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Abstract. The functional bootstrap in FHEW/TFHE allows for fast table lookups
on ciphertexts and is a powerful tool for privacy-preserving computations. However,
the functional bootstrap suffers from two limitations: the negacyclic constraint of
the lookup table (LUT) and the limited ability to evaluate large-precision LUTs. To
overcome the first limitation, several full-domain functional bootstraps (FDFB) have
been developed, enabling the evaluation of arbitrary LUTs. Meanwhile, algorithms
based on homomorphic digit decomposition have been proposed to address the second
limitation. Although these algorithms provide effective solutions, they are yet to be
optimized. This paper presents four new FDFB algorithms and two new homomorphic
decomposition algorithms that improve the state-of-the-art. Our FDFB algorithms
reduce the output noise, thus allowing for more efficient and compact parameter
selection. Across all parameter settings, our algorithms reduce the runtime by up
to 39.2%. Our homomorphic decomposition algorithms also run at 2.0x and 1.5x
the speed of prior algorithms. We have implemented and benchmarked all previous
FDFB and homomorphic decomposition algorithms and our methods in OpenFHE. 1

Keywords: Homomorphic Encryption · TFHE · FHEW · Functional Bootstrap ·
FDFB · Homomorphic Decomposition

1 Introduction
Fully Homomorphic Encryption (FHE) is a powerful cryptographic tool that enables
computation on encrypted data without requiring access to the decryption key. It has
great potential for use in computing fields where data privacy is important, such as secure
cloud computing [KSK+18, PKS+19, LATV12] and privacy-preserving machine learn-
ing [LKL+22, BMMP18, CJP21, LHH+21], as well as in the construction of cryptographic
protocols such as private set intersection [CLR17, CHLR18, CMdG+21].

Since Gentry’s first construction of an FHE scheme utilizing the bootstrap tech-
nique [Gen09], various FHE schemes have been developed [FV12, BGV14, CKKS17,

1The code is available at https://github.com/msh086/FDFB-TCHES-2024.
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GSW13, DM15, CGGI20] and significant improvements have been made [LW23a, LW23b,
BIP+22, Klu22]. Among these FHE schemes, BGV/FV, CKKS and FHEW/TFHE have
gained prominence recently because of their great efficiency. BGV/FV and CKKS have
effective packing capabilities that allow for computations over vector data using Single
Instruction Multiple Data (SIMD) instructions, making them ideal for simultaneously
processing large arrays of numbers. However, these schemes are less efficient for evaluating
deep circuits and inconvenient for evaluating non-polynomial functions. On the other
hand, FHEW/TFHE utilize an efficient functional bootstrap (or programmable bootstrap)
process that enables the evaluation of a lookup table (LUT) without additional cost,
making these schemes ideal for evaluating boolean circuits and non-polynomial functions.
Moreover, due to the switching method introduced in CHIMERA [BGGJ20] and later
improved in PEGASUS [LHH+21], a CKKS ciphertext can be converted into multiple
FHEW/TFHE ciphertexts to compute non-polynomial functions and then converted back
to CKKS ciphertext for SIMD polynomial evaluation. This makes functional bootstrap a
versatile tool for all FHE evaluation purposes.

Despite its strength, functional bootstrap still suffers from two limitations: (1) the
evaluated LUT f : Zp → Zp must be negacyclic such that f(x + p

2 ) = −f(x) for all x ∈ Zp,
preventing some LUTs from being evaluated directly; (2) the input plaintext modulus p is
typically small due to efficiency constraints, limiting its ability to evaluate large precision
LUTs. Numerous efforts have been made to address these two limitations. To circumvent
the negacyclicity constraint, Full Domain Functional Bootstrap (FDFB) algorithms sup-
porting arbitrary LUTs have been proposed. These FDFB algorithms can be categorized
into Type-SelectMSB, Type-HalfRange and Type-Split. Type-SelectMSB selects between
two negacyclic LUTs based on the most significant bit (MSB) of the encrypted message
and is used in algorithms proposed by [CLOT21, KS22]. Type-HalfRange transforms
the encrypted message to prevent it from exceeding p

2 , thereby bypassing the negacyclic
limitation. This method is adopted in algorithms proposed by [LMP22, YXS+21, GBA22].
Finally, Type-Split expresses an arbitrary LUT as the sum of a ‘pseudo-odd’ LUT and a
‘pseudo-even’ LUT, each of which can be evaluated using two functional bootstraps. This
method is employed in the algorithm proposed by [CZB+22]. In addition to focusing on the
construction of FDFB, a method for using FDFB to aid in evaluating CKKS ciphertexts
is presented in [LY23]. To handle the evaluation of large-precision LUTs, Guimarães et
al. [GBA21] propose tree-based and chaining methods to combine multiple functional
bootstraps in TFHE. These two methods in [GBA21] assume that each ciphertext encrypts
a digit of the original message. Therefore, when an input ciphertext has a large modulus,
it must first be preprocessed with homomorphic decomposition before the methods can be
applied. On the other hand, Liu et al. [LMP22] develop homomorphic digit decomposition
algorithms and demonstrate how they can be used to evaluate large-precision sign functions.
As a result, homomorphic decomposition is a crucial component in current techniques for
evaluating large-precision LUTs.

In practice, functional bootstrap plays a critical role in many FHE applications, and
thus its optimization is paramount for achieving high performance. Nevertheless, the
efficiency of the FDFB and digit decomposition algorithms still requires further evaluation
and optimization.

1.1 Our Contributions
This work presents new methods for optimizing the current FDFB and homomorphic
decomposition algorithms. Our contributions can be summarized as follows.

(1) We present four novel FDFB algorithms: FDFB-Compress, FDFB-CancelSign,
FDFB-Select and FDFB-BFVMult (WoPPBS1-Refine). FDFB-Compress im-
proves Type-HalfRange to theoretical optimality, while the other three algorithms improve
Type-SelectMSB but are suitable for different scenarios. In our experiments, we observe
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that our fastest algorithms demonstrate a significant speedup, ranging from 23.4% ∼ 39.2%,
compared to the state-of-the-art results across various parameter settings.

(2) We present two new homomorphic decomposition algorithms HomDecomp-
Reduce and HomDecomp-FDFB, whose running speed is 2x and 1.5x that of Hom-
Floor and HomFloorAlt from [LMP22], respectively. Unlike HomFloor, our algorithms
do not require the input ciphertext to have small noise. The speedup of our algorithms
directly results in faster large-precision evaluations of functions such as sign, ReLU, max,
ABS, etc.

(3) We provide a comprehensive theoretical noise analysis for our FDFB and homo-
morphic decomposition algorithms, as well as those developed by previous works. We have
implemented and benchmarked all the algorithms in the OpenFHE library [BBB+22] to
validate our results. Our implementation of all FDFB algorithms in a single library is a
first-of-its-kind initiative, which provides standardized access to these algorithms.

1.2 Related Works
1.2.1 FDFB Algorithms

The current FDFB algorithms are summarized as follows.
WoP-PBS1 [CLOT21] (Type-SelectMSB) introduces an extra MSB to the encrypted

message by doubling the ciphertext modulus. The algorithm evaluates the LUT to obtain a
ciphertext that possibly differs by a sign from the desired result. Then, it extracts the MSB
using functional bootstrap and offsets the sign by invoking BFV multiplication. However,
the rapid noise growth of BFV multiplication requires the algorithm to use inefficient
parameters, thus degrading performance.

WoP-PBS2 [CLOT21] (Type-SelectMSB) builds two sub-LUTs according to the MSB
of the encrypted message. The algorithm evaluates both sub-LUTs to obtain two ciphertexts
and extracts the MSB using functional bootstrap. Then BFV multiplication is invoked to
select the correct ciphertext. Again, BFV multiplication still requires large parameters
and degrades performance.

FDFB-KS [KS22] (Type-SelectMSB) builds two sub-LUTs similarly to WoP-PBS2.
The algorithm selects between the two sub-LUTs to obtain an encrypted LUT and then
uses functional bootstrap to evaluate it. However, selecting the sub-LUTs requires multiple
functional bootstraps and causes significant computational overhead.

EvalFunc [LMP22] (Type-HalfRange) introduces an extra MSB in a similar way to
WoP-PBS1. The algorithm extracts the MSB using functional bootstrap and cancels it
to ensure that the message belongs to half of Zp. Then it can evaluate the LUT without
being constrained by negacyclicity. We note that the FullyFBS of [YXS+21] and the
FDFB-C of [GBA22] are essentially the same as EvalFunc.

Comp [CZB+22] (Type-Split) expresses an arbitrary LUT as the sum of a ‘pseudo-
odd’ LUT and a ‘pseudo-even’ LUT. Then the algorithm evaluates each LUT using two
functional bootstraps.

In [CIM19], Carpov et al. develop a multi-value bootstrap technique that allows several
LUTs to be evaluated on the same input using a single functional bootstrap call. This
technique can reduce the functional bootstraps required for WoP-PBS1, WoP-PBS2
and Comp when the parameters support multi-value bootstrap.

1.2.2 Homomorphic Decomposition Algorithms

The current homomorphic decomposition algorithms are summarized as follows.
HomFloor [LMP22] uses two bootstraps to clear the lower bits of a large-precision

message before modulus switching, which prevents the modulus switching noise from
corrupting the higher digits. By iteratively applying these operations, a large-precision
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Table 1: A summary of the intuition behind our algorithms and the improvement over
previous methods.

Previous Ours Our Intuition/Improvement
over Previous Works

EvalFunc [LMP22] FDFB-Compress
Compress the coded message
using a functional bootstrap

and reduce the noise

WoP-PBS1 [CLOT21]
WoP-PBS2 [CLOT21]

FDFB-CancelSign
FDFB-Select

Replace BFV multiplication
with LWE-to-RLWE packing

and bootstrap

WoP-PBS1 [CLOT21]
WoP-PBS2 [CLOT21]

WoPPBS1-Refine
FDFB-BFVMult

Use a refined noise analysis for
BFV multiplication; use fewer

BFV multiplications

HomFloor [LMP22]
HomFloorAlt [LMP22]

HomDecomp-Reduce
HomDecomp-FDFB

Reduce the range of the lower
bits instead of clearing them

and use fewer bootstraps

message can be decomposed into a vector of 4-bit digits. However, this algorithm does
not apply to extracted CKKS ciphertexts because it requires a small noise in the input
ciphertext.

HomFloorAlt [LMP22] uses three bootstraps to extract the digits of a large-precision
message, allowing it to support the decomposition into 5-bit digits and decompose extracted
CKKS ciphertexts.

1.3 Overview of Our Algorithms
We present the intuition behind our algorithm design and explain how it leads to better
performance (see Table 1 for a summary). The key advantage of our algorithms is
their reduced noise growth, which enables us to choose more compact LWE and RLWE
parameters (such as decomposition bases in blind rotation and RLWE dimension) for a
given plaintext modulus, resulting in shorter running time.

FDFB-Compress is a Type-HalfRange FDFB algorithm. Our key observation is that
the LWE message must be in a coded (and thus redundant) form q

p m′ + e ∈ Zq to prevent
decryption failures due to errors, where q is the ciphertext modulus. This enables us to
design a compression function that can compress the coded LWE message into [− q

4 , q
4 − 1]

using one functional bootstrap. Then, we can perform another functional bootstrap on
the compressed message to get the desired result. As a result, FDFB-Compress uses the
same number of bootstraps as EvalFunc but reduces the error variance of the compressed
message by half, resulting in a more compact parameter choice and better performance.

FDFB-CancelSign, FDFB-Select and FDFB-BFVMult (WoPPBS1-Refine)
are all Type-SelectMSB FDFB algorithms. The primary objective of FDFB-CancelSign
and FDFB-Select is to replace the BFV multiplication in WoP-PBS1 and WoP-PBS2
with LWE-to-RLWE packing and an additional functional bootstrap. This approach
prevents the multiplicative noise growth in BFV multiplication and instead achieves
additive noise growth. As a result, although FDFB-CancelSign and FDFB-Select
require an extra functional bootstrap compared to WoP-PBS, their slower noise growth
allows for more compact parameter choices and better efficiency in most cases, according
to our experiments. On the other hand, WoPPBS1-Refine and FDFB-BFVMult are
enhanced algorithms of WoP-PBS1 and WoP-PBS2, respectively. They significantly
reduce the error growth in WoP-PBS1 and WoP-PBS2 by roughly N times, where N
is the RLWE dimension. This is achieved through a refined noise analysis of the BFV
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LMP22ModSwitch

ModSwitch Ours

Figure 1: Comparison of our homomorphic digit decomposition approach and that of
[LMP22]. The blue parts stand for higher bits, while the green and red parts stand for
lower bits before and after modulus switching.

multiplication. Such an in-depth analysis allows for the choice of smaller bootstrapping
parameters, resulting in enhanced efficiency. Moreover, FDFB-BFVMult removes one
BFV multiplication in WoP-PBS2 by combining two BFV multiplications with the sign
bit into one multiplication, further reducing the noise growth by half.

The current homomorphic digit decomposition algorithms presented in [LMP22] extract
digits by repeatedly clearing the lower bits mlow of the encrypted messages (leaving a small
bootstrap error) and then modulus-switching it to a smaller modulus q0

B . We observe that
this goal can also be achieved by reducing the range of the lower bits instead of clearing
them. In contrast to clearing the lower bits, reducing their range consumes fewer functional
bootstraps. Still, it can reserve enough room to hold the modulus switching noise, thus
preventing the higher digits from being destroyed by overflowed noise. Figure 1 illustrates a
comparison of these two approaches. Following this idea, we design HomDecomp-Reduce
and HomDecomp-FDFB, which run 2x and 1.5x faster compared to HomFloor and
HomFloorAlt in our experiments.

2 Preliminaries

2.1 Notations

The ring of integers modulo q is denoted as Zq = Z/qZ. Its elements are represented as
integers in either [0, q − 1] (positive form) or [−⌊ q

2⌋, ⌊
q−1

2 ⌋] (signed form). For an integer
a, its positive form and signed form in Zq are denoted as [a]+q and [a]q, respectively.

For a power-of-2 N , the 2N -th cyclotomic ring is denoted as R = Z[X]/(XN + 1), and
its quotient ring is denoted as Rq = R/qR. Polynomials are represented using bold letters,
e.g., a. For a vector a⃗ or a polynomial b, we use ai and bi respectively to denote a⃗’s
i-th entry and b’s coefficient of the Xi term. The coefficient vector of b is denoted as
b⃗ = (b0, b1, . . . , bN−1).

For a postive interger n, the set {0, 1, . . . , n− 1} is denoted as JnK. We use a← χ to
represent a random variable a sampled from the distribution χ, and a ← S to indicate
that a is uniformly sampled from the finite set S. We use D(Z, σ) to denote the discrete
Gaussian distribution of parameter σ over Z. The infinity norm and 2-norm of a vector a⃗
are denoted as |⃗a|∞ and |⃗a|2 respectively. All logarithms are taken with a base of 2 unless
otherwise stated.
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2.2 FHEW/TFHE Encryption Schemes
2.2.1 LWE and RLWE Ciphertexts

Throughout this paper, we use lowercase q and n to denote the modulus and dimension of
LWE instances, while uppercase Q and N are used for the RLWE modulus and dimension.

The LWE ciphertext encrypting an encoded message m ∈ Zq is defined to be

LWEs⃗,n,q(m + e) = (−⟨⃗a, s⃗⟩+ m + e, a⃗) ∈ Zn+1
q ,

where a⃗← Zn
q , e← D(Z, σ), and the secret vector s⃗← {0,±1}n.

The RLWE ciphertext encrypting an encoded message m ∈ RQ is defined to be

RLWEs,N,Q(m + e) = (−a · s + m + e, a) ∈ R2
Q,

where a← RQ, ei ← D(Z, σ), and the secret polynomial satisfies si ← {±1, 0}.
For simplicity, we may sometimes use the abbreviated notation LWEs⃗(m) and

RLWEs(m) (or LWE(m) and RLWE(m)) to denote the LWE and RLWE ciphertexts
respectively.

Messages in LWE and RLWE ciphertexts are typically encoded to prevent decryption
failures caused by errors. For instance, in an RLWE ciphertext, m is often an up-scaled
version of the actual message m′ ∈ Rp, as given by m = ⌊Q

p m′⌉ = Q
p m′ + ernd, where

p < Q is the plaintext modulus and ernd accounts for the rounding errors. Then an RLWE
ciphertext (b, a) ∈ R2

Q decrypts to ⌊ p
Q (b + a · s)⌉ = ⌊m′ + p

Q (e + ernd)⌉, which is equal to
m′ modulo p as long as | p

Q (e + ernd)|∞ < 1
2 .

2.2.2 RLWE′ and RGSW Ciphertexts

An RLWE′ ciphertext is a vector of RLWE ciphertexts encrypting the same message at
different scales, i.e.,

RLWE′
s(m) = (RLWEs(m), RLWEs(m ·B), . . . , RLWEs(m ·Bl−1)),

where B ∈ Z is the decomposition base and l = ⌈logB Q⌉. For any u ∈ RQ, there is
a decomposition u =

∑l−1
i=0 ui ·Bi such that ui’s coefficients are all in [−B

2 , B
2 ]. Let

Decomp(u) = (u0, u1, . . . , ul−1). Then the product ⊙ : Rq × RLWE′ → RLWE can be
defined as

u⊙ RLWE′
s(m) = ⟨Decomp(u), RLWE′

s(m)⟩ = RLWEs(u ·m).

The obtained RLWE ciphertext contains a noise much smaller than the regular Rq×RLWE
multiplication due to the small coefficients of ui’s. Besides, the LWE′ ciphertext can be
defined similarly, but we omit the details here.

An RGSW ciphertext is defined as

RGSWs(m) = (RLWE′
s(m), RLWE′

s(m · s)).

Then the external product ⋄ : RLWE×RGSW→ RLWE between (b, a) = RLWEs(u + e)
and RGSWs(m) is defined as

(b, a) ⋄ RGSWs(m) = b⊙ RLWE′
s(m) + a⊙ RLWE′

s(m · s)),

which is equal to RLWEs((b + a · s)m) = RLWEs((u + e)m).

2.3 Homomorphic Operators
We introduce some basic homomorphic operations that will be used in our constructions.
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2.3.1 Mod Down/Up and Modulus Switching

Let c = (b, a⃗) = LWEs⃗,n,q(m + e) be an LWE ciphertext, and let q′ be a positive modulus.
For q′ | q, the ‘mod down’ is defined as

ModDown(c, q′) = ([b]q′ , [⃗a]q′) = LWEs⃗,n,q′([m + e]q′).

For q | q′, the ‘mod up’ is defined as

ModUp(c, q′) = (b, a⃗) = LWEs⃗,n,q′(m + e + vq),

where v ∈ Zq′/q.
For any modulus q′, the ‘modulus switching’ is defined as

ModSwitch(c, q′) = (⌊q
′

q
b⌉, ⌊q

′

q
a⃗⌉) = LWEs⃗,n,q′(q′

q
(m + e) + ems),

where ems is the noise modulus switching introduces. The three homomorphic operators
described above can also be defined for RLWE ciphertexts similarly but are omitted for
brevity.

2.3.2 Sample Extract

Given an RLWE ciphertext c = (b, a) = RLWEs,N,Q(m + e) and an index i ∈ JNK, define

SampleExtract(c, i) = LWEs⃗,N,Q(mi + ei),

which extracts the coefficient of the Xi term into an LWE ciphertext.

2.3.3 Key Switching

Given an LWE ciphertext c = (b, a⃗) = LWEs⃗,n,qks
(m + e), a decomposition base Bks

and key switching keys kski,j,k = LWEs⃗′,n′,q′(⌊ q′

qks
s⃗i · j · Bk

ks⌉) for i ∈ JnK, j ∈ JBksK and
k ∈ J⌈logBks

(qks)⌉K, define

KeySwitch(c, {kski,j,k}) = LWEs⃗′,n′,q′(⌊ q′

qks
(m + e)⌉+ eks),

where eks is the error key switching introduces.
Besides LWE-to-LWE key switching, it is possible to pack LWE ciphertexts into an

RLWE ciphertext with similar techniques [GBA21, CZ22], which can be viewed as a
specific instance of the public functional key switching method proposed in [CGGI20].
This homomorphic operator, denoted as PackingKS(LWE(m), {kski,j,k}), is parameterized
by a positive integer d and outputs RLWE(m + mX + . . . + mXd−1). Its full definition is
detailed in the full version of the paper.

2.3.4 Blind Rotation and Functional Bootstrap

Blind rotation is the key step in the bootstrap of FHEW/TFHE. Given an LWE ciphertext
c = LWEs⃗(m+e) with modulus q|2N , a polynomial TV ∈ RQ (often called the test vector)
and blind rotation keys {brk±

i }, define

BlindRotate(c, TV, {brk±
i }) = RLWEs′(TV ·X− 2N

q (m+e) + eacc),

where eacc is the noise that blind rotation introduces. In other words, TV is rotated left
by 2N

q (m + e). {brk±
i } are parameterized by the blind-rotation base Bg. A smaller Bg
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Figure 2: The five steps of FHEW/TFHE bootstrapping: (1) blind rotation of TV by
the input ciphertext; (2) extracting the constant term of the rotated TV; (3) modulus
switching to qks; (4) key switching to the original secret key; (5) modulus switching to q.
F is an LUT from Zp to Zp.

means longer running time and smaller eacc. Since the inner structure of blind rotation is
irrelevant to the focus of this paper, we omit the details about the use of {brk±

i }. Interested
readers can refer to [MP21] for more details. In this paper, we assume q = 2N and omit
the {brk±

i } in notations.
Note that the constant term of the rotated TV equals TVm+e for m + e ∈ [0, N − 1],

and equals −TV[m+e]+
N

for m + e ∈ [N, 2N − 1], then the blind rotation actually evaluates
a negacyclic function f : Z2N → ZQ on m + e. To evaluate a negacyclic LUT F : Zp → Zp

using blind rotation, the coefficients of TV are arranged in a redundant way to eliminate
the error in input ciphertext. Specifically, by setting TVi = ⌊Q

p F (⌊p
q i⌉)⌉, the constant

term of BlindRotate(LWEs⃗(⌊ q
p m′ + e⌉), TV) is an encryption of ⌊Q

p F (m′)⌉.
The entire process of the functional bootstrap is illustrated in Figure 2. The noise

introduced by the bootstrap process is denoted as eboot. We use Boot[f ](c) to represent the
result of performing functional bootstrap using function f on an LWE ciphertext c and use
BootRaw[f ](c) to represent the freshly extracted LWE ciphertext after blind rotation (i.e.,
without any modulus switching or key switching). Notably, each TV uniquely corresponds
to a negacyclic function f , so either TV or f can be used to parameterize the functional
bootstrap. If the plaintext polynomial TV is replaced with an RLWE ciphertext ctv, we
denote the resulting output as Boot[ctv](c) or BootRaw[ctv](c).

2.3.5 Multi-Value Bootstrap

Multi-value bootstrap enables the evaluation of multiple LUTs on the same input LWE
ciphertext with the cost of a single bootstrap [CIM19]. In this approach, the unscaled test
vector is denoted as TV′ ∈ Rp, and the goal is to compute ⌊Q

p TV′⌉X−(m+e), where p is
the plaintext modulus. To enable the computation of multiple LUTs, multi-value bootstrap
decomposes ⌊Q

p TV′⌉ approximately into TV0 ·TV1, where TV0 = ⌊ Q
2p⌉(1+X + . . .+XN−1)

is a constant polynomial, and TV1 = TV′ − TV′ · X ∈ R2p is LUT-specific. TV0 is
first multiplied by X−(m+e) using blind rotation, and the resulting RLWE ciphertext is
multiplied by TV1, which also multiplies the output error variance by |TV1|22 ≤ p(p− 1)2.

2.3.6 BFV Multiplication

Let p be the plaintext modulus. For two RLWE ciphertexts ci = RLWEs,N,Q( Q
p m′

i + ei)
where i = 0, 1, define

BFVMult(c0, c1) = RLWEs,N,Q(Q

p
m′

1m′
2 + emult),
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Table 2: Symbols used in our noise analysis.
Symbol Meaning
σ2 Encryption error variance
σ2

ms Modulus-switching error variance
σ2

ks Key-switching error variance
σ2

pk PackingKS error variance, σ2
pk = σ2

ks

σ2
acc Blind-rotation error variance

σ2
com Variance of noise introduced in steps (3)∼(5) in Figure 2

σ2
boot Bootstrap error variance

bnd, β
bnd =

√
2 · erfc−1(2−32) ≈ 6.338, and β = bnd · σboot

For x ∼ N(0, σ2
boot), |x| < β with high probability

p Plaintext modulus. p is an even number
q, n LWE ciphertext modulus and dimension. q is a power of 2
Q, N RLWE ciphertext modulus and dimension. N = 2q

where emult is the noise of BFV multiplication. We note that re-linearization keys are
required for BFV multiplication. See [KPZ21] for the detailed process.

2.4 Noise Introduced by the Operators
The variances of ems, eks, eacc, eboot are denoted by σ2

ms, σ2
ks, σ2

acc, σ2
boot respectively. Be-

sides, recall that qks is the key switching modulus in blind rotation. Bks and Bg are the
decomposition bases for key switching and blind rotation, respectively. The values of these
variances are listed in the following lemma, and the proof can be found in [MP21].

Lemma 1. Let σ2 be the variance of the encryption noise, and dg = ⌈logBg
Q⌉,

dks = ⌈logBks
(qks)⌉. Then

σ2
ms(n) = n

18 + 1
12 ,

σ2
ks(n, qks, Bks) = dks(1− 1

Bks
)n(σ2 + 1

4 ),

σ2
acc(n, N, Q, Bg) = 2dgB2

gnNσ2

3 ,
σ2

boot(n, N, Q, q, Bg, qks, Bks) = ( q
qks

)2(σ2
ms(N)+σ2

ks(N, qks, Bks))+( q
Q )2σ2

acc(n, N, Q, Bg)+
σ2

ms(n).

PackingKS introduces the same amount of noise as KeySwitch. Besides, we denote
σ2

com = ( q
qks

)2(σ2
ms + σ2

ks) + σ2
ms as the variance of noise introduced by the last three steps

in the functional bootstrap (Figure 2).
The literature generally assumes that error introduced by homomorphic operations

follows a centered normal distribution. For a centered normal variable x ∼ N(0, σ2), its
range can be bounded by Pr[|x| > bnd · σ] < 2−32, where bnd =

√
2 · erfc−1(2−32) ≈ 6.338.

We denote the bound of bootstrapping error as β = bnd · σboot. Table 2 summarizes the
symbols used in our noise analysis.

3 Improved FDFB Algorithms
This section introduces four new FDFB algorithms. We assume that the plaintext modulus
p is a power of 2 for better presentation. Notably, changing p to any even number will not
affect the correctness or efficiency of the algorithms presented because, as we will see later,
the advantage of our algorithms comes from their slow noise growth, whose correctness
is independent of the choice of p. We assume the ciphertext modulus q = 2N is a power
of 2 and view the message as an integer modulo q in the positive form. For an LWE
ciphertext c encrypting m = q

p m′ + e, we add q
2p to c before performing any operations
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to ensure that e + q
2p ∈ [0, q

p − 1]. This will simplify the understanding of homomorphic
digit decomposition algorithms in Section 4 and is consistent with [LMP22]. To keep the
description of the FDFB algorithms concise, we focus on input arguments like the LUT F
and the input LWE ciphertext, omitting other arguments like the bootstrap key. In our
noise analysis, we assume that the input ciphertext of the FDFB algorithms has an error
variance of σ2

boot as in [LMP22]. The proof of correctness and noise analysis of the FDFB
algorithms is provided in the full version of the paper.

3.1 FDFB-Compress
This algorithm employs the Type-HalfRange strategy. Specifically, it first compresses
the coded message q

p m′ + e ∈ Zq into the range [− q
4 , q

4 − 1] by evaluating the negacyclic
function fC(x) : Zq → Zq via a functional bootstrap, where

fC(x) =
{

q
2p (⌊p

q x⌋+ 1
2 ) x ∈ [0, q

2 − 1]
− q

2p (⌊p
q x⌋ − p

2 + 1
2 ) x ∈ [ q

2 , q − 1]
. (1)

The design of fC serves two purposes. Firstly, it maps messages encoding the same m′ to
the same value. Secondly, it ensures that the outputs of fC for different m′s are at least
q

2p apart. q
2p must be greater than 2β to prevent the bootstrapping noise from interfering

with the compressed message. In other words, the plaintext modulus p is upper bounded
by p < q

4β .
After compression, it is possible to bypass the negacyclicity constraint and evaluate an

arbitrary LUT F : Zp → Zp on the compressed message by using one functional bootstrap
to compute feval : Zq → Zq, which is defined as

feval(x) =


⌊ q

p F (⌊ 2p
q x⌋)⌉ x ∈ [0, q

4 − 1]
⌊ q

p F (⌊ 2p
q (q − x)⌋+ p

2 )⌉ x ∈ [ 3q
4 , q − 1]

−feval(x− q
2 ) x ∈ [ q

4 , 3q
4 − 1]

. (2)

The algorithm for FDFB-Compress is fully described in Algorithm 1, with its parameter
requirements and noise analysis provided in Theorem 1.

Algorithm 1: FDFB-Compress
input : Plaintext modulus p and an LUT F : Zp → Zp

input : An LWE ciphertext (b, a⃗) = LWEs⃗,n,q( q
p m′ + e)

output : An LWE ciphertext LWEs⃗,n,q( q
p F (m′) + eboot)

1 ct ← Boot[fC ]((b + q
2p , a⃗))

2 return Boot[feval](ct)

Theorem 1. Suppose β < q
4p and |e| < q

2p , then FDFB-Compress(F, LWEs⃗,n,q( q
p m′ +

e)) = LWEs⃗,n,q( q
p F (m′) + eboot) and ct in line 1 of Algorithm 1 has an error variance of

σ2
boot.

3.2 FDFB-CancelSign
This algorithm employs the Type-SelectMSB strategy. Given LWEs⃗,n, q

2
( q

2p m′ +e), FDFB-
CancelSign first executes ModUp to obtain a ciphertext LWEs⃗,n,q( q

2 MSB + q
2p m′ + e)
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and then performs a raw functional bootstrap to evaluate

fcs =
{
⌊Q

p F (⌊ 2p
q x⌋)⌉ x ∈ [0, q

2 − 1]
−fcs(x− q

2 ) x ∈ [ q
2 , q − 1]

: Zq → ZQ (3)

and obtain a ciphertext encrypting (−1)MSB⌊Q
p F (m′)⌉. Finally, an LWE-to-RLWE packing

key switching and another functional bootstrap cancel the extra (−1)MSB factor. The
algorithm for FDFB-CancelSign is fully described in Algorithm 2, and its parameter
requirements and noise analysis are given in Theorem 2.

Algorithm 2: FDFB-CancelSign
input : Plaintext modulus p and an LUT F : Zp → Zp

input : Base Bpk and modulus qpk for PackingKS
input : {ksk′

i,j,k}, packing keys for PackingKS with d = N
input : An LWE ciphertext (b, a⃗) = LWEs⃗,n, q

2
( q

2p m′ + e)
output : An LWE ciphertext LWEs⃗,n, q

2
( q

2p F (m′) + e′)
1 ct← ModUp((b + q

4p , a⃗), q)
2 ct1 ← BootRaw[fcs](ct)
3 ctpk ← PackingKS(ct1, {ksk′

i,j,k})
4 return Boot[ctpk](ct)

Theorem 2. Suppose |e| < q
4p and |e′| < q

4p , then FDFB-CancelSign(F, LWEs⃗,n, q
2
( q

2p m′+
e)) = LWEs⃗,n, q

2
( q

2p F (m′) + e′). The output error e′ has a variance of ( q
Q )2(2σ2

acc + σ2
pk) +

( q
qpk

)2σ2
ms + σ2

core.ciphertext.

3.3 FDFB-Select
This algorithm employs the Type-SelectMSB strategy but does not perform the ModUp
operation as in FDFB-CancelSign. In particular, let F : Zp → Zp be an arbitrary LUT,
let ct = LWEs⃗,n,q( q

p m′ + e) be a ciphertext encrypting m′, and let MSB be the most
significant bit of m′. FDFB-Select first constructs two sub-LUTs from Zp/2 to Zp, which
correspond to the LUT F with MSB = 0 or MSB = 1 respectively. These two sub-LUTs
can be extended to F0, F1 : Zp → Zp to fulfill the negacyclic constraint. i.e., F0(x) = F (x)
and F1(x) = −F (x + p/2) for x ∈ [0, p/2), F0(x) = −F (x − p/2) and F1(x) = F (x) for
x ∈ [p/2, p). F0 and F1 correspond to the functions in (4) and (5).

fpos =
{
⌊Q

p F (⌊p
q x⌋)⌉ x ∈ [0, q

2 − 1]
−fpos(x− q

2 ) x ∈ [ q
2 , q − 1]

: Zq → ZQ, (4)

fneg =
{
−fneg(x + q

2 ) x ∈ [0, q
2 − 1]

⌊Q
p F (⌊p

q x⌋)⌉ x ∈ [ q
2 , q − 1]

: Zq → ZQ. (5)

By evaluating these two functions on ct + q
2p using a single functional bootstrap each,

we can obtain two ciphertexts that encrypt F0(m′) and F1(m′), respectively. Additionally,
we can obtain a ciphertext encrypting MSB by evaluating function (6) on ct + q

2p using a
single functional bootstrap.

fsgn =
{

q
8 x ∈ [0, q

2 − 1]
− q

8 x ∈ [ q
2 , q]

: Zq → Zq. (6)
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Finally, we use the encryption of MSB to select FMSB(m′) from Fi(m′) by a single
functional bootstrap. The algorithm for FDFB-Select is fully described in Algorithm 3,
and its parameter requirements and noise analysis are given in Theorem 3.

The first three functional bootstraps have the same input ciphertext ct, thus can be
accomplished via a single multi-value bootstrap at the cost of increased noise growth.
Therefore, when the parameter settings enable multi-value bootstrap, FDFB-Select
needs only two functional bootstraps, otherwise it requires four functional bootstraps. In
case multi-value bootstrap is unavailable, we develop a variant of FDFB-Select, called
FDFB-SelectAlt, described in Algorithm 4, which uses only three bootstraps. The
parameter requirements and noise analysis of FDFB-SelectAlt are given in Theorem 4.

Remark. We actually use an improved version of the base-aware LWE-to-RLWE packing
proposed by [GBA21] to pack ctpos and −ctneg into ctpk. To pack M |N messages LWE(mi)
into RLWE(

∑M−1
i=0 mi(1+X+X2+. . .+X

N
M −1)X N

M i), [GBA21] generates M key switching
keys, with each key corresponding to an index i ∈ JMK. However, we observe that generating
the key switching key for i = 0 is sufficient since the keys for i ̸= 0 can be obtained by
multiplying the key for i = 0 by X

N
M i. The storage cost of this optimized version of

PackingKS is only 1
M that of [GBA21].

Algorithm 3: FDFB-Select
input : Plaintext modulus p and an LUT F : Zp → Zp

input : Base Bpk and modulus qpk for PackingKS
input : {ksk′

i,j,k}, packing keys for PackingKS with d = N
2

input : An LWE ciphertext (b, a⃗) = LWEs⃗,n,q( q
p m′ + e)

output : An LWE ciphertext LWEs⃗,n,q( q
p F (m′) + e′)

1 ct← (b + q
2p , a⃗)

2 ctpos ← BootRaw[fpos](ct)
3 ctneg ← BootRaw[fneg](ct)
4 ctsgn ← Boot[fsgn](ct)
5 ctpk ← PackingKS(ctpos, {ksk′

i,j,k}) + PackingKS(−ctneg, {ksk′
i,j,k}) ·X

N
2

6 return Boot[ctpk](ctsgn)

Theorem 3. Suppose |e| < q
2p , β < q

8 and |e′| < q
2p , then FDFB-Select(F, LWEs⃗,n,q( q

p m′+
e)) = LWEs⃗,n,q( q

p F (m′) + e′). The output error e′ has a variance of ( q
Q )2(2σ2

acc + 2σ2
pk) +

( q
qpk

)2σ2
ms + σ2

com. Additionally, when multi-value bootstrap is employed, the variance
becomes ( q

Q )2((p(p− 1)2 + 1)σ2
acc + 2σ2

pk) + ( q
qpk

)2σ2
ms + σ2

com.

Theorem 4. Suppose that |e| < q
2p and |e′| < q

2p , then FDFB-SelectAlt(F, LWEs⃗,n,q( q
p m′+

e)) = LWEs⃗,n,q( q
p F (m′) + e′). The output error e′ has a variance of ( q

Q )2(3σ2
acc + σ2

ks) +
( q

qpk
)2σ2

ms + σ2
com. Additionally, when multi-value bootstrap is employed, the variance

becomes ( q
Q )2((6p(p− 1)2 + 1)σ2

acc + σ2
ks) + ( q

qpk
)2σ2

ms + σ2
com.

3.4 FDFB-BFVMult (WoPPBS1-Refine)
This algorithm employs the Type-SelectMSB strategy but uses BFV multiplication to
handle the MSB. It contains WoPPBS1-Refine and FDFB-BFVMult.
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Algorithm 4: FDFB-SelectAlt
input : Plaintext modulus p and an LUT F : Zp → Zp

input : Base Bpk and modulus qpk for PackingKS
input : {ksk′

i,j,k}, packing keys for PackingKS with d = N
input : An LWE ciphertext (b, a⃗) = LWEs⃗,n,q( q

p m′ + e)
output : An LWE ciphertext LWEs⃗,n,q( q

p F (m′) + e′)
1 ct← (b + q

2p , a⃗)
2 cthdiff ← BootRaw[(fneg − fpos)/2](ct)
3 cthsum ← BootRaw[(fneg + fpos)/2](ct)
4 ctpk ← PackingKS(cthdiff , {ksk′

i,j,k})
5 ctres ← cthsum − BootRaw[ctpk](ct)
6 ctres ← KeySwitch(ModSwitch(ctres, qks), {kski,j,k})
7 return ModSwitch(ctres, q)

The process of WoPPBS1-Refine is identical to that of WoP-PBS1, but it employs
a much tighter noise analysis, as we will demonstrate later. It first obtains a ciphertext that
encrypts (−1)MSB⌊Q

p F (m′)⌉ in the same way as FDFB-CancelSign. Then it evaluates
the function (7) via a functional bootstrap to acquire the encryption of ⌊Q

p (−1)MSB⌉.
Finally, it computes the product of the two LWE ciphertexts using LWE-to-RLWE packing
and BFV multiplication. The algorithm is fully described in Algorithm 5, and its parameter
requirements and noise analysis are given in Theorem 5.

fsgn1 =
{
⌊Q

p ⌉ x ∈ [0, q
2 − 1]

Q− ⌊Q
p ⌉ x ∈ [ q

2 , q − 1]
: Zq → ZQ (7)

Algorithm 5: WoPPBS1-Refine
input : Plaintext modulus p and an LUT F : Zp → Zp

input : Base Bks and modulus qks for key switching
input : Base Bpk and modulus qpk for PackingKS
input : {kski,j,k}, key switching keys
input : {ksk′

i,j,k}, packing keys for PackingKS with d = 1
input : An LWE ciphertext (b, a⃗) = LWEs⃗,n, q

2
( q

2p m′ + e)
output : An LWE ciphertext LWEs⃗,n, q

2
( q

2p F (m′) + e′)
1 ct← ModUp((b + q

4p , a⃗), q)
2 ct0 ← PackingKS(BootRaw[fcs](ct), {ksk′

i,j,k})
3 ctsgn ← PackingKS(BootRaw[fsgn1](ct), {ksk′

i,j,k})
4 ctprod ← SampleExtract(BFVMult(ct0, ctsgn), 0)
5 ctres ← KeySwitch(ModSwitch(ctprod, qks), {kski,j,k})
6 return ModSwitch(ctres, q

2 )

FDFB-BFVMult is an improved version of WoP-PBS2. Unlike WoP-PBS2, which
requires the sign bit to be multiplied with both fneg(ct) and fpos(ct), FDFB-BFVMult
only needs one BFV multiplication because the sign bit is multiplied with the fresh
ciphertext (fneg − fpos)(ct). Consequently, FDFB-BFVMult further halves the noise
growth. Specifically, FDFB-BFVMult first constructs two LUTs F0 and F1 in the same
way as FDFB-Select. Next, by using two functional bootstraps to evaluate fpos and
fneg − fpos (defined in (4) and (5)), it obtains encryptions of mpos = ⌊Q

p F0(m′)⌉ and
mdiff = ⌊Q

p (F1−F0)(m′)⌉. Then it evaluates the function (8) via a functional bootstrap to
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acquire the encryption of msgn = ⌊− Q
2p (−1)MSB⌉+ ⌊ Q

2p⌉ ≈ ⌊
Q
p MSB⌉ Finally, it computes

MSB·mdiff +mpos ≈ ⌊Q
p FMSB(m′)⌉ using LWE-to-RLWE packing and BFV multiplication.

The algorithm is fully described in Algorithm 6, and its parameter requirements and noise
analysis are given in Theorem 6.

Since the two bootstraps in WoPPBS1-Refine (and the three bootstraps in FDFB-
BFVMult) share the same input, they can be accelerated by employing a single multi-value
bootstrap at the cost of increased noise growth.

fsgn2 =
{

Q− ⌊ Q
2p⌉ x ∈ [0, q

2 − 1]
⌊ Q

2p⌉ x ∈ [ q
2 , q − 1]

: Zq → ZQ (8)

Algorithm 6: FDFB-BFVMult
input : Plaintext modulus p and an LUT F : Zp → Zp

input : Base Bks and modulus qks for key switching
input : Base Bpk and modulus qpk for PackingKS
input : {kski,j,k}, key switching keys
input : {ksk′

i,j,k}, packing keys for PackingKS with d = 1
input : An LWE ciphertext (b, a⃗) = LWEs⃗,n,q( q

p m′ + e)
output : An LWE ciphertext LWEs⃗,n,q( q

p F (m′) + e′)
1 ct← (b + q

2p , a⃗)
2 ctpos ← BootRaw[fpos](ct)
3 ctdiff ← PackingKS(BootRaw[fneg − fpos](ct), {ksk′

i,j,k})
4 ctsgn ← PackingKS(BootRaw[fsgn2](ct) + ⌊ Q

2p⌉, {ksk′
i,j,k})

5 ctprod ← SampleExtract(BFVMult(ctdiff , ctsgn), 0)
6 ctres ← ctprod + ctpos

7 ctres ← KeySwitch(ModSwitch(ctres, qks), {kski,j,k})
8 return ModSwitch(ctres, q)

Refined BFV Noise Analysis. Next, we provide a refined noise analysis for the BFV
multiplication involved in FDFB-BFVMult (WoPPBS1-Refine). Our core observation
is that in LWE-to-RLWE packing, only the constant term of the output polynomial message
is assigned the value of the input LWE message, while the coefficients of non-constant
terms are close to 0.

Lemma 2 provides a noise analysis of this kind of BFV multiplication. We note that
only the dominating term of the error variance is displayed in Lemma 2 (as well as in
Theorem 5 and Theorem 6) due to the complexity of the full formula. Refer to the full
version of the paper for the full formula and its proof.

In FDFB-BFVMult (WoPPBS1-Refine), each of the multiplicands for BFV mul-
tiplication is obtained by packing an LWE message with an error variance of σ2

acc into
the constant term of an RLWE ciphertext. This means that the constant term of the
encrypted polynomial has an error variance of σ2

acc + σ2
ks, while the error variance of

non-constant terms is σ2
ks. Note that σ2

acc and σ2
ks correspond to σ2

i and σ2′
i in Lemma 2.

In practice, σ2
acc is much larger than Nσ2

ks and one of the packed LWE messages is a sign
bit (i.e., in {0,±1}). It then follows from Lemma 2 that the output error variance is about
2p2σ2

msσ2
acc.

On the other hand, for ordinary BFV multiplication where all terms have an error
variance of σ2

acc + σ2
ks, the output error variance is about 2Np2σ2

msσ2
acc. This is because

the dominating noise term becomes a polynomial-polynomial multiplication and introduces
an extra factor N compared to scalar-polynomial multiplication (refer to the remark in the
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full version of the paper for details). This means the noise growth is reduced by roughly
N times compared to conventional BFV multiplication.

Lemma 2. Let ci = (bi, ai) = RLWEs,N,Q( Q
p mi +ei +ei) for i = 0, 1, where ei ∼ N(0, σ2

i ),
ei ∼ N(0, σ′2

i )N , σ2
i ≫ Nσ′2

i and m0 ∈ {0,±1}. Then SampleExtract(BFVMult(c0, c1), 0) =
Q
p m0m1 + e and the variance of e is equal to p2σ2

ms(σ2
0 + σ2

1) approximately2.

Theorem 5. Suppose |e| < q
4p and |e′| < q

4p , then WoPPBS1-Refine(F, LWEs⃗,n, q
2
( q

2p m′+
e)) = LWEs⃗,n, q

2
( q

2p F (m′) + e′). The output error e′ has a variance of ( q
Q )2 N

9 p2σ2
acc + σ2

com

approximately. Additionally, when multi-value bootstrap is employed, the variance becomes
( q

Q )2 N
18 p3(p− 1)2σ2

acc + σ2
com approximately.

Theorem 6. Suppose |e| < q
2p and |e′| < q

2p , then FDFB-BFVMult(F, LWEs⃗,n,q( q
p m′ +

e)) = LWEs⃗,n,q( q
p F (m′) + e′). The output error e′ has a variance of ( q

Q )2 N
9 p2σ2

acc + σ2
com

approximately. Additionally, when multi-value bootstrap is employed, the variance becomes
( q

Q )2 2N
9 p3(p− 1)2σ2

acc + σ2
com approximately.

4 Improved Homomorphic Digit Decomposition
This section presents two algorithms HomDecomp-Reduce and HomDecomp-FDFB
to decompose an LWE ciphertext with a large modulus q0 into multiple LWE ciphertexts
with a smaller modulus q, each encrypting a digit of the original message. HomDecomp-
Reduce creates buffer space for modulus switching noise by reducing the range of lower
bits by half. It can handle digits of up to 4 bits and requires one bootstrap operation per
decomposed digit. In contrast, HomDecomp-FDFB clears the lower bits approximately
and can handle digits of up to 5 bits, but it requires two bootstrap operations per digit.
We still assume q = 2N as in the previous section. In our noise analysis, we assume that
the input ciphertext of the decomposition algorithms has an error variance of σ2

boot as
in [LMP22]. Proof of theorems is left to the full version of the paper due to space limit.

4.1 HomDecomp-Reduce
In HomDecomp-Reduce, the range of lower bits is first reduced by half using one
bootstrap operation to accommodate the subsequent modulus switching noise. The
reduction function fred : Zq → Zq0 is defined in (9), with different input and output ranges.

fred =
{

q
4 x ∈ [0, q

2 − 1]
q0 − q

4 x ∈ [ q
2 , q − 1]

: Zq → Zq0 (9)

The complete algorithm is described in Algorithm 7. Its parameter requirements and noise
analysis are given in Theorem 7.

Theorem 7. If bnd
√

B−2σ2
boot + σ2

ms < q
4B , HomDecomp-Reduce outputs the decom-

posed digits correctly.
2Here, ‘approximately’ means that only the dominant term of the error variance is displayed, as the

full formula is quite complex. For the full formula and an explanation of the approximation, please refer
to the full version of the paper.



16 Fast and Accurate: Efficient FDFB and Digit Decomposition

Algorithm 7: HomDecomp-Reduce
input : A base B for homomorphic decomposition
input : An LWE ciphertext ct = LWEs⃗,n,q0( q0

p m′ + e)
output : LWE ciphertexts {cti} encrypting the digits of m′

1 i← 0
2 while q0 > q do
3 cti ← ModDown(ct, q)
4 ct← ct + ( q0

2p , 0⃗)
5 ct′ ← ModDown(ct, q)
6 ct← ct + Boot[fred](ct′)− ( q

2 , 0⃗)
7 ct← ModSwitch(ct, q0

B )
8 i← i + 1
9 cti ← ct

10 return {cti}

4.2 HomDecomp-FDFB
In HomDecomp-FDFB, we use FDFB-Compress to evaluate the continuous identity
function fid(x) = x : Zq → Zq0 (using zero extension), and the obtained result is used
to approximately clear the lower bits in the input ciphertext. See Algorithm 8 for a full
description of HomDecomp-FDFB and Theorem 9 for its parameter requirements and
noise analysis.

Before beginning, we show how to evaluate a continuous function F ′ with FDFB-
Compress, where the input and output scaling factors are ∆in and ∆out respectively.
First, the compression function fC in (1) is substituted with f ′

C , which is defined in (10)
and illustrated in Figure 3.

f ′
C =

{
⌊

q
4 −2β
q
2 −1 x + β⌉ x ∈ [0, q

2 − 1]
q − f ′

C(x− q
2 ) x ∈ [ q

2 , q − 1]
: Zq → Zq (10)

The strategy adopted to construct f ′
C is called ‘β-padding’, which creates a 2β distance

between f ′
C(0) and f ′

C( q
2 ) to separate the cases where the input is 0 and q

2 . Otherwise,
the bootstrapping error may intermix the two cases, making it impossible for feval to
distinguish between them. As a result, when the input is positive and near 0, FDFB-
Compress may yield an incorrect result F ′(− q

2∆in
) instead of F ′(0). Also, f ′

C( q
2 − 1) and

f ′
C(q − 1) must be β away from q

4 and 3q
4 respectively to ensure that the output message

of f ′
C always lies within half of Zq.
The modified version of feval in (2) (which we denote as f ′

eval) is rather complicated.
Intuitively f ′

eval aims to recover the original input to f ′
C , evaluate F ′ on the recovered

input, and subsequently scales the result by ∆out. As the evaluation of f ′
C introduces

a bootstrapping error, the input recovered by f ′
eval also contains a bootstrapping error

(multiplied by some constant), which means that the output error of FDFB-Compress
depends on the Lipschitz constant of F ′. The output error variance is given in Theorem 8,
and the proof can be found in the full version of the paper.

Theorem 8. When evaluating a continuous function f with Lipschitz constant L, the output
error variance of FDFB-Compress is ( L

k2∆in
)2σ2

boot + ∆−2
outσ

2
boot, where k2 =

N
2 −2β

N−1 ≈
1
2 .

HomDecomp-FDFB sets ∆in = ∆out = 1 and F ′ = fid, which gives the following
theorem.
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Figure 3: Compression function f ′
C for continuous function evaluation.

Theorem 9. Let ef be the output error of FDFB-Compress, then its variance is
σ2

f = (1 + k−2
2 )σ2

boot. If bnd
√

B−2σ2
f + σ2

ms < q
2B , HomDecomp-FDFB outputs the

decomposed digits correctly.

Algorithm 8: HomDecomp-FDFB
input : A base B for homomorphic decomposition
input : An LWE ciphertext ct = LWEs⃗,n,q0( q0

p m′ + e)
output : LWE ciphertexts {cti} encrypting the digits of m′

1 i← 0
2 while q0 > q do
3 cti ← ModDown(ct, q)
4 ct← ct + ( q0

2p , 0⃗)
5 ct′ ← ModDown(ct, q)
6 ct← ct− FDFB-Compress[fid](ct′)
7 ct← ModSwitch(ct, q0

B )
8 i← i + 1
9 cti ← ct

10 return {cti}

5 Analysis and Comparison
This section analyzes the FDFB and the homomorphic decomposition algorithms, both
previous ones and ours, concerning their noise growth and the number of required boot-
straps.

5.1 Analysis of FDFB Algorithms
Table 3 presents the error variance ratio between our and previous FDFB algorithms
and the number of bootstraps required. For Type-HalfRange FDFB algorithms (FDFB-
Compress and EvalFunc), the coded message must first be compressed into half of Zq.
Thus the error of the compressed message (e.g., the error in ct of line 1 of Algorithm 1)
plays a major role in the selection of parameters. For Type-SelectMSB FDFB algorithms
(other algorithms in Table 3), the output error plays a major role in the selection of
parameters. The dominant term of the output error variance is the σ2

acc-term for most
algorithms (refer to the full version of the paper for the formula of the output error
variance of all algorithms). Thus, in the table, the first row of the ratio column represents
the ratio of the error variances of the compressed message. The remaining rows of the
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Table 3: Comparison of previous and our FDFB algorithms regarding their noise growth
and the number of bootstraps required.

Ours Previous Error Var Ratio Num of BTS
(Ours/Prev) (Prev→Ours)

FDFB-Compress EvalFunc [LMP22] 1/2 2→ 2
FDFB-CancelSign WoP-PBS1 [CLOT21] 18/N2p2 2→ 2
WoPPBS1-Refine 1/N 2→ 2

FDFB-Select 9/N2p2 3→ 4
FDFB-SelectAlt WoP-PBS2 [CLOT21] 27/2N2p2 3→ 3
FDFB-BFVMult 1/N 3→ 3

WoPPBS1-Refine∗ WoP-PBS∗
1 [CLOT21] 1/N 1→ 1

FDFB-Select∗ 9/2N2p2 1→ 2
FDFB-SelectAlt∗ WoP-PBS∗

2 [CLOT21] 27/N2p2 1→ 2
FDFB-BFVMult∗ 1/N 1→ 1
∗ FDFB algorithms that use multi-value bootstrap.

ratio column represent the ratios of the σ2
acc-terms of the output error variance. For

FDFB-CancelSign, FDFB-Select and FDFB-SelectAlt, the ratios of the output error
variance can be a small multiple of the displayed ones. For other algorithms, the output
error variance ratios are very close to the displayed ones since the σ2

acc-term is dominant.
As stated earlier, the efficiency of an FDFB algorithm is not solely determined by the

number of bootstraps it requires. The error variances also impact the compactness of
parameters and thus affect the final efficiency. As shown in Table 3, the main advantage of
our FDFB algorithms is their reduced noise growth. This allows for the selection of larger
decomposition bases during blind rotation, resulting in a reduction in the decomposition
dimension (denoted by l as described in Section 2.2.2). Since the number of NTTs required
for a blind rotation is proportional to (l + 1), our algorithms achieve better performance.
To be more specific:
• FDFB-Compress reduces the error variance of the compressed message by half,

resulting in a more relaxed parameter choice than EvalFunc.
• FDFB-CancelSign, FDFB-Select, FDFB-SelectAlt and their multi-value boot-

strap variants use LWE-to-RLWE packing and blind rotation instead of BFV multiplication.
This reduces the noise to O(1/N2p2) that of WoP-PBS. Although our algorithms require
an additional bootstrap to replace the BFV multiplication, we demonstrate in Section 6
that they are still faster than WoP-PBS in most cases due to their slower noise growth.
• WoPPBS1-Refine and FDFB-BFVMult use significantly tighter noise analysis

for BFV multiplication than WoP-PBS1 and WoP-PBS2, reducing the noise growth to
1/N the original value.

The Optimality of FDFB-Compress. We observe that FDFB-Compress achieves
optimality among Type-HalfRange algorithms. Recall that Type-HalfRange first uses
functional bootstraps to transform the coded message q

p m′+e ∈ Zq into ϕ(m′)+ẽ ∈ U ⊆ Zq

and then evaluate the LUT with another functional bootstrap, where ϕ is an arbitrary
map, U satisfies U ∩ (U + q

2 ) = ∅ to bypass the negacyclic constraint, and ẽ has a variance
of at least σ2

ẽ ≥ σ2
boot. Additionally, to ensure the correctness of evaluation, m′ must be

reconstructible from m̃+ ẽ, i.e., there is a map λ from U to Zp such that λ(ϕ(m′)+ ẽ) = m′

for any m′ ∈ Zp and any |ẽ| < bnd · σẽ.
Thus, on the one hand, FDFB-Compress achieves the minimum number of bootstraps

required for Type-HalfRange (i.e., 2). On the other hand, since ϕ(m′) + ẽ ∈ λ−1(m′),
by the pigeonhole principle there exists an m′ ∈ Zp such that |λ−1(m′)| ≤ |U |

p ≤ q
2p ,
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Table 4: Comparison of previous and our homomorphic decomposition algorithms.
Ours HomDecomp-Reduce HomDecomp-FDFB

Previous HomFloor [LMP22] HomFloorAlt [LMP22]
Number of BTS

(Previous→Ours) 2→ 1 3→ 2

Constraints of
Previous Methods

Cannot decompose extracted
CKKS ciphertexts q > 8

√
2β

implying q
2p > 2 · bnd · σẽ ≥ 2β. This requires β < q

4p , which is also the only requirement
for FDFB-Compress. This means that FDFB-Compress achieves the most compact
parameter choice among Type-HalfRange algorithms, thus achieving optimality.

5.2 Analysis of Homomorphic Decomposition
Table 4 compares the number of bootstraps needed for previous and our homomorphic
digit decomposition algorithms. Algorithms in the same row of the table share the
same digit decomposition base B (i.e., their decomposed digits have the same plaintext
modulus). According to the table, our algorithms need one less bootstrap than previous
algorithms in [LMP22]. HomFloor requires that the input ciphertext encodes a discrete
plaintext with small noise, which ensures a gap between two adjacent encoded messages to
accommodate the noise introduced by subsequent bootstraps. Since an extracted CKKS
ciphertext encodes messages continuously without any gaps, HomFloor cannot be applied
to decompose it. Also, HomFloorAlt has an extra constraint for the ciphertext modulus.
In contrast, our methods are free of these constraints, making them more flexible than
previous methods. The full version of the paper provides a theoretical analysis of the noise
growth and parameter choice.

6 Implementation
We implement all the FDFB algorithms and homomorphic decomposition algorithms,
including both previous ones and ours, in OpenFHE [BBB+22] (commit id 745a492). We
disable multi-threading, except during key generation. We build OpenFHE using the g++
compiler of version 12.2.1 with flag WITH_NATIVEOPT=ON (as the authors did in [LMP22]).
The performance of algorithms is tested on a machine with Intel(R) Xeon(R) Gold 6248R
CPU @ 3.00GHz and 125G of RAM, running Fedora Release 36.

Parameter Setting. We use two parameter sets in our LWE schemes, i.e., PARAMdecomp
and PARAMfast, which have been verified to meet 128-bit security using lattice-
estimator [APS15] (commit id 48fa49b). Table 5 presents the details of these parameter
sets, and we briefly explain the selection criteria of qks below since n can be determined
from qks. For PARAMdecomp, the maximum ciphertext modulus is set to 235 such that
the ciphertext to be digit-decomposed has a large modulus. This choice for qks is also
consistent with [LMP22]. For PARAMfast, we focus on FDFB algorithms for discrete

Table 5: Parameter sets for LWE scheme and their use cases.
LWE Param Sets n qks Use Cases
PARAMdecomp 1340 235 HomDecomp, Discrete FDFB

PARAMfast 760 220 Discrete FDFB
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Table 6: Running time of previous and our FDFB algorithms under four scenarios (A to D).
Each running time is obtained by averaging over 100 tests and is measured in milliseconds
(ms). For each scenario, the best algorithms from previous works and this paper are
marked in blue and red, respectively. A ‘/’ indicates that the algorithm is unavailable in
that scenario because the plaintext modulus p exceeds its parameter requirements.

Algorithm PARAMdecomp PARAMfast
A: p = 24 B: p = 25 C: p = 24 D: p = 25

EvalFunc / / 598 /
WoP-PBS∗

1 1160 / 682 /
WoP-PBS∗

2 1200 1930 735 942
FDFB-KS 5360 6340 2940 3110

Comp∗ 1580 1760 897 985
FDFB-Compress 1050 / 598 /

FDFB-CancelSign 1060 / 611 /
FDFB-Select∗ 1260 1250 621 724

FDFB-SelectAlt∗ 1240 1250 717 718
WoPPBS1-Refine∗ 777 / 458 /
FDFB-BFVMult∗ 785 1150 458 573

LUTs. Thus qks can be set to a smaller value to accelerate FDFB. However, if qks is
too small, it may lead to large key switching noise, corrupting the correctness of FDFB.
Therefore, we set qks = 220 in PARAMfast.

The performance of discrete LUT evaluation with FDFB variants is tested with the
plaintext modulus set to 24 and 25. To ensure fair comparisons, we have only recorded
the best performance among the parameters for FDFB variants with multiple parameter
choices (e.g., multi-value or not). In our experiments, the multi-value versions usually run
faster than the non-multi-value ones. Thus, the multi-value versions of most algorithms
are recorded.

Please refer to the full version of the paper for a complete list of the parameters used
in the benchmarks.

Performance of FDFB Algorithms. Table 6 shows the running time of previous and our
FDFB algorithms under four scenarios (two parameter sets × two choices of p). We can
draw the following conclusions from the benchmark data.

First, the experiment data validate our algorithms’ advantage over their predecessors,
as suggested theoretically in Section 5. To be more specific:
• FDFB-Compress can support p = 24 in scenario A while EvalFunc cannot because

the former benefits from a reduced error variance of the compressed message. In fact,
EvalFunc would need to double the RLWE dimension N to support p = 24, which leads
to worse efficiency.
• FDFB-CancelSign shows a speedup of 8.6%∼10.4% compared to WoP-PBS∗

1,
even though it requires one additional bootstrap and does not use multi-value bootstrap
for acceleration. This is due to the slower noise growth of FDFB-CancelSign, which

Table 7: Performance improvement of our FDFB algorithms.
Scenario in Table 6 A B C D

Best Running Time (Old, ms) 1160 1760 598 942
Best Running Time (New, ms) 777 1150 458 573

Reduction in Running Time 33.0% 34.7% 23.4% 39.2%
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Figure 4: The "running time"-"input precision" graph for previous (blue) and our (red)
homomorphic digit decomposition algorithms under PARAMdecomp.

allows for the choice of a larger decomposition base Bg in blind rotation, resulting in
improved performance. On the other hand, FDFB-Select∗ and FDFB-SelectAlt∗ have
similar running time to WoP-PBS∗

2 in scenarios A & C and are 23.1%∼35.2% faster than
WoP-PBS∗

2 in scenarios B & D. This advantage grows with p, as a larger p results in less
tolerance for homomorphic noise and forces prior methods to use smaller Bg, degrading
their performance.
•WoPPBS1-Refine∗ is 32.8%∼33.0% faster than WoP-PBS∗

1 and FDFB-BFVMult∗

is 37.7%∼40.4% faster than WoP-PBS∗
2. Again, such performance improvement benefits

from the choice of a larger Bg, which is possible due to the algorithms’ reduced noise
growth.

Second, when comparing the fastest algorithms from previous works and our algorithms,
we observe a 23.4%∼39.2% reduction in running time across all four scenarios (see Table 7).
Among our algorithms, FDFB-BFVMult∗ is the fastest or very close to the fastest in
all the scenarios. However, it does not render our other algorithms obsolete because (1)
they support the addition of more bootstrapped ciphertexts since they have smaller output
error than FDFB-BFVMult (WoPPBS1-Refine); (2) they are useful for smaller RLWE
dimensions, where BFV-based FDFB methods might be unavailable.

Performance of Homomorphic Digit Decomposition. Figure 4 illustrates the perfor-
mance of different homomorphic decomposition algorithms (the raw data can be found
in the full version of the paper). Data for B = 24 are drawn in solid lines, while data for
B = 25 are drawn in dashed lines. For all choices of log2(q0), HomDecomp-Reduce runs
roughly twice as fast as HomFloor, and HomDecomp-FDFB runs roughly at 1.5 times
the speed of HomFloorAlt. Such speedup in homomorphic decomposition directly leads
to speedup in the large-precision sign/ReLU/max/ABS evaluation, as they all require
extracting the MSB of the input message.

+

7 Conclusion
This paper develops four FDFB algorithms and two homomorphic decomposition algorithms.
Our FDFB algorithms achieve a running time shorter than the best known results by up
to 39.2%. Our homomorphic decomposition algorithms run 1.5x to 2x as fast as those
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presented in [LMP22], leading to speedup in large-precision ReLU, sign, max and ABS
evaluation. We give a thorough theoretical noise analysis for FDFB and homomorphic
decomposition algorithms, both in prior works and ours. We also implement all the
algorithms in OpenFHE for a fair comparison between them.
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Supplementary Material

A Evaluating a Continuous Function with FDFB-Compress
This section presents the details of evaluating a continuous function with FDFB-
Compress, including the definition of f ′

eval and the proof of Theorem 8.
The function feval in (2) is replaced by f ′

eval : Zq → ZQ, which is defined as

f ′
eval(x) =



⌊F ′( x−β
slope∆in

) Q∆out

qout
⌉ x ∈ [β, q

4 − β]
⌊F ′(( q−x−β

slope −
q
2 )∆−1

in ) Q∆out

qout
⌉ x ∈ [ 3q

4 + β, q − β]
⌊F ′(0) Q∆out

qout
⌉ x ∈ [0, β − 1]

⌊F ′(( q
2 − 1)∆−1

in ) Q∆out

qout
⌉ x ∈ [ q

4 − β + 1, q
4 − 1]

⌊F ′(− q
2∆in

) Q∆out

qout
⌉ x ∈ [ 3q

4 , 3q
4 + β − 1]

⌊F ′(− 1
∆in

) Q∆out

qout
⌉ x ∈ [q − β + 1, q − 1]

Q− f ′
eval(x + q

2 ) x ∈ [ q
4 , 3q

4 − 1]

,

where slope =
q
4 −2β
q
2 −1 .

As said previously, the first two cases compute the inverse of f ′
C , evaluate F ′ on the

recovered input, and scale the result to ∆out. The third to sixth cases handle the boundary
cases. The last case exists only to ensure the negacyclicity of f ′

eval.

Proof of Theorem 8.

Proof. We denote the input value of f ′
C as x0 ∈ Zq. As discussed in the paper, f ′

eval

first tries to recover x0 and then evaluate F ′ on x0∆−1
in . Let us first consider the case

of x ∈ [β, q
4 − β]

⋃
[ 3q

4 + β, q − β]. In this case, the input to F ′ in FDFB-Compress is
exactly

⌊f ′−1
C (⌊f ′

C(x0)⌉+ eboot)⌉∆−1
in

, where f ′
C is a two-piece linear function, and the slope of both pieces have the same

absolute value k2 = q/4−2β
q/2−1 . Thus, the input error to F ′ is

(k−1
2 (eboot + ernd,0) + ernd,1)∆−1

in

, where ernd,i is the rounding error of the i-th rounding operator and has a variance of
1
4 . Thus, the input error to F ′ has a variance of (k−2

2 (σ2
boot + 1

4 ) + 1
4 )∆−2

in ≈ k−2
2 ∆−2

in σ2
boot.

Let L be the Lipschitz constant of F ′, then an input error of F ′ with a variance of σ2
in

can lead to an output error variance of at most L2σ2
in. Taking σ2

in = k−2
2 ∆−2

in σ2
boot and

counting in the error introduced by the final bootstrap itself, we get the final output error
variance

L2

∆2
ink2

2
σ2

boot + σ2
boot.

Now we consider the cases when the distance between x and 0, q/4 or 3q/4 is less than
β, which means the bootstrapping error when evaluating f ′

C ‘pushes’ its output value out of
[β, q/4−β]

⋃
[3q/4 + β, q−β]. In these cases, we use f ′−1

C (β), f ′−1
C (q/4−β), f ′−1

C (3q/4 + β)
and f ′−1

C (q − β) as the recovered values of x0, corresponding to the 3rd ∼ 6th cases in the
expression of f ′

eval. Since we ‘align’ x to the nearest value in [β, q/4−β]
⋃

[3q/4 + β, q−β]
before computing f ′−1

C on it, part of the bootstrapping noise is corrected and the recovered
value for x0 has smaller error variance than the case of x ∈ [β, q

4 − β]
⋃

[ 3q
4 + β, q − β].

Thus, the final output error variance in these cases is also no more than L2

∆2
in

k2
2
σ2

boot + σ2
boot.
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Finally, the case of x ∈ [q/4, 3q/4− 1] will never happen when evaluating f ′
eval because

the design of f ′
C has ensured that x ∈ [0, q/4− 1]

⋃
[3q/4, q − 1]. This case exists only to

satisfy the negacyclicity constraint and to make the expression of f ′
eval complete.

B Noise Analysis for FDFB Methods

B.1 Refined Noise Analysis of BFV Multiplication

Below is our refined noise analysis of BFV multiplication. In our analysis, only the constant
terms of encrypted polynomials are used to store messages, while non-constant coefficients
are close to zero. See [KPZ21] for more details about BFV multiplication.

Theorem 10. Let ci = (bi, ai) = RLWEs,N,Q(Q
p mi + ei + ei) for i = 0, 1, where ei ∼

N(0, σ2
i ) and ei ∼ N(0, σ′2

i )N and m0 ∈ {0,±1}. Given ci, an auxiliary modulus P and a
base Brl for re-linearization, SampleExtract(BFVMult(c0, c1), 0) = Q

p m0m1 + e, where the
variance of e is

σ2
1 + p2

4 σ2
0 + p2

Q2 σ2
0σ2

1 +σ′2
1 + Q2

P 2 σ2
ms + p2

4 σ′2
0 + p2

Q2 σ2
0σ′2

1 + p2

P 2 σ2
0σ2

ms + p2

Q2 σ2
1σ′2

0 +p2σ2
ms(σ2

0 +
σ2

1) + N( p2

Q2 σ′2
0 σ′2

1 + p2

P 2 σ′2
0 σ2

ms + p2σ2
ms(σ′2

0 + σ′2
1 ) + p2Q2

P 2 σ2
msσ′2

0 ) + σ2
ms + N2

27 + drl
B2

rl

4 Nσ2

Proof. First c1 is modulus-switched to ZP , producing c1 = RLWEs,N,P (P
p m1 + P

Q e1 +
P
Q e1 + ems). Then c0 and c1 are modded up to ZP Q. The messages encrypted in them
are added by u0Q and u1P respectively, where u0Q = b0 + a0s − [b0 + a0s]Q and
u1P = b1 +a1s− [b1 +a1s]P . Then a tensor product between c0 and c1 outputs an RLWE
encryption of mprod = (Q

p m0 + e0 + e0 + u0Q)(P
p m1 + P

Q e1 + P
Q e1 + ems + u1P ) ∈ ZP Q

under extended secret keys. Finally, the ciphertext is multiplied by p, modulus-switched
to ZQ and re-linearized using the re-linearization keys. The output ciphertext is an RLWE
encryption of p

P mprod + e′
ms + erl, where erl is the re-linearization error. The constant

term of the encrypted polynomial is extracted as the output LWE ciphertext. Expanding
p
P mprod gives the following.

p

P
mprod =Q

p
m0m1

+m0e1 + m1e0 + p

Q
e0e1

+m0e1 + Q

P
m0ems + m1e0

+ p

Q
e0e1 + p

P
e0ems + p

Q
e1e0 + p(e0u1 + e1u0)

+ p

Q
e0e1 + p

P
e0ems + p(u0e1 + u1e0) + pQ

P
u0ems

The first line of RHS is the desired message. Terms on line 2 are products between
scalar values; those on lines 3 and 4 are products between scalars and polynomials; those
in the last line are products between polynomials.

Each coefficient of ui can be viewed as an inner product between the coefficients of s
and N random variables sampled from U(−0.5, 0.5), which means ui ∼ N(0, σ2

ms)N . Then
the variance of the constant term of p

P mprod is
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σ2
m

=σ2
1 + p2

4 σ2
0 + p2

Q2 σ2
0σ2

1

+σ′2
1 + Q2

P 2 σ2
ms + p2

4 σ′2
0

+ p2

Q2 σ2
0σ′2

1 + p2

P 2 σ2
0σ2

ms + p2

Q2 σ2
1σ′2

0 + p2σ2
ms(σ2

0 + σ2
1)

+N( p2

Q2 σ′2
0 σ′2

1 + p2

P 2 σ′2
0 σ2

ms + p2σ2
ms(σ′2

0 + σ′2
1 ) + p2Q2

P 2 σ2
msσ′2

0 )

The modulus switching from ZP Q to ZQ is slightly different from a regular one since a
part of the rounding error is multiplied with s2. Heuristically we can estimate its error
variance as σ′2

ms = σ2
ms + N2

27 .
The re-linearization process of BFV is essentially a RQ×RLWE′(s2) multiplication. Its

error variance σ2
rl is given by drl

B2
rl

4 Nσ2, where drl = ⌈logBrl
(Q)⌉ and σ2 is the encryption

error variance.
Summing up σ2

m, σ′2
ms and σ2

rl gives the variance of e in the output ciphertext.

Remark. For ordinary BFV multiplication where mi and ei are polynomials instead of
scalars, the terms in line 1 ∼ 3 in the expression of σ2

m need to be multiplied by N . The
overflow of m0m1 modulo p also introduces an additional term. In FDFB-BFVMult
(WoPPBS1-Refine), the bootstrapping error ei is magnitudes larger than the key switch-
ing error ei. This means the dominating term of σ2

m is p2σ2
ms(σ2

0 + σ2
1) (corresponding

to p(e0u1 + e1u0)). In contrast, WoP-PBS estimates this term to be N times larger by
treating the multiplication between ei and ui as polynomial-polynomial multiplication,
which leads to inefficient parameters. We state this observation as Proposition 1.

Proposition 1. For WoP-PBS and FDFB-BFVMult (WoPPBS1-Refine), the dom-
inating terms of output variance are Np2σ2

ms(σ2
0 + σ2

1) and p2σ2
ms(σ2

0 + σ2
1) respectively,

where σ2
i are the error variances in LWE ciphertexts being multiplied.

B.2 Proofs of FDFB Algorithms’ Correctness and Output Noise
B.2.1 FDFB-Compress

Proof of Theorem 1.

Proof. If m+ q
2p ∈ [0, q

2 −1], feval(fC( q
p m′ +e+ q

2p )+eboot) = feval( q
2p (⌊p

q ( q
p m′ +e+ q

2p )⌋+
1
2 ) + eboot) = feval( q

2p (m′ + 1
2 ) + eboot) = ⌊ q

p F (⌊ 2p
q ( q

2p (m′ + 1
2 ) + eboot)⌋)⌉ = ⌊ q

p F (m′)⌉.
The first and third equations simply substitute fC for (1) and feval for (2); the second
equation uses the condition that |e| < q

2p ; the last equation follows from |eboot| = β < q
4p .

The case of m + q
2p ∈ [ q

2 , q − 1] can be proven in a similar way. Thus the final output of
FDFB-Compress is LWE( q

p F (m′) + eboot). Again, since |eboot| = β < q
4p , the output is

a valid LWE ciphertext. The ct in line 1 of Algorithm 1 has an error variance of σ2
boot

because it is the output of a functional bootstrap.

B.2.2 FDFB-CancelSign

Proof of Theorem 2.
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Proof. |e| < q
4p and |e′| < q

4p ensures the validity of the input and output ci-
phertext of FDFB-CancelSign. We prove the theorem in two steps. (1)
ct1 = LWE((−1)MSB⌊Q

p F (m′)⌉); (2) line 3 to line 4 multiplies the message in ct1

by (−1)MSB.
For the first step, let ct = LWE( q

2p m′ + e + q
4p + MSB q

2 ). Then when MSB = 0,
ct1 = LWE(⌊Q

p F (⌊ 2p
q ( q

2p m′ + e + q
4p )⌋)⌉ + eboot) = LWE(⌊Q

p F (m′)⌉ + eboot), where the
second equation follows from |e| < q

4p . When MSB = 1, ct1 = LWE(−⌊Q
p F (m′)⌉+ eboot)

as defined by (3), which finishes the proof.
For the second step, suppose ct1 = LWEs⃗,n,q(m1) at line 3, then ctpk encrypts a

polynomial whose coefficients are m1 + epk. Since the value encrypted in ct lies within
[MSB q

2 , MSB q
2 + q

2 − 1], after blind rotating ctpk by ct, the constant term of ctpk equals
(−1)MSB(m1 + epk) + eacc ≈ (−1)MSBm1.

Now we prove the output error variance of FDFB-CancelSign. The output of the
first functional bootstrap has an error variance of σ2

acc. After modulus switching to qpk

and LWE-to-RLWE packing, the variance becomes σ2
acc + ( Q

qpk
)2σ2

ms + σ2
pk. The second

bootstrap adds σ2
acc to the error variance. Finally, modulus-switching the ciphertext gives

( q
Q )2(2σ2

acc + ( Q
qpk

)2σ2
ms + σ2

pk) + σ2
com = ( q

Q )2(2σ2
acc + σ2

pk) + ( q
qpk

)2σ2
ms + σ2

com

B.2.3 FDFB-Select

Proof of Theorem 3.

Proof. |e| < q
2p and |e′| < q

2p ensures the validity of input and output ciphertext of
FDFB-Select. The desired value is encrypted in ctpos when MSB = 0 and in ctneg when
MSB = 1. Then it only remains to prove that line 4 to line 6 selects the correct ciphertext
from ctpos and ctneg. Since |e| < q

2p , ctsgn = LWE(fsgn( q
p m′ + e + q

2p ) + eboot) lies in
[ q

8 (−1)MSB− β, q
8 (−1)MSB + β]. Applying β < q

8 and q = 2N , the value encrypted in ctsgn

belongs to [0, N
2 − 1] or [−N

2 ,−1] when MSB = 0 or 1 respectively. Denote the values
encrypted in ctpos and ctneg as mpos and mneg. Then ctpk encrypts a polynomial whose
i-th coefficient is mpos + epk for i ∈ [0, N

2 − 1] and −mneg + epk for i ∈ [ N
2 , N − 1]. After

blind-rotated by ctsgn, ctpk has a constant term of mpos + epk + eacc for MSB = 0 and
mneg − epk + eacc for MSB = 1.

In the non-multi-value version of FDFB-Select, two bootstrap results are modulus-
switched to qpk and packed into an RLWE ciphertext. Hence, each coefficient of the
packed polynomial has an error variance of σ2

acc + ( Q
qpk

)2σ2
ms + 2σ2

pk. As in FDFB-
CancelSign, the final bootstrap adds another σ2

acc to the error variance. Then after
performing the last three steps of FHEW/TFHE bootstrap, the output error variance is
( q

Q )2(2σ2
acc + ( Q

qpk
)2σ2

ms + 2σ2
pk) + σ2

com = ( q
Q )2(2σ2

acc + 2σ2
pk) + ( q

qpk
)2σ2

ms + σ2
com.

For the multi-value version, ctpos, ctneg and ctsgn have error variances of p(p− 1)2σ2
acc

(the p(p− 1)2 term comes from multi-value bootstrap). However, the error in ctsgn will not
affect the error in the output ciphertext as long as it is bounded by N

4 . Then the packed
polynomial has an error variance of p(p−1)2σ2

acc +( Q
qpk

)2σ2
ms +2σ2

pk. Again, the final blind
rotation adds σ2

acc to the error variance, and after the last three steps of FHEW/TFHE
bootstrap, the output error variance is ( q

Q )2((p(p−1)2 +1)σ2
acc +2σ2

pk)+( q
qpk

)2σ2
ms +σ2

com.

B.2.4 FDFB-SelectAlt

Proof of Theorem 4.
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Proof. |e| < q
2p and |e′| < q

2p ensures the validity of input and output cipher-
text of FDFB-SelectAlt. cthdiff and cthsum encrypt mhdiff = fneg(m)−fpos(m)

2
and mhsum = fneg(m)+fpos(m)

2 respectively. Similar to the proof of Theorem 2,
Boot[ct](ctpk) = LWE((−1)MSBmhdiff ). Then the returned result encrypts
fneg(m)+fpos(m)

2 − (−1)MSB fneg(m)−fpos(m)
2 , which equals fpos(m) when MSB = 0

and fneg(m) when MSB = 1. Applying m = q
p m′ + e + q

2p and |e| < q
2p , we have

fneg(m) = fpos(m) = ⌊Q
p F (m′)⌉ when MSB = 0, 1 respectively.

For the non-multi-value version of FDFB-SelectAlt, the error variance of the blind-
rotated packed polynomial is the same as that in FDFB-CancelSign. The addition
by cthsum in the last step of FDFB-SelectAlt adds σ2

acc to this variance. Thus, the
final output variance is ( q

Q )2σ2
acc greater than that of FDFB-CancelSign and equals to

( q
Q )2(3σ2

acc + 2σ2
pk) + ( q

qpk
)2σ2

ms + σ2
com.

The multi-value version of FDFB-SelectAlt has a different workflow from the
non-multi-value version. It computes 1−SGN

2 (fneg − fpos) + fpos instead of fneg+fpos

2 −
SGN fneg−fpos

2 . In this way, the error variance of fneg−fpos

2 is p(p− 1)2σ2
acc and that of fpos

is 4p(p− 1)2σ2
acc. Along with the error in SGN fneg−fpos

2 , the total error is 6p(p− 1)2σ2
acc.

In contrast, if we follow the original workflow, the error variance will be 8p(p− 1)2σ2
acc,

which is slightly larger. Taking into account the last three steps of bootstrap, the final
output error is ( q

Q )2((6p(p− 1)2 + 1)σ2
acc + σ2

pk) + ( q
qpk

)2σ2
ms + σ2

com.

B.2.5 FDFB-BFVMult (WoPPBS1-Refine)

Proof of Theorem 5.

Proof. |e| < q
4p and |e′| < q

4p ensures the validity of input and output ciphertext of
WoPPBS1-Refine. Similar to the proof of Theorem 2, ct0 = RLWE((−1)MSB⌊Q

p F (m′)⌉).
Moreover, ctsgn = RLWE(fsgn1( q

2p m′ +e+ q
4p )) = RLWE((−1)MSB⌊Q

p ⌉). Computing their
BFV product gives ctprod = RLWE(⌊Q

p F (m′)⌉). Finally, sample extraction, key switching
and modulus switching convert ctprod into the desired output format.

Recall that the dominating term of BFV multiplication used in WoPPBS1-Refine is
p2σ2

ms(σ2
0 + σ2

1), where σ2
i is the error variance of the LWE ciphertexts to pack. For the

non-multi-value version of WoPPBS1-Refine, σ2
i = σ2

acc because the LWE ciphertexts
to pack are freshly blind-rotated. By replacing σ2

ms ≈ N
18 , we known the error variance of

ctprod is N
9 p2σ2

acc. The output error variance is given by applying the last three steps of
bootstrap, which is equal to ( q

Q )2 N
9 p2σ2

acc + σ2
com.

For the multi-value version of WoPPBS1-Refine, σ2
1 is equal to p(p− 1)2σ2

acc while
σ2

0 = 4σ2
acc ≪ σ2

1 because the L2 norm of TV1 for fsgn1 is 4. Following a similar analysis
of the non-multi-value version, the final output variance is approximately ( q

Q )2 N
18 p3(p−

1)2σ2
acc + σ2

com.

Proof of Theorem 6.

Proof. |e| < q
2p and |e′| < q

2p ensures the validity of input and output ciphertext of
FDFB-BFVMult. Denote the plaintext encrypted in ctdiff and ctpos as mdiff =
fneg(m) − fpos(m) and mpos = fpos(m) respectively. Also, ctsgn = RLWE(f ′

sgn(m) +
⌊ Q

2p⌉) = RLWE(⌊ Q
2p⌉(1− (−1)MSB)) = RLWE(MSB⌊Q

p ⌉). Then BFVMult(ctsgn, ctdiff ) +
ctpos encrypts MSB(fneg(m)− fpos(m)) + fpos(m), which equals fneg(m) when MSB = 1
and fpos(m) when MSB = 0. Finally, the result is converted to the output format as in
WoPPBS1-Refine.
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The output error analysis for FDFB-BFVMult is similar to WoPPBS1-Refine.
Note that for the multi-value version of FDFB-BFVMult, we need to compute an
encryption of Q

2p SGN to obtain Q
p MSB (where SGN = 1−2MSB), which means the output

plaintext space for multi-value bootstrap is 2p instead of p. The TV1 for fsgn2 still has
an L2 norm of 4, while the TV1 for fdiff has an L2 norm of 4p(p − 1)2 at most. This
explains where the coefficient of σ2

acc for FDFB-BFVMult is 2N
9 p3(p − 1)2 instead of

N
18 p3(p− 1)2 in WoPPBS1-Refine.

B.3 Correctness Proofs of Homormophic Digit Decomposition Algo-
rithms

B.3.1 HomDecomp-Reduce

Proof of Theorem 7.

Proof. It suffices to prove that the modulus switching noise will not cause an overflow to
the higher digits. Denote the message encrypted in ct at line 4 as mhighq + mlow(mlow ∈
[0, q−1]). Note that mlow is the message encrypted in ct′. Then ct encrypts m1 = mhighq+
mlow + fred(mlow) + eboot − q

2 at line 6. By the definition of fred, mlow + fred(mlow) ∈
[ q

4 , 3q
4 − 1],∀mlow ∈ Zq, meaning merr = m1 − (mhighq + eboot) ∈ [− q

4 , q
4 − 1]. Modulus

switching ct down by B will produce an encryption of mhigh
q
B + eboot

B + ems + merr

B .
eboot

B + ems + merr

B needs to be bounded by q
2B to prevent mhigh from being destroyed by

an overflow. Applying |merr| ≤ q
4 gives the desired result.

B.3.2 HomDecomp-FDFB

Proof of Theorem 9.

Proof. σ2
f can be obtained by assigning L = ∆in = ∆out = 1 in Theorem 8. Denote the

message encrypted in ct at line 4 as mhighq0 + mlow(mlow ∈ [0, q − 1]). Note that mlow is
also the message encrypted in ct′. Then ct encrypts m1 = mhighq + mlow − (mlow + ef ) =
mhighq − ef at line line 6. Modulus switching ct down by B will produce an encryption of
mhigh

q
B −

ef

B + ems. − ef

B + ems needs to be bounded by q
2B to prevent mhigh from being

destroyed by an overflow, which leads to our conclusion directly.

C Miscellaneous
C.1 Full Algorithms of PackingKS

D Tables
This section presents (1) the full tables of noise analysis for all previous and our FDFB
algorithms (Table 8), as well as homomorphic digit decomposition algorithms (Table 9);
(2) the full table of parameters used in the benchmarks and the results of the benchmarks
(Table 11, Table 12, Table 10).

Bg0 is the base of RLWE′ ciphertexts used in FDFB-KS. P is the auxiliary prime
used in BFV multiplication [KPZ21]. Brl is the base of re-linearization keys for BFV
multiplication. The non-multi-value bootstraps in FDFB methods that use the multi-value
bootstrap are accelerated with larger Bg. This extra Bg is listed as B′

g in the table. The
LWE dimensions n35 = 1340 and n20 = 760 correspond to the parameter sets in Table
5. P53 and Q53 are primes that approximately equal to 253. The "d = 1, N

2 , N" columns
represent whether packing keys for the given value of d are generated.
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Algorithm 9: PackingKS
input : Base B and modulus qks for key switching
input : d, the number of coefficients to pack
input : An LWE ciphertext c = LWEs⃗,n,q(m + e)
input : Packing keys

kski,j,k = RLWEs′,n′,q′(⌊ q′

qks
s⃗i · j ·Bk · (1 + X + . . . + Xd−1)⌉),

i ∈ JnK, j ∈ JBK, k ∈ J⌈logB(qks)⌉K
output : An RLWE ciphertext

RLWEs′,n′,q′(⌊ q′

q (m + e) + q′

qks
ems⌉(1 + X + . . . + Xd−1) + eks)

1 (b, a⃗)← ModSwitch(c, qks)
2 ct ← (⌊ q′

qks
b⌉ · (1 + X + . . . + Xd−1), 0)

3 for i← 0 to n− 1 do
4 a⃗i =

∑⌈logB qks⌉−1
k=0 ai,k ·Bk, ai,k ∈ [−⌊B

2 ⌋, ⌊
B−1

2 ⌋]
5 for k ← 0 to ⌈logB qks⌉ − 1 do
6 ct ← ct + kski,ai,k,k

7 return ct
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Table 8: Output error variance and the number of bootstraps required for all FDFB algorithms.
Those below the mid-line are proposed in this paper. For discrete LUT evaluation, we assume
the error variance of input ciphertext is equal to σ2

boot as in [LMP22]. The final output
variance σ2

out = σ2
core + σ2

com. FDFB algorithms that cannot reach the maximum plaintext
modulus pmax = q

2β = N
β are explicitly footnoted, and those unmentioned can reach pmax.

We only measure the noise introduced by FDFB. L is the Lipschitz constant of the evaluated
function.

FDFB Variant Core Output Variance σ2
core Num of BTS

EvalFunc [LMP22]1 ( q
Q )2σ2

acc, intermediate: 2σ2
boot 2

FDFB-KS [KS22]2 ( q
Q )2(σ2

acc + dg1
B2

g1
4 N(σ2

acc + ( Q
qpk

)2σ2
ms + σ2

ks)) dg1 + 1
Comp [CZB+22] 2( q

Q )2σ2
acc, intermediate5: ( q

Q )2σ2
acc 4

Comp [CZB+22]∗3 2( q
Q )2σ2

acc, intermediate5: ( q
Q )2(2p2 − 4)σ2

acc 3
WoP-PBS1 [CLOT21]§† ( q

Q )2 N2

9 p2σ2
acc 2

WoP-PBS1 [CLOT21]§ † ∗ ( q
Q )2 N2

18 p3(p− 1)2σ2
acc 1

WoP-PBS2 [CLOT21]† ( q
Q )2 2N2

9 p2σ2
acc 3

WoP-PBS2 [CLOT21]†∗ ( q
Q )2 2N2

9 p3(p− 1)2σ2
acc 1

WoPPBS1-Refine§† ( q
Q )2 N

9 p2σ2
acc 2

WoPPBS1-Refine§ † ∗ ( q
Q )2 N

18 p3(p− 1)2σ2
acc 1

FDFB-BFVMult† ( q
Q )2 N

9 p2σ2
acc 3

FDFB-BFVMult†∗ ( q
Q )2 2N

9 p3(p− 1)2σ2
acc 1

FDFB-Compress §4 ( q
Q )2σ2

acc, intermediate: σ2
boot 2

FDFB-CancelSign § ( q
Q )2(2σ2

acc + σ2
ks) + ( q

qpk
)2σ2

ms 2
FDFB-Select ( q

Q )2(2σ2
acc + 2σ2

ks) + ( q
qpk

)2σ2
ms 4

FDFB-Select ∗ ( q
Q )2((p(p− 1)2 + 1)σ2

acc + 2σ2
ks) + ( q

qpk
)2σ2

ms 2
FDFB-SelectAlt ( q

Q )2(3σ2
acc + σ2

ks) + ( q
qpk

)2σ2
ms 3

FDFB-SelectAlt ∗ ( q
Q )2((6p(p− 1)2 + 1)σ2

acc + σ2
ks) + ( q

qpk
)2σ2

ms 2
§ FDFB algorithms that introduce an additional MSB. The maximum plaintext modulus p

is 1 bit less than pmax, and the parameters q and ∆in are halved compared to the cases
where the additional MSB is not required.

† FDFB algorithms that use BFV multiplication. σ2
core is merely given a simplified version

for brevity (see Appendix B for the details).
* FDFB algorithms that make use of multi-value bootstrap.
1 For EvalFunc, besides doubling the input modulus, it is also required that the intermediate

error after preprocessing is bounded by 2σ2
boot ≤

q
4p to ensure correctness. Consequently,

the maximum p of EvalFunc is 1.5 bits less than pmax.
2 dg1 = ⌈logBg1(Q)⌉, Bg1 is the decomposition base for RLWE′.
3 For Comp ∗, the two TV1’s used in multi-value bootstrap are constant polynomials

independent of the LUT. |TV1|22 ≤ 2p2 − 4.
4 The intermediate error has a variance of σ2

boot and needs to be bounded by q
4p for

correctness.
5 In Comp, it is required that bnd ·

√
σ2

inter + σ2
com ≤

q
2p for correctness, where σ2

inter is
the variance of the core intermediate error.
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Table 10: Running Time of Homomorphic Digit Decomposition Methods under PARAMdecomp.

log2(q) Running Time (ms)
HomFloor HomFloorAlt HomDecomp-Reduce HomDecomp-FDFB

13 1070 1600 533 1060
14 1060 1590 534 1060
15 1060 1600 537 1060
16 1060 1600 540 1060
17 2130 1590 1070 1060
18 2130 3200 1060 2130
19 2130 3230 1060 2130
20 2130 3210 1060 2130
21 3190 3190 1600 2120
22 3190 3190 1600 2120
23 3190 4800 1600 3190
24 3190 4790 1600 3190
25 4260 4780 2130 3190
26 4260 4790 2130 3190
27 4260 4790 2130 3180
28 4250 6380 2130 4250
29 5310 6380 2660 4250
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