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Abstract. We present HAETAE (Hyperball bimodAl modulE rejecTion signAture
schemE), a new lattice-based signature scheme. Like the NIST-selected Dilithium
signature scheme, HAETAE is based on the Fiat-Shamir with Aborts paradigm, but
our design choices target an improved complexity/compactness compromise that is
highly relevant for many space-limited application scenarios. We primarily focus on
reducing signature and verification key sizes so that signatures fit into one TCP or
UDP datagram while preserving a high level of security against a variety of attacks.
As a result, our scheme has signature and verification key sizes up to 39% and 25%
smaller, respectively, compared than Dilithium. We provide a portable, constant-
time reference implementation together with an optimized implementation using
AVX2 instructions and an implementation with reduced stack size for the Cortex-M4.
Moreover, we describe how to efficiently protect HAETAE against implementation
attacks such as side-channel analysis, making it an attractive candidate for use in
IoT and other embedded systems.
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1 Introduction
The rise of quantum computing has brought up – among others – the necessity of new,
post-quantum digital signature schemes. In the standardization process of post-quantum
cryptography by the American National Institute of Standards and Technology (NIST),
the lattice-based schemes Falcon [FHK+18] and Dilithium [DKL+18] have already been
announced as future standards, and another 40 new candidates are on-ramp for an
additional process. The critical challenge in developing lattice-based digital signatures lies
in finding a balance between security and practicality: while developing secure schemes
against a wide range of attacks is essential, it is also vital to ensure they are practical for
real-world applications. This challenge becomes even more critical with the increasing
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Table 1: NIST security level, signature size, verification key size, and implementation
security, with respect to constant-time and masking of selected signature schemes

Scheme Lvl. Sig. vk Const.-time. Maskable
Falcon-512 1 666B 897B ✓ [Por19] ✗ [Pre23]
Dilithium-2 2 2,420B 1,312B ✓ [DKL+18] ✓ [MGTF19]
HAETAE-120 2 1,474B 992B ✓ ✓

prevalence of embedded devices and the Internet of Things (IoT). Both technologies have
become ubiquitous, from home appliances to medical devices connected to the internet.

In particular, this leads to two practical requirements:

1. The verification key and signature sizes must be as small as possible since both are
frequently transmitted. Specifically, it is helpful if the signature is small enough
to be sent in only one UDP or TCP datagram, as this minimizes the need for
packet fragmentation. The importance of the signature and verification key sizes for
communication protocols has been highlighted already in multiple evaluations [Wes21,
PST20, GS23]. Paquin et al. [PST20] observe for TLS, that fragmentation over many
packets has a significant performance impact for network links with non-ideal packet
loss rates. Benchmarking DNSSEC [GS23] revealed, that the smaller signatures of
Falcon lead to faster resolution times in comparison to Dilithium in most scenarios,
although the signature computation and verification is much faster with Dilithium
compared to Falcon.

2. The secret-dependent operations such as key generation and message signing must be
easy to protect against implementation attacks. This is essential in embedded
use cases like the IoT, where attackers have physical access and can measure
power consumption or electromagnetic emanation [KA21], additionally to the timing
behaviour [Sch00], which is also exploitable from remote.

In this context, Falcon fulfills the first requirement very well, but efforts for making it
to satisfy the second requirement, namely Mitaka [EFG+22], were recently broken [Pre23].
Dilithium, on the other hand, focuses on being easy to implement and protecting against side-
channel attacks. However, this comes at the sacrifice of larger signatures and verification
keys, which, for example, do not allow a signature to fit in one UDP datagram. We
summarize this discussion in Table 1 and compare the two with HAETAE.

Contribution. We present HAETAE1, a lattice-based digital signature scheme that
improves over Dilithium by up to 39 % smaller signature and key sizes. Moreover, this
improvement is not expected to come at a significant increase in the cost to protect the
scheme against physical attacks. Namely, the most significant difference (w.r.t. masking
in comparison to Dilithium) is the usage of fix-point arithmetic which is similar to masking
integers. Its quantum security is based on the hardness of the module versions of the lattice
problems LWE and SIS [BGV12, LS15], in the Quantum Random Oracle Model (QROM).
The scheme design follows the “Fiat-Shamir with Aborts” paradigm [Lyu09, Lyu12], which
relies on rejection sampling: rejection sampling is used to transform a signature trial whose
distribution depends on sensitive information, into a signature whose distribution can be
publicly simulated.

HAETAE is in part inspired from Dilithium, a post-quantum “Fiat-Shamir with Aborts”
signature scheme, notably concerning the use of the module LWE and SIS assumptions.
HAETAE differs from Dilithium in two major aspects: (i) we use a bimodal distribution
for the rejection sampling, like in the BLISS signature scheme [DDLL13], instead of a

1The haetae is a mythical Korean lion-like creature with the innate ability to distinguish right from
wrong.
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“unimodal” distribution like Dilithium, (ii) we sample from and reject to hyperball uniform
distributions, instead of discrete hypercube uniform distributions. The design departs
from BLISS, as HAETAE relies on module lattice problems while BLISS relies either on
assumptions on unstructured lattices or the NTRU assumption [HPS98]: this leads us to
introduce a new key generation algorithm. A further difference is that BLISS, which can
be seen as Dilithium with bimodal rejection from Gaussians, involves discrete Gaussian
distributions whereas HAETAE considers hyperball uniform distributions as suggested
in [DFPS22]. We recall from [DFPS22] that, with a rejection rate constraint, the choice of
bimodal rejection sampling from the hyperballs results in the optimal signature sizes among
the possible variants of Dilithium. This choice also allows for simple rejection sampling
without transcendental function computation on the secret key and approximations for
tail-cutting, while retaining the signature compactness.

HAETAE benefits from several novel improvements in the key generation algorithm.
We introduce a new rejection procedure in the key generation algorithm to minimize the
magnitude of the secret key when multiplied by the challenge. This facilitates rejection
sampling in the signing algorithm and leads to smaller signatures. The key generation
rejection is also designed to be efficient and simple to implement. It significantly improves
over a procedure with a similar objective in the key generation of BLISS. Furthermore, we
introduce to the bimodal setting a verification key truncation with the same objective as
Dilithium’s. A direct adaptation would lead to large bounds for the verification algorithm
and degraded security. Instead, we compensate for the verification key truncation by
correcting the signing key accordingly. It increases the magnitude of the signing key, but
by a much smaller amount than the naive approach.

For the signing algorithm, we adapt Dilithium’s signature compression so that it is
compatible with our module lattices key generation algorithm, by taking into account the
residues modulo 2. The main novelty in the signing algorithm is a detailed description
of a fixed-point arithmetic algorithm for sampling uniformly in a discrete hyperball,
which was left open in [DFPS22]. The discretization leads to numerical errors on the
uniform distribution: we bound them and bound their effect on the scheme security. High
precision is required during signing; however, by applying the entropy encoding technique
from [ETWY22] to hyperball uniform distributions, the output signature of the signing
algorithm becomes as compact as its entropy, which is much smaller than Dilithium.

We present in Table 2 a brief comparison between the main divergence points of
Dilithium, HAETAE and BLISS. Most importantly, the choice of bimodal hyperballs in
HAETAE does not need to compute a secret-dependent transcendental function during
signature rejection, just like Dilithium, contrary to BLISS.

Table 2: Comparison between Dilithium, HAETAE and an hypothetical update of BLISS,
obtained by interpolating our approach and BLISS’s approach of rejection sampling via
bimodal Gaussians. Completely updating BLISS is out of the scope of this paper and
left as future work. “Maybe” means that masking is doable using generic techniques, but
optimized gadgets are not yet available.

Dilithium HAETAE Updated BLISS
Rejection Step Deterministic Deterministic Probabilistic
Arithmetic Integers Fix-point Fix-point
Maskable Yes Maybe Maybe
Sizes Long Short Similar to HAETAE
Additional primitives
to implement
w.r.t. Dilithium

N/A ◦ Hyperball sampler
◦ CRT for mod2q

◦ Gaussian sampler
◦ CRT for mod2q
◦ Secure rejection step

Implementation and Performance. We propose three parameter sets with NIST
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Table 3: Relative comparison between HAETAE, Dilithium, and Falcon. The security levels
are given in the parameter sets instead of their name. The percentages are the ratio of
their sizes and the execution times. The execution time is measured as the median cycle
counts among 1000 executions, obtained on one core of an Intel Core i7-10700k, with
TurboBoost and hyperthreading disabled.

Parameter set Sig. size vk size KeyGen Sign Verify
HAETAE-2 /Dilithium-2 61% 76% 409% 507% 100%
HAETAE-3 /Dilithium-3 71% 75% 376% 444% 113%
HAETAE-5 /Dilithium-5 64% 80% 328% 454% 91%
HAETAE-2 /Falcon-1 221% 111% 3% 35% 365%
HAETAE-5 /Falcon-5 230% 116% 2% 30% 399%

security levels 2, 3 and 5. Each parameter set of HAETAE has 20-25% smaller verification
key size and 29-39% shorter signatures than its counterpart in Dilithium. Based on our
portable and constant-time reference implementation of HAETAE, the verification process
is as fast as Dilithium’s, while the resulting key generation and signing algorithm are up
to five times slower than Dilithium’s. Up to 80% of the signing time is consumed by the
hyperball sampling. Thus, any improvement to this sampling would contribute greatly to
the efficiency of HAETAE, an independent speedup to further optimizations. Nonetheless,
our benchmarks indicated signing with HAETAE is still around three times faster than
with Falcon (portable Falcon with emulated floating-point operations). We summarize the
comparison results in Table 3.

We provide a detailed, implementation-oriented specification using Chinese Remainder
Theorem (CRT) and Number-Theoretic Transform (NTT), which enables efficient
implementation of HAETAE (Section 5). We additionally developed an optimized version
using AVX2 instructions (Section 6), and an implementation for the Cortex-M4 (Section 7),
where we explore stack reduction techniques.

Moreover, we observe that masking HAETAE against physical attacks is only slightly
more complex than masking Dilithium, based on the similarity of the scheme design and
the use of fixed-point arithmetic. One of the conceptual differences between HAETAE and
Falcon (and their variants) regarding physical attacks is that HAETAE only needs Gaussian
samples for secret-independent centers and standard deviations.

Finally, we note that like other Fiat-Shamir signatures, such as Schnorr signa-
tures [Sch90], the randomized signing of HAETAE can take advantage of pre-computations.
By sampling from the hyperball and pre-computing the message-independent components
offline, the online signing phase of HAETAE is cut by factor five.

Our code is publicly available.

Related Work. An alternative approach to avoid leakage during the rejection step in
Fiat-Shamir signatures based on lattices is to remove it altogether. A first approach is
to flood what depends on the signature key in signatures by a much larger quantity. As
shown in [ASY22], relying on the Rényi divergence for the security analysis allows to limit
the amount of flooding. A concrete instantiation was recently proposed in [dPEK+]. This
however results in signature sizes that are much higher than ours. A second approach
was recently given in [DPS23], which uses Gaussian convolutions to obtain signatures
that can be simulated, without flooding nor rejection sampling. However, signing is more
complex as it relies on sampling from large-dimensional integer Gaussian distribution with
non-diagonal covariance matrices. Also, the signature sizes provided in [DPS23] are worse
than ours for the smallest parameter set, and only marginally smaller for larger parameter
sets. An extensive comparison of the recent lattice signatures can be found in Appendix A.
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2 Preliminaries
Before introducing specific results adapted to the setting in HAETAE in Section 3 and the
HAETAE scheme itself in Section 4, we start by defining notations used throughout this
paper and recapitulate relevant fundamental works.

2.1 Notations
Matrices are denoted in bold font and upper case letters (e.g., A), while vectors are denoted
in bold font and lowercase letters (e.g., y or z1). The i-th component of a vector is denoted
with subscript i (e.g., yi for the i-th component of y).

Every vector is a column vector. We denote concatenation between vectors by putting
the rows below as (u,v) and the columns on the right as (u|v). We naturally extend the
latter notation to concatenations between matrices and vectors (e.g., (A|b) or (A|B)).

We let ⌊y⌉ be a rounding of y ∈ R to the nearest integer. We naturally extend the
rounding notation to vectors and polynomials by applying it component-wise.

We let R = Z[x]/(xn + 1) be a polynomial ring where n is a power of 2 integer and
for any positive integer q the quotient ring Rq = Z[x]/(q, xn + 1) = Zq[x]/(xn + 1). We
abuse notations and identify R2 with the set of elements in R with binary coefficients. We
also let RR = R[x]/(xn + 1) be a polynomial ring over real numbers. For an integer η, we
let Sη denote the set of polynomials of degree less than n with coefficients in [−η, η] ∩ Z.
Given y = (

∑
0≤i<n yi x

i, · · · ,
∑

0≤i<n ynk−n+i x
i)⊤ ∈ Rk (or Rk

R), we define its ℓ2-norm
as the ℓ2-norm of the corresponding “flattened” vector ∥y∥2 = ∥(y0, · · · , ynk−1)⊤∥2.

Let BR,m(r, c) = {x ∈ Rm
R |∥x − c∥2 ≤ r} denote the continuous hyperball with

center c ∈ Rm and radius r > 0 in dimension m > 0. When c = 0, we omit
it. Let B(1/N)R,m(r, c) = (1/N)Rm ∩ BR,m(r, c) denote the discretized hyperball with
radius r > 0 and center c ∈ Rm in dimension m > 0 with respect to a positive integer N .
When c = 0, we omit it. Given a measurable set X ⊆ Rm of finite volume, we let U(X)
denote the continuous uniform distribution over X. It admits x 7→ χX(x)/Vol(X) as a
probability density, where χX is the indicator function of X and Vol(X) is the volume of
the set X. For the normal distribution over R centered at µ with standard deviation σ,
we use the notation N (µ, σ).

For a positive integer α, we define r mod± α as the unique integer r′ in the range
[−α/2, α/2) satisfying the relation r = r′ mod α. We also define r mod+ α as the unique
integer r′ in the range [0, α) that satisfies r = r′ mod α. We denote the least significant bit
of an integer r with LSB(r). We naturally extend this to integer polynomials and vectors
of integer polynomials, by applying it component-wise.

For a sequence of real numbers a0, . . . , an, we denote the i-th maximum as i-thmax
j
aj .

2.2 Signatures
We briefly recall the formalism of digital signatures.

Definition 1 (Digital Signature). A signature scheme is a tuple of PPT algo-
rithms (KeyGen, Sign,Verify) with the following specifications:

• KeyGen : 1λ → (vk, sk) outputs a verification key vk and a signing key sk;

• Sign : (sk, µ)→ σ takes as inputs a signing key sk and a message µ and outputs a
signature σ;

• Verify : (vk, µ, σ) → b ∈ {0, 1} is a deterministic algorithm that takes as inputs a
verification key vk, a message µ, and a signature σ and outputs a bit b ∈ {0, 1}.
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Let γ > 0. We say that it is γ-correct if for any pair (vk, sk) in the range of KeyGen and µ,

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ,

where the probability is taken over the random coins of the signing algorithm. We say
that it is correct in the (Q)ROM if the above holds when the probability is also taken over
the randomness of the random oracle modeling the hash function used in the scheme.

We also give two security notions, namely the existential unforgeability under chosen
message attacks, and under no-message attacks.

Definition 2 (Security). Let T, δ ≥ 0. A signature scheme sig = (KeyGen, Sign,Verify)
is said to be (T, δ)-UF-CMA secure in the QROM if for any quantum adversary A with
runtime ≤ T given (classical) access to the signing oracle and (quantum) access to a
random oracle H, it holds that

Pr
(vk,sk)

[Verify(vk, µ∗, σ∗) = 1|(µ∗, σ∗)← AH,Sign(vk)] ≤ δ,

where the randomness is taken over the random coins of A and (vk, sk) ← KeyGen(1λ).
The adversary should also not have issued a sign query for µ∗. The above probability of
forging a signature is called the advantage of A and denoted by AdvUF-CMA

sig (A). If A does
not output anything, then it automatically fails.

Existential unforgeability against no-message attack, denoted by UF-NMA is defined
similarly except that the adversary is not allowed to query any signature per message.
Strong existential unforgeability, denoted by sUF-CMA, allows an adversary to query
signatures for its target message, as long as it does not output a queried signature.

2.3 Lattice Assumptions
We first recall the well-known lattice assumptions MLWE and MSIS on algebraic lattices.

Definition 3 (Decision-MLWEn,q,k,ℓ,η). For positive integers q, k, ℓ, η and the dimension n
of R, we say that the advantage of an adversary A1 solving the decision-MLWEn,q,k,ℓ,η

problem is

AdvMLWE
n,q,k,ℓ,η(A1) =

∣∣∣∣∣∣
Pr
[
b = 1 | A← Rk×ℓ

q ; b← Rk
q ; b← A1(A,b)

]
− Pr

[
b = 1

∣∣∣ A← Rk×ℓ
q ; (s1, s2)← Sℓ

η × Sk
η ;

b← A1(A,As1 + s2)

]∣∣∣∣∣∣ .

Definition 4 (Search-MSISn,q,k,ℓ,β). For positive integers q, k, ℓ, a positive real number β
and the dimension n of R, we say that the advantage of an adversary A2 solving the
search-MSISn,q,k,ℓ,β problem is

AdvMSIS
n,q,k,ℓ,β(A2) = Pr

[
0 < ∥y∥2 < β ∧

(A| Idk) · y = 0 mod q
∣∣∣ A← Rk×ℓ

q ; y ∈ Rk+ℓ
q ← A2(A)

]
.

Moreover, we finally introduce a variant of the SelfTargetMSIS problem introduced in
Dilithium [DKL+18], which corresponds to our setting.

Definition 5 (BimodalSelfTargetMSISH,n,q,k,ℓ,β). Let H : {0, 1}∗ × M→ R2 be a crypto-
graphic hash function, whereM⊆ {0, 1}∗ is a message space. Let q, k, ℓ > 0, β ≥ 0 and the
dimension n of R. An adversary A3 solving the search-BimodalSelfTargetMSISH,n,q,k,ℓ,β
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problem with respect to j ∈ Rk
2 \ {0} has an advantage of

AdvBimodalSelfTargetMSIS
H,n,q,k,ℓ,β (A3) = Pr


0 < ∥y∥2 < β ∧

H(Ay− qcj mod 2q, µ) = c
(A0|b)← Rk×ℓ

q ;
A = (2b + qj| 2A0| 2Idk) mod 2q;

(y, c, µ) ∈ Rk+ℓ
q ×R2 ×M← A|H(·)⟩

3 (A)

 .

In the ROM (resp. QROM), the adversary is given classical (resp. quantum) access to H.

The following classical reduction from MSIS to BimodalSelfTargetMSIS is very similar
to the reduction from MSIS to SelfTargetMSIS introduced in [DKL+18] and is similarly
non-tight. As this latter reduction, it cannot be straightforwardly extended to a reduction
in the QROM, since it relies on the forking lemma.

Theorem 1 (Classical Reduction from MSIS to BimodalSelfTargetMSIS). Let q > 0 be an
odd modulus, H : {0, 1}∗×M→ R2 be a cryptographic hash function modeled as a random
oracle and that every polynomial-time classical algorithm has a negligible advantage against
MSISn,q,k,ℓ,β. Then every polynomial-time classical algorithm has negligible advantage
against BimodalSelfTargetMSISn,q,k,ℓ,β/2.

Proof sketch. Consider a BimodalSelfTargetMSISn,q,k,ℓ,β/2 classical algorithm A that is
polynomial-time and has classical access to H. If AH(·)(A) makes Q hash queries H(wi, µi)
for i = 1, · · · , Q and outputs a solution (y, c, µj) for some j ∈ [Q], then we can construct
an adversary A′ for MSISn,q,k,ℓ,β as follows.

The adversary A′ can first rewind A to the point at which the j-th query was made and
reprogram the hash as H(wj , µj) = c′( ̸= c). Then, with probability approximately 1/Q,
algorithm A will produce another solution (y′, c′, µj). We then have{

Ay− qcj = zj = Ay′ − qc′j mod 2q,
∥y∥2, ∥y′∥2 < β/2.

As q is odd, we have A(y− y′) = (c− c′)j mod 2. The fact that c′ ̸= c implies that the
latter is non-zero modulo 2, and hence so is y− y′ over the integers. As it also satisfies
(b| A0| Idk) · (y− y′) = 0 mod q and ∥y− y′∥ < β, it provides a MSISn,q,k,ℓ,β solution for
the matrix (b| A0| Idk), where the submatrix (−b| A0) ∈ Rk×ℓ

q is uniform.

2.4 Sampling from the Continuous Hyperball-uniform
In order to sample in practice from hyperball uniform, we rely on the following result.

y← U(BR,k(r)):
1: yi ← N (0, 1) for i = 0, · · · , nk + 1
2: L← ∥(y0, · · · , ynk+1)⊤∥2
3: y← r/L · (

∑n−1
i=0 yi x

i, · · · ,
∑nk−1

i=nk−n yi x
i)⊤

4: return y ▷ y ∈ Rk
R

Figure 1: Hyperball uniform sampling

Lemma 1 ( [VGS17]). The distribution of the output of the algorithm in Figure 1
is U(BR,k(r)).
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Sampling from continuous hyperball-uniform can be done using the algorithm in Figure 1
due to Lemma 1. However, to allow side-channel secure implementations of HAETAE,
we sample from discrete hyperball-uniform. We delay to Section 3.2 the analysis of a
discretized version which turns discrete Gaussian samples to discrete hyperball-uniform
distribution.

2.5 Signature Encoding via Range Asymmetric Numeral System
A HAETAE signature is essentially a vector z, that is compressed into z2 with smaller
dimension and a hint h, that are then encoded. While Huffman coding would be applied on
each coordinate at a time, an arithmetic coding encodes the entire vector coordinates in a
single number. In contrast to Huffman coding, arithmetic coding gets close to entropy also
for alphabets, where the probabilities of the symbols are not powers of two. We recall a
recent type of entropy coding, named range Asymmetric Numeral systems (rANS) [Dud14],
that encodes the state in a natural number and thus allows faster implementations. The
rANS encoding technique was recently used in [ETWY22] and we adapt it to hyperball
uniform distributions. As a stream variant, rANS can be implemented with finite precision
integer arithmetic by using renormalization.

Definition 6 (Range Asymmetric Numeral System (rANS) Coding). Let t > 0 and
S ⊆ [0, 2t − 1]. Let g : [0, 2t − 1]→ Z ∩ (0, 2t] such that

∑
x∈S g(x) ≤ 2t and g(x) = 0 for

all x /∈ S. We define the following:

• CDF : S → Z, defined as CDF(s) =
∑s−1

y=0 g(y).

• symbol : Z → S, where symbol(y) is defined as s ∈ S satisfying CDF(s) ≤ y <
CDF(s+ 1).

• C : Z× S → Z, defined as

C(x, s) =
⌊
x

g(s)

⌋
· 2t + (x mod+ g(s)) + CDF(s).

Then, we define the rANS encoding/decoding for the set S and frequency g/2t as in
Figure 2.

Encode((s1, · · · , sm) ∈ Sm):
1: x0 = 0
2: for i = 0, · · · ,m− 1 do
3: xi+1 = C(xi, si+1)
4: return xm

Decode(x ∈ Z):
1: y0 = x
2: i = 0
3: while yi > 0 do
4: s′i+1 = symbol(yi mod+ 2t)
5: yi+1 = ⌊yi/2t⌋ · g(s′i+1) + (yi mod+ 2t)− CDF(s′i+1)
6: i++
7: m = i− 1
8: return (s′m, · · · , s′1) ∈ Sm

Figure 2: rANS encoding and decoding procedures



Team HAETAE 9

Lemma 2 (Adapted from [Dud14]). The rANS coding is correct, and the size of the rANS
code is asymptotically equal to Shannon entropy of the symbols. That is, for any choice
of s = (s1, · · · , sm) ∈ Sm, Decode(Encode(s)) = s. Moreover, for any positive x and any
probability distribution p over S, it holds that∑

s∈S

p(s) log2(C(x, s)) ≤ log2(x) +
∑
s∈S

p(s) log2

(
g(s)
2t

)
+ 2t

x
.

Finally, the cost in bitlength of encoding the first symbol is ≤ t, i.e., for any s ∈ S, we
have log2(C(0, s)) ≤ t.

We determine the frequency of the symbols experimentally, by executing the signature
computation and collecting several million samples. Finally, we apply some rounding
strategy in order to heuristically minimize the empirical entropy

∑
s∈S p(s) log(g(s)/2n).

3 HAETAE-specific Results
While our scheme is reminiscent of Dilithium, the bimodal setting hinders the use of some
of its base components. In this section, we describe parts that are specifically adapted
to HAETAE. First, the key generation algorithm departs from known key generation
algorithms for BLISS, as we work in the module setting. Second, we study the precision
needed when discretizing the hyperball sampler from Section 2.4 to enable fixed-point
arithmetic. Then, we explain how challenges are computed in HAETAE. Next, we describe
the rejection sampling procedure and estimate its expected number of iterations depending
on the fixed-point arithmetic precision. Finally, we explain how to split the coordinates
of a signature vector into high and low bits, allowing for signature compression via low
bits drop. This order is consistent with the order in which those results are used during
signing.

3.1 Key Generation
When using bimodal rejection sampling, the verification step relies on a specific key
pair (A, s) ∈ Rk×(k+ℓ)

p ×Rk+ℓ
p such that the bimodal centers (−1)bAs mod p (b = 0, 1)

are the same, regardless of the bit b. To generate such a pair, following [DDLL13], we
choose p = 2q and aim at As = qj mod 2q for j = (1, 0, . . . , 0)⊤.

3.1.1 Key Generation and Encoding

To build such a key pair (A, s), we do as follows. We first generate an MLWE sample b =
Agensgen + egen mod q, where Agen ←↩ U(Rk×(ℓ−1)

q ) and (sgen, egen)←↩ U(Sℓ−1
η × Sk

η ). We
then define A = (−2b + qj| 2Agen| 2Idk) mod 2q as well as s⊤ = (1|s⊤gen|e⊤gen). This is a
valid verification key pair for HAETAE, but the choice of even modulus 2q makes it hard
to truncate the least significant bits of b as in Dilithium.

To enable the verification key truncation, we modify the key generation algorithm, as
follows. We use an extra randomness agen ←↩ U(Rk

q ) and let b−agen = Agensgen+egen mod q.
For any decomposition b = b1 + b0, we then define A = (2(agen − b1) + qj|2Agen|2Ik)
as well as s⊤ = (1|s⊤gen|(egen − b0)⊤). One sees that As = qj mod 2q. In practice, the
verification key is then comprised of b1 and the seed that allows generating Agen and agen.
The secret key is the seed used to generate s and (Agen,agen).

It remains to choose the decomposition of b, that we see as an nk-dimensional vector
with coordinates in [0, q − 1]. We set the coordinates of b1 as follows. If some coordinate
of b is even, then we take the same value for the corresponding coordinate of b1. Else, we
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take the rounding of this coordinate to the nearest multiple of 4 as value for b1. Next we
set b0 = b− b1 and we note that coordinates of b0 lie in [−1, 1], i.e., b0 ∈ Sk

1 . We can
then write b = b0 + 2b′1, where b′1 is encoded using ⌈log2(q)− 1⌉ bits per coordinate, i.e.
one less bit than b. This is computed coordinate-wise with b0 = (−1)⌊b/2⌋ mod 2b mod 2.
In all of the following, we let (LowBitsvk(b),HighBitsvk(b)) denote (b0,b1).

When b is uniform, we notice that the coordinates of b0 roughly follow a (centered)
binomial law with parameters (2, 1/2), which experimentally leads to smaller choices for γ,
which we discuss and introduce below.

Note that the truncation reduces each coefficient of b by 1 bit. So the verification
key becomes shorter, but not significantly. Thus, we use the truncation for lower security
levels and keep the no-truncation version for the highest level. In the following, we refer
to the truncated version as d = 1 and the non-truncated version as d = 0, where d is the
vk truncation bit.

3.1.2 Rejection Sampling on the Key

A critical step of our scheme is bounding ∥cs∥2, where s is generated as before and c ∈ R is
a polynomial with coefficients in {0, 1} and has less than or equal to τ nonzero coefficients.
The lower this bound is, the smaller the signature is, which in turn leads to the harder
forging. In the key generation algorithm, we apply the following rejection condition for
some heuristic value γ, bounding ∥cs∥2 ≤ γ

√
τ :

N (s) := τ ·
m∑

i=1

i-thmax
0≤j<2n

∥s(ωj)∥2
2 + r ·

(m+1)-th
max

0≤j<2n
∥s(ωj)∥2

2 ≤ γ2n,

where m = ⌊n/τ⌋, r = n mod τ , ωj ’s are the primitive 2n-th roots of unity (1 ≤ j ≤ n).
Note that s(ωj) is defined as (s1(ωj), · · · , sk+ℓ(ωj)) ∈ Ck+ℓ given the secret key s =
(s1, · · · , sk+ℓ) ∈ Rk+ℓ. Below, we prove that the left hand side is a bound on n

τ · ∥cs∥
2
2 and

that this condition leads to asserting ∥cs∥2 ≤ γ
√
τ .

Lemma 3. For any challenge c ∈ {0, 1}n with Hamming weight τ and a secret s ∈ Sk+ℓ
η ,

the value ∥cs∥2
2 is upper bounded by

τ

n

(
τ ·

m∑
i=1

i-thmax
0≤j<2n

∥s(ωj)∥2
2 + r ·

(m+1)-th
max

0≤j<2n
∥s(ωj)∥2

2

)
,

where m = ⌊n/τ⌋, r = n mod τ , and ωj’s are the primitive 2n-th roots of unity.

Proof. We first rewrite ∥cs∥2
2 as:

∥cs∥2
2 =

∑
j |c(ωj)|2 · ∥s(ωj)∥2

2

n
,

where s(ωj) = (s1(ωj), · · · , sk+ℓ(ωj)). We have that
∑n

j=1 |c(ωj)|2 = nτ and |c(ωj)|2 =
|ωj,1 + · · ·+ ωj,τ |2 ≤ τ2. We can bound

∑n
j=1 |c(ωj)|2 · ∥s(ωj)∥2

2 by rearranging the order.
Let m = ⌊n/τ⌋ and r = n mod τ . Then m is the maximum number of |c(ωj)|2’s that can
be τ2. By sorting ∥s(ωj)∥2 in a decreasing order,

∥s(ωσ(1))∥2 ≥ ∥s(ωσ(2))∥2 ≥ · · · ≥ ∥s(ωσ(n))∥2,

where σ is a permutation for the indices, we have
n∑

j=1
|c(ωj)|2 · ∥s(ωj)∥2

2 ≤
m∑

j=1
|c(ωσ(j))|2 · ∥s(ωσ(j))∥2

2 +
n∑

j=m+1
|c(ωσ(j))|2 · ∥s(ωσ(m+1))∥2

2.
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Then it reaches the maximum when the m largest ∥s(ωj)∥2
2’s are multiplied with τ2’s, i.e.,

n∑
j=1
|c(ωj)|2 · ∥s(ωj)∥2

2 ≤
m∑

j=1
τ2 · ∥s(ωσ(j))∥2

2 +
( n∑

j=1
|c(ωj)|2 −mτ2

)
· ∥s(ωσ(m+1))∥2

2

= τ2 ·
m∑

j=1
∥s(ωσ(j))∥2

2 + r · τ · ∥s(ωσ(m+1))∥2
2.

This concludes the proof.

3.2 Sampling in a Discrete Hyperball
In order to generate a hyperball uniform sample y, we apply a rounding-and-reject strategy
to the discretization of the continuous hyperball uniform sampling from Figure 1, which
allows to generate rightly distributed samples. Our approach in sampling is to avoid the
use of floating point arithmetic for two reasons: First, many microarchitectures do not
provide floating-point units and even if so, the execution time of floating-point instructions
may be data-dependent and thus unsuitable [AKM+15] for a constant-time implementation.
Floating-point computation would also prohibit a masked implementation, that is protected
against power side-channel attacks, because known masking techniques are only applicable
to integers. And second, the required precision is higher than achievable even in IEEE
double. In order to do so, we replace the continuous Gaussian sampler from Lemma 1
and instead use discrete Gaussian distributions, as we know that they approximate well
continuous Gaussian distribution for large standard deviation.

Discretizing the Output. Once we obtain an “hyperball” sample, we choose to round
it. Then, if the resulting sample lies too close to the border of the hyperball, we reject it.
This ensures that for any possible sample, they have the same amount of pre-rounding
predecessors. This also decreases the precision but the output is now discrete in a hyperball
with a somewhat-smaller radius. We simply increase the starting radius to compensate.

y← U(B(1/N)R,m(B)):
1: y← U(BR,m(NB +

√
mn/2)) ▷ continuous sampling in Figure 1

2: if ∥⌊y⌉∥2 ≤ NB then
3: return ⌊y⌉/N
4: else, restart ▷ y ∈ B(1/N)R,m(B) ⊂ (1/N)Rm

Figure 3: Discrete hyperball uniform sampling

We study in the following lemma the rejection probability of this step.
Lemma 4. Let n be the degree of R, M0 ≥ 1, B,m,N > 0. At each iteration, the
algorithm from Figure 3 succeeds with probability ≥ 1/M0 and the distribution of the output
is U(B(1/N)R,m(B)) if we set

N ≥
√
mn

2B · M
1/(mn)
0 + 1

M
1/(mn)
0 − 1

.

The proof of this lemma can be found in Appendix C.

3.3 Challenge Sampling
Challenges in HAETAE are polynomials c ∈ R with binary coefficients and exactly τ of
them are nonzero. As simply hashing the message and the commitment only yields a
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SampleBinaryChallengeτ (ρ)
// for HAETAE-120 or HAETAE-180

1: Initialize c = c0c1 . . . c255 = 00 . . . 0
2: for i = 256− τ to 255 do
3: j ←↩ {0, . . . , i}
4: ci = cj

5: cj = 1
6: Return c

// for HAETAE-260
1: Initialize c = c0c1 . . . c255 = H(ρ)
2: if wt(c) > 128 then
3: c = c⊗ 11 · · · 1
4: else if wt(c) = 128 then
5: c = c⊗ c0c0 · · · c0
6: Return c

Figure 4: Challenge sampling algorithm

binary string ρ, we now explain how to format it to get such a challenge. Since n = 256
across all three parameter sets, the challenge space has size

(
n
τ

)
exceeding the required

entropy 2192 and 2225 for HAETAE-120 and HAETAE-180, respectively. To sample such
challenges we rely on the (binary version of) SampleInBall algorithm from Dilithium, which
we specify in the first half of Figure 4.

For HAETAE-260, however, we require 255 bits of entropy for the challenge space,
which cannot be reached with the fixed Hamming weights for n = 256. To achieve it, we
replace the challenge space by a set containing exactly half of the bitstrings of length 256.
Specifically, we choose a set containing all elements of Hamming weight strictly less than
128 and half of the elements of Hamming weight 128, using the following algorithm. Given
a 256-bits hash with Hamming weight w, do the following. If w < 128, we do nothing, and
if w > 128, we flip all the bits. If w = 128, we decide whether to flip or not, depending on
the first bit. Exactly half of all binary polynomials are reachable this way, which means
that the challenge set has size 2255 as desired. The algorithm is specified in the second
half of Figure 4.

As a side note, this means that the hash function with which we instantiate the Fiat-
Shamir transform is the composition of these two steps, hashing and formatting. Looking
ahead, this corresponds to steps 6 and 7 of Figure 8. Contrary to Dilithium, we do not
stray away from the Fiat-Shamir transform and include the challenge c in the signature as
it is no bigger than ρ when encoded.

3.4 Bimodal Hyperball Rejection Sampling

Recently, Devevey et al. [DFPS22] conducted a study of rejection sampling in the context of
lattice-based Fiat-Shamir with Aborts signatures. They observe that (continuous) uniform
distributions over hyperballs can be used to obtain compact signatures, with a relatively
simple rejection procedure. To make masking easier, HAETAE uses (discretized) uniform
distributions over hyperballs, in the bimodal context. The proof of the following lemma is
available in Appendix C.

Lemma 5 (Bimodal Hyperball Rejection Sampling). Let n be the degree of R, c > 1,
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r, t,m > 0, and B ≥
√
B′2 + t2. Define M = 2(B/B′)mn and set

N ≥ 1
c1/(mn) − 1

√
mn

2

(
c1/(mn)

B′
+ 1
B

)
.

Let v ∈ Rm ∩ B(1/N)R,m(t). Let p : Rm → {0, 1/2, 1} be defined as follows

p(z) =


0 if ∥z∥ ≥ B′,
1/2 else if ∥z− v∥ < B ∧ ∥z + v∥ < B,
1 otherwise.

Then there exists M ′ ≤ cM such that the output distributions of the two algorithms from
Figure 6 are identical.

v−v

Figure 5: The HAETAE eyes

Figure 5 illustrates (the continuous version) of the rejection sampling that we consider.
The black empty circles have radii equal to B and the green circle has radius B′. We
sample a vector z uniformly inside one of the black circles (with probability 1/2 for each)
and keep z with p(z) = 1/2 if z lies in the blue zone, with probability p(z) = 1 if it lies in
the green zone, and with probability p(z) = 0 everywhere else.

We now have all necessary ingredients in Figures 1, 3, 5, and 6 to make sure the
resulting distribution of z is indeed uniform over the discretized hyperball. Thanks to
Lemma 4 and Lemma 5, we already know the level of precision required for y to maintain
the provable security of HAETAE.

3.5 High and Low Bits
Recall that a HAETAE signature is principally a vector z, whose lower part is replaced with
a (smaller) hint. HAETAE makes use of two different high and low bits decompositions:
one helps encoding a signature while the other is used when computing a hint.
Following [ETWY22], the first is helpful in the sense that if we correctly choose the
number of low bits, they will be distributed almost uniformly and can then be excluded
from the encoding step. The high bits on the other hand, will then follow a distribution
with a very small variance and we apply the rANS encoding on them only, making it much
more efficient as the size of the alphabet greatly shrunk.

A(v) :
1: y← U(B(1/N)R,m(B))
2: b← U({0, 1})
3: z← y + (−1)bv
4: return z with probability p(z), else ⊥

B :
1: z← U(B(1/N)R,m(B′))
2: return z with probability 1/M ′, else ⊥

Figure 6: Bimodal hyperball rejection sampling
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The second decomposition allows to reduce the alphabet size of the resulting hint, and
thus to reduce the size of its encoding.

We use the following base method of decomposing an element in high and low bits. We
first recall the Euclidean division with a centered remainder.
Lemma 6. Let a ≥ 0 and b > 0. It holds that

a =
⌊
a+ b/2

b

⌋
· b+ (a mod± b),

and this writing as a = bq + r with r ∈ [−b/2, b/2) is unique.

We define our decomposition for compressing the upper part of the signature.
Definition 7 (High and low bits). Let r ∈ Z and α be a power of two integer. Define r1 =
⌊(r + α/2)/α⌋ and r0 = r mod± α. Finally, define the tuple:

(LowBits(r, α),HighBits(r, α)) = (r0, r1).

We extend these definitions to vectors by applying them component-wise. We state
that this decomposition lets us recover the original element and bound the components of
the decomposition in Lemma 7. The proof is available in Appendix C.
Lemma 7. Let α be a power of two. Let q > 2 be a prime with α|2(q − 1) and r ∈ Z.
Then it holds that

r = α · HighBits(r, α) + LowBits(r, α),
LowBits(r, α) ∈ [−α/2, α/2),
r ∈ [0, 2q − 1] =⇒ HighBits(r, α) ∈ [0, (2q − 1)/α] .

We define HighBitsz1(r) = HighBits(r, 256) and LowBitsz1(r) = LowBits(r, 256).

3.5.1 High and Low Bits for h

In order to produce the hint that we send instead of the lower part of z, we could use the
previous bit decomposition. However, as noted in [DKL+18, Appendix B] in a preliminary
version, a slight modification allows to further reduce the entropy of the hint.

The idea is to pack the high bits in the range [0, 2(q − 1)/αh). This is possible if we
use the range [−αh/2− 2, 0) to represent the integers that are close to 2q − 1.
Definition 8 (High and low bits for h). Let r ∈ Z. Let q be a prime and αh|2(q − 1)
be a power of two. Let m = 2(q − 1)/αh, r1 = HighBits(r mod+ 2q, αh), and r0 =
LowBits(r mod+ 2q, αh). If r1 = m, let (r′0, r′1) = (r0 − 2, 0). Else, (r′0, r′1) = (r0, r1). We
define:

(LowBitsh(r),HighBitsh(r)) = (r′0, r′1).

As before, we extend these definitions to vectors by applying them component-wise.
We state that this decomposition lets us recover the original element and bound the
decomposition components.
Lemma 8. Let r ∈ Z. Let q be a prime, αh|2(q − 1) be a power of two and define m =
2(q − 1)/αh. It holds that

r = αh · HighBitsh(r) + LowBitsh(r) mod 2q,
LowBitsh(r) ∈ [−α/2− 2, α/2),
HighBitsh(r) ∈ [0,m− 1] .

The proof of Lemma 8 is available in Appendix C.
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4 The HAETAE Signature Scheme
In this section, we describe three different versions of HAETAE. As a warm-up, we give
an uncompressed, un-truncated version of HAETAE, implementing the Fiat-Shamir with
aborts paradigm in the bimodal hyperball-uniform setting. We then give the full description
of optimized and deterministic HAETAE as we implemented it. Finally, we discuss the
parts of the signing algorithm which can be pre-computed.

4.1 Uncompressed Description
As a first approach, we give a high-level, uncompressed, description of our signature scheme
in Figure 7. In all of the following sections, we let j = (1, 0, . . . , 0) ∈ Rk, as well as k, ℓ
be two dimensions, N > 0 the fix-point precision and τ > 0 the challenge min-entropy
parameter. The parameters B, B′, and B′′ refer to the radii of hyperballs. Let q be an
odd prime and αh|2(q − 1) is a power of two. We recall the key rejection function based
on Lemma 3:

N : s 7→ τ ·
m∑

i=1

i-thmax
j
∥s(ωj)∥2

2 + r ·
(m+1)-th

max
j
∥s(ωj)∥2

2.

With the parameter γ, we bound N (s) ≤ γ2n, which ensures that ∥cs∥2 ≤ γ
√
τ for

all c ∈ R2 satisfying wt(c) ≤ τ . The key generation algorithm is a simplified version from
Section 3.1, which removes the verification key truncation, for conceptual simplicity.

Effectively, this requires computing a complex (fix-point) 512-point Fast Fourier
Transform (FFT) for each polynomial in s, where the input is padded with zeros. The
absolute value of the FFT outputs is accumulated point-wise, which yields the vector that
is the input to the above function f . In fact, this can be optimized this by replacing the
512-point FFT by a 256-point one, where the j-th input coefficient xj is multiplied by
e−

iπ
256 j , which is functionally equivalent.

4.2 Specification of HAETAE
We now give the full description of the signature scheme HAETAE in Figure 8 with the
following building blocks:

• Hash function Hgen for generating the seeds and hashing the messages,

• Hash function H for signing, returning a seed ρ for sampling a challenge,

• Extendable output function expandA for deriving agen and Agen from seedA,

• Extendable output function expandS for deriving (sgen, egen) ∈ Sℓ−1
η × Sk

η from seedsk
and countersk,

• Extendable output function expandYbb for deriving y, b and b′ from seedybb and counter,

The above building blocks can be implemented with symmetric primitives.
Note that at Step 6 of the Verify algorithm, the division by 2 is well-defined as the

operand is even.

4.3 Theoretical Analysis
In this section, we prove the theoretical correctness and security of HAETAE.
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KeyGen(1λ):

1: (Agen)← Rk×(ℓ−1)
q and (sgen, egen)← Sℓ−1

η × Sk
η

2: b = Agen · sgen + egen ∈ Rk
q

3: A = (−2b + qj| 2Agen| 2Idk) mod 2q
4: s = (1, sgen, egen)
5: if N (s) > γ2n then restart
6: return sk = (A, s), vk = A

Sign(sk,M):
1: y← U(B(1/N)R,(k+ℓ)(B))
2: w← A⌊y⌉
3: c = H(w,M) ∈ R2
4: z = (z1, z2) = y + (−1)bcs for b← U({0, 1})
5: if ∥z∥2 ≥ B′ then restart
6: else if ∥2z− y∥2 < B then restart with probability 1/2
7: return σ = (⌊z⌉, c)

Verify(vk,M, σ = (z, c)):
1: w̃ = Az− qcj mod 2q
2: return (c = H(w̃,M)) ∧

(
∥z∥ < B +

√
n(k+ℓ)

2

)
Figure 7: Uncompressed description of HAETAE .

4.3.1 Correctness and Runtime

Correctness. Before showing the correctness of the HAETAE scheme, we prove the
following intermediary result.

Lemma 9. We borrow the notations from Figure 8. If we run Verify(vk,M, σ) on the
signature σ returned by Sign(sk,M) for an arbitrary message M and an arbitrary key-pair
(sk, vk) returned by KeyGen(1λ), then the following relations hold:

1) w1 = HighBitsh(w),

2) w′j = LSB(⌊y0⌉) · j = LSB(w) = LSB(w− 2⌊z2⌉),

3) 2⌊z2⌉ − 2z̃2 = LowBitsh(w)− LSB(w) assuming B′ + αh/4 + 1 ≤ B′′ < q/2.

Proof. Let m = 2(q− 1)/αh. Let us prove the first statement. By definition of h, it holds
that w1 = HighBitsh(w) mod m. However, the latter part of the equality already lies
in [0,m− 1] by Lemma 8. The first part lies in the same range as we reduce mod+ m.
Hence, the equality stands over Z too.

We move on to the second statement. By considering only the first component of
z = y + (−1)bcs, we obtain, modulo 2:

z̃0 = ⌊z0⌉ = ⌊y0⌉+ (−1)bc = ⌊y0⌉+ c.

Moreover, considering everywhere a 2 appears in the definition of A, we obtain that

w = A1⌊z1⌉ − qcj = (⌊z0⌉ − c)j mod 2.

For the last statement, let us use the two preceding results. In particular, we note

w1 · αh + w′j = w− LowBitsh(w) + LSB(w).
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KeyGen(1λ):
1: seed← {0, 1}ρ0 ▷ KeyGen for d = 1
2: (seedA, seedsk, K) = Hgen(seed)
3: (agen| Agen) := expandA(seedA) ∈ Rk×ℓ

q

4: countersk = 0
5: (sgen, egen) := expandS(seedsk, countersk)
6: b = agen + Agen · sgen + egen ∈ Rk

q

7: (b0, b1) = (LowBitsvk(b), HighBitsvk(b))
8: A = (2(agen − 2b1) + qj| 2Agen| 2Idk) mod 2q
9: s = (1, sgen, egen − b0)

10: if N (s) > γ2n then countersk++ and Go to 5
11: return sk = (s, K), vk = (seedA, b1)

Sign(sk,M):
1: µ = Hgen(seedA,b1,M)
2: seedybb = Hgen(K,µ)
3: counter = 0
4: (y, b, b′) := expandYbb(seedybb, counter)
5: w← A⌊y⌉
6: ρ = H(HighBitsh(w), LSB(⌊y0⌉), µ)
7: c = SampleBinaryChallengeτ (ρ)
8: z = (z1, z2) = y + (−1)bcs
9: h = HighBitsh(w)− HighBitsh(w− 2⌊z2⌉) mod+ 2(q−1)

αh
10: if ∥z∥2 ≥ B′ then
11: counter++ and Go to 4
12: else if ∥2z− y∥2 < B ∧ b′ = 0 then
13: counter++ and Go to 4
14: else
15: x = Encode(HighBitsz1(⌊z1⌉))
16: v = LowBitsz1(⌊z1⌉)
17: return σ = (x,v,Encode(h), c)

Verify(vk,M, σ = (x,v, h, c)):
1: z̃1 = Decode(x) · 256 + v and h̃ = Decode(h)
2: (agen| Agen) = expandA(seedA)
3: A1 = (2(agen − 2b1) + qj| 2Agen) mod 2q
4: w1 = h̃ + HighBitsh(A1z̃1 − qcj) mod+ 2(q−1)

αh
5: w′ = LSB(z̃0 − c)
6: z̃2 = (w1 · αh + w′j− (A1z̃1 − qcj)) /2 mod± q
7: z̃ = (z̃1, z̃2)
8: µ̃ = Hgen(seedA,b1,M)
9: ρ̃ = H(w1, w

′, µ̃)
10: return (c = SampleBinaryChallengeτ (ρ̃)) ∧ (∥z̃∥ < B′′)

Figure 8: Full description of deterministic HAETAE. The KeyGen algorithm is slightly
different for d = 0 (HAETAE-260), which do not truncate b. See Section 3.1.1 for details.

We note that the last two elements have same parity, as the former one has the same parity
as LowBits(w, αh). By Lemma 8 their sum has infinite norm ≤ αh/2 + 2. Hence from its
definition, it holds that

2z̃2 = 2⌊z2⌉ − LowBitsh(w) + LSB(w) mod± 2q.
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Finally, this holds over the integers as the right-hand side has infinite norm at most 2B′ +
αh/2 + 2 < q.

Theorem 2 (Completeness). Assume that B′′ = B′+
√
n(k + ℓ)/2+

√
nk ·(αh/4+1) < q/2.

Then the signature schemes of Figure 8 is complete, i.e., for every message M and every
key-pair (sk, vk) returned by KeyGen(1λ), we have:

Verify(vk,M, Sign(sk,M)) = 1.

Proof. We use the notations of the algorithms. The first and second equations from
Lemma 9 state that ρ = ρ̃ and thus

c = SampleBinaryChallengeτ (ρ̃).

On the other hand, we use the last equation from the same lemma to bound the size
of z̃. We have:

∥z̃∥ ≤ ∥z∥+ ∥z− ⌊z⌉∥+ ∥⌊z⌉ − z̃∥

≤ B′ +
√
n(k + ℓ) · ∥z− ⌊z⌉∥∞ + ∥⌊z2⌉ − z̃2∥

≤ B′ +
√
n(k + ℓ)

2 +
√
nk · ∥LowBitsh(w)∥∞

≤ B′ +
√
n(k + ℓ)

2 +
√
nk ·

(αh
4 + 1

)
.

The definition of B′′ implies that the scheme is correct.

Runtime. A non-trivial task is analyzing the runtime of Fiat-Shamir with aborts schemes.
As shown in [DFPS23, Section 6.1], degenerate cases exist where the signing algorithm does
not terminate. In particular, it is impossible, even in the ROM, to show that the generic
signing algorithm has polynomial expected runtime. However, in the case of HAETAE,
all starting points y lying in the Euclidean ball of radius B′ − γ

√
τ have probability at

least 1/2 of being accepted in the end, whatever shift ±sc is added, whatever instance of
the hash function H is chosen. This gives rise to the following two points.

• With M ′ defined as in Lemma 5, the probability of doing more than i iterations
is bounded from above by (1 − 1/M ′)i + 2−αM ′3, where α is the commitment
min-entropy.

• The signing algorithm has a finite expected runtime.

These are insufficient to conclude that the number of iterations is M ′ on average, but this
is nonetheless what happens for our choice of parameters.

4.3.2 Theoretical Security

We analyze the security of HAETAE by following standard arguments and proof techniques.
We start by detailing the underlying canonical identification scheme that makes up HAETAE
and give their properties in Lemma 10. We then show that HAETAE is UF-NMA secure in
Lemma 11. Finally, we put everything together and give the security bound in Theorem 3
based on the reduction from [BBD+23]. Reminders on canonical identification schemes
and the Fiat-Shamir with aborts transform can be found in Appendix F.

In Figure 10, we first describe in Figure 10a an “uncompressed” version of the
identification scheme, as well as the HAETAE canonical identfication scheme in Figure 10b.
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Compress(z, c):
1: if z =⊥ then
2: return (⊥,⊥,⊥)
3: z = (z1, z2) = y + (−1)bcs
4: h = HighBitsh(w)
−HighBitsh(w− 2⌊z2⌉) mod+ 2(q−1)

αh

5: x = Encode(HighBitsz1(⌊z1⌉))
6: v = LowBitsz1(⌊z1⌉)
7: return (x,v,Encode(h))

Decompress(A, (x,v, h), c):
1: if (x,v, h) = (⊥,⊥,⊥) then
2: return ⊥
3: z̃1 = Decode(x) · 256 + v
4: h̃ = Decode(h)
5: A = (A1| 2I) mod 2q
6: w1 = HighBitsh(A1z̃1 − qcj)

+h̃ mod+ 2(q−1)
αh

7: w′ = LSB(z̃0 − c)
8: w̃ = A1z̃1 − qcj
9: z̃2 = (w1 · αh + w′j− w̃) /2 mod± q

10: return z̃ = (z̃1, z̃2)

Figure 9: Compression and decompression algorithms.

The latter uses the Compress and Decompress functions, as described in Figure 9. We omit
the instance generator for both CID, as it is exactly the key generation algorithm from
HAETAE, except that do not do truncation for simplicity. Adding it can be done by noting
that agen gives uniform low bits that would otherwise be missing.

We sum up the properties of the CID from Figure 10b.

Lemma 10. The HAETAE canonical identification scheme from Figure 10b satisfies the
following properties.

Commitment Min-entropy. The commitment (w0,w1) has min-entropy ≥ n.

paHVZK. Assuming B2 ≥ B′2 + γ2τ , the HAETAE CID satisfies the paHVZK property
with the simulator described in Figure 11.

Computational Unique Response. Let A be an adversary against the CUR property of
the scheme. There exist two adversaries B and B′ with roughly the same runtime
such that:

AdvCUR
HAETAE(A) ≤ AdvMLWE

n,q,k,ℓ−1,η(B) + AdvMSIS
n,q,k,ℓ,2B′′(B′).

Proof. Let us prove each point.
Commitment Min-entropy. Recall that w0 = LSB(⌊y0⌉) is a binary polynomial of
degree ≤ n. As the coefficients of y0 are large and distributed following the distribution of
a subset of a uniform-hyperball, we expect the coefficients of w0 to be roughly uniform,
hence the lower bound on the commitment min-entropy.
paHVZK. We first prove that the CID from Figure 10a satisfies paHVZK. Consider the
simulator described in Figure 11.

The distribution of real non-aborting transcripts and the output distribution
of Sim̸⊥(vk, c) are identical under the condition on the radii. Indeed, by conditioning the
distribution of the output of algorithms A and B from Lemma 5 on not being ⊥, the
conditional (on A and c) distributions of z in the two cases are identical, and we note
that (w, c, z) is a deterministic function of (A, c, z).

Finally, given an uncompressed transcript (w, c, z) for the Figure 10a CID, we note
that ((HighBitsh(w), LSB(w0)), c,Compress(z, c)) is a valid transcript for the HAETAE
CID. Indeed, note that w0 = ⌊y0⌉ mod 2 by definition of A. Moreover, applying this
deterministic transform turns the distribution of real transcripts for the uncompressed CID
to the distribution of real transcripts for the compressed CID. By an immediate reduction,
the HAETAE CID also satisfies paHVZK.
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P (A, s) V (A)
y← U(B(1/N)R,(k+ℓ)(B))

w = A⌊y⌉ mod 2q

w−−−−−→ c← U(C)
c←−−−−

b← U({0, 1})
z = y + (−1)bcs
If p(z), restart

Else ⌊z⌉−−−−−→ Acc. if ∥⌊z⌉∥ ≤ B′′ and
Az− qcj = w mod 2q

(a) Uncompressed HAETAE
P (A, s) V (A)

y← U(B(1/N)R,(k+ℓ)(B))
w = A⌊y⌉ mod 2q
w1 = HighBitsh(w)
w0 = LSB(⌊y0⌉)

w0,w1−−−−−→ c← U(C)
c←−−−−

b← U({0, 1})
z = y + (−1)bcs
If p(z), restart

Else σ = Compress(⌊z⌉, c) σ−−−−→ z̃ = Decompress(A, σ, c)
Acc. if ∥z̃∥ ≤ B′′ and

Az̃− qcj = w1αh + w0j mod 2q

(b) Compressed HAETAE

Figure 10: Underlying canonical identification schemes.

Sim̸⊥(vk, c) :
1: z← U(B(1/N)R,k+ℓ(B′))
2: w← A⌊z⌉ − qcj
3: return (w, c, z)

Figure 11: Uncompressed HAETAE simulator.

CUR. Given ((w1, w0), c, σ, σ′) such that Az− qcj = w1αh +w0j = Az′ − qcj mod 2q, we
get A(z− z′) = 0 mod 2q, which we can reduce modq:

(−b|Agen|Idk)(z− z′) = 0 mod q.

We prove that z ̸= z′ mod q. Let z = (z1, z1) and z′ = (z′1, z′2). Let σ = (x,v, h)
and σ′ = (x′,v′, h). If z1 = z′1 then x = x′ and v = v′ due to the encoding being unique.
This means that h ̸= h′, which in turn will give two different values for z2 and z′2 as the
other values composing z2 and z′2 are identical.

However, (Agen,b) is a MLWEn,q,k,ℓ−1,η instance instead of being uniform. Both
adversaries B and B′ can run A by simulating a random oracle in the case of B and
by forwarding the queries to its own oraclein the case of B′. Then, if A was successful,
adversary B outputs “MLWE” while B′ computes the MSIS solution as described above,
and if A is unsuccessful, adversary B outputs “unif” while B′ aborts. By the triangular
inequality, we get the desired inequality.
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We reduce the UF-NMA security of the signature scheme to the BimodalSelfTargetMSIS
problem.

Lemma 11 (UF-NMA security). Let A be an adversary against the UF-NMA security of
HAETAE. There exist two adversaries B and B′ with essentially the same runtime as A
such that:

AdvUF-NMA
HAETAE (A) ≤ AdvMLWE

n,q,k,ℓ−1,η(B) + AdvBimodalSelfTargetMSIS
H,n,q,k,ℓ,B′′ (B′).

Proof. Let us first describe B′. On input the public matrix A, it calls A on it. The
adversary B′ defines the random oracle H ′ : (w1, w0, µ) 7→ H(w1αh + w0j mod 2q, µ), to
take care of the compression that does not appear in the BimodalSelfTargetMSIS problem.
This can be simulated by B by applying the right function on the queries of A and
forwarding it to its own random oracle H.

When A outputs a valid forgery σ∗ = ((x,v, h), c) for some message µ∗, ad-
versary B′ runs Decompress(A, (x,v, h), c) to get a vector z such that ∥z∥ ≤ B′′

and H ′(HighBitsh(w∗), LSB(w∗0), µ) = c, where we let w∗ = Az − qcj mod 2q. By
construction w∗ = HighBitsh(w∗)αh + LSB(w∗0)j mod 2q, meaning that c = H(w∗, µ).
Then (z, c, µ∗) is exactly a solution to the BimodalSelfTargetMSISH,n,q,k,ℓ,B′′ problem.

Note that A is called on a “lossy” instance of HAETAE, where the verification key b
does not have a signing key associated and is actually uniform. This difference in setting
exactly corresponds to the MLWEn,q,k,ℓ−1,η problem. As such the design of B is as follows:
on input (Agen,b), it puts together the verification key A and calls A on it. It can
simulate a random oracle for it, and outputs “MLWE” if A is successful at forging, “unif”
otherwise.

We combine the previous results with Theorem 4 to get the following security bound
for HAETAE.

Theorem 3. Let A be an adversary against the UF-CMA security of HAETAE making Qs

signature queries and Qh hash queries. Let α be the commitment min-entropy of HAETAE.
Let B2 ≥ B′2 + γ2τ . There exist two adversaries B and B′ such that

AdvUF-CMA
HAETAE(A) ≤ AdvMLWE

n,q,k,ℓ−1,η(B) + AdvBimodalSelfTargetMSIS
H,n,q,k,ℓ,B′′ (B′)

+ 2−α/2+1Qs

1− β

√
Qh + 1 + Qs

1− β + 2−α/2+1(Qh + 1)

√
Qs

1− β .
(4.1)

If A is an adversary against the sUF-CMA security of HAETAE, then there exist two
more adversaries B′′ and B′′′ such that the previous bound holds by adding the extra
term AdvMLWE

n,q,k,ℓ−1,η(B′′) + AdvMSIS
n,q,k,ℓ,2B′′(B′′′).

4.4 HAETAE with Pre-computation
We observe that in the randomized signing process of HAETAE, many operations do not
depend on the message M , and some do not even depend on the signing key. This enables
efficient “offline” procedures, i.e., precomputations that speed up the “online” phase.

Specifically, there are two levels of offline signing that can be applied to randomized
HAETAE:

1. Generic. If neither the message M nor the signing key is chosen in advance, it is
still possible to perform hyperball sampling. This removes the most time-consuming
operation from the online phase.
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Signoffline(vk):
1: (agen| Agen) = expandA(seedA)
2: A1 = (2(agen − 2b1) + qj| 2Agen) mod 2q
3: List = ()
4: for iter in [L] do
5: y← U(B(1/N)R,(k+ℓ)(B))
6: w = A⌊y⌉
7: w1 = HighBitsh(w)
8: List.append(y,w,w1, LSB(⌊y0⌉))
9: return List

Signonline(sk, List,M):
1: µ = Hgen(seedA,b1,M)
2: tuple = (y,w, tuple3, tuple4)← List
3: List.delete(tuple)
4: c = SampleBinaryChallengeτ (H(tuple3, tuple4, µ))
5: (b, b′)← {0, 1}2

6: z = (z1, z2) = y + (−1)bcs
7: h = tuple3 − HighBitsh(w− 2⌊z2⌉) mod+ 2(q−1)

αh
8: if ∥z∥2 ≥ B′ then Go to 2
9: else if ∥2z− y∥2 < B ∧ b′ = 0 then Go to 2

10: else
11: x = Encode(HighBitsz1(⌊z1⌉))
12: v = LowBitsz1(⌊z1⌉)
13: return σ = (x,v,Encode(h), c)

Figure 12: Randomized, on/off-line signing.

2. Designated signing key. Here, only the message M is unknown during offline
signing, while the signing key is fixed. This allows us to perform even more pre-
computations by using only the verification key, as shown in Figure 12. Most notably,
there is no longer a matrix-vector multiplication in the online phase.

We showcase the offline and online parts of the (randomized) version of HAETAE in
Figure 12.

4.5 Parameter Sets
To choose parameters reaching the desired NIST security levels, we estimated the costs of
practical attacks, as in Dilithium, Falcon, and many other NIST-submitted schemes. In
particular, our methodology is directly inspired from the one used in Dilithium, and we
sum it up in the following.

Looking at Equation 4.1, we note that we have highly underestimated the commitment
min-entropy of the scheme in Lemma 10 as we ignored its biggest part w1, and we choose
to ignore terms on the second line as we are confident that they are small enough. We first
evaluate the cost of attacks on MLWE, i.e. key-recovery attacks. Second, to evalute the
cost of forgery attacks, i.e. attacks on BimodalSelfTargetMSIS, we use the fact that the only
known way to solve BimodalSelfTargetMSIS is to solve MSIS. Heuristically, the hash function
is not aware of the algebraic structure of its input, and the random oracle assumption that
c is uniform and independent from the input is sound. Thus, an adversary has no choice but
to choose some w, hash its high and low bits along with some message, and try to compute
a short preimage of w−qcj mod 2q. If the adversary succeeds, the preimage is in particular
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Table 4: HAETAE parameters sets. Hardness is measured with the Core-SVP methodology
and a refined analysis is given for LWE. The numbers in parenthesis for SIS are for the
strong unforgeability property.

Security 120 180 260
n Degree of R (2.1) 256 256 256

(k, ℓ) Dimensions of z2, z1 (4.2) (2,4) (3,6) (4,7)
q Modulus for MLWE & MSIS (2.3) 64513 64513 64513
η Range of sk coefficients (2.1) 1 1 1
τ Weight of c (3.3) 58 80 128
γ sk rejection parameter (3.1) 48.858 57.707 55.13

Resulting key acceptance rate (3.1) 0.1 0.1 0.1
d Truncated bits of vk (3.1) 1 1 0
M Expected # of repetitions (3.4) 6.0 5.0 6.0
B y radius (3.4) 9846.02 18314.98 22343.66
B′ Rejection radius (3.4) 9838.98 18307.70 22334.95
B′′ Verify radius (4.2) 12777.52 21906.65 24441.49
α z1 compression factor (3.5) 256 256 256
αh h compression factor (3.5) 512 512 256

Forgery: SIS Hardness (Core-SVP)
BKZ block-size b (GSA) 409 (333) 617 (512) 878 (735)

Classical Core-SVP 119 (97) 180 (149) 256 (214)
Quantum Core-SVP 105 (85) 158 (131) 225 (188)
Key-recovery: LWE Hardness (Core-SVP and refined)

BKZ block-size b (GSA) 428 810 988
Classical Core-SVP 125 236 288
Quantum Core-SVP 109 208 253

BKZ block-size b (simulation) 439 834 1019
log2 Classical Gates 159 270 322

log2 Classical Memory 99 177 214

an MSISn,q,k,ℓ+1,
√

B′′2+1 solution for the matrix [w|A]. Finally, we evaluate the cost of
MSIS with a bound twice as loose to evaluate the strong unforgeability of the HAETAE
scheme. Our cryptanalysis of these problems follows the approach taken in Dilithium. We
provide a modification of their security estimation script1, where we also updated the cost
of quantum attacks following recent works [CL21]. These estimations follow the CoreSVP
approach. In the case of MLWE, we also give refined estimates, computed in a branch2 of
the leaky LWE estimator from [DDGR20].

We propose three different parameter sets with varying security levels, where we
prioritize low signature and verification key sizes over faster execution time. The parameter
choices are versatile, adaptable and allow size vs. speed trade-offs at consistent security
levels. For example at cost of larger signatures, a smaller repetition rate M is possible
and thus a faster signing process. This versatility is a notable advantage over Falcon and
Mitaka.

Like in Dilithium, our modulus q is constant over the parameter sets and allows an
optimized NTT implementation shared for all sets. With only 16-bit in size, our modulus
also allows storing coefficients memory-efficiently without compression.

1Available in the submission package.
2https://github.com/jdevevey/refined-haetae

https://github.com/jdevevey/refined-haetae
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5 Implementation Details
In this section, we detail how to efficiently implement HAETAE. However, we leave an
extensive specification of implementation aspects to a separate document. The most
notable remark from an implementation point of view is that b can be transmitted in
NTT domain if no rounding is applied, and most arithmetic is carried out modulo q, and
recovering the values modulo 2q is only required for computing the low and high bits. In
the following, we detail about the hyperball sampler, packing, and the performance of our
reference implementation.

5.1 Hyperball Sampler
Essentially, the hyperball sampling procedure consists of four steps:

1. Sample n(k+ ℓ) + 2 discrete Gaussians with σ = 276, sum up their squares, and drop
two samples eventually.

2. Compute the inverse of the square root of the sum of squares, multiply the result by
B0 +

√
nm/(2N).

3. Multiply every sample from Step 1 by the result of Step 2.

4. Check the ℓ2 norm of the resulting vector, start from Step 1 if this is bigger than
B0N .

In the following, we explain how the Gaussian sampling and the approximation of the
inverse of the square root can be implemented efficiently. Besides, we choose to generate
each of the k + ℓ polynomials independently, which helps parallelizing the randomness
generation for implementations that use vectorization and hardware implementations.
Then, for the first two polynomials, we generate one more Gaussian sample each, which is
never stored but included in the sum of squared samples.

5.1.1 Discrete Gaussian Sampling

As we will lose precision when computing the inverse square root of a Gaussian sample,
we require a Gaussian sampler with high fix-point precision. This is achieved by sampling
over Z with a large standard deviation and then scaling the resulting sample to our
convenience. We use [Ros20, Algorithm 12] to sample from a discrete Gaussian distribution
with σ = 276, k = 272.

In essence, we start by sampling a discrete Gaussian x with σ = 16 using a Cumulative
Distribution Table (CDT) and a uniform y ∈ {0, . . . , 272 − 1} and set the Gaussian sample
candidate as r = x272 + y. Subsequently, this candidate is accepted with probability
exp(−y(y + x273)/2153). Fortunately, we achieve a very low rejection rate of less than 5 %.

Specifically, the CDT we use has 64 entries and uses a precision of 16 bit. Then, to
compute the sample candidate’s square and the input to the exponential, we first compute
r2 and round the result to 76-bit precision, which is accumulated later if the sample is
accepted. Subsequently, r2 − 276x2 yields the input to the exponential.

Approximating the Exponential. For this, we need to approximate the exponential
function e−x by a polynomial f(x) on the closed interval [c − w

2 , c + w
2 ], with center c

and width w. We first determine an upper bound for the polynomial order required
to approximate e−x, given an upper bound for the absolute error. We obtain f(x)
by truncating the expansion of e−x into a series of Chebyshev polynomials of the first



Team HAETAE 25

kind Tn(x) with linearly transformed input, as this is known to yield small absolute
approximation errors for a given polynomial order. We find:

e−x = −e−c + 2e−c
∞∑

n=0
(−1)nIn

(
w
2
)
Tn

(
x−c
w/2

)
x ∈ [c− w

2 , c+ w
2 ]

where In(z) are modified Bessel functions of the first kind, which rapidly converge to zero
for growing n. We recall ∥Tn(x)∥ ≤ 1 for ∥x∥ ≤ 1. For intervals [0, w] with not too large
widths we find 2e−cIm+1( w

2 ) to be a useful estimate of the maximum absolute error, when
truncating the series at order m > 1. This relation allows us to directly limit m according
to the interval to cover and the maximum permissible error.

We then determine the polynomial f(x) of at most order m by using the Chebyshev
approximation formula, which has been shown to result in a nearly optimal approximation
polynomial in the case of the exponential function [Li04]. The number of fraction bits is
chosen to match the error. The numerical evaluation is performed in fixed-point arithmetic
using the Horner’s scheme and multiplying with shifts to retain significant bits. When
shifting right, we round half up, which retains about one additional bit of accuracy when
compared to truncation.

Barthe et al. [BBE+19] introduced the GALACTICS toolbox to derive suitable
polynomials approximating e−x. They numerically evaluate and modify trial polynomials,
minimizing the relative error, until an acceptable level is reached. The polynomials are
evaluated using a Horner’s scheme, similar to this work, but rely on truncation. When
comparing to polynomials derived using the GALACTICS toolbox, our approximation has
a slightly smaller absolute error for intervals of interest in this work, while maintaining the
same polynomial order and constant time properties. This holds even when introducing
rounding to the GALACTICS evaluation of polynomials. Moreover, our approach is
somewhat less heuristic than the GALACTICS method. Practically, as can be seen in
Listing 1, the approximation consists of six signed 48-bit multiplications with subsequent
rounding (smulh48), several constant shifts with rounding and constant additions.

Listing 1: Fix-point approximation of the exponential function with 48 bit of precision.
1 static uint64_t approx_exp ( const uint64_t x) {
2 int64_t result ;
3 result = -0 x0000B6C6340925AELL ;
4 result = (( smulh48 (result , x) + (1 LL << 2)) >> 3) + 0 x0000B4BD4DF85227LL ;
5 result = (( smulh48 (result , x) + (1 LL << 2)) >> 3) - 0 x0000887F727491E2LL ;
6 result = (( smulh48 (result , x) + (1 LL << 1)) >> 2) + 0 x0000AAAA643C7E8DLL ;
7 result = (( smulh48 (result , x) + (1 LL << 1)) >> 2) - 0 x0000AAAAA98179E6LL ;
8 result = (( smulh48 (result , x) + 1LL) >> 1) + 0 x0000FFFFFFFB2E7ALL ;
9 result = (( smulh48 (result , x) + 1LL) >> 1) - 0 x0000FFFFFFFFF85FLL ;

10 result = (( smulh48 (result , x))) + 0 x0000FFFFFFFFFFFCLL ;
11 return result ;
12 }

Finalization. If the sample is accepted eventually, it is (implicitly) scaled by the factor
2−76 to obtain a continuous sample from the standard normal distribution. Moreover, we
only need to store the upper 64 bits of the sample and round off the rest.

In summary, each Gaussian sample candidate requires 72 bit randomness for the lower
part of the candidate (y), 16 bit randomness for the CDT sampling, and 48 bit randomness
for rejecting the candidate conditionally according to the output of the exponential. This
results in a vast randomness demand per hyperball sample, and explains the dominance of
hashing in the cycle count performance.
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Table 5: Symbol mapping and encoding size parameters.
Scheme cuth offseth |{Sh(n)}| cutz1 |{Sz1(n)}| baseh basez1

HAETAE-120 6 239 13 6 13 7 132
HAETAE-180 8 235 17 8 17 127 376
HAETAE-260 16 471 33 9 19 358 501

5.1.2 Approximating the Inverse of the Square Root

To turn the vector of standard normal distributed variates into a hyperball sample candidate,
we must compute its norm. For this, we accumulate all squared samples and approximate
the inverse of the square root of the accumulated value. The approximation result is then
multiplied by the constant r′+

√
nm/(2N), which yields the scaling factor that is multiplied

to each Gaussian sample. For the inverse square root, we deploy Newton’s method, which
is a well-known technique for that purpose. However, Newton’s method requires a starting
approximation that is, with each iteration, turned into a better approximation. Fortunately,
we know that the sum of nm+ 2 independent squared standard normal variables follows a
χ2 distribution with expected value nm+ 2. Hence, the starting approximation can be
fixed and precomputed as 1/

√
nm+ 2. The number of iterations for a targeted precision

can be determined experimentally. Therefore, we performed the approximation for the
first input values that have negligible probabilities either for the cumulative distribution
function of χ2(nm + 2) or its survival function, and checked how many iterations are
required to still reach reasonable precision.

5.2 Signature Packing and Sizes
The last step of the signature generation is to compress and pack the elements of the
signature. A packed HAETAE signature consists of the challenge c, the low bits of z1 (LN
coefficients), the high bits of z1 and h (KN coefficients). Because the distributions of
the values in the high bits of z1 and the coefficients in h are both very dense, we can
compress both polynomial vectors with encoding. Figure 13 displays the frequencies for
the possible values for both vectors in HAETAE-120. Before compressing the values, we
map them to a smaller symbol space and thereby reject the very unlikely values and the
corresponding signatures. For h we cut out most of the values in the middle of the range,
for HAETAE-120 this reduces the size of the symbol space from 252 to 13.

Sh(n) =

 n, for 0 ≤ n ≤ cuth
⊥, for cuth < n ≤ cuth + offseth

n− offseth, for cuth + offseth < n


For the high bits of z1 we tail-cut the distribution left and right of the center at 0, and
then shift the remaining values to the non-negative range beginning at 0. For HAETAE-120
this reduces the size of the symbol space from 37 to 13.

Sz1(n) =

 ⊥, for n < −cutz1

n+ cutz1 , for − cutz1 ≤ n ≤ cutz1

⊥, for cutz1 < n


The parameters for these mappings are defined in Table 5. At the signature verification,

the mapping must be reverted after decoding the compressed symbols.
The reason for these mappings is mainly to get significantly smaller precomputation

tables for the rANS encoding and decoding. Also, all symbols can now be represented
with 8-bits, which simplifies the rANS implementation. Furthermore, for the high bits of
z1, a mapping to non-negative values is necessary to be able to use rANS encoding. The
effect on the resulting signature size is insignificant.
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Figure 13: Distribution of the coefficients of h and HB(z1) in HAETAE-120.

The size of the compressed high bits of z1 and h varies and must be included in
the signature, to allow a correct unpacking and decoding. The size of one compressed
polynomial vector is often more than 255 bytes, and can thus not be expressed by one
byte. Its variance however, is limited, and thus we encode the size the compressed high
bits of z1 and h as positive offset to a fixed base value. This unsigned offset value fits into
one byte in most of the cases, if not, the signature gets rejected. The base values can be
found in Table 5.

The final signature is then built as following: The first 32 bytes contain the seed for
the challenge polynomial c. Following, we have LN bytes for the low bits of z1. The next
first byte consists of the offset to the base size for the encoding of the high bits of z1
and the second byte is the offset for h. Then we have the encoding of the high bits of z1
and directly afterwards the encoding of h, both with varying sizes, which are indicated
beforehand. Lastly, the signature is padded with zero bytes to reach the fixed signature
size, if any bytes remain. Signatures that would exceed the fixed limit get rejected.

To prevent signature forgeries, during signature unpacking and decoding multiple sanity
checks have to be performed: the zero padding must be correct, the decoding must not fail
and decode the expected number of coefficients while using exactly the amount of bytes
indicated with the offset. Furthermore, rANS decoding must end with the fixed predefined
start value to be unique. Our rANS encoding is based on an implementation by Fabian
Giesen [Gie14].

To set the fixed signature size as reported in Table 6, we evaluated the distribution
empirically and determined a threshold that requires a rejection in less than 0.1% of the
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Table 6: NIST security level, signature and key sizes (bytes) of HAETAE, Dilithium, and
Falcon.

Scheme Lvl. vk Signature Sum Secret key
HAETAE-120 2 992 1,474 2,466 1,408
HAETAE-180 3 1,472 2,349 3,821 2,112
HAETAE-260 5 2,080 2,948 5,028 2,752
Dilithium-2 2 1,312 2,420 3,732 2,528
Dilithium-3 3 1,952 3,293 5,245 4,000
Dilithium-5 5 2,592 4,595 7,187 4,864
Falcon-512 1 897 666 1,563 1,281
Falcon-1024 5 1,792 1,280 3,072 2,305

cases. Figure 14 displays the raw signature size distribution of 20000 executions (without
the size-based rejection sampling).
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Figure 14: Raw signature size distribution over 20000 executions. We set the bound for
the size-based rejection to result in a rejection rate of less than 0.1%.

In Table 6 we compare the signature and key sizes of HAETAE, Dilithium, and Falcon.
The verification keys in HAETAE are 20% (HAETAE-260) to 25% (HAETAE-120 and
HAETAE-180) smaller, than their counterparts in Dilithium. The advantage of the hyperball
sampling manifests itself in the signature sizes, HAETAE has 29% to 39% smaller signatures
than Dilithium. Less relevant are the secret key sizes, that are almost half the size in
HAETAE compared to Dilithium. A direct comparison to Falcon for the same claimed
security level is only possible for the highest parameter set, Falcon-1024 has a signature of
less than half the size compared to HAETAE-260, and its verification key is about 14%
smaller.
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5.3 Performance Reference Implementation
We developed an unoptimized, portable and constant-time implementation in C for HAETAE
and report median and average cycle counts of one thousand executions for each parameter
set in Table 7. Due to the key and signature rejection steps, the median and average values
for key generation and signing respectively differ clearly, whereas the two values are much
closer for the verification.

Table 7: Reference implementation speeds. Median and average cycle counts of 1000
executions for HAETAE, Dilithium, and Falcon. Cycle counts were obtained on one core of
an Intel Core i7-10700k, with TurboBoost and hyperthreading disabled.

Scheme KeyGen Sign Verify

HAETAE-120 med 1,403,402 6,039,674 376,486
ave 1,827,567 9,458,682 376,631

HAETAE-180 med 2,368,038 9,161,312 691,652
ave 3,448,185 11,611,868 692,014

HAETAE-260 med 3,101,280 11,444,678 895,098
ave 4,088,383 17,229,712 896,622

Dilithium-2 med 343,222 1,191,218 376,008
ave 343,639 1,527,406 376,543

Dilithium-3 med 630,170 2,061,816 612,538
ave 630,607 2,603,237 612,852

Dilithium-5 med 945,776 2,522,834 987,154
ave 949,662 3,080,734 988,250

Falcon-512 med 53,778,476 17,332,716 103,056
ave 60,301,272 17,335,484 103,184

Falcon-1024 med 154,298,384 38,014,050 224,378
ave 178,516,059 38,009,559 224,840

For a fair comparison, we also performed measurements on the same system with
identical settings of the reference implementation of Dilithium1 and the implementation
with emulated floating-point operations, and thus also fully portable, of Falcon2, as given
in Table 7. The performance of the signature verification for HAETAE is very close to
Dilithium throughout the parameter sets. HAETAE-180 verification is 13% slower than its
counter-part, HAETAE-260 on the other hand, is 9% faster than the respective Dilithium
parameter set. For key generation and signature computation, our current implementation
of HAETAE is clearly slower than Dilithium. We measure a slowdown of factors three to
five. In comparison to Falcon, however, HAETAE has 38-50 times faster key generation
and around three times faster signing speed. For the verification, Falcon outperforms both
Dilithium and HAETAE by roughly a factor of four.

A closer look at the key generation reveals that the complex Fast Fourier Transformation,
that is required for the rejection step, is with 53% by far the most expensive operation
and a sensible target for optimized implementations.

Profiling the signature computation reveals that the slowdown compared to Dilithium
is mainly caused by the sampling from a hyperball, where about 80% of the computation
time is spent. The hyperball sampling itself is dominated by the generation of randomness,
which we derive from the extendable output function SHAKE256 [Dwo15], which is also
used in the Dilithium implementation. Almost 60% of the signature computation time is
spent in SHAKE256.

Based on the profiling and benchmarking of subcomponents, we estimate the
performance of a randomized HAETAE implementation with pre-computation. The generic

1https://github.com/pq-crystals/dilithium/tree/master/ref
2https://falcon-sign.info/falcon-round3.zip

https://github.com/pq-crystals/dilithium/tree/master/ref
https://falcon-sign.info/falcon-round3.zip
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version, which is independent of the key, would already achieve a speedup of a factor five
for its online signing, because the expensive hyperball sampling can be done offline. For the
pre-computation variant with a designated signing key, additionally, a lot of matrix-vector
multiplications and therefore most of the transformations from and to the NTT domain,
can be precomputed. We estimate about 12% of the full deterministic signing running
time, for the online signing in this case.

6 Optimized Implementation for AVX2
Advanced Vector Extensions 2 (AVX2) is an extension to the x86 instruction set architecture
and available in processors since 2011. It provides Single Instruction Multiple Data (SIMD)
operations on 256-bit registers, and thus allows to e.g. do an operation on eight 32-bit
values in parallel. In this section we explain, how to exploit this parallelization.

The three major components, that significantly determine the computation time of
HAETAE are Keccak, the NTT and the hyperball sampling. For the first two components
we can fall back to existing optimized code. For the NTT in particular, we can reuse the
implementation in Dilithium with only slight adaptions with regard to constants. In the
following we demonstrate how to implement the third component, the hyperball sampling
efficiently using AVX2 instructions.

6.1 Vectorized Hyperball Sampling
After the parallel generation of the randomness, generally, we have two options to parallelize
the hyperball sampling. First, we can sample four different polynomials in parallel, and
second, we can generate the Gaussian samples within a polynomial in parallel, since they
are generated independently. We opt for the first approach.

As the sampling process is relatively complex, we cannot load input vectors, generate
samples from them, and eventually store the samples. Instead, we pass several times over
the internal memory state, dividing the procedure into seven separate steps:

1. parsing of the input randomness: separating the three parts for each sample candidate
into separate memory locations such that later steps can process them quickly,

2. CDT sampling,

3. constructing the sample candidate, its square, and the input to the exponential
approximation,

4. approximate the exponential,

5. generate masks which candidates to reject,

6. accumulate the squares of the non-rejected samples, and

7. storing only the accepted samples into the correct final memory positions.

In the following, we detail Steps 2, 3, and 4.

6.1.1 Parallel CDT Sampling

Although we perform 16-bit CDT sampling, we cannot use the 16-fold parallel vpcmpgtw
comparison, since it is a signed comparison, and use vpcmpgtd instead, which operates on
eight signed 32-bit integers. As we want to sample four samples in parallel, we store the
CDT and the input randomness redundantly, such that we can perform the comparison
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with all 64 entries with 32 comparisons. However, since AVX2 only offers 16 vector registers,
we have to perform this comparison in three chunks.

vpcmpgtd c, a, b writes -1 to c if the respective vector element in a is in fact greater
than its counterpart in b, and else 0. Thus, we can use vpaddd to accumulate these
results, but they will be negative. For the final chunk, we use vpsrlq to line up the two
intermediate results, then add them and negate them.

6.1.2 Multi-precision Squaring

Since the sample candidate is 72 bits long and AVX2 only supports 32-bit multiplication,
we perform vectorized multi-precision arithmetic. Therefore, we split the candidate into its
low 32 bits, the middle 16 bits, and the upper 31 bits. For the schoolbook multiplication,
we perform the six partial multiplications with vpmuludq consecutively, such that they
can be executed pipelined and in parallel. The subsequent recombination and rounding
can be performed with a sequence of 16 instructions of shifts (vpsrlq, vpsllq), additions
(vpaddq), and ANDs (vpand).

6.1.3 Vectorized Approximation of the Exponential

The exponential approximation as explained in Section 5.1 consists of six signed 48-bit
multiplications, which is not supported natively by AVX2. Consequently, we implement
this operation with a vectorized multi-precision approach.

More specifically, we know that the first operand of this multiplication is signed, and
the second is not. Thus, splitting the second operand into a low and a high half is trivial,
but for the signed operand, this requires a slightly more sophisticated approach: Here, the
upper half is obtained by an arithmetic right-shift by 24. By shifting this result left again
by 24 (shifting in zeros), and subtracting the result from the original value, we obtain the
lower half.

Since AVX2 does not offer a signed right shift over 64-bit entries, we generate a mask of
sign bits and simulate a signed right shift by performing a bitwise OR. Unfortunately, we
require this operation three times during a single signed multiplication operation. Notably,
AVX512 offers a signed right shift, which will speed up this operation considerably.

Eventually, we perform a vectorized signed 48-bit multiplication using 32 instructions,
out of which 17 are used for the emulation of a signed right shift. Moreover, we use seven
variable and three constant vector registers (out of which one is the second input, cf.
Listing 1), which leaves six registers for other constants. Apart from the multiplication,
we only make use of addition and shifts (vpaddq, vpsrlq).

6.2 Performance and Comparison AVX2
The impact of the parallelized Keccak can be observed by looking at the cycle costs for
unpacking the matrix A, which is between five to seven times faster compared to the
reference implementation. For e.g. HAETAE-120, the costs went down from around 132k
cycles to 24k cycles. The picture is similar for the hyperball sampling, where we measure
a speed-up of factor six to eight. The cycle counts for one function call in HAETAE-120
are around 1640k in the reference and 270k in the optimized implementation. The highly
optimized NTT taken from Dilithium, is almost 19 times faster than the one in our portable
reference code.

Table 8 provides cycle numbers for the AVX2 optimized implementations of HAETAE,
Dilithium 1 and Falcon 2. Compared to our reference implementation, the signature

1https://github.com/pq-crystals/dilithium/tree/master/avx2
2https://falcon-sign.info/falcon-round3.zip

https://github.com/pq-crystals/dilithium/tree/master/avx2
https://falcon-sign.info/falcon-round3.zip
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Table 8: AVX2 optimized implementation speeds. Median and average cycle counts of
1000 executions for HAETAE, Dilithium, and Falcon. Cycle counts were obtained on one
core of an Intel Core i7-10700k, with TurboBoost and hyperthreading disabled.

Scheme KeyGen Sign Verify

HAETAE-120 med 535,210 1,306,112 108,840
ave 733,350 1,916,063 108,890

HAETAE-180 med 820,570 1,793,342 167,722
ave 1,122,867 2,198,920 167,787

HAETAE-260 med 872,280 2,049,008 207,146
ave 1,202,911 3,013,239 207,229

Dilithium-2 med 87,020 200,242 92,148
ave 86,937 252,905 92,190

Dilithium-3 med 146,560 334,898 148,810
ave 146,688 402,012 148,883

Dilithium-5 med 233,976 415,228 232,146
ave 233,895 484,119 232,241

Falcon-512 med 24,663,306 863,076 100,540
ave 26,637,878 863,420 100,709

Falcon-1024 med 71,013,520 1,740,188 228,086
ave 78,797,658 1,740,520 228,326

generation is around five times faster in the optimized implementation. For the signature
verification we observe an acceleration of around three to four.

The comparison with Dilithium does not change distinctly with respect to the reference
implementations. Key generation and signature generation are about six times faster with
Dilithium and the speed differences in the verification are up to 24% with the optimized
implementations. Falcon on the other hand is considerably faster at the signature generation
with its AVX2 implementation, compared to its portable reference code. The performance
of the reference code in Table 7 showed around three times faster signature generation for
HAETAE compared to Falcon. Optimized for AVX2 and also using the floating-point unit,
Falcon becomes faster than HAETAE for signature generation. Key generation is still at
least forty times faster with HAETAE compared to Falcon, and the verification speed is
very similar for both schemes.

We note, however, that both Dilithium and Falcon went through a multi-year process
of incrementally optimized implementations, whereas this process has just started for
HAETAE. Moreover, when we apply the heuristic that sending one byte via internet costs at
least 1000 cycles [BBC+20, Sec. 5.4], remarkably, HAETAE is already nearly as performant
as Dilithium in terms of signing plus sending the signature.

7 Embedded Implementation on Cortex-M4
To evaluate the suitability of HAETAE for embedded environments we developed an
implementation for the STM32f4-Discovery board, featuring 128 KiB RAM and a Cortex-
M4F processor which implements the ARMv7E-M ISA and operates on 32-bit words. We
use the PQM4 framework [KRSS19] for development and evaluation, as it is the de facto
standard for comparison of post-quantum cryptography schemes on Cortex-M4 processors.
The Cortex-M4F, in contrast to the Cortex-M4, features a floating-point unit. Its floating
point registers can be used to store and load intermediate values within a single cycle to
reduce the pressure on the 13 general purpose registers.

The profiling of the reference implementation already indicates that replacing the
portable Keccak implementation with one optimized for the Cortex-M4 is an important
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and straightforward step towards fast execution time. The two other major components
that are highly relevant are the polynomial arithmetic and the Gaussian sampler, both
will be discussed in the following.

7.1 Polynomial Arithmetic
In this section, we will address the issue of how to implement the required arithmetic
operations on these rings and mappings between them on a Cortex-M4 platform.

Modular Reductions. In modular arithmetic, the Barret reduction [Bar87], the
Montgomery modular multiplication [Mon85], and related techniques are indispensable
for efficient computation, the first for reducing given numbers, the second for yielding
the reduced result of a multiplication with a constant modq. The algorithms avoid
computationally expensive divisions by q and replace them with a multiplication by a
suitably chosen number and division by powers of two, which can be realized with shift
operations. Both methods initially reduce the result to the interval [0, 2q] and perform
the full reduction with a conditional subtraction, which can be done in constant time. In
many cases one can forgo the final reduction for intermediate results, an approach dubbed
lazy reduction.

The prime chosen in the HAETAE scheme is q = 64513 = 0xFC01, the largest unsigned
16-bit prime with a 512th root of unity. Fully reduced elements of Zq can be stored
efficiently in 16-bit in the bottom or top half of a 32-bit register.

Unfortunately, this does not carry over to arithmetic operations. A lazy reduction or
an addition already requires 17 bits to store the result, a combination of a lazily reduced
multiplication followed by an addition requires 18 bits. The recent advance of the Plantard
multiplication [Pla21] is not useful within this work, as the prime in HAETAE is not
compatible. Plantard multiplication requires q < 2R

1+
√

5 ≊ 0.618R, i.e., q ≤ 40503 for
R = 216. So the prime of HAETAE is too large for this use-case with Cortex-M4 16-bit
DSP-instructions. The same goes for Seiler’s variant [Sei18] of signed Montgomery modular
multiplication, which is only well-defined for q < R

2 .

16-bit vs 32-bit. Quite a few post-quantum schemes use primes that are 13-bit values or
smaller. In this case, one can both store and manipulate the coefficients graciously and
efficiently as two signed 16-bit values packed into one 32-bit register, as the Cortex-M4
offers a wide range of instructions intended for Digital Signal Processor (DSP) applications,
like mixed multiplication of upper and lower halves of two registers that can be used for
this purpose. In the case of HAETAE, trade-offs need to be found between the compactness
of 16-bit storage and doubled speed of access for consecutive coefficients on the one hand,
and the required overhead to fully reduce the coefficients before writing them to memory.

If coefficients are written once and afterwards are read repeatedly without alterations,
the 16-bit representation can be worthwhile. When polynomials of the public key are
expanded, the coefficients are sampled in fully reduced state, we therefore store them in
halfwords.

While it is feasible to use a modified Montgomery reduction with unsigned 16-bit
integers as input and 17 bits output (or a 16-bit value with overflow flag), there are no
corresponding instructions available to exploit this. In contrast, the Montgomery reduction
in the Dilithium implementation for the Cortex-M4 uses R = 232 and takes only three
instructions. We determined the overhead associated with full reductions required to
store coefficients as 16-bit values to be too large to outperform the 32-bit variant for the
NTT. The same applies to other polynomial arithmetic operations in HAETAE, besides
the expanded polynomials of the public key, we therefore operate on 32-bit coefficients.
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NTT. HAETAE, as other lattice-based schemes, extensively employs polynomial multipli-
cation. The NTT is a generalization of the FFT and is the state-of-the-art technique to
perform this operation, speeding up the computation considerably, as compared to, e.g.,
schoolbook multiplication. The addition and multiplication of polynomials transformed
into the NTT domain are carried out coefficient-wise, greatly reducing the cost of the
latter operation. The overhead to perform the transform and inverse transform, where
required, is usually outweighed by the performance gain in the multiplication. HAETAE is
specified such that large parts of the public key are expanded directly to the NTT domain.

Fortunately, the closeness to Dilithium, which also uses polynomials of degree n = 256,
allows us the reuse its highly optimized assembly code for the NTT developed for the
Cortex-M4 by Abdulrahman et al. [AHKS22], which improves over previous work [GKOS18].
The code adjustments required for operation in HAETAE are limited to adjusting constants
like the prime being used, the root of unity, which is chosen as 426 (the primitive 512th

root of unity of q = 64513) and the twiddle factors.
Replacing the portable C code from the reference implementation with optimized

assembly derived from the Dilithium implementation reduces the cycle count per invocation
from 37506 cycles to 8047 cycles, a speed-up by a factor of 4.6. For the inverse NTT, the
cycle count dropped from 43116 to 8369, a speed-up by a factor of 5.1.

7.2 Gaussian Sampler
The major numerical components of the Gaussian sampler are the CDT sampler for
sampling the most significant bits and the fixed-point exponential function used in the
rejection step. As both components are called repeatedly, both have been implemented in
assembly code.

The CDT sampler accumulates ones and zeros, depending on comparisons of a uniformly
sampled 16-bit random value to tabled threshold values. We use the uadd16, usub16 and
sel SIMD instructions from the Cortex-M4 instruction set to carry out two comparisons
and accumulations in parallel. We furthermore optimize the memory access and unroll
the loop. By doing so we reduce the instruction count from 800 cyles for the reference
implementation to 206 cyles, a speed-up by a factor of 3.9.

The exponential is approximated by a polynomial, which is evaluated using Horner’s
scheme. The reference implementation of the exponential function uses fixed-point
arithmetic with 48 fraction bits. Values are embedded in 64-bit integers and 64x64
to 128-bit multiplication is used. The latter operation has no native support on the
Cortex-M4. To circumvent this limitation, the Cortex-M4 implementation splits the value
into two signed components at the start of each multiplication, namely the most significant
bits ah = a » 24 and the least significant bits as al = a - ah. For the accumulation of
the results a 64-bit integer is used again, taking advantage of the smlal instruction. This
repeated switch between representations allows for efficient computation of the individual
Horner’s scheme iterations. Whereas the reference implementation of the exponential
function takes 1658 cycles to execute, this is reduced to 563 instructions in the optimized
Cortex-M4 code, a speed-up by a factor of 2.9.

7.3 Stack Optimization
Besides execution time, also the memory footprint is an important metric for constrained
devices. The target device in this work has 128 KiB of RAM available as stack memory.
In this context, data structures typically encountered in lattice based cryptography need
to be considered as rather large. A single polynomial in HAETAE takes 512 B or 1 KiB of
memory to store, depending on whether the data is represented as 16-bit or 32-bit values.
So vectors or matrices of polynomials can occupy a considerable share of the available
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RAM, if stored in their entirety. In this section we explore how to minimize memory use;
in some cases significant trade-offs between memory usage and execution speed can be
made.

The reference implementation of HAETAE is designed with an emphasis on readability
and close similarity to the mathematical specification. This results in top level functions,
which consist of long monolithic blocks with many large data structures, which do not
necessarily have overlapping lifetimes, but nevertheless occupy stack space for the entire
function lifecycle. Most stack memory is required for the signature generation. Due to
the unnecessarily high stack usage of the reference implementation, HAETAE-180 and
HAETAE-260 do not run on the STM32f4-Discovery board without optimizations.

To reduce the memory footprint we executed two strategies. First, we carefully analyzed
the liveness of each relevant variable and refactored the monolithic code into subroutines
to reduce the scope of variables and thereby the total stack usage. This slightly impacts
the readability of the code, but does not affect the speed.

In a second variant we additionally opted for a more aggressive memory reduction, by
recomputing polynomials on demand, this obviously comes with performance costs. We
adapt the data structures to be primarily polynomial oriented instead of vector and matrix
oriented representations. Recomputations are done during public key usage, where we
generate each polynomial on demand, and during hyperball sampling, where we sample
each polynomial twice, once for the evaluation of the normalization factor and a second
time to sample the actual y values. Since the hyperball sampling is computationally very
expensive, this leads to a severe overhead in runtime.

7.4 Performance and Comparison Cortex-M4

Table 9 shows the maximum stack size of our two Cortex-M4 implementations of HAETAE
and values reported in the PQM4 framework about Dilithium and Falcon. With speed-
opt, we refer to our implementation, that is optimized for the Cortex-M4 and includes
multiple stack-size optimizations, but does not trade speed for better memory requirements.
stack-opt refers to the version, where we additionally exploit speed vs memory trade-offs.

First, we can observe that the memory requirements of HAETAE are small enough to
run on the STM32f4-Discovery board for all parameter sets, even in the speed-opt version.
Second, the stack sizes for HAETAE are in the same order of magnitude as Dilithium and
Falcon. Compared to speed-opt HAETAE, Dilithium requires around two to three times
more memory during key generation, and a similar overhead for signature verification. The
difference is at most 20% for signature generation, for this operation Dilithium requires
less memory than HAETAE for the first two parameter sets.

Our stack-opt version reduces the stack-size up to 34% during signature generation and
key generation, but does not differ for the verification. However, this comes with higher
costs in terms of computation time.

Falcon stands out for its stack-size below 10 KiB for both parameter sets during
verification.

Table 9 shows the cycles spend by our two Cortex-M4 implementations of HAETAE
and values reported in the PQM4 framework1 for Dilithium and Falcon. Our version
using aggressive stack reduction techniques based on recomputations does not impact the
signature verification time, but almost doubles the computation time for the signature
generation. The time overhead for key generation is up to 30%. Similar to our AVX2
optimized implementation, the relative performance comparison of HAETAE to Dilithium
and Falcon does not change drastically.

1https://github.com/mupq/pqm4/blob/master/benchmarks.md

https://github.com/mupq/pqm4/blob/master/benchmarks.md
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Table 9: Maximum stack size in bytes and average kilo cycle counts of 1000 (100 for
Falcon) executions for Cortex-M4 implementations of HAETAE, Dilithium, and Falcon.

Scheme Stack size Cycle count
KeyGen Sign Verify KeyGen Sign Verify

HAETAE-120 speed-opt 19,796 54,564 22,532 8,905 27,312 1,054
stack-opt 17,364 40,732 22,532 10,819 51,017 1,054

HAETAE-180 speed-opt 29,612 69,631 31,020 17,666 34,466 2,026
stack-opt 22,444 57,116 31,020 22,860 65,855 2,026

HAETAE-260 speed-opt 34,108 102,964 36,428 22,851 50,175 2,733
stack-opt 22,356 68,380 36,428 23,213 99,472 2,733

Dilithium-2 38,408 49,380 36,212 1,598 4,112 1,572
Dilithium-3 60,836 68,836 57,724 2,830 6,588 2,691
Dilithium-5 97,692 115,932 92,788 4,826 8,779 4,706
Falcon-512 18,416 42,508 4,724 155,758 38,979 481
Falcon-1024 36,296 82,532 8,820 480,072 85,125 995

8 Conclusion
With HAETAE, we close an important gap between the two state-of-the-art digital signature
schemes Dilithium and Falcon. Novel contributions in key generation and rejection sampling
allow us to reach significantly smaller signature and verification key sizes, while still
allowing physical side-channel protected implementations for IoT use-cases. Moreover, our
first set of optimized implementations exhibits that our proposed algorithms run in feasible
time both on embedded and high-end platforms and compete with existing schemes when
considering sending latency.

A possible direction to achieve a similar signature sizes with HAETAE could be following
the BLISS approach, using the bimodal Gaussians in the module LWE setting with the
compression techniques, which we did not go through to avoid computing a secret-dependent
transcendental function during signature rejection to enhance the implementation security.
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A Recent lattice-based signatures
In this section, we give a size comparison of the recent lattice-based signature schemes.
In Table 10, we compare the verification key and signature sizes (in bytes) of some
selected lattice signature schemes, including the NIST’s on-ramp candidates. Note that
we additionally showcase some disadvantages, e.g., some recent analyses reported at pqc-
forum (some are verified by the submitters, and others are not) or the use of new family
of assumptions, which may degrade the claimed security.

Table 10: Size comparison of recent lattice-based signatures.

Scheme Levels 1 & 2 Level 3 Level 5 Ref.vk sig. sum ↑ vk sig. sum vk sig. sum
EHTv41 1,110 369 1,479 — — — 1,110 369 1,479 [SF23]
Falcon 2 897 666 1,563 — — — 897 666 1,563 [FHK+18]
HAWK3 1,024 555 1,579 — — — 1,024 555 1,579 [HPP+23]
Mitaka 4 896 713 1,609 — — — 896 713 1,609 [EFG+22]
HAETAE 992 1,474 2,466 1,472 2,349 3,821 2,080 2,948 5,028 ours
Dilithium 1,312 2,420 3,732 1,952 3,293 5,245 2,592 4,595 7,187 [DKL+18]
EagleSign5 1,824 2,144 3,968 2,842 2,336 5,160 3,616 3,488 7,104 [HDS23]
Raccoon 2,256 11,524 13,780 3,160 14,544 17,704 4,064 20,330 24,394 [dPEK+]
SQUIRRELS 682K 1,019 683K 1,600K 1,554 1,602K — — — [ENST23]
HUFU6 1,059K 2,450 1,061K 2,177K 3,540 2,181K 3,573K 4,520 3,578K [YJL+23]
1 reported attack [RS23] 2 infeasible to mask, uses floating-point arithmetic 3 new assumptions
smLIP, omSVP 4 hard to mask, proposed masked Gaussian sampler recently broken [Pre23] 5 reported
attack [Tib23] 6 uses floating-point arithmetic

B Security against Physical Attacks
Implementation security is a crucial aspect of making cryptosystems feasible in real-world
applications. A significant advantage of HAETAE is that it can be protected against
power side-channel attacks efficiently and with reasonable overhead. In this context, we
emphasize the similarity of HAETAE to Dilithium. Hence, past works analyzing concrete
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attacks [BP18, MUTS22], but also countermeasures [MGTF19, ABC+23], mainly apply to
HAETAE as well.

While there is no known method to efficiently mask Falcon, Mitaka [EFG+22] was
designed to be easy to protect against implementation attacks, while still having the
advantage of similarly small signatures as Falcon. For Mitaka, the crux regarding side-
channel security is sampling Gaussian-distributed values. Together with Mitaka, an efficient,
masked algorithm for discrete Gaussian sampling was presented. However, Prest broke
its security proof recently [Pre23]. In this respect, HAETAE has the strong advantage
that Gaussian sampling only needs to be secured against the much stronger Simple Power
Analysis (SPA) attacker model, which allows for simpler countermeasures, while Mitaka’s
side-channel security will always depend on a masked sampler.

While a fully protected implementation of HAETAE is out of scope for this paper, we
briefly sketch its feasibility.

Protecting the Arithmetic. Most notably, HAETAE does not deploy floating-point
arithmetic at any point, and only few secrets require fix-point arithmetic. Remarkably,
addition of fix-point arithmetic can be masked relatively easy, and HAETAE never requires
a multiplication of fix-point values.

During signing, the most critical operation is multiplying the (public) challenge
polynomial c with s and subsequently adding the result to y. Since this operation
may leak information about the secret key statistically over many executions, implementers
must protect it accordingly. As countermeasures against these so-called Differential Power
Analysis (DPA) attacks, masking has been proven effective.

This operation is straightforward to mask at arbitrary order by splitting the secret key
polynomials into multiple additive shares in Rq. A masked implementation then stores
the NTT of each share of s and multiplies them to c, obtaining a shared cs. Following
this, the inverse NTT is applied share-wise. Since y is a polynomial vector in (1/N)R,
it is not trivially possible to add our shares of cs ∈ Rk+ℓ

q . On the other hand, y is not a
secret-key-dependent value. Therefore, it is not required to be protected against DPA but
only against the much stronger attacker model of a SPA. In fact, coefficient-wise shuffling
of the addition might be sufficient at this point.

Independent of whether the addition is shuffled or masked, this involves a masking
conversion from Zq to Z232 . Subsequently, the computation of 2z−y and the bound checks
can be shuffled without applying costly masking.

Protecting the Hyperball Sampler. The same idea applies to the whole hyperball
sampling procedure. Since the order of the Gaussian samples is, in principle, irrelevant,
they can be generated in random order. This is particularly an advantage for randomized
HAETAE.

For the deterministic version, a masked CDT sampler, and a masked approximation
of the exponential function are required. The former was shown to be feasible recently
by Krausz et al. [KLS+23], while the latter is a sequence of multiplications, shifting by a
constant amount, and addition by constants, which is expected to be costly but feasible.

It is noteworthy that the random oracle hash (which outputs the challenge) is only
required to be protected against SPA as well. Since the input order into the hash function
cannot be randomized, the preceding values must still be protected by masking. Therefore,
if no masked hyperball sampling has been performed, we propose to perform a shuffled
point-wise multiplication of A and y, directly followed by freshly masking the resulting
coefficients. Then, a share-wise inverse NTT and a masking conversion to the Boolean
domain will be performed, which enables a secure HighBits operation. For the LSBs of
y0, generating a fresh Boolean masking during the shuffled generation of the hyperball
sample’s coefficients is sufficient.
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C Additional Proofs

C.1 Useful Lemma
We will rely on the following claim.

Lemma 12. Let n be the degree of R. Let m,N, r > 0 and v ∈ Rm. Then the following
statements hold:

1. |(1/N)Rm ∩ BR,m(r)| = |Rm ∩ BR,m(Nr)|,

2. |Rm ∩ BR,m(r,v)| = |Rm ∩ BR,m(r)|,

3. Vol(BR,m(r −
√

mn
2 )) ≤ |Rm ∩ BR,m(r)| ≤ Vol(BR,m(r +

√
mn
2 )).

Proof. For the first statement, note that we only scaled (1/N)Rm and BR,m(r) by a
factor N . For the second statement, note that the translation x 7→ x− v maps Rm to Rm.

We now prove the third statement. For x ∈ Rm, we define Tx as the hypercube of Rm
R

centered in x with side-length 1. Observe that the Tx’s tile the whole space when x ranges
over Rm (the way boundaries are handled does not matter for the proof). Also, each of
those tiles has volume 1. As any element in Tx is at Euclidean distance at most

√
mn/2

from x, the following inclusions hold:

BR,m

(
r −
√
mn

2

)
⊆

⋃
x∈Rm∩BR,m(r)

Tx ⊆ BR,m

(
r +
√
mn

2

)
.

Taking the volumes gives the result.

C.2 Proof of Lemma 4
Proof. To ease the notation, let us use B = r′. Let y ∈ BR,m(Nr′ +

√
mn/2) and

set z = ⌊y⌉. Note that z is sampled (before the rejection step) with probability

Vol(Tz ∩ BR,m(Nr′ +
√
mn/2))

Vol(BR,m(Nr′)) ,

where Tz is the hypercube ofRm
R centered in z with side-length 1. By the triangle inequality,

this probability is equal to 1/Vol(BR,m(Nr′ +
√
mn/2) when z ∈ BR,m(Nr′). Hence the

distribution of the output is exactly U(Rm ∩BR,m(Nr′)), as each element is sampled with
equal probability and as the algorithm almost surely terminates (its runtime follows a
geometric law of parameter the rejection probability).

It remains to consider the acceptance probability.∑
y∈Rm∩BR,m(Nr′) Vol(Ty ∩ BR,m(Nr′ +

√
mn/2))

Vol(BR,m(Nr′ +
√
mn/2)) .

By the triangle inequality and Lemma 12, it is

|Rm ∩ BR,m(Nr′)|
Vol(BR,m(Nr′ +

√
mn/2)) ≥

(
Nr′ −

√
mn/2

Nr′ +
√
mn/2

)mn

.

Note that by our choice of N , this is ≥ 1/M0.
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C.3 Proof of Lemma 5
Proof. Figure 6 is the bimodal rejection sampling algorithm applied to the source
distribution U((1/N)Rm ∩ BR,m(r′)) and target distribution U((1/N)Rm ∩ BR,m(r))
(see, e.g., [DFPS22]). It then suffices that the support of the bimodal shift of the
source distribution by v contains the support of the target distribution. It is implied
by r′ ≥

√
r2 + t2.

We now consider the number of expected iterations, i.e., the maximum ratio between
the two distributions. To guide the intuition, note that if we were to use continuous
distributions, the acceptance probability 1/M ′ would be bounded by 1/M . In our case,
the acceptance probability can be bounded as follows (using Lemma 12):

1
M ′

= |(1/N)Rm ∩ BR,m(r)|
2|(1/N)Rm ∩ BR,m(r′)| = |Rm ∩ BR,m(Nr)|

2|Rm ∩ BR,m(Nr′)|

≥ Vol(BR,m(Nr −
√
mn/2))

2Vol(BR,m(Nr′ +
√
mn/2))

= 1
2

(
Nr −

√
mn/2

Nr′ +
√
mn/2

)mn

.

It now suffices to bound the latter term from below by 1/(cM) = 1/(2c(r′/r)mn). This
inequality is equivalent to:

c ≥ 1
2 ·
(

r

r −
√
mn/(2N)

)mn

·
(
r′ +
√
mn/(2N)
r′

)mn

,

and to:
N ≥ 1

c1/(mn) − 1 ·
√
mn

2

(
c1/(mn)

r
+ 1
r′

)
,

which allows to complete the proof.

C.4 Proof of Lemma 7
Proof. By Lemma 6, there exists a unique representation

r = ⌊(r + α/2)/α⌋α+ (r mod± α).

By identifying HighBits(r, α) and LowBits(r, α) in the above equation, we obtain the first
result.

By definition of mod± α, we have the second range.
Finally, since r 7→ ⌊(r + α/2)/α⌋ is a non-decreasing function, it is sufficient to show

that ⌊(2q − 1 + α/2)/α⌋ ≤ ⌊(2q − 1)/α⌋. We have (2q − 1 + α/2) ≤ ⌊(2q − 1)/α⌋α+ α− 1
by assumption on q. Dividing by α and taking the floor yields the result.

C.5 Proof of Lemma 8
Proof. Let r ∈ [0, 2q − 1]. Let r0, r1, r′0, and r′1 defined as in Definition 8. If r′0 = r0
and r′1 = r1, the equality r′0 + r′1 · αh = r0 + r1 · αh mod 2q holds vacuously.

If not, then r′0 = r0 − 2 and r′1 = r1 − 2(q − 1)/αh and r′0 + r′1αh = r0 + r1αh − 2q. By
Lemma 7, we get the first equality.

The second property stems from the second property in Lemma 7. The modifications
to r0 make r′0 lie in the range [−αh/2− 2, αh/2).

The last property stems from the third property in Lemma 7 and the fact that if r1 = m,
then we have r′1 = 0.
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D Additional Implementation Specification

Algorithm 1 describes how to implement the unpacking of Â, and in Algorithm 2 we
demonstrate how to apply the CRT.

Algorithm 1 Unpacking routine for Â.
unpackAd(seedA, ψ)

1: if d = 0 then
2: Âgen := expandAd(seedA)
3: b̂ := ψ
4: else
5: (agen, Âgen) := expandAd(seedA)
6: b̂ := 2 · NTT(agen − ψ · 2d) mod q
7: return Â ∈ Rk×ℓ

q := (b̂ | 2 · Âgen) mod q

E Notes Regarding Hardware Implementations

Hashing and generation of randomness are the most time-consuming operations of HAETAE.
Therefore, we assume that hardware implementations will bring significant speedup and
can be competitive to Dilithium, particularly through efficient Keccak cores. Furthermore,
hardware implementations will benefit significantly from applying the offline approach.
Naturally, a module generating hyperball samples can be instantiated and run parallel to
the online phase, thus, hiding its latency behind the online phase. Moreover, high-speed
applications could adopt the offline approach with designated signing key, including the
multiplication of A and y, to further reduce the latency of the online phase.

Algorithm 2 Mapping from (Rk
q ,Rq) to Rk

2q

fromCRT(w, x)
1: parse w as vector of integers w of size kn
2: parse x as vector of integers x of size n
3: for i := 0 to n− 1 do
4: if LSB(xi) = LSB(wi) then ▷ Implement in constant time.
5: w′i := wi

6: else
7: w′i := wi + q

8: for j := 1 to k − 1 do
9: for i := 0 to n− 1 do

10: if LSB(wnj+i) = 0 then ▷ Implement in constant time.
11: w′nj+i := wnj+i

12: else
13: w′nj+i := wnj+i + q

14: arrange w′ to w′, an element in Rk
2q

15: return w′
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P (x, y) V (x)
w (commitment)−−−−−−−−−−−−−−→

c← f(w)
c (challenge)←−−−−−−−−−−−−
z (response)−−−−−−−−−−−→ Reject if z =⊥

Accept or reject

Figure 15: Interaction between P and V . We let ⟨P (x, y) ↔ V (x)⟩f(·) denote the
transcript (w, c, z).

F Cryptographic Reminders
In this section, we recall the definition of a canonical identification scheme, which is the
main building brick of HAETAE and the Fiat-Shamir with aborts transform, which allows
one to turn a canonical identification scheme into a signature scheme.

F.1 Canonical Identification Schemes
We start by defining a canonical identification scheme.

Definition 9 (Canonical Identification Scheme with Aborts (CID)). A canonical
identification scheme ID for a relation R is a three rounds interactive protocol between a
prover P and a verifier V , as defined in Figure 15. The challenge is generated from f(w)
set as the distribution U(C) for some challenge set C. The prover holds a pair (x, y) ∈ R
while the verifier only has x, where the pair (x, y) was generated by a PPT algorithm Gen,
called an instance generator. The event “z =⊥” is called an abort, and its probability β is
called the probability of aborting.

The canonical identification schemes considered in this work are such that given c
and z, there is only one w such that V accepts, which can be efficiently computed from c
and z.

We need the following flavor of zero knowledge, denoted perfect accepting honest verifier
zero-knowledge.

Definition 10 (Perfect Accepting Honest Verifier Zero-Knowledge). Let ID be a canonical
identification scheme. It satisfies paHVZK if there exists a PPT simulator Sim such that
the output distribution of (w, c, z) resulting from the interaction ⟨P (x, y) ↔ V (x)⟩U(C)
conditioned on z ̸= ⊥ and (w′, c′, z′) generated by Sim(x) for any (x, y) generated by Gen(1λ)
are identical.

In the case of the HAETAE CID, the challenge c can be sampled uniformly from the
challenge space C and passed over as input to the simulator Sim.

To avoid using the same commitment twice, we require the min-entropy of the
commitment to be high.

Definition 11 (Commitment Min-Entropy). For α ≥ 0, we say that an identification
scheme ID with instance generator Gen has commitment min-entropy α if H∞[w|(w, c, z)←
⟨P (x, y)↔ V (x)⟩U(C)] ≥ α, for all (x, y)← Gen(1λ).

Finally we need the notion of computational unique response to enable the strong
unforgeability property of the final signature scheme.

Definition 12 (Computational Unique Response). Let ID be a canonical identification
scheme with instance generator Gen. The advantage AdvCUR

ID (A) of an adversary A against
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KeyGen(1λ):
1: (x, y)← Gen(1λ)
2: (vk, sk) = (x, (x, y))
3: return (vk, sk)

Sign(sk, µ):
1: While z = ⊥
2: (w, c, z) ← ⟨P (x, y) ↔
V (x)⟩H(·,µ)

3: return σ = (c, z)

Verify(vk, µ, σ):
1: Parse σ = (c, z)
2: Recover w from σ
3: return c = H(w, µ)

Figure 16: Fiat-Shamir with Aborts tranform FS[ID, H].

the CUR property of ID is its probability of computing (w, c, z, z′) such that V (x) accepts
both (w, c, z) and (w, c, z′) and z ̸= z′ on input x generated from (x, y)← Gen(1λ).

F.2 The Fiat-Shamir Transform
We now briefly recall how to turn a canonical identification scheme into a full-fledge
signature scheme. To do so, the signing scheme runs the interactive protocol and outputs
the transcript minus the commitment. The challenge is however generated by hashing the
message along with the commitment to prevent an adversary from tampering with it.

We recall the assumptions necessary to show the unforgeability of the resulting signature
in the following theorem. The following theorem works in the case of quantum adversaries
working in the QROM, but tighter statements can be obtained when restricting to classical
adversaries in the ROM.

Theorem 4 (Adapted from [BBD+23, Theorem 2]). Let ID be a canonical identification
scheme with α commitment min-entropy and that satisfies paHVZK with probability of
aborting β. For any quantum adversary A against the UF-CMA security of FS[ID, H] in
the QROM making Qs signature queries and Qh hash queries, there exists an adversary B
against the UF-NMA security of FS[ID, H] in the QROM such that:

AdvUF-CMA
FS[ID,H](A) ≤ AdvUF-NMA

FS[ID,H](B)+2−α/2+1Qs

1− β

√
Qh + 1 + Qs

1− β+2−α/2+1(Qh+1)

√
Qs

1− β .

Furthermore, if A is an adversary against the sUF-CMA security, there exists an
adversary B′ against the CUR property of ID such that the previous bound holds by
adding AdvCUR

ID (B′) on the right-hand side.

The strong unforgeability statement comes from the fact that in the last game of their
proof, the reduction fails if and only if the forgery uses the same commitment (and thus
reprogrammed challenge) than the signature query. As this requires a different answer,
this corresponds to an attack against the computational unique response property of the
canonical identification scheme.

G Fixed-point Sampling Analysis
In this appendix, we quantify the precision needed to sample from the uniform-hyperball
distribution by sampling from the discrete Gaussian distribution.

We first describe the representation of numbers and operations. A fixed-point number
in precision p will consist in a p-bit signed integer k ∈ Z ∩ [−2p−1, 2p−1) along with an
implicit scaling exponent e: the represented number is x = k · 2e−p ∈ [−2e−1, 2e−1). The
data can for example be stored in a p-bit integer in two’s complement representation. The
scaling exponent e is not stored, it only exists on paper. For convenience, a precision p
fixed-point number x with implicit exponent e will be referred to as a (p, e)-number.
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When performing arithmetic operations on fixed-point numbers, particular care must
be taken with overflows: in the analysis, we make sure that during the algorithm execution,
any (p, e)-number x will satisfy |x| < 2e−1. The following assumes no overflow occurs.
We can add, subtract and negate (p, e)-numbers exactly (note that we only consider the
situation where the operands of those operations share the same exponent). We assume
that we can multiply (p, e0)-number x0 with a (p, e1)-number x1 into a (p, e×)-number x×
as if the multiplication was exact and then rounded to a nearest representable number.
Finally, we assume that we can compute an inverse square-root of a (p, e)-number x into a
(p, e′)-number y with possibly slightly more error than that. This is summarized as follows:

x0 ⊕ x1 = x0 + x1; x0 ⊖ x1 = x0 − x1; ⊖x = −x;
|(x0 ⊗e×

e0,e1
x1)− (x0 · x1)| ≤ 2e×−p−1; |(1/

√
·)et

e − 1/
√
x| ≤ 2et−p.

G.1 Discrete Gaussian samples as rounded Gaussian samples
The hyperball-uniform sampler relies on an algorithm that samples from the continuous
Gaussian distribution. In our fixed-point sampling algorithm, we make do with fixed-
point approximations to sample from the discrete Gaussian distribution, as described in
Section 5.1.1. We analyze how this changes the final distribution in the following lemma,
which could be rephrased using the smooth Rényi divergence introduced in [DFPS22].

Lemma 13. Let σ > 0. Let DZ,σ (resp. Dσ) be the distribution D over Z (resp. R) such
that D(k) ∼ exp(−k2/(2σ2)) for all k ∈ Z (resp. k ∈ R). Then we have:

Pr
k←DZ,σ

[|k| ≥ 14 · σ] ≤ 2−140 and max
|k|≤14·σ

DZ,σ(k)
⌊Dσ⌉(k) ≤

1
1− 8/σ .

Proof. Using the discrete Gaussian tail bound from [Lyu12, Lemma 4.4], the weight
of DZ,σ out of the interval [−14 · σ, 14 · σ] is ≤ 2−140. Using the Poisson Summation
Formula, we have that:

∀k ∈ Z, DZ,σ(k) ≤ exp(−k2/(2σ2))
σ
√

2π
.

Further, for k ∈ Z ∩ [−14 · σ, 14 · σ], the following inequalities hold:

⌊Dσ⌉(k) = 1
σ
√

2π

∫ k+1/2

k−1/2
exp(−x2/(2σ2))dx

≥ exp(−k2/(2σ2))
σ
√

2π
· exp(−(|k|+ 1/4)/(2σ2))

≥ exp(−k2/(2σ2))
σ
√

2π
·
(
1− |k|+ 1/4

2σ2

)
≥ exp(−k2/(2σ2))

σ
√

2π
·
(
1− 8

σ

)
.

This completes the proof.

Lemma 13 implies that a signature forger for the imperfect Gaussian sampler succeeds
with essentially the same probability with the ideal Gaussian sampler.

G.2 Normalization of Gaussian samples
In the following, we assume that we have access to arbitrarily many statistically independent
(p, e)-numbers yi that approximate (perfect) samples yi from D1 = N (0, 1). We first
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consider the algorithm of Figure 1 with radius 1, using fixed-point arithmetic. We show
that the vector y output by the approximate algorithm is close to the vector y output by
the exact algorithm. As y is uniformly distributed in a hyperball, the computed vector y
is an approximation to such a sample.

We first bound the quantities involved during the computations. These bounds are
for the exact quantities. To avoid overflows, we actually need them for the corresponding
computed quantities. We will see later that as the numerical errors are low, the bounds
still essentially hold. The bounds are probabilistic, and hold with probability extremely
close to 1.

Lemma 14. Let dmin = 6 · 256 + 2 and dmax = 11 · 256 + 2. The following bounds hold for
all d ∈ [dmin, dmax]:

Pr
y←D1

[|y| ≥ 24] < 2−188,

Pr
yi←D1
∀i∈[d]

[∥y∥2 ≥ 212] < 2−144, Pr
yi←D1
∀i∈[d]

[∥y∥2 ≤ 29] < 2−144.

Pr
z←U(Bd−2(1))

[|z1| ≥ 2−2] < 2−150.

Proof. The first probability is 1 − erf(24/
√

2). The two others are bounded with the
Laurent-Massart bounds for the chi-squared distribution, i.e., for all d, t:

Pr
yi←D1
∀i∈[d]

[∥y∥2 ≥ d+ 2
√
dt+ 2t] ≤ exp(−t) and Pryi←D1

∀i∈[d]
[∥y∥2 ≤ d− 2

√
dt] ≤ exp(−t).

For the last bound, we use [DFPS22, Lemma A.13]. The probability is ex-
actly I1−1/η2((d+ 1)/2, 1/2) where I refers to the regularized incomplete Beta function
and 1/η is probabilistic magnitude upper bound. We then use numerical computations.

Throughout the execution of the approximate version of the algorithm of Figure 1,
we fix the precision to p ≥ 64. The implicit exponents vary depending on the algorithm
step: the yi’s are represented by (p, 5)-numbers, their squares by (p, 13)-numbers, the
squared-norm ∥y∥2 by a (p, 13)-number, the inverse-norm 1/∥y∥ by a (p,−3)-number and
the output coordinates on (p,−1)-numbers.

Assume that we have |yi − yi| ≤ ϵ0 for all i, for some ϵ0 ≥ 2−p+5/2 = 2−p+4. To avoid
overflows of yi’s, it suffices that |yi| ≤ 24 − 2−p+5 − ϵ0. The first bound from Lemma 14
still holds for any ϵ0 ≤ 2−5.

We now consider the computations of the approximations y2
i ’s to the y2

i ’s. We have:∣∣∣y2
i − y

2
i

∣∣∣ ≤ |(yi ⊗13
5,5 yi)− yi

2|+ |yi − yi| · |yi + yi|

≤ 2−p+12 + |yi − yi| · [|yi − yi|+ 2|yi|]
≤ 2−p+12 + 26 · ϵ0.

As addition is exact, we obtain:∣∣∣∥y∥2 − ∥y∥2
∣∣∣ ≤ dmax · (2−p+12 + 26 · ϵ0) =: ϵ1.

To avoid overflow of ∥y∥2 and hence of the y2
i ’s, it suffices that ∥y∥2 ≤ 212 − 2−p−13 − ϵ1.

The second bound from Lemma 14 still holds for any ϵ0 ≤ 2−5.
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We continue with the inverse square root computation. The following holds:∣∣∣∣1/∥y∥ − 1
∥y∥

∣∣∣∣ ≤
∣∣∣∣∣(1/√·)−3

13 (∥y∥2)− 1
∥y∥

∣∣∣∣∣+
∣∣∣∣∣ 1
∥y∥ −

1
∥y∥

∣∣∣∣∣
≤ 2−p−3 + |∥y∥2 − ∥y∥2|

2[∥y∥2 − |∥y∥2 − ∥y∥2|]3/2

≤ 2−p−3 + ϵ1
2[29 − ϵ1]3/2

≤ 2−p−3 + 2−15(1 + 2−1)ϵ1 =: ϵ2,

where the last inequality holds for any ϵ0 ≤ 2−15. To avoid overflow of 1/∥y∥, it suffices
that 1/∥y∥ ≤ 2−4 − 2−p−3 − ϵ2. The third bound from Lemma 14 holds for any ϵ0 ≤ 2−15.

We finally evaluate the accuracy of the output vector z with respect to z :=
(y1, . . . , yd)⊤/∥y∥2. We have, for all i:∣∣∣zi − zi

∣∣∣ ≤ ∣∣∣yi ⊗−1
5,−3 1/∥y∥ − yi · 1/∥y∥

∣∣∣+
∣∣∣yi · 1/∥y∥ − yi/∥y∥

∣∣∣
≤ 2−p−2 +

∣∣∣1/∥y∥ − 1/∥y∥
∣∣∣ · |yi|+ |yi − yi|/∥y∥

≤ 2−p−2 + 25 · ϵ2 + 2−4 · ϵ0 =: ϵ3.

To avoid overflow of zi, it suffices that |zi| ≤ 2−2 − 2−p−3 − ϵ3. The fourth bound from
Lemma 14 still holds for any ϵ0 ≤ 2−20.

Note that ϵ3 is of the order of 2142−p. This is a crude upper bound, as it assumes that
errors are always in the same direction.

G.3 Rounding Continuous Hyperball-uniform
Let us now consider the algorithm from Figure 3. We consider a uniform y0 ← U(BR,m(1)),
its representation ȳ0 such that ∥y0 − ȳ0∥∞ ≤ ϵ4, the scaled sample y = r′′ · y0 and its
representation ȳ = r′′ · ȳ0, computed exactly, where we let r′′ = NB +

√
mn/2. In

particular ∥y− ȳ∥∞ ≤ r′′ϵ4.
Now given any t with ∥t∥ ≤ r′ = NB, the probability that the random variable y gets

rounded to it is exactly the inverse of the volume of the hyperball Vmn(r′′). However, when
considering ȳ, this probability lies in [(1 − 2r′′ϵ4)mn/Vmn(r′′), (1 + 2r′′ϵ4)mn/Vmn(r′′)].
The ratio of the probability densities thus always lies in [(1− 2r′′ϵ4)mn, (1 + 2r′′ϵ4)mn].

G.4 Rejection Sampling with Approximate Source Distribution
Here, we study the evolution of the rejection sampling steps from Figure 3 and Figure 6
when used with real, approximate distributions.

Theorem 5. Let M > 1. Let δM ≥ 1 ≥ δm > 0. Let Qr, Qi and Pi such that for
any x ∈ Supp(Pi), Qr(x)/Qi(x) ∈ [δm, δM ] and R∞(Pi∥Qi) ≤ M . Consider Pr, the
probability distribution whose mass function is proportional to x 7→ Pi(x)/(MQi(x))Qr(x).
Then Pr(x)/Pi(x) ∈ [δm/δM , δM/δm] for any x ∈ Supp(Pi) = Supp(Pr).

Note that Pr is the resulting distribution when using rejection sampling to go from Qi

to Pi with source distribution Qr.

Proof. The normalization factor is∑
z∈Supp(Pi)

Pi(z)
M

· Qr(z)
Qi(z)

∈
[
δm

M
,
δM

M

]
.
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As we consider positive values, its inverse then lies in [M/δM ,M/δm]. We conclude by
considering that Qr(x)/(MQi(x)) lies in [δm/M, δM/M ] for any x ∈ Supp(Pi).

This lemma is applied twice in a row, first to get the final discrete hyperball sample y
and second to get the final signature z. In the second case, note that instead of bounding
from above and below the distribution of z (before rejection), we can use the bound we
get for y, due to data processing arguments.

G.5 Putting Everything together
The final interval in which lies the ratio of real and ideal distributions of z is[(

1− 2r′′ϵ4
1 + 2r′′ϵ4

)2mn

,

(
1 + 2r′′ϵ4
1− 2r′′ϵ4

)2mn
]
,

where ϵ4 ≈ 214−p, r′′ ≤ 228 and mn ≤ 211. As max(1−1/x, x−1) = x−1 for positive x ≤ 1,
we apply [Pre17, Lemma 3] and follow their subequently described strategy to derive the
necessary precision. In order to get about 2−37 precision in the bounds after rejection
sampling, it is necessary to choose p ≈ 14 + 28 + 37 + 1, as the radius r′′ ≤ 228. Going
back to the σ of our discrete Gaussian distribution, as elements sampled from it will have
absolute value at most 14σ ≈ p, we choose σ = 276, which is also sufficiently big to use
discrete Gaussians instead of rounded ones.
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