
Polynomial Hashing over Prime Order Fields

Sreyosi Bhattacharyya1, Kaushik Nath1, and Palash Sarkar1

1Indian Statistical Institute, 203, B.T. Road, Kolkata, India 700108
Emails: bhattacharyya.sreyosi@gmail.com, kaushik.nath@yahoo.in,

palash@isical.ac.in

October 29, 2023

Abstract

This paper makes a comprehensive study of two important strategies for polynomial hashing
over a prime order field Fp, namely usual polynomial based hashing and hashing based on
Bernstein-Rabin-Winograd (BRW) polynomials, and the various ways to combine them. Several
hash functions are proposed and upper bounds on their differential probabilities are derived.
Concrete instantiations are provided for the primes p = 2127 − 1 and p = 2130 − 5. A major
contribution of the paper is an extensive 64-bit implementation of all the proposed hash functions
in assembly targeted at modern Intel processors. The timing results suggest that using the prime
2127 − 1 is significantly faster than using the prime 2130 − 5. Further, a judicious mix of the
usual polynomial based hashing and BRW-polynomial based hashing can provide a significantly
faster alternative to only usual polynomial based hashing. In particular, the timing results of
our implementations show that our final hash function proposal for the prime 2127 − 1 is much
faster than the well known Poly1305 hash function defined over the prime 2130 − 5, achieving
speed improvements of up to 40%.

Keywords: almost XOR universal hash function, polynomial hash, BRW hash.

Mathematics Subject Classification: 94A60

Contents

1 Introduction 2

2 Preliminaries 4

3 Constructions 5

4 AXU bounds 8

5 Algorithms 15

6 Implementation details 21

7 Trade-off between 2127 − 1 and 2130 − 5 26

1

8 Timing results 27

9 Conclusion 31

A Straight line code for computing BRW 34

B Correctness and complexity of Algorithm 1 35

C Timing measurements for messages with few blocks 39

1 Introduction

Let X be a binary string. A polynomial hashing strategy constructs a univariate polynomial over
a finite field from X and evaluates the polynomial at a secret point of the field, called the key,
to obtain the digest. The security requirement on such a hash function is that all differential
probabilities are provably small, where a differential probability is the probability, over a random
choice of the key, that the difference of the digests corresponding to two different strings is equal to
an arbitrary element of the field. Such hash functions have important applications to cryptography
including the construction of authentication schemes, methods for authenticated encryption and
disk encryption. The well known Poly1305 construction by Bernstein [3] is a polynomial hash
function which is widely used1.

One way to construct the univariate polynomial corresponding to X was independently put
forward in three papers in 1993, namely den Boer [11], Taylor [24], and Bierbrauer, Johansson,
Kabatianskii and Smeets [6]. The idea is to partition X into ` distinct blocks which are considered to
be elements of the field and let these ` blocks be the coefficients of the polynomial. Poly1305 adopts
this approach. Another method of constructing the univariate polynomial was put forward by
Bernstein [4] in 2007 and is based on an earlier work by Rabin and Winograd [19]. The polynomials
obtained using the method in [4] were called the BRW polynomials in [20]. To distinguish between
the two methods of constructing the polynomials, we will denote the polynomials obtained by the
method of [11, 24, 6] by Poly (and call these the usual polynomials) and denote the polynomials
obtained by the method of [4] by BRW. The major theoretical advantage of BRW over Poly is
that for the same string X, evaluation of the BRW polynomial constructed from X requires about
half the number of field multiplications compared to the evaluation of the usual polynomial Poly
constructed from X.

In this paper we make a comprehensive study of polynomial hashing based on both Poly and
BRW and their various combinations over a prime order field Fp. We define four hash functions
over Fp, one based only on Poly, a second one based only on BRW and two others which use a
combination of BRW and Poly. Theoretical properties of these hash functions including explicit
upper bounds on their differential probabilities are derived. From timing results, we observe that for
short messages, the Poly based hash function has the best performance, while for longer messages
it becomes slower than the other hash functions. To obtain the best performance for messages of
all lengths, we put forward a combination hash function which applies the Poly based hash function
for short messages and switches to another hash function for longer messages. We show that the
combination hash function is secure by obtaining an upper bound on the corresponding differential
probability.

1https://en.wikipedia.org/wiki/Poly1305, accessed on October 17, 2023

2

https://en.wikipedia.org/wiki/Poly1305

Concrete instantiations of the hash functions are proposed for the primes 2127− 1 and 2130− 5.
The Poly based hash function for the prime 2130 − 5 coincides with Poly1305 for messages whose
lengths are multiples of eight. The Poly based hash for the prime 2127 − 1 is new (see below for a
discussion on previous proposals of usual polynomial based hashing for this prime). As far as we
know, none of the other hash functions proposed in this work have been reported in the literature.

A major aspect of our work is implementation. Horner’s rule is the usual method of evaluating
Poly. A previous suggestion by Gueron [14] in the context of binary extension fields had put forward
a method, which we call grouped Horner, to eliminate some operations from Horner’s rule by pre-
computing certain key powers and performing the evaluation of Poly in groups of coefficients. We
implemented both basic and grouped Horner’s rule for both the primes. The definition of BRW is
recursive which makes it difficult to implement efficiently. A non-recursive algorithm to evaluate
BRW was proposed in [12] and an implementation over binary extension fields was reported. We
simplify the algorithm from [12]. The simplification makes substantial changes to the manner in
which intermediate quantities are stored and accessed. As a result, the proof of correctness provided
in [12] no longer applies to the modified algorithm. So we provide a detailed proof of correctness
of the new algorithm. We have implemented this new algorithm for both the primes.

We have made 64-bit assembly implementation of all the hash functions for both the primes
for all practical values of design and implementation parameters. The code is targeted towards
the Intel Broadwell and later generation processors. In particular, along with the usual integer
arithmetic instructions, we use the instructions mulx, adcx and adox which are available from the
Broadwell processor onwards. To the best of our knowledge, there is no previous implementation
of Poly1305 using these instructions.

The extensive implementation exercise provides some important insights.

1. The hash functions defined using 2127 − 1 are faster than the corresponding hash functions
defined using 2130− 5. In particular, the Poly based hash function over 2127− 1 is faster than
Poly1305 and the speed improvements range from 10% to 30%.

2. While in theory, BRW evaluation requires about half the number of field multiplications
compared to Poly evaluation, this is not true in practice. Compared to Horner’s rule based
evaluation of Poly, BRW produces a speed improvement of 30% to 40% for messages which
are not too short. If, however, grouped Horner is used for evaluating Poly, then the speed
improvement becomes around 10%. While this is much less than what is predicted by theory,
a speed improvement of 10% is indeed significant in practice.

Our final hash function proposal is a combination of Poly and BRW over the prime 2127 − 1. If
the number of (appropriate sized) blocks in the message is less than 16, then Poly is used. If the
number of blocks is at least 16, then a 2-level hash function is used, where BRW is used at the
first level and Poly is used at the second level. Timing data from our implementations show that
the new hash function is significantly faster than Poly1305, achieving speed improvements of about
8.5% (for 10-byte messages) to about 40% (for 5000-byte messages).

1.1 Related works

Hash families with provably low differential probabilities are called almost XOR universal (AXU)
and are a generalisation of universal hash functions [7]. There is a large literature on universal hash
functions and their generalisations. We refer to the relevant discussions in [2, 3, 4, 21, 22] for an

3

overview of this literature. Here we focus on the previous works which are related to the present
paper.

The prime 2127− 1 was suggested by Taylor [24] for instantiating Poly based hashing. Concrete
instantiations were proposed by Bernstein [2] and Kohno, Viega and Whiting [15]. The construction
in [2] used 32-bit coefficients and floating point arithmetic for implementation, while the construc-
tion in [15] used 96-bit coefficients and integer arithmetic for implementation. In contrast, we use
126-bit coefficients (obtained by padding 120-bit message blocks) and integer arithmetic for imple-
mentation. To speed-up evaluation, [2] used large precomputed tables (“few kilobytes of data for
each key”, as mentioned in [3]). In contrast, in our implementation, for speeding up the compu-
tation of Poly using grouped Horner with group size 8, only 128 bytes of pre-computed data are
required for each key. Apart from [24, 2, 15], we know of no other previous work which considered
the prime 2127 − 1 for polynomial hashing. In the Poly1305 paper [3], under ‘Design decisions’,
Bernstein writes “I considered various primes above 2128”. No discussion is provided on the reason
for discarding the prime 2127 − 1 used by Bernstein in his previous work [2]. Our proposal of Poly
based hash function using 2127 − 1 and its implementation suggests that 2127 − 1 is a much faster
option compared to 2130 − 5.

Concrete BRW based hash functions and their implementations in hardware and software have
been proposed over binary extension fields [20, 9, 10, 8, 12]. To the best of our knowledge, till date
there has been no concrete proposal of BRW based hash functions over prime order fields.

2 Preliminaries

Let D be a non-empty set, (R,+) be a finite group and K be a finite non-empty set. Let {Hashτ}τ∈K
be a family of functions, such that for each τ ∈ K, Hashτ : D → R. The sets D, K and R are
called the message, key and tag (or digest) spaces respectively. For distinct a, a′ ∈ D and b ∈ R,
the differential probability corresponding to (a, a′, b) is defined to be Prτ [Hashτ (a)−Hashτ (a′) = b],
where the probability is taken over a uniform random choice of τ from K. If for every choice of
distinct a, a′ in D and b ∈ R, the differential probability corresponding to (a, a′, b) is at most ε,
then we say that the family {Hashτ}τ∈K is ε-almost XOR universal (ε-AXU).

Let F be a finite field. For a non-zero polynomial P (x) ∈ F[x], by deg(P (x)) we will denote the
degree of P (x).

For i ≥ 0 and M1, . . . ,Mi ∈ F, we define polynomials Poly(x;M1, . . . ,Mi) and BRW(x;M1,
M2, . . . ,Mi) in F[x] with indeterminate x and parameters M1, . . . ,Mi as follows.

Poly(x;M1, . . . ,Mi) =

{
0, if i = 0;
M1x

i−1 +M2x
i−2 + · · ·+Mi−1x+Mi, if i > 0,

(1)

and

• BRW(x;) = 0;
• BRW(x;M1) = M1;
• BRW(x;M1,M2) = M1x+M2;
• BRW(x;M1,M2,M3) = (x+M1)(x2 +M2) +M3;
• BRW(x;M1,M2, . . . ,Mi) = BRW(x;M1, . . . ,Mk−1)(xk +Mk) + BRW(x;Mk+1, . . . ,Mi);

if k ∈ {4, 8, 16, 32, . . .} and k ≤ i < 2k, i.e. k is the largest power of 2 such that i ≥ k.

For τ ∈ F, using Horner’s rule Poly(τ ;M1, . . . ,Mi) can be evaluated using i− 1 multiplications and
same number of additions.

4

p m k n

2127 − 1 127 126 120

2130 − 5 130 128 128

Table 1: The parameters m, k and n for the two values of p considered in this work.

For i ≥ 3, BRW(x;M1,M2, . . . ,Mi) is a monic polynomial. The following has been proved in [4].

Theorem 1. [4]

1. For every i ≥ 0, the map from Fi to F[x] given by (M1, . . . ,Mi) 7→ BRW(x;M1, . . . ,Mi) is
injective.

2. For i ≥ 1, let d(i) denote deg(BRW(x;M1, . . . ,Mi)). For i ≥ 3, d(i) = 2blg ic+1 − 1 and so
d(i) ≤ 2i− 1; the bound is achieved if and only if i = 2a; and d(i) = i if and only if i = 2a− 1
for some integer a ≥ 2.

3. For τ ∈ F and i ≥ 3, BRW(τ ;M1, . . . ,Mi) can be computed using bi/2c field multiplications
and blg ic additional field squarings to compute τ2, τ4,

3 Constructions

Let p be a prime and Fp be the finite field of order p. We will work with the primes 2127 − 1 and
2130 − 5. Given the prime p, we define the integers m, k and n as shown in Table 1. Elements
of Fp can be represented as m-bit strings. Since k and n are less than m, we will consider k-bit
and n-bit strings to represent elements of Fp, where the most significant m − k and m − n bits
respectively are set to 0. We will also adopt the usual convention that the binary representation of
a non-negative integer is written with the least significant bit on the right. For a positive integer i
and 0 ≤ j < 2i, by bini(j) we will denote the i-bit binary representation of j. For example, if i = 4
and j = 13, then bini(j) is the string 1101. We will denote logarithm to base two by lg.

Formatting and padding: A binary string X of length L ≥ 0 is formatted (or partitioned) into `
blocks X1, . . . , X`, where the length of Xi is n for 1 ≤ i ≤ `−1, the length of X` is s with 1 ≤ s ≤ n,
and X = X1||X2|| · · · ||X`. Note that if X is the empty string, i.e. if L = 0, then ` = 0. If the
length of a block is n, then we call it a full block, otherwise we call it a partial block. By format(X)
we will denote the list (X1, . . . , X`) obtained from X using the above described procedure. We
describe two padding schemes.

• pad1(X1, . . . , X`) returns (M1, . . . ,M`), where Mi = 0m−n−2||1||Xi, for i = 1, . . . , ` − 1, and
M` = 0m−s−2||1||X`.

• pad2(X1, . . . , X`) returns (M1, . . . ,M`, binm−1(L)), where Mi = 0m−n−1||Xi, for i = 1, . . . , `−
1, M` = 0m−s−1||X`.

Remark 1. For both the padding schemes, the length of each Mi, i = 1, . . . , `, is m − 1 and we
consider Mi to be an element of Fp. Also, binm−1(L) is considered to be an element of Fp. If ` = 0,
then the input list is empty; pad1() returns the empty list, while pad2() returns a singleton list
containing 0m−1.

In Section 4.1, we provide explanations for the choice of the padding schemes.

5

We describe four constructions of hash function families, namely polyHash, BRWHash, t-BRWHash,
and d-2LHash. The key space and digest space for all the four families are the following. The key
space is {0, 1}k; τ denotes the k-bit key which is considered to be an element of Fp. The digest
space is the group (Z2k ,+). The message space for polyHash is the set of all binary strings, while
the message space for the other three hash function families is the set of all binary strings of lengths
less than 2m−1. See, however, Remark 5 in Section 4 for further discussion on the message length.

In the descriptions below, X denotes a message which is a binary string of length L ≥ 0.

Construction polyHash: Given a binary stringX, let (M1, . . . ,M`) be the output of pad1(format(X)).
We define

polyHashτ (X) = (P1(τ ;M1, . . . ,M`) mod p) mod 2k, (2)

where P1(x;M1, . . . ,M`) is a polynomial in Fp[x] defined as follows.

P1(x;M1, . . . ,M`) = x · Poly(x;M1, . . . ,M`). (3)

The family polyHash is motivated by the Poly1305 [3] construction and for the prime 2130− 5, if X
is a sequence of bytes, then polyHash is exactly the same as Poly1305.

Construction BRWHash: Given a binary string X, let (M1, . . . ,M`, binm−1(L)) be the output of
pad2(format(X)). We define

BRWHashτ (X) = (P2(τ ;M1, . . . ,M`, binm−1(L)) mod p) mod 2k, (4)

where P2(x;M1, . . . ,M`, binm−1(L)) is a polynomial in Fp[x] defined as follows.

P2(x;M1, . . . ,M`, binm−1(L)) = x(x · BRW(x;M1, . . . ,M`) + binm−1(L)). (5)

Construction t-BRWHash: This construction is parameterised by an integer t ≥ 2. Let m = `−
(` mod 2t). Given a binary string X, let (M1, . . . ,M`, binm−1(L)) be the output of pad2(format(X)).
We define

t-BRWHashτ (X) = (P3(τ ;M1, . . . ,M`, binm−1(L)) mod p) mod 2k, (6)

where P3(x;M1, . . . ,M`, binm−1(L)) is a polynomial in Fp[x] defined as follows.

P3(x;M1, . . . ,M`, binm−1(L))

= x · Poly(x;BRW(x;M1,M2, . . . ,Mm),Mm+1, . . . ,M`, binm−1(L)). (7)

Note that m is a multiple of 2t. The idea in t-BRWHash is to process the first m blocks using BRW
to obtain a single output and then combine this output with the leftover ` − m blocks and the
length block using Poly.
Construction d-2LHash: This construction is parameterised by an integer d ≥ 2. Let δ =
2d − 1 and n = b`/δc. Given a binary string X, let (M1, . . . ,M`, binm−1(L)) be the output of
pad2(format(X)). We define

d-2LHashτ (X) = (P4(τ ;M1, . . . ,M`, binm−1(L)) mod p) mod 2k, (8)

6

where the polynomial P4(x;M1, . . . ,M`, binm−1(L)) in Fp[x] is defined in the following manner. For

i = 1, . . . , n, let Ui(x) = BRW(x;M1+δ(i−1), . . . ,Miδ) and V (x) = Poly(x2d ;U1(x), U2(x), . . . , Un(x)).
Then

P4(x;M1, . . . ,M`, binm−1(L)) = x · Poly(x;V (x),Mδn+1, . . . ,M`, binm−1(L)). (9)

The idea in d-2LHash is to divide the input sequence of blocks into groups of δ blocks, process each
such block using BRW with key τ to obtain n outputs and then combine these n outputs using
Poly with x substituted by γ = τ2d . Finally the output of the Poly call, the left over blocks, and
the length block are combined using another Poly call with x substituted by τ . This can be seen
as two-level hashing. For binary extension fields, a similar two-level hash function was proposed
in [8].

The choice of δ = 2d−1 is motivated by the fact that d(δ) = δ, i.e. the degree of BRW on δ blocks
is δ (see the second point of Theorem 1). A consequence of this is that the coefficients of the Ui(x)
are also the coefficients of V (x). In more details, if we write Ui(x) = xδ+ui,δ−1x

δ−1+· · ·+ui,1x+ui,0,

then noting that x2d = xδ+1, we have

V (x) = un,0 + un,1x+ · · ·+ un,δ−1x
δ−1 + xδ

+xδ+1
(
un−1,0 + un−1,1x+ · · ·+ un−1,δ−1x

δ−1 + xδ
)

+x2(δ+1)
(
un−2,0 + un−2,1x+ · · ·+ un−2,δ−1x

δ−1 + xδ
)

+ · · ·
+x(n−1)(δ+1)

(
u1,0 + u1,1x+ · · ·+ u1,δ−1x

δ−1 + xδ
)
. (10)

Remark 2.

1. When M1, . . . ,M` are clear from the context, we will write P1(x) instead of P1(x;M1, . . . ,M`).
Similarly, when M1, . . . ,M` and binm−1(L) are clear from the context, we will write P2(x),
P3(x) and P4(x) instead of P2(x;M1, . . . ,M`, binm−1(L)), P3(x;M1, . . . ,M`, binm−1(L)) and
P4(x;M1, . . . ,M`, binm−1(L)) respectively.

2. The motivation for considering t-BRWHash and d-2LHash is to avoid an implementation
difficulty with BRWHash. See Section 5.3 for a discussion on this issue.

3.1 Combining hash functions

Timing results show that for messages with a small number of blocks polyHash is faster than the
other three hash functions, while for larger number of blocks, either t-BRWHash or d-2LHash is
faster. If we use one of the hash functions, then either the performance for short messages is
sub-optimal, or the performance for long messages is sub-optimal. In this section, we describe a
construction which allows obtaining the best of both the cases.

Let d ≥ 2 be a positive integer. Let X be a binary string of length L ≥ 0. Let (X1, . . . , X`) be
the output of format(X). We define

d-Hashτ (X) =

{
polyHashτ (X) if ` < 2d;
d-2LHashτ (X) if ` ≥ 2d.

(11)

Note that polyHash uses pad1 while d-2LHash uses pad2. So if ` < 2d, then pad1 is used on
(X1, . . . , X`) and if ` ≥ 2d, then pad2 is used on (X1, . . . , X`). We later show that this combination

7

of polyHash and d-2LHash produces a secure hash function. In (11), it is possible to replace d-2LHash
with either BRWHash or d-BRWHash (i.e. t-BRWHash with the parameter t equal to d) and still
obtain a secure hash function.

Remark 3. The hash functions have the design parameters t and d. See Section 5.4 for a discussion
on these parameters as well as other implementation parameters.

3.2 Naming convention

We adopt the following naming convention. For each of the hash functions, there are two possible
sets of parameters in Table 1. The choice of the prime p determines the values of m, k and n. So
for each of the hash functions, by specifying the value of p, we obtain two different instantiations.
If p is chosen to be 2127− 1, we append 1271 to the name of the hash function, and if p is chosen to
be 2130− 5, we append 1305 to the name of the hash function. For example, polyHash1271 denotes
polyHash computed modulo 2127−1 and BRWHash1305 denotes BRWHash computed modulo 2130−
5. The naming convention will become important in Section 8 where we provide explicit timings
for the various hash functions.

Our naming convention distinguishes between Poly which is used to denote the polynomial
in (1) and the hash function polyHash given by (2) built from Poly after formatting and padding
the message. We require this distinction since we use Poly as a component in the other hash
functions. As a result of this distinction, the naming of polyHash1305 is different from Poly1305,
even though the two hash functions are identical for messages whose lengths in bits are multiples
of eight.

4 AXU bounds

The following result will be useful for obtaining AXU bounds for the four hash functions. This
result is a generalisation of an observation used in the proof of Theorem 3.3 in [3].

Lemma 1. Let p = 2m− δ be a prime and k be a positive integer such that k < m and δ < 2k − 1.
(The values of p, m and k given in Table 1 satisfy these conditions.) Let α ∈ Z2k , and P (x) and
P ′(x) be distinct polynomials in Fp[x] satisfying P (0) = P ′(0) = 0. The number of distinct τ ∈ Fp
such that

((P (τ) mod p) mod 2k)− ((P ′(τ) mod p) mod 2k) ≡ α (mod 2k) (12)

is at most 2m−k+1 times the degree of the polynomial P (x)− P ′(x).
Consequently, for τ chosen uniformly at random from {0, 1}k (which is considered to be a subset

of Fp), the probability that (12) holds is at most 2m−2k+1 · deg(P (x)− P ′(x)).

Proof. Let U be the set of integers in the interval [−2m, 2m − 1] which are congruent to α modulo
2k. Then i · 2k +α is in U if and only if −2m ≤ i · 2k +α ≤ 2m− 1, or equivalently −2m−k−α/2k ≤
i ≤ 2m−k − (α + 1)/2k. Since α ∈ Z2k , the values that i can take are −2m−k, . . . , 2m−k − 1 and
hence #U = 2m−k+1.

Suppose (12) holds for some τ ∈ Fp. Note that P (τ) mod p and P ′(τ) mod p are integers in the
interval [0, p− 1]. Write (P (τ) mod p) = a12k + a0 where 0 ≤ a0 < 2k and

0 ≤ a1 = b(P (τ) mod p)/2kc ≤ b(p− 1)/2kc = b(2m − (δ + 1))/2kc = 2m−k − 1.

8

The last equality holds since δ < 2k − 1. Similarly, write (P ′(τ) mod p) mod 2k = b0, where
0 ≤ b0 < 2k and 0 ≤ b1 ≤ 2m−k − 1. From the bounds on a1 and b1, it follows that

−2m−k ≤ a1 − b1, a1 − b1 − 1 ≤ 2m−k − 1.

Since τ satisfies (12), we have a0 − b0 ≡ α mod 2k. So over the integers either a0 − b0 = α
or a0 − b0 = −2k + α according as a0 ≥ b0 or a0 < b0 respectively. Let β = 2k(a1 − b1) + α
if a0 ≥ b0, and β = 2k(a1 − b1 − 1) + α if a0 < b0. Then β ≡ α mod 2k and from the above
bounds on a1 − b1 and a1 − b1 − 1, we have β ∈ U . So it follows that if τ satisfies (12), then
(P (τ) mod p)− (P ′(τ) mod p) = 2k(a1 − b1) + a0 − b0 which is equal to 2k(a1 − b1) + α if a0 ≥ b0
and is equal to 2k(a1 − b1 − 1) + α if a0 < b0. So (P (τ) mod p)− (P ′(τ) mod p) = β. Then τ is a
root of the polynomial P (x)− P ′(x)− β (mod p).

Let Rβ(x) = P (x) − P ′(x) − β ∈ Fp[x]. Since P (x) and P ′(x) are distinct polynomials and
P (0) = P ′(0) = 0, we have Rβ(x) ∈ Fp[x] to be a non-zero polynomial whose degree is at most the
degree of P (x)−P ′(x). Since β ∈ U , #U = 2m−k+1 and the number of roots of Rβ(x) over Fp is at
most the degree of Rβ(x), it follows that the number of distinct τ such that (12) holds is at most
2m−k+1 times the degree of Rβ(x).

Lemma 1 reduces the problem of determining the probability that a uniform random k-bit string
τ satisfies (12) to the simpler problem of determining the degree of the polynomial P (x)−P ′(x) ∈
Fp[x].

Lemma 2. Let X be a binary string of length L > 0. Let ` = dL/ne and suppose (M1, . . . ,M`) is
the output of pad1(format(X)). Then Mi 6= 0m−1 for i = 1, . . . , `.

Lemma 3. Let X be a binary string of length L ≥ 0. Then the maps X 7→ pad1(format(X)) and
X 7→ pad2(format(X)) are injections.

Proof. Let X and X ′ be two distinct binary strings of lengths L and L′ respectively and we assume
without loss of generality that L ≥ L′ ≥ 0. Let ` = dL/ne and `′ = dL′/ne. Let (X1, . . . , X`) be
the output of format(X) and (X ′1, . . . , X

′
`′) be the output of format(X ′). Let s and s′ be the lengths

of X` and X ′`′ respectively.
We first consider pad1(format(X)). Suppose (M1, . . . ,M`) is the output of pad1(format(X))

and (M ′1, . . . ,M
′
`′) is the output of pad1(format(X ′)). If ` 6= `′, then clearly (M1, . . . ,M`) 6=

(M ′1, . . . ,M
′
`′).

So suppose that ` = `′. Since X 6= X ′, there must be an i in {1, . . . , `} such that Xi 6= X ′i. If
1 ≤ i ≤ `−1, then both Xi and X ′i are full blocks and then Mi = 0m−n−2||1||Xi 6= 0m−n−2||1||X ′i =
M ′i . So suppose that i = `. Then M` = 0m−s−2||1||X` and M ′` = 0m−s

′−2||1||X ′`. If s 6= s′, then
the positions of the leading 1 in M` and M ′` are different and so M` 6= M ′`; on the other hand,
if s = s′, then X` and X ′` have the same length and since they are distinct, there must be a bit
position where they differ, in which case we again have M` 6= M ′`.

Next consider pad2(format(X)). Let (M1, . . . ,M`, binm−1(L)) be the output of pad2(format(X))
and (M ′1, . . . ,M

′
`′ , binm−1(L′)) be the output of pad2(format(X ′)). If ` 6= `′, then the number of

components in the two outputs are different and so the outputs are different. If ` = `′ but L 6= L′,
then binm−1(L) 6= binm−1(L′) and again the two outputs are different. So suppose L = L′ which
implies s = s′. Since X 6= X ′, there must be an i in {1, . . . , `} such that Xi 6= X ′i. If 1 ≤ i ≤ `− 1,
then Mi = 0m−n−1||Xi 6= 0m−n−1||X ′i = M ′i and if i = `, then M` = 0m−s−1||X` 6= 0m−s−1||X ′` =
M ′`.

9

Lemma 4. Let X be a binary string of length L ≥ 0. Let ` = dL/ne.

1. Suppose (M1, . . . ,M`) is the output of pad1(format(X)). Then

X 7→ P1(x;M1, . . . ,M`)

is an injection.

2. Suppose (M1, . . . ,M`, binm−1(L)) is the output of pad2(format(X)). Then the maps

X 7→ P2(x;M1, . . . ,M`, binm−1(L)),

X 7→ P3(x;M1, . . . ,M`, binm−1(L)),

X 7→ P4(x;M1, . . . ,M`, binm−1(L))

are injections.

Proof. Let X and X ′ be two distinct binary strings of lengths L and L′ respectively and we assume
without loss of generality that L ≥ L′ ≥ 0. Let ` = dL/ne and `′ = dL′/ne.

Suppose (M1, . . . ,M`) is the output of pad1(format(X)) and (M ′1, . . . ,M
′
`′) is the output of

pad1(format(X ′)). From Lemma 3, we have (M1, . . . ,M`) 6= (M ′1, . . . ,M
′
`′) and from Lemma 2, we

have Mi 6= 0m−1 and M ′j 6= 0m−1 for i = 1, . . . , ` and j = 1, . . . , `′. If L′ = 0, i.e. X ′ is the empty

string, then X is not the empty string and we have L > 0 and so ` > 0. Since M1 6= 0m−1 it follows
that P1(x;M1, . . . ,M`) is a non-zero polynomial whereas P1(x;M ′1, . . . ,M

′
`′) = P1(x;) = 0. Now

suppose that L′ > 0 and so ` ≥ `′ ≥ 1. We have P1(x;M1, . . . ,M`) = M1x
` + · · ·+M`−1x

2 +M`x
and P1(x;M ′1, . . . ,M

′
`′) = M ′1x

` + · · ·+M ′`′−1x
2 +M ′`′x. If ` > `′, then since M1 6= 0m−1, it follows

that P1(x;M1, . . . ,M`) 6= P1(x;M ′1, . . . ,M
′
`′). If ` = `′, since (M1, . . . ,M`) 6= (M ′1, . . . ,M

′
`′), it

again follows that P1(x;M1, . . . ,M`) 6= P1(x;M ′1, . . . ,M
′
`′).

Now we turn to the other three maps. Suppose (M1, . . . ,M`, binm−1(L)) is the output of
pad2(format(X)) and (M ′1, . . . ,M

′
`′ , binm−1(L′)) is the output of pad2(format(X ′)). From Lemma 3,

we have (M1, . . . ,M`, binm−1(L)) 6= (M ′1, . . . ,M
′
`′ , binm−1(L′)).

Note that binm−1(L) is the coefficient of x in P2(x;M1, . . . ,M`, binm−1(L)), P3(x;M1, . . . ,M`,
binm−1(L)) and P4(x;M1, . . . ,M`, binm−1(L)), while binm−1(L′) is the coefficient of x in P2(x;M ′1, . . . ,
M ′`′ , binm−1(L′)), P3(x;M ′1, . . . ,M

′
`′ , binm−1(L′)) and P4(x;M ′1, . . . ,M

′
`′ , binm−1(L′)). If binm−1(L) 6=

binm−1(L′), then clearly,

P2(x;M1, . . . ,M`, binm−1(L)) 6= P2(x;M ′1, . . . ,M
′
`′ , binm−1(L′)),

P3(x;M1, . . . ,M`, binm−1(L)) 6= P3(x;M ′1, . . . ,M
′
`′ , binm−1(L′)),

P4(x;M1, . . . ,M`, binm−1(L)) 6= P4(x;M ′1, . . . ,M
′
`′ , binm−1(L′)).

So henceforth suppose that binm−1(L) = binm−1(L′), i.e. L = L′ and so ` = `′. Since
(M1, . . . ,M`, binm−1(L)) is not equal to (M ′1, . . . ,M

′
`, binm−1(L)), it follows that (M1, . . . ,M`) 6=

(M ′1, . . . ,M
′
`). From this point, the arguments for P2(x), P3(x) and P4(x) are different.

Consider P2(x). Using the injectivity of BRW (see the first point of Theorem 1), we have

P2(x;M1, . . . ,M`, binm−1(L)) = x(x · BRW(x;M1, . . . ,M`) + binm−1(L))

6= x(x · BRW(x;M ′1, . . . ,M
′
`) + binm−1(L))

= P2(x;M ′1, . . . ,M
′
`, binm−1(L)).

10

Next consider P3(x). Since ` = `′, it follows that m = m′. Using the injectivity of BRW and
Poly, we have

P3(x;M1, . . . ,M`, binm−1(L))

= x · Poly(x;BRW(x;M1,M2, . . . ,Mm),Mm+1, . . . ,M`, binm−1(L))

6= x · Poly(x;BRW(x;M ′1,M
′
2, . . . ,M

′
m),M ′m+1, . . . ,M

′
`, binm−1(L))

= P3(x;M ′1, . . . ,M
′
`, binm−1(L)).

Finally consider P4(x). Since ` = `′, it follows that n = n′. If (M1+δ(i−1), . . . ,Miδ) 6=
(M ′1+δ(i−1), . . . ,M

′
iδ) for some i in {1, . . . , n}, then by the injectivity of BRW,

Ui(x) = BRW(x;M1+δ(i−1), . . . ,Miδ) 6= BRW(x;M ′1+δ(i−1), . . . ,M
′
iδ) = U ′i(x).

By construction, the coefficients of V (x) are the coefficients of the Ui’s (see (10)) and so Ui(x) 6=
U ′i(x) implies that V (x) 6= V ′(x). On the other hand, if (M1+δ(i−1), . . . ,Miδ) = (M ′1+δ(i−1), . . . ,M

′
iδ)

for all i in {1, . . . , n}, then since (M1, . . . ,M`) 6= (M ′1, . . . ,M
′
`), it follows that (Mδn+1, . . . ,M`) 6=

(M ′δn+1, . . . ,M
′
`). In either case, we have

P4(x;M1, . . . ,M`, binm−1(L))

= Poly(x;V (x),Mδn+1, . . . ,M`, binm−1(L))

6= Poly(x;V ′(x),M ′δn+1, . . . ,M
′
`, binm−1(L))

= P4(x;M ′1, . . . ,M
′
`, binm−1(L)).

Lemma 5. Let X be a binary string of length L ≥ 1 and n be a positive integer. Let ` = dL/ne.

1. Let (M1, . . . ,M`) be the output of pad1(format(X)). Then deg(P1(x;M1, . . . ,M`)) = `.

2. Let (M1, . . . ,M`, binm−1(L)) be the output of pad2(format(X)).

(a) Then deg(P2(x;M1, . . . ,M`, binm−1(L))) ≤ 1 + 2`.

(b) Let t ≥ 2 be the parameter of t-BRWHash. Then

deg(P3(x;M1, . . . ,M`, binm−1(L))) ≤ 1 + 2`− (` mod 2t) ≤ 1 + 2`.

(c) Let d ≥ 2 be the parameter of d-2LHash. Then

deg(P4(x;M1, . . . ,M`, binm−1(L))) ≤ 1 + (2d/(2d − 1))` ≤ 1 + 2`.

Proof. Since L ≥ 1, we have ` ≥ 1.
Since ` ≥ 1, using the definition of Poly, we have P1(x;M1, . . . ,M`) = M1x

`+M2x
`−1+· · ·+M`x.

By Lemma 2, M1 is a non-zero element of Fp. So the degree of P1(x) is `.
Let ρ = d(`) and a0, . . . , aρ be such that BRW(x;M1, . . . ,M`) = aρx

ρ + · · · + a1x + a0. (Note
that if ` ≥ 3, then since BRW(x;M1, . . . ,M`) is monic, it follows that aρ = 1.) So from (5),

P2(x;M1, . . . ,M`, binm−1(L)) = x(x · BRW(x;M1, . . . ,M`) + binm−1(L))

= aρx
ρ+2 + · · ·+ a1x

3 + a0x
2 + binm−1(L)x.

11

From the second point of Theorem 1, we have ρ ≤ 2` − 1 and so the degree of P2(x) is at most
2`− 1 + 2 = 2`+ 1.

Let m = ` − (` mod 2t). Let ρ = d(m) and a0, . . . , aρ be such that BRW(x;M1, . . . ,Mm) =
aρx

ρ + · · ·+ a1x+ a0. (As above, if m ≥ 3, then aρ = 1.) So

P3(x;M1, . . . ,M`, binm−1(L)) = x · Poly(x;BRW(x;M1,M2, . . . ,Mm),Mm+1, . . . ,M`, binm−1(L))

= aρx
`−m+2+ρ + · · ·+ a1x

`−m+3 + a0x
`−m+2

+Mm+1x
`−m+1 + · · ·+M`x

2 + binm−1(L)x.

The degree of P3(x) is at most ` − m + 2 + ρ. From the second point of Theorem 1, ρ ≤ 2m − 1.
Using this in the expression for the degree and noting that m ≤ ` gives us the desired bound.

Let δ = 2d − 1 ≥ 3 and n = b`/δc. Recall that Ui(x) = BRW(x;M1+δ(i−1), . . . ,Miδ). Note that

δ ≥ 3 implies that each Ui(x) is a monic polynomial. Further, since δ = 2d − 1, from the second

point of Theorem 1, we have deg(Ui) = δ. Since V (x) = Poly(x2d ;U1(x), . . . , Un(x)), the coefficients
of V (x) are the coefficients of the Ui(x)’s and deg(V) = (δ+ 1)(n− 1) + δ = (δ+ 1)n− 1 (see (10)).
From (9) the degree of P4(x;M1, . . . ,M`, binm−1(L)) is equal to deg(V) + ` − δn + 2 = n + ` + 1.
Since n ≤ `/δ, we obtain the desired bound on the degree of P4(x).

We obtain the following simple lower bound on the degrees of P2, P3 and P4 which will be
required in arguing about the correctness of d-Hash given by (11).

Corollary 1. Let d ≥ 2 and n be positive integers. Let X be a binary string of length L ≥ 1 such that
` = dL/ne ≥ 2d. Let (M1, . . . ,M`, binm−1(L)) be the output of pad2(format(X)). Let the parameter
t of t-BRWHash be equal to d. Then P2(x;M1, . . . ,M`, binm−1(L)), P3(x;M1, . . . ,M`, binm−1(L)),
and P4(x;M1, . . . ,M`, binm−1(L)) are monic polynomials having degrees at least 2d + 2.

Proof. Since d ≥ 2 we have ` ≥ 2d > 3. So the BRW components of all the three polynomials P2,
P3 and P4 are for more than three blocks and from the definition of BRW polynomials, it follows
that these BRW components are all monic. Using the definitions of P2, P3 and P4, it follows that
all the three polynomials are also monic.

Using ` ≥ 2d > 3, from the second point of Theorem 1 and the proof of Lemma 5 we have the
following.

1. deg(P2) = d(`) + 2 = (2blg `c+1 − 1) + 2 ≥ 2d + 2.

2. m = ` − (` mod 2d) ≥ 2d and so deg(P3) = ` − m + 2 + d(m) = (` mod 2t) + d(m) + 2 =
(` mod 2t) + (2blgmc+1 − 1) + 2 ≥ 2d + 2.

3. n = b`/(2d − 1)c ≥ 1 and so deg(P4) = n + `+ 1 ≥ 2d + 2.

Theorem 2. Suppose the prime p and the parameters m, k and n are as defined in Table 1. Let
X and X ′ be two distinct binary strings of lengths L and L′ respectively with L ≥ L′ ≥ 0, and α
be an element of Z2k . Let ` = dL/ne. Suppose τ is chosen uniformly at random from {0, 1}k. Let
t ≥ 2 be the parameter of t-BRWHash and d ≥ 2 be the parameter of d-2LHash. Then

Pr[polyHashτ (X)− polyHashτ (X ′) = α] ≤ ` · 2m−2k+1,

Pr[BRWHashτ (X)− BRWHashτ (X ′) = α] ≤ (1 + 2`) · 2m−2k+1,

Pr[t-BRWHashτ (X)− t-BRWHashτ (X ′) = α] ≤ (1 + 2`) · 2m−2k+1,

Pr[d-2LHashτ (X)− d-2LHashτ (X ′) = α] ≤ (1 + 2`) · 2m−2k+1.

12

Proof. Lemma 1 reduces the problem of upper bounding the differential probabilities of the hash
functions to the analysis of the polynomials over Fp which define the corresponding hash functions.
Specifically, we need to show that the constant terms of these polynomials are 0 and distinct X
and X ′ map to distinct polynomials. From the definitions of P1(x), P2(x), P3(x) and P4(x) it
follows that the constant terms of these polynomials are 0. The distinctness of the polynomials
corresponding to distinct X and X ′ is given by Lemma 4. So Lemma 1 can be applied. Using
the expressions for the degrees of the relevant polynomials from Lemma 5, we obtain the desired
bounds on the probabilities.

We next show the AXU bound for d-Hash.

Theorem 3. Suppose the prime p and the parameters m, k and n are as defined in Table 1. Let
X and X ′ be two distinct binary strings of lengths L and L′ respectively with L ≥ L′ ≥ 0, and α be
an element of Z2k . Let ` = dL/ne. Suppose τ is chosen uniformly at random from {0, 1}k. Then

Pr[d-Hashτ (X)− d-Hashτ (X ′) = α] ≤ (1 + 2`) · 2m−2k+1. (13)

Proof. By construction, d-Hash applies polyHash if the number of blocks is less than 2d and applies
d-2LHash if the number of blocks is at least 2d. Let `′ = dL′/ne. There are three cases to consider,
namely `, `′ < 2d, `, `′ ≥ 2d, and `′ < 2d ≤ `.

First suppose `, `′ < 2d. In this case, for both X and X ′, polyHash is applied and using
Theorem 2 we have,

Pr[d-Hashτ (X)− d-Hashτ (X ′) = α] = Pr[polyHashτ (X)− polyHashτ (X ′) = α]

≤ ` · 2m−2k+1 < (1 + 2`) · 2m−2k+1.

Next suppose `, `′ ≥ 2d. In this case, for both X and X ′, d-2LHash is applied and using Theorem 2
we have

Pr[d-Hashτ (X)− d-Hashτ (X ′) = α] = Pr[d-2LHashτ (X)− d-2LHashτ (X ′) = α]

≤ (1 + 2`) · 2m−2k+1.

Now suppose `′ < 2d ≤ `. In this case, X is hashed with d-2LHash and X ′ is hashed with
polyHash. Recall that d-2LHash processes X using pad2 while polyHash processes X ′ using pad1.
Let (M1, . . . ,M`, binm−1(L)) be the output of pad2(format(X)) and (M ′1, . . . ,M

′
`′) be the output of

pad1(format(X ′)). The constant terms of both P4(x;M1, . . . ,M`, binm−1(L)) and P1(x;M ′1, . . . ,M
′
`′)

are zero. From (2) and Lemma 2, the degree of P1(x;M ′1, . . . ,M
′
`′) is equal to `′ < 2d. Since ` ≥ 2d,

by Corollary 1, P4(x;M1, . . . ,M`, binm−1(L)) is a monic polynomial of degree at least 2d + 2. So
P4(x;M1, . . . ,M`, binm−1(L)) and P1(x;M ′1, . . . ,M

′
`′) are distinct polynomials whose constant terms

are zero. Applying Lemma 1 to these two polynomials, we have Pr[d-Hashτ (X)−d-Hashτ (X ′) = α]
to be at most 2m−2k+1 times the degree of P4(x;M1, . . . ,M`, binm−1(L))−P1(x;M ′1, . . . ,M

′
`′) which

is the degree of P4(x;M1, . . . ,M`, binm−1(L)), and by Lemma 5 this degree is at most 1 + 2`.

Remark 4. Suppose that in d-Hash, the hash function d-2LHash is replaced by either BRWHash or t-
BRWHash. Using the bounds on the degrees of these polynomials given by Lemma 5 and Corollary 1,
the proof of Theorem 3 shows that the bound (13) also holds for such modified variations of d-Hash.

13

polyHash BRWHash, t-BRWHash, d-2LHash, d-Hash

2127 − 1 ` · 2−125 (2`+ 1)2−125

2130 − 5 ` · 2−124 (2`+ 1)2−124

Table 2: For the two primes in Table 1, the values of ε such that the hash families are ε-AXU. Here
` is the number of message blocks.

Remark 5. The probability bounds in Theorems 2 and 3 are in terms of the number ` of n-bit
blocks. So setting an upper bound on ` provides the values of ε for the hash families to be ε-AXU.
Suppose we set ` = 248, i.e. we restrict the hash families to process messages having at most 248

blocks. The corresponding values of ε for the four hash families and the two primes can be obtained
from the expressions given in Table 2 and are at most 2−75. Choosing a lower value of `, will further
decrease the value of ε.

With ` ≤ 248, we have L ≤ 255 for the values of n in Table 1. Since it is unlikely that there will
be an application which will require to hash messages longer than 255 bits, for practical purposes,
the length of any message will fit in a 64-bit word. So in the constructions BRWHash, t-BRWHash
and d-2LHash, binm−1(L) is essentially bin64(L). This provides a speed-up in the implementation
of the field multiplication with the binary representation of the length of the message. The effect,
however, is minor since there is only one such field multiplication.

4.1 Explanations for the padding schemes

Suppose (M1, . . . ,M`) is the output of pad1(format(X)). Lemma 2 states that each of the Mi’s are
non-zero. The proof of Lemma 4 uses this observation to show that the mapX 7→ Poly(x;M1, . . . ,M`)
and hence the map X 7→ P1(x;M1, . . . ,M`) are injections.

The fact that theMi’s are non-zero is not sufficient to argue that the mapX 7→ BRW(x;M1, . . . ,M`)
is an injection. For example, suppose X and X ′ are distinct binary strings such that (M1, . . . ,M5) =
pad1(format(X)) and (M ′1, . . . ,M

′
6) = pad1(format(X ′)). Then

BRW(x;M1, . . . ,M5) = ((x+M1)(x2 +M2) +M3)(x4 +M4) +M5,

BRW(x;M ′1, . . . ,M
′
6) = ((x+M ′1)(x2 +M ′2) +M ′3)(x4 +M ′4) +M ′5x+M ′6.

Note that both BRW(x;M1, . . . ,M5) and BRW(x;M ′1, . . . ,M
′
6) are monic polynomials of degrees

equal to 7. Since the coefficients of BRW(x;M1, . . . ,M5) and BRW(x;M ′1, . . . ,M
′
6) are nonlinear

functions of M1, . . . ,M5 and M ′1, . . . ,M
′
6 respectively, the fact that the Mi’s and the M ′j ’s are

non-zero is not sufficient to argue that BRW(x;M1, . . . ,M5) 6= BRW(x;M ′1, . . . ,M
′
6).

Theorem 5.6 of [4] shows that if S is a subset of Fp such that S ∩ (S + 1) = ∅, then BRW
injectively maps ∪i≥0S

i to Fp[x]. We considered using this result to avoid the above issue. For
S we considered taking all elements of Fp whose least significant bit is 0 (i.e. S is the subset of
the even numbers of Fp). Such an S satisfies the requirement S ∩ (S + 1) = ∅. The problem
arises in defining an appropriate padding scheme. For concreteness, consider the prime 2130 − 5.
Suppose (X1, . . . , X`) is the output of format(X). Each Xi is an 128-bit string. We may define a
padding scheme which left shifts Xi by one place to obtain Mi. The Mi’s are ensured to be even
and hence are in S. There are two problems to such a padding scheme. For one thing, each Xi is a
16-byte string which would be stored as 2 64-bit or 4 32-bit words. A left shift by one place would
require multiple shifts of the words representing an Xi. This would result in some inefficiency. (In
comparison, note that appending a 1 on the left, as in pad1, does not require any shift.) There is

14

another more basic problem with such a padding scheme. We need to ensure that a padded partial
block is distinct from a padded full block and also that after padding, two partial blocks of different
lengths map to distinct strings. We see no simple way of ensuring that a padded partial block is
distinct from a padded full block.

Further, the hash functions t-BRWHash and d-2LHash are built using a combination of BRW
and Poly. Using a padding scheme to ensure injectivity of only BRW is not sufficient to ensure the
injectivity of the defining polynomials for the hash functions t-BRWHash and d-2LHash.

To handle the above problems, we introduced pad2 which includes the binary representation of
the length of X in its output. By appropriately using the length block, we obtain injective maps
as shown in Lemma 4. The use of pad2 simplifies the description of the three hash functions and
also makes the injectivity argument quite easy.

5 Algorithms

Algorithms to evaluate the hash functions essentially boil down to evaluating the polynomials
P1(x), P2(x), P3(x) and P4(x) at the point τ . These four polynomials are in turn defined from
the two polynomials Poly and BRW. So we first consider algorithms to compute the values of the
polynomials Poly and BRW at a point.

In Sections 5.1 and 5.2, the description of the algorithms to compute the values of Poly and
BRW at a point are over an arbitrary finite field F. For l ≥ 0, let M1, . . . ,Ml be elements of
F and τ be an element of F. (Recall that ` is the number of blocks obtained by formatting a
binary string X; l is not necessarily equal to `.) We consider the evaluation of Poly(x;M1, . . . ,Ml)
and BRW(x;M1, . . . ,Ml) at the point τ . Such evaluation involves multiplications and additions
over F. A field multiplication has two steps. In the first step, a multiplication is done over an
appropriate structure (such as the ring of integers or polynomials) and in the second step, the
product is reduced. By unreducedMult we will denote only the first step, i.e. the reduction step is
not performed, while by reduce we will denote the reduction step. Similarly a field addition also has
two steps, an addition over an appropriate structure followed by a reduction. In the algorithms for
evaluating Poly and BRW, the reduction after addition is never performed. So in the algorithms,
‘+’ denotes an unreduced addition.

5.1 Evaluation of Poly

For l ≥ 2, Using Horner’s rule, Poly(τ ;M1, . . . ,Ml) can be evaluated as follows.

Poly(τ ;M1, . . . ,Ml) = τ(· · · τ(τ(τ ·M1 +M2) +M3) + · · ·+Ml−1) +Ml. (14)

This requires l− 1 field multiplications. A delayed (or lazy) reduction strategy was used in [14] to
implement the hash function GHASH which is defined over binary fields. It was also used in [13]
in the context of evaluation of Poly1305 using vector instructions. The same strategy can also be
employed for an arbitrary finite field F. We describe the strategy below.

Let g ≥ 1 be a parameter. The blocks M1, . . . ,Ml are divided into dl/ge groups and one
reduction will be applied for each group. Let r ∈ {1, . . . , g} be such that r ≡ l mod g. Let
k = (l − r)/g (so that k + 1 = dl/ge) and define

A1 = M1τ
r−1 +M2τ

r−2 + · · ·+Mr−1τ +Mr,

15

and for i = 1, . . . , k,

Ai+1 = Mr+(i−1)g+1τ
g−1 +Mr+(i−1)g+2τ

g−2 + · · ·+Mr+ig−1τ +Mr+ig.

Then

Poly(τ ;M1, . . . ,Ml) = τ g(· · · τ g(τ g(τ g ·A1 +A2) +A3) + · · ·+Ak) +Ak+1. (15)

Note that A1 is defined using a group of r ≤ g blocks, while each of A2, . . . , Ak+1 is defined using
exactly g blocks.

Suppose the elements τ2, τ3, . . . , τ g−1, τ g are computed over F and stored. Then the Ai’s can
be evaluated by multiplying the relevant power of g with the appropriate block and summing the
products. The Ai’s are not individually reduced during the computation as we explain next. Let
unreduced(Ai) denote the computation of Ai without applying the reduction step, i.e. the outputs
of all the multiplications and additions in the expression for Ai are kept unreduced.

Let res be a variable which stores the result of the partial computations. Initially the value of
res is set to reduce(unreduced(A1)). Next, for i = 1, . . . , k, update res to

reduce(unreducedMult(res, τ g) + unreduced(Ai+1)).

The final value of res provides the required result.
Computing unreduced(A1) requires r − 1 unreduced multiplications. For i = 2, . . . , k + 1,

computing unreduced(Ai) requires g − 1 unreduced multiplications. Finally, the k updations of res
require k unreduced multiplications. So the total number of unreduced multiplications required is
r − 1 + k(g − 1) + k = l − 1. This number is the same as that for evaluating (14). The advantage
is that for g > 1, the number of reductions decreases. From the above description, the number of
reductions required to compute (15) is k+ 1 = dl/ge. In comparison, computing (14) requires l− 1
reductions.

The trade-off is that the powers τ2, . . . , τ g are required to be computed and this requires g − 1
field multiplications. For short messages, the time to compute the powers of τ will make the
strategy inefficient. To avoid this inefficiency one may pre-compute and store the required powers
of τ . There are advantages and disadvantages to both the approaches, i.e. to compute the powers
on-the-fly and to precompute and store these powers. In our timing results given later, we provide
timings for both the approaches.

The general idea of the delayed reduction strategy suggests that as g increases, the efficiency
should improve. This, however, is not true in practice. For efficient execution, it is important that
the powers of τ be available in the cache. If the value of g is high, then all the powers of τ cannot
be stored in the cache and the efficiency of the method decreases. We have experimented with
g = 4, 8, 16, 32. For long messages, the choice of g = 16 provides the best performance, while for
shorter messages, lower values of g provide better performance.

Remark 6. The explicit advantage of the delayed reduction strategy is the decrease in the number
of reductions. Since the number of unreduced multiplications does not decrease, one does not expect
a very sharp increase in efficiency due to the use of delayed reduction. Our experiments, on the
other hand, show that using g = 4 or g = 8 provide a very high jump in speed. (Details of the timing
results are given later.) Such a jump cannot be solely explained by the decrease in the number of
reductions. We investigated the issue deeply. It turns out that there is a hidden advantage of the
delayed reduction strategy. The evaluation of the Ak’s require multiplications by the powers of τ .

16

These powers are fixed for the entire duration of the computation. So in effect, one of the operands
of the multiplications is a constant. During execution, the powers of τ are kept in the data buffer
of the multiplication units of the CPU. It is due to this effect that there is a very significant speed
improvement. If we modify the expression where instead of a fixed power of τ , multiplication is
done with a variable quantity (which no longer evaluates Poly), then the speed drops to the level
which would be explained by the decrease in the number of reductions.

5.2 Evaluation of BRW

The definition of BRW is recursive. It is possible to write a recursive program to evaluate BRW.
Such a program, however, will be quite inefficient. If the number of blocks is fixed, then it is
possible to implement BRW using a straight line code. See Appendix A for some examples. A
general non-recursive algorithm to evaluate BRW was developed in [12] and it was shown that
BRW(τ ;M1, . . . ,Ml) can be evaluated using bl/2c unreduced multiplications and 1 + bl/4c reduc-
tions (plus an additional blg lc field squarings to compute the required power of τ). This is an
improvement over the requirement of bl/2c field multiplications stated in Theorem 1. Following
Lemma 1 of [12], the evaluation of BRW(τ ;M1, . . . ,Ml) can be written as

BRW(τ ;M1, . . . ,Ml) = reduce(unreducedBRW(τ ;M1, . . . ,Ml)),

where

• unreducedBRW(τ ;) = 0;
• unreducedBRW(τ ;M1) = M1;
• unreducedBRW(τ ;M1,M2) = unreducedMult(M1, τ) +M2;
• unreducedBRW(τ ;M1,M2,M3) = unreducedMult((τ +M1), (τ2 +M2)) +M3;
• unreducedBRW(τ ;M1,M2, . . . ,Mk)

= unreducedMult(reduce(unreducedBRW(τ ;M1, . . . ,Mk−1)), (τk +Mk)),
if k ∈ {4, 8, 16, 32, . . .};

• unreducedBRW(τ ;M1,M2, . . . ,Ml)
= unreducedBRW(τ ;M1, . . . ,Mk) + unreducedBRW(τ ;Mk+1, . . . ,Ml),
if k ∈ {4, 8, 16, 32, . . .} and k < l < 2k.

The idea of the algorithm in [12] is to process groups of 2t blocks at a time for some integer
t ≥ 2. For each such group, unreducedBRW corresponding to the first 2t − 1 blocks is evaluated
using a straight line code. Partial results are stored in an array. Depending on the number of blocks
that have been processed, some of the partial results are taken from the array and combined with
the output of the present iteration and the resulting new partial result is again added to the array.
Here we present a variant of the algorithm given in [12]. The variant simplifies the algorithm in [12]
by using a different method to store partial results. The number of unreduced multiplications and
reductions remain unchanged.

The modified algorithm ComputeBRW is shown in Algorithm 1. The partial results are stored in
stack and top points to the top of stack. The stack is implemented as an array stack[0, ..., blg lc− t].
The operation ntz(i) in Step 11 returns the number of trailing zeros in i; it can be implemented
in assembly using the instruction tzcnt. The operation wt(bl/2tc) in Step 20 returns the Ham-
ming weight of the binary representation of bl/2tc; it can be implemented in assembly using the
instruction popcnt.

17

Algorithm 1 differs from the algorithm in [12] in the manner in which the partial results are
stored. Since the manner of storage determines the overall correctness of the algorithm, the proof of
correctness provided in [12] needs substantial modifications to apply to Algorithm 1. The following
result states the correctness and complexity of the new algorithm. The proof is given in Appendix B.

Theorem 4. For any l ≥ 0 and any t ≥ 2, Algorithm 1 correctly computes BRW(τ ;M1, . . . ,Ml).
The number of unreducedMult required is bl/2c and the number of reductions required is 1 + bl/4c.
Additionally blg lc field squarings are required to compute the powers of τ . The maximum size of
stack is at most blg lc − t+ 1.

Algorithm 1 Evaluation of BRW(τ ;M1, . . . ,Ml), l ≥ 0. In the algorithm t ≥ 2 is a parameter.

1: function ComputeBRW(τ,M1, . . . ,Ml)
2: keyPow[0]← τ
3: if l > 2 then
4: for j ← 1 to blg lc do
5: keyPow[j]← keyPow[j − 1]2

6: end for
7: end if
8: top← −1
9: for i← 1 to bl/2tc do

10: tmp← unreducedBRW(τ ;M2t(i−1)+1, . . . ,M2t·i−1);
11: k ← ntz(i)
12: for j ← 0 to k − 1 do
13: tmp← tmp + stack[top]; top← top− 1
14: end for
15: tmp← unreducedMult(reduce(tmp),M2t·i + keyPow[t+ k])
16: top← top + 1; stack[top]← tmp
17: end for;
18: r ← l mod 2t;
19: tmp← unreducedBRW(τ ;Ml−r+1, . . . ,Ml);
20: i← wt(bl/2tc)
21: for j ← 0 to i− 1 do
22: tmp← tmp + stack[top]; top← top− 1
23: end for
24: return reduce(tmp);
25: end function.

The parameter t in Algorithm 1 does not have any effect on the correctness of the algorithm
or on the number of operations that are required. Step 10 uses a straight line code to compute
unreducedBRW on 2t − 1 blocks. So the parameter t determines the extent of loop unrolling. This
has an effect on the practical efficiency of implementation as our timing results given later show.

5.3 Rationale for t-BRWHash and d-2LHash

Step 19 of Algorithm 1 performs an unreduced BRW computation on the last r blocks of the
message, where r = l mod 2t. Let us consider the implementation of Step 19. Since the value of r

18

depends on the number l of blocks in the input, the implementation of Step 19 needs to account for
all the 2t − 1 possible positive values of r. For each such value of r, a straight line code is required
to implement the unreduced BRW computation. So the implementation of Step 19 requires a total
of 2t − 1 separate fragments of straight line codes to implement unreduced BRW computation for
all the 2t − 1 possible positive values of r. If t = 2 or 3, then this accounts for 3 or 7 fragments of
straight line codes respectively, which is reasonable. On the other hand, for t = 4 or 5, the number
of straight line code fragments is 15 or 31 respectively. Having so many fragments of straight line
codes make the overall program messy, difficult to optimise and increases the code size.

The design of t-BRWHash solves the above issue. Recall that in this design, BRW is used to
process a number of blocks which is a multiple of 2t. The output of this BRW computation, the
leftover blocks and the length block are then processed using Poly. So when ComputeBRW is used
to compute the BRW part of t-BRWHash, the computation of Step 19 is not required (i.e. since
r = 0, it becomes trivial). As a result, the entire issue of using 2t−1 separate fragments of straight
line codes become irrelevant. This leads to a much shorter and more compact code.

We have implemented both BRWHash and t-BRWHash. For BRWHash, ComputeBRW was
implemented using t = 2 and t = 3, while t-BRWHash was implemented for t = 2, 3, 4 and 5.

We next consider the design rationale for d-2LHash. In d-2LHash, each of the individual BRW
computations is performed on δ blocks, where δ = 2d−1 is a fixed number. For small d, the δ-block
BRW computation can be performed using a straight line code. As a result, it is not required to
implement Algorithm 1 at all. So the design motivation for d-2LHash is to completely avoid the
implementation of Algorithm 1. This reduces the implementation complexity of the BRW part. In
our implementations, we have considered d = 2, 3, 4 and 5. Examples of straight line code for the
corresponding δ-block BRW computations are given in Appendix A.

One may also consider values of d ≥ 6. A problem with such values of d is that the straight line
code for δ-block BRW computation becomes large. For example, if d = 6, then a straight line code
for a 63-block BRW computation is required. With larger values of d, the storage requirement for
pre-computed keys will increase and efficiency benefits will be observed for longer messages. Also,
having too high a value of d may have the effect that intermediate results no longer fit in the cache,
which would lead to a slowdown. Due to these reasons, we did not investigate values of d ≥ 6.

5.4 Explanation of parameters

We distinguish between two types of parameters, namely design parameter and implementation
parameter. The output of a hash function does not depend on an implementation parameter, i.e.
if the value of an implementation parameter is changed, then for the same input, the output does
not change. On the other hand, the output of a hash function does depend on a design parameter.
For the same input, if the value of a design parameter is changed, then the corresponding output
will be different.

The parameter g which determines the group size in Horner evaluation is an implementation
parameter. Similarly, t in Algorithm 1 is also an implementation parameter. On the other hand,
the parameter t in t-BRWHash and the parameter d in d-2LHash are design parameters. Also, d is
a design parameter in d-Hash.

In d-2LHash, the parameter d indicates that the hash function uses straight line BRW compu-
tation on δ = 2d − 1 blocks. In d-Hash, the parameter d indicates that for messages with less than
2d blocks polyHash is used, and for messages with at least 2d blocks d-2LHash is used. So in d-Hash,
apart from its role in d-2LHash, the parameter d also indicates the switchover point from polyHash

19

to d-2LHash.

5.5 Operation counts

The four hash families are built out of various combinations of Poly and BRW. Having determined
the number of integer multiplications and reductions required by Poly and BRW, we can now
specify these numbers for the hash families. For Poly, we consider both the options g = 1 and
g > 1. Table 3 provides the operation counts for the four hash functions for g = 1, while Table 4
provides the operation counts for g > 1. In these tables, the columns labeled ‘mult’ and ‘red’
provide the numbers of integer multiplications and reductions required for the evaluation. The
column labeled ‘storage’ provides the number of powers of the key τ that need to be stored, while
the column labeled ‘pre-comp’ provides the numbers of operations that are required to compute
the key powers.

Elements are stored asm-bit quantities. An integer multiplication of twom-bit quantities results
in a 2m-bit quantity, while the integer addition of two m-bit quantities results in an (m + 1)-bit
quantity. As explained earlier, in the algorithms to compute Poly and BRW, we do not immediately
reduce the result of an integer multiplication. Any subsequent additions are also performed without
reduction. A reduction is performed only when the intermediate quantity is to be multiplied with
another m-bit element. The reductions counted in Tables 3 and 4 are such reductions.

Remark 7. The storage requirements for key powers in Table 4 are overestimates. The values
are simply the sums of the number of key powers required for BRW and the number of key powers
required for Poly with g > 1. There will typically be an overlap between these key powers, which
will reduce the storage requirement. For example, suppose in d-2LHash, we choose d = 5 and g = 8.
According to Table 4, the number of key powers that need to be stored is d + 2g = 21. Let us
consider the required key powers in more details. The BRW computation will require the key powers
τ, τ2, τ4, τ8, τ16. The computation of V (x) with g = 8 will require the key powers γ, γ2, γ3, . . . , γ8,
where γ = τ32. The final computation of Poly will require the key powers τ, τ2, τ3, . . . , τ8. Out of
these, τ, τ2, τ4 and τ8 are also required for the BRW computation. So the total number of key powers
that will be required to be stored is 5 + 8 + 4 = 17. Similarly, the numbers of operations required to
compute the key powers are also overestimates. Since it is messy to obtain a general formula for the
exact number of key powers that are required, we have chosen to provide the simpler overestimates.
Later when we consider specific values of the parameters, we provide the corresponding accurate
number of required key powers.

The computation of the key powers τ2, τ4, τ8, . . . required for BRW computation can be done
using squarings rather than multiplications. Squarings are faster than multiplications. The opera-
tion counts in Tables 3 and 4 do not make the distinction between multiplications and squarings.
In our implementations, however, we have used squarings to compute the above mentioned key
powers. The computations of these key powers are the only part of the entire computation which
require squarings.

From Tables 3 and 4, it may be noted that the number of multiplications required by Poly is `
which is the maximum among the four hash functions. BRWHash, t-BRWHash and d-2LHash require
about 2 + `/2, 2 + `/2 + (` mod 2t)/2 and 1 + (2d−1/(2d − 1))` multiplications respectively. The
number of reductions depends on the value of g and the comparison between the hash functions
on this feature is more complicated. Nonetheless, from the operation counts one would expect
BRWHash to be significantly faster than Poly. Our timing results reported later show that this is

20

pre-comp
mult red storage mult red

polyHash ` ` 1 - -
BRWHash 2 + b`/2c 2 + b`/4c blg `c blg `c blg `c
t-BRWHash `− dm/2e+ 2 bm/4c+ `− m + 3 blgmc blgmc blgmc
d-2LHash `+ 1− n(2d−1 − 1) `+ 1− n(3 · 2d−2 − 2) d+ 1 d d

Table 3: Operation counts for the hash functions for ` blocks with g = 1. In the table m =
`− (` mod 2t), δ = 2d − 1, and n = b`/δc.

pre-comp
mult red storage mult red

polyHash ` d`/ge g g − 1 g − 1
t-BRWHash `− dm/2e+ 2 bm/4c+ d(`− m + 2)/ge+ 1 blgmc+ g blgmc+ g − 1 blgmc+ g − 1

d-2LHash `+ 1− n(2d−1 − 1)
n · 2d−2 + dn/ge
+d(`− δn + 2)/ge+ 1

d+ 2g d+ 2g − 1 d+ 2g − 1

Table 4: Operation counts for the hash functions for ` blocks with g > 1. In the table m =
`− (` mod 2t), δ = 2d − 1, and n = b`/δc.

indeed true for g = 1. On the other hand, for g > 1 the speed improvement is much more modest.
See Remark 6 for an explanation of this observation.

6 Implementation details

The implementations of the hash functions require the implementation of three arithmetic opera-
tions, namely integer addition, integer multiplication and modular reduction. Of these, the latter
two operations are more complicated and require substantially more time than integer addition.
So we focus on the description of integer multiplication and modular reduction. As explained in
Section 5, for speed improvement we adopted the lazy reduction strategy. This introduces certain
complications, which we explain below.

We have made 64-bit assembly implementations of the hash functions for the Intel Skylake and
later generation processors. A 64-bit word will be called a limb. Depending on the choice of the
prime p, elements of Fp have representations of different sizes.

Case p = 2127 − 1: In this case, a general element of Fp can be represented using 127 bits. So
padded message blocks, key powers, and intermediate results have 2-limb representations for all the
hash functions. For Poly evaluation, the multiplicand is a padded message block and the multiplier
is a key power, both of which are 2-limb quantities. For BRW evaluation, the multiplicand is a sum
of a padded message block and a key power, and the multiplier is a reduced partial result. Since
padded message blocks are 126-bit quantities and key powers are 127-bit quantities, the result of
the sum is a 128-bit quantity. A reduced partial result is also a 2-limb quantity. So for all the
hash functions, both the multiplier and the multiplicand are 2-limb quantities. Consequently, the
product can be stored in a 4-limb quantity. Since we adopt the lazy reduction strategy, the result is
not immediately reduced. As explained in Section 5, the results of several multiplications are added
together and a reduction is performed on the sum. The sum of the results of several multiplications
may not fit in a 4-limb quantity, and we store such a sum in a 5-limb quantity. So the reduction
algorithm is applied to a 5-limb quantity to reduce it to a 127-bit quantity.

21

2127 − 1 2130 − 5

polyHash 2-limb x 2-limb (2-limb x 3-limb)+

BRWHash 2-limb x 2-limb 3-limb x 3-limb

t-BRWHash 2-limb x 2-limb 3-limb x 3-limb

d-2LHash 2-limb x 2-limb 3-limb x 3-limb

Table 5: Types of multiplications for the various hash functions.

Case p = 2130 − 5: In this case, a general element of Fp can be represented using 3 limbs, where
the two least significant bits of the third limb (i.e. the most significant limb) are information bits.
In certain cases, instead of full reduction we apply partial reduction due to which the last three
significant bits of the third limb are information bits. Compared to full reduction, partial reduction
requires fewer assembly instructions and leads to overall efficiency improvement. The key τ is a
128-bit string while the key powers τ i, i ≥ 2, are general elements of Fp. The representation of the
message blocks depends on the hash function.

1. For polyHash, after padding, full message blocks are 129-bit strings where the 129-th bit is
1, while after padding, partial message blocks are 129-bit strings where the 129-th bit is 0.
Since we know whether a message block is full or partial (only the last block can be partial),
padded message blocks are stored as 2-limb quantities. For multiplications involving padded
full blocks, we perform the required number of additions corresponding to the 129-th bit.
Multiplications involve a padded message block and a key power. The padded message block
is a 2-limb quantity (with the 129-th bit 1 if the block is full), and a key power is a 3-limb
quantity, where the third limb has two information bits. The integer multiplication is of the
type 2-limb x 3-limb, plus an additional number of 64-bit additions in case of full message
blocks. The output is stored as a 5-limb quantity.

2. For the other hash functions, padded message blocks are defined to be 129-bit strings, where
the 129-th bit is 0. So for these hash functions, padded message blocks are stored as 2-limb
quantities. For BRWHash evaluation, the multiplier is a sum of a padded message block and a
key power, and so in general is a 131-bit quantity. The multiplicand is an intermediate result
which is kept partially reduced and stored as a 131-bit quantity. So a general multiplication
for BRWHash evaluation is of the type 3-limb x 3-limb and the output is stored as a 5-limb
quantity. For a 2-block message, BRW(τ ;M1,M2) = τ · M1 + M2, and in this case the
multiplication τ ·M1 is of the type 2-limb x 2-limb.

For both p = 2127 − 1 and p = 2130 − 5, the length block, i.e. the binary representation of the
length of the message, is stored as a 1-limb quantity (see Remark 5), and this is multiplied with the
key τ . Correspondingly, the multiplication involving the length block is of the type 1-limb x 2-limb.

Table 5 provides a summary of the general types of multiplications required by the various
hash functions for the two primes. In the table, (2-limb x 3-limb)+ denotes a 2-limb x 3-limb type
multiplication plus a number of 64-bit additions which arises due to the 129-th bit of a padded full
message block being 1. Multiplication by the length block and the 2-limb x 2-limb multiplication
required by BRWHash for a 2-block message for the prime 2130 − 5 are not shown in the table.

22

6.1 Size increase due to lazy reduction

The strategy of lazy reduction in BRW evaluation requires accumulating a number of outputs of
unreducedBRW computations. Such accumulation takes place at two places in Algorithm 1, namely
in the for loop of Steps 12 to 14 and in the for loop of Steps 21 to 23. In both these loops, a number
of elements from the stack are popped and added to the value of tmp. The result is not reduced.
We have mentioned that we use a 5-limb quantity to store the result of the accumulation. We
need to argue that a 5-limb quantity is sufficient for the purpose and does not cause any overflow.
Suppose that k is the number of elements that are popped from the stack and added to tmp. Then
k is at most the size of the stack. Recall from Theorem 4 that the maximum size of the stack is
blg `c− t+ 1 and so k ≤ blg `c− t+ 1. Assuming that messages are of lengths less than 264 bits, i.e.
L < 264, we have ` = dL/ne and so ` < 257 for n = 128 and ` < 258 for n = 120. Taking the smaller
of these bounds (i.e. restricting messages to have less than 257 blocks), we obtain k < 58− t. Since
2 ≤ t ≤ 5, we have k < 56. We need to argue that storing tmp as a 5-limb quantity is sufficient
to store the result of k additions, where k < 56. This argument is provided separately for the two
primes.

1. For p = 2127− 1, the multiplications are of the type 2-limb x 2-limb and the result is a 4-limb
quantity. Consequently, the value of tmp computed in Step 10 of Algorithm 1 is a 4-limb
quantity. So storing tmp as a 5-limb quantity allows the value of k to be up to 64.

2. For p = 2130 − 5, the multiplications are of the type 3-limb x 3-limb, where the 3-limb
quantities are at most 131-bit strings. Consequently, the value of tmp computed in Step 10 is
a 262-bit string which is stored as a 5-limb quantity. So there are a total of 64−6 = 58 bits in
the fifth limb (i.e. the most significant limb) which are unused. So for k < 56, accumulating
k quantities does not lead to any overflow.

In view of the above, for both the primes p = 2127 − 1 and p = 2130 − 5, storing tmp as a 5-limb
quantity is sufficient for all practical sized messages.

The strategy of lazy reduction for grouped evaluation of Poly with group size g requires accu-
mulating the results of g multiplications. Each addition increases the size of the result by one bit
and so accumulating the results of g multiplications, leads to an increase in size by g bits. In a
manner similar to the above, it can be argued that for g ≤ 56, using a 5-limb quantity to store
the result of the accumulation does not lead to an overflow. The bound of 56 for g is well past the
point where grouping leads to efficiency improvement for practical sized messages (see Section 5.1).

6.2 Integer multiplication

The Intel Skylake and later processors provide three instructions, namely mulx, adox and adcx,
which permit the implementation of the so-called double carry chain strategy for multi-limb integer
multiplication and squaring using the schoolbook method. The approach is outlined in two Intel
white papers [18, 17] using specific examples. General algorithms for multi-limb double carry chain
multiplication and squaring are described in [16]. We have used the algorithms in [16] to perform
the multiplications in Table 5. Since the number of limbs is small (2 or 3), Karatsuba multplication
will not be competitive with the schoolbook method.

23

6.3 Reduction

The prime p = 2127 − 1 is a Mersenne prime. Algorithm 4 of [16] provides a general method for
reduction modulo a Mersenne prime. This algorithm reduces the output of the integer multipli-
cation or squaring algorithm. Applied to p = 2127 − 1, Algorithm 4 of [16] will reduce a 4-limb
quantity to a 2-limb (more precisely, a 127-bit) quantity. However as described above, for our
present application, it is required to reduce a 5-limb quantity to a 2-limb one. This requires some
modifications to Algorithm 4 of [16] which somewhat increases the number of instructions required.
Our implementation of reduction modulo p = 2127 − 1 makes the required modifications. The
modifications are straightforward and so we skip the details.

The prime p = 2130 − 5 is a so-called pseudo-Mersenne prime. Algorithm 5 of [16] provides
a method of reduction modulo such a prime. Theorem 6.3 of [16] states the condition under
which Algorithm 5 applies. Let δ = 5 and α = 3 so that 2α−1 ≤ δ < 2α. Consider the 3-limb
representation of elements of Fp, where the first two limbs are η = 64 bits long and the third limb
is ν = 2 bits long. According to Theorem 6.3 of [16], a condition for Algorithm 5 of [16] to apply
is that α < ν + 1. This condition fails for the prime p = 2130− 5. So Algorithm 5 of [16] cannot be
applied to perform reduction modulo p = 2130−5. Below we describe a new method for performing
this reduction. Computation modulo the prime p = 2130 − 5 underlies the computation of the well
known hash function Poly1305. We have, however, not been able to locate the reduction method
that is described below in the literature.

Write the 5-limb quantity A to be reduced as A = a0+2130a1, where a0 is a 130-bit non-negative
integer and a1 is a non-negative integer. Then A ≡ a0 + 5a1 (mod 2130− 5). Write 5a1 = a1 + 4a1.
A key observation is that 4a1 can be obtained easily from the 5-limb representation of A. If we set
the two least significant bits of the third limb of A to 0, then the last three limbs (i.e. the three
most significant limbs) of A provide 4a1. From 4a1, the value of a1 can be obtained by a right
shift of two places. So our reduction strategy is the following. Given A, obtain a0, next obtain
4a1 as described and add to a0, then obtain a1 and add to the sum of a0 and 4a1. This gives
a0 + 5a1. From the above description of the size of representation of elements required for the lazy
implementation strategy, at least the 8 most signficant bits of the fifth limb of A are 0 for the prime
2130 − 5. So 4a1 is a 3-limb quantity, where at least the 8 most significant bits of the third limb of
4a1 are 0. The sum B = a0 +5a1 computed as a0 +4a1 +a1 results in a 3-limb quantity. Now write
B = b0 + 2130b1, where b0 is a 130-bit non-negative integer and b1 is a 1-limb non-negative integer
whose at least 8 most significant bits are 0. So 5b1 fits in a single limb. We have B ≡ b0 + 5b1
(mod 2130 − 5). The next step is to compute 5b1 and add to b0. This provides a 131-bit quantity.
Our partial reduction strategy is not to reduce this any further. It is only at the end of the entire
hash function computation, that a final reduction to a 130-bit quantity is performed.

6.4 Storage of key powers

For 2127−1, the key τ is a 126-bit string which is stored as a 2-limb quantity. The higher powers of
τ are 127-bit quantities and are also stored as 2-limb quantities. Since a 2-limb quantity requires
16 bytes to be stored, so for 2127 − 1 each of the key powers is stored as a 16-byte quantity.

For 2130 − 5, τ is a 128-bit string while the higher powers of τ are 130-bit quantities. To avoid
converting from byte representation to limb representation, the key powers are stored as multi-limb
quantities rather than multi-byte quantities. In the case of polyHash with g = 1, only τ is required
and it is stored as a 2-limb quantity requiring 16 bytes. For all other cases, along with τ other
higher key powers are required. In principle, τ can be stored as a 2-limb quantity and the higher

24

bytes
fld elts 2127 − 1 2130 − 5

g = 1 1 16 16
g = 4 4 64 96
g = 8 8 128 192
g = 16 16 256 384
g = 32 32 512 768

(a) Storage requirement of key powers for the evalua-
tion of polyHash.

bytes
fld elts 2127 − 1 2130 − 5

#blks = ` dlg `e 16dlg `e 24dlg `e
#blks = ` ≥ 4,
g = 4

1 + dlg `e 16 + 16dlg `e 24 + 24dlg `e

(b) Storage requirement of key powers for the evalu-
ation of BRWHash and t-BRWHash. The first row is
for BRWHash and t-BRWHash with g = 1, while the
second row is only for t-BRWHash with g = 4.

bytes
fld elts 2127 − 1 2130 − 5

d = 2, g = 1 3 48 72
d = 2, g = 4 7 112 168
d = 2, g = 8 14 224 336

d = 3, g = 1 4 64 96
d = 3, g = 4 8 128 192
d = 3, g = 8 15 240 360

d = 4, g = 1 5 80 120
d = 4, g = 4 9 144 216
d = 4, g = 8 16 256 384

d = 5, g = 1 6 96 144
d = 5, g = 4 10 160 240
d = 5, g = 8 17 272 408

(c) Storage requirement of key powers for the evalua-
tion of d-2LHash.

Table 6: Storage requirements of the different hash functions.

powers of τ as 3-limb quantities. The non-uniformity, however, makes access to the key powers less
efficient. So τ as well as the higher key powers are stored as 3-limb quantities. So each key power
requires 24 bytes to be stored.

For polyHash, the evaluation can be done by using groups of size g ≥ 1. For d-2LHash, the value
of d determines the number of key powers required for the BRW part of the computation. There
are two Poly computations in d-2LHash, and we have considered the same value of g for both of
these computations. Depending upon the values of d and g, d-2LHash will require to store a number
of key powers. BRWHash will require a number of key powers which depends upon the number
of blocks in the message. Similarly, the number of key powers required by t-BRWHash depends
on the number of blocks in the message and the value of g used to perform the Poly part of the
computation.

In Tables 6a, 6b and 6c, we provide the storage requirements of the various hash functions for
specific values of the parameters. This is provided in two ways, first as the number of field elements
that are required to be stored, and second as the number of bytes that are required to be stored.
For 2127 − 1, each key power is stored as a 2-limb quantity, and so the number of bytes required to
store all the key powers is 16 times the number of field elements. For 2130 − 5, other than the case
of polyHash with g = 1, in all other cases, each key power is stored as a 3-limb quantity, and so the
number of bytes required to store all the key powers is 24 times the number of field elements.

6.5 Code

We have developed assembly code for the four hash functions modulo the two primes. The various
options are as follows.

25

1. polyHash: Implementations with group size g = 1, 4, 8, 16 and 32.

2. BRWHash: Implementations with the parameter t in evalBRW taking the values 2 and 3.

3. t-BRWHash: Implementations with the parameter t = 2, 3, 4 and 5. The Poly part of the hash
function has been implemented with group size g = 1 and 4.

4. d-2LHash: Implementations with the parameter d = 2, 3, 4 and 5. There are two Poly parts
of the hash function. The same value of g has been used for both the parts. We have
implemented the Poly parts with g = 4 and 8.

The hash function polyHash1305 coincides with Poly1305 for messages whose lengths are mul-
tiples of 8 (i.e. messages which are a byte stream). There are several public implementations of
Poly1305. To the best of our knowledge, none of the implementations consider group size g to be
greater than 1. Also, none of the implementations uses the double carry chain method for inte-
ger multiplication or the reduction algorithm that we have used. So on Intel Broadwell and later
generation processors, our implementations provide new code for Poly1305.

The codes for our implementations of the hash functions are available from the following links.

https://github.com/kn-cs/polyHash

https://github.com/kn-cs/d2LHash

https://github.com/Sreyosi/EvalBRW-p1271

https://github.com/Sreyosi/EvalBRW-p1305

https://github.com/Sreyosi/t-BRWHash-p1271

https://github.com/Sreyosi/t-BRWHash-p1305

7 Trade-off between 2127 − 1 and 2130 − 5

Let p1 = 2127 − 1 and p2 = 2130 − 5.
There are several aspects of the trade-off. From the security point of view, it is required to

compare the AXU bounds. Suppose messages of length at most L bits are to be hashed. The
number of blocks is ` = dL/ne, where n = 120 for p1 and n = 128 for p2. Using ` in Table 2,
the AXU bound for polyHash1271 is about 2−132 · 16L/15, while the AXU bound for polyHash1305
is about 2−131 · L. Similarly, the AXU bounds for BRWHash1271, t-BRWHash1271, d-2LHash1271
and d-Hash1271 are all about 2−131 · 16L/15 + 2−125, while the AXU bounds for BRWHash1305,
t-BRWHash1305, d-2LHash1305 and d-Hash1305 are all about 2−130 ·L+ 2−124. So in all cases, the
AXU bounds for p1 is about half the AXU bounds for p2. This difference in the AXU bounds is
negligible.

From an implementation point of view, there are two aspects to be considered, namely storage
required for the key powers and the efficiency of computation. From Table 6, we see that other
than polyHash with g = 1, the number of bytes required to store the key powers in the case of p1

is two-thirds of the number of bytes required in the case of p2.
Next we consider the efficiency of computation. From Table 1, message blocks in the case of

p1 are 120-bit strings and in the case of p2 are 128-bit strings. So given a message, the number of
message blocks in the case of p1 is about 16/15 times the number of message blocks in the case
of p2. Consequently, the number of multiplications required by any of the four hash functions to
process a message in the case of p1 is about 16/15 times the number of multiplications in the case

26

https://github.com/kn-cs/polyHash
https://github.com/kn-cs/d2LHash
https://github.com/Sreyosi/EvalBRW-p1271
https://github.com/Sreyosi/EvalBRW-p1305
https://github.com/Sreyosi/t-BRWHash-p1271
https://github.com/Sreyosi/t-BRWHash-p1305

of p2. The fact that hashing in the case of p1 requires more multiplications than hashing in the
case of p2 is one dimension of the efficiency trade-off.

The other dimension of the efficiency trade-off is the time required for a single field multiplica-
tion. From Table 5, one may note that the multiplications in the case of p1 are all of 2-limb x 2-limb
type, while in the case of p2 these are either (2-limb x 3-limb)+ or 3-limb x 3-limb type. So the
integer multiplication part of a field multiplication is faster in the case of p1 than in the case of
p2. Further, since p1 is a Mersenne prime, reduction modulo p1 requires substantially fewer oper-
ations compared to reduction modulo p2. The combined effect of faster integer multiplication and
reduction is that a field multiplication modulo p1 is substantially faster than a field multiplication
modulo p2.

So the overall efficiency trade-off is that hashing in the case of p1 requires more field multiplica-
tions than hashing in the case of p2, while the cost of an individual field multiplication modulo p1

is less than that modulo p2. The question then is whether for p1 the faster speed of multiplication
compensates the requirement of more multiplications? Our timing results reported in Table 9 of
Section 8 shows that this is indeed the case by a very healthy margin.

To summarise, using p1 instead of p2 decreases the AXU bound by a negligible factor, and
provides significant implementation advantages in terms of requiring lower storage and faster com-
putation.

8 Timing results

There are two approaches to the implementation.

1. Pre-computed key powers. In this approach, the required key powers are pre-computed and
stored. The computation and storage may be for a particular session, or on a more long
term basis. With the pre-computed approach, the time for computing the key powers can be
ignored while considering the time for hashing a message.

2. On-the-fly: In this approach, the required key powers are computed on a per message basis.
Consequently, the time for generating the key powers is considered to be part of the entire
time for hashing a message.

Depending on the application at hand, one of the above two approaches will be desirable. To
understand the trade-off between the two approaches, in our timing experiments, we have obtained
time measurements for both the approaches.

The timing measurements were taken on a single core of an Intel Core i5-8250U Kaby Lake
processor running at 1.60GHz. During the experiments, turbo boost and hyperthreading options
were turned off. The OS was Ubuntu 20.05.5 LTS and the code was compiled using gcc version
10.3.0. The following flags were used during compilation.

-march=native -mtune=native -m64 -O3 -funroll-loops -fomit-frame-pointer

The various options for the implementation of the hash functions have been described in Sec-
tion 6.5. We have taken measurements for all the options of the four hash functions for both the
primes by varying the number of message blocks from 1 to 512. This resulted in a large number of
measurements. Providing all of these measurements in table form will require too much space. On
the other hand, plotting so many points on a graph will make it very difficult to understand the

27

msg blks
50 100 150 200 250 300 350 400 450 500

polyHash1271 g = 1 1.30 1.28 1.28 1.28 1.27 1.27 1.27 1.27 1.27 1.27
g = 8 0.66 0.64 0.65 0.63 0.63 0.63 0.63 0.62 0.62 0.62

0.80 0.71 0.69 0.66 0.66 0.65 0.65 0.64 0.64 0.63

d-2LHash1271
d = 4 0.65 0.59 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.54

0.94 0.74 0.66 0.62 0.61 0.59 0.59 0.57 0.57 0.57

d-2LHash1271
d = 5 0.66 0.58 0.58 0.55 0.54 0.55 0.53 0.54 0.53 0.53

0.98 0.74 0.68 0.63 0.60 0.60 0.58 0.58 0.57 0.56

t-BRWHash1271
t = 4 0.73 0.65 0.62 0.61 0.61 0.62 0.60 0.59 0.59 0.61

0.84 0.72 0.70 0.66 0.64 0.65 0.63 0.61 0.61 0.61

t-BRWHash1271
t = 5 0.77 0.66 0.65 0.61 0.63 0.61 0.62 0.59 0.58 0.59

0.92 0.71 0.70 0.65 0.71 0.63 0.64 0.62 0.62 0.61

Table 7: Cycles/byte measurements for 50 to 500 blocks for the various hash functions based on
the prime 2127 − 1.

comparative performances of the different hash functions. So we have instead adopted the following
approach.

In Appendix C, we provide the measurements for all the options where the number of message
blocks varies from 1 to 32. This provides comprehensive comparison among the hash functions for
short messages. From the large set of experimental results that we have recorded, we observed the
following for messages with 32 or more blocks.

1. t-BRWHash with t = 2 or t = 3 does not perform better than either t = 4 or t = 5.

2. d-2LHash with d = 2 or d = 3 does not perform better than either d = 4 or d = 5.

3. BRWHash does not perform better than either d-2LHash or t-BRWHash, for d = 4, 5 and
t = 4, 5.

In view of these observations, for 32 or more blocks, we do not provide the timings for BRWHash,
t-BRWHash with t = 2 or t = 3 and d-2LHash with d = 2 or d = 3. For the other hash functions,
the timing results are shown in Tables 7, 8 and 9. We note the following points regarding these
tables.

1. Timing results are provided as the number of cycles per byte.

2. Each cell of all the tables has two entries. The upper entry denotes the time required when
the key powers are pre-computed, while the lower entry denotes the time required when the
key powers are computed on-the-fly. The only exception is the case of polyHash with g = 1,
since in this case, other than the key itself, no other key powers are required, and so the issue
of pre-computed versus on-the-fly computation of key powers does not arise.

3. Other than Table 9, the time measurements in all the other tables are for a particular prime
and the message size is given as number of blocks. The comparison between the hash functions
based on the two primes is given in Table 9 and in this table, the message size is given as
number of bytes.

In Tables 7 and 8, we compare polyHash, d-2LHash with d = 4, 5, and t-BRWHash with t = 4, 5.
For polyHash we considered g = 1 and g = 8.

There are several dimensions to the comparison between the various options.

28

msg blks
50 100 150 200 250 300 350 400 450 500

polyHash1305 g = 1 1.81 1.79 1.78 1.78 1.78 1.77 1.77 1.77 1.76 1.75
g = 8 0.98 0.93 0.93 0.92 0.92 0.91 0.91 0.91 0.91 0.91

1.18 1.03 1.00 0.97 0.96 0.95 0.94 0.93 0.93 0.93

d-2LHash1305
d = 4 0.88 0.83 0.81 0.80 0.79 0.79 0.79 0.79 0.78 0.78

1.33 1.05 0.96 0.91 0.89 0.87 0.85 0.84 0.83 0.83

d-2LHash1305
d = 5 0.87 0.82 0.80 0.78 0.78 0.77 0.77 0.77 0.77 0.76

1.36 1.06 0.96 0.90 0.87 0.85 0.84 0.83 0.82 0.81
t-BRWHash1305 t = 4 0.95 0.87 0.84 0.84 0.83 0.83 0.82 0.82 0.82 0.81

1.16 0.98 0.95 0.96 0.89 0.87 0.87 0.85 0.85 0.84
t-BRWHash1305 t = 5 0.95 0.88 0.85 0.85 0.83 0.82 0.82 0.89 0.82 0.81

1.16 0.97 0.94 0.90 0.89 0.87 0.87 0.85 0.85 0.84

Table 8: Cycles/byte measurements for 50 to 500 blocks for the various hash functions based on
the prime 2130 − 5.

F2130−5 F2127−1
polyHash1305 d-2LHash1305 t-BRWHash1305 polyHash1271 d-2LHash1271 t-BRWHash1271

bytes g = 1 g = 8 d = 4 d = 5 t = 4 t = 5 g = 1 g = 8 d = 4 d = 5 t = 4 t = 5

10
5.94 5.98 12.66 12.89 9.11 9.11 5.43 5.57 10.17 10.19 7.38 7.39

20.22 48.48 51.51 12.40 11.92 14.11 32.55 34.38 9.99 9.85

50
3.11 2.54 3.07 3.09 2.45 2.45 2.11 1.61 2.73 2.71 2.11 2.12

5.51 10.32 10.92 4.22 3.50 3.68 7.22 7.54 2.99 2.93

100
2.42 1.61 2.03 2.03 1.51 1.51 1.62 1.03 1.70 1.72 1.34 1.34

3.14 5.67 5.95 2.61 2.25 2.07 3.94 4.11 1.87 1.82

500
1.90 1.04 1.00 0.97 1.04 1.03 1.35 0.72 0.71 0.68 0.81 0.81

1.35 1.72 1.75 1.45 1.30 0.92 1.16 1.18 0.99 1.03

1000
1.77 0.96 0.87 0.86 0.92 0.89 1.30 0.66 0.62 0.61 0.68 0.68

1.12 1.23 1.25 1.15 1.11 0.76 0.84 0.85 0.79 0.78

2000
1.79 0.94 0.81 0.80 0.86 0.84 1.29 0.66 0.58 0.57 0.63 0.65

1.02 0.99 0.99 0.99 1.02 0.71 0.69 0.69 0.70 0.69

3000
1.73 0.93 0.81 0.78 0.84 0.83 1.27 0.63 0.55 0.55 0.61 0.60

0.98 0.93 0.91 0.94 0.91 0.66 0.62 0.63 0.67 0.65

5000
1.72 0.91 0.79 0.77 0.82 0.81 1.27 0.63 0.54 0.55 0.61 0.60

0.95 0.87 0.85 0.89 0.87 0.65 0.59 0.60 0.63 0.65

Table 9: Cycles/byte measurements for 10 to 5000 bytes for the various hash functions based on
the primes 2127 − 1 and 2130 − 5.

29

8.1 Comparison between 2127 − 1 and 2130 − 5

The results show that for each of the hash functions, instantiation using 2127 − 1 is faster than
2130 − 5 in every possible scenario that we considered. Consider Table 9 which compares the
instantiations of the hash functions for the two primes for different length messages. For polyHash
with g = 1, the speed gain for a 10-byte message is about 10% and it increases to about 25% for
a 5000-byte message. For polyHash with g = 8 and pre-computed key powers, the speed gain for a
10-byte message is about 7% and it increases to about 30% for a 5000-byte message. For polyHash
with g = 8 with keys computed on-the-fly, the speed gain is about 30% for message lengths from
10 bytes to 5000 bytes. Similar substantial speed improvements are observed for all the other hash
functions.

8.2 Comparison between polyHash for g = 1 and g = 8

Table 7 provides the comparison for the prime 2127 − 1, while Table 8 provides the comparison for
the prime 2130−5. For messages having 50 or more blocks, there is a significant speed improvement
by considering g = 8 in comparison to g = 1. This holds irrespective of whether the key powers are
pre-computed or computed on-the-fly. For example, for the prime 2127− 1, the speed improvement
for a 50-block message is about 50% if the key powers are pre-computed and is about 38% if the key
powers are computed on-the-fly. For a 500-block message, the speed improvement for pre-computed
key powers remains about the same, while the speed improvement for on-the-fly computation of key
powers increases to about 50%. Similar significant speed improvement is observed for the prime
2130 − 5.

For messages having up to 32 blocks, the tables in Appendix C show that for very short messages,
if key powers are computed on-the-fly then there is a substantial loss of speed in using g > 1. This,
however, is expected since the time to compute the key powers is taken into the measurement, but
due to the small length of the message, the benefit of using the key powers cannot be obtained.
On the other hand, if the key powers are pre-computed, then substantial speed improvement is
observed for g = 4 and g = 8 over g = 1 for messages as small as having only 3 blocks.

8.3 Comparison between polyHash and the various BRW-based hash functions

From a theoretical standpoint, the number of integer multiplications required by polyHash is about
two times that in BRWHash and the number of reductions required is about four times that in
BRWHash. So one may expect BRWHash to perform about two times faster than polyHash. From
the tables in Appendix C, one may observe that compared to polyHash with g = 1, BRWHash
with pre-computed key powers achieve about 30% to 40% speed improvement for messages having
25 or more blocks. The picture, however, changes when polyHash is computed with g > 1. For
short messages, BRWHash no longer provides speed improvement over polyHash. See Remark 6 for
an explanation of the substantial speed gain for polyHash achieved by considering g > 1. If we
switch to d-2LHash with pre-computed key powers, then from Tables 7 and 8, we observe speed
improvements of around 10% over polyHash with g = 8 for messages having 50 or more blocks; if
the key powers are computed on-the-fly, then the speed improvements are observed for messages
having 150 or more blocks. A similar, though lower, speed improvement behaviour is observed for
t-BRWHash over polyHash.

The rationale for t-BRWHash has been explained in Section 5.3. The timings measurements
show that d-2LHash is in general faster than t-BRWHash. On the other hand, from Table 6c it

30

follows that for practical sized messages, the storage requirement for d-2LHash is more than that
required for t-BRWHash.

8.4 The hash function d-Hash

In Section 3.1, it was mentioned that polyHash is the fastest when the number of blocks is small,
and its performance lags behind the others when the number of blocks grows. This motivated the
design of the hash function d-Hash in (11) which applies polyHash when the number of blocks is
less than 2d and applies d-2LHash when the number of blocks is at least 2d. The AXU bound on
d-Hash is given by Theorem 3.

We put forward 4-Hash as a secure hash function which provides the speed benefit of polyHash
for short messages and the speed benefit of 4-2LHash for long messages. In particular, 4-Hash
applies polyHash when the number of blocks is less than 16 and applies 4-2LHash when the number
of blocks is at least 16. Instantiating 4-Hash with the prime 2127 − 1 gives us the hash function
4-Hash1271 which provides the fastest hashing (among all the options) for messages of all lengths.

8.5 Comparison between 4-Hash1271 and Poly1305

Presently, the fastest polynomial hash function over prime order fields is Poly1305. This is a widely
used hash function and is part of TLS. So it is important to determine what improvement is achieved
by the best construction in the present paper over Poly1305. As per our naming convention (see
Section 3.2), the hash function polyHash1305 is identical to Poly1305 for messages whose lengths
are multiples of eight.

Based on the discussion in Section 8.4, the most efficient hash function for messages of all sizes is
4-Hash1271. From Table 9, we observe that 4-Hash1271 is faster than polyHash1305 for messages of
all sizes, with the speed improvement ranging from about 8.5% (for 10-byte messages) to about 40%
(for 5-kilobyte messages). This makes 4-Hash1271 an attractive target for further implementation
studies to confirm whether the speed improvement over Poly1305 is indeed preserved for other
implementations and on other platforms.

9 Conclusion

A major finding of the present work is that for polynomial hashing over prime order fields, using
the prime 2127 − 1 results in significantly faster hashing compared to the prime 2130 − 5. While
this finding is based on our specific implementations for Intel processors, we do not envisage any
platform where using 2127− 1 will result in slower hashing than using 2130− 5. Confirming (or not)
this prediction is a possible direction of future implementation work.

The other major finding is that a judicious mix of Poly and BRW polynomials can lead to signif-
icant speed improvement over using only Poly. A direction of future work is to examine whether the
speed improvement holds for SIMD implementations. For Poly1305, SIMD implementations have
been reported in [13, 1, 5]. Possible improved SIMD implementation of Poly1305 and new SIMD
implementation of polyHash1271 remains to be done. For BRW, parallel hardware implementation
for binary extension fields have been reported in [9]. Whether these can be translated to SIMD
implementation in software, or whether there is a different method of implementing BRW using
SIMD in software is a topic for future research. The other direction of possible future implemen-
tation work is to obtain implementations of the hash functions proposed in this paper on ARM

31

processors.

Acknowledgement

We are grateful to the reviewers for their detailed comments which have helped in improving the
paper.

References

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos,
Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last mile: high-assurance and
high-speed cryptographic implementations. CoRR, abs/1904.04606, 2019.

[2] Daniel J. Bernstein. Floating-point arithmetic and message authentication, 2004. https:

//cr.yp.to/papers.html#hash127.

[3] Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri Gilbert and
Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in Computer Science, pages
32–49. Springer, 2005.

[4] Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.

yp.to/papers.html#pema.

[5] Sreyosi Bhattacharyya and Palash Sarkar. Improved SIMD implementation of Poly1305. IET
Inf. Secur., 14(5):521–530, 2020.

[6] Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben J. M. Smeets. On
families of hash functions via geometric codes and concatenation. In Stinson [23], pages 331–
342.

[7] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst.
Sci., 18(2):143–154, 1979.

[8] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A fast single-key two-level universal
hash function. IACR Trans. Symmetric Cryptol., 2017(1):106–128, 2017.

[9] Debrup Chakraborty, Cuauhtemoc Mancillas-López, Francisco Rodŕıguez-Henŕıquez, and
Palash Sarkar. Efficient hardware implementations of BRW polynomials and tweakable en-
ciphering schemes. IEEE Trans. Computers, 62(2):279–294, 2013.

[10] Debrup Chakraborty, Cuauhtemoc Mancillas-López, and Palash Sarkar. STES: A stream
cipher based low cost scheme for securing stored data. IEEE Trans. Computers, 64(9):2691–
2707, 2015.

[11] Bert den Boer. A simple and key-economical unconditional authentication scheme. Journal of
Computer Security, 2:65–72, 1993.

[12] Sebati Ghosh and Palash Sarkar. Evaluating Bernstein-Rabin-Winograd polynomials. Designs,
Codes, and Cryptography, 87(2-3):527–546, 2019.

32

https://cr.yp.to/papers.html#hash127
https://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#pema

[13] Martin Goll and Shay Gueron. Vectorization of Poly1305 message authentication code. In 2015
12th International Conference on Information Technology - New Generations, pages 145–150.
IEEE, April 2015. 10.1109/ITNG.2015.28.

[14] Shay Gueron. AES-GCM-SIV implementations (128 and 256-bit). https://github.com/

Shay-Gueron/AES-GCM-SIV, 2016.

[15] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance conventional
authenticated encryption mode. In Bimal K. Roy and Willi Meier, editors, Fast Software En-
cryption, 11th International Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised
Papers, volume 3017 of Lecture Notes in Computer Science, pages 408–426. Springer, 2004.

[16] Kaushik Nath and Palash Sarkar. Efficient arithmetic in (pseudo-)Mersenne prime order fields.
Advances in Mathematics of Communications, 16(2):303–348, 2022.

[17] E. Ozturk, J. Guilford, and V. Gopal. Large inte-
ger squaring on Intel architecture processors, intel white paper.
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-
integer-squaring-ia-paper.pdf, 2013.

[18] E. Ozturk, J. Guilford, V. Gopal, and W. Feghali. New instructions support-
ing large integer arithmetic on Intel architecture processors, intel white paper.
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

ia-large-integer-arithmetic-paper.pdf, 2012.

[19] Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational prepara-
tion. Communications on Pure and Applied Mathematics, 25:433–458, 1972.

[20] Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash func-
tions. IEEE Transactions on Information Theory, 55(10):4749–4759, 2009.

[21] Palash Sarkar. A trade-off between collision probability and key size in universal hashing using
polynomials. Des. Codes Cryptography, 58(3):271–278, 2011.

[22] Palash Sarkar. A new multi-linear universal hash family. Des. Codes Cryptography, 69(3):351–
367, 2013.

[23] Douglas R. Stinson, editor. Advances in Cryptology - CRYPTO ’93, 13th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings,
volume 773 of Lecture Notes in Computer Science. Springer, 1994.

[24] Richard Taylor. An integrity check value algorithm for stream ciphers. In Stinson [23], pages
40–48, https://link.springer.com/content/pdf/10.1007/3-540-48329-2_4.pdf.

33

https://github.com/Shay-Gueron/AES-GCM-SIV
https://github.com/Shay-Gueron/AES-GCM-SIV
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48329-2_4.pdf

A Straight line code for computing BRW

For d-2LHash, we provide examples of straight line codes to compute BRW for various values of
d. While these are illustrative, our implementations do not exactly correspond to these straight
line codes. Through experimentation, we developed variations which are more efficient in practice
though the total number of integer multiplications and reductions remain unchanged.

Case d = 2 and δ = 3: The output of BRWτ (M1,M2,M3) is the following expression.

(M1 + τ)(M2 + τ2) +M3.

A straight line code to compute this expression using one integer multiplication and one reduction
is the following.

1. T1 ←M1 + τ ; T2 ←M2 + τ2

2. T2 ← T1T2
3. T2 ← T2 +M3

4. Output reduce(T2)

Case d = 3 and δ = 7: The output of BRWτ (M1, . . . ,M7) is the following expression.

((M1 + τ)(M2 + τ2) +M3)(M4 + τ4) + (M5 + τ)(M6 + τ2) +M7.

A straight line code to compute this expression using three integer multiplication and two reduc-
tions is the following.

1. T1 ←M1 + τ ; T2 ←M2 + τ2; T3 ←M5 + τ ; T4 ←M6 + τ2

2. T2 ← T1T2; T4 ← T3T4
3. T2 ← T2 +M3; T4 ← T4 +M7

4. T1 ←M4 + τ4

5. T2 ← reduce(T2); T2 ← T1T2
6. T4 ← T2 + T4
7. Output reduce(T4)

Case d = 4 and δ = 15: The output of BRWτ (M1, . . . ,M15) is the following expression.

(((M1 + τ)(M2 + τ2) +M3)(M4 + τ4) + (M5 + τ)(M6 + τ2) +M7)(M8 + τ8)

+((M9 + τ)(M10 + τ2) +M11)(M12 + τ4) + (M13 + τ)(M14 + τ2) +M15.

A straight line code to compute this expression using seven integer multiplication and four reduc-
tions is the following.

1. T1 ←M1 + τ ; T2 ←M2 + τ2; T3 ←M5 + τ ; T4 ←M6 + τ2;
T5 ←M9 + τ ; T6 ←M10 + τ2; T7 ←M13 + τ ; T8 ←M14 + τ2

2. T2 ← T1T2; T4 ← T3T4; T6 ← T5T6; T8 ← T7T8
3. T2 ← T2 +M3; T4 ← T4 +M7; T6 ← T6 +M11; T8 ← T8 +M15

4. T1 ←M4 + τ4; T5 ←M12 + τ4;
5. T2 ← reduce(T2); T2 ← T1T2; T6 ← reduce(T6); T6 ← T5T6
6. T4 ← T2 + T4; T8 ← T6 + T8
7. T3 ←M8 + τ8

8. T4 ← reduce(T4); T4 ← T3T4
9. T8 ← T4 + T8
10. Output reduce(T8)

Case d = 5 and δ = 31: The output of BRWτ (M1, . . . ,M31) is the following expression.

((((M1 + τ)(M2 + τ2) +M3)(M4 + τ4) + (M5 + τ)(M6 + τ2) +M7)(M8 + τ8)

+((M9 + τ)(M10 + τ2) +M11)(M12 + τ4) + (M13 + τ)(M14 + τ2) +M15)(M16 + τ16)

+(((M17 + τ)(M18 + τ2) +M19)(M20 + τ4) + (M21 + τ)(M22 + τ2) +M23)(M24 + τ8)

+((M25 + τ)(M26 + τ2) +M27)(M28 + τ4) + (M29 + τ)(M30 + τ2) +M31.

A straight line code to compute this expression using fifteen integer multiplication and eight
reductions is the following.

34

1. T1 ←M1 + τ ; T2 ←M2 + τ2; T5 ←M5 + τ ; T6 ←M6 + τ2

T9 ←M9 + τ ; T10 ←M10 + τ2

2. T2 ← T1T2; T6 ← T5T6; T10 ← T9T10
3. T13 ←M13 + τ ; T14 ←M14 + τ2; T17 ←M17 + τ ; T18 ←M18 + τ2

T21 ←M21 + τ ; T22 ←M22 + τ2

4. T14 ← T13T14; T18 ← T17T18; T22 ← T21T22
5. T25 ←M25 + τ ; T26 ←M26 + τ2; T29 ←M29 + τ ; T30 ←M30 + τ2

T2 ← T2 +M3; reduce(T2); T4 ←M4 + τ4

6. T4 ← T2T4; T26 ← T25T26; T30 ← T29T30
7. T10 ← T10 +M11; reduce(T10); T12 ←M12 + τ4; T20 ←M20 + τ4

T18 ← T18 +M19; reduce(T18); T8 ←M8 + τ8; T6 ← T6 +M7; T6 ← T4 + T6; reduce(T6)
8. T12 ← T10T12; T20 ← T18T20; T8 ← T6T8
9. T28 ←M28 + τ4; T26 ← T26 +M27; reduce(T26); T24 ←M24 + τ8; T22 ← T22 +M23; reduce(T22)

T16 ←M16 + τ16; T14 ← T14 +M15; T14 ← T12 + T14; T14 ← T8 + T14; reduce(T14)
10. T28 ← T26T28; T24 ← T22T24; T16 ← T14T16
11. T30 ← T30 +M31; T30 ← T28 + T30; T30 ← T24 + T30; T30 ← T16 + T30
12. Output reduce(T30)

B Correctness and complexity of Algorithm 1

We require the following result from [12].

Lemma 6 (Lemma 2 of [12]). Let t ≥ 2 be an integer. For any l ≥ 2t, write⌊
l

2t

⌋
= 2k1 + 2k2 + · · ·+ 2ks , (16)

where k1, . . . , ks are integers such that k1 > k2 > · · · > ks ≥ 0. Let K0 = 0 and for  = 0, . . . , s− 1,
let K+1 = K + 2t+k+1. Then

unreducedBRW(τ ;M1, . . . ,Ml)

= unreducedBRW(τ ;MK0+1, . . . ,MK1) + unreducedBRW(τ ;MK1+1, . . . ,MK2)

+ · · ·+ unreducedBRW(τ ;MKs−1+1, . . . ,MKs) + unreducedBRW(τ ;MKs+1, . . . ,Ml). (17)

It is easy to see that for l > 2, Steps 3 to 7 of Algorithm 1 ensure that keyPow[j] = τ2j ,
for j = 1, . . . , blg lc. The main result required to argue the correctness of Algorithm 1 is the
following which shows that the partial results are correctly computed and stored. This result is the
counterpart of Lemma 5 of [12].

Lemma 7. Let t ≥ 2 and l ≥ 2t. Let the loop counter i ∈ {1, . . . , imax}, with imax = bl/2tc, in
Step 9 of Algorithm 1 be written as

i = 2ki,1 + 2ki,2 + · · ·+ 2ki,si (18)

where ki,1 > ki,2 > · · · > ki,si ≥ 0. Let Ki,0 = 0 and for  = 0, . . . , si−1, let Ki,+1 = Ki,+2t+ki,+1.
After i iterations of the loop given by Steps 9 to 17, the following properties hold:

top = si − 1, and for  ∈ {0, . . . , si − 1}, stack[] = unreducedBRW(τ ;MKi,+1, . . . ,MKi,+1).

Proof. First note that from the definition of Ki,, we have

Ki,0 = 0, Ki,1 = 2t+ki,1 ,Ki,2 = 2t+ki,1 + 2t+ki,2 , . . . ,Ki,si = 2t+ki,1 + · · ·+ 2t+ki,si = 2t · i. (19)

35

The proof is by induction on i ≥ 1. It mirrors the proof of Lemma 5 of [12], with modifications
to handle the different manner in which the partial results are stored and accessed by Algorithm 1
from the algorithm in [12].

The base case is i = 1. In this case, s1 = 1, k1,1 = 0 and K1,1 = 2t. The variable tmp is set to
unreducedBRW(τ ;M1, . . . ,M2t−1); the variable k is set to ntz(1) = 0 and so the loop in Steps 12
to 14 is not executed. In Step 15, tmp is updated to unreducedMult(reduce(tmp),M2t + keyPow[t]).
In Step 16, the variable top is incremented to 0 (from -1) and stack[0] is assigned the value of tmp.
At the end of the first iteration, the value of top is 0 = s1 − 1. The argument for the base case of
i = 1 will be completed if we are able to show that

unreducedMult(reduce(unreducedBRW(τ ;M1, . . . ,M2t−1)),M2t + keyPow[t])

equals unreducedBRW(τ ;M1, . . . ,M2t). This equality follows from the definition of unreducedBRW
(see Section 5.2).

For the inductive step suppose the result holds for i = 2ki,1 + 2ki,2 + · · · + 2ki,si ≥ 1. We show
that the result holds for i+ 1. We have

i+ 1 = 2ki,1 + 2ki,2 + · · ·+ 2ki,si + 1 = 2ki+1,1 + 2ki+1,2 + · · ·+ 2ki+1,si+1 .

Note that si+1 can be smaller than si. For example, if i = 11 = 23 + 2 + 1, then s11 = 3, and
i+ 1 = 12 = 23 + 22 with s12 = 2. Such a situation arises when i is odd. So the proof now divides
into two cases of i even and i odd.

First suppose that i is even, since this is the simpler of the two cases. Since i is even, ki,si > 0
and so i+ 1 = 2ki,1 + 2ki,2 + · · ·+ 2ki,si + 1 leading to si+1 = si + 1, ki+1,1 = ki,1, . . . , ki+1,si = ki,si
and ki+1,si+1 = 0. So

Ki+1,1 = Ki,1, . . . ,Ki+1,si = Ki,si and Ki+1,si+1 = Ki,si + 2t = 2t(i+ 1), (20)

where we use (19) to note that Ki,si = 2t · i.
By the induction hypothesis, at the end of the i-th iteration, the value of top is si − 1 and

stack[] = unreducedBRW(τ ;MKi,+1, . . . ,MKi,+1) for  ∈ {0, . . . , si− 1}. In the (i+ 1)-st iteration,
Step 10 sets tmp to unreducedBRW(τ ;M2t·i+1, . . . ,M2t(i+1)−1), i.e. to

unreducedBRW(τ ;MKi,si+1, . . . ,MKi+1,si+1
−1).

Since i+ 1 is odd, ntz(i+ 1) = 0, so Step 11 sets k to 0 and as a result, the loop in Steps 12 to 14
is not executed. Step 15 updates tmp to

unreducedMult(reduce(unreducedBRW(τ ;MKi,si+1, . . . ,MKi+1,si+1
−1)),M2t(i+1) + keyPow[t])

= unreducedMult(reduce(unreducedBRW(τ ;MKi,si+1, . . . ,MKi+1,si+1
−1)),M2t(i+1) + τ2t). (21)

Step 16 increments top to si = si+1 − 1 and sets stack[si+1 − 1] to the value in (21). From (19),
Ki,si = 2t · i and from (20), Ki+1,si+1 = 2t(i+ 1). So the expression given by (21) can be written as

unreducedMult(reduce(unreducedBRW(τ ;M2t·i+1, . . . ,M2t(i+1)−1)),M2t(i+1) + τ2t). (22)

The number of blocks involved in (22) is 2t and so using the definition of unreducedBRW, we have

unreducedMult(reduce(unreducedBRW(τ ;M2t·i+1, . . . ,M2t(i+1)−1)),M2t(i+1) + τ2t)

= unreducedBRW(τ ;M2t·i+1, . . . ,M2t(i+1))

= unreducedBRW(τ ;MKi+1,si+1−1+1, . . . ,MKi+1,si+1
).

(23)

36

To see (23), we note that si = si+1− 1 and so Ki+1,si+1−1 = Ki+1,si = Ki,si = 2t · i and Ki+1,si+1 =
2t(i + 1). Putting together (21), (22) and (23), we see that stack[si+1 − 1] contains the value as
stated in the result. So at the end of the (i + 1)-st iteration, the value of top and the entries of
stack are as stated in the result.

Now suppose that i is odd. This case is more complicated since in this case i + 1 is even and
in the (i+ 1)-st iteration, the value of k in Step 11 will be positive and the loop in Steps 12 to 14
will be executed. Since i is odd, we have ki,si = 0. Let β ≥ 1 be such that ki,si = 0, ki,si−1 =
1, . . . , ki,si−β+1 = β − 1 and ki,si−β > β. Then we can write

i = 20 + 21 + · · ·+ 2β−1 + 2ki,si−β + · · ·+ 2ki,1 and i+ 1 = 2β + 2ki,si−β + · · ·+ 2ki,1 ,

Consequently, si+1 = si − β + 1, ki+1,1 = ki,1, . . . , ki+1,si−β = ki,si−β and ki+1,si+1 = ki+1,si−β+1 =
β. So

Ki+1,0 = Ki,0 = 0, . . . ,Ki+1,si−β = Ki,si−β and Ki+1,si+1 = Ki+1,si−β + 2t+β.

By the induction hypothesis, at the end of the i-th iteration, top = si−1 and for  ∈ {0, . . . , si−1},
stack[] = unreducedBRW(τ ;MKi,+1, . . . ,MKi,+1). For  = si − β, . . . , si − 1, let

X = unreducedBRW(τ ;MKi,+1, . . . ,MKi,+1).

Note that for ı = 0, . . . , β − 1, 2t+ı blocks are used in the computation of Xsi−ı−1.
Let us now consider what happens in the (i + 1)-st iteration. In Step 10, tmp is assigned the

value Y = unreducedBRW(τ ;M2t·i+1, . . . ,M2t(i+1)−1). Note that the computation of Y involves
2t − 1 blocks. From the expression for i + 1 given above and the condition that ki,si−β > β, we
have ntz(i+ 1) = β. So Step 11 sets k to β. The loop in Steps 12 to 14 is executed β times which
removes β elements Xsi−β, . . . , Xsi−1 from the top of the stack and adds these to the value of tmp.
At the end of this loop, the value of top is si − 1 − β and this value is incremented in Step 16 so
that at the end of the (i + 1)-st iteration, the value of top is si − β = si+1 − 1 as required. For
 ∈ {0, . . . , si − β − 1}, the value of stack[] does not change, and in Step 16, the new value of
stack[si − β] is set. Our proof will be complete if we can argue that the values in stack at the end
of the (i+ 1)-st iteration are as stated in the result. For  = 0, . . . , si − β − 1, the value in stack[]
at the end of the (i + 1)-st round is the same as that at the end of the i-th round and this value
is unreducedBRW(τ ;MKi,+1, . . . ,MKi,+1). As argued above, Ki+1, = Ki, for  = 0, . . . , si − β. So
the values in stack[],  = 0, . . . , si − β − 1, at the end of the (i + 1)-st round are as stated in the
result. Noting that si+1 − 1 = si − β, the value in stack[si+1 − 1] at the end of the (i+ 1)-st round
is

unreducedMult(reduce(Xsi−β + · · ·+Xsi−1 + Y), (M2t(i+1) + keyPow[t+ β]))

= unreducedMult(reduce(Xsi−β + · · ·+Xsi−1 + Y), (M2t(i+1) + τ2t+β)). (24)

The X’s are the outputs of unreduced BRW computations on consecutives blocks. Further, as
mentioned above, 2t+β−1 blocks are used in the computation of Xsi−β; 2t+β−2 blocks are used in
the computation of Xsi−β+1; and so on, finally 2t blocks are used in the computation of Xsi−1.
The quantity Y is the output of an unreduced BRW computation on 2t − 1 consecutive blocks

37

immediately following the blocks used in the computation of the Xı’s. So we have

Xsi−β + · · ·+Xsi−1 + Y

= unreducedBRW(τ ;MKi,si−β+1, . . . ,MKi,si−β+1
)

+unreducedBRW(τ ;MKi,si−β+1+1, . . . ,MKi,si−β+2
)

+ · · ·
+unreducedBRW(τ ;MKi,si−1+1, . . . ,MKi,si

)

+unreducedBRW(τ ;MKi,si+1, . . . ,M2t(i+1)−1)

= unreducedBRW(τ ;MKi,si−β+1, . . . ,M2t(i+1)−1)

= unreducedBRW(τ ;MKi+1,si+1−1+1, . . . ,MKi+1,si+1
−1). (25)

The last but one equality follows from Lemma 6 and the last equality follows from Ki+1,si+1−1 =
Ki+1,si−β = Ki,si−β and Ki+1,si+1 = 2t(i+ 1). Using (25) in (24), we obtain

unreducedMult(reduce(Xsi−β + · · ·+Xsi−1 + Y), (M2t(i+1) + keyPow[t+ β]))

= unreducedBRW(τ ;MKi+1,si+1−1+1, . . . ,MKi+1,si+1
).

This completes the proof.

Proof of Theorem 4. To show that Algorithm 1 correctly computes BRW(τ ;M1, . . . ,Ml), it is suf-
ficient to show that the value of tmp in Step 24 is equal to unreducedBRW(τ ;M1, . . . ,Ml). The
argument is similar to the proof of Theorem 1 of [12] with modifications required to handle the
different manner in which partial results are stored.

If l < 2t, then the loop in Steps 9 to 23 is not executed and in Step 19, tmp is assigned the
value unreducedBRW(τ ;M1, . . . ,Ml) which shows the result for l < 2t. So suppose l ≥ 2t and let

bl/2tc = 2k1 + · · ·+ 2ks ,

K0 = 0, K1 = 2t+k1 , K2 = 2t+k1 + 2t+k2 , . . . ,Ks = 2t+k1 + · · ·+ 2t+ks . Let r = l mod 2t and write
l = 2t(2k1 + · · ·+ 2ks) + r so that Ks = l − r. From Lemma 6 we have

unreducedBRW(τ ;M1, . . . ,Ml)

= unreducedBRW(τ ;MK0+1, . . . ,MK1) + · · ·+ unreducedBRW(τ ;MKs−1+1, . . . ,MKs)

+unreducedBRW(τ ;MKs+1, . . . ,Ml)

= unreducedBRW(τ ;MK0+1, . . . ,MK1) + · · ·+ unreducedBRW(τ ;MKs−1+1, . . . ,MKs)

+unreducedBRW(τ ;Ml−r+1, . . . ,Ml). (26)

From Lemma 7, at the end of loop from Steps 9 to 18, top = s−1 and for  = 0, . . . , s−1, stack[] =
unreducedBRW(τ ;MK+1, . . . ,MK+1). Step 19 assigns unreducedBRW(τ ;Ml−r+1, . . . ,Ml) to tmp.
The value of i in Step 20 is set to wt(bl/2tc) = s. The loop from Steps 21 to 23 adds the values of
stack[],  = 0, . . . , s− 1, to tmp. So in Step 24, the value of tmp is given by (26). This completes
the proof of correctness.

The argument for the operation counts are exactly the same as in the proof of Theorem 2 of [12].
From Lemma 7, the maximum value of top is

max
1≤i≤bl/2tc

si − 1 = max
1≤i≤bl/2tc

wt(i)− 1. (27)

38

Claim: For l ≥ 2t,

max
1≤i≤bl/2tc

wt(i) ≤ blg lc − t+ 1. (28)

Proof of claim: Note that the maximum on the left hand side of (28) is achieved for the value of
i which is maximum in the given range and is of the form one less than some power of two. For
l = 2t, it can be easily verified that equality holds in (28). For l = 2t1 for some t1 > t, the left
hand side of (28) equals wt(2t1−t − 1) = t1 − t, while the right hand side of (28) equals t1 − t+ 1.
For t1 ≥ t and 2t1 < l < 2t1+1, the right hand side of (27) equals t1 − t + 1. Also, we have
2t1−t ≤ bl/2tc ≤ 2t1−t+1 − 1 and so the left hand side of (28) is at most t1 − t+ 1.

Using (28) in (27), we obtain the maximum value of top to be

max
1≤i≤bl/2tc

wt(i)− 1 ≤ blg lc − t. (29)

So the maximum size of stack at any point in the algorithm is at most blg lc− t+1. (Note that (29)
is tight, for example one may choose l = 255 and t = 3; On the other hand, for l = 256 and t = 3,
the bound is loose, so one cannot replace the inequality by equality.)

C Timing measurements for messages with few blocks

For each prime, the measurements for the different hash functions are divided into four tables,
providing measurements for block sizes from 1 to 8, from 9 to 16, from 17 to 24, and from 25 to
32. The explanation of the entries in the tables are the same as that mentioned in Section 8.

39

msg blks
1 2 3 4 5 6 7 8

polyHash1271

g = 1 3.35 2.23 1.90 1.73 1.65 1.58 1.54 1.50
g = 4 3.38 2.27 1.52 1.23 1.24 1.08 0.98 0.95

5.65 3.03 2.13 1.77 1.65 1.44 1.30 1.23
g = 8 3.38 2.28 1.55 1.24 1.07 0.99 0.90 0.89

9.31 5.36 3.79 2.97 2.47 2.14 1.92 1.74
g = 16 3.38 2.28 1.56 1.24 1.07 0.98 0.91 0.86

19.24 10.04 6.85 5.24 4.33 3.71 3.25 2.91
g = 32 3.38 2.28 1.55 1.23 1.07 0.98 0.91 0.88

41.94 21.33 14.43 10.93 8.87 7.50 6.51 5.77

BRWHash1271

t = 2 4.49 2.74 1.87 2.22 1.93 1.61 1.41 1.40
4.99 3.39 2.23 2.72 2.29 1.95 1.67 1.74

t = 3 4.44 2.77 1.91 1.80 1.47 1.27 1.21 1.40
7.60 3.07 2.10 2.19 1.81 1.55 1.37 1.70

d-2LHash1271

d = 2 5.48 3.15 1.90 1.62 1.45 1.27 1.22 1.14
14.50 7.78 4.88 3.87 3.30 2.78 2.51 2.32

d = 3 6.63 3.60 2.58 2.16 1.85 1.62 1.35 1.20
20.47 10.45 7.163 5.62 4.59 3.92 3.28 2.88

d = 4 6.58 3.59 2.56 2.15 1.85 1.65 1.59 1.39
21.52 11.01 7.52 5.88 4.82 4.11 3.72 3.26

d = 5 6.57 3.58 2.57 2.16 1.85 1.64 1.59 1.40
22.75 11.62 7.94 6.20 5.07 4.32 3.88 3.40

t-BRWHash1271

t = 2 4.90 2.84 2.13 2.16 2.05 1.75 1.58 1.38
9.93 5.29 3.60 3.62 3.23 2.72 2.47 2.18

t = 3 4.99 2.87 2.10 1.71 1.54 1.41 1.30 1.40
6.56 3.71 2.65 2.40 2.28 1.92 1.75 1.85

t = 4 4.90 2.83 2.07 1.71 1.61 1.41 1.28 1.20
6.50 3.71 2.69 2.37 2.29 1.91 1.73 1.75

t = 5 4.99 2.88 2.11 1.77 1.59 1.51 1.33 1.24
6.46 3.81 2.66 2.38 2.29 1.92 1.82 1.72

Table 10: Cycles/byte measurements for 1 to 8 blocks for the various hash functions based on the
prime 2127 − 1.

40

msg blks
9 10 11 12 13 14 15 16

polyHash1271

g = 1 1.48 1.45 1.44 1.42 1.41 1.40 1.39 1.38
g = 4 0.95 0.91 0.86 0.84 0.86 0.84 0.81 0.80

1.20 1.13 1.07 1.02 1.03 1.00 0.96 0.94
g = 8 0.90 0.87 0.83 0.81 0.79 0.84 0.81 0.75

1.67 1.55 1.46 1.38 1.32 1.27 1.22 1.19
g = 16 0.83 0.81 0.82 0.76 0.81 0.73 0.72 0.82

2.67 2.45 2.29 2.14 2.05 1.95 1.84 1.81
g = 32 0.82 0.81 0.77 0.76 0.75 0.81 0.78 0.78

5.18 4.73 4.35 4.03 3.78 3.57 3.37 3.21

BRWHash1271

t = 2 1.34 1.20 1.10 1.12 1.13 1.03 0.99 1.00
1.61 1.49 1.34 1.77 1.30 1.32 1.15 1.25

t = 3 1.33 1.20 1.09 1.14 1.08 1.01 0.98 1.02
1.54 1.43 1.34 1.35 1.23 1.18 1.12 1.22

d-2LHash1271

d = 2 1.02 1.02 0.99 0.89 0.91 0.90 0.82 0.83
2.04 1.92 1.82 1.66 1.59 1.55 1.43 1.39

d = 3 1.11 1.04 1.07 1.05 0.98 0.91 0.90 0.88
2.60 2.39 2.30 2.16 2.02 1.88 1.79 1.72

d = 4 1.30 1.25 1.19 1.22 1.14 1.07 0.87 0.84
2.95 2.72 2.51 2.41 2.27 2.13 1.85 1.75

d = 5 1.29 1.21 1.17 1.15 1.10 1.06 1.09 1.02
3.08 2.82 2.61 2.49 2.34 2.20 2.15 2.03

t-BRWHash1271

t = 2 1.45 1.37 1.25 1.11 1.15 1.09 1.05 1.03
2.14 1.93 1.79 1.64 1.65 1.53 1.47 1.45

t = 3 1.42 1.32 1.22 1.18 1.34 1.11 1.07 0.99
1.81 1.65 1.54 1.46 1.48 1.39 1.34 1.28

t = 4 1.26 1.19 1.12 1.08 1.07 1.03 0.99 0.98
1.73 1.57 1.48 1.40 1.48 1.35 1.29 1.31

t = 5 1.32 1.21 1.15 1.09 1.07 1.05 1.02 0.99
1.77 1.62 1.51 1.40 1.45 1.37 1.29 1.31

Table 11: Cycles/byte measurements for 9 to 16 blocks for the various hash functions based on the
prime 2127 − 1.

41

msg blks
17 18 19 20 21 22 23 24

polyHash1271

g = 1 1.37 1.37 1.37 1.36 1.36 1.35 1.35 1.34
g = 4 0.83 0.81 0.80 0.77 0.80 0.77 0.77 0.76

0.96 0.93 0.91 0.88 0.90 0.87 0.87 0.85
g = 8 0.77 0.76 0.74 0.74 0.72 0.73 0.72 0.71

1.17 1.13 1.10 1.07 1.05 1.03 1.01 0.99
g = 16 0.83 0.80 0.79 0.78 0.77 0.76 0.76 0.75

1.77 1.69 1.63 1.59 1.53 1.50 1.46 1.42
g = 32 0.82 0.69 0.77 0.67 0.66 0.67 0.66 0.66

3.09 2.92 2.82 2.67 2.61 2.55 2.44 2.36

BRWHash1271

t = 2 0.99 0.98 0.89 0.92 0.90 0.94 0.87 0.89
1.20 1.15 1.09 1.14 1.09 1.09 1.01 1.05

t = 3 0.96 0.94 0.90 0.92 0.92 0.88 0.86 0.87
1.17 1.14 1.10 1.11 1.07 1.05 0.99 1.00

d-2LHash1271

d = 2 0.82 0.80 0.80 0.79 0.77 0.77 0.76 0.74
1.36 1.30 1.28 1.25 1.21 1.19 1.16 1.12

d = 3 0.85 0.86 0.84 0.84 0.81 0.79 0.79 0.76
1.64 1.60 1.55 1.51 1.45 1.40 1.38 1.32

d = 4 0.82 0.80 0.81 0.80 0.79 0.81 0.79 0.78
1.68 1.61 1.58 1.53 1.48 1.48 1.42 1.39

d = 5 1.00 0.97 0.95 0.95 0.93 0.91 0.94 0.90
1.94 1.86 1.79 1.76 1.70 1.64 1.63 1.56

t-BRWHash1271

t = 2 1.07 1.02 1.00 0.94 0.97 0.90 0.93 0.86
1.44 1.39 1.33 1.26 1.28 1.26 1.22 1.16

t = 3 1.03 0.98 0.96 0.97 0.94 0.92 0.91 0.86
1.33 1.24 1.20 1.17 1.21 1.16 1.14 1.05

t = 4 1.01 0.97 0.95 0.94 0.93 0.92 0.90 0.89
1.28 1.22 1.20 1.16 1.19 1.14 1.13 1.10

t = 5 1.04 1.01 0.98 0.96 0.96 0.95 0.92 0.92
1.36 1.33 1.25 1.23 1.30 1.22 1.17 1.17

Table 12: Cycles/byte measurements for 17 to 24 blocks for the various hash functions based on
the prime 2127 − 1.

42

msg blks
25 26 27 28 29 30 31 32

polyHash1271

g = 1 1.34 1.34 1.34 1.33 1.33 1.33 1.33 1.32
g = 4 0.78 0.76 0.75 0.75 0.76 0.75 0.75 0.73

0.87 0.84 0.83 0.82 0.84 0.82 0.82 0.80
g = 8 0.73 0.71 0.71 0.70 0.69 0.69 0.69 0.68

1.00 0.97 0.97 0.94 0.93 0.92 0.90 0.89
g = 16 0.74 0.74 0.76 0.72 0.78 0.72 0.77 0.78

1.39 1.35 1.35 1.31 1.32 1.27 1.28 1.27
g = 32 0.77 0.65 0.78 0.76 0.75 0.76 0.75 0.79

2.32 2.24 2.22 2.16 2.10 2.06 2.02 1.99

BRWHash1271

t = 2 0.85 0.85 0.81 0.83 0.83 0.80 0.79 0.81
1.01 1.00 0.96 0.97 0.98 0.93 0.90 0.97

t = 3 0.85 0.82 0.85 0.83 0.81 0.82 0.78 0.82
1.00 0.96 0.93 0.95 0.92 0.92 0.90 1.18

d-2LHash1271

d = 2 0.74 0.75 0.75 0.74 0.74 0.71 0.72 0.71
1.11 1.10 1.08 1.07 1.05 1.02 1.01 1.00

d = 3 0.78 0.76 0.75 0.72 0.73 0.71 0.71 0.72
1.32 1.29 1.25 1.21 1.19 1.15 1.15 1.15

d = 4 0.76 0.76 0.80 0.79 0.75 0.71 0.69 0.68
1.35 1.33 1.34 1.31 1.26 1.20 1.16 1.14

d = 5 0.89 0.87 0.86 0.87 0.85 0.84 0.68 0.69
1.52 1.48 1.45 1.44 1.41 1.37 1.20 1.18

t-BRWHash1271

t = 2 0.88 0.85 0.89 0.82 0.88 0.82 0.82 0.80
1.20 1.13 1.13 1.11 1.08 1.05 1.07 1.06

t = 3 0.88 0.87 0.86 0.84 0.85 0.84 0.84 0.80
1.08 1.041 1.01 1.00 1.06 1.00 1.00 0.99

t = 4 0.93 0.89 0.89 0.96 0.97 0.87 0.86 0.79
1.15 1.09 1.08 1.08 1.08 1.05 1.05 0.96

t = 5 0.96 0.92 0.91 0.90 0.91 0.88 0.88 0.78
1.19 1.15 1.14 1.12 1.13 1.10 1.13 0.96

Table 13: Cycles/byte measurements for 25 to 32 blocks for the various hash functions based on
the prime 2127 − 1.

43

msg blks
1 2 3 4 5 6 7 8

polyHash1305

g = 1 3.44 2.97 2.65 2.39 2.27 2.20 2.12 2.09
g = 4 3.40 3.09 2.22 1.95 1.78 1.72 1.55 1.47

5.78 4.41 3.44 2.75 2.45 2.29 2.04 1.88
g = 8 3.40 3.09 2.23 1.93 1.69 1.54 1.40 1.37

11.85 7.63 5.41 4.20 3.51 3.09 2.72 2.55
g = 16 3.40 3.09 2.23 1.93 1.69 1.54 1.42 1.35

25.38 14.43 9.94 7.61 6.23 5.35 4.69 4.20
g = 32 3.40 3.09 2.23 1.94 1.71 1.54 1.42 1.35

53.46 28.40 19.27 14.60 11.85 10.02 8.69 7.70

BRWHash1305

t = 2 5.34 3.26 2.38 2.63 2.27 1.90 1.75 1.77
6.01 7.09 5.04 3.80 3.15 2.70 2.42 2.63

t = 3 5.42 3.27 2.36 2.22 1.85 1.64 1.47 1.68
6.00 6.69 4.46 3.86 2.99 2.49 2.13 2.84

d-2LHash1305

d = 2 6.18 3.53 2.30 1.95 1.73 1.68 1.57 1.48
21.56 11.18 7.39 5.77 4.79 4.23 3.76 3.39

d = 3 7.81 4.17 3.00 2.39 2.01 1.76 1.65 1.54
28.93 14.72 10.05 7.66 6.26 5.31 4.63 4.15

d = 4 7.87 4.16 2.99 2.39 2.04 1.78 1.81 1.64
30.62 15.56 10.61 8.07 6.57 5.56 5.05 4.49

d = 5 7.79 4.11 2.94 2.33 2.01 1.75 1.79 1.62
32.28 16.35 11.12 8.47 6.87 5.83 5.27 4.69

t-BRWHash1305

t = 2 5.45 3.26 2.34 2.65 2.55 2.17 1.94 1.77
7.83 4.98 3.61 4.11 3.71 3.15 2.77 2.77

t = 3 4.99 2.87 2.09 1.71 1.54 1.40 1.30 1.40
7.84 4.96 3.57 3.30 3.04 2.61 2.32 2.69

t = 4 5.67 3.19 2.32 1.91 1.65 1.47 1.36 1.39
7.79 4.96 3.63 3.28 3.03 2.61 2.32 2.37

t = 5 5.79 3.30 2.41 1.99 1.69 1.52 1.40 1.46
8.01 4.36 3.18 2.95 2.76 2.38 2.13 2.16

Table 14: Cycles/byte measurements for 1 to 8 blocks for the various hash functions based on the
prime 2130 − 5.

44

msg blks
9 10 11 12 13 14 15 16

polyHash1305

g = 1 2.04 2.02 2.00 1.98 1.96 1.95 1.93 1.92
g = 4 1.43 1.43 1.35 1.31 1.29 1.30 1.25 1.23

1.82 1.76 1.66 1.59 1.55 1.54 1.48 1.44
g = 8 1.33 1.33 1.29 1.23 1.21 1.18 1.14 1.12

2.39 2.28 2.16 2.02 1.95 1.86 1.78 1.73
g = 16 1.27 1.24 1.19 1.18 1.21 1.13 1.08 1.19

3.84 3.55 3.30 3.14 2.97 2.91 2.69 2.63
g = 32 1.29 1.24 1.19 1.18 1.12 1.09 1.11 1.19

6.93 6.35 5.87 5.43 5.11 4.80 4.58 4.37

BRWHash1305

t = 2 1.63 1.51 1.44 1.48 1.41 1.34 1.30 1.34
1.83 1.74 1.68 1.69 1.64 1.58 1.54 1.55

t = 3 1.85 1.44 1.48 1.46 1.32 1.26 1.24 1.27
2.35 2.16 2.03 2.00 1.90 1.81 1.71 1.83

d-2LHash1305

d = 2 1.41 1.36 1.30 1.26 1.23 1.20 1.19 1.16
3.11 2.89 2.68 2.54 2.40 2.29 2.21 2.11

d = 3 1.43 1.36 1.28 1.23 1.18 1.26 1.22 1.18
3.75 3.45 3.22 2.97 2.79 2.76 2.62 2.49

d = 4 1.53 1.45 1.36 1.31 1.25 1.21 1.17 1.13
4.06 3.72 3.43 3.20 3.00 2.84 2.67 2.55

d = 5 1.51 1.44 1.36 1.31 1.24 1.20 1.26 1.21
4.24 3.87 3.58 3.34 3.12 2.96 2.89 2.74

t-BRWHash1305

t = 2 1.80 1.66 1.55 1.49 1.53 1.45 1.39 1.34
2.70 2.47 2.29 2.16 2.15 2.02 1.92 1.97

t = 3 1.42 1.32 1.22 1.18 1.34 1.11 1.07 0.99
2.62 2.40 2.24 2.10 2.09 1.98 1.89 1.88

t = 4 1.35 1.25 1.20 1.15 1.11 1.07 1.03 1.24
2.33 2.14 2.01 1.89 1.90 1.79 1.72 1.89

t = 5 1.39 1.28 1.22 1.18 1.13 1.11 1.06 1.10
2.12 1.95 1.84 1.73 1.77 1.65 1.59 1.66

Table 15: Cycles/byte measurements for 9 to 16 blocks for the various hash functions based on the
prime 2130 − 5.

45

msg blks
17 18 19 20 21 22 23 24

polyHash1305

g = 1 1.91 1.91 1.90 1.89 1.88 1.88 1.87 1.87
g = 4 1.22 1.23 1.20 1.18 1.18 1.19 1.17 1.15

1.42 1.42 1.39 1.35 1.34 1.34 1.32 1.29
g = 8 1.12 1.13 1.11 1.10 1.08 1.07 1.05 1.05

1.69 1.67 1.63 1.58 1.55 1.51 1.48 1.45
g = 16 1.21 1.18 1.15 1.13 1.12 1.10 1.09 1.08

2.56 2.46 2.37 2.29 2.22 2.15 2.10 2.04
g = 32 1.07 1.15 1.05 1.05 1.76 1.11 1.06 1.14

4.15 4.00 3.81 3.66 4.19 3.44 3.36 3.25

BRWHash1305

t = 2 1.31 1.24 1.22 1.25 1.22 1.20 1.18 1.18
1.54 1.49 1.45 1.48 1.44 1.41 1.40 1.46

t = 3 1.21 1.15 1.19 1.27 1.13 1.10 1.11 1.13
2.00 1.70 1.63 1.66 1.57 1.56 1.49 1.54

d-2LHash1305

d = 2 1.14 1.12 1.11 1.09 1.08 1.08 1.07 1.06
2.06 1.97 1.92 1.86 1.80 1.77 1.73 1.69

d = 3 1.15 1.12 1.10 1.07 1.10 1.08 1.06 1.04
2.38 2.28 2.20 2.11 2.10 2.03 1.97 1.92

d = 4 1.10 1.08 1.05 1.03 1.01 1.05 1.03 1.01
2.43 2.33 2.24 2.16 2.08 2.08 2.01 1.96

d = 5 1.17 1.15 1.12 1.10 1.07 1.05 1.10 1.07
2.62 2.51 2.41 2.32 2.24 2.17 2.17 2.09

t-BRWHash1305

t = 2 1.38 1.74 1.28 1.30 1.29 1.25 1.22 1.22
1.98 1.89 1.82 1.77 1.78 1.71 1.66 1.62

t = 3 1.03 0.98 0.96 0.97 0.94 0.92 0.91 0.86
1.90 1.81 1.81 1.70 1.70 1.65 1.60 1.52

t = 4 1.28 1.23 1.19 1.17 1.14 1.12 1.09 1.12
1.90 1.84 1.75 1.69 1.70 1.65 1.62 1.56

t = 5 1.10 1.06 1.03 1.01 0.99 0.98 0.96 0.99
1.68 1.61 1.56 1.51 1.54 1.48 1.45 1.48

Table 16: Cycles/byte measurements for 17 to 24 blocks for the various hash functions based on
the prime 2130 − 5.

46

msg blks
25 26 27 28 29 30 31 32

polyHash1305

g = 1 1.87 1.86 1.86 1.85 1.85 1.85 1.85 1.84
g = 4 1.15 1.16 1.14 1.13 1.13 1.14 1.12 1.11

1.28 1.29 1.27 1.25 1.24 1.25 1.23 1.22
g = 8 1.05 1.06 1.05 1.04 1.03 1.03 1.01 1.01

1.44 1.44 1.41 1.38 1.37 1.35 1.33 1.31
g = 16 1.08 1.08 1.08 1.05 1.10 1.10 1.10 1.11

2.01 1.98 1.95 1.89 1.90 1.88 1.85 1.83
g = 32 1.13 1.02 1.08 1.01 1.02 1.03 1.04 1.12

3.17 3.07 2.98 2.92 2.85 2.80 2.72 2.72

BRWHash1305

t = 2 1.16 1.13 1.14 1.15 1.13 1.10 1.12 1.12
1.53 1.48 1.46 1.48 1.46 1.40 1.39 1.47

t = 3 1.12 1.08 1.09 1.07 1.04 1.02 1.04 1.06
1.64 1.58 1.55 1.52 1.54 1.49 1.46 1.50

d-2LHash1305

d = 2 1.06 1.05 1.07 1.05 1.04 1.04 1.03 1.02
1.67 1.64 1.63 1.60 1.57 1.55 1.53 1.50

d = 3 1.02 1.01 0.99 1.01 1.02 0.99 0.98 0.97
1.86 1.81 1.77 1.76 1.74 1.69 1.66 1.63

d = 4 1.00 0.98 0.97 0.96 0.95 0.98 0.97 0.96
1.90 1.85 1.81 1.76 1.73 1.74 1.70 1.67

d = 5 1.05 1.04 1.03 1.02 1.00 0.98 0.94 0.94
2.03 1.98 1.93 1.89 1.84 1.81 1.73 1.70

t-BRWHash1305

t = 2 1.23 1.19 1.17 1.15 1.19 1.16 1.14 1.13
1.64 1.58 1.55 1.52 1.54 1.49 1.46 1.50

t = 3 0.88 0.87 0.86 0.84 0.85 0.84 0.84 0.80
1.54 1.49 1.46 1.43 1.45 1.42 1.40 1.40

t = 4 1.11 1.08 1.06 1.05 1.04 1.02 1.00 1.02
1.63 1.54 1.53 1.47 1.49 1.45 1.43 1.41

t = 5 0.99 0.97 0.96 0.95 0.94 0.92 0.91 1.03
1.45 1.40 1.37 1.34 1.38 1.33 1.31 1.44

Table 17: Cycles/byte measurements for 25 to 32 blocks for the various hash functions based on
the prime 2130 − 5.

47

	Introduction
	Preliminaries
	Constructions
	AXU bounds
	Algorithms
	Implementation details
	Trade-off between 2127-1 and 2130-5
	Timing results
	Conclusion
	Straight line code for computing BRW
	Correctness and complexity of Algorithm 1
	Timing measurements for messages with few blocks

