifications MOD applied to message tuples, Mon(m), but where only the meont- and mpjin-part are
actually modified and the msec- and m,h-part are unchanged. Usually, these modifications only allow
simple operations on mgenf such a truncation or adding values, but may substitute the entire myp,in part.
Note that the admissible sanitizer is indeed not supposed to change other message parts, but our attacker
may later try to do so, of course. We say that two modifications MoD and MoD’ are length-equivalent if
for any admissible message m we have |MoD(m)]y = |[MoD’(m)|y. This means that the two modifications
always output message components of the same length for identical input messages.

Since the two parties may not even establish a stealth key stkey during the key exchange step, preventing
them from communicating confidentially besides the sanitizer, we also allow the sender to set the parts
for msec and Meons to a value of the form of. The intention here being that the parties put a nonsensical
placeholder of predetermined length ¢ instead. The length ¢ will allow us to deduce how many random
bits we need to put, instead of applying the encryption algorithm. Similarly, since the parties cannot

authenticate the message parts against the sanitizer, we assume that may is then also of the form of.

Key Establishment. We assume that the sender and the receiver have executed the key exchange
protocol. The two parties may, or may have not, used the stealth mode to generate a stealth key stkey.
For sure, they have generated a session key chkey in such a way that the sanitizer also knows this key
chkey (but the sanitizer remains oblivious about the existence of the stealth key). One option is to let the
receiver securely pass the session key to the sanitizer upon establishment, albeit this appears to be very
inconvenient in the firewall setting. An alternative is to let the sanitizer provide the ephemeral secret of

23

the receiver in the key exchange step, being able to compute chkey from the transcript of communication.
This requires the sanitizer to either communicate with the receiver while the key exchange protocol runs,
or by sharing a local key with the receiver from which the ephemeral secret is derived. Alternatively, the
receiver may re-use a sanitizer-provided ephemeral secret in multiple executions. In fact, this corresponds
to the static Diffie-Hellman share solution for TLS 1.3 [GDH'17|. The disadvantage in the latter case is
that this solution infringes with forward security (yet, forward security in the stealth part of the connection
is still preserved).

Another possibility in the TLS stealth scenario, which hides the usage of a static key towards the sender
and outsiders, is to use the static public key ¢g® of the sanitizer together with the embedded Diffie-Hellman
share of the receiver. That is, the receiver embeds ¢® into its nonce Ng, independently of the question if
it wants to run in stealth mode or not. It now uses the key derivation function on shared keying material
g, together with the nonce N¢ of the client it has received in the first step and its own (embedded) nonce
Ng (similar to TLS 1.3 handshake key derivation). The receiver then uses this derived secret as its own
Diffie-Hellman secret y when computing ¢ as its key share in the connection. We note that the receiver
can still compute the stealth key with the help of b with the sender’s embedded share ¢, without the
sanitizer being able to derive this stealth key.

In the definition of a sanititzable channel protocol below we abstract away all these mechanisms and
assume a key generation algorithm ChKGen which returns the keys and the initial states of the parties. In
TLS 1.3 the state of the parties for the record layer is simply a counter, incremented each time a ciphertext is
processed. The counter value is added to a random offset, called client_write_iv resp. server_write_iv
in TLS. The random offsets are formally part of the secret keys chkey and stkey.

Channel Protocol. A MOD-sanitizable stealth channel protocol consists of efficient probabilistic algo-
rithms CH = (ChKGen, ChSend, ChRcv, ChSanit), where ChKGen takes a parameter mode € {regular, stealth}
and returns a key pair (chkey,stkey) —where stkey = L for mode = regular— together with a pair
of a sender, receiver, and sanitizer initial state, (stg,stp,Stg,,). Algorithm ChSend takes as input the
keys chkey, stkey, a parameter mode € {stealth,regular}, and the state state, and an admissible message
m = (Msec, Mconfs Mauths Mplain), and returns a ciphertext ¢ and the updated state state. For mode = regular
only messages of the form m = (<>£Se°,<>€conf ,ofa“th,mpbin) are admissible input messages, meaning that the
sender only transmits the actual payload but not any stealth information (except for the potential length of
the stealth data). Algorithm ChRcv takes as input the keys chkey, stkey (possibly stkey = 1), the receiver
state stp, and a ciphertext ¢, and outputs a message m = (Msec, Mconfs Mauths Mplain) as well as the updated
state stp. Note that ChRcv needs to be able to cope with sanitized and potentially unsanitized ciphertexts,
without being told explicitly. Similarly, the receiver always tries to recover potential stealth messages, i.e.,
implicitly uses mode = stealth. Finally, algorithm ChSanit receives as input the key chkey, the current state
Stqa,, and the description of a modification MoD € MOD, and returns a new ciphertext cgan and the
updated state.

We next tie all algorithms together through the completeness notions, where we assume the common
decryptable properties for stealth and non-stealth ciphertext. On top, we stipulate that the sanitizer
algorithm always works on either kind of ciphertext. A MOD-sanitizable stealth channel protocol CH =
(ChKGen, ChSend, ChRcv, ChSanit) is complete if the following holds:

e For any (chkey, stkey, st%,st%,stgan) <$ ChKGen(), any admissible messages m', m?,...,m/, any se-

quence of modes mode!, ... mode’, any ciphertext sequence
(stfg, c') < StSend(chkey, stkey, mode’, stis_l, m")
fori=1,2,...,7, we always have

(sthz, m") = StRev(chkey, stkey, st !, ¢')

24

fori=1,2,...,7.

e For any (chkey, stkey, st%, st” ,stgan) +$ ChKGen(), any admissible messages m!', m?,...,m/, any se-
quence of modes mode!, ..., mode’, any ciphertext sequence

(sth, ¢') < ChSend(chkey, stkey, mode’, stfsfl, m?)

for i = 1,2,...,j, any sequence of admissible operations Mob® € MOD for i = 1,2,...,j, any
(C4an> Stéan) <5 ChSanit(chkey, cl,stZS;rll) fori=1,2,...,7, we always have

(sthz, MOD!(m")) = ChRev(chkey, stkey, sthy ', k)
fori=1,2,...,5.

Note that our completeness notion works in the case that either all ciphertexts reach the receiver without
modification, or that are ciphertext all sanitized. One could mix these two properties but our solution only
achieves this all-or-nothing property.

6.2 Security Model

To define security of our sanitizable channel we follow the security notion of Bellare et al. [BKNO04]. This
notion allows the adversary to create ciphertexts via a left-or-right sender oracle, the choice of which
message to encrypt made according to a secret challenge bit b. The adversary can also decrypt arbitrary
ciphertexts via a receiver oracle, where the receiver oracle suppresses the actual message response unless
the adversary manages to create a valid out-of-sync ciphertext, i.e., which has not been created at the
same point by the sender. In this case the adversary will learn the message but only if b = 0. The latter
follows the idea of combining indistinguishability and integrity into a single notion, e.g., as done for IND-
CCA3 security of authenticated encryption of Shrimpton [Shr04]. That is, if the adversary manages to
create a new valid ciphertext and thus breaks integrity, then it will also learn the bit b and can then break
indistinguishability.

The formal security experiment for sanitizable channel protocols appears in Figure [3| In our case we
simultaneously consider two security modes. One is security against outsiders, i.e., where the adversary is
not the sanitizer. In this case, we demand the common channel security of [BKN04] for the overall protocol.
This should even hold if we augment the adversary’s capabilities by granting access to a sanitization oracle,
which the adversary can query about arbitrary ciphertexts. Since the sanitizer may modify parts of the
message we extend the left-or-right security of the sending oracle and allow the adversary to pass two
possible modifications Mop?, Mob! (as long as these modifications show identical output-length behavior
for messages).

The second security mode covers insider attacks, i.e., where the adversary is the sanitizer. In this case,
however, the adversary is only allowed to query the sending oracle for message pairs with equal m,u, and
Mplain Parts, because the sanitizing adversary may access these parts in clear. Another modification to the
other case is that now the adversary is supposed to learn the secret bit b if it manages to make the receiver
output a different (Mmeec, Mayth) pair than the intended one and thus break integrity as a sanitizerE]

We remark that the stealthiness of our key exchange protocol actually allows us to show a stronger
notion for our sanitizable channel. Inheriting this from the key exchange step, knowledge of the channel
key does not allow to deduce if a stealth key has been established or not. In this sense, even the sanitizer
may not know if the sender has actually sent the confidential part (msgec, Mconf) Or merely put random

3Noteworthy, this rather resembles message integrity than ciphertext integrity for this inner message part. This is inevitable
for a general definition since the outer ciphertext is under control of the sanitizer.

25

IND-CCA

Expey 4 mop OSanKey()
b+s{0,1}, ctrg,ctrg « 0, C,M + [] INSIDER < true
(chkey, stkey, stg, stp, Stgan) 5 ChKGen(stealth) return chkey

INSIDER, OUT-OF-SYNC < false
StA s AOSanKey()

5 OSnd,ORcv,0San
b* +s A (sty)

return b = b*

0Snd(mode”, m?, mode!, m!)

if |m°|y # |m'|y then return L

if INSIDER and (M, m&ain) # (mlons m;ain) then return |
(stg, ¢) s ChSend(chkey, stkey, modeb,sts7 m?)
ctrg < ctrg + 1, Clctrg] + {c}, M[ctrg]| < (Msec; Mauth)

return c

0San(c, Mon®, Mop')

if INSIDER or Mop®, Mop! ¢ MOD or Mobp?, Mob' not length-equivalent then return L

(StSan7 CSall) — ChSanit(chkey, StSarn c, I\’IODb)

for i =1 to ctrs doif ¢ € Cli] then C[i] « C[i] U {csan)
return csan

ORcev(c)

ctrp < ctrp + 1, (stp, m) < ChRcv(chkey, stkey, stp, ¢)

if m = (Msec, Mconfs Mauth, Mplain) 7 L then
if INSIDER then
if ctrr > ctrg or (Meec, Mauth) ¢ {M]ctrr], (o"”m‘,ol'"““”")} then OUT-OF-SYNC < true
else
if ctrg > ctrg or ¢ ¢ Clctrg| then OUT-OF-SYNC + true
if OUT-OF-sYNC and b = 0 then return m

return |

Figure 3: IND-CCA notion for sanitizable stealth channels

bits (when given the length information feec, fconf instead). We thus allow the adversary to also pass the
operation mode mode”, mode! € {regular, stealth} when requesting the encryption of a message pair m®, m!
to the left-or-right sender oracle. Since the adversary can control the mode via the send oracle we always
let key generation run in mode stealth in the attack.

Since we opted for the receiver to not know in advance if the sender uses the stealth transportation, we
need to account for another potential attack when the adversary is the sanitizer. Namely, the adversary
may simply use the channel key chkey and overwrite any information protected under the stealth key
stkey. Hence, we exclude this from happening by requiring the adversary to create a new pair (Mmsec, Mauth)
different from (o*, o*).

Definition 6.1 (IND-CCA) For a MOD-sanitizable stealth channel CH = (ChKGen, ChSend, ChRcv,
ChSanit) and an adversary A let

1
IND-CCA . IND-CCA
Advgs viop = Pr[Exzpes i viop = 1] — 5

26

for the experiment E’xpé%?ﬁ?ﬁl%p in Figure @

With the usual asymptotic requirement we would now demand that the advantage of every efficient adver-
sary A is negligible.

6.3 Construction

We next describe the construction of a sanitizable (stealth) channel. It is based on any authenticated
encryption schemes with associated data, with some mild additional requirements for the AEAD scheme.
We present here first in detail a construction which does not support confidential-only message parts meonf
such that we omit this part here (and also omit putting an empty message symbol € for sake of simplicity).
We discuss at the end of this part how to extend the construction to also allow for such confidential parts.

Authenticated Encryption with Associated Data. An authenticated encryption scheme with associ-
ated data (AEAD) |[Rog02] consists of three efficient algorithms, AEKGen for key generation, AEEnc for en-
cryption and AEDec for decryption. The encryption and decryption algorithm take as input a uniformly dis-
tributed key key <% AEKGen() from some key space K. In addition, the encryption algorithm takes a nonce
value nonce, associated data AD, and a message m. It returns a ciphertext ¢ - AEEnc(key, nonce, AD, m).
The decryption algorithm takes as input a nonce nonce, associated data AD, and a ciphertext, and outputs
a message m or an error symbol.

We assume that both encryption and decryption are deterministic. Furthermore there is a length
function AElen(|m|) which determines the ciphertext output length of AEEnc given the input-message length
only. It is convenient for us to define the inverse length function as well, stating that AElen™'(AElen(¢)) = ¢
for any input message of length ¢. We note that these are all properties which Rogaway |[Rog02] already
assumes as well, and that schemes like GCM and ChaChaPoly obey.

We use Rogaway’s original security definitions for AEAD schemes [Rog02]. The first one is IND$-CPA
which states that the adversary cannot distinguish ciphertexts AEEnc(key, nonce, AD,m) € {0, 1}AElen(Iml)
from random strings ¢ < {0, 1}AE'e"(|m|). Formally we can capture this via an experiment EprAbé]X'gapA
by picking a key key <% AEKGen() and a secret bit b <% {0,1}, and giving an adversary A oracle access
to AEEnc(key,---) if b = 0, or to the random sampler if b = 1, allowing multiple and adaptive queries
(nonce, AD, m). The experiment outputs 1 if the adversary predicts b. Let

IND$S-CPA ,__ IND$-CPA 1
AdVAEAD,A = Pr [EXPAEAD,A 9

The other security property defined by Rogaway |[Rog02] is (ciphertext) integrity. The corresponding
experiment EprAI\&'SJTLlXT again picks a key key <% AEKGen(), and the allows the adversary to query
(nonce, AD,m) to an encryption oracle. The goal of the adversary is to output a valid ciphertext ¢ and
values nonce, AD such that AEDec(key, nonce, AD,c) # L but such that ¢ was never a response to an
encryption query (nonce, AD,m). Let

INT-CTXT INT-CTXT
AdVAEAD,A = Pr [EXPAEAD,A]
In our proofs we use the fact that we can also consider an adversary which outputs a sequence of g potential
forgeries, (nonce;, AD;, ¢;) and wins if one of these ciphertexts is valid and has not been a response to an
encryption query before. Shrimpton [Shr04] shows that this increases the advantage by a factor of at most

q.

27

Sanitizable Channel. We next describe our sanitizable channel protocol. The formal description ap-
pears in Figure[dl The idea is to use the stealth key stkey within the AEAD scheme to protect confidentiality
and integrity of msec; if there is no stealth key then the sender simply puts random bits. In case of a stealth
key we protect the integrity of mg,,n by including this message part in the authenticated associated data
for encrypting mgeec. As a nonce we use a counter value. Denote the resulting ciphertext part by csec-

ChKGen(mode)

chkey <$ AEKGen()

stkey < AEKGen()

if mode # stealth then stkey < L

stg, stp,Stga, < 0

return

(chkey, stkey, stg, stp, Stga,)

ChSanit(chkey, stg,,,, ¢, MOD)

if stg,, = L or MoD ¢ MOD then return L
AD « ad™!(|¢])
Stgan < Stgan + 1
Mstealth < AEDec(chkey, 0||stg,,, AD, ¢)
if Meteaitn = L then
Stgan < L
return |
Msan — MOD(Mstealth)
AD < ad(|msan]|)
¢san < AEEnc(chkey, 1||stg,,, AD, msan)

return cgan

ChSend(chkey, stkey, mode, stg, m)

m = (Msec, Mauth, Mplain)

stg «—stg+1

if stkey # 1 and mode = stealth then
Csec <— AEEnc(stkey, O||stg, Mauth, Msec)

else
Csec 5 {0, 1}AE|€'"(\msec\)

Mistealth <= (Csecs Mauth s Mplain)

AD <« ad(|mstealth|)

¢ < AEEnc(chkey, 0||stg, AD, Mstealth)

return c

ChRcv(chkey, stkey, stp, ¢)

if stp = L then return L
stp ¢<—stp+1
AD « ad™'(|¢|)
m < AEDec(chkey, 0||stg, AD, ¢)
if m = 1| then
m < AEDec(chkey, 1||stp, AD, ¢)
if m = 1 then
stp +— L
return L
m = (Csec, Mauth; Mplain)
if stkey # L then
Msec < AEDec(stkey, O||st g, Mayth, Csec)
else
Mgec < L
if mgc = L then

Meee ¢ oAElen ™" (scl)

Mauth Olnlauth‘

return (msem Mauth, ”lplain)

Figure 4: Sanitizable Channel Protocol based on AEAD scheme.

We will use a counter to update the nonces for the encryption steps. Since the sender and the sanitizer
share the channel key chkey, and the sanitizer may re-encrypt the data, we use a one-bit prefix and 0||ctr if
the sender needs a nonce, and 1||ctr for the sanitizer. We note that for TLS 1.3 encryption and decryption
use a random offset which can be considered to formally be a part of the key (such that the encryption and
decryption process first xor the offset to the counter value). For sake of compatibility we also use a one-bit
prefix O||ctr for the nonce of the inner stealth encryption, although we never need 1-prefixes anywhere.

Finally, the message parts mayh and mplain are added to csec in plain. Then we use the channel key
chkey, known also by the sanitizer, to encrypt the “message” (csec, Mauth, Mplain) under chkey for associated
data AD and extended counter value O||ctr. Note that the sanitizer can access the encapsulated “message”

28

if it knows the correct counter value and associated data. For the associated data we assume that they are
computable from the length of the input message resp. recoverable from the length of the ciphertext. This
matches the approach in the TLS 1.3 record protocol where the associated data consists of constants and the
length of ciphertext. Formally, we thus have a function AD « ad(|m)|) for encryption and AD < ad™!(|c|)
with the idea that ad(|m|) = ad™!(|c|) for any valid ciphertext ¢ for the message m.

Once the outer encryption is undone with the help of chkey, the sanitizer can apply arbitrary operations
on Mplain- The modification options are described the admissible operations MoD, forming the set MOD.
We note that the sanitizer re-encrypts the entire message, consisting of the unaltered csec and myyeh, and
the modified mypain part with the AEAD scheme for key chkey, counter value 1|ctr, and associated data
AD.

The receiver will try both possibilities to decrypt, under counter value O|stp (for sender ciphertexts)
and 1||stp (for sanitized ciphertexts), and work with the message for which decryption succeeds. We remark
that for a random ciphertext decryption will fail with overwhelming probability such that, strictly speaking,
our scheme has a negligible decryption error. If both decryptions fail then the receiver closes the chanmnel
by setting sty <— L. Note that, by construction, our solution thus requires that the counter value of the
sanitizer and the receiver are in sync. This means that the sanitizer in our solution needs to at least learn
about each ciphertext sent to the receiver.

Extension to Confidential Message Parts. We outline here how we could incorporate confidential
message parts into the construction. Assume that the stealth key stkey consists of two parts, stkey. and
stkeYconfs €-8., by stretching the key stkey pseudorandomly. Then we use the key stkey.. as before in the
AEAD scheme for securing msec and authenticating mg,un via ciphertext part csec. In addition, we use
a key derivation function KDF for key stkey,nf, label O|stg and length parameter |meonf| to generate a
pseudorandom output, which we xor to meons to get a ciphertext part ceonf- Finally, one uses the channel
key chkey as before to encrypt (Csec, Cconf, Mauths Mplain) Unider the AEAD scheme.

The sanitizer, knowing the channel key chkey but not the stealth keys stkeyg., stkey oo, can access
(Csec, Cconf> Mauth, Mplain) for a transmitted ciphertext, and can then modify the unauthenticated parts mpi,in
and ceonf- For the selected encryption of meons via xor this means that the sanitizer can for instance
randomly flip bits to invalidate some parts of meons. If we choose any other symmetric-key encryption
scheme for creating cconf, then the sanitizer could perform other compliant operations. The sanitizer would
then re-encrypt the resulting elements under chkey again.

6.4 Security Proof

We next show security of our construction in Figure [4] in the previous section (without the extension to
confidential message parts) for arbitrary modifications on the plain part mpjain. That is, we consider the
set

MODpIain = {MOD | MOD(mSECa mauthymplain) = (mSeC7mautha m/plain)} .
Recall that the security experiment requires the modification to be length-preserving, meaning here that
the modified message m/plain needs to be as long as mpjain-

Theorem 6.2 The sanitizable channel protocol in Figure || is an IND-CCA secure MOD pjyin-sanitizable
stealth channel if the AEAD scheme AEAD is IND$-CPA and INT-CTXT. More precisely, for any adversary
A against the sanitizable stealth channel, making in total at most q queries to the sanitization and receiver
oracle, there exist adversaries Boyt, Cout, Bin, and Cip (with roughly the same running time as A) such that

QP < 2. AdERSEYT 42 Adofii5 A +

INT-CTXT IND$-CPA
2q- Advpapap s, T2 Advuspapg,

29

Proof. We distinguish between the two attack strategies, when 4 acts as an outsider (not requesting chkey
at the outset) resp. as an insider (learning chkey at the beginning and triggering INSIDER to be set to true).

Outsider Attacks. We start with A mounting an outsider attack. In this case we play against the
AEAD scheme for key chkey, formally describing a reduction Bgyy which uses A and its attack on the
channel protocol against the INT-CTXT and IND$-CPA properties of AEAD. Our first step is to argue
that the adversary 4 can never make OUT-OF-SYNC become true, unless one breaks integrity of the AEAD
scheme. Also, the adversary never manages to submit a valid ciphertext ¢ to the sanitizer oracle which has
not been the response of the sender oracle for the same counter value. To this end we build the following
reduction Byt against INT-CTXT property of the AEAD scheme

o Algorithm By generates another key stkey <% AEKGen() and picks the challenge bit b < {0, 1}
internally. Algorithm B,y also initializes the counter values stg, stp, stg,, as in the scheme, and the
game’s counter values ctrg,ctrpy. It also initializes the arrays C[] and M[] as in the game to be
empty, and two other internal arrays Creq[] and M,eq[] also to be empty.

e When A makes a call (modeo,mo,model,ml) to its ChSend oracle then By, simulates the oracle
as follows: Boy; immediately returns L if |m®|y = |m!|y does not hold. Else it increments stg and
creates cgec from mﬁec as in the protocol. Here, the ciphertexts may be picked randomly, if the
corresponding mode mode® equals regular. Algorithm Boy, next creates the “stealthified” message

MEaien — (ecs MEihs mglain) and calls its encryption oracle for the unknown key chkey about nonce

0||stg, associated data AD = ad(|m0,.;|); and the message ml ., to get a ciphertext c. It returns
this ciphertext ¢ to A, increments ctrg and stores c in Clctrg| as well as the message mls’tealth in
M[Ctrs].

e When A calls the sanitize oracle about a ciphertext ¢ and modifications MODO, MODl, then Byut
first increments stg,, and puts (0||stg,,, AD, c) for AD + ad™!(|¢|) as a potential forgery in its list.
Then Boyt checks that ¢ = Clstg,,|. If not, then B aborts. Else it recovers m < M]|stg,,|, applies
Msan < MoD®(m), and calls its encryption oracle about (1||stg,,, AD, msan) for AD <— ad(|msan|) to
get a ciphertext csan. It returns cgay to A and stores csan in Cred[Stgyy| and mean in Med[Stgn]-

e When A calls the receiving oracle about a ciphertext ¢ then Boy first checks that sty # L and then
increments stp. Then it checks if ¢ is in C[stg| and, if so sets m < M[stg]. Else it checks if ¢ equals
Cred[stg] and, if so, set m <— M eqg[stp]. In any other case it sets m < L and continues as in the
game. In any case it adds (0||stz, AD, ¢) and (1||stg, AD, c) for AD « ad™'(|¢|) to its list of potential
forgeries.

This concludes the description of our adversary B. We note that for A to make OUT-OF-SYNC = true as
an outsider, it needs to provide a ciphertext ¢ sent to the receiver oracle which has not been created for
the counter value by the sender nor by the sanitizer. Here we use the fact that the local counter values
correspond exactly to the game’s values ctrg and ctrpr. Analogously, a new valid ciphertext ¢ submitted
to the sanitizer would equally be found by Boys. It follows that By will capture such a forgery (for empty
associated data) in its list of at most 2¢ decryption processes, and thus succeeds in its integrity experiment
with the same advantage as A does in triggering OUT-OF-SYNC = true, times 2q.

With the above reduction we now have that A never makes the receiver oracle return anything but L.
We can thus easily simulate this oracle from now on. Accordingly, we can always find the correct message
m in M(stg,, | for sanitizing the ciphertext, such that we do not need access to the decryption function for
key chkey anymore in the entire attack. The next step is now obvious and uses the IND$-CPA property:
Whenever the game is now supposed to create a ciphertext under key chkey, we sample a uniform bit string

30

of the corresponding length instead. We can easily turn this into a reduction Coyt with oracle access to the
encryption function or the random sampler. We skip the details since they are straightforward.

In this final game the adversary A is now perfectly oblivious about the secret bit b and cannot do better
than guessing.

Insider Attacks. We next consider the case that the adversary A asks for the channel key chkey at the
beginning of the experiment and makes INSIDER being set to true. The strategy is identical to the outsider
case. We first show, via a reduction By, to the INT-CTXT property of the AEAD scheme for key stkey,
that the adversary A cannot make OUT-OF-SYNC being set to true via “bad” decryption queries. Note that
we do not need to take care of the decryption queries in the sanitization step, because this only involves the
channel key chkey known by Bi,. Furthermore, the admissible modifications MOD only affect the public
part Mppin. In more detail:

e Algorithm Bi, generates the channel key chkey <% AEKGen() itself and also selects the random
challenge bit b <= {0,1}. It initializes the counter values stg,stp,Stg,, as in the scheme, and the
counter values ctrg, ctrp, as well as the arrays C[] and M[].

e When A queries its send oracle about (modeo, m?, mode!, ml) then By, uses its encryption oracle to
compute cgec (or, samples it at random if mode® = regular) and proceeds otherwise as in the game.
It stores the final intermediate ciphertexts csec in Cred[Stg] and the original input message mP in

M red [StS] :

o If A calls the sanitization oracle about a ciphertext ¢ and two operations Mop?, Mob!, then Bi,
simply executes the protocol steps with knowledge of chkey. Note that this is possible since all
operations can be carried out on the plain part mpjain. Furthermore, the csec part remains unchanged
for MODpIain-

e When A calls the receiving oracle about ¢ then Bj, runs the first steps according to the protocol. In
particular,it obtains a message Mstealth = (Csecs Mauth, Mplain)- I Csec does not match C[stp] then B,
outputs the tuple (0||stg, Mayth, Csec) to its list of potential forgeries and sets stp < L and returns
L. Else, if the value matches, then B, looks up meec in M|stgp| and uses this value to complete the
steps of the receiving oracle.

Our adversary Bj, perfectly simulates the game for A, up to a step where A potentially forces a valid
forgery csec in the receiving oracle. However, in order to make OUT-OF-SYNC = true, the adversary would
need to make (Msec, Mayth) to deviate from the stored values (or use a fresh counter value). In either case
the inner ciphertext must be valid or else Mmgec, Mauth € ©* and the event is not triggered. If the counter
value is new or mg,uh as the associated data is new, we immediately get a contradiction to the integrity
game. If only msec is new, then by the completeness of the AEAD scheme the ciphertext part csec cannot
match the value stores in C[sty] for the original message. Hence, this also breaks integrity.

The final step, now that we eliminated each application of the decryption key stkey through lookups
or by using 1, we can once more give a reduction Ci, to the IND$-CPA property of the encryption part
AEEnc(stkey, - - -). In this step we exploit the fact that for insiders the parts (mguth, mglain) = (m;uth, m,l)lain)
must be equal such that Ci, can simulate this part without knowledge of the challenge bit b.

6.5 Read-Only Access in the Record Protocol by TLS

In this section we argue that a read-only sanitizer, i.e., which may access Msgteaith but does not modify it
to any msan, can be easily embedded into the TLS 1.3 record protocol. Note that we can enforce read-only

31

access by putting covertly sent data in msec and immutable parts inmg,, according to out terminology,
letting the receiver only accept empty mpjain-parts.

Recall that TLS 1.3 uses random offsets client_write_iv resp. server_write_iv which are added
to the counter value and then used as nonce. Formally, we assume that these offsets are part of the keys
chkey resp. stkey —which indeed coincides with the key deriviation process in the TLS 1.3 handshake. In
this sense it is understood that the authenticated encryption for the extended key (key, offset) encrypts as
AEEnc(key, nonce @ offset, AD, m) and decryption works correspondingly. Note that since the nonce values
are under adversarial control in the AEAD security experiments anyway, this does not weaken the security
of the AEAD scheme.

Next, recall that the TLS 1.3 record protocol uses as associated data the concatentation of the con-
stant ContentType opaque_type = application_data; /* 23 */ and the constant ProtocolVersion
legacy_record_version = 0x0303;, followed by the (expected) length of the ciphertext in bytes. Hence,
given the message for encryption one can deduce the ciphertext length, and given the ciphertext length the
value is readily available anyway. We can therefore easily define our functions ad and ad™! for computing
the associated data from the message resp. ciphertext length, as required by our scheme.

Finally, note that for read-only sanitizers we can omit the prefix bit 0 or 1 for the counters and work
with the plain counter value directly when encrypting and decrypting. This does not weaken the overall
security of our channel protocol if the sanitizer only has rad-only access and can never modifies the message
Mistealth- 1t follows that the outer channel encryption in our general scheme, with the choices above, is a
valid TLS 1.3 record protocol message.

There are, however, two things to consider regarding the length of the nested ciphertext c. First note
that, compared to subliminal communication, an outsider can observe that ciphertexts in this version are
longer than when using the original record protocol. As explained inthe introducton, we do not aim to hide
this fact. Secondly, TLS 1.3 sets an upper bound of 2'4 + 256 bytes for the length of ciphertexts, requiring
that input messages are of at most 2! bytes (or else need to be fragmented) [ResI8|. This needs to be
taken into account with the ciphertext expansion due to the double encryption here. Indeed, we need to
make sure that the combined length of (csec, Mauth) is at most 2!4 bytes, resulting in an overall bound of
214 _ 9256 for msec and mayn and possibly further fragmentations. Let us stress once more that our goal
is not to hide the fa