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Abstract
Cryptocurrencies and decentralized platforms have been
rapidly gaining traction since Nakamoto’s discovery of
Bitcoin’s blockchain protocol. Prominent systems use Proof
of Work (PoW) to achieve unprecedented security for digital
assets. However, the significant carbon footprint due to the
manufacturing and operation of PoW mining hardware is lead-
ing policymakers to consider stark measures against them and
various systems to explore alternatives. But these alternatives
imply stepping away from key security aspects of PoW.

We present Sprints, a blockchain protocol that achieves al-
most the same security guarantees as PoW blockchains, but
with an order-of-magnitude lower carbon footprint while in-
creasing the number of mining rigs by a factor 1.27x. Our
conservative estimate of environmental footprint uses com-
mon metrics, taking into account both power and hardware.
To achieve this reduction, Sprints forces miners to mine in-
termittently. It interleaves Proof of Delay (PoD, e.g., using a
Verifiable Delay Function) and PoW, where only the latter bears
a significant resource expenditure. We prove that in Sprints
the attacker’s success probability is the same as that of legacy
PoW. To evaluate practical performance, we analyze the effect
of shortened PoW duration, showing a minor reduction in re-
silience (49% instead of 50%). We confirm the results with a
full implementation using 100 patched Bitcoin clients in an
emulated network.

1 Introduction

Proof of Work (PoW) cryptocurrencies offer a decentralized
form of money, with monetary policy dictated by code.
Participants can acquire coins and perform transactions
without needing permission from other parties or centralized
exchanges. PoW cryptocurrencies, starting with Nakamoto’s
Bitcoin [1], have gained significant success with market capi-
talization in the hundreds of billions [2] and attract the attention
of major financial institutions [3, 4]. But PoW cryptocurrencies
consume significant resources, with Bitcoin’s electricity con-
sumption surpassing Argentina’s in 2022 [5]. Environmental

concerns are leading to policy changes, including bans [6, 7].
Nevertheless, the stable valuation of the PoW Bitcoin, despite
the proliferation of non-PoW alternatives, demonstrates the
demand for PoW guarantees. It implies the need for a protocol
that provides such guarantees with lower carbon footprint.

Indeed, both theoretical work and operational systems
address this issue. Previous work (§2), showed [8] that resource
expenditure cannot be reduced by tuning the protocol parame-
ters. Proof of Storage [9] requires participants to dedicate stor-
age resources instead of computation but is about 50% cheaper
to attack [10]. Proof of Stake (PoS) protocols (e.g., [11–16])
take a different approach: Instead of physical resource expendi-
ture, PoS uses on-chain deposits, thus the likelihood of a miner
being able to create a new block and add it to the blockchain is
determined by the amount of cryptocurrency they have staked,
i.e., held in their account. With this approach, no physical re-
source is expended. But PoS protocols require stronger assump-
tions, such as long-term connectivity and availability [17–19].

Sprints. We introduce Sprints (§4), a blockchain protocol
that maintains the advantages of PoW but with significantly
lower resource consumption. The key idea is to force miners
to perform PoW intermittently, i.e., to insert periods of time
during which miners pause mining. Like Bitcoin, Sprints
miners collect transactions (e.g., payment orders) from users
and batch them into blocks that they broadcast. Each block
contains a hash reference to its predecessor, so the blocks
together form a tree with an agreed-upon root. The system
state is thus obtained by processing the transactions in the
longest path in the tree, called the longest chain.

In addition to PoW — statistical proofs that the miner
expended computational effort, Sprints also requires PoD,
proving the miner waited for a certain time before the PoW
computation. Unlike PoW, PoD computation does not require
significant computational resources. Thus, a miner alternates
between producing PoD with nominal power expenditure and
PoW with high power expenditure – Figure 1 illustrates this
process. The PoD primitive shares similarities with a Verifiable
Delay Function (VDF) [20–24]. The distinction lies in the
uniform delay period enforced across all miners, a feature not
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generally guaranteed by VDFs. Uniform delay periods are
crucial for the protocol’s security (§6.5), while a perfect PoD ar-
chitecture is currently theoretical, near-ideal PoD solutions are
attainable with a reliable hardware setup assumption [25, 26].

Like PoW systems where participation is profitable only for
miners with efficient hardware [27–29], Sprints is profitable
only for miners with efficient PoD hardware. We thus assume
all miners have similar, efficient, PoD hardware; others with
weaker hardware would not participate.

Security. At first glance, it might seem that an attacker has an
advantage compared to a pure PoW system like Bitcoin: She
does not have to stop calculating PoW while performing the
PoD calculation, whereas honest miners will. We prove (§5)
that such behavior specifically is futile, and that in general
there is no sacrifice of security compared to a pure PoW
system. Due to the distinct characteristics of Sprints, previous
proof techniques [10, 30, 31] are not applicable. Specifically,
the PoD puzzle delay eliminates the memorylessness of pure
PoW systems and prevents the use of the common Markov
chain analysis. Consequently, we are compelled to devise a
novel proof approach.

The key step is showing that in a race where the attacker
competes with the honest miners, the attacker has to solve PoW
and PoD puzzles sequentially, thus, parallel mining would
not benefit her. Intuitively, the only race between the honest
chain and that of the attacker is the PoW puzzles, as both
spend the same amount of time-solving PoD puzzles for the
same number of blocks. The implication is that the attacker’s
probability of winning the race is the same as in a pure PoW
blockchain. We use this result to show that if we consider a race
where the honest miners and the adversary are building two
chains that extend the same block and the adversary controls
less than half of the PoW computational power, then her
probability of building a chain that is at least r blocks deep and
is longer than the honest chain is bounded by 2−Ω(r). Finally,
we utilize this result to show that if the propagation delay is
negligible, Sprints provides the same guarantees as pure PoW.

Implementation and evaluation. If we compare Sprints
to a pure PoW system with the same block interval, since part

Figure 1: Pure PoW and Sprints over time.
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of the block generation is computing PoD, PoW duration in
Sprints is shorter. Our theoretical analysis shows that with
shorter PoW average duration it is more likely for honest
miners to generate blocks with the same parent, forming forks.
The implication is that the longest chain extension is slower
and the threshold attacker size is smaller.

To confirm this analysis, we implemented Sprints by
patching the standard Bitcoin client [32] and measured the fre-
quency of forks as a function of both the network propagation
delay and the PoW duration. With system parameters similar
to those of the operational Bitcoin system [33], when using
only 5% of block interval for PoW, the threshold attacker size
is 49%, compared to Bitcoin’s 50%.

Implementing Sprints involves addressing several practical
challenges (§6). To address spam prevention while maintaining
efficient propagation, we lazily validate PoDs, i.e. nodes do
not wait for the PoD validation to complete before propagating
the block, allowing for the same propagation delay as a
pure PoW system without sacrificing spam prevention [34].
Additionally, we adjust the difficulty of both PoW and PoD
to maintain constant block intervals as hardware for PoW and
PoD improves. We do this by estimating parameters using the
second moments of the interval probability distribution.

Enviromental footprint. The analysis Sprints’s enviromen-
tal footprint (§7) is more involved than comparing the ratio of
PoW per block. We show that Sprints miners use their budget
to purchase more mining equipment compared to pure PoW,
for the short duration where they PoW-mine. In other words,
Sprints shifts a portion of the operating expenses (OPEX) to
capital expenditure (CAPEX), which we show to have a lower
carbon footprint by comparing the emissions from the hard-
ware lifecycle to the emissions from electricity consumption.
On the other hand, the increase in the number of mining rigs
implies a potential increase in rare metal depletion. While raw
materials like rare-earth have an environmental impact (e.g.,
they are difficult to recycle), we show that the increase is sig-
nificantly smaller than the factor by which the carbon footprint
decreases. We use the CO2e (carbon dioxide equivalent) met-
ric [35] to compare systems, which allows us to quantify the
emissions resulting from electricity consumption and the hard-
ware lifecycle (manufacturing, transportation, and disposal).
Importantly, the assumptions made in our analysis err on the
side of conservatism, suggesting that the actual reduction in
carbon footprint could be greater than our estimates indicate.

Combining the security and emission analyses, Figure 2
shows how the attack threshold and emission reduction ratio
change with the PoW time ratio when using Bitcoin-like
parameters (100ms network delay, 600s block interval [33]).
At 5% of the block interval the CO2e is 9.2% that of Bitcoin.
At the same time, the total number of mining rigs in Sprints
increases by 27%, implying an increase in rare metal depletion
by a factor of 1.27.

In summary, our main contributions are:
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Figure 2: Attack threshold and normalized emission under as
a function of portion of PoW time out of block interval

• Sprints, a novel blockchain protocol that introduces
intermittent mining, alternating between PoD and PoW;

• proof that the security threshold is the same as in PoW;

• tuning of both PoD and PoW based on block interval;

• evaluation with full implementation over an emulated
network demonstrating effective difficulty adjustment
and close-to-optimal (49%) attack threshold values; and

• carbon footprint analysis showing over 10x CO2e
reduction.

2 Related Work

We review energy-efficient alternatives to PoW and their
trade-offs.

The most well-established energy-efficient alternative to
PoW is Proof of Stake (PoS) [11–16]. Instead of solving hash
puzzles, PoS miners participate in a mining lottery with a
winning probability proportional to their token holding in the
system. However, these protocols require stronger assumptions
than PoW protocols regarding network connectivity, validator
behavior, or the availability of a randomness oracle [17–19].
Additionally, in PoS protocols new nodes need cooperation
from existing nodes to join the network [36], in contrast
to Sprints, where new nodes can join the network by mining
blocks using external computations.

Several protocols take advantage of Verifiable Delay
Functions (VDFs). Verifiable Delay Functions (VDFs) [20–
24] are a class of functions that cannot be accelerated by a
parallel computation and can be verified efficiently. Long and
Wei [37] propose a PoS protocol that incorporates a variation
of Verifiable Delay Functions (VDFs) that has a random delay.
However, the threshold for a successful private attack is less
than 27% compared to almost 50% in Sprints. PoSAT [38] has
a similar construction. PoSAT is vulnerable to nothing-at-stake
attacks, where an attacker can mine on multiple forks for
no additional cost. The authors, therefore, divide the rounds
into epochs which prevents new players from joining the
network during an epoch. The system has a threshold of 50%
for a private attack only when the epochs are infinitely long,

which turns it into a permissioned system. Thus, PoSAT has
a tradeoff between decentralization and security.

HEB [39] also utilizes on-chain resources uses mechanism
design to reduce electricity consumption by 50%, but reduces
resilience to malicious attacks by 2, while Sprints has almost
the same threshold as pure PoW with an 8x reduction in
electricity consumption.

Several approaches reduce expenditure with particular types
of PoW. REM [40] and PoET [41] use trusted hardware to
reduce resource expenditure. As the protocols are based on
trusted hardware, they rely on a trusted party to guarantee the
hardware’s integrity. Sprints makes no such assumptions.

Chia [9] shifts the costs of miners from electricity to
hardware by combining Proof-of-Space (PoS) and Proof-of-
Time (PoT). It reduces electricity consumption by replacing
much of the mining costs with storage costs. However,
it is resilient to attackers with under 30% of the network
storage resources [10], which is significantly lower than the
almost 50% threshold of Sprints.

Another approach to deal with this challenge is to use
permissioned protocols [42–44], which are a class of protocols
that require pre-authorization of nodes to participate in the pro-
tocol. However, permissioned protocols are not decentralized
and require a trusted third party to authorize new nodes.

As for the analysis of PoW protocols, Dembo et al. [10]
analyze the security of blockchain systems by showing that
a so-called private attack is the worst-case attack. They define
the notion of Nakamoto blocks and use their existence to prove
that the system is secure. We use a different approach, where
we avoid the notion of Nakamoto blocks and instead describe a
single race between the attacker and the honest miners. We use
this race to prove directly that the security requirements hold.

3 Model

The system consists of a set of participants called miners. Each
miner maintains a tree data structure whose vertices are called
blocks. Each block contains transactions, commands issued by
system users, which are the payload of the block. All miners
start with the same block, called genesis, that serves as the
root of the tree. In addition to the payload, each block contains
metadata. The metadata of all blocks (except the genesis block)
includes a hash that points to its parent block; we say that a
block extends the pointed-to block. A path with the most blocks
in the tree is called a longest chain. There may be several
longest chains and one of them, chosen by a deterministic
arbitrary algorithm, is called the main chain. The height1 of a
block b is the number of blocks in the path from the genesis to b.

Time progresses in discrete steps t=0,1,... (as in, e.g., [45]).
In each step, miners can work on two types of puzzles. The
first type is Proof-of-Delay (PoD), a function that maps an
arbitrarily sized input and difficulty parameter to a small

1Called depth in graph-theory literature.
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output. Given a random input, a PoD requires a deterministic
number of steps, called delay period and denoted by ∆PoD. In
each step, a miner can choose to mine on multiple PoD puzzles.
After working on a particular PoD puzzle in ∆PoD distinct steps,
a miner has its solution, which cannot be guessed except with
negligible probability. The formal specification of a PoD is
the same as that of a VDF [20] with the added requirement that
all the players have the same delay period. This assumption
is reasonable since miners who cannot solve the PoD puzzle
in the given delay period will not be able to compete in the
protocol, and thus will be forced to leave the system.

The second puzzle type is Proof-of-Work, a probabilistic
puzzle that has an independent probability of being solved in
any given step. In each step, a miner can choose to mine on
a PoW puzzle. Miner p has a probability Pw(p) of solving it
in each step independent of previous attempts. The number
of steps until success thus has a Geometric distribution with
parameter Pw(p).

Combining metadata M, payload D and puzzle solutions Z,
a block is the tuple (M,D,Z).

The miners communicate over a ∆-synchronous broadcast
network [10, 30]: If a miner sends a message in step t, then
all miners receive it by step t+∆. We assume that ∆<∆PoD.

Thus, at the beginning of every step, a miner receives
messages sent in previous steps. The miner can then perform
local computations, i.e., work on one PoW and multiple2

puzzles. Then the environment notifies the miners if they
found solutions. Finally, the miner can broadcast blocks.

There are a total of n+1 miners in the system, where n are
honest, i.e., miners that follow a predefined protocol, and a sin-
gle miner is controlled by an adversary A and acts arbitrarily.

Note that the adversary can only work on a single PoW
puzzle in a single step in our model. However, working on
multiple PoW puzzles in parallel can be approximated by
frequent puzzle changes.

The adversary controls the message delay, constrained by
the bound ∆.

Next, we define a predicate that validates the correctness of
a block and its puzzles. A validity function V (b) returns true if
some predefined conditions on the block contents are met and
false otherwise. A block b is valid ifV (b)= true. Invalid blocks
with either invalid payloads or proofs are simply ignored.

An execution is a series of states of the system that develops
based on the miners’ algorithms and the environment’s coin
flips, i.e., the outcome of PoW puzzle-solving attempts. Each
execution has a certain probability of occurring. Let Σ denote
the set of all executions. Given step t0, denote by π the t0−prefix
that is the collection of all executions in Σ that agree on the state
of the system at step t0. Given an execution σ, denote by T σ(t)
the tree that corresponds to the execution in step t, called a
mother tree [10]. The mother tree consists of all valid blocks in
the system (published or not) until step t. Note that T σ(t) rep-

2The number of puzzles is polynomial in a system security parameter; we
omit these details to simplify the presentation.

resents the state of the tree at the beginning of the step. Denote
the depth of a valid block b by d(b). Given a execution σ, de-
note the depth of the longest chain(s) in T σ(t) by dσ(t). Each
player p has a local copy of the mother tree, which is updated
according to the blocks she receives, it is denoted by T σ

p (t).
Given an execution σ, the execution view of miner p is

denoted by σp. It includes all the information she received and
the results of her local computations.

In each step, each honest miner performs an action that
comprises the mining target for PoW and PoD and the blocks
a miner publishes. The action is defined by the mining
function q(σp), given a view σp of miner p. The vector Qσ

H(t)
includes the honest miners’ actions in step t defined by the min-
ing function. We denote by Qσ

A(t) the action of the adversary at
step t and execution σ. The adversarial action is decided based
on a predefined strategy A, which is a map from step t and a
state of execution at step t−1 to a vector that represents the
mining targets for PoW and PoD, the blocks being published
and the delay the adversary imposes on messages.

A longest chain protocol is thus defined by a validity func-
tion and a mining function, (V (·),q(·)). For each node, the
sequence of payloads along the main chain, excluding the pay-
loads of the last r blocks (for some r), is called a ledger. We use
the notions of persistence and progress3, similar to the defini-
tions in previous work [10, 30, 31]. Given a block b, we denote
by dσ

b (t,p) the depth of the longest chain in the view of miner p
in step t that contains b and by dσ

¬b(t,p) the depth of the longest
chain in the view of miner p in step t that does not contain b.

Definition 1. A protocol (V (·),q(·)) implements a ledger if
it satisfies the following two conditions:

Persistence Given ε > 0 and step t f , there exists r ∈N such
that for all adversarial strategy A given a randomly drawn
execution σ←ΣA , for every step t≤ t f and every block b∈
σ, if b is at depth i of the main chain and dσ

b (t−∆,p)>
dσ

¬b(t−∆,p)+r for an honest miner p, then for every t ′> t
it holds that b is in depth i in the main chain of the view
of all other honest miners with probability at least 1−ε.

Progress3 Given ε > 0 and t f , there exists δ ∈N, s.t. for all
steps t0 ≤ t f and adversarial strategy A the probability
that a random execution σ∈ΣA does not include a block
that was mined in [t0,t0+δ] in the main chain of all honest
miners for some step t ′> t0+δ is smaller than ε.

4 Sprints

We now present the Sprints protocol, which implements a
ledger, by defining a mining function q(σp) for a player p and
a validity function V (b).

A valid block in Sprints contains two puzzle solutions: a
proof of delay bPoD that enforces serial computation, and a

3Our Progress is called Liveness in some prior work [10, 30, 31] although
it is a safety property [46].
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proof of work bPoW. The mining function chooses the deepest
block, partial or full, in the view of the miner and returns
the puzzle required. If the deepest block is a full block, then
the mining function works on the PoD of the next block, as
follows: Given a metadata M that contains the previous block’s
hash, the mining function returns the action to take a step in the
PoD puzzle of M. If the deepest block is partial, i.e., the PoD
puzzle of the new block was already solved, then the mining
function works on the PoW puzzle, as follows: Given the PoD
puzzle solution of the metadata, bPoD, and the payload of the
new block, D, the mining function returns the action to take a
step in the PoW puzzle of bPoD||D. If the PoW step is successful
and the miner obtains a solution bPoW, then the miner publishes
the new block: b=(M,D,(bPoD,bPoW)).

The validity function V (b) validates a block b by checking
that the PoD and PoW puzzles are valid, using the validity
functions VPoD(·) and VPoW(·), respectively:

V (b) :=VPoD(bPoD,M)∧VPoW(bPoW,bPoD||D).

Note that the PoD does not require the payload of the block,
while the PoW requires the payload of the block.

If a node learns of a chain longer than the block it is currently
working on, it discards its work and begins generating a block
extending the new chain.

The pseudocode of the protocol is in §A.

5 Security

We prove that Sprints achieves both persistence and progress.
To do so, we tackle two main challenges:

1. Persistence: we aim to prove that a block in the main
chain will almost surely stay there. We assess the risk of
an attacker removing a block by breaking the problem
into smaller "mini-games," each focused on a block at
a specific depth. We then sum up the probabilities of the
attacker winning these mini-games using a union bound,
giving us an overall likelihood of a persistence violation.

2. Progress: we show that, given a sufficiently long
duration, at least one honestly-mined block within that
period will remain in the main chain forever with high
probability. This is decomposed into:

(a) Establishing that given r > 0, honest miners will
discover r blocks within a long enough period.

(b) And showing that the probability of an adversary
forming a tree deeper than the tree in each honest
miner’s view by at least r blocks is bounded by
2−Ω(r).

Both proofs employ a reduction to a simple game. In this
game the adversary and honest miners initially mine their
respective block trees, stemming from a shared genesis block.

The adversary’s goal is to reach or surpass the length of the hon-
est miners’ tree once both trees have reached a length of at least
r blocks. Subsequently, we examine an infinite set of games
where the adversary achieves victory when both trees have
lengths of at least r,r+1,r+2,..., and so forth. We prove that the
sum of the probabilities of the adversary winning each game
is bounded by 2−Ω(r). To do this we find the attack that is most
likely to succeed and bound the probability of its success; we
say this attacker is the worst attacker. In particular, we should
find which PoW and which PoD the worst attacker should
calculate at each step. For PoD, we assume that the adversary
mines all possible PoD blocks in parallel. This assumption
makes the adversary stronger since any other adversary can be
emulated by the one described above. Subsequently, we prove
that the optimal strategy, defined as the one that maximizes the
length of the adversary’s subtree while minimizing the honest
subtree for any given step, is the strategy that PoW mines on
the deepest block in the adversary’s subtree as long as no PoW
solution exists of the same depth, i.e., a complete PoW puzzle
does not yet extend this PoD puzzle. In the latter scenario, the
adversary halts PoW until a PoD puzzle is found.

After showing that we only need to consider this worst
attack, we find that when adversary and honest subtrees are
of equal length, they contain the same number of PoD blocks.
This reduces the competition to just PoW computations,
paving the way for an easy conclusion to the proof using
standard tools, namely random walk analysis.

Before detailing the proof, we present some terminology
and notation (§5.1). We then discuss optimal strategies for the
adversary (§5.2) and the honest miners (§5.3) subtrees. Next,
we use these strategies to analyze the simple game (§5.4).
Finally, we prove persistence and progress and the security
of Sprints (§5.5).

5.1 Terminology and Notation

We define a race between the honest miners and an adversary
with strategy A. We assume that the adversary always chooses
to PoD-mine on all possible blocks in parallel, as every
strategy A1 that PoD-mines only some blocks creates the same
tree as the one created by a strategy A2 that is identical to A1 but
PoD-mines everywhere. Therefore, for succinctness, we define
a mining action at step t as the block that the adversary chooses
to PoW mine on; if there is no such block, the adversary’s ac-
tion is⊥, i.e., empty action. The adversary chooses a delay for
each block b and honest miner p. To simplify the analysis, we
assume that the attacker can delay the block even for the miner
who found it. This assumption only strengthens the adversary,
allowing us to bound the adversary’s success probability.

Given a depth i, execution σ and honest block b at depth i,
we define two sub-trees (portrayed in Figure 3): for all
steps t, T σ

H (t) is the sub-tree of T σ(t) that includes b, its
descendants that are known by all honest miners and its
ancestors; tree T σ

A (t) is the sub-tree of T σ(t) that includes b
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and its private adversarial descendants and ancestors. Note
that T σ(t) can include adversarial blocks.

A block data structure containing only the PoD puz-
zle, (M,D,(bPoW,⊥)), is called a partial block and a valid block
with all proofs is called a full block. Denote the depth of a par-
tial block b by d̃(b). Given an execution σ, we define the PoD
depth of a tree as the deepest block in the mother tree that has
a completed PoD puzzle on the subtree, it is denoted by d̃σ

b (t)
for T σ

A (t) and by d̃σ

¬b(t) for T σ

H (t). For some π, denote by Σ
πi
A

the subset of Σπ , where the adversary follows a strategy A.
Next, we define the optimality of an adversarial strategy. We

look separately at T σ

H (t) and T σ

A (t) and find a single strategy
that minimizes the depth of the former and maximizes the
depth of the latter for all steps.

5.2 Adversary tree
We focus on the optimal strategy of the adversary on her
private tree T σ

A (t).
Given a prefix π of length t0 and an execution σ∈π, we start

by considering only the actions of an adversary targeting the
subtree T σ

A (t). At first, we assume that given some step t f > t0,
the adversary aims to maximize the depth of T σ

A (t f ). Later we
generalize this to a strategy that aims to maximize the depth
of T σ

A (t) for all t> t0.
We define the notion of an optimal strategy. As a first step,we

define a (t f ,ℓ)-optimal strategy that maximizes the probability
that at step t f the depth of T σ

A is at least ℓ. For a set of executions
Σ

π

A , denote by Pr
Σ

π

A
[·] the conditional probability Pr[·|σ∈Σ

π

A ].

Definition 2. An attacker strategy A is (t f ,ℓ)-optimal if, for
all prefixes π of length t0 < t f and strategies A′, it holds that
Pr

Σ
π

A
[dσ

¬b(t f )≥ ℓ]≥ Pr
Σ

π

A′
[dσ

¬b(t f )≥ ℓ]. Strategy A is optimal

if it is (t f ,ℓ)-optimal for all t f and ℓ.

For execution σ, denote by Bmax(T σ

A (t)) the tips of the chain
the set of deepest partial blocks in step t whose PoD puzzle is
completed locally for player p. Denote their depth by d̃σ

¬b(t).

Definition 3 (longest-chain mining). Given an execution σ,
an attacker strategy that chooses a block in Bmax(T σ

A (t)) for
t≥ t0 is longest-chain mining (LCM).

We show that any longest-chain mining strategy is (t f ,ℓ)-
optimal.

Lemma 1. For all prefixes π of length t0, ℓ and steps t f , an
LCM strategy A played from step t0 is (t f ,ℓ)-optimal.

Before proving Lemma 1, we introduce another lemma,
which will also be useful later. We show that given two
execution sets where the first has higher partial depth at step t0

and ∆PoD steps later, it has a higher probability to be deeper at
step t f > t0 if the attacker follows a (t f ,ℓ)-optimal strategy.

Lemma 2. Let there be two prefixes π1 and π2 of length t0,
given t f and ℓ, and a (t f ,ℓ)-optimal strategy A. Consider two
sets of executions, Σ1 and Σ2, such that Σi = Σ

πi
A . We assume

that for π1 and π2, in step t0 no PoD puzzle is being calculated
so that at some point in the future, an execution from Σ2 will be
deeper than any execution from Σ2 due to this puzzle. Formally:

∀σ1∈Σ1,σ2∈Σ2,t∈ [t0,t0+∆PoD] : d̃σ1
¬b(t)≥ d̃σ2

¬b(t). (1)

Then it holds that

PrΣ1 [d
σ

¬b(t f )≥ℓ]≥PrΣ2 [d
σ

¬b(t f )≥ℓ].

The full proof of Lemma 1 and Lemma 2 is given in §C.4.
The main idea is that we prove both lemmas by double
induction starting from t f . We run the induction for decreasing
step period and prove both lemmas together at each step of the
induction. We first show that the base of the induction holds
for t0∈ [q0,t f−1] for both lemmas Next, we assume that both
lemmas hold for t0∈ [q0−n,t f−1] for some n. We then prove
the induction step for Lemma 2 for t0 = t f −n−1 using the
assumption. Finally, we prove the induction step for Lemma 1
for t0 = t f−n−1 using the result we just proved for Lemma 2
for t0 = t f−n−1. This concludes the proof of both lemmas.

After showing that LCM is a (t f , ℓ)-optimal strategy, we
show that there is no benefit for the adversary from PoW
mining while she calculates the deepest block’s PoD puzzle.
For this purpose, we first define useless actions we call
backward mining, where the adversary mines a PoW puzzle
that would not extend the depth of the chain:

Definition 4. Given an execution σ, an action Qσ

A(t)=bPoD
at step t is backward mining if the adversary already
computed a partial block b′PoD that extends a block in T σ

H ,
such that d̃(bPoD)< d̃(b′PoD) or if there is a full block b such
that d̃(bPoD)=d(b).

Next, we define an upgrade of the LCM strategy without
useless backward mining actions.

Definition 5. A strategy is (t f ,ℓ)-intermittent LCM if it is (t f ,ℓ)-
optimal and does not perform backward mining actions.

It remains to show that every LCM can be transformed to
(t f ,ℓ)-intermittent LCM without affecting its optimality.

Lemma 3. For all t f , ℓ and an LCM strategy A, the intermittent
LCM strategy A′ that is identical to A, except that every
backward mining action is replaced with⊥, is (t f ,ℓ)-optimal.

Proof. Given a prefix π of length t0, We look at two sets of
executions. (1) Σ

π

A for a (t f ,ℓ)-optimal strategy A that for some
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σ∈Σ
π

A chooses some backward mining action Qσ

A(t0)=b. and
(2) Σ

π

A′ , where the strategy A′ chooses⊥ at step t0 but for t> t0

it is identical to A. As before, the probability to find a block
exactly at t0 is Pw(A). Note that this probability is not relevant
for Σ

π

A′ . Denoted the subset of Σ
π

A where no block is found at

step t0, by Σ1. For all σ1 ∈ Σ1, there exists a unique σ2 ∈ Σ
π

A′

such that T σ1
b ≡ T σ2

b and vice versa. σ1 and σ2 agree on all
random coins from t0+1. If a block is found at step t0, the tree
depth of both executions is still equal, therefore:

PrΣ1 [d
σ

¬b(t f )≥ℓ])=Pr
Σ

π

A′
[dσ

¬b(t f )≥ℓ]. (2)

The block that is found in step t0 for all σ1 ∈Σ
π

A \Σ1 does not
extends the depth of T σ1

b . Therefore, for all σ2∈Σ
π

A′ , it holds
that d̃σ1

b (t)≤ d̃σ2
b (t) for t∈ [t0+1,t0+∆PoD+1]. The conditions

of Lemma 2 thus hold, so:

Pr
Σ

π

A\Σ1
[dσ

¬b(t f )≥ℓ]≤Pr
Σ

π

A′
[dσ

¬b(t f )≥ℓ]. (3)

Using complete probability:

Pr
Σ

π

A
[dσ

¬b(t f )≥ℓ]=

Pw(A)·Pr
Σ

π

A\Σ1
[dσ

¬b(t f )≥ℓ]+

(1−Pw(A))·PrΣ1 [d
σ

¬b(t f )≥ℓ])

Equation (2) and Equation (3)
≤

Pw(A)·Pr
Σ

π

A′
[dσ

¬b(t f )≥ℓ]+

(1−Pw(A))·Pr
Σ

π

A′
[dσ

¬b(t f )≥ℓ]=

Pr
Σ

π

A′
[dσ

¬b(t f )≥ℓ].

Note that although Pw(A) has no meaning in the context
of Σ

π

A′ , we used a simple algebraic trick to disassemble
Pr

Σ
π

A′
[dσ

¬b(t f )≥ℓ] to two parts.

We apply the described process recursively, each time
eliminating a single backward mining action. We end with a
new (t f ,ℓ)-optimal intermittent LCM strategy as required by
the lemma.

We can now conclude that any intermittent LCM strategy
is an optimal strategy.

Corollary 1. Intermittent LCM is an optimal strategy.

Proof. By Lemma 3, for all ℓ and t f any intermittent LCM
strategy is (t f ,ℓ)-optimal, so it is an optimal strategy.

5.3 Honest tree
We now focus on the subtree T σ

H (t). We look for a strategy
that minimizes the depth of the tree.

Definition 6 (Maliciously optimal strategy). A strategy A
is (t f , ℓ)-maliciously optimal if, for all prefixes π of length
t0 < t f with block b, and for all strategies A′, it holds that

Pr
Σ

π

A
[dσ

b (t f )≥ℓ]≤Pr
Σ

π

A′
[dσ

b (t f )≥ℓ].

We call A a maliciously optimal if it is (t f ,ℓ)-maliciously
optimal for all t f > t0 and for all ℓ.

We consider a strategy where the attacker does not mine
new blocks on T σ

H (t) and delays any honest block by ∆, which
is the maximal delay she can impose.

Definition 7. Given a prefix π, a strategy A is a Maximum
Delay and No Mining strategy (MDNM) if the adversary
chooses to mine no blocks and to maximize the delay for the
arrival of all honest blocks to be ∆ for all miners.

Denote the hash rate of the honest miners that received the
block that is a tip of the chain in execution σ at step t by λσ(t).
Similarly, denote by λσ

m(t) the total hash rate of miners that
heard of blocks of depth at least m.

We show that an MDNM strategy maintains some
advantages.

Lemma 4. Given two prefixes π1 and π2 of length t0, ℓ, and a
MDNM strategy A, such that for all σ1∈Σ

π1
A , σ2∈Σ

π2
A it holds

that

∀t∈ [t0,t0+∆PoD] :dσ1
b (t)≥dσ2

b (t) (4)

and

∀t∈ [t0,t0+∆+∆PoD] :λ
σ1

dσ2
b (t)

(t)≥λ
σ2(t), (5)

it holds that for all ℓ>0 and step t f :

Pr
Σ

π1
A
[dσ

b (t f )>ℓ]≥Pr
Σ

π2
A
[dσ

b (t f )>ℓ].

We overview the proof with the details deferred to §C.1.

Proof sketch. The goal is to demonstrate that a prefix with
greater depth and miner engagement is more likely to maintain
its lead. We prove by reverse induction.

Basis For the initial time frame t0∈ [t f−∆PoD,t f ], the lemma
trivially holds. A deeper prefix with more miners retains its
advantage in this brief period, where at most one full block
can be found.

Assumption We assume the statement holds for all
t0∈ [t f−∆PoD−n,t f ].

7



Induction Step Extending to the previous step t f−∆PoD−n−
1, we consider two cases: if a new block is found in the step and
if not. In both cases, the leading prefix maintains its lead due to
higher probabilities of block addition and mining power.

Next, we use Lemma 4 to prove the following with the
details deferred to §C.2.

Lemma 5. An MDNM strategy is maliciously optimal.

Proof sketch. The goal is to show that an MDNM strategy is
maliciously optimal. We prove this too by reverse induction.

Basis For t0∈ [t f−∆PoD,t f ], MDNM is optimal since the
blockchain can grow by at most one block in this period, and
MDNM is not worse than any other strategy.

Assumption We assume the lemma holds for all
t0∈ [t f−∆PoD−n,t f ].

Induction Step Extending the proof to t f−∆PoD−n−1, we
consider two scenarios: one where an honest miner finds a new
block and another where no new block is found. In both cases,
MDNM retains its optimality. We apply Lemma 4 to compare
the probabilities of extending the blockchain depth under
MDNM and alternative strategies, confirming that MDNM
is optimal.

5.4 Basic race
We now introduce a two-epoch race where the adversary tries
to fork a chain of blocks. We then find an upper bound on the
probability that the adversary succeeds in the attack. From
now on, we assume that ∆=0.

Given an adversarial strategy A and execution σ, we define
a block bσ

s (q) as the first published depth-q block in σ.
We consider a race where the adversary mines a secret tree

denoted by T σ

A (t,q), whose root is bσ
s (q) and it is a function

of step t and depth q of bσ
s (q). We assume that the adversary

did not mine any blocks before a block at depth q is published.
The adversary never sends blocks from T σ

A (t,q) to the honest
miners until the end of the race and they stay secret. We also
consider a public subtree T σ

H (t,q) whose blocks are public
and has bσ

s (q) as its root. All blocks that have bσ
s (q) as an

ancestor and are not in T σ

A (t,q) are in T σ

H (t,q). The attacker
can mine on T σ

H (t, q) and publish the blocks at any time.
Given an integer r > 0, we say that the adversary has won
the race if, at some step t, it holds that d(T σ

A (t,q)) ≥ q + r
and d(T σ

A (t, q)) ≥ d(T σ

H (t, q)). Note that in this race the
adversary cannot mine before a block of depth q is published
by miners. Therefore, we conclude that the probability that
the adversary wins the race does not depend on q.

Given a random execution σ∈ΣA , we denote the probability
that the adversary wins the race by χ(A,r) and the respective
event by eχ(A,r,q).

With foresight, we define the sum

S(r)=max
A

∞

∑
i=0

χ(A,r+i) (6)

and show that S(r)=2−Ω(r). We later use this result to prove
persistence and progress.

Lemma 6. For a minority attacker (αA < αH) and ∆ = 0 it
holds that S(r)=2−Ω(r).

Proof. First we bound χ(A,m).
For a block bσ

s (q) of depth q, we break the race into two
epochs. The first epoch ends when the honest miners find m
blocks and the second epoch ends when the adversary wins
the race. Denote by dA the number of blocks that the adversary
has at the beginning of the first epoch and by Pr[dA = k] the
probability of a given k.

Next, to simplify the calculations we observe that different
values of ∆PoD do not affect the probability that the adversary
wins the race. We prove that the attacker has the same
probability to win for ∆PoD >0 and for ∆PoD =0. Intuitively, the
introduction of PoD affects both the honest and the adversary
miners equally, so that we can cancel it out. This is only true
for strategies that mine blocks sequentially, such as LCM
mining with interruption. In this case, the number of PoD
blocks is the same for both T σ

A (t,q) and T σ

H (t,q).
We observe that given an intermittent LCM strategy A there

is a strategy A′ where the adversary stops mining after she
finds m blocks earlier than the honest miners find their first m
blocks. Note that in this scenario whether the adversary stops
mining or not, she already won the race. Strategy A′ has the
same probability to win the race as A, as they are different only
when the adversary has found m blocks, and won the race. For
strategy A′, the race always ends when both T σ

H and T σ

A have
identical depth. Therefore, because both the honest and the
adversary trees have an identical number of PoD blocks at the
end of the race, we can cancel out the effect of PoD blocks on
both trees. In other words, for the strategy A′ every execution
where the adversary wins for ∆PoD >0 has a parallel execution
for ∆PoD =0 with the same probability to happen. Therefore, the
probability of winning for ∆PoD >0 is the same as for ∆PoD =0.

Denote by Pw(k) the probability that the attacker wins the
race in the second epoch for a given k. The probability of the
attacker winning is:

χ(A,m)≤max
A

χ(A,m)=

m−1

∑
k=0

Pw(k)·Pr[dA =k]+
∞

∑
k=m

Pr[dA =k]. (7)

We use the stars and bars [47] problem in combinatorics to
calculate Pr[dA =k]=αk

A ·α
m
H
(k+m−1

m−1

)
and gambler’s ruin [48]

for Pw(k)=(αA
αH

)m−k.
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Plugging into Equation (7) we get:

χ(A,m)≤α
m
A ·

m−1

∑
k=0

α
k
H ·
(

k+m−1
m−1

)
+

α
m
H ·

∞

∑
k=m

α
k
A ·
(

k+m−1
m−1

)
︸ ︷︷ ︸

ak

≤

α
m
A ·α

m−1
H ·m·

(
2m−2
m−1

)
+α

m
A ·α

m
H ·
(

2m−1
m

)
·C≤

αA ·m√
π(m−1)

·(4αA αH)
m−1+

2·C√
πm
·(4αA αH)

m=2−Ω(m),

(8)

where C is a constant that does not depend on n. We used the
fact that 4αA αH≤1, the known inequality

(2r
r

)
≤ 4r
√

πr , the fact

that aH is monotonic for k<r and that bk+1
ak
≤2αA for k≥r.

As the tail of a geometric sum decreases exponen-

tially, we conclude that
∞

∑
k=r

χ(A,k) = 2−Ω(r), thus

due to Equation (6) and Equation (8) we conclude

that S(r)≤
∞

∑
i=0

max
Ai

χ(Ai,r+i)=2−Ω(r).

5.5 Persistence and Progress
We are now ready to prove our main results. We first prove that
persistence holds.

Lemma 7. For ∆ = 0, and a minority attacker, persistence
holds.

Proof. Given σ∈ΣA , step t f and r>0, denote by¬Pers(σ,t0,r)
the event that r−persistence is violated for some t < t f in σ.
We say that a block violates r−persistence if it holds for this
block at some step t≤ t f that the chain that includes the block
is longer by at least r blocks than any chain that does not
contain the block, but for some t ′ > t the block is not in the
main chain. We observe that r−persistence does not hold if for
at least one block persistence is violated. Next, we consider a
scenario where the attacker tries to violate persistence for any
block at a specific depth i. Denote by ¬Persi(σ,r) the event
where persistence was violated for a block at depth i.

Finally, we break the race into a collection of sub-races
where the adversary tries to violate persistence for a specific
depth i by mining only on a specific private tree that starts at a
specific honest block at depth j < i, denoted by T σ

¬ j(t
′, i,r),

we denote the event where the attacker was able to do so
by ¬Pers j

i (σ,r). As before we denote by T σ

j (t ′,i,r) the tree
that starts at depth j and includes all blocks that are not in the
adversary’s private tree. Observe that persistence is violated if
two conditions hold: (1) at some step t the chain that includes b
at depth i in T σ

j (t ′,i,r) is deeper by r than T σ

¬ j, and (2) at some
step t ′> t, T σ

¬ j(t
′,i,r) is deeper than T σ

j (t ′,i,r). The adversary
can maximize the probability of the first condition to be 1, if

she does not publish her blocks and keeps her chain private.
Note to maximize the probability of the second condition the
attacker should choose a strategy that maximizes T σ

¬ j(t
′,i,r)

and minimizes T σ

j (t ′,i,r) for all t ′, as we saw in Corollary 1
and Lemma 5 LCM mining with interruptions on T σ

¬ j(t
′,i,r)

and MDNM mining on T σ

j (t ′,i,r) achieve these goals respec-
tively. Moreover, these two strategies can be used at the same
time and therefore an optimal strategy to maximize the second
condition is their combination. Therefore, we can think of the
game where the attacker tries to maximize Pr[¬Pers j

i (σ,r)|σ∈
ΣA ] as a race described in §5.4. Thus, it holds χ(A,r+i− j)=
Pr[¬Pers j

i (σ,r)|σ ∈ ΣA ]. There are at most i possible honest
blocks on the main chain before the i-th block, thus,

Pr[¬Persi(σ,r)|σ∈ΣAi ]≤Pr[
i⋃

j=0

¬Pers j
i (σ,r)|σ∈ΣAi ]

Denote by tσ

i the time when the first block at depth i was
mined. We bound the probability that persistence does not
hold for all A′, q and r:

Pr[¬Pers(σ,t0,r)|σ∈ΣA′ ]≤
t f

∑
i=1

S(r)= t f ·S(r)=2−Ω(r) (9)

The full details of Equation (9) are in §C.5. We used union
bound and Lemma 6.

We choose r such that: Pr[¬Pers(A′, t f , r)] ≤ ε for all A′

and thus we conclude that for every ε, there exists r such that
persistence holds with a probability at least 1−ε.

Note that because the connection between r and t f is polyno-
mial, as they are both polynomial in a security parameter [30],
for every ε there exists large enough t f so there is r that is sig-
nificantly smaller than t f so that the probability of persistence
is at least 1−ε. Thus, persistence holds non-vacuously.

Next, we prove that progress holds.

Lemma 8. For ∆=0, and a minority attacker, progress holds.

Proof. Given some ε>0, we show that there exists δ so that
progress holds with a probability larger than 1 − ε for all
steps t0≤ t f . To find such δ, we first denote by r a parameter,
such that δ is a function of r and ε. To bound the probability
that progress does not hold, we look at the first r honest blocks
generated after step t0; denote this set of blocks by Bσ(t0,r).
Our goal is to find a δ such that all the blocks in Bσ(t0,r) were
mined in the period [t0,t0 + δ] with high probability. For the
adversary to exclude the blocks from Bσ(t0,r) from the main
chain she has to build a chain that does not include any of them,
i.e, this chain has to win the race against the tree that includes
blocks from Bσ(t0,r). We look at the chain of all the ancestors
of blocks in Bσ(t0,r) without the blocks themselves. Given
this chain, we look at the subtrees that start at honest blocks
and include only adversarial blocks. Similarly to what we did
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with persistence, we separate into sub-races where every race
is between an adversarial subtree and the honest chain.

Given an adversarial strategy A and σ ∈ ΣA we denote
by Pr[¬Prog j

q(σ,t0,r)|σ∈ΣA ], the probability that the attacker
was able to exclude all the first r honest blocks after the first
block of depth q, denote by bq, by building a chain that has
a common honest ancestor with Bσ(t0,r) at depth j. We denote
this common ancestor by b j and the step when it was mined
by t j.

We denote by T σ

H (t,t0,r) the tree that includes all blocks
from Bσ(t0, r), their ancestors, and their descendants. We
denote by T σ

A (t,t0,r) the trees that includes all the ancestors
of honest block b j and all the descendants of b j that are not
in Bσ(t0,r) and are not decedents of blocks in Bσ(t0,r).

From Corollary 1 intermittent LCM is an optimal strategy
on T σ

A (t,t0,r). From Lemma 5, MDNM is a maliciously opti-
mal strategy on T σ

H (t,t0,r). As intermittent LCM and MDNM
can be executed in parallel, and as they are both optimal and
maliciously optimal respectively on their respective trees, it is
guaranteed that if the adversary uses both of them on T σ

A (t,t0,r)
and T σ

H (t,t0,r), she will maximize the probability that none
of the blocks in Bσ(t0,r) will be in the main chain forever.

Given an adversarial strategy A, denote the probability that
non of the first r honest blocks after step t0 are in the main chain
forever, by P1(A,t0,r) and the corresponding event by e1(σ,t0,r).
Denote by ¬Progq(σ, t0, r) the event that the first r honest
blocks that were mined after bq was published do not stay in the
main chain forever. As we showed, Pr[¬Prog j

q(σ,r)|σ ∈ΣA ]
is maximal when the adversary’s strategy A is to mine using
intermittent LCM on the adversarial chain and MDNM on the
honest miners’ chain. There are at most q honest blocks that
are ancestors of the block from Bσ(t0,r). Thus,

Pr[¬Progq(σ,t0,r)|σ∈ΣA ]≤

Pr[
q⋃

j=0

¬Prog j
q(σ,t0,r)|σ∈ΣA ]≤

max
A′

Pr[
q⋃

j=0

eχ(σ,r+ j)|σ∈ΣA′ ]≤S(r).

Denote by ed(σ,t0,q) the event where the deepest public
block before step t0 is of depth q.

Due to complete probability and the Poisson tail bounds [49],
it holds that:

P1(A′,t0,r)=
∞

∑
q=0

Pr[¬Progq(σ,t0,r)∧ed(σ,t0,q)|σ∈ΣA′ ]≤

max
A

n−1

∑
q=0

Pr[¬Progq(σ,t0,r)|σ∈ΣA ]+2−Ω(n−λT t)≤

n−1

∑
q=0

S(r)+2−Ω(n−λT t).

Therefore, we can choose n and r1 such that for ε

2 the
probability P1(A,t,r1) that one of the next r1 blocks will not
stay in the main chain forever is smaller than ε

2 .
Next, for all r, we define δ(r) =∆ r2 + r · ∆PoD, where

we add ∆PoD so that the period is long enough to account
for the times of proof of delays puzzles. We calculate the
probability P2(A,δ,r) (with the corresponding event e2(A,δ,r))
that there are fewer than r honest blocks within a period δ

using Erlang distribution. For simplicity we look at ∆PoD = 0,
as for ∆PoD >0 we can increase the number of steps by r ·∆PoD

to account for the times of proof of delay:

P2(A,δ,r)=1−Erlang(r2;r,λH)=

r−1

∑
n=0

1
n!

e−λH r2
(λHr2)n︸ ︷︷ ︸

an

(1)
≤ e−λH r2 ·λH

r ·e2rlogr =2−Ω(r).

For (1) we use the fact that an
an−1
≤ λHr2 and the formula

for a sum of geometric series. Thus, there is r2 such that the
probability P2 is smaller than ε

2 . We choose r3 =max(r1,r2).
Using the union bound:

Pr[e1(A,t,r3)∪e2(A,δ,r3)]≤

P1(A,t,r3)+P2(A,δ,r3)≤
ε

2
+

ε

2
=ε.

We conclude that the probability for a block in period δ(r3)
to stay in the main chain forever is at least 1=1−ε. Therefore,
at least one block that was mined in the period [t,t+δ(r3)] will
be included in the main chain forever with high probability
and thus progress holds.

We now combine both lemmas to prove our main theorem:

Theorem 1. Sprints implements a ledger (Definition 1).

Proof. Using Lemma 7 and Lemma 8 we can conclude that
the Sprints fulfills the requirements in Definition 1.

6 Implementation and Evaluation

We turn our attention to practical aspects of Sprints. Having
addressed the scenario without network delay in our security
proof in the previous section, we now investigate the scenario
with network delay through experiments, aiming to assess
the honest party’s main chain extension rate with practical
network latency.

We implement Sprints using Wesolowski VDF [22] for
PoD. We apply optimization to reduce the network delay and
dynamically adjust PoW and PoD difficulty (§6.1). Our attack
threshold analysis (§6.2) and experiments (§6.3) with practical
fork rates show that the security of our protocol is close (98%)
to that of Bitcoin.
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6.1 Implementation

We implemented a prototype of Sprints by modifying Bitcoin
Core [50]. We made two major changes. First, we modified
the data structure of block headers to include proofs of delay
and adapted the mining process as well as the block validation
process accordingly. Second, we modified the difficulty adjust-
ment algorithm to adjust both the PoD and the PoW parameters.

To generate a block, a miner first calculates a VDF using
the previous block hash as input. Then, the PoD is included
in the block header and a standard proof of work with the new
block header as input is calculated.

PoD implementation: In PoW systems, the mining algo-
rithm is memoryless, permitting miners to dynamically alter
the transactions within a block as they mine. Altering the block
header, which constitutes the PoW puzzle, incurs no additional
computational time, thus avoiding any notion of ’sunk cost.’
In contrast, PoD is inherently not memoryless, which poses
challenges for dynamic transaction inclusion. To mitigate this
limitation in Sprints, the PoD algorithm has been designed to
be independent of the block’s content. Consequently, a miner
needs to solve the PoD puzzle only once and can utilize that
solution irrespective of subsequent modifications to the block.

We implement PoD as Wesolowski VDF [22], using the im-
plementation provided by the POA Network [51]. To mitigate
the risk of a single party gaining undue advantage through an
algorithmic breakthrough in one specific VDF, a more robust
implementation of PoD can require miners to solve multiple,
distinct VDFs in parallel. Importantly, these VDFs would
employ different, unrelated algorithms. A PoD would only be
considered complete when all of these diverse VDFs have been
successfully solved. This approach can reduces the likelihood
that a single miner could dominate the process, as it would
necessitate a breakthrough in multiple algorithms simultane-
ously. However, the introduction of parallel VDFs with varying
algorithms presents new challenges, particularly that of
difficulty adjustment. Addressing these challenges is beyond
the scope of the current work and is deferred to future research.

Reducing propagation latency: In Bitcoin, blocks are ver-
ified before propagation to prevent spam. While PoW verifica-
tion is quick, PoD verification is considerably slower. In our im-
plementation, PoD verification typically takes 100ms to 500ms.
Worse yet, since blocks are verified at every hop, repeated PoD
verification can add significant propagation latency [52].

To address the problem, we postpone the VDF verification
when propagating since PoW alone already creates a significant
barrier for denial of service (rapid publication of invalid blocks).
Specifically, each node that receives a block verifies the PoW,
then concurrently broadcast the block and validates the PoD. A
node processes a block only after the PoD puzzle was verified.
Since both proofs are verified before a block is processed, this
network-level optimization does not affect the logic of the con-
sensus mechanism. Additionally, since PoW is verified before
propagation, exploiting this optimization for a denial of service
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Figure 4: Attacker threshold against PoW time ratio ρPoW with
different delay ratio ρδ.

attack is costly and inefficient, as creating a block with valid
PoW but invalid PoD is still computationally intensive.

Difficulty adjustment: We assume only principals with
the fastest hardware for VDF computation participate in
the protocol, but the best hardware is expected to get more
efficient over time [53]. Meanwhile, the total hash power
may fluctuate [54] due to hardware improvement or miners
joining and leaving the system. Therefore, Sprints adjusts the
difficulty parameters for PoD and PoW to keep both the block
interval and the average PoW ratio, i.e., the portion of time
spent on PoW, constant. It estimates PoD time and average
PoW time based only on the total block generation times using
the first and second moments. The details are in §B.1.

6.2 Attacker threshold analysis

So far we analyzed Sprints’ security without network delays,
We now consider the effect of network delay on Sprints miners.
The probability of forks is a function of the ratio between PoW
time and PoD time. Intuitively, the less PoW time, the more
likely for nodes to finish PoW around the same time which
leads to forks.

Forked blocks are blocks not on the main chain. We refer
to the ratio between forked blocks and all blocks as fork
rate, denoted by φ. Conservatively assuming the adversary
does not incur any forks (this means the adversary has strong
control over the network which makes the result stronger), the
honest mining power is reduced by (1−φ), thus the adversary
threshold becomes αA <(1−αA)(1−φ) [55], i.e., αA < 1−φ

2−φ
.

To derive φ, we first calculate the probability that when a
miner i mines a block at height h, another miner j also mines
a block at height h before learning of i’s block, creating a fork.
Denote the propagation delay from miner i to miner j by Ti j. Let
β j ∈ [0,1) denote node j’s share of mining power. Assuming
difficulty is well adjusted, miner j can mine a block in time ∆PoW

with probability β j. Therefore, when ∆PoW ̸=0, node j can mine

a block in time Ti j with probability β jTi j
∆PoW

. Once miner i generates
a block, the mean number of forks generated by other miners is,
therefore, ∑ j ̸=i

β jTi j
∆PoW

. Calculating the total probability over all
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miners i, we obtain the average number of forks n f as follows:

n f =
N

∑
i=1

βi

(
N

∑
j=1, j ̸=i

β jTi j

∆PoW

)
. (10)

Data propagation in a decentralized blockchain system
is performed with gossip over a p2p unstructured overlay
network. The propagation delay is due to the transmission
of blocks over multiple hops, and we express it based on the
average one-hop delay between a pair of nodes, denoted δ. For
each pair of miners denote by di j the number of hops between
them, so the overall propagation delay is Ti j =di j×δ.

Assuming all nodes have same mining power, i.e. βi =
1
N

(i = 1, 2, ··· , N), Equation (10) could be simplified as
n f = N−1

N · davgδ

∆PoW
where davg is the average number of hops

between any two nodes in the network. davg is determined by
the network topology. Note that we have a coefficient N−1

N
because the average distance does not take the distance to the
node itself into account. The fork rate is then

φ=
n f

1+n f
=

N−1
N ∆PoW

davgδ
+(N−1)

. (11)

According to the relationship between fork rate and attack
threshold, the attack threshold is

αA =
1

2+ N−1
N ·

davgδ

∆PoW

.

The fork rate and attacker threshold are thus a function
of the delay ratio between the one-hop propagation delay
and the block interval, denoted ρδ =

δ

∆block
and the PoW ratio

between PoW mean duration and the block interval, denoted
as ρPoW= ∆PoW

∆block
.

Figure 4 visualizes the attacker threshold for various ρδ

and ρPoW values. With the increase of PoW ratio ρPoW and
decrease of delay ratio ρδ, the attacker threshold increases and
approaches 0.5. For example, suppose the one-hop network
latency is 100ms (approximately the average latency in
Bitcoin [33]) and the block interval is 600s (i.e., ρδ =

100ms
600s ),

even if Sprints performs PoW only for 5% of the time
(ρPoW = 0.05), the attacker threshold is still 49% (compared
to 50% in Bitcoin.)

6.3 Evaluation

We have derived an analytical relationship between attacker
threshold, fork rates, and network parameters. Now we
empirically validate the analysis by running Sprints with
real-world parameters. We describe our setup (6.3.1), validate
our theoretical results (6.3.2), and evaluate Sprints under
practical parameters (6.3.3).

6.3.1 Setup

We deploy a network of 100 nodes running Sprints on our
testbed with two 64-core AMD processors (256 hardware
threads in total). Each node is given two hardware threads,
so they have roughly the same mining power. Like previous
work [56], we create a random topology by connecting each
node to four random neighbors and we fix the topology
throughout the experiments. We added network latency to
outbound traffic using the Linux tc tool. We did not explicitly
limit the bandwidth since messages sent in our experiments
are small; this is representative of the nominal block size in
practice (e.g., Bitcoin’s Compact Blocks [57] and Prism’s
Proposal blocks [56]).

From propagation traces, we identified that the average
number of hops of block propagation in our network is
davg=4.5 (see §B.2 for details).

6.3.2 Theory Validation

We now use our experimental setup to validate the analysis
of §6.2. In all experiments, we run Sprints until 100 blocks
are generated and calculate the fork rate from the log.

Parameter choice According to Equation (11), when N
and davg are fixed, fork rates are determined by ρδ (network
latency normalized by block interval) and ρPoW (PoW ratio).
We choose ρδ∈{ 100ms

60s , 400ms
60s , 800ms

60s } to cover a wide range of
latencies. For each ρδ, we run experiments with different block
intervals ∆block ∈ (30s,60s,120s) and thus different one-hop
network latency δ=ρδ×∆block.

Results Figure 5 plots the results. The three subgraphs
correspond to the values of ρδ. In all graphs, the y axis is the
fork rate and the x-axis is the PoW ratio ρPoW ranging from
zero to one. In each graph, there are four lines. The solid line
shows fork rate by Equation (11). Markers, connected by
dashed lines, show the experimental results for each block
interval ∆block (and thus network latency δ=∆block×ρδ). Each
dot represents an experiment with 100 blocks.

We observe that the experimental results are closer to the
theory with a larger one-hop delay δ. This is because the
analysis only takes the network delay into account, while in
reality there are other sources of delay, e.g., disk I/O, block
validation, etc. These additional delays are more significant
when δ is small. Nonetheless, the experimental results of each
graph are close to each other, confirming that the fork rate is
affected mostly by the ratio ρδ.

Finally, note that the measured fork rate without PoW is
much smaller than the theory. From Equation (11), when
taking ∆PoW→ 0, all the miners produce a block at about the
same time. The fork rate is then φ= N−1

N (about one). However,
in practice, variance in network delays and computation times
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theoretical analysis in Equation (11). Dotted lines plot the experiment results under different ∆block.
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Figure 6: Fork rates and attack threshold under Bitcoin-like
parameters (100ms network delay and 600s block interval.)

reduce the synchrony of block generation even with ∆PoW =0,
resulting in a smaller fork rate.

6.3.3 Real-world parameters

We conclude by studying Sprints’s behavior with practical,
Bitcoin-like parameters: We measure the fork rate under
∆block =600s and the one-hop network delay δ=100ms [33].
Figure 6 shows the results. The x axis is the ratio of PoW
time ρPoW, while the left y axis shows the fork rate, and the right
y axis shows the attacker threshold. The red line plots the fork
rate in theory and the blue dots are the experiment results. Each
dot represents 3 experiments, each with 100 blocks. The green
line shows the attacker threshold derived from fork rates, and
the orange dots represent the attacker threshold derived from ex-
perimental fork rates. According to Figure 6, Sprints achieves
a good attacker threshold even with small ρPoW. For example,
when ρPoW=0.05,Sprints can withstand an attacker with αA =
49% mining power, close to the ideal attacker threshold 50%.

6.4 Non-Negligible Propagation Delay
The measurements (§6.2) demonstrate the practicality
of Sprints when propagation delay is negligible compared
to the block interval. Future work might consider a shorter
block interval, in the order of ∆, to allow for better perfor-
mance [56, 58]. However, this would call for a different
security analysis; our approach (§5), which reduces Sprints
to standard PoW, becomes inapplicable in the presence of

staggered PoD within each branch—specifically, when honest
blocks are subjected to PoD and propagation delays. Recall that
the approach presented in previous work [10, 30, 31] does not
apply to Sprints due to its inherently non-Markovian nature.

6.5 Imperfect PoD

So far we have assumed that the adversary cannot solve the
PoD faster than the honest miners. This is the main difference
between the PoD and VDF primitives. Let us briefly consider
a weaker model where the adversary has an advantage Aadv
in solving the PoD, i.e., the adversary can solve the PoD
in A−1

adv ·∆PoD. In practice, a perfect PoD construction does not
exist, although near-perfect PoD (Aadv<1.05) may be feasible
with trusted setup and hardware [25, 26].

To estimate the impact of the advantage on the adversary’s
probability, we derive the adversary’s probability of finding a
block, i.e., the portion of blocks she mines from the total block
number, denoted by Pblk. Denote by PH the probability that the
attacker finds a block during her head-start while other miners
still calculate the PoD. From complete probability, it holds that
Pblk =PH+αA ·(1−PH). Using the CDF of exponential dis-
tribution, PH=1−exp(− αA

ρPoW
(1−A−1

adv)). Combining the two

equations, we get Pblk=1−(1−αA)·exp(− αA
ρPoW

(1−A−1
adv)).

This result is presented graphically in Figure 7 with
Aadv=1.05 [25] and Aadv=2. We plot the success probability
for different values of αA . This result indicates that when the
advantage is small it can affect the adversary’s probability
of success primarily when the ratio of PoW time to PoD time
(ρPoW) is small and the adversary’s hash rate is large. However,
a large advantage of Aadv = 2 significantly increases the
adversary’s success probability. In this scenario, at large values
of ρPoW, the attacker’s advantage grows significantly, making
Sprints less fair towards smaller miners. This observation un-
derscores a practical constraint on the ρPoW parameter. System
designers tradeoff minimizing carbon footprint and maintain-
ing robust security considering different potential Aadv values.
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Figure 7: Attacker’s block finding success probability Pblk

against PoW time ratio ρPoW for various combinations of
advantage ratios Aadv, attacker hash rates αA .

7 Carbon Footprint Quantification

The primary objective of Sprints is to reduce carbon footprint
while preserving the security standards that are characteristic
of conventional pure Proof-of-Work (PoW) protocols. Our
analysis uses conservative assumptions for a lower-bound es-
timate of carbon footprint reduction, for full details see §D. To
facilitate a fair comparison between Sprints and pure PoW, we
compare them assuming the same revenue per second and profit
margins for both systems and equal electricity costs so that the
aggregate expenses, encompassing hardware acquisition and
electricity-related costs, are equivalent in both systems. We
compare the carbon footprint of the electricity and hardware
that is utilized in both systems using CO2e (Carbon dioxide
equivalent [35]). CO2e is a measure expressing the total impact
of greenhouse gas emissions including power, hardware
manufacturing, transportation and disposal in terms of the
amount of CO2e that would have the same carbon footprint.

Most previous studies have focused solely on the carbon
emission associated with electricity consumption (e.g., [59–
62]). Another study [63] considered the carbon footprint of
hardware production and disposal in a similar way to our
analysis.

Although Sprints reduces each mining rig’s electricity
consumption by limiting its activity to a ρPoW portion of
the time, this does not lead to a proportional reduction in
the overall electricity consumption. This occurs due to the
variation in the number of mining rigs between the two
systems, i.e., a portion of the expenses are reallocated from
electricity consumption to hardware acquisition and miners in
Sprints purchase more mining hardware. However, the added
electricity consumption due to the increased number of rigs in
the system is less significant than the reduction in consumption
achieved by shortening each rig’s active time. For instance,
when ρPoW=0.05, the total electricity consumption in Sprints
is 15.7 times lower than in pure PoW. We conservatively
assume that the lifespan of mining hardware is the same in both

Sprints and pure PoW, this is despite the thermal cycling effect
that is expected to reduce the lifespan of mining hardware in
Sprints [64, 65]. This potential reduction in hardware lifespan
could further amplify Sprints’s carbon footprint reduction,
as it would necessitate more frequent hardware replacements,
thereby increasing the CAPEX costs.

While reducing electricity consumption is important, our
primary objective is to decrease the overall carbon footprint.
To assure this, we take into account the environmental
consequences of hardware production and disposal, using data
from previous studies [66–68]. Our results (Figure 2) show that
despite an increase in total hardware in Sprints, the system’s
overall carbon emission decreases while taking into account
the carbon footprint of hardware production and disposal. For
example, when ρPoW is set to 5%, the total carbon footprint of
Sprints is reduced by 90.8% compared to pure PoW while rare
metal depletion increases by 27%. Our OPEX assumptions
are conservative and don’t account for peak demand-based
charges, potentially underestimating Sprints’s efficiency [69].

In our analysis, we exclude the electricity consumption and
carbon footprint of PoD computation. This is because PoD’s
non-parallelizable nature inherently limits its power consump-
tion. Thus, a single PoD-optimized device per miner is expected
to suffice. In fact, Ethereum Foundation’s plans to develop
energy-efficient, cost-effective ASICs for similar computa-
tions, such as VDFs, in the form of low-power USB sticks [70].

The full details of our analysis are presented in §D.

8 Conclusion

We present Sprints, a hybrid PoD-PoW protocol that shifts
costs from OPEX to CAPEX, decreasing the carbon footprint
with almost the same security threshold as pure PoW.
Moreover, we show that even when keeping the same block
interval as Bitcoin and reducing the PoW portion to 5%, the
security threshold is only reduced from 50% to 49%, achieving
a reduction of 10.9x in resource expenditure with an increase
of 1.27x in rare metal depletion.

The Sprints design of a hybrid PoW-PoD system can pave the
way to an eco-friendly decentralized PoW blockchain protocol.
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Appendix A Pseudocode of honest miner’s
protocol execution

We provide the pseudocode of honest miner’s protocol
execution in Algorithm 1. This is an algorithm for player i
to generate a block in Sprints. Each player has a local view
of the set of all blocks Blocks. The extend function takes the
last block in the longest valid chain in the view and creates a
template of a block that extends it. The template includes the
content of the block without the PoW and PoD solutions. The
functions PerformPoW and PerformPoD are used to calculate
a single step of PoW and PoD, respectively, and they return
a block data structure that contains metadata and the solution
if it is found. If the solution is not found, the node can derive
this information from the block data structure.

Algorithm 1 Sprints Protocol Mining Pseudocode for Node i

1: Parameters:
2: PoW_Diff ▷ PoW difficulty
3: PoD_Dur ▷ PoD duration
4: Initialize:
5: PoD←⊥
6: PoW←⊥ ▷ Solution for the current termplate
7: Blocks←{Genesis}
8: while true do
9: blk←ReceiveBlock

10: if blk ̸=⊥ then ▷ recieved block
11: if V (blk) then ▷ Is valid?
12: Blocks←Blocks∪{blk}
13: PoD←⊥
14: PoW←⊥
15: tmpl←extend(Blocks)
16: h←hash(tmpl)
17: if PoD is not done then
18: PoD←PerformPoDStep(PoD_Dur,h,PoD)
19: else if PoW is not done then ▷ PoD is done
20: PoW←PerformPoW(PoW_Diff,h)
21: if PoD is done and PoW is done then
22: blk←(tmpl,PoD,PoW)
23: Blocks←Blocks∪{blk}
24: PublishBlock(blk)
25: PoD←⊥
26: PoW←⊥

Appendix B Details of implementation and
experiments

B.1 Block Time estimation in difficulty adjust-
ment

Let ∆PoD denote the PoD time and ∆PoW the average PoW time.
We have ∆block=∆PoW+∆PoD. The estimation of ∆PoD and ∆PoW

is based on a recent history we call the adjustment period.
In Sprints, the block interval follows a “lifted” exponential
distribution: ∆block∼Exp(λ)+∆PoD. Unlike Bitcoin, we cannot
estimate ∆PoW directly from the mean (the first moment) of
the block interval. Instead, we use both the first moment (x̄)
and the second moment (s2). Since ∆PoD is a constant, the
variance of ∆block is equal to the variance of ∆PoW. Using the
method of moments [71], we get the following estimations:
E(∆PoW) =

√
s2, E(∆PoD) = x̄−

√
s2. We can thus adjust the

difficulty to match our target PoD time and average PoW time.
We numerically compare the estimation accuracy of PoW

mean time between Bitcoin (first moment) and Sprints (second
moment, see above). As in Bitcoin, we use a 2016 block
adjustment period with 10 minute PoW for both processes.
Based on 30k instances, the average error is only slightly
higher in Sprints (0.09%) than in Bitcoin (0.02%) and so is the
standard deviation (3.14% vs. 2.22%), showing that difficulty
adjustment is practical for both puzzle types.

B.2 Modeling the delay of the experiment
network

Several factors contribute to davg. First, the average distance
of our network is ∼ 2.5, so nodes are on average 2-3 hops
away. Moreover, the compact block feature transmits blocks in
multiple rounds to reduce bandwidth consumption [57], which
adds extra hops. We assume the block header propagates
through first (taking 2.5 hops on average), then the recipient
requests the block content from its peer following the compact
block protocol, which adds two more hops in most cases. Thus
the total number of hops is davg=2.5+2=4.5.

Appendix C Proofs Details

C.1 Full proof for Lemma 4
Here we describe the full proof for Lemma 4.

Proof. We fix t f and ℓ and prove by induction.

Basis For t0∈ [t f−∆PoD,t f ] the lemma holds by Equation (4)
and Equation (5).

Assumption Denote by qn = t f −∆PoD−n. We assume that
the lemma holds for all t0∈ [qn,t f ].

Step We prove the lemma holds for t0 = qn+1. For some
prefix π, the probability that any honest miner would find a
PoW block of depth d

π1
b (t0)+1, i.e., deeper by 1 than T σ1

H , is
denoted by Psuc(π). Denote the correspondent event by eσ

suc(t).
From Equation (5) it holds that:

Psuc(π1)>Psuc(π2). (12)

18



We partition Σ
π1
A into two subsets, Σ1 and Σ2, where eσ

suc(t0)
and ¬eσ

suc(t0) hold, respectively. To use the induction assump-
tion, we show that the requirement in Equation (5) holds for the
period starting in step t0+1. For all t∈ [t0+1,t0+∆+∆PoD+1],
σ1∈Σ1 and σ2∈Σ2, it holds that λ

σ1

dσ2
b (t)

(t)≥λσ2(t) because for

σ2, no new block is found in t0 thus every miner in σ1 knows of
any block that a miner in σ2 knows in the same step. Addition-
ally, for σ1 miners’ new mining target would necessarily be
deeper than dσ2

b (t), thus, for all t∈ [t0+1,t0+∆PoD+1] it holds
dσ1

b (t)≥dσ2
b (t). From the induction assumption:

PrΣ1 [d
σ

b (t f )≥ℓ]≥PrΣ2 [d
σ

b (t f )≥ℓ]. (13)

Next we compare Σ
π1
A and Σ

π2
A separately for subsets that

contain executions where a block deeper than d
π1
b (t0)+1 was

found in the end of step t0 and to subsets where the block was
not found.

Next, our goal is to show that the requirement in Equation (5)
holds. We look at t = t0 +∆PoD +1, σ1 ∈ Σ

π1
A and σ2 ∈ Σ

π2
A . If

a block of depth d
π1
b (t0) + 1 was found in the end of step t0,

because the depth of σ2 cannot increase more than dσ1
b (t0)+1

it holds dσ1
b (t) ≥ dσ2

b (t). If a block of depth d
π1
b (t0) + 1 was

not found in the end of step t0, it holds that dσ1
b (t0)+1>dσ2

b (t),
therefore, dσ1

b (t)≥dσ1
b (t0)≥dσ2

b (t).
For t = t0 + ∆ + ∆PoD + 1: If a block of depth d

π1
b (t0) + 1

was found at the end of step t0, the attacker delays blocks
with maximum delay ∆ for all honest miners, thus, they all
hear about the block in step t0 + ∆ + 1. The PoD puzzle is
completed by the beginning of step t so that all miners in σ1

and σ2 are now mining on a block with depth dσ1
b (t0) + 1.

Because dσ1
b (t0)+1≥dσ2

b (t), it holds λ
σ1

dσ2
b (t)

(t)≥λσ2(t).

If a block of depth d
π1
b (t0) + 1 was not found at the end

of step t0, by step t all miners in σ1 heard of a block with
depth dσ1

b (t0), as more than ∆ step has passed since such block
was found. Therefore, it must hold λ

σ1

dσ2
b (t)

(t)≥λσ2(t).

We assume that the assumption in Equation (4) that
is true for [t0, t0 + ∆PoD], and Equation (5) that is true
for [t0, t0 + ∆ + ∆PoD] . Using what we showed above, it
holds that: ∀t ∈ [t0 + 1, t0 + ∆PoD + 1] : dσ1

b (t) ≥ dσ2
b (t) and

∀t∈ [t0+1,t0+∆+∆PoD+1] :λ
σ1

dσ2
b (t)

(t)≥λσ2(t).

Based on the induction assumption we get:

Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|eσ
suc(t0)]≥Pr

Σ
π2
A
[dσ

b ≥ℓ|eσ
suc(t0)] (14)

and

Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|¬eσ
suc(t0)]≥Pr

Σ
π2
A
[dσ

b ≥ℓ|¬eσ
suc(t0)]. (15)

We can now conclude (see §C.3 for the full details):

Pr
Σ

π1
A
[dσ

b (t f )≥ℓ]=Pr
Σ

π2
A
[dσ

b (t f )≥ℓ]. (16)

This concludes the step of the induction and thus the proof of
the lemma.

C.2 Full proof for Lemma 5
Here we describe the full proof for Lemma 5.

Proof. To simplify the proof, we conservatively assume that
the adversary can add an unbounded number of blocks to the
tree in all steps, obtaining the required PoD and PoW instantly.
If MDNM is optimal for such a powerful adversary it is also
optimal for the weaker adversary defined in the model.

We prove that the MDNM is (t f ,ℓ)-maliciously optimal for
all t f and ℓ. Given a prefix π of length t0, and some t f and ℓ, we
prove using induction. Denote the depth of the deepest block
that the adversary adds at step t by dσ

∗ (t). If the adversary does
not add a block in step t we take dσ

∗ (t)=0.

Basis First,we prove for t0∈ [t f−∆PoD,t f ]. By step t f the chain
can grow by at most one block. Any strategy where the block
that the adversary adds extends the total depth would determin-
istically increase the depth at t f at least as dσ

∗ (t)=0 would in the
worst case. Any strategy where the new block does not change
the depth would have an identical result, as miners extend the
first block they hear of a specific depth. Therefore, not adding
a block is not worse than any strategy and therefore is optimal.

Similarly, not delaying a block that extends the chain
would be an inferior strategy, and delaying a block that does
not extend the chain would be identical to allowing it to be
published as it does not change other miners’ behavior.

Therefore, MDNM is maliciously optimal for t0 ∈
[t f−∆PoD,t f ] as required.

Assumption Denote qn = t f−∆PoD−n. We assume that the
lemma holds for t0∈ [qn,t f ].

Step We prove it holds for t0 = qn+1. From the induction
assumption, during [qn,t f ] the maliciously optimal strategy is
to not introduce new blocks and delay every honest block by ∆.
Let A be the MDNM strategy and A′ be a strategy where the
action at t0 is arbitrary and is MDNM for t∈ [t0+1,t f ]. Denote
the sets of executions where the adversary uses A and A′ by ΣA
and ΣA′ , respectively. Denote the probability that the honest
miners find a block that extends the depth at step t0 by PFB and
the correspondent event by eσ

FB(t0). Note that this probability
is identical for both ΣA and ΣA′ , as all the honest miners have
the same mining target at the beginning of step t0. We are
interested in using Lemma 4 for both subsets.

Given σ2 ∈ ΣA and σ1 ∈ ΣA′ , if the honest miners find a
block on the tip in step t0 for both σ1 and σ2, for some step t∈
[t0+1,t0+∆PoD+1] it holds dσ1

b (t)≥dσ2
b . This is because for σ2

the depth increase exactly by 1 for t0+1 and does not change
until at least t0+∆PoD+1, while for σ1 the depth increase at least
by 1 by t0 + 1. It also holds that λ

σ1

dσ2
b (t)

(t)≥ λσ1(t)≥ λσ2(t),
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from the definition of λ
σ1

dσ2
b (t)

(t) and given a miner p, p receives

the block in σ2 not later than p in σ1, thus, the target of every
such miner p in σ1 cannot be deeper than in σ2.

Using similar considerations for the case where the miner
does not find a block on the tip, we conclude that λ

σ1

dσ2
b (t)

(t)≥

λσ1(t)≥λσ2(t) and dσ1
b (t)≥dσ2

b for t∈ [t0+1,t0+∆+∆PoD+1]
in both cases. The condition in Lemma 4 holds. Therefore:

Pr
Σ

π

A
[dσ

b (t f )≥ℓ]=

PFB ·Pr
Σ

π

A
[dσ

b ≥ℓ|eσ

FB(t0)]+(1−PFB)·Pr
Σ

π

A
[dσ

b ≥ℓ|¬eσ

FB(t0)]≤

PFB ·Pr
Σ

π

A′
[dσ

b ≥ℓ|eσ

FB(t0)]+(1−PFB)·Pr
Σ

π

A′
[dσ

b ≥ℓ|¬eσ

FB(t0)]≤

Pr
Σ

π

A′
[dσ

b (t f )≥ℓ].

This concludes the induction, showing MDNM is a maliciously
optimal strategy.

C.3 Equation 16

We provide the development of Equation (16).

Pr
Σ

π1
A
[dσ

b (t f )≥ℓ]=Psuc(π1)·Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|eσ
suc(t0)]

+(1−Psuc(π1))·Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|¬eσ
suc(t0)])=

Psuc(π1)·(Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|eσ
suc(t0)]

−Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|¬eσ
suc(t0)])

+Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|¬eσ
suc(t0)])

Equation (12), value in parentheses positive from Equation (13)
≥

Psuc(π2)·(Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|eσ
suc(t0)]

−Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|¬eσ
suc(t0)])

+Pr
Σ

π1
A
[dσ

b (t f )≥ℓ|¬eσ
suc(t0)])

Equation (14),Equation (15)
≥

Psuc(π2)·Pr
Σ

π2
A
[dσ

b (t f )≥ℓ|eσ
suc(t0)]

+(1−Psuc(π2))·Pr
Σ

π2
A
[dσ

b (t f )≥ℓ|¬eσ
suc(t0)]=

Pr
Σ

π2
A
[dσ

b (t f )≥ℓ].

C.4 Proofs of Lemmas 1 and 2

We prove both lemma Lemma 1 and Lemma 2 together:

Proof. We prove by backward induction on qn=
∆ t f−∆PoD−n.

As the basis of induction, we prove that both lemmas hold
for all t0∈ [q0,t f−1].

Basis (Lemma 1) Note a PoW puzzle for a block can only
be solved after the block’s PoD puzzle. Therefore, a new
block with both PoW and PoD puzzles, cannot be created
in the period [q0,t f − 1]. In contrast, a PoD puzzle that has
started before q0 and was completed during [q0,t f−1], can be
extended by a PoW puzzle.

Given a prefix π of length t0, we define a set Σ
π

A1
all

executions starting with π, with all subsequent actions are
chosen according to an LCM strategy A1. Additionally, we
define the set Σ

π

A2
which is the set of all executions where the

actions are chosen according to some strategy A2. Denote the
probability that the depth in step t f has grown by 1 compared to
the depth at t0 for strategy i by gi=

∆ Pr
Σ

π

Ai
[dσ

¬b(t f )=dσ

¬b(t0)+1].

It holds that g1≥g2, because in both cases the probability to
find the PoW puzzle is identical and the LCM strategy chooses
to mine on the deepest partial block would increase the depth
by 1. Denote by δ(q) the Kronecker delta that returns 1 if the
predicate q is true and 0 otherwise. The probability that the
depth at t f is greater than ℓ for strategy i∈ [1,2] is

Pr
Σ

π

Ai
[dσ

¬b(t f )≥ℓ]=

gi ·δ(d
π

¬b(t0)+1≥ℓ)+(1−gi)·δ(d
π

¬b(t0)≥ℓ) (17)

Since g1 ≥ g2 ≥ 0 and δ(dπ

¬b(t0)+1≥ ℓ)≥ δ(dπ

¬b(t0)≥ ℓ), it
follows from Equation (17) that

Pr
Σ

π

A1
[dσ

¬b(t f )≥ℓ]≥Pr
Σ

π

A2
[dσ

¬b(t f )≥ℓ]

as required by Lemma 1.

Basis (Lemma 2) The lemma holds for t0 ∈ [q0, t f − 1]
because of the requirement in Equation (1).

Assumption We assume that both lemmas hold for
t0∈ [qn,t f ] and prove they hold for t0 =qn+1.

Step (Lemma 1) Consider a prefix π of length t0, a strat-
egy A1 that is LCM and a strategy A2 that is LCM after step qn.
We look at two sets of executions Σ

π

A1
and Σ

π

A2
. The probability

of finding a PoW puzzle in qn+1 is Pw(A) in both Σ
π

A1
and Σ

π

A2
.

Denote the successful mining event at step t of execution σ,
by eσ

t . Denote by Σ1 and Σ2 the subsets of Σ
π

A1
and Σ

π

A2
where

a PoW puzzle is not found in step qn+1: Σi=
∆ {σ∈Σ

π

Ai
|¬eσ

qn+1
}.

Because both subsets have the same prefix until step qn+1 and
optimal by assumption strategies are used after, it holds that:

PrΣ1 [d
σ

¬b(t f )≥ℓ]=PrΣ2 [d
σ

¬b(t f )≥ℓ]. (18)

For Σ
π

A1
\Σ1 and Σ

π

A2
\Σ2, where the attacker solves a PoW

puzzle in step qn+1, relevant PoD can start only at step qn.
Therefore, the Lemma 2 assumption (Equation (1)) holds, and
we can use Lemma 2 for qn, obtaining

Pr
Σ

π

A1
\Σ1

[dσ

¬b(t f )≥ℓ]≥Pr
Σ

π

A2
\Σ2

[dσ

¬b(t f )≥ℓ]. (19)
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Using complete probability:

Pr
Σ

π

A1
[dσ

¬b(t f )≥ℓ]=

Pw(A)·Pr
Σ

π

A1
\Σ1

[dσ

¬b(t f )≥ℓ]+(1−Pw(A))·PrΣ1 [d
σ

¬b(t f )≥ℓ]

Equation (18) and Equation (19)
≥

Pw(A)·Pr
Σ

π

A2
\Σ2

[dσ

¬b(t f )≥ℓ]+(1−Pw(A))·PrΣ2 [d
σ

¬b(t f )≥ℓ]

=Pr
Σ

π

A2
[dσ

¬b(t f )≥ℓ].

This concludes the step proof for Lemma 1.

Step (Lemma 2) Taking t0 =qn+1, according to the lemma
assumption, for all σ1∈Σ1, σ2∈Σ2 and t∈ [qn+1,qn+1+∆PoD],
it holds that d̃σ1

b (t) ≥ d̃σ2
b (t). If the adversary solves a PoW

puzzle in qn+1, she will complete the PoD puzzle in qn+1+∆PoD.
Given any σ1 ∈ Σ1 and σ2 ∈ Σ2, we showed in the step
for Lemma 1 that a (t f ,ℓ)-optimal LCM strategy A chooses
a block b1∈Bmax(T σ1

A (qn+1)) and b2∈Bmax(T σ2
A (qn+1)).

We again separate for eσ
qn+1

and ¬eσ
qn+1

for both sets. Note
that whether a PoW puzzle is found or not in both σ1 and σ2 at
step qn+1, it holds for all t∈ [qn,qn+∆PoD] that d̃σ1

b (t)≥ d̃σ2
b (t):

For t ∈ [qn, qn + ∆PoD − 1] it is true from the assumption
for Equation (1). As for qn + ∆PoD, d̃σ2

b (qn + ∆PoD) cannot
outgrow d̃σ1

b (qn+∆PoD) because the PoD puzzles that can finish
at this step all started in step qn where the depth of σ1 is greater
or equal of that of σ2. The probability that a PoW block is found
for qn is Pw(A) in both sets of executions Σ1 and Σ2. Therefore,
we can use Lemma 2 twice for eσ

qn+1
and for ¬eσ

qn+1
where the

conditions of the lemma hold also for qn+∆PoD. Therefore,

PrΣ1 [d
σ

¬b(t f )≥ℓ|eσ
qn+1

]≥PrΣ2 [d
σ

¬b(t f )≥ℓ|eσ
qn+1

], (20)

and

PrΣ1 [d
σ

¬b(t f )≥ℓ|¬eσ
qn+1

]≥PrΣ2 [d
σ

¬b(t f )≥ℓ|¬eσ
qn+1

]. (21)

Using complete probability:

PrΣ1 [d
σ

¬b(t f )≥ℓ]=

Pw(A)·PrΣ1 [d
σ

¬b(t f )≥ℓ|eσ
qn+1

]+

(1−Pw(A))·PrΣ1 [d
σ

¬b(t f )≥ℓ|¬eσ
qn+1

])

Equation (20) and Equation (21)
≥

Pw(A)·PrΣ2 [d
σ

¬b(t f )≥ℓ|eσ
qn+1

]+

(1−Pw(A))·PrΣ2 [d
σ

¬b(t f )≥ℓ|¬eσ
qn+1

])

=PrΣ2 [d
σ

¬b(t f )≥ℓ].

This concludes the step of Lemma 2 and thus the proof
of Lemma 1 and Lemma 2 for all t0.

C.5 Equation (9)

We provide the full details of the inequality in Equation (9).

Pr[¬Pers(σ,t0,r)|σ∈ΣA′ ]≤
max

A
Pr[¬Pers(σ,t0,r)|σ∈ΣA ]=

max
A

Pr[
t f⋃

i=1

¬Persi(σ,r)∧tσ

i ≤ t f |σ∈ΣA ]≤

max
A

t f

∑
i=1

Pr[¬Persi(σ,r)∧tσ

i ≤ t f |σ∈ΣA ]≤

t f

∑
i=1

max
A

Pr[¬Persi(σ,r)∧tσ

i ≤ t f |σ∈ΣA ]≤

t f

∑
i=1

max
Ai

Pr[¬Persi(σ,r)|σ∈ΣAi ]≤

t f

∑
i=1

max
Ai

Pr[
i⋃

j=0

¬Pers j
i (σ,r)|σ∈ΣAi ]=

t f

∑
i=1

max
Ai

Pr[
i⋃

j=0

eχ(σ,r+ j)|σ∈ΣAi ]≤

t f

∑
i=1

S(r)= t f ·S(r)=2−Ω(r)

We used union bound and Lemma 6.

Appendix D Carbon Footprint Analysis

We analyze the carbon footprint impact of Sprints compared to
pure PoW by presenting a model for comparison (§D.1), quan-
tifying the improvement, parameterized by the PoW time ra-
tio ρPoW (§D.2) and instantiate it with a practical value (§D.3).

D.1 Modeling mining expenditure

Following the model of Tsabary et al. [8], we assume miners’
expenses consist of capital expenditure (CAPEX, the cost of
acquiring mining hardware) and operating expenses (OPEX,
the cost of electricity). Denote the CAPEX and OPEX costs
per device per second by C and O, respectively. Specifically,
C is the cost of each device divided by its lifetime and O is the
average cost of electricity used by one device in each second.

We compare two scenarios, scenario p representing
Nakamoto’s pure Proof-of-Work (PoW) consensus and
scenario s, Sprints, with ρs

PoW < 1. Both scenarios generate
a constant revenue of R0 per second, allowing for a fair and
balanced evaluation between the two cases. We explain how
the ρs

PoW influences Cs and Os, which are the CAPEX and
OPEX costs respectively in scenario s.
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CAPEX Mining rigs’ life expectancy is limited by both
technological advances and wear [27, 64]. Frequent on-off
switching accelerates wear through thermal cycling, leading to
mechanical failure [64, 65]. We introduce a factor µ to account
for this difference in life expectancy. The CAPEX cost per
machine per second in both scenarios is related by the factor
µ: Cs=µCp. Determining the precise value of µ is challenging;
however, as indicated by a miners’ technical guide [64], it is
greater than 1. We conservatively assume µ=1, as any value
of µ>1 would result in a higher CAPEX expense for Sprints,
thereby further shifting the costs from electricity to hardware
procurement. By assuming this, we set a lower bound for total
savings, suggesting that actual environmental benefits could
surpass our conservative estimates.

OPEX We assume that the electricity prices are homogenous
for both Bitcoin and Sprints. Since the rigs in Sprints only
run ρPoW of the time, the average OPEX cost per machine per
second reduces, and Os = ρs

PoWOp, as a mining rig is active
only for ρs

PoW of the time. The assumption is conservative
because industrial consumers often encounter peak demand-
based charges [69], which lead to higher OPEX costs per hash
for Sprints compared to pure PoW when a greater number
of rigs operate simultaneously which would further increase
the total cost of electricity and make Sprints more energy and
environmentally efficient than what we account for in our
model. The same holds for another common pricing model,
Real-Time Pricing (RTP) [72]. RTP not only increases the
effective electricity cost during high-demand periods but also
decreases it during low-demand periods. This dynamic pricing
model incentivizes consumers to adjust their consumption
patterns, thereby helping to flatten the demand curve over time
and promoting a more consistent load on the grid.

Total revenue We use the factor θ to account for the profit
margin of the miners, i.e.,

R0=θ·Ns(Cs+Os)=θ·N p(Cp+Op). (22)

D.2 Reduction of carbon footprint
First, we find the relation between the number of mining rigs in
the two systems. Denote the numbers of mining devices in the
pure-PoW system and in Sprints by N p and Ns, respectively.
Since the rewards are the same, the overall expenditure per
second is the same in both systems. It follows that:

N p(Op+Cp)=Ns(ρs
PoWOp+µCp)

⇒N p

Ns =
ρPoWOp+µCp

Op+Cp =
ρPoW+ µCp

Op

1+ Cp

Op

.

We first estimate the ratio Cp

Op , based on real-world statistics
from the Bitcoin system. As of March 29, 2022, in Bitcoin, con-
sidering the block reward and inter-block time, the base revenue

amounts to R0=499 $
sec . Take the miners’ electricity price to be

0.04 $
kWh [73]. The total amount of electricity consumed by Bit-

coin annually is 89 TWh [74]. We assume a competitive market,
as in [8, 73, 75, 76], the per-second total mining cost is close
to the per-second revenue (θ≈ 1), as we assume small profit
margins. Therefore, using Equation (22) it holds that N p ·Op=
113 $

sec . Using the constants values from Bitcoin and Op and
assuming that θ≈1 we derive N p ·Cp≈386 $

sec . Therefore, the
ratio of CAPEX and OPEX in Bitcoin is Cp

Op =3.42. If we as-
sume θ=1.05 the ratio will increase by 6.5%. The total number
of devices in Sprints will be 1.27 times larger than in pure PoW.

Electricity consumption reduction Denote the rate be-
tween the electricity cost per second in Sprints and pure PoW

by QH(ρ
s
PoW)=∆ N pOp

NsOs =
N p

Nsρs
PoW

=
ρs
PoW+ µCp

Op

(1+Cp
Op )ρ

s
PoW

. This equation

shows that when µ=1 and the PoW time ratio is 5%, the ratio
of electricity consumed in Bitcoin and Sprints is 15.7:1.

Emission reduction To justify Sprints’s carbon footprint
reduction, we need to show that the increase in the number
of mining devices used leads to a smaller increase in the
carbon footprint than the reduction caused by the decrease in
electricity consumption.

We employ the concept of carbon dioxide equivalent [35]
(denoted as CO2e) to gauge the carbon emission of a mining
device. This measure takes into account the emissions of all
greenhouse gases, converting them to CO2e based on their
respective carbon emission. It provides a unified metric to
assess the overall contribution of different gases to climate
change. We define the total amount of CO2e emission during
the production of each mining device as EC and the total
emission of mining during the lifetime of a device as EO.
While the estimation of non-energetic components carries
uncertainty [67], our analysis shows that they are considerably
smaller than electricity-related waste, suggesting that any
variations in these estimates would not alter the overall
conclusions. Additionally, we use a rough estimate based on
data regarding PC production carbon footprint [68]. Using
PC production data as a proxy for mining rig production is
a practical approach, given their manufacturing similarities.
We estimate each rig implies an emission of 200 kg CO2 in
production and delivery (EC = 200). Based on de Vries [66]
we estimate a mining rig emits 8400 kg CO2 during its lifetime
(EO=8400), considering the popular Antminer S9 mining rig.

WWe define the emission reduction ratio Qe as the ratio
between Bitcoin and Sprints emissions. Considering the
device’s total lifetime emission and that Sprints allows mining
in ρPoW of the time, the emission ratio for each device in
Bitcoin and Sprints is EC+EO

EC+ρs
PoWEO

. Therefore, the emission
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reduction ratio as a function of the load ρs
PoW is

Qe(ρ
s
PoW)=

N p(EC+EO)

Ns(EC+ρs
PoWEO)

=
ρs
PoW+ µCp

Op

1+ Cp

Op

(EC+EO)

(EC+ρs
PoWEO)

.

Figure 2 shows the relationship of ρPoW and Qe.

D.3 Finding the optimal ρPoW

Lowering ρPoW reduces the carbon footprint but also the attack
threshold (§6), forming a tradeoff.

Our analysis shows that the attacker threshold decreases
very slowly as we gain more reduction in emission (i.e,. as
Qe increases). For example, for ρPoW = 0.05 the reduction
in emission is 10.9x and Sprints achieves a threshold of
αA =49% mining power based on experiment fork rates.
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