
A Note on “Secure Multifactor Authenticated Key Agreement

Scheme for Industrial IoT”

Zhengjun Cao1, Lihua Liu2

Abstract. We remark that the key agreement scheme [IEEE Internet Things J., 8(5),
2021, 3801–3811] is flawed. (1) It is insecure against internal attack, because any unau-
thorized sensing device (not revoked) can retrieve the final session key. (2) It could be
insecure against external attack.
Keywords: Key agreement, secret sharing, internal attack, external attack.

1 Introduction

Recently, Vinoth et al. [1] have presented a key agreement scheme for industrial Internet of Things.
The scheme makes use of password, biometrics, and smart card to identify the user, and utilizes the
secret-sharing technology to construct a session key among the user and authorized sensing devices.
In the proposed scenario, there are many entities: a user, the Gateway Node (GWN), n sensing
devices. Its security goals include entity authentication, data confidentiality, and user anonymity. In
this note, we remark that the scheme is flawed.

2 It is insecure against internal attack

To make it easier to follow the below discussion, we now depict the scheme as follows (see Table
1, or Fig.2, [1]). By the description of devices registration (see §V.B, [1]), we know, GWN will
register the devices using secret-sharing technology and Chinese remainder theorem. GWN picks a
unique identity IDSDj for each device SDj , and pairwise coprime positive integers k1, · · · , kn, where
j = 1, 2, · · · , n. GWN computes Mul =

∏n
j=1 kj ,Mulj = Mul/kj and Noncej , s.t., Mulj × Noncej ≡

1 mod kj . Set

γ =

n∑
j=1

Mulj ×Noncej (1)

Note that γ is set for the whole group of n devices, not for any authorized set of l (< n) devices.
We find the secret γ and shares kj , j = 1, · · · , n, are not harmonically invoked. Concretely, GWN
invokes γ to hide the nonce rGWN as

M4 = rGWN × γ, (2)

1Department of Mathematics, Shanghai University, Shanghai, 200444, China
2Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China.
Email: liulh@shmtu.edu.cn

1



Table 1: The Vinoth et al.’s key agreement scheme

User Ui Gateway Node (GWN) Sensing Device(SDj)

Gen(·), Rep(·) are generation and For the dealer P0 and n
reproduction algorithms of fuzzy extractor, devices P1, · · · , Pn, compute
respectively, and h(·) is a hash function. xi = ϕ(Pi), i = 0, · · · , n.

Pick n-dimensional V ector1, V ector2,
and a secret value S, s.t.,
S = V ector1 · x0, S2 = V ector2 · x0.
Pick IDSDj , compute sj = V ector1 · xj ,
fj = V ector2 · xj . Pick pairwise coprime
positive integers k1, · · · , kn.

Compute Mulj =
n∏

t=1
kt/kj , Noncej ,

s.t., Mulj ×Noncej ≡ 1 mod kj .

Set γ =
n∑

j=1
Mulj ×Noncej .

IDSDj
,sj ,fj ,kj

==============⇒
(secure channel)

Choose IDi, PWi, imprint biometrics Bi.
Compute (BKi, τi) = Gen(Bi). Generate the key KEYGWN.
Pick a nonce a, compute Set KEYGWN−Ui

= h(IDi‖KEYGWN),

TPWi = h(IDi‖PWi‖BKi)⊕ a. Ai = KEYGWN−Ui
⊕ TPWi

IDi,TPWi
===========⇒ Ci = IDGWN ⊕ TPWi.

Pick a 128-bit temporary identity TIDi.

Compute RPWi = h(IDi‖PWi‖BKi),
{TIDi,Ai,Ci}⇐=============

A′
i = Ai ⊕ TPWi ⊕RPWi,

C ′
i = Ci ⊕ TPWi ⊕ h(IDi‖BKi),

Di = a⊕ h(IDi‖BKi),
Vi = h(RPWi‖Ai‖a‖h(IDi‖BKi)) mod ω,
where ω is a medium integer to
thwart online guessing attack. Store
{TIDi, A

′
i, C

′
i, Di, Vi, τi, ω}.

Pick a nonce ri and timestamp TS1,
compute BKi = Rep(Bi, τi), Check |TS1 − TS′

1| ≤ 4TS.
RPWi = h(IDi‖PWi‖BKi), Use TIDi to look up IDi,
IDGWN = C ′

i ⊕ h(IDi‖BKi), KEYGWN−Ui
, and compute

M1 = Ai ⊕RPWi ⊕ ri, ri = M1 ⊕KEYGWN−Ui
. Check Check |TS2 − TS′

2| ≤ 4TS.

M2 = h(TIDi‖M1‖IDGWN ‖ri‖TS1). M2 = h(TIDi‖M1‖IDGWN ‖ri‖TS1). Compute rGWN = M4 mod kj ,
TIDi,M1,M2,TS1−−−−−−−−−−−−−−−−→

open channel
If so, pick rGWN and TS2 to compute Decr

GWN
(M5) = (IDi, IDGWN , ri,

M4 = rGWN × γ,M5 = Encr
GWN

(IDi, rGWN ⊕KEYGWN−Ui

)
, check

IDGWN , ri, rGWN ⊕KEYGWN−Ui

)
, M6 = h (IDi‖IDGWN ‖ri‖M4‖

M6 = h (IDi‖IDGWN ‖ri‖M4‖ rGWN ⊕KEYGWN−Ui
⊕ rGWN ‖TS2

)
.

KEYGWN−Ui
‖TS2

)
. If so, generate TS3, compute

M4,M5,M6,TS2−−−−−−−−−−−−−−→ M8 = Encr
GWN

(sj , fj , IDSDj
)

Check |TS3 − TS′
3| ≤ 4TS.

M8,TS3←−−−−−−−−−
Compute Decr

GWN
(M8) = (sj , fj , IDSDj

),

θ1 =
l∑

t=1
λtst, θ2 =

l∑
t=1

λtft.
{M(SDi)

8 ,TS
(SDi)
3 }SDiis in the authorized set←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Check θ2 = θ21. Set S = θ1.
M9 = h(S‖rGWN ),M10 = M9 × γ,

Check |TS4 − TS′
4| ≤ 4TS. M11 = h(M9‖M10). Generate TID

new

i , TS4. Compute M9 = M10 mod kj .

DecKEY
GWN−Ui

(M12) = (rGWN , ri,M9).
M10,M11−−−−−−−−−−→ Check M11 = h(M9‖M10).

Check M14 = h(M12‖M9‖ri). Compute M12 = EncKEY
GWN−Ui

(rGWN , ri,M9), Compute SK = h (IDi‖IDGWN ‖

Compute SK = h (IDi‖IDGWN ‖ M13 = h(IDi‖KEYGWN−Ui
‖TS4)⊕ TID

new

i , rGWN ‖ri‖M9‖KEYGWN−Ui

)
,

rGWN ‖ri‖M9‖KEYKEY −Ui

)
M14 = h(M12‖M9‖ri). M16 = h(SK‖IDGWN ‖IDi)

Check M16 = h(SK‖IDGWN ‖IDi). Set
M12,M13,M14,TS4←−−−−−−−−−−−−−−−−

TID
new

i = h(IDi‖KEYGWN−Ui
‖TS4)⊕M13

M16←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Update TIDi with TID

new

i .

2



and the device SDj invokes kj to recover the nonce

rGWN ≡M4 mod kj (3)

Clearly, a corrupted device SDs (not revoked), even unauthorized for the current session, can
also recover the same nonce by computing

rGWN ≡M4 mod ks, (3′)

because M4 is transported via an open channel (see the blue-colored parts, Table 1).
Using rGWN , the corrupted device can compute

Decr
GWN

(M5) = (IDi, IDGWN , ri, rGWN ⊕KEYGWN−Ui
)

where M5 is also publicly accessible, and Dec(·) is a symmetric key decrypting algorithm. By the
recovered nonce rGWN and the component rGWN ⊕KEYGWN−Ui

, it is easy to recover KEYGWN−Ui
.

Now, all components

IDi, IDGWN , rGWN , ri,KEYGWN−Ui
,M9 = M10 mod ks

can be obtained by the adversary for computing the final session key

SK = h
(
IDi‖IDGWN ‖rGWN ‖ri‖M9‖KEYGWN−Ui

)
(4)

We want to stress that in a secret sharing scheme [2], an owner of a share is not assumed to
directly use it for transporting data. The below simple relation

M4 = rGWN × γ =⇒ rGWN ≡M4 mod kj

is insufficient to securely transfer the nonce rGWN .

3 It could be insecure against external attack

The calculations of M4 = rGWN ×γ and M10 = M9×γ are actually computed over the ring Zk, where
k = [k1, k2, · · · , kn] is the lowest common multiple. Since they are pairwise coprime, k = k1×· · ·×kn.
In view of that the residue rGWN modulo kj is used as the key for Dec(·), the bit-length of kj is greater
than 256. In general,

BitLength(rGWN ) = BitLength(h(·)) = 256,

and BitLength(k) ≥ 256n, such as the popular SHA-256, and AES-256. By the equations

γ =

n∑
j=1

Mulj ×Noncej mod k, M9 = h(S‖rGWN ),

it is very likely that rGWN × γ < k,M9 × γ < k. So,

M4 = rGWN × γ, M10 = M9 × γ (5)

3



are two common equalities. An external adversary can recover the common divisor γ from M4 and
M10, both are transported via open channels. Thus, rGWN ,M9 can also be exposed. Now, the
adversary can compute Decr

GWN
(M5) to obtain IDi, IDGWN , ri, rGWN ⊕KEYGWN−Ui

, which means
that all components for the final hashing (see Eq.(4)) can be successfully retrieved.

4 Conclusion

We show that the Vinoth et al.’s key agreement scheme is insecure. It is worth noting that a key
agreement scheme being integrated with secret-sharing technology could be vulnerable to internal
attack. One should carefully design such a scheme and balance its security goals.

References

[1] R. Vinoth, et al., “Secure multifactor authenticated key agreement scheme for industrial iot,”
IEEE Internet Things J., vol. 8, no. 5, pp. 3801-3811, 2021.

[2] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612-613, 1979.

4


	Introduction
	It is insecure against internal attack
	It could be insecure against external attack
	Conclusion

