PROTOSTAR: Generic Efficient Accumulation/Folding for
Special-sound Protocols

Benedikt Biinz Binyi Chen

Stanford University, Espresso Systems
Espresso Systems

December 6, 2023

Abstract

Accumulation is a simple yet powerful primitive that enables incrementally verifi-
able computation (IVC) without the need for recursive SNARKs. We provide a generic,
efficient accumulation (or folding) scheme for any (2k — 1)-move special-sound proto-
col with a verifier that checks ¢ degree-d equations. The accumulation verifier only
performs & + 2 elliptic curve multiplications and k + d + O(1) field/hash operations.
Using the compiler from BCLMS21 (Crypto 21), this enables building efficient IVC
schemes where the recursive circuit only depends on the number of rounds and the
verifier degree of the underlying special-sound protocol but not the proof size or the
verifier time. We use our generic accumulation compiler to build PROTOSTAR. PRO-
TOSTAR is a non-uniform IVC scheme for Plonk that supports high-degree gates and
(vector) lookups. The recursive circuit is dominated by 3 group scalar multiplications
and a hash of d* field elements, where d* is the degree of the highest gate. The scheme
does not require a trusted setup or pairings, and the prover does not need to compute
any FFTs. The prover in each accumulation/IVC step is also only logarithmic in the
number of supported circuits and independent of the table size in the lookup.

Contents

[1.2 Organization] e

2 Prefim)
[2.1 Special-sound Protocols and Fiat-Shamir Transtorm|
2.2 Adaptive Fiat-Shamir transtform| 000000

[2.4 Incremental Verifiable Computation (IVC)|.
2.5 Simple Accumulation|.o o

[3_Protocolsl

3.1 Special-sound Protocols|
3.2 Commit and Open|
B3 Fiat-Shamir transforml
3.4 Accumulation Scheme for Vyark!« . o o o oo
13.5 Compressing verification checks for high-degree verifiers|
3.6 Computation of error terms|

[3.6.1 Dealing with branched gates|

|4 Special-sound subprotocols for Protostar|

4.2 High-degree custom gate relation|
4.3 Lookup relation|.

[6 " Special-sound protocols for Plonkup relations|

[6_Protostar]

[A Accumulation Scheme for high/low degree verifier|

IB Computation of cross error commitments for sparse witnesses

[C_Protostar for CCS|

J

11
11
13
13
13
14

16
16
17
18
19
25
30
31

32
32
32
33
36
39

39

41

49

51

54

1 Introduction

Incrementally Verifiable Computation|Val08] is a powerful primitive that enables a possibly
infinite computation to be run, such that the correctness of the state of the computation
can be verified at any point. IVC, and it’s generalization to DAGs, PCD[CT10], have many
applications, including distributed computation|[BCCT13; |CTV15|, blockchains|BMRS20;
KB20|, verifiable delay functions [BBBF18|, verifiable photo editing [NT16|, and SNARKs
for machine-computations|[BCTV14]. An IVC-based VDF construction is the current can-
didate VDF for Ethereum[KMT22]. One of the most exciting applications of IVC and PCD
is the ZK-EVM. This is an effort to build a proof system that can prove that Ethereum
blocks, as they exist today, are valid|But22].

Accumulation and folding. Historically, IVC was built from recursive SNARKS, prov-
ing that the previous computation step had a valid SNARK that proves correctness up
to that point. Recently, an exciting new approach was initiated by Halo|BGH19| and has
led to a series of significant advances|BCMS20; BCLMS21; KST22]. The idea is related
to batch verification. Instead of verifying a SNARK at every step of the computation, we
can instead accumulate the SNARK verification check with previous checks. We define
an accumulatorll] such that we can combine a new SNARK and an old accumulator into
a new accumulator. Checking or deciding the new accumulator implies that all previ-
ously accumulated SNARKSs were valid. Now the recursive statement just needs to ensure
the accumulation was performed correctly. Amazingly, this accumulation step can be sig-
nificantly cheaper than SNARK verification[BGH19; BCMS20|. Even more surprising,
this process does not even require a SNARK but instead can be instantiated with a non-
succinct NARK[BCLMS21], as long as there exists an efficient accumulation scheme for
that NARK. The most efficient accumulation (aka folding) scheme constructions yield IVC
constructions, where the recursive circuit is dominated by as few as 2 elliptic curve scalar
multiplications| BCLMS21; [KST22|. These constructions only require the discrete loga-
rithm assumption in the random oracle model and, unlike many efficient SNARK-based
IVCs, do not require a trusted setup, pairings, or FFTs. These constructions build an ac-
cumulation scheme for one fixed (but universal) R1CS language by taking a random linear
combination between the accumulator and a new proof. R1CS is a minimal expression of
NP, defined by three matrices A, B, C, that close resembles arithmetic circuits with addi-
tion and multiplication gates. However, it has limited flexibility, especially as the current
constructions require fixing R1CS matrices that are used for all computation steps. These
limitations are especially problematic for ZK-EVMs. In a ZK-EVM, each VM instruction
(OP-CODE) is encoded in a different circuit. Each circuit uses high-degree gates, instead of
just multiplication, and so-called lookup gates [GWC19]. These lookup gates enable look-
ing up that a circuit value is in some table, simplifying range proofs and bit-operations.

Unrelated to set accumulators.

These R1CS-based accumulation schemes contrast non-IVC SNARK developments, with
an increased focus on high-degree gate|[GWC19; |CBBZ22| and lookup support|{GW20]. For
lookups, a recent line of work has shown that if the table can be pre-computed, we can
perform n lookups in a table of size T in time O(nlogn), independent of T'|ZBKMNS22;
PK22; ZGKMR22; EFG22].

More expressive accumulation. There have been efforts to build accumulation schemes
that overcome the limitations of fixed R1CS. SuperNova[KS22| enables selecting the ap-
propriate R1CS instance at runtime without a recursive circuit that is linear in all R1CS
instances. The approach, however, still has limitations. The recursive circuit still requires
many (though a constant number of) hashes and a hash-to-group gadget, and additionally,
the accumulator, and thus the final proof, is still linear in the total size of all instances.

Sangria [Moh23] describes an accumulation scheme for a Plonk-like[GWC19] constraint
system with degree-2 gates. It also proposes a solution for higher-degree gates in the
future work section but without security proof. Moreover, as the gate degree d increases,
the number of group operations in Sangria grows by a factor of d, which cancels out
the advantages of using the more expressive high-degree gates. Origami|ZV23| recently
introduced a folding scheme for lookups using a product check and degree 7 polynomials.
These accumulation schemes are built from simple underlying protocols performing a linear
combination between an accumulator and a proof. However, the constructions seem ad hoc
and need individual security proof. This leads us to our main research questions:

Recipe for accumulation Is there a general recipe for building accumulation schemes?
Can we formalize this recipe, simplifying the task of constructing secure and efficient
accumulation schemes?

Efficient accumulation for ZK-EVM Can we build an accumulation/folding scheme
for a language that combines the benefits of the most advanced proof systems today?
Can we support multiple circuits, high-degree, and lookup gates?

We answer both questions positively. Firstly we show a general compiler that takes any
(2k — 1)-move special-sound interactive argument for an NP-complete relation Ryp with
an algebraic degree d verifier and construct an efficient IVC-scheme from it. This is done
in 4 simple steps.

1. We compress the prover message by committing to them in a homomorphic commit-
ment scheme.

2. Then we apply the Fiat-Shamir transform to yield a secure NARK. [AFK22; Wik21]

3. We build a simple and efficient accumulation scheme that samples a random challenge

o and takes a linear combination between the current accumulator and the new
NARK.

4. We apply the compiler by [BCLMS21]| to yield a secure IVC scheme.

The recursive circuit of this transformation is dominated by only d + k — 1 scalar
multiplications in the additive group of the commitment schemeﬂ for a protocol with k
prover messages and a degree d verifier. For R1CS, where k = 1 and d = 2, this yields
the same protocol and efficiency as Nova]KST22]. We can further reduce the size of the
recursive circuit to only k 4+ 2 group scalar multiplication, by compressing all verification
equations using a random linear combination.

Efficient simple protocols for Rypikup- Equipped with this compiler, we design
PROTOSTAR, a simple and efficient IVC scheme for a highly expressive language Ruypikup
that supports multiple non-uniform circuits and enables high degree and lookup gates. The
schemes can be instantiated from any linearly homomorphic vector commitment, e.g., the
discrete logarithm-based Pedersen commitment[Ped92|, and do not require a trusted setup
or the computation of large FFTs. The protocol has several advantages over prior schemes:

Non-uniform IVC without overhead. Each iteration has a program counter pc that
selects one out of I circuits. Part of the circuit constrains pc; e.g., pc could depend on
the iteration or indicate which instruction within a VM is executed. The IVC-prover,
including the recursive statement, only requires one exponentiation per non-zero bit
in the witness. The prover’s computation is independent of I.

Flexible high degree gates. Our protocol supports Plonk-like constraint systems with
degree d gates instead of just addition and multiplication. The recursive statement
consists of 3 group scalar multiplications and d + O(1) hash and field operations.
Unlike in traditional Plonk, there is no additional cost for additional gate types
(of degree less than d) and additional selectors. This enables a high level of non-
uniformity, even within a circuit.

Lookups, linear and independent of table size. PROTOSTAR supports lookup gates
that ensure a value is in some precomputed table T'. In each computation step,
the prover commits to 2 vectors of length £, where /) is the number of lookups.
The prover, in each step, is independent of the table size (assuming free indexing in
T). We also support tables that store tuples of size v using 1 additional challenge
computations within the recursive circuit.

Our protocols are built of multiple small building blocks. In the protocol for high-degree
gates, the prover simply sends the witness, and the degree d verifier checks the circuit
with degree d gates. For lookup, we leverage an insight by Habock [Hab22] on logarithmic
derivates. This yields a protocol where a prover performing ¢, in a table of size T" only needs

2When instantiated with elliptic curve Pedersen commitments, this translates to d + k — 1 elliptic curve
multiplications. This is usually the largest component of the recursive statement.

PROTOSTAR HyperNova SuperNova

Language Degree d Plonk/CCS Degree d CCS R1CS (degree 2)
Non-uniform yes no yes
. |w| G |lw| G
P native O(|w|dlog? d)F O(lw|dlog? d)F w|G
extra P native
o ook O(/t)) G O(T) F N/A
3G 1G oG
P recursive (d+O(1))H + H;, dlognH + Hi, .
(d+O(1)F O(dlog n)F Hin + O(1)H + 1Hg
extra P recursive O(logT)H
w/ lookup IH O(bklogT)F N/A

Table 1: The comparison between IVCs.

to commit to two vectors of length /)., independent of T". This is the most efficient lookup
protocol today. While the verification is linear time, it is low degree (2) and thus compatible
with our generic compiler. Combining all these yields PROTOSTAR, a new [VC-scheme for
Ruplkup- We compare PROTOSTAR, with SuperNova [KS22| and HyperNova [KS23|, in
Table [1] (for more detail see Corollary [I): P native is the running time of the accumulation
prover and P recursive refers to the cost of implementing the accumulation verifier as a
circuit. In the table, |w| is the number of non-zero entries of the witness for circuit i, and £
is the number of lookups in a table of size T'. G is the cost of a group scalar multiplication.
F is the cost of a field multiplication. d H denotes the cost of hashing d A-bit numbers. We
assume that the cost scales linearly with the size of the input and output. In PROTOSTAR d
field elements are hashed once and in HyperNova d field elements are hashed log(n) times.
Hg is the cost of a hash-to-group function. H;, is the cost of hashing the public input and
the accumulator instance. Note that the O(1)H in SuperNova’s recursive circuit involves
constant number of hashes to the input of two accumulator instances and one circuit
verification key, by using multiset-based offline memory checking in a circuit [SAGL18].

Concurrent work. In a paper concurrent with this work, Kothapalli and Setty [KS23]
introduce an IVC for high degree relations. They use a generalization of R1CS called
customizable constraint systems (CCS) [STW23| that covers the Plonkish relations. It
also enables gates with a high additive fan-in. PROTOSTAR also has no restriction to the
fan-in an individual gate has, but we subsequently showed that our compiler can also
be directly applied to CCS (Appendix . HyperNova is based on so-called multi-folding
schemes. They also provide a lookup argument suitable for recursive arguments. However,
they do not explicitly explain how to integrate lookup to Plonk/CCS in their IVC scheme
or provide any explicit constructions for non-uniform computations. Their scheme is built

using sumchecks [LEKN90] and the resulting IVC recursive circuit is dominated by 1 group
scalar multiplication, dlogn + ¢;, hash operations and O(dlogn + ¢;,) field multiplications
where d is the custom gate degree, n is the number of gates and 4, is the public input length.
In comparison, our IVC recursive circuit, even with lookup and non-uniformity support,
is only dominated by 3 group scalar multiplications and O(¢;, + d) field/hash operations,
entirely independent of n. The 2 additional group operations compared to HyperNova are
likely offset by the additional lookup support [XCZBFKC22] and the significantly fewer
hashes and non-native field operations (d vs. dlog(n)). A detailed comparison is given in
Table [

For a lookup relation with table size T' and ¢ lookup gates, their accumulation/folding
scheme leads to an accumulation prover whose work is dominated by O(T') field operations
and an accumulation verifier whose work is dominated by O({klogT) field operations and
O(logT) hashes. This is undesirable when the table size T' > {. In comparison, our
scheme has prover complexity O(¢k) and the verifier is only dominated by 3 group scalar
multiplications, 2 hashes and 2 field multiplications. Moreover, the lookup support adds
almost no overhead to the IVC scheme for high-degree Plonk relations. In particular, it
adds no group scalar multiplications. Lastly, their lookup scheme does not support vector-
valued lookups, which is essential for applications like ZK-EVM and encoding bit-wise
operations in circuits.

1.1 Technical overview

Given an NP-complete relation R, we introduce a generic framework for constructing
efficient incremental verifiable computation (IVC) schemes with predicates expressed in R.
For R being the non-uniform Plonkup circuit satisfiability relation, we obtain an efficient
(non-uniform) IVC scheme for proving correct program executions on stateful machines
(e.g., EVM). The framework starts by designing a simple special-sound protocol Il for
relation R, which is easy to analyze. Next, we use a generic compiler to transform Ilsps into
a Non-interactive Argument of Knowledge Scheme (NARK) whose verification predicate is
easy to accumulate/fold. Finally, we build an efficient accumulation/folding scheme for the
NARK verifier, and apply the generic compiler from |[BCLMS21] to obtain the IVC/PCD
scheme for relation R. We describe the workflow in Figure

The paper begins by describing the compiler from special-sound protocols to NARKSs
in Section [3] and presents an efficient accumulation scheme for the compiled NARK verifier
in Section Next, we describe simple and efficient special-sound protocols for Plonkup
circuit-satisfiability relationsin Section[5]and extend it to support non-uniform computation
in Section 6] Similarly, we extend the CCS relation [STW23| to support non-uniform
computation and lookup in Appendix [C] We give an overview of our approach below.

Efficient IVCs from special-sound protocols. Let Ilsps be any multi-round special-
sound protocol for some relation R, in which the verifier is algebraic, that is, the verifier

CV [Isps] FS[em[CV [TLsps)]] IVClacc[FS[ecm[CV [Tsps]]]]]

A

Sec 3.5 ec 3.2 Sec 3.3 ec 3.4 Thm 1]

Hsps (Sec cm [CV[HspsH aCC[FS[Cm [CV [HSPS]”]

Figure 1: The workflow for building an IVC from a special sound protocol. We start from a
special-sound protocol Ilgps for an NP-complete relation Ryp, and transform it to CV [Ilgps]
with a compressed verifier check. CV[IIgps] is converted to a NARK FS[ecm[CV/[IIy]]] via
commit-and-open and the Fiat-Shamir transform. We then build a generic accumulation
scheme for the NARK and apply Theorem [1] from [BCLMS21] to obtain the IVC scheme.
This last connection is dotted as it requires heuristically replacing random oracles with
cryptographic hash functions.

algorithm only checks algebraic equations over the input and the prover messages. E.g.,
the following naive protocol for the Hadamard product relation over vectors a,b,c € F"
is special-sound and has a degree-2 algebraic verifier: The prover simply sends the vectors
a, b, c to the verifier, and the verifier checks that a; - b; = ¢; for all ¢ € [n]. However,
as shown in the example, the prover message can be large in Ils,s and the folding scheme
can be expensive if we directly accumulate the verifier predicate. Inspired by the splitting
accumulation scheme [BCLMS21], to enable efficient accumulation/folding, we split each
prover message into a short instance and a large opening, where the short instance is built
from the homomorphic commitment to the prover message. Next, we use the Fiat-Shamir
transform to compile the protocol into a NARK where the verifier challenges are generated
from a random oracle.

Now we can view the NARK transcript as an accumulator (or a relaxed NP instance-
witness pair in the language of folding schemes), where the accumulator instance consists of
the prover message commitments and the verifier challenges; while the accumulator witness
consists of the prover messages (i.e., the opening to the commitments). Note we also need
to introduce an error vector/commitment into the accumulator witness/instance to absorb
the “noise” that arises after each accumulation/folding step.

In the accumulation scheme, given two accumulators (or NARK proofs), the prover folds
the witnesses and the instances of both accumulators via a random linear combination and
generates a list of d “error-correcting terms” as accumulation proof (d is the degree of the
NARK verifier); the verifier only needs to check that the folded accumulator instance is
consistent with the accumulation proof and the original instances being folded, both of

which are small. After finishing all the accumulation steps, a decider applies a final check
to the accumulator, scrutinizing that (i) the accumulator witness is consistent with the
commitments in the accumulator instance, and (ii) the “relaxed” NARK verifier check still
passes. Here by “relaxed” we mean that the algebraic equation also involves the error vector
in the accumulator. If the decider accepts, this implies that all accumulated NARKs were
valid and thus that all accumulated statements are in R (and the prover knows witnesses
for these statements).

Finally, given the accumulation scheme, if the relation R is NP-complete, we can apply
the compiler in [BCLMS21] to obtain an efficient IVC scheme with predicates expressed in
R.

In Theorem we show that for any (2k— 1)—moveE| special-sound protocols with degree-d
verifiers, the resulting IVC recursive circuit only involves k + d + O(1) hashes, k + 1 non-
native field operations and k£ + d — 1 commitment group scalar multiplications. We also
introduce a generic approach for further reducing the number of group operations to k + 2
in Section (3.5l This is favorable for d > 3. The idea is to compress all £ degree d verification
checks into a single verification check using a random linear combination with powers of a
challenge §. This means that error-correcting terms are field elements and, thus, can be
sent directly without committing to them. The prover also sends a single commitment to
powers of 8 and powers of 6‘0. The verification equation uses one power of 5 and one
power of B\/z, which increases the degree of the verification check to d + 2. The verifier
also checks the correctness of the powers of 5 using 2v/¢ degree 2 checks.

Special-sound protocols for (non-uniform) Plonkup relations. Given the generic
compiler above, our ultimate goal of constructing a (non-uniform) IVC scheme for zZkEVM
becomes much easier. It is now sufficient to design a multi-round special-sound protocol
for the (non-uniform) Plonkup relation. We describe the components of the special-sound
protocol in Figure [2l Note we also extend CCS relation [STW23| to support lookup and
non-uniform computation and build a special-sound protocol for it (See Figure . Recall
that a Plonkup circuit-satisfiability relation consists of three modular relations, namely, (i)
a high-degree gate relation checking that each custom gate is satisfied; (ii) a permutation
(wiring-identity) relation checking that different gate values are consistent if the same wire
connects them, and (iii) a lookup relation checking that a subset of gate values belongs
to a preprocessed table. The special-sound protocols for the permutation and high-degree
gate relations are trivial, where the prover directly sends the witness to the verifier, and
the verifier checks that the permutation/high-degree gate relation holds. The degree of the
permutation check is only 1, and the degree of the gate-check is the highest degree in the
custom gate formula.

The special-sound protocol for the lookup relation Ryk is more interesting as the
statement of the lookup relation is not algebraic. Inspired by the log-derivative lookup

3k prover messages, k — 1 challenges

mplkup SGC@ Minces+ Apple

N

Permchk 11, Gatechk IIgaTe Lookup II;k Circ sel Iggeet CCS Ilees
(Sec [4.1)) (Sec [4.2) (Sec 4.3) (Sec [4.5)) (Appdix

Figure 2: The special-sound protocols for PROTOSTAR and PROTOSTAR.s. The special-
sound protocol Il ikup for the multi-circuit Plonkup relation Rppikup consists of the sub-
protocols for permutation, high-degree custom gate, lookup, and circuit selection relations.
The special-sound protocol Il st for the extended CCS relation Ryyees+ consists of the
sub-protocols for lookup, circuit selection, as well as the CCS relation [STW23]. From
Inpikup OF Iyeest, we can apply the workflow described in Figmto obtain the IVC schemes
PROTOSTAR or PROTOSTAR 5.

scheme |[Hab22|, in Section we design a simple 3-move special-sound protocol Il for
Rik, in which the verifier degree is only 2. A great feature of Il k is that the number of
non-zero elements in the prover messages is only proportional to the number of lookups,
but independent of the table size. Thus the IVC prover complexity for computing the
prover message commitments is independent of the table size, which is advantageous when
the table size is much larger than the witness size. However, the prover work for computing
the error terms is not independent of the table size because the accumulator is not sparse.
Fortunately, we observe that the prover can efficiently update the error term commitments
without recomputing the error term vectors from scratch, thus preserving the efficiency
of the accumulation prover. Moreover, we extend IIjx in Section [£.4] to further support
vector-valued lookup, where each table entry is a vector of elements. This feature is useful
in applications like zkEVM and for simulating bit operations in circuits.

Given the special-sound protocols for permutation/high-degree gate/lookup relations,
the special-sound protocol II,jonkup for Plonkup is just a parallel composition of the three
protocols. Furthermore, in Section [6] we apply a simple trick to support non-uniform
IVC. More precisely, let {C;}/_; be I different branch circuits (e.g., the set of supported
instructions in EVM), let pi := (pc, pi’) be the public input where pc € [I] is a program
counter indicating which instruction/branch circuit is going to be executed in the next
IVC step. Our goal is to prove that (pi,w) is in the relation Rmpiyp in the sense that
Cpe(pi,w) = 0 for witness w. The relation statement can also add additional constraints
on pc depending on the applications. The special-sound protocol for Rypikup is almost

10

identical to Il jonkup for the Plonkup relation, except that the prover further sends a bool
vector b € F!, and the verifier uses 2I degree 2 equations to check that bpe = 1 and
b; = 0Vi # pc. Additionally, each algebraic equation G checked in Il jonkyp is replaced with
Zi[:l G; - b; where G; (1 < i <) is the corresponding gate in the i-th branch circuit. The
resulting special-sound protocol has 3 moves, and the verifier degree is d+ 1, where d is the
highest degree of the custom gates. This means that the IVC scheme for the non-uniform
Plonkup relation adds negligible overhead to that for the Plonkup relation.

1.2 Organization

We start by reviewing some relevant definitions in Section In Section |3, we describe
the generic protocols for transforming special-sound protocols to accumulation schemes.
Particularly in Section [3.5] we present an approach to compress the verifier checks in
special-sound protocols, so that the number of group operations in the resulting accumula-
tion schemes is independent of the verifier check degree. In Section we present efficient
algorithms for computing the accumulation proofs. After that, in Section[4, we describe the
special-sound subprotocols for various building block relations, and present PROTOSTAR,
the compiled IVC scheme in Section [6]

2 Preliminaries

Notation. For n € N, we use [n] to denote the set {1,2,...,n}; for a,b € N, we use [a, b)
to denote the set {a,a+1,...,b0—1} and [a, b] denote the set {a,a+1,...,b}. We denote \ as
the security parameter and use F to denote a field of prime order p such that log(p) = Q(\).
For a vector v € F” and a subset S = {a1,...,ax} C [n] where a; < as < -+ < ag, we use
v[S] to denote the subvector of v such that v[S] = (v4,,...,Va,).

2.1 Special-sound Protocols and Fiat-Shamir Transform

We define special-soundness and non-interactive arguments according to the definitions by
[AFK22|.

Definition 1 (Public-coin interactive proof). An interactive proof II = (P, V) for relation
R is an interactive protocol between two probabilistic machines, a prover P, and a polyno-
mial time verifier V. Both P and V take as public input a statement pi and, additionally,
P takes as private input a witness w € R(pi) . The verifier V outputs 0 if it accepts and a
non-zero value otherwise. It’s output is denoted by (P(w),V)(pi). Accordingly, we say the
corresponding transcript (i.e., the set of all messages exchanged in the protocol execution)
s accepting or rejecting. The protocol is public coin if the verifier randomness is public.
The verifier messages are referred to as challenges. 11 is a (2k — 1)-move protocol if there
are k prover messages and k — 1 verifier messages.

11

Definition 2 (Tree of transcript). Let p € N and (ay,...,a,) € N*. An (ay,...,a,)-tree
of transcript for a (2 + 1)-move public-coin interactive proof 11 is a set of a1 - az---ay
accepting transcripts arranged in a tree of depth p and arity ai,...,a, respectively. The
nodes in the tree correspond to the prover messages and the edges to the verifier’s challenges.
Every internal node at depth i — 1 (1 < i < p) has a; children with distinct challenges.
FEvery transcript corresponds to one path from the root to a leaf node. We simply write the
transcripts as an (at)-tree of transcript when a = a1 = ag = -+ = ay.

Definition 3 (Special-sound Interactive Protocol). Let u, N € N and (a1, ...,a,) € N*.
A (2p + 1)-move public-coin interactive proof 11 for relation R where the verifier samples
its challenges from a set of size N is (a1,...,a,)-out-of-N special-sound if there exists a
polynomial time algorithm that, on input pi and any (a1, ...,a,)-tree of transcript for II
outputs w € R(pi). We simply denote the protocol as an at-out-of-N (or at) special-sound
protocol if a = a1 = az = --- = a.

Definition 4 (Random-Oracle Non-Interactive Argument of Knowledge (RO-NARK)). A
non-interactive random oracle proof for relation R is a pair (P,V) of probabilistic random-
oracle algorithms, such that: Given (pi,w) € R and access to a random oracle pyark, the
prover PPNARK (pi. w) outputs a proof w. Given pi, a proof w, and access to the same random
oracle pnark, the verifier VPNARK (pi,) outputs 0 to accept or any other value to reject.

Perfect Completeness: The NARK has perfect completeness if for all (pi,w) € R
p[\/,DNARK<pi7 PPNARK(pi7W)) — 0] =1

Knowledge Soundness: The NARK has adaptive knowledge-soundness with knowledge
error K : N X N — [0,1] if there exists a knowledge extractor Ext, with the following
properties: The extractor, given input n, and oracle-access to any polynomial-time Q-query
random oracle prover P* that outputs statement of size n, runs in an expected polynomial
time in |pi| + @, and outputs {(pi, 7, aux,v;w)} such that a) (pi,m,aux,v) is identically
distributed to {(pi, 7, aux,v)} : (pi, T, aux) <— P*PNARK) <— \/PNARK(pi 1) and b)

G(P*) — K(”? Q)
poly(n)

where €(P*) is P’s success probability, i.e. e(P*) = P[VPNARK(pi) = 0 : (pi,m) — P*PNARK],
Here, Ext implements pyark for P*; in particular, it can arbitrarily program the random
oracle.

(pi;w) €R

Pr VPNARK(pi,ﬂ-) =0

- {(pi, T, aux,v; w)} « Ext?" | >

Definition 5 (Fiat-Shamir Transform (adaptive)). The Fiat-Shamir transform FS[II] =
(Pts, Vgs) is a RO-NARK, where PPNARK (pisw) runs P(pi; w) but instead of receiving chal-
lenge c;, on message m;, from the verifier, it computes it as follows:

¢ = pnARK(Ci—1,m;) (1)

12

and c¢o = pnark(pi). PR outputs m = (my, ..., my). The verifier VEMRS accepts, if V ac-
cepts the transcript (m, c1,. .., My, Cu, Myi1) for input pi and the challenges are computed
as per equation .

2.2 Adaptive Fiat-Shamir transform

Lemma 1 (Fiat-Shamir transform of Special-sound Protocols [AFK22|). The Fiat-Shamir
transform of a (a1, ..., ay)-out-of-N special-sound interactive proof Il is knowledge sound
with knowledge error

’{fs(Q) = (Q + 1)’{

where k =1 —[](1 — §) is the knowledge error of the interactive proof 1.

2.3 Commitment Scheme

Definition 6 (Commitment Scheme). cm = (Setup, Commit) is a binding commitment
scheme, consisting of two algorithms:

Setup(1) — ck takes as input the security parameter and outputs a commitment key ck.
Commit(ck,m € M) — C € C, takes as input the commitment key ck and a message m in
M and outputs a commitment C € C.

The scheme is binding if for all polynomial-time randomized algorithms P*:

Commit(ck, m) = Commit(ck, m’)
Pr A
m # m’

ck + Setup(1*)

m, m’ < P*(ck) = negl(})

Homomorphic commitment. We say the commitment is homomorphic if (C,+) is an
additive group of prime order p.

2.4 Incremental Verifiable Computation (IVC)

We adapt and simplify the definition from [BCLMS21; | KST22].

Definition 7 (IVC). An incremental verifiable computation (IVC) scheme for function
predicates expressed in a circuit-satisfiability relation Rnp @s a tuple of algorithms IVC =
(Pive, Vive) with the following syntax and properties:

e Prvc(m, 20, Zm, Zm—1, Wioes Tm—1]) — Tm. The IVC prover Py takes as input a pro-
gram output z,, at step m, local data wWioc, initial input zg, previous program output
Zm—1 and proof mm,m—_1 and outputs a new IVC proof wp,.

o Vivc(m, 20, 2m, ™m) — b. The IVC verifier Viyc takes the initial input 2z, the output
zZm at step m, and an IVC proof mn,, ‘accepts’ by outputting b = 0 and ‘rejects’
otherwise.

13

The scheme INC has perfect adversarial completeness if for any function predicate ¢
expressible in Rnp, and any, possibly adversarially created, (m, 20, Zm, , Zm—1, Wiocs Tm—1)
such that

¢(ZO, Zms melawbc) A (V|VC(m - 17 20, melaﬂ-mfl) — 0)

it holds that Vyc(m, 20, 2m, Tm) accepts for proof mm < Pc(m, 20, Zm—1, Zm, Wioc, Tm—1)-
The scheme IVC has knowledge soundness if for every expected polynomial-time adver-
sary P*, there exists an expected polynomial-time extractor Extp« such that

Vive(m, 20, 2, Tm) = OA
Pr ([EZ € [m] 3_'¢(207Zi72i717wi)]
Vz # zm)

[¢7 (m) 20, %, Wm)] — P*
< negl(A).

[Zi,Wi]?ll < Extp-~ - g()

Here m s a constant.

Efficiency. The runtime of Piyc and Viyc as well as the size of myc only depend on |¢| and

are independent on the number of iterations.

Recently, [KS22] introduced the notion of non-uniform IVC, where the predicate ¢ is
selected from a fixed set of predicates at every step of the computation. The selection
depends on the current state of the computation. Non-uniform IVC fits into our model
by simply setting the predicate to be the union of all predicates, including the selection
circuit. The one key difference is an additional efficiency requirement that the IVC prover
in step ¢ only depends on the size of the predicate that is being executed in step i. Our
PROTOSTAR construction achieves this requirement.

2.5 Simple Accumulation

We take definitions and proofs from [BCLMS21].

Definition 8 (Accumulation Scheme). An accumulation scheme for a NARK (Pnark, VNARK)
is a triple of algorithms acc = (Pacc, Vace, D), all of which have access to the same random
oracle pacc as well as pyark, the oracle for the NARK. The algorithms have the following
syntaxr and properties:

o Poc(pi,m = (m.z,m.W),acc = (acc.z,acc.w)) — {acc’ = (acc’.z,acc’.w),pf}. The
accumulation prover P takes as input a statement pi, NARK proof w, and an
accumulator acc and outputs a new accumulator acc’ and correction terms pf.

o Vi (pi, 7.z, acc.x, acc’.x, pf) — v. The accumulation verifier takes as input the state-
ment pi, the instances of the NARK proof, the old and new accumulator, the correction
terms, and ‘accepts’ by outputting 0 and ‘rejects’ otherwise.

e D(acc) — v. The decider on input acc ‘accepts’ by outputting 0 and ‘rejects’ other-
wise.

14

An accumulation scheme has knowledge-soundness with knowledge error k if the RO-
NARK (P, V') has knowledge error k for the relation

Race((pi, 7.2, acc.z); (m.w,acc.w)) : (Vyark(pi,) = 0 A D(acc) =0) ,

where P' outputs acc’, pf and V' on input ((pi,m.x,acc.x), (acc’, pf)) accepts if D(acc’) and
Vace(pi, 7.2, acc.x, acc’ .z, pf) = 0.

The scheme has perfect completeness if the RO-NARK (P, V') has perfect completeness
Jor Race-

Theorem 1 (IVC from accumulation|BCLMS21|). Given a standard-model NARK for
circuit-satisfiability and a standard-model accumulation scheme (Definition @) for that
NARK, both with negligible knowledge error, there exists an efficient transformation that
outputs an IVC scheme (see Section 3.2 of [BCLMS21|]) for constant-depth compliance
predicates, assuming that the circuit complexity of the accumulation verifier Vacc s sub-
linear in its input.

Random Oracle. Note that both the NARK and accumulation scheme we construct are
in the random oracle model. However, Theorem [I] requires a NARK and an accumulation
scheme in the standard model. It remains an open problem to construct such schemes.
However, we can heuristically instantiate the random oracle with a cryptographic hash
function and assume that the resulting schemes still have knowledge soundness.

Definition 9 (Fiat-Shamir Heuristic). The Fiat-Shamir Heuristic, relative to a secure
cryptographic hash function H, states that a random oracle NARK with negligible knowledge
error yields a NARK that has negligible knowledge error in the standard (CRS) model if
the random oracle is replaced with H.

Complexity. The IVC transformation from [BCLMS21]| recursively proves that the ac-
cumulation was performed correctly. To do that, it implements V,cc as a circuit and proves
that the previous accumulation step was done correctly. Note that this recursive circuit is
independent of the size of w.w,acc.w and the runtime of D. The IVC prover is linear in
the size of the recursive circuit plus the size of the IVC computation step expressed as a
circuit. The final IVC verifier and the IVC proof size are linear in these components. This
can be reduced using an additional SNARK as in [KST22].

PCD. IVC can be generalized to arbitrary DAGs instead of just path graphs in a
primitive called proof-carrying data|BCCT13]. Accumulation schemes can be compiled
into full PCD if they support accumulating an arbitrary number of accumulators and
proofs[BCMS20; BCLMS21]. For simplicity, we only build accumulation for one proof and
one accumulator, as well as for two accumulators. This enables PCD for DAGs of degree
two. By transforming higher degree graphs into degree two graphs (by converting each
degree d node into a log,(d) depth tree), we can achieve PCD for these graphs.

15

Outsourcing the decider. In the accumulation to IVC transformation, the IVC proof
is linear in the accumulator, and the IVC verifier runs the decider. The accumulation
schemes we construct are linear in the witness of a single computation step. However,
we can outsource the decider by providing a SNARK that, given acc.z, proves knowledge
of acc.w, such that D(acc) = 0. Nova|KST22| constructs a custom, concretely efficient
SNARK for their accumulation/folding scheme. However, when outsourcing the decider,
the IVC cannot continue. This breaks the strict completeness requirement of IVC, which
says that any prover can continue from any valid IVC proof. Nevertheless, this may be
fine for some applications of IVC.

3 Protocols

3.1 Special-sound Protocols

In this section, we describe a class of special-sound protocols whose verifier is algebraic.
The protocol Ils,s has 3 essential parameters k,d, ¢ € N, meaning that Ilss is a (2k — 1)-
move protocol with verifier degree d and output length ¢ (i.e. the verifier checks ¢ degree
d algebraic equations). In each round i (1 < i < k), the prover Pgys(pi, w, [mj,rj]§;11)
generates the next message m; on input the public input pi, the witness w, and the current
transcript [mj, ;)" 5 11, and sends m; to the verifier; the verifier replies with a random
challenge r; € F. After the final message my, the verifier computes the algebraic map Vps

and checks that the output is a zero vector of length ¢. More precisely, deg(Vsps) = d, s.t.
d V.
. k s s k—1
Vsps(pi, [my] iy, Tzz 1 ij ’ m” 1 [rilicy)
J=0

where ijs"s is a homogeneous degree-j algebraic map that outputs a vector of £ field ele-
ments. We describe the special-sound protocol Ilsps below.

16

Special-sound Protocol Ilgps = (Psps, Vsps) for relation R with algebraic verifier

Prover Pg(pi, w) Verifier Vqps(pi)
m; < Peps(pi, w, [my,m]52}) i

T ri s
Repeat k& — 1 time Repeat k — 1 time

Final message my

. 1 7
VSPS(pla [mi]f:h [Ti]i‘c:ll) =0

3.2 Commit and Open

For a commitment scheme cm = (Setup, Commit), consider the following relation RY, =
(z;wom € M,m' € M) : {(z,w) € RV (Commit(m) = Commit(m’) Am # m’)}. The
relation’s witness is either a valid witness for R or a break of the commitment scheme
cm. We now design a special-sound protocol Il¢m = (Pem, Vem) for Rgn given Ilsps =
(Psps, Vsps), & special-sound protocol for R. Pcm runs Pgps to generate the ith message and
then commits to the message. Along with the final message, P.n sends the opening to the
commitment. The verifier Vm checks the correctness of the commitments and runs Vsps
on the commitment openings.

17

Special-sound Protocol Iy, for RE, as a cm transform of sps = (Psps; Vsps)

Prover Py (ck, pi,w) Verifier V., (ck, pi)
m; ¢ Pass(pi, w, [my, 75]521)
C; < Commit(ck, m;) Ci
T ri +sF
Repeat k& — 1 time Repeat k — 1 time
Ck

C, + Commit(ck, my,)

Opening [m;];_,

Commit(ck, m;) = C;Vi € [k]

. _ ?
Vsps(pla [mi]i‘c:la [Ti]i?:ll) = Oe

Lemma 2 (Il¢y is (a1, . .., ay)-special-sound). Let gy be an (a1, ..., a,)-out-of-N special-
sound protocol for relation R, where the prover messages are all in a set M. Let (Setup, Commit)
be a binding commitment scheme for messages in M. For ck < Setupy, (1) let Rem =
(pi;w,m € M,m' € M) : (pi;w) € RV (Commit(ck,m) = Commit(ck,m') A m # m').
Then Hem = cm{Ilsps] is an (ai, ..., a,)-out-of-N special-sound protocol for RE,.

Proof. Let Extsps be the extractor for Ils,s. We will construct Exten, for Ilem that computes
a witness for Rem, i.e., a witness for R or a collision for cm given an (ay, ..., a,)-transcript
tree for Il¢,. The extractor Exten first checks whether there exist two transcripts that
have inconsistent final messages. That is, the final message opening is different for the
nodes in the intersection of the root-to-leaf paths of these two transcripts. This means we
have m; and m], such that Commit(m;) = Commit(m}) and m; # m/. This is a break
for cm, i.e., a valid witness for Rem. Otherwise Exteyn builds a transcript tree for Ilg,s by
replacing all commitments with the openings and use Extsps to compute w € R(pi), such

that (w, L, 1) € Rem(pi). O

3.3 Fiat-Shamir transform

Let pnark be a random oracle. Let Il be the commit-and-open protocol for the special-
sound protocol Isps = (Psps, Vsps). The Fiat-Shamir Transform FS[II¢m] of the protocol Ilcm
is the following. By Lemma |1} FS[II.m] is knowledge sound if Ilgps is special-sound.

18

Fiat-Shamir Transform FS of Special-sound Protocol II for relation R% : FS[[¢m]

Prover PRyrs (ck, pi, w) Verifier VYR (ck, pi)
70 < PNARK(Pi)

Forielk—1]:

m; Peps(pi, w, [my, 75]527)

C; < Commit(ck, m;)

7i < PNARK (Ti—1, C)

k—l)

myg < Psps(piaw7 [mj?rj}jzl

C, + Commit(ck, m;) m.x = [Cilin,

0 < PNARK(Z)
r; < PNARK(Ti—1, Ci)Vi € [k — 1]

Commit(ck, m;) = C;Vi € [k]

. — ?
VSPS(pIa T.Z,T.W, [Ti]f:f) = OZ

3.4 Accumulation Scheme for Vyark

Let pacc and pyark be two random oracles, and let Vyark be the verifier of FS[IIm] in
Section whose underlying special-sound protocol is Ilsps = (Psps, Vsps) for a relation
R. We describe the accumulation scheme for Vyark.

The accumulated predicate. The predicate to be accumulated is the “relaxed” verifier
check of the NARK scheme FS[II.m] for relation R. Namely, given public input pi € M¥n,
random challenges [m}fz_ll € F¥=1 a NARK proof

T = [Ci]f:h W = [mz‘]f:l

where [C;]F_, € C* are commitments and [m;]¥_, are prover messages in the special-sound
protocol Iy, and a slack variable p, the predicate checks that (i) 7; = pnark(7i—1, C;) for
all i € [k — 1] (where 79 := pnark (pi)), (i1) Commit(ck, m;) = C; for all ¢ € [k], and (iii)

d
. _ 4 Veps /- —
VSPS(pluﬂ-'l‘)ﬂ-'wa [ri]§:1lvu) = ZMC[I f] P (pla W, [Ti]f:f) =€
7=0

where e = 0° and 1 = 1 for the NARK verifier Vyark. Here !)"J\./s"S is a degree-j homogeneous
algebraic map that outputs £ field elements. Degree-j homogeneity says that each monomial
term of ijsps has degree exactly j.

19

Remark 1. Without loss of generality, we assume that the public input pi is of constant
size, as otherwise, we can set it as the hash of the original public input.

Accumulator. The accumulator has the following format:

o Accumulator instance acc.x := {pi, [Ci]E_,, [r:i]F=}, E, u}, where pi € M"n is the accu-
mulated public input, [C;]¥_; € C* are the accumulated commitments, [r;]"=} € FF—1
are the accumulated challenges, ' € C is the accumulated commitment to the error
terms, and p € F is a slack variable.

e Accumulator witness acc.w = {[m;]¥_,}, where [m;]¥_, are the accumulated prover
messages.

Accumulation prover. On input commitment key ck (which can be hardwired in the
prover’s algorithm), accumulator acc, an instance-proof pair (pi,) where

acc := (acc.x = {pi’, [C{liy, [iS) B, p},acew = {[mi]i,})

= (rax = [Ci]";:lv T.W = [mi]i'c:l)ﬂ

the accumulation prover P,cc works as in Figure [3]

Accumulation verifier. On input public input pi, NARK proof instance 7.z, accu-
mulator instance acc.x, accumulation proof pf, and the updated accumulator instance
acc.x := {pi”, [C/]E_,, [r]E_|, E', i/}, the accumulation verifier V,ec works as in Figure

Decider. On input the commitment key ck (which can be hardwired) and an accumulator

ace = (acc.a = {pi, [Cili_y, [rili2), B, i} accw = {[miliy})
the decider does the checks described in Figure

Remark 2. The accumulation scheme for Vyark is also naturally a folding scheme as
defined in Nova [KST22], where we can view an accumulator as a relaxed NP instance
with error terms. A NARK proof m is an accumulator with p =1 and E =0 € G. We
can use the same accumulation scheme to fold two accumulators (acc,acc’) into a new
accumulator acc”. The scheme is identical to the one presented above but with non-trivial
u, e, E terms for acc. The verifier performs one additional group scalar multiplication. In
the language of folding schemes, we can fold two NARK instances into an accumulator;
or fold a NARK instance and an accumulator into an updated accumulator; or fold two
accumulators into an updated accumulator.

20

Papg}::mpNARK (Ck, acc, (p|7 W))

1. r; PNARK(Tifl, CZ')VZ' S [k‘ — 1] where rg := pNARK(Pi)-
2. Compute [ej];l;% € (F*)?1 such that

(X +)" - (X pi4p [X - my + mi]f g, (X + 0]

M-

<
I
=)

9 1 i Ty, [+ X Viar (pi, by, [+ZeJX]

.

=0
d—1
=e + z e; X’
j=1
3. E; < Commit(ck, e;)Vj € [d — 1]
4. a4+ pacc(acc.z, pi, 7.z, [Ej]?;%) el

5. Set vectors

V= (1; pi, [rili=), [Cilloy, [mi]§:1> , v = (,u, pi’, [rF =L [ClE [m;]§=1> .

6. v 1= (1 pi", S [CNy ()i) o v v,
d-1 _j
7. E’<—E+Zj:1a - Ej.
8. Set acc’.x := {pi”, [CV]E_,, [r/]_,, B’ i'}, acc'.w := {[m/]F_, }.
9. Set accumulation proof pf := [E;];l;%
Figure 3: Accumulation Prover for low-degree Fiat-Shamired NARKSs
Az PNARK (i, . = [Ci]R_y acc. = (pi, [CIIR_y, [M)iZ), B,), pf = [E})9=1, acc’)

1. r; PNARK(Tifl, CZ')V’L' S [k‘ — 1] where rg := pNARK(P')-
2. « < pacc(acc.z, pi, m.x, pf)
3. Set vectors

vim (Lpi [G) o V= acc (upl i [CE) -

4. Check acc’.x. (,u’, pi”, e} [C’{’]le) Za-v+v.
5. Check acc’.2.E' = acc.z.E + Z?;% o’ - Ej.

Figure 4: Accumulation Verifier for low-degree Fiat-Shamired NARKSs

21

Dacc(ace = (acc.x = {pi, [Cif_y, [rili=), B, u}, ace.w = {[my]},}))
1. ¢ = Commit(ck, m;) for all i € [k].
2. e+ Z?:o pud=i f]vsps(pi, [m,]%_,, [ri]f;f) where f]\/sps is the degree-j homogeneous
algebraic map described in the accumulated predicate.

3. E< Commit(ck, e).

Figure 5: Accumulation Decider for low-degree Fiat-Shamired NARKSs

Complexity. Let Ilsps be a (2k—1)-move special-sound protocol with the verifier checking

¢ degree-d equations. Denote by | M| the number of elements in prover messages and |M*|

the number of non-zero elements in the prover messages. Assume that pi is a hash with

length 1 (this saves the call 7y := pnark(pi)), and let |R| be the number of elements in

verifier’s challenges. We analyze the computational complexity of the accumulation scheme:
e The accumulation prover

— asks k — 1 queries to pnark and 1 query to pacc;

— computes E; = Commit(ck, e;) for all j € [d — 1], where e; € F’;

— performs |R| + |M*| + 2 F-ops to combine (u, pi, [r;]*=}, [m;]%_));
— performs k G-ops to combine [C;]¥_;;

— computes the coefficients of £ degree-d polynomials for [ej]?;%.
e The accumulation verifier performs

— asks k — 1 constant size queries to pyark and 1 d-sized query to pacc;
— |R| + 2 F-ops to combine (i, pi, [ri]F=});
— k G-ops to combine [C;]¥_;;
— d—1 G-ops to add [Ej}?;% onto E.
e The decider
— computes C; = Commit(ck, m;) for i € [k] and E = Commit(ck,e), with total
complexity around M|+ ¢ G-ops.

— evaluate £ degree-d multivariate polynomials to compute vector e.
Theorem 2. Let (Pnark, Vnark) be the RO-NARK defined in Section . Let cm =
(Setup, Commit) be a binding, homomorphic commitment scheme. Let pacc be another ran-
dom oracle. The accumulation scheme (Pacc, Vace; Dacc) for Vnark satisfies perfect com-

pleteness and has knowledge error (Q + 1)% + negl(\) as defined in Deﬁnition@ against
any randomized polynomial-time Q-query adversary.

Proof.

22

Completeness. Consider any tuple ((pi, 7),acc) € Racc, that is, Vnark (pi, 7) and D(acc)
both accept. Let (acc’, pf) denote the output of the accumulation prover P,cc(ck, acc, (pi, 7)).
We argue that both the decider D(acc’) and the accumulation verifier V,ec(pi, 7.2z, acc.z, pf, acc’.z)
will accept, which finishes the proof of perfect completeness by Definition

Vace accepts as Paee and Vaee go through the same process of computing challenges
[r;]%=} and «, thus the linear combinations of acc.z and (pi,7.z; pf, [r;]*=}) via o will be
consistent.

We prove that D(acc’) accepts by scrutinizing the following decider checks.

The check acc’.C; = Commit(ck, acc’.m;) succeeds for all ¢ € [k]. This is because
acc {C;,m;} = acc.{C;,m;} + o - 7.{C;, m;}

for all ¢ € [k], where 7w.C; = Commit(ck, 7.m;) because Vyark (pi,) accepts, and acc.C; =
Commit(ck, acc.m;) because D(acc) accepts. Thus the check succeeds by the homomor-
phism of the commitment scheme.
. i Vips . _
The decider computes € «+ Z;l:o(acc’.u)d £ (acc’ A pi, [m)%_,, [r]*=}) such that

for e = Z?:o acc.ul4=9) . fJ\-/Sps(acc.{pi, [m;]%_,, [r]=!'}), it holds that

d—1

€ =e+ Zozj - pf.e;
j=1

d
= > (ataccp) - £ (o {pi, [yl [rili} + ace {pi, [mliy, [rf21) -

§=0
By the definition of pf.e; and the homomorphism of the commitment scheme, and because
D(acc) accepts and checks E = Commit(ck, e), we have that £ = Commit(ck, €’).

Knowledge-Soundness. We show that the scheme has knowledge-soundness by showing
that there exists an underlying (d + 1)-special-sound protocol and then applying the Fiat-
Shamir transform to show that the accumulation scheme is knowledge sound. Consider the
public-coin interactive protocol II; = (P (pi, w, acc), Vi(pi, 7.z, acc.x)) where Py sends pf =
[Ej]?;ll € G4 1 as computed by Pacc to V. The verifier sends a random challenge o € T,
and the prover P; responds with acc’ as computed by Pacc. V accepts if D,ec(acc’) = 0 and
Vace(pi, 7.2, acc.z, pf,acc’.z) = 0 using the random challenge «, instead of a Fiat-shamir
challenge.

Claim 1: II; is (d+ 1)-special-sound Consider the relation R,cc where R, is defined
in Definition [8} Consider d + 1 accepting transcripts for 11; :

{Ti := (pi, m, acc.a; acc, pf;) } {1

23

We construct an extractor Ext,cc that extracts a witness for Racc(pi.7.x,acc.z) given T.
For all i € [d + 1],

(aCC/) (walzv [CZ]]gf 1 [Tl,j]f 117E/ [,]]? 1)

and pf; = pf = [E]?%

Given that the transcripts are acceptmg, i.e. both V,c and D, accept, we have that
Commit(ck, €}) = E! = acc.E + Z] 1 O/E for all ¢ € [d + 1], whereas

d
rd—j R(x 1k k—1
Z f m,]]] 17[r1,j]] 1)
j=0
Using a Vandermonde matrix of the challenges o, ..., a4 we can compute e, [ej]? % such

that E; = Commit(ck ej) and acc.EE = Commit(ck, e) from the equations above. Therefore
we have that €] —e—i—z “1dde; for all i e [d 4 1].
Additionally using two challenges (a1, as2), Exticc can compute m.w = [mj]]? =

J=1
[= 'm;’f::;c 'mQ’j];?:l. It holds that acc.m; = acc’.m;; — a1 - m.m;Vj € [k], such that

7.Cj; = Commit(ck,7.m;) and acc.C; = Commit(ck,acc.m;). If for any other challenge
and any j, acc’.m; # am.m; + acc.m;, then this can be used to compute a break of the
commitment scheme cm. This happens with negligible probability by assumption.

Otherwise, we have that 3, u?fjfj (5, Iy 15y [ris)¥20) —e; = 0 for all i € [d+1].
Together this implies that the degree d polynomial

d
p(X) = Z(X +acc.pu)?7 . f]\./s"S(X - pi + acc.pi, [X - my; +accmy] | [X - + acc.n]f:_f)
§=0

d—1
—e— Z e; X7 (2)
j=1

is zero on d + 1 points («aq,...,qq11), i.e. is zero everywhere. The constant term of this
polynomial is
d
d—j . ¢V : k k-1
Z acc.u”7 - f7*(acc.pi, [acc.my]y, [acer i)) —e.
=0

It being 0 implies that D(acc) = 0. Additionally, the degree d term of the polynomial is

d

V.
ij *(pi, sz}z 1o 7"2]5 11)
7=0

Together with V,cc checking that the challenges r; are computed correctly this implies that
Vnark (pi,) = 0. Ext thus outputs a valid witness (7.w,acc.w) € Racc(pi, 7.2, acc.z) and

24

thus Il is (d + 1)-special-sound. Using Lemma [1| we have that II4g = FS[II;] is a NARK
for Race with knowledge soundness (Q + 1) - 45l 4 negl()\). This implies that acc is an

[
accumulation scheme with ((Q + 1) - % + negl(\))-knowledge soundness. O

3.5 Compressing verification checks for high-degree verifiers

Observe that the accumulation prover needs to perform Q(df) group operations to commit
to the d — 1 error vectors e; € F (1 < j < d); and the accumulation verifier needs to check
the combination of d error vector commitments. This can be a bottleneck when the verifier
degree d is high. In this circumstance, we can optimize the accumulation complexity by
transforming the underlying special-sound protocol Ilg,s into a new special-sound protocol
CV([IIsps| for the same relation R. This optimization compresses the ¢ degree-d equations
checked by the verifier into a single degree-(d + 2) equation using a random linear combi-
nation, with the tradeoff of additionally checking 21/ degree-2 equations. We describe the
generic transformation below.

Compressing verification checks. W.l.o.g. assume ¢ is a perfect square, then we
can transform Ilg,s into a special-sound protocol CV[Ilsss] where the Vgps reduces from ¢
degree-d checks to 1 degree-(d 4 2) check and additionally 2v/¢ degree-2 checks. Instead
of checking the output of Vsps to be £ zeroes, we take a random linear combination of
the ¢ verification equations using powers of a challenge 8. For example, if the map is
Veps(21,22) 1= (Vsps,1(x1, 2), Veps 2(21, 22)) = (z1 + 22, x122) we can set the new algebraic
map as Vgps(xl, x2, B) 1= Veps,1(x1,22) + B - Veps 2(z1, x2) = (21 + x2) + fz122 for a random
B. Doing this naively reduces the output length to 1 but also requires the verifier to
compute the appropriate powers of 3. This would increase the degree by ¢, an undesirable
tradeoff. To mitigate this, we can have the prover precompute powers of 3, i.e. 3, 8%,..., ¢
and send them to the verifier. The verifier then only needs to check consistency between
the powers of 3, which can be done using a degree 2 check, e.g. /' = ¢ . 3 and the
degree d verification equation increases in degree by 1. This mitigates the degree increase
but requires the prover to send another message of length ¢. To achieve a more optimal
tradeoff, we write each i = j+ k- /¢ for j, k € 1, \/Z] The prover then sends v/¢ powers of
B and V¢ — 1 powers of 5\/2 From these, each power of 5 from 1 to £ can be recomputed
using just one multiplication. This results in the prover sending an additional message of
length 2v/¢, the original ¢ verification checks being transformed into a single degree d + 2
check and additionally 2v/¢ degree 2 checks for the consistency of the powers of £.

25

Transformed Protocol CV[Isps] = (Psps, V

éps)

for relation R

Prover Pgy(pi, w)

m; P (pi, w, [my,7;]"_])

Repeat k£ — 1 time

18; + B

18) « VY

m;

Verifier V. (pi)

sps

ri

r; +sF

Message my,

Repeat k£ — 1 time

B

B+sF

my4q = [@ﬂﬂz'\/:zfl

V;ps(pia [mi]fill7 ([Ti]fz_llv))
Biv1 = Bi - BYi € 1,V — 2]
Bl =Bl BiVi€ [1,VI—2]
BL=PB.B =By, B

?

0

Figure 6: Compressed verification of Ilgpys.

26

We describe the transformed protocol in Figure [6] where

Vi—-1+i-1

V;ps(pi7 [mi}filla ([Ti]f:_f? 5)) = Z Z 62 : B; . Vsps,i+j\/2(pi7 [mi]i'c:lv [Ti]fz_ll)
i=0 j=0

V4

|
—

/Bj : VSPSJ(piv [miw:l’ [ri]fgll)

Il
o

J

and Vips ; (pi, [my]¥_, [r:]¥2}) is the (j + 1)-th (0 < j < £) equation checked by Vsps. The
transformed protocol is a (2k+1)-move special-sound protocol for the same relation R. The
transformed verifier now checks 1 degree-(d + 2) equation and additionally 2v/0 degree-2
equations.

Lemma 3. Let Ilsps be a (2k — 1)-move protocol for relation R with (a1, ..., ax—1)-special-
soundness, in which the verifier outputs ¢ elements. The transformed protocol CV[llsys| of
Hsps is (a1, ..., ,a,_1,¢)-special-sound.

Proof. Let Extsps be the extractor for Ilgps. We construct a extractor Extcy of CV/[Igy
for the same relation R. Given an (aq,...,,ax_1,f)-tree T of accepting transcripts, Extcy
invokes Extsps on input the depth-(k — 1) transcript subtree of 7, and return what Extsps
outputs.

We prove that the extractor succeeds. For each internal node uw at depth k£ — 1, it
has ¢ children where each child maps to a distinct value of 8 € F. Fix the messages
msg = (pi, [m;]%_,, [ri]f:_f) at node u and let Vs 1= (Veps,1,- .., Veps) be the verifier of
ILsps. Define the degree ¢ — 1 univariate polynomial

{—1
p(X) = ZX] - Cj
j=0

where ¢; := Vgps j(msg) € F is Vg ;j’s output on message msg. Since the transcripts are
accepting, it holds that p evaluates to zero on the /¢ different values of 8 that correspond
to the ¢ children of node u. Thus the univariate polynomial p is a zero polynomial, which
implies that Vsps outputs zero vector on message msg. Therefore for every node u at depth
k —1, the sub-transcript from root to node w is an accepting transcript to Ilsps. Therefore
the input to Extsys is a valid (aq,...,,ar—1)-tree of accepting transcripts, and Extsps will
output the correct witness.

O

High-low degree accumulation. After the transformation, the error vectors e; (1 <
Jj < d+ 1) become single field elements, and we can use the trivial commitment E; :=
Commit(ck, e;) := e; without group operations. Additionally, we can use a separate error

vector e € F2V7 to keep track of the error terms for the 2v/¢ degree-2 checks, and set

27

E’ := Commit(ck,€’) € G to be the corresponding error commitment. The accumulation
prover only needs to perform O(\/Z) additional group operations to commit my; and €',
and compute the coefficients of a degree-(d + 2) univariate polynomial, which is described
as the sum of O(¢) polynomials. The accumulator instance needs to include one more
challenge 3 and two commitments (for mg,; and €'). The accumulator verifier needs to
do only k£ + 2 (rather than k + d — 1) group scalar multiplications, with the tradeoff of 1
more hash and O(d) more field operations. This high-low degree accumulation is described
in detail in Appendix [A]

Theorem 3 (IVC for high-degree special-sound protocols). Let F be a finite field, such
that |F| > 2* and cm = (Setup, Commit) be a binding homomorphic commitment scheme
for vectors in F. Let Ilsps = (Psps, Vsps) be a special-sound protocol for an NP-complete
relation Rnp with the following properties:

e [t’s (2k — 1) move.

o It’s (ai,...,ax—1)-out-of-|F| special-sound. Such that the knowledge error k = 1 —
[0) = negl()

e The inputs are in Fb
o The verifier is degree d = poly(\) with output in F*

Then, under the Fiat-Shamir heuristic for a cryptographic hash function H(Definition[9),
there exist two IVC schemes IVC = (Pyyc, Vive) and IVCcy = (Pcv,ive, Vev,ive) with pred-
icates expressed in Ryp with the following efficiencies:

\ No CV \ v
P native | izt Wi+ (= DG [550, fmi] +0(VHEG
Psps + L(Vsps, d) Psps + L' (Vsps, d + 2)
k+d—-1G k+2G
Pivc recursive k + b F k+Llin+d+ 1F
(k+d+O(1))H + 1H;, (k+d+O(1))H + 1H;,
Vive: (4 3 ImilG O(V0) + 5 ImilG
Veps O(£) 4 Vsps
k + 4, F k+ 4, + 1F
|mivel - k+1G k+2G
> |y > [my| + O(VY)

The first row displays the native operations of the INC prover (i.e., the complexity of running
the accumulation prover). The second row describes the size of the recursive statement
representing the accumulation verifier for which Py creates a proof. The third row is the
computation of Vivc, and the last row is the size of the proof.

28

In the table, |m;| denotes the prover message length; |m}| is the number of non-zero
elements in m;; G for rows 1-8 is the total length of the messages committed using Commit.
F are field operations. H denotes the total input length to a cryptographic hash, and Hi,
is the hash to the public input and accumulator instance. Psps (and Veps) is the cost of
running the prover (and the algebraic verifier) of the special-sound protocol, respectively.
L(Vsps, d) is the cost of computing the coefficients of the degree d polynomial

d
= (u+ X)L ace + X) (3)
7=0

and L'(Veps, d + 2) is the cost of computing the coefficients of the degree d + 2 polynomial

Vi-1Vi-1 d
= Z Z (X -7.84+acc.3,) (X - 7.8 +acc. ;) Z p+X)47. stps \/Z(acc—i—X-ﬂ),
a=0 b=0 7=0

(4)
where all inputs are linear functions in a formal variable and fVSPS is the ith (0 <

sps 7

i < ¢ —1) component of fJV s output. For the proof size, G and F are the number of
commitments and field elements, respectively.

Proof. The construction first defines the two NARKs

IInark = (PNARK, VNARK) = FS[em([Igy]]

and
IInark,cv = (PnaRK: VNARk) = FS[em[CV[IIgp]]] -

Then we construct the accumulation scheme (Pacc, Vacc) = acc[lInark] using the accumu-
lation scheme from Section and (Pace,HL Vace,HL) = acey [IInark,cv] using the accumu-
lation scheme from Appendix [A] Then we apply the transformation from Theorem [I] to
construct the IVC schemes IVC and IVCcy.

Security: By Lemmas we have that IIyark has (Q+1)- [1 — Hfz_ll(i)] knowledge

error for relation RV for a polynomial-time @-query RO-adversary. Witnesses for REne

are either a witness for Ryp or a break of the binding property of cm. Assuming that
cm is a binding commitment scheme, the probability that a polynomial time adversary
and a polynomial time extractor can compute such a break is negl(\). Thus IIyark has
knowledge error k = (Q + 1) - [1 — Hf:_f(‘F‘)] + negl(\) for Rnp. Analogously and
using Lemma (3] TIyark,cv has knowledge soundness with knowledge error ' = (Q + 1) -

4For example if f4 = Hle(ai +b; - X) then a naive algorithm takes O(d?) time but using FFTs it can
be computed in time O(dlog” d)|[CBBZ22)].

29

1-(1- %) Hi-:ll(l — ﬁﬁ)} + negl(A\) for Ryp. By assumption, x and ' are negligible
in A\. Using Theorem [2| and Corollary [2| we can construct accumulation schemes acc and
acccy for IIyark and IInark,cv, respectively. The accumulation schemes have negligible
knowledge error as d = poly(A). Under the Fiat-Shamir heuristic for H we can turn the
NARKSs and the accumulation schemes into secure schemes in the standard model.

By Theorem[I], this yields IVC and IVCcy, secure IVC schemes with predicates expressed
in RNP-

Efficiency: We first analyze the efficiency for IVC. The IVC-prover runs Pgps to compute
all prover messages. It also commits to all the Ps,s messages using cm. Finally, it needs to
compute all error terms ey, ...,e;_1 and commit to them. The error terms are computed
by symbolically evaluating the polynomial e(X) in Equation [4| with linear functions as
inputs. The recursive circuit combines a new proof m.x with an accumulator acc.xz. The
size of the accumulator instance is ¢, field elements for the input, k£ — 1 field elements
for the interactive-proof challenges, 1 field element for the accumulator challenge, and &
commitments for the Ps,s messages and d — 1 commitments for the error terms. The IVC
verifier checks the correctness of the commitments and runs Vgps.

For IVCcy, the prover needs to additionally commit to a message my 1 with length
O(V/€); the number of error terms also increases from d — 1 to d + 1. Fortunately, the
error terms are only one element in F, so we can use the identity function as the trivial
commitment scheme. Thus, there is no cost for committing to the d + 1 error terms when
using CV. However, there is another separate error term e’ € F2V for the additional O(V7?)
degree-2 checks, thus the prover needs to commit to £/ = Commit(e’). The size of the
accumulator instance is ¥}, field elements for the input, k field elements for the interactive-
proof challenges, 1 field element for the accumulator challenge, k 4+ 1 commitments for the
prover messages, d + 1 field elements for the error terms of the high-degree checks, and 1
commitment for the additional error term e’. O

Remark 3. For simplicity, we assume that the public input, the prover messages, and the
verifier challenges are all in the same field F. This isn’t strictly necessary; for example,
the challenges could be drawn from a subset of F. More generally, we can also allow prover
messages to be group elements in G given a homomorphic commitment scheme to group
elements(e.g. [AFGHO10]).

3.6 Computation of error terms

We now give an explicit algorithm for efficiently computing the error terms, that is, com-
puting the polynomial e(X) as defined in (the degree of e(X) is d = d +2). The
algorithm has similarities with computing the round polynomials in a single round of the
sumcheck protocol[LFKN90).

30

1. For each 7 = 0 to d define

ViEi-1v1-1
D(x)=> Y (X-n.,@a+accﬂa)(X.nﬂg+accﬂg)-fi";jm(acwx.w) (5)
a=0 b=0 ’

2. Compute e(®(j) for all j € [0,7 + 2]. Use these evaluations to interpolate e(®(X)
using fast interpolation methods, e.g. an iFFT

3. Compute the coefficient form of e(X) = Z?:o e®(X) - (u+ X)%*. This is done by
computing the coefficients of e (X) - (14 X)4 for every i € [0, d] using FFTs, and
recover e(X) using coefficient-wise addition. The complexity is O(d? logd).

In the worst case, this algorithm is equivalent to evaluating the circuit at d + 2 different
inputs. However, it can perform much better in practice. The reason is that many of the
n gates may only be low degree. E.g. 90% of the gates are degree 1 or 2 addition and
multiplication gates, and 10% are more high degree gates. Then the prover only has to
evaluate the 10% of the circuit at d + 2 points and 90% of the circuit only at 4 points.
Note that the selector polynomials are static in the classification of NP plonkup (defined
in Section . This means that each gate has precisely the degree of the active component.
This stands in contrast to relations such as high-degree Plonk, where the selectors are
pre-processed, and the selectors are preprocessed witnesses. In Plonk and related systems,
each gate essentially has the same degree.

3.6.1 Dealing with branched gates

In some scenarios, the NARK proof 7 has the property that each gate fivjfrb \/Z(acc +X-m)

in Formula [5| can be represented as the sum of I parts where at most one part is related

to m, that is, for some gates g1, ..., gr and some index pc € [I],

VS S
fw:bﬂ(acc + X -m) = gpelacc+ X -m) + Z gj(acc).
Jel\{pc}
. Veps . . . Veps

In this case, for any gate fi’aer e present a caching algorithm for evaluating fi?ﬁb \/Z(acc—l—
k-) at all evaluation points k € [0,7 + 2]. The complexity is only proportional to the

evaluation complexity of g,. rather than f l\/ ;ib\/g'

1. Initialize V := ZJI‘:1 gj(acc).

VS S
) ’;bﬂ(acc) =V,

b\/z(acc—i-kwr):

2. Upon receiving a new NARK proof 7 during accumulation, set f

i,a
compute U = gp.(acc), and for every k € [1,47 + 2], compute fZV;'i
V + gpelacc+ k- m) = U.

31

3. After the accumulation, let @ € F be the folding challenge and update V « V +
gpc(acc+a-m) —U.

The algorithm is correct because V' is always) jel] gj(acc) where acc is the current accu-
mulator.

4 Special-sound subprotocols for Protostar

In this section, we present special-sound protocols for permutation, high-degree gate, circuit
selection and lookup relations, which are the building blocks for the (non-uniform) Plonkish
circuit-satisfiability relations. We can build accumulation schemes for (and thus IVCs from)
these special-sound protocols via the framework presented in Section [3]

4.1 Permutation relation

Definition 10. Let o : [n] — [n] be a permutation, the relation R, is the set of tuples
w € F" such that w; = W, ;) for alli € [n].

Special-sound protocol I, for permutation relation R,

Prover P(o,w € F") Verifier V(o)

Check w; — Wiy = 0Vi € [n]

Complexity. II, is a 1-move protocol (i.e. k = 1); the degree of the verifier is 1.

4.2 High-degree custom gate relation

Definition 11. Given configuration Cgarr = (n,c¢,d,[s; € F*, G;|",) where n is the
number of gates, c is the arity per gate, d is the gate degree, [s;|".y are the selector vectors,
and [G;]I*, are the gate formulas, the relation Rgarr is the set of tuples w € F" such

that 375" 1 850 Gj(Wi, Witn, -+, Wig (e—1),) = 0 for all i € [n].

32

Special-sound protocol Ilgarg for relation RoaTre
Prover P(CgaTg,w € F") Verifier V(CgaTk)
W
Zsj,i G (Wi, Wi, ... Wi+(c—1)-n)
j=1
?
= 0Vi € [n]

Complexity. IlgaTg is a 1-move protocol (i.e. k = 1) with verifier degree d.

4.3 Lookup relation

Definition 12. Given configuration Crg := (T, £,t) where £ is the number of lookups and
t € FT is the lookup table, the relation Ry is the set of tuples w € F¢ such that w; € t
for alli € [4].

We recall a useful lemma for lookup relation from [Hab22|, and present a special-sound
protocol for the lookup relation.

Lemma 4 (Lemma 5 of [Hab22]). Let F be a field of characteristic p > max(¢,T). Given
two sequences of field elements [w;l‘_, and [t;]L,, we have {w;} C {t;} as sets (with
multiples of values removed) if and only if there exists a sequence [m;]]_, of field elements

such that
¢ 1 T m;
T
= . 6
;X—i—wi ;X-ﬁ-ti ()

33

Special-sound protocol II; k for Rik

Prover P(Crk,w € FY) Verifier V(Crk)
Compute m € FT such that

)4
m,; = Z]l(W] = tz)VZ S [T] W, m
j=1

r r<sF

Compute h € F¢, g ¢ FT

1
wW; + 71
;= Vie [T '8
& ti+’l“ ZG[]

£ . T
Zhi = Zgi
=1 =1
h; - (w; +7) = 1i € [(]
g - (t; +7) = m;Vi € [T

Achieving perfect completeness. Note that the protocol does not have perfect com-
pleteness. If there exists an w; or t; such that w; +r = 0 t;+7 = 0 then the prover message
is undefined. We can achieve perfect completeness by having the verifier set h; = 0org; =0
in this case and changing the verification equations to

and
(ti+7)- (g (t;+7)—m;) =0.

These checks ensure that either h; = ﬁ or w; +r = 0. The checks increase the verifier
degree to 3. Without these checks, the protocol has a negligible completeness error of
%' This completeness error can likely be ignored in practice, and these checks do not
need to be implemented. However, to achieve the full definition of PCD (which has perfect
completeness) and use Theoremby [BCLMS21|, we require that all protocols have perfect

completeness.

Complexity. Iljk is a 3-move protocol (i.e. k = 2); the degree of the verifier is 2; the
number of non-zero elements in the prover message is at most 4/.

34

Accumulation with O(¢) prover complexity. The prover complexity of IIpk is due to
the sparseness of g € FT and m € F”. However, there is no guarantee that when building
an accumulation scheme for Il k, the accumulated acc.g and acc.m are sparse. This is an
issue, as the prover needs to compute the error term e;. If we expand the accumulation
procedures, we see that the three verification checks lead to three components of the error

term ejg:
¢ T ¢ T
egl) = (Z acc.h; — Z acc.gi> + <Z m.h; — Zﬂ-gz) eF
i=1 i=1 i=1 =1

e?) =accho (m.w +7m.r- 1Y) 4+ m.ho (accw + acc.r - 19) — 2 - 1° € F*

e§3) —accgo(t+mr-1T) 4+ mgo(p-t+accr-17) —p-7.m —accm € FT .

We examine all three components below.

For egl), we see that (Zle m.h; — Zszl 7.g;) = 0 by the assumption that = is valid,

and (Zle acc.h; — ZZ‘T:1 acc.g;) = acc.e(t) /acc.iu (where acc.e(V) is the first component of

the error vector for acc). Thus egl) = acc.eM /acc.r. We observe that since in IVC the
accumulator acc.e(!) is initiated with 0, this implies that for all iterations egl) =0.

(2)

For e;”, it is computed from terms of size ¢, so can be computed in time O(¥).

(3)

For e;”, note that acc.u, acc.r and 7.r are all scalars. Also note that the accumulation
prover only needs to compute the commitment E; = Commit(ck, e;) = Commit(ck, egl)) +
Commit(ck,OHegQ)) + Commit(ck, OHIHef’)), not the actual vector e;. We will compute
E§3) = Commit(ck, e§3)) homomorphically from the commitments below (dropping the zero
padding for readability):

1. G = Commit(ck, 7.g),
G’ = Commit(ck, acc.g),
M = Commit(ck, 7.m),
M’ = Commit(ck, acc.m),
GT = Commit(ck, m.g o t),
6. GT" = Commit(ck, acc.g o't).
Given these commitments, we can compute

CUk N

EF’) =GT' +7r-G +acc.u-GT +accr - G —acc.- M — M’ .

This reduces the problem to the problem of efficiently computing and updating the commit-
ments. G, M and GT are all commitments to ¢-sparse vectors, thus can be efficiently com-
puted. The prover can cache the commitments G’, M’, and GT" and efficiently update them
during accumulation. That is G” + G’ + oG, M" + M' + aM and GT" + GT' + aGT.
Additionally, we need to update the accumulation witnesses: acc’.m < acc.m + ar.m and
acc’.g < acc.g + an.g. Again because m.g, 7.m are sparse this can be done in time O(¢)
independent of 7" = |t|.

35

When Il k is used in composition with another special-sound protocol with a higher
degree d, the accumulation is made homogeneous using a (X +)92 factor when computing
the error terms. The contribution to the error terms e; (1 < i < d — 1) is still a linear
function in acc.g, acc.m and acc.g o t, and thus can be computed homomorphically from
commitments to these values.

Finally, we note that the algorithm above can be generalized to support polynomial
e(X) with more general formats and with higher degrees. We refer to Appendix for more
details.

Special-soundness. We prove special-soundness for the perfect complete version of Iy i,
the proof for IIj x is almost identical (but even simpler).

Lemma 5. The perfect complete version of Ik is 2(¢ + T')-special-sound.

Proof. We construct an extractor Ext that outputs w. To show that the witness is valid,
we look at the 2(¢ + T') transcripts that all have w, m as the first message but different
(r) h0) e F¢ gl) € FT) as the second message. Note that by the pigeonhole principle,
there must exist a subset of S C [2(¢+T)] transcripts such that |S| = (4T and w;+rU) # 0
foralli € [(] and j € S and t; +) £ 0 for all i € [T] and j € S. For these transcripts,
we have that h; = ; and g; = . Define the degree £ 4+ T — 1 polynomial

+ S——c) =y

V4 T
:kl;[X +wy) - I;IXth (ZXerZ_ZZXH)'

If p(X) is the zero polynomial then ZZ 1 X+w = ZZT 1 %45, and by Lemma (CLx; W) €
Rik. Since we have ¢ + T points r9) at which p(rj) = 0 we get that p = 0 and thus that
the extracted witness w is valid. O

4.4 Vector-valued lookup

In some applications (e.g., simulating bit operations in circuits), we need to support lookup
for a vector, i.e., each table value is a vector of field elements. In this section, we adapt
the scheme in Section to support vector lookups.

Definition 13. Consider configuration Cyrx = (T, ¢,v € N,t) where £ is the number of
lookups, and t € (F)T is a lookup table in which the ith (1 <1i < T) entry is

t;, = (ti,h - ;ti,'u) e Fv.
A sequence of vectors w € (FV)¢ is in relation Ry if and only if for all i € [f],

W; = (Wi71,...,WZ'7v) €t.

36

As noted in Section 3.4 of [Hab22], we can extend Lemma [4 and replace Equation [6] with

14

m;

i=1

where the polynomials are defined as

v
wz(Y) = Zwi’j Lyl ,
j=1

1 T
ZX+wi(Y) - ;X+tz(Y)

v

tl(Y) = Zti’j Lyi—1 ,

j=1

(7)

which represent the witness vector w; € FV and the table vector t; € F'. We, therefore,
can describe a special-sound protocol for the vector lookup relation as follows.

Special-sound protocol II5; i for Ryrk

Prover P(Cvirk,w € (FV)%)

Compute m € FT such that
¢

Verifier V(Cvrk)

m; = 1(w; = t;)Vi € [T] W, m
j=1
B B<+sF
1
r r<«sF
Compute [8; = 8%,
and h € F*, g € FT
h):=——Viel[l
w@ e <l
m; v
= —— Vi T [Bi}izlahvg
N Tk (7]

4) T
Zhi = Zgi
=1 i=1
h; - [(ZWZJ - Bj) +] Zvie [
j=1
8- [(Z ti; - Bi) +7] L m;Vi e [T

Jj=1

51'4-1;[31"5%6[1171],61;1

37

Achieving perfect completeness. We can use the same trick in Section [4.3]to achieve
perfect completeness for II{, ;.. Namely, the verifier sets h; = 0 or g; = 0 when w;(8)+r =0
or t;(8) + r = 0 respectively. The verification equations become

(wi(ﬂl,...,ﬁv)—l-T‘)'(hi'(wi(ﬁl,...,ﬂv)-l-T)—1)ZO

and

(ti(Brs-- Bu) + 1) (8- (ti(Brs- .o, Bo) +7) —my) =0,
where w;(B1,...,0y) = (Z;Zl Wi j -,Bj) and t;(B1,...,0y) == (Z;’:l ti ~,6’j). The degree

of the verifier is 5. In practice, the negligible completeness error can likely be ignored
without implementing these checks.

Accumulation complexity. Ilyrk is a 5-move protocol (i.e. &k = 3) with the 2nd prover
message being empty; the degree of the verifier is 3; the number of non-zero elements in
the prover message is at most (v+3)¢+v. To ensure that the accumulation procedure only
requires O(vf) operations independent of T', we can apply the same trick as in Section

Special-soundness. We prove that the perfect complete version of II5; ;- is special-
sound.

Lemma 6. For any v € N, the perfect complete version of I, ;o is [1+ (v —1)- ({+T —
1), 2(¢ + T')]-special-sound.

Proof. We construct an extractor Ext that outputs w. To show that the witness is valid,
we look at the [1 4+ (v —1)- ({+T —1),2(¢ + T)]-tree of accepting transcripts. Note that
for each depth-1 internal node u that fixes the message (w, m, 3), it has 2(¢ + T') different
choices of challenge r/). By the pigeonhole principle, there exists at least £+ T challenges
r such that t;(8) +r # 0 for all i € [T] and w;(B) +r # 0 for all i € [¢]. Let h,g be
the last prover message in the corresponding leaf node. Since the transcript is accepting,
we have that h; = 1/(w;(B) +) for all i € [{], gi = m;/(t;(B) + r) for all ¢ € [T], and
ZZ 1 hi = Z =18i-

Define the bivariate polynomial where the degree of X is £ + T — 1 and the degree of
Yisat most (v—1)-({+T —1),

l

T ¢ 1 £l m;
p(X,Y) = JI(X + wi(¥)) .jﬂl(X + t;(Y)) - (2;)(4_10()/) ‘X;XH(Y)> '

k=1

For every depth-1 internal node u, we denote by (r, §) the partial transcript for one of the u’s
children whose challenge r satisfies t;(3)+r # 0 for all ¢ € [T'] and w;(8)+r 75 0 for all i€ [{].
As argued in the previous paragraph, we observe that Ele m - Zl 17 +t (5 = =0

hence p evaluates to zero at point (r,3). Note that there are (v —1)- ({+T —1)+1

38

depth-1 internal nodes (i.e. (v—1)-({+ T — 1)+ 1 different Ss) and each node has ¢ + T
children (i.e. £+ T different r) such that p evaluates to zero at point (r, 3). Hence p is the

zero polynomial and Zle ﬁ(y) = Z?:l < J:?’i(y). Then by the extension of Lemma
described in Equation [7} we have (Cyrk,w) € Ryrk and the extracted witness is valid.
O

4.5 Circuit selection

We provide a sub-protocol for showing that a vector has a single one-bit (and zeros other-
wise) at the location of a program counter pc. This is later used to select the appropriate
circuit.

Definition 14. For an integer n the relation Rseject is the set of tuples (b,pc) € F* x F
such that b; = OVi € [n] \ {pc} and if pc € [n] then b, = 1.

Special-sound protocol Tlgect for circuit selecting relation Rgelect

Prover P(b € F",pc € IF) Verifier V

b, pc

Complexity and security. Ilgect is a 1-move protocol (i.e. k = 1); the degree of the
verifier is 2.

The protocol trivially satisfies completeness. Note that the protocol is also sound: the
checks b; - (b; —1) = 0 ensure that the vector b is Boolean; the checks b; - (pc—1) = 0 ensures
that b; = 0 if i # pc; finally, the last check guarantees that b,. =1 — Zie[n]\{pc} b;=1as
b; =0 for all i € [n] \ {pc}.

5 Special-sound protocols for Plonkup relations

Definition 15. Consider configuration Cpionkup = (1, T;0;¢,d, [si, Gi]7%; L, t) where o :
[cn] — [en] is a permutation, (c,d, [s;, Gi][™) are the parameters for the high-degree custom
gates, L C [cn] is the subset of indices for variables that have a lookup gate, t € FT is the
lookup table. The relation Rpjonkup s the set of tuples (pi € IFZi",w € F") such that

WE R, AW E Raare AW, € R N\ W[l..fin] = pi.

39

We present the special-sound protocol for the Plonkup relation Rpjonkup below.

Special-sound protocol IL,jonkup for relation Rpjonkup

Prover P(Cplonkup; Pi, W) Verifier V(Cpionkup; Pi)

Compute m € FT such that

m; = Z 1(w; = t;)Vi € [T W, m Wi — Wo(i) L 0Vi € [en]
jEL

m
Z Sj,i * Gj (Wia cee awi-l-cn—n)
Jj=1

< 0Vi € [n]

Wi = pi,Vi € [l

r r<sfF
Compute h € FI'l g e FT
1

h;, .= —Vie|[|L]]

wr, +7r

m; h |L|) T
i = ! V T ' 8 hz = i
g =y, vic] ; Zk

h; - (wr, +7) = 1Vi € [|L]]
g (t;+7) ZmVie (T)

Complexity. Iljonkup is a 3-move protocol (i.e. k& = 2); the degree of the verifier is d;
the number of non-zero elements in the prover message is at most c¢n + 3|L|.

Completeness and security. We need to add the checks described in Section to
achieve perfect completeness. This changes the verification degree to max(d,3). Without
these checks, the protocol still has all but negligible completeness.

Lemma 7. I, ,nkup is 2(T + |L|)-special-sound.

Proof. The protocol is a parallel composition of II,,IIgarr and Il kx plus a public input
check. In II, and IlgaTg, the prover simply sends the witness, and the verifier checks it
is in the relation. These protocols are thus trivially 1-special-sound, i.e. perfectly sound.
The public input relation also trivially holds as the verifier checks w; = pi; for all i € [¢,].
By Lemma 5| IIyk is 2(7 + |L|)-special-sound. Thus Hponkup is 2(7" + | L|)-special-sound.

O

40

6 Protostar

In this section, we describe PROTOSTAR. PROTOSTAR is built using a special-sound pro-
tocol for capturing non-uniform Plonkup circuit computations. In particular, the relation
is checking that one of the I circuits is satisfied, where the index of the target circuit is
determined by a part of the public input called program counter pc. The non-uniform
Plonkup circuit can add arbitrary constraints on input pc. For example, let the I circuits
be the opcodes supported by EVM, the program counter pc can be computed from the
online public input, or derived from pc’ and the register state in the previous stepE| The
circuit will further check that opcode[pc| is executed correctly in the current step. For
another application, we can consider the I circuits as the predicates of I smart contracts
(or transaction types), a user can call one of the smart contracts/transaction types by
specifying the index pc, and the cost of proving correct execution is only proportional to
the size of an individual smart contract/transaction type rather than the sum of the sizes
of the supported smart contracts/transaction types.

For ease of exposition, we assume that the I circuits have the same
number of gates n;
gate arity c;
maximum gate degree d;
number of gate types m;
number of public inputs fjn;
number of lookup gates £.
The scheme naturally extends when different branch circuits have different parameters.

Definition 16. Consider configuration Coppipup = (pp = [n,T,c,d, m,fin,&k];[(}i]le;t)
where the ith (1 < i < I) branch circuit has configuration C; := (pp, 0y, [si7j,Gi7j]ﬁ1,Li),
and t € FT is the global lookup table. For a public input pi := (pc, pi’) € Fhn where pc € [I]
is a program counter, we say that a instance-witness pair (pi,w € F) is in the relation
Rmpikup if and only if (pi, W) € Rpjonkup w-7-t. circuit configuration (Cpc,t).

SWe refer to Figure 4 of [KST22| for constraining the relation between pc and pc’.

41

Protocol npikup = (P(Cmplkups Pis W), V(Cmplkup, Pi = (pc € [I],pi’))):
1. P sends V vector b = (0,...,0,b,. = 1,0,...,0) € FL,

2. V checks that b; - (1 —b;) L 0andb; - (i —pc) L0forallic [1], and 3 ;¢ bi 1.

3. P sends vector m € FT such that m; := I(w; =t;)Vi € [T].

J€Lpe

4. P sends V a sparse vector w* := (w(l) ... w(D) e FI** where w(®) = 0" for all
i€ [I]\ {pc} and wir) = w.

5. V checks that
Permutation check: 231:1 bj(w(j) - wé)(i)) Z0forallic [en].

7

Public input check: Z]I':1 b - w14
Gate check: for all i € [n], it holds that

pi.

I
Z bj . GTj7i (Wl(j)a cee >Wz(i)cnfn) =0
j=1

where GTj;(x1,... %) ==Y prq 8jklt] - Gip(x1, ..., 2c).
6. V samples and sends P random challenge r <% [F.

7. P computes vectors h € F g € FT such that

1 .
h, = —Vie [{], ;= Vi e |T].
Wi i€ [l g = [T

8. V checks that fil h, = ZZ-T:1 gi and

1
D20 [he- (wily +)] £1 Vi€ lad,
j=1

g (ti+7)=m; Viel[T]

We present the special-sound protocol Il pikup for the multi-circuit Plonkup relation.

Remark 4. The public input check ZJI':1 bj - W 1..4] = pi is equivalent to w[l..li,] =

Wpe[l..in] L pi if the vector b passes the check at Step 2. Thus we guarantee that w[l] = pc,
and the circuit relation can add constraints on pc depending on the applications.

42

Special-soundness. We prove the special-soundness property of Il pp below.
Lemma 8. I,y is 2(T + L) -special-sound.

Proof. The extractor Ext outputs the witness w = w9 gent by the prover. Note that
if the verifier checks in step [2] pass, it must be the case that b is a bool vector with a
single non-zero element b,.. Also, note that given 2(7" + {j) accepting transcripts with
distinct challenges 7, the vector b won’t change. Therefore the sub-transcript after step [2]
is essentially a transcript for a Plonkup special-sound protocol ILjonkup With configuration
Colonkup = (0, T, ¢,d,Cpe, t). By Lemma it holds that ITy,pikup is 2(7+ ik)-special-sound.

O

We will now use Ilpikup and our compiler described in Theoremto design PROTOSTAR.
Before that, we address two efficiency issues regarding supporting multiple branch circuits
and combining high-degree gates with sparse lookups.

Efficient accumulation for supporting many branch circuits. Let I be the num-
ber of branch circuits. At first glance, the message w* has length O(In) and seems the
accumulation prover needs to take O(In) time to fold the witness. Fortunately, the prover
message w* 1= (w(l), .. ,W(I)) € Flem ig sparse: only the witness w(® for the single ac-
tivated branch circuit Cp. is non-zero (where w(P) can be determined at runtime). Thus,
using the commitment to acc.w* and the commitments homomorphism, the complexity for
the prover to fold w* onto acc.w™ is only O(n).

On the other hand, the accumulation prover also needs to compute the error terms
[ej]?;% described at Step 2 of Fig. [3 Note that each gate check can be split into I parts

where at most one part is active, that is, Z]I':1 b; - GTj,i(wZ(j), . ,ngm_n) can be split
into I branch gates where the j-th (1 < j < I) branch gate is b; - GTjﬂ-(wZ(j), e ,wgr)cnfn).

Thus we can use the caching algorithm described in Section to achieve O(d|Cpc|)
computational complexity rather than O(d(|C1| + --- + |Cr|)) where C; (1 < i < I) is the
evaluation cost of the i-th branch circuit.

Next, we address the issue of combining the high-degree gate and sparse lookup proto-
cols with the generic transform CV in Section [3.5]

Efficient accumulation of CV([[Iypikup)- CV[lgare] reduces the number of degree-d
verification checks in IlgaTg from n to 1, with the tradeoff of O(y/n) additional degree-
2 checks. In the resulting accumulation scheme, the error terms for high-degree gates
are, thus, only of length 1. This enables using the trivial identity commitment for these
error terms and thus reduces the number of group operations by the accumulation verifier.
Unfortunately, applying CV to mplkup seems to have a major tradeoff. The number of
verification checks is n + f + T + ¢ - n. This requires using a) CV[mplkup| and b) is

43

not composable with the sparseness optimizations for lookup described in Sections [£.3] and
Appendix [B] These optimizations make the prover computation independent of 7.
Fortunately, a closer look at the verification of mplkup reveals that only n of these
verification checks are of high degree d, namely the checks in IIgarg. The other checks are
of degree 2 or lower. With a slight abuse of notation, we can define CV[II,pixup] as applying
the generic transform CV only to the IlgaTg part of Il pikup. This means that there are
d + 1 cross error vectors (each of length 1) for the degree d + 2 check in CV[IIgaTg]; and 1
cross error vector of length T'+ ¢ 4+ cn+ O(y/n) for the rest checks—namely the low-degree
checks in Iypikup and the O(y/n) degree-2 checks in CV[IIgaTg]. By leveraging the error
separation technique described in Sect. we can use the identity function to commit to
the field elements and a vector commitment to commit to the long error term. Again we
leverage homomorphism as described in Section [£.3] to make the prover independent of 7.

Corollary 1 (PROTOSTAR protocol). Consider the configuration
Cmplkup = (77,7 T7 c, d7 m, Eina Elk; [Ci]z‘lzl; t)'

Given a binding homomorphic commitment scheme cm = (Setup, Commit), and under the
Fiat-Shamir Heuristic (Definition @ for a hash function H, there exists an IVC scheme
PROTOSTAR for Roypikup relations with the following efficiencies for m =1 (i.e. each cir-
cuit has a single degree-d gate type), public input length l;, = 1: (we omit cost terms that
are negligible compared to the dominant parts)

PPROTOSTAR PPROTOSTAR
. . VPprorostar ‘ TTPROTOSTAR |
native Tecursive
O(Iw| + 4)G di% Oc-n+T+0IE | o
! I) : I3
L (CpC7d+2)+2€|kF d+0(1)H+1H|n n+Zi:1 C7,+T+£|k}F

Here |w| < cn is the number of non-zero entries in the witness, Zi[:l C; is the cost of
evaluating all circuits on some random input, and L'(Cpe,d) is the cost of computing the
coefficients of the polynomial e(X) defined in Equation using techniques from Section @H
Hin is the cost of hashing the public input and the (constant-sized) accumulator instance.

Proof. Let SPS — IVC[IT] = IVC[acc[FS[cm[CV[II]]]]] be the transformation from a special-
sound protocol to an IVC-scheme described by Theorem [3| (including CV). Then given
a commitment scheme cm by that theorem PROTOSTAR = SPS — IVC[I,pikup] is an IVC
scheme for predicates expressed in Rypikup- We apply Theorem [3| to get the efficiencies in
the table above.

6As noted in Theorem [3| L' (Cpe, d + 2) is bounded by O(ndlog?(d)).

44

Security: Since CV[lIgaTg] is only applied to IIgaTg which has perfect soundness, by

Lemma (8 and Lemma (3, the NARK scheme FS[cm[CV[II]]] for Ruypikup has knowledge
soundness with knowledge error (@ + 1) - % + negl()\), where @ is the number
of RO queries by the adversary. Using Theorem [2] and Corollary 2| we can construct a
accumulation scheme for the NARK scheme FS[cm[CV([II]]]. The accumulation scheme has
negligible knowledge error as d = poly(\). Therefore, under the Fiat-Shamir heuristic and

by Theorem |1}, SPS — IVC[II] is a secure IVC scheme. O

Acknowledgments. We would like to thank Ariel Gabizon and Liam Eagen for the
inspiring discussions about optimizing the generic transformation protocol in Section
We’d like to thank Zachary Williamson, Sean Bowe, Srinath Setty, Shang Gao, Joseph
Johnston and Nicholas Mohnblatt for pointing out typos and minor mistakes.

45

References

[AFGHO10]

[AFK22]

[BBBF18]

[BCCT13]

[BCLMS21]

[BCMS20]

[BCTV14]

[BGH19]

Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. “Structure-Preserving Signatures and Commitments
to Group Elements”. In: CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223.
LNCS. Springer, Heidelberg, Aug. 2010, pp. 209-236. DOI1:[10.1007/978-
3-642-14623-7_12.

Thomas Attema, Serge Fehr, and Michael Kloof3. “Fiat-Shamir Transfor-
mation of Multi-round Interactive Proofs”. In: TCC 2022, Part I. Ed. by
Fike Kiltz and Vinod Vaikuntanathan. Vol. 13747. LNCS. Springer, Hei-
delberg, Nov. 2022, pp. 113-142. por: [10.1007/978-3-031-22318-1_5!

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. “Verifiable
Delay Functions”. In: CRYPTO 2018, Part 1. Ed. by Hovav Shacham and
Alexandra Boldyreva. Vol. 10991. LNCS. Springer, Heidelberg, Aug. 2018,
pp. 757-788. DOI: |10.1007/978-3-319-96884-1_25

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Re-
cursive composition and bootstrapping for SNARKS and proof-carrying
data”. In: 45th ACM STOC. Ed. by Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum. ACM Press, June 2013, pp. 111-120. DOI: 10.1145/
2488608 .2488623.

Benedikt Biinz, Alessandro Chiesa, William Lin, Pratyush Mishra, and

Nicholas Spooner. “Proof-Carrying Data Without Succinct Arguments”.

In: CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825.
LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 681-710. DOI:

10.1007/978-3-030-84242-0_24.

Benedikt Biinz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
“Recursive Proof Composition from Accumulation Schemes”. In: TCC 2020,
Part II. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12551. LNCS.
Springer, Heidelberg, Nov. 2020, pp. 1-18. DOI: [10.1007/978-3-030~-
64378-2_1.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
“Scalable Zero Knowledge via Cycles of Elliptic Curves”. In: CRYPTO 2014,
Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. LNCS.
Springer, Heidelberg, Aug. 2014, pp. 276-294. DOI:|10.1007/978-3-662-
44381-1_16.

Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Com-
position without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
https://eprint.iacr.org/2019/1021. 2019.

46

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://eprint.iacr.org/2019/1021

[BMRS20]

[But22]

[CBBZ22]

[CT10]

[CTV15]

[EFG22]

[GW20]

[GWC19]

[Hab22]

[KB20]

[KMT22]

Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda:
Decentralized Cryptocurrency at Scale. Cryptology ePrint Archive, Report
2020/352. https://eprint.iacr.org/2020/352. 2020.

Vitalik Buterin. The different types of ZK EVM. https://vitalik.ca/
general/2022/08/04/zkevm.html. Accessed: 2023-04-27. 2022.

Binyi Chen, Benedikt Biinz, Dan Boneh, and Zhenfei Zhang. HyperPlonk:
Plonk with Linear-Time Prover and High-Degree Custom Gates. Cryptol-
ogy ePrint Archive, Report 2022/1355. https://eprint . iacr . org/
2022/1355. 2022.

Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay
Arguments from Signature Cards”. In: ICS 2010. Ed. by Andrew Chi-Chih
Yao. Tsinghua University Press, Jan. 2010, pp. 310-331.

Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster Computing
in Zero Knowledge”. In: FUROCRYPT 2015, Part II. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr.
2015, pp. 371-403. DOI: [10.1007/978-3-662-46803-6_13!

Liam Eagen, Dario Fiore, and Ariel Gabizon. c¢q: Cached quotients for fast
lookups. Cryptology ePrint Archive, Report 2022/1763. https://eprint.
iacr.org/2022/1763. 2022.

Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polyno-
mial protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315.
https://eprint.iacr.org/2020/315. 2020.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive argu-
ments of Knowledge. Cryptology ePrint Archive, Report 2019/953. https:
//eprint.iacr.org/2019/953. 2019.

Ulrich Habock. Multivariate lookups based on logarithmic derivatives. Cryp-
tology ePrint Archive, Report 2022/1530. https://eprint.iacr.org/
2022/1530. 2022.

Assimakis Kattis and Joseph Bonneau. Proof of Necessary Work: Succinct
State Verification with Fairness Guarantees. Cryptology ePrint Archive,
Report 2020/190. https://eprint.iacr.org/2020/190. 2020.

Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. Min-
Root: Candidate Sequential Function for Ethereum VDEF. Cryptology ePrint
Archive, Report 2022/1626. https: //eprint . iacr . org/2022/1626.
2022.

47

https://eprint.iacr.org/2020/352
https://vitalik.ca/general/2022/08/04/zkevm.html
https://vitalik.ca/general/2022/08/04/zkevm.html
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-662-46803-6_13
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2020/190
https://eprint.iacr.org/2022/1626

[KS22]

[KS23]

[KST22]

[LFKN90]

[Moh23]

[NT16]

[Ped92]

[PK22]

[SAGLIS]

[STW23]

[Val08]

Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal ma-
chine executions without universal circuits. Cryptology ePrint Archive,
Report 2022/1758. https://eprint.iacr.org/2022/1758. 2022.

Abhiram Kothapalli and Srinath Setty. “HyperNova: Recursive arguments
for customizable constraint systems”. In: Cryptology ePrint Archive (2023).

Abhiram Kothapalli, Srinath Setty, and loanna Tzialla. “Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes”. In: CRYPTO 2022,
Part IV. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13510.
LNCS. Springer, Heidelberg, Aug. 2022, pp. 359-388. DOI1:|10.1007/978-
3-031-15985-5_13.

Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. “Al-
gebraic Methods for Interactive Proof Systems”. In: 31st FOCS. IEEE
Computer Society Press, Oct. 1990, pp. 2-10. DOI: [10.1109/FSCS. 1990.
89518.

Nicholas Mohnblatt. Sangria: A Folding Scheme for PLONK. https :
/ / github . com/ geometryresearch/technical _notes/blob/main/
sangria_folding_plonk.pdf. Accessed: 2023-04-27. 2023.

Assa Naveh and Eran Tromer. “PhotoProof: Cryptographic Image Au-
thentication for Any Set of Permissible Transformations”. In: 2016 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May
2016, pp. 255-271. por: [10.1109/SP.2016.23.

Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing”. In: CRYPTO’91. Ed. by Joan Feigenbaum.
Vol. 576. LNCS. Springer, Heidelberg, Aug. 1992, pp. 129-140. DOTI: |10.
1007/3-540-46766-1_9.

Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup ar-
guments. Cryptology ePrint Archive, Report 2022/957. https://eprint.
iacr.org/2022/957. 2022.

Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. “Prov-
ing the correct execution of concurrent services in zero-knowledge”. In:

13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18). 2018, pp. 339-356.

Srinath Setty, Justin Thaler, and Riad Wahby. “Customizable constraint
systems for succinct arguments”. In: Cryptology ePrint Archive (2023).

Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowl-
edge Imply Time/Space Efficiency”. In: TCC 2008. Ed. by Ran Canetti.
Vol. 4948. LNCS. Springer, Heidelberg, Mar. 2008, pp. 1-18. DOI: [10.
1007/978-3-540-78524-8_1.

48

https://eprint.iacr.org/2022/1758
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1

[Wik21] Douglas Wikstrém. Special Soundness in the Random Oracle Model. Cryp-
tology ePrint Archive, Report 2021/1265. https://eprint.iacr.org/
2021/1265. 2021.

[XCZBFKC22] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Biinz, Ben
Fisch, Fernando Krell, and Philippe Camacho. VERI-ZEXE: Decentral-
ized Private Computation with Universal Setup. Cryptology ePrint Archive,
Report 2022/802. https://eprint.iacr.org/2022/802. 2022.

[ZBKMNS22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller,
Anca Nitulescu, and Mark Simkin. “Caulk: Lookup Arguments in Sublin-
ear Time”. In: ACM CCS 2022. Ed. by Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi. ACM Press, Nov. 2022, pp. 3121-3134. DOI:
10.1145/3548606.3560646.

[ZGKMR22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and
Carla Rafols. Baloo: Nearly Optimal Lookup Arguments. Cryptology ePrint
Archive, Report 2022/1565. https: //eprint . iacr . org/2022/1565.
2022.

[ZV23] Yan X Zhang and Ard Vark. Origami - A Folding Scheme for Halo2
Lookups. https://hackmd.io/\spacefactor\@m{}aardvark/rkHqa3NZ2.
Accessed: 2023-07-12. 2023.

A Accumulation Scheme for high/low degree verifier

We describe a modification for the accumulation scheme in Section B.4] that can be useful
if Vgps has both a single high-degree verification check and multiple low-degree checks. E.g.

assume that Veps = Veps 1|[Vsps2 Where Vs 1 @ (pi, [mi]le, [ri]fz_ll) — T is degree d and

Veps2 : (pi, [m;]¥_, [ri]¥!) — F¢ is degree 2.
For simplicity, we assume that Vgps1 maps to a single field element and that Veps o is
degree 2, but this naturally extends to more arbitrary degrees, sizes and more components.
The accumulation scheme accHL = (Pace,HLs Vace,HL) for FS[Vsps 1]|Vsps 2] is essentially a
parallel composition of the accumulation presented Section applied to Veps 1 and Vgps 2.

Concretely there are the following modifications to the scheme from Section

e The prover computes error terms separately for Vs 1 and Vsps 2. This means there
are d — 1 constant size error terms and 1 error term vector of length /.

e The prover uses the identity function to commit to the d error terms and a homo-
morphic vector commitment cm = (Setup, Commit) to commit to the single length ¢
error term.

e The accumulator stores two error terms, one for each verifier. One is a field element
e, and the other is a commitment E to a length ¢ vector.

49

https://eprint.iacr.org/2021/1265
https://eprint.iacr.org/2021/1265
https://eprint.iacr.org/2022/802
https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565
https://hackmd.io/\spacefactor \@m {}aardvark/rkHqa3NZ2

e The accumulation verifier checks the correct accumulation for each error term sepa-
rately, thus performing d — 1 field operations and 1 homomorphic commitment scalar
multiplication.

Complexity and security. The scheme has the following complexity:

e The

e The

accumulation prover
asks k — 1 queries to pyark With constant-sized inputs and 1 query to pacc with
input size d + O(1);

computes the coefficients of

d
e(X) = Z(u—i—X)d_jf]\./sps‘l(X-pi+acc.pi, [X-m;+acc.my]¥, [X-ri+accr]tT}l) €

Jj=0

and computes e € F¢, which are the coefficients of X in the polynomials
2
Z(M+X)2_jfj\-/sps’2 (X -pi+acc.pi, [X -m;+acc.m;]f_ | [X-r;+accr]i=]) € (F[X])*
j=0
commits to e using £ G ops.
performs |R| + |M*| + 2 F-ops to combine (u, pi, [r;]*=}, [m;]%_,) (where |R| is
the number of challenges and |M*| is the number of non-zero elements in prover
messages);
performs k G-ops to combine [C;]¥_;;
performs 1 G-op to add E = Commit(ck, e) to acc.E.
accumulation verifier performs

asks k — 1 queries to pnark and 1 query to pacc;
|R| + 2 F-ops to combine (i, pi, [r;]F=});

k G-ops to combine [C;]¥_;
d — 1 F-ops to add [ej]?;% onto acc.e.

1 G-op to add E = Commit(ck, e) to acc.E
decider

computes C; = Commit(ck, m;) for i € [k] and £ = Commit(ck, e), with total
complexity around | M|+ ¢ G-ops.

evaluate [fl-vs"s’l]?:o and [fivspﬂ]%zo to verify e and e.

Corollary 2 (Hi—LowAccumulation). Let (PNARK,HL7VNARK,HL) = FS[Vsps,lHVsps,Q] be an
RO-NARK as defined above. Let cm be a binding, homomorphic commitment scheme
and pacc be a random oracle. The accumulation scheme accyy for Vnark satisfies perfect
completeness and has knowledge-error (Q + 1)% + negl(\), as defined in Definition ﬁ

50

Proof sketch: Perfect completeness follows immediately from Theorem[2] For knowledge-
soundness, consider that accy is a parallel composition of two accumulation schemes ap-
plied to a high-degree and a low-degree verifier. Given an adversary that can break the
knowledge soundness of accyi, we can construct an adversary that can break the knowledge
soundness of either the high or the low-degree accumulation. By union bound, this leads

to a knowledge error of (Q + 1)% + negl(A).

B Computation of cross error commitments for sparse wit-
nesses

If the witness of the NARK proof 7 is sparse, i.e., the number of non-zeros in m.w is
m <]W.w], we can compute the accumulation proof (i.e.7 the cross-error commitments)
more efficiently where the complexity is independent of |r.w|. However, the algorithm is
not fully compatible with the technique in Sect. for compressing the number of verifier
checks. We leave it an open problem for integrating the algorithm with the CV trick.

Let m denote the number of non-zero entries in the NARK proof m. Suppose the
polynomial e(X) in Eqn. [3| has the form

C
Zai(acc +X-m)-Tioh;i(acc+ X -m)o---oh;4, (acc+ X -) (8)

=1

where ¢ is a constant, and for every i € [c]: a;(acc+ X - 7) is a degree-v; polynomial for
which the coefficients can be computed in time O(d*m); T; € F’ is a preprocessed vector;
and for every j € [d — v;], h; j(acc + X) is a linear polynomial and h; j(x) € F* is sparse
if x is, that is, the number of non-zeros in h; j(x) € F is no more than u times that in
x where p is a constant parameter. For ease of exposition, we set ;4 = 1 in the following
context.

Remark 5. The Eqn.[§ is homogeneous as each of the ¢ terms has exactly degree d. This
is without loss of generality because recall that we pad with (acc.p + X))~ if a term of the
NARK wverifier check has degree i less than d.

Denote by e; (1 < j < d) the degree-j coeflicients of polynomials e(X). Next, we
describe the algorithm for computing E; = Commit(ck, e;) for every j € [d — 1]:

1. For every i € [c], initialize U; = Commit(ck, T; o h;1(acc) o ---oh; 4_,,(acc)). The
algorithm additionally stores the accumulator acc as well as T; for every i € [c].

2. Upon receiving a new NARK proof =, for every i € [¢] and k € [d — v;], compute
commitments V; ;. to the vector v;; defined as

Vik = Z T, o @hm(ﬂ) @ h; j(acc) (9)

SCld—vil:|S|=k j€S jeld—vi\s

51

where () denotes the Hadamard products of multiple vectors.

3. For every i € [c] and k € [0,d], compute the degree-k coefficient a;;, € F of the
polynomial a;(acc + Xn). Note that a; = 0 for all k& > v;. The coefficients can be
computed in O(d*m) field operations by the second property satisfied above.

4. For every i € [c| and every j € [d — v; + 1,d), we denote V; ; as the commitment to
the zero vector. For every j € [d — 1], compute the target commitment

[

j—1
Ej=) | Uity aiu Vi
i=1 =0

5. After the accumulation, let a@ € F denote the folding challenge. For every i € [c],

update U; < U; + Z?;Ti al - Vij.

Lemma 9. The above algorithm can be run using O(d>m) field operations and O(d*m)
group operations.

Proof. It is easy to scrutinize that all steps except for step 2 perform O(d*m) field opera-
tions plus a constant number of group operations. Next, we present an efficient algorithm
for running step 2.

Fix any ¢ € [c], we focus on computing the vectors v; i, for all k € [d—;]. For notational
convenience, we set d’ = d—v;. The algorithm first extracts the set of indices S* C [¢2] such
that for every u € S*, the u-th element of h; j(7) is non-zero for at least one j € [d']. Note
that |S*| < d'm because |h; j(7)| < m for every j € [d'], and for every index id outside S*,
v [id] = 0 for every k € [d']. We show how to compute v [S*] := v; ;[S*] for all k € [d'].

1. Tnitialize £”[5*] = T,[5*] and £.")[$*] = 05" for all & € [d].
2. For j=1,2,...,d":

(a) Compute fo(j)[S*] = féj)[S*] o h; j(acc)[S*].
(b) For k=1,2,...,j, compute

£15%) = £7,V[5%) o by (1) [S7] + £V [S7] 0 hy (acc)[S7] .

The algorithm takes O(d"?|S*|) = O(d"*m) field operations. Moreover, by definition of v x
(Eqn @), it holds that féd) [S*] = v, x[S¥] for every k € [d].

In summary, fix any ¢ € [c|, we obtain an algorithm for computing the vectors v; ;, for
all k € [d — v;] in O((d — v;)®>m) field operations. Moreover, since |h; j(7)| < m for every
J € [d — vj], each vector v; ;, has at most (d — v;)m non-zero entries by its definition, thus
it takes O((d — v;)m) group operations to commit to each vector v;; (1 < k < [d — 1)),
Since ¢ is a constant and d — v; < d for every i € [¢|, the computational complexity of step
2 is O(d®>m) field operations and O(d?m) group operations. Thus the lemma holds. O

52

Lemma 10. Ej is the commitment to the degree-j coefficients of e(X) for all j € [d —1].

Proof. Recall polynomial e(X) has the form in Equation [§ where a;(acc + X - m) =
Zd 0 a; ;X7 is of degree d — v; and h; j(acc 4+ X - 7) are linear polynomials for all i € [c]

and j € [d — v;]. By definition of e(X), the coefficient form of e(X) = Zi:o f; X satisfies

that
c J

= | D aiu Vij-u

i=1 \pu=0

for every j € [d — 1], where v;;_, is defined as in Eqn. |§| for every p < j, and v;o =
T; o h;i(acc) o -+ o h;4,,(acc) is the vector committed in U;. By the homomorphic
property of the commitment scheme, we obtain that E; is the commitment to f; for every
j € [d — 1], thus the lemma holds. O

Lemma 11. For every i € [c|, U; + Zd 'ad - Vi is the commitment to vector T; o
h; 1(acc’) o ---oh; 4, (acc’) where acc’ = acc —|— a - 7 is the updated accumulator.

Proof. Recall that for every k € [d—w;], V; 1, is the commitment to the vector v; j, in Eqn. @
and Uj is the commitment to vector v; o := T;oh; j(acc)o- - -oh; 4_,, (acc). Therefore, by the
homomorphic property of the commitment scheme, U; 4+ Zd Yiad -V i, is the commitment

to the vector Zd o a’v; ;, which is the evaluation of the polynomial

T;oh;i(acc+ X -m)o---oh;4,, (acc+ X - 7)

at point . Thus the lemma holds. O

Example applications. The algorithm can be used in Sect. [£.3] to obtain a table-size
independent accumulation prover that computes the cross-error term commitments effi-
ciently. The time complexity is O(¢) < T where ¢ is the number of lookups per accumu-
lation step and 7' is the lookup table size. For a vector v, we use intp,(X) to denote the
linear polynomial acc.v + X - m.v. Recall that in the special sound protocol for lookup
in Sect. the cross error term vector e is the degree-1 coefficient of the polynomial

e(X) = (e (X)|le®(X)[[e®® (X)) where
)4 T
e(X) = intp,,(X) - <Z intpy,, (X) —) _intpg, (X)))
=1 =1
e (X) = intp,(X) o (intpy (X) + intp,(X) - 1°) — intp,, (X)? - 1°
e (X) = intpg(X) o (intp,(X) - t +intp,(X) - 17) —intp, (X) - intpy, (X)
It is sufficient to show that e(X) has the form as in Eqn. 8] We set:

93

Degree d = 2, the number of terms is ¢ = 7;

the 1st term is for e)(X), where aj(acc + X7) = e (X) has degree 2, and the
preprocessed vector Ty = [1]]0“F77];

the next 3 terms are for e (X), where
— ag(acc+X7) = 1, Ty = [0][1¢]|07], hg,1 (acc+X) = [0]|intpy, (X)||07], hg 2(acc+
X) = [0]intpy, (X)][07]:
— aglace+Xm) = intp,(X), Ty = [0][14]107], and hy 1 (ace-+ X) = [0]fintpy (X)[07;
— ayg(acc+ X7) = —intp,,(X)?, Ty = [0]|1¢]]0T);

the last 3 terms are for e (X), where

— as(acc+Xm) = intp,(X), Ts = [0°7H|t], and hs 1 (acc+ X7) = [0 intpg (X)];
— ag(acc+Xm) = intp,(X), Te = [0°7|[17], and he 1 (acc+X) = [0 fintpg (X)];
— ar(acc+X7) = —intp,(X), T7 = [0“1][17], and h7 1 (acc+X) = [0 |[intp,, (X)].

It is easy to check that all of the h vectors are sparse (i.e., with no more than ¢ non-zero
entries), and e(X) satisfies Eqn. |8 given the above setup.

C Protostar for CCS

Recently, Setty, Thaler and Wahby introduced Customizable Constraint System (CCS), a
new characterization of NP that is a generalization of RICS|STW23|. It enables the use of
high-degree gates while not requiring permutation arguments. It is also powerful enough to
capture both R1CS and Plonk constraints. As described in the introduction, HyperNova
builds an accumulation scheme and, thus, IVC for CCS. However, HyperNova does not
natively support non-uniform circuits and both the recursion cost, as well as the cost for
lookups is more expensive than PROTOSTAR, which is built for mplkup. However, mplkup
still requires a permutation argument and so-called copy-constraints. We show that our
general compiler is powerful enough to port the benefits of PROTOSTAR directly to CCS.
The starting point is the trivial special-sound protocol for CCS:

Definition 17 (|[STW23|). Given public parameters m,n, N, lin,t,q,d € N where n > ¢,
let My, ..., M, € F™*"™ be matrices with at most N total non-zero entries. Let Si,...Sy be
multisets over domain [t] and each multiset has cardinality at most d. Let c1,...,cq € F be
constants. A tuple (pi,w) € Fhn x F"~fn=1 s in the relation Rcs if and only if

q—1
Zci . OjESij CZ = 0m7

1=0

where z = (1, pi,w). O denotes the Hadamard product between vectors.

o4

Special-sound protocol Il..s for relation Rcs

Prover P(Cecs, pi € Fr w e F"‘li"_l) Verifier V(Cccs, pi)

z = (1,pi,w) € F"

q—1
?
E C; - OjGSij -z=0"

=0

Complexity. Il.s is a 1-move protocol (i.e. k = 1) with verifier degree d.

Next, we present the special-sound protocol Il s+ for the extended CCS relation that
has multi-circuits and lookup support. Compared to IL,piyup in Section @ the protocol
IMinces+ removes the need of a permutation check.

Definition 18. Consider configuration Cpeesy = (pp = [m,n, N, bin,t,q,d, T, by]; [Ci] s t)

where theith (1 < i < T) branch circuit has configuration C; == (pp, [Mj]’y, [Sj, cj7i]?:1, L;),
and t € FT is the global lookup table. For a public input pi := (pc,pi’) € Fln where pc € []
is a program counter, we say that a instance-witness pair (pi,w) € Fr=1 is in the relation

Runces+ if and only if (pi,w) € Rees w.r.t. circuit configuration Cpe and wr,, C t.

95

Protocol Icest+ = (P(Cmees+; Pi, W), V(Cmees+, P = (pc € [I],pi))):
1. P sends V vector b= (0,...,0,b,. = 1,0,...,0) € FL,

2. V checks that b; - (1 —b;) 20 and b; - (i — pc) Zoforallic [1], and 3¢ bi .
3. P sends vector m € FT such that m; := > jer,. L(w; = t;)Vi € [T].

4. P sends V a sparse vector w* := (w1, ... w()) where w(®) = 0"~ln—1 for all
i€ [I]\ {pc} and w(r) = w.
5. V computes z¥) = (1, pi, w(¥)) € F” for all k € [I] and checks that

q

1
Z i - Z cik - Ojesin Mk - 2" —om.
k=1

=1
6. V samples and sends P random challenge r +$ [F.

7. P computes vectors h € F g € FT such that

1 i
h, == ——Vi € [{y], g = i i e [T].
WLl +r t,+r

8. V checks that Zfil h; = ZZT:l gi and

Dby i (w0

g,--(ti—kr);mi Vie [T].

I~

1 Vie [y,

Complexity. Il st is a 3-move protocol (i.e. k = 2); the degree of the verifier is d + 1;
the number of non-zero elements in the prover message is at most n + 3¢; the prover
message length is at most I + n + 37. Hence in the resulting accumulation scheme, the
accumulation prover complexity is only O(n + f)x) that is independent of the table size,
and the accumulator size is O(n + T + I) that is independent of the sum of the sizes of the
branch circuits. We detail the efficiency of the resulting IVC scheme in the table below.
The efficiency is almost identical to the PROTOSTAR scheme for Ry,piup. However, the
cost of computing the error terms L'(ccspe, d +2) now depends on the pe-th CCS instance.

96

PPROTOSTAR,mccs—‘r

PPROTOSTAR,mCCS—‘r

VPROTOSTAR,mccs+

|7TPROTOSTAR,mccs+ |

native recursive
O(lw| + £4)G 3G O(n+T +)G
Ik d + 4F Ik O(n+T + by)

L' (cespe, d + 2) + 20, F

d+O(1)H + 1H;,

57

n+1-N+T+F

	Introduction
	Technical overview
	Organization

	Preliminaries
	Special-sound Protocols and Fiat-Shamir Transform
	Adaptive Fiat-Shamir transform
	Commitment Scheme
	Incremental Verifiable Computation (IVC)
	Simple Accumulation

	Protocols
	Special-sound Protocols
	Commit and Open
	Fiat-Shamir transform
	Accumulation Scheme for Vnark
	Compressing verification checks for high-degree verifiers
	Computation of error terms
	Dealing with branched gates

	Special-sound subprotocols for ProtoStar
	Permutation relation
	High-degree custom gate relation
	Lookup relation
	Vector-valued lookup
	Circuit selection

	Special-sound protocols for Plonkup relations
	Protostar
	Accumulation Scheme for high/low degree verifier
	Computation of cross error commitments for sparse witnesses
	Protostar for CCS

