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Abstract. SPEEDY is a family of ultra-lightweight block ciphers designed
by Leander et al. at CHES 2021. There are three recommended variants
denoted as SPEEDY-r-192 with r ∈ {5, 6, 7}. All of them support the
192-bit block and the 192-bit key. The main focus during its design is
to ensure hardware-aware low latency, thus, whether it is designed to
have enough security is worth to be studied. Recently, the full-round
security of SPEEDY-7-192 is announced to be broken by Boura et al. at
EUROCRYPT 2023 under the chosen-ciphertext setting, where a round-
reduced attack on SPEEDY-6-192 is also proposed. However, no valid at-
tack on SPEEDY-5-192 is given due to its more restricted security parame-
ters. Up to now, the best key recovery attack on this variant only covers
3 rounds proposed by Rohit et al. at AFRICACRYPT 2022.
In this paper, we give three full-round attacks on SPEEDY-7-192. Using
the divide-and-conquer strategy and other new proposed techniques, we
found a 5.5-round differential distinguisher which can be used to mount
the first chosen-plaintext full-round key recovery attack. With a similar
strategy, we also found a 5-round linear distinguisher which leads to the
first full-round attack under the known-plaintext setting. Meanwhile, the
5.5-round differential distinguisher also helps us slightly improve the full-
round attack in the chosen-ciphertext setting compared with the previous
result. Besides, we also present a 4-round differential attack on SPEEDY-
5-192, which is the best attack on this variant in terms of the number of
rounds so far. A faster key recovery attack covering the same rounds is
also given using a differential-linear distinguisher. Both attacks cannot
threaten the full round security of SPEEDY-5-192.
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1 Introduction

In lightweight cryptography, cryptographic primitives are required to be suitable
for resource-constrained environments, such as low area, latency or energy con-
sumption. Therefore, it’s usually difficult to design such ciphers since one has



to make trade-offs between implementation efficiency and security. Hence, the
security of such ciphers is worth to be evaluated thoroughly.

In CHES 2021, Leander et al. proposed a family of ultra-low-latency block
ciphers named as SPEEDY [9] to resolve the problem: How to design a secure en-
cryption algorithm whose hardware implementation is fast. To gain such cipher,
they first considered which type of logic gates and circuit topologies are suit-
able for ultra low-latency encryption. As a result, SPEEDY adopts a lightweight
S-box, whose coordinate functions are realized as two-level NAND trees, and a
hardware-friendly linear layer. After careful combination, SPEEDY achieves lower
latency in hardware than most cryptographic primitives. SPEEDY contains three
versions SPEEDY-5-192, SPEEDY-6-192 and SPEEDY-7-192, whose number of rounds
are 5, 6, and 7, respectively. Note that, as the number of rounds decreases, the
SPEEDY cipher gains better performance in hardware implementations but has a
weak bound of security claim.

Recently, Boura et al. [5] announced that the full-round security of SPEEDY-7-
192 is broken under the chosen-ciphertext setting, where a round-reduced attack
on SPEEDY-6-192 is also proposed. However, due to the more restricted security
parameters, no valid attack on SPEEDY-5-192 is given. The best key recovery
attack on this variant only covers 3 rounds proposed by Rohit et al.[16].

In this paper, we aim to evaluate the security of SPEEDY thoroughly using dif-
ferential cryptanalysis, linear cryptanalysis and differential-linear cryptanalysis.
Proposed by Biham and Shamir in 1990, differential cryptanalysis [4] has been an
important method in evaluating the security of symmetric-key ciphers. Using a
differential distinguisher with high probability, one can recover the secret key af-
ter adding several rounds before or/and after it. Such an attack can be mounted
only when the adversary is under the chosen-plaintext/ciphertext setting. Lin-
ear cryptanalysis [13], proposed by Matsui in 1992, only requires the adversary
under the known-plaintext setting, which is more realistic than the differen-
tial attack. It exploits the linear distinguisher with high correlation considering
the linear relation between some bits of plaintexts, ciphertexts and the secret
key. Differential-Linear cryptanalysis [8] is another chosen plaintext/ciphertext
method, which is proposed by Langford and Hellman in 1994. This method uses
a distinguisher with a high correlation that consists of a differential distinguisher
followed by a linear distinguisher. To evaluate its correlation more accurately,
Achiya and Dunkelman introduced DLCT (short for Differential Linear Con-
nectivity Table) [1] to connect the differential distinguisher and the linear one.
This method works efficiently on ciphers whose differential probabilities and lin-
ear correlations are very high when the distinguisher covers small rounds, but
decrease very quickly when the number of rounds increases.

1.1 Contributions

In this paper, we propose several key recovery attacks on full-round SPEEDY-7-
192 and 4-round SPEEDY-5-192 by exploiting key-recovery friendly distinguishers
constructed following the divide-and-conquer strategy. Detailed contributions
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are shown as follows.

Strategy of Searching Key-Recovery Friendly Differential and Linear
Trail of SPEEDY. Our searching strategy includes two parts: (a) control the prop-
agation of active pattern deduced from the input difference/mask and output
difference/mask; (b) construct long distinguishers in the divide-and-conquer way.
To fulfill (a), we introduce TDDT (short for truncated differential distribution
table) to show the non-randomness of S-box with bit-wise truncated differential
propagation. With this table, one can depict clearly in the searching algorithm
on how to choose input/output differences of the target distinguisher. While for
(b), we construct part of the distinguisher by concatenating two distinguishers
covering the small number of rounds. For instance, the 5.5-round distinguisher is
first built with a 4-round distinguisher. To gain a better 4-round distinguisher,
we split it into two parts with each covering two rounds. The input difference
of the MixColumn operation in the middle is chosen to minimize the total num-
ber of activated S-boxes involved in its two neighborhood S-box layers. For the
other MixColumns contained in the 5.5-round distinguisher, no restriction on
their input differences is necessary.

Improved Key Recovery Attacks against Full-Round SPEEDY-7-192. By
exploiting the above strategy, we gain a 5.5-round differential distinguisher,
which has a higher probability than the one found by [5]. With this differential
trail, we mount the first chosen-plaintext attack on its full-round variant. Besides,
since it’s key-recovery-friendly, it also leads to a full-round chosen-ciphertext at-
tack, which requires slightly less complexities than the one proposed by [5].
Further, we also mount the first known-plaintext 7-round linear attack with
a 5-round linear distinguisher by adopting a similar search strategy. Although
this one costs slightly higher complexities than the differential attack, it is a
known-plaintext attack which requires weaker capabilities of the adversary than
the chosen-plaintext attack required in the differential cryptanalysis. Therefore,
such linear key recovery attack is also valuable. All our attack results along with
previous published ones are summarized in Table 1.

Improved Key Recovery Attack on Round-Reduced SPEEDY-5-192. We
also provide two attacks on 4-round SPEEDY-5-192 using differential and differential-
linear cryptanalysis, respectively. More precisely, the differential attack is mounted
with a two-round distinguisher where one round is added at the top and bot-
tom, respectively, while the differential-linear attack is given by exploiting a
three-round distinguisher and adding one half-round at both sides. Note that
they are the best valid attacks on it in terms of the number of rounds.

1.2 Organization

First, we briefly recall SPEEDY, as well as differential, linear and differential-
linear cryptanalysis in Sect. 2. In Sect. 3, we show how to exploit the propaga-
tion properties of SB and MC operations, and introduce the TDDT (short for
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Table 1: Summary of valid attacks on SPEEDY-7-192 and SPEEDY-5-192. KP, CP
and CC separately denote the data collected in the known-plaintext, chosen-
plaintext and chosen-ciphertext settings. Time complexities are evaluated in en-
cryption units, while memory costs are evaluated in block size.

Version
Security Claim

(Data,Time)
R Data Time Memory Type Ref.

SPEEDY-7-192 (2192, 2192)

7 2187.27CC 2187.75 242 Diff. [5]

7 2186.53CC 2187.39 236 Diff. Sect. 5.1

7 2186.53CP 2187.39 2156 Diff. Sect. 5.1

7 2188.50KP 2189.41 2185.04 Linear Sect. 5.2

SPEEDY-5-192 (264, 2128)

3 217.6CP 252.5 217.62 Integral [16]

4 261CC 2119.69 283 Diff. Sect. 5.3

4 261CP 2105 2105 Diff.-Linear Sect. 5.4

truncated differential distribution table). Using these properties, we introduce
the automated search method oriented to key recovery for differential, linear
and differential-linear cryptanalysis in Sect. 4. Detailed attack procedures are
given in Sect. 5. Finally, we summarize our work in Sect. 6. Besides, the code
for searching distinguishers in this paper is available at the following repository:
https://github.com/Jin-liang-Wang/Cryptanalysis-of-SPEEDY.

2 Preliminaries

2.1 Brief Introduction of SPEEDY

SPEEDY [9] is a family of ultra-low latency block ciphers proposed at CHES 2021.
SPEEDY uses a 6-bit bijective S-box and can be instantiated with different block
sizes, key sizes, and numbers of rounds. For instance, SPEEDY-r-6l is the version
of block size and key size of 6l-bits, and r is the number of iterated rounds.
The internal state of SPEEDY-r-6l can be viewed as an l × 6 rectangle array of
bits where l = 32. Following the notation of its design document [9], we use
x[i,j] to denote the bit located at row i and column j of the state x where
0 ≤ i < l, 0 ≤ j < 6.

The design document of SPEEDY suggests l = 32, and the number of rounds
r ∈ {5, 6, 7}, which are called SPEEDY-5-192, SPEEDY-6-192, SPEEDY-7-192, re-
spectively. As for the security claim, SPEEDY-r-192 achieves 128-bit security when
iterated over r = 6 rounds and full 192-bit security when iterated over r = 7
rounds, while the r = 5 rounds variant provides 2128 time complexity and 264

data complexity. To make it clear, we denote SPEEDY-r-192 as SPEEDY in this
paper, and briefly recall the cipher as follows.
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Initialization. SPEEDY receives a 192-bit plaintext and initializes the inter-
nal state with a two-dimensional matrix x. Specifically, it initializes the k-th
MSB (short for the most significant bit) into x[i,j], where k = 6i+ j.

Round Function. Its round function consists of five different operations: Sub-
Box (SB), ShiftColumns (SC), MixColumns (MC), AddRoundKey (Akr

) and
AddRoundConstant (Acr ). A high-level overview of its round function is shown
in Fig. 1. Note that the last round function only has three operations.

SB SC SB SC MC

kj cj

Rj with 0 ≤ j < r − 1

... SB SC SB

kr−1 kr

Rr−1

Fig. 1: r rounds of SPEEDY block cipher.

SB is composed of 32 parallel 6-bit Sbox, where each Sbox takes the i-th row
(x[i,0], x[i,1], x[i,2], x[i,3], x[i,4], x[i,5]) as input and its output is placed in the same
row. The detail of S-box is shown in Appendix A. SC rotates the j-th column
of the state upwards by j bits. In other words, the output bit y[i,j] equals to
the input bit x[(i+j) mod 32,j]. MC also operates on each column, where seven
specifically chosen input bits are XORed as a new bit of its output, as shown in
Equation (1). It also can be seen as multiplying each column by a cyclic matrix.

y[i,j] = x[i,j] ⊕ x[i+1,j] ⊕ x[i+5,j] ⊕ x[i+9,j] ⊕ x[i+15,j] ⊕ x[i+21,j] ⊕ x[i+26,j], ∀i, j. (1)

The 192-bit round key kr and 192-bit constant cr are respectively XORed with
the entire state in Akr

and Acr .

Key Schedule. The 192-bit master key of SPEEDY is regarded as the first round
key k0. Relation between the r-th round key kr and the (r + 1)-the round key
kr+1 is constructed by a bit permutation PB. To be clear, the j-th bit of kr+1

equals to the i-th bit of kr, where j ≡ (7i+ 1) mod 192.

2.2 Differential, Linear and Differential-Linear Crytanalysis

Differential Cryptanalysis. Differential cryptanalysis is a chosen plaintext
attack proposed by Biham and Shamir [4] in 1990. Starting from a well-chosen
difference δin, the distribution of Ek(x)⊕Ek(x⊕ δin) is non-uniform. More pre-
cisely, there exits a specific δout such that Prx,k[Ek(x) ⊕ Ek(x ⊕ δin) = δout]
is significantly higher than 2−n, where n is the block size. In order to distin-
guish a cipher with a high probability differential (δin → δout) from a random
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permutation, one can collect D ciphertexts corresponding to pairs of plaintexts
(P, P ⊕ δin), and compute the number of pairs following the differential:

Q = # {P : Ek(P )⊕ Ek(P ⊕ δin) = δout} .

The expected value of Q for the cipher is D × Pr[δin → δout] and D × 2−n for
the random permutation. Thus, the distinguisher succeeds with high probability
when D = O(1/Pr[δin → δout]).

Linear Cryptanalysis. Linear cryptanalysis, proposed by Matsui at EURO-
CRYPT 1993 [13], exploits the linear approximations of the round function in
order to obtain a biased approximation of the cipher. The linear approxima-
tion is a pair of masks (α, α′) such that the distribution of the XORed masked
plaintext and ciphertext x · α ⊕ Ek(x) · α′ is biased. More precisely, we have
(|Prx[x · α ⊕ Ek(x) · α′] − 1

2 | ≫ 2−n/2) for most keys k), where x · y =
⊕

i xiyi
denotes the inner product. Then, we have the correlation which is expected to
be zero when averaged over all keys is:

Cork (α→ α′) = 2Pr
x
[x · α = Ek(x) · α′]− 1.

Similarly, to distinguish a cipher with a biased linear approximation (α, α′)
from a random permutation, we collect D known plaintexts/ciphertexts, and
evaluate the experimental correlation:

Q = (# {P,C : P · α⊕ C · α′ = 0} −# {P,C : P · α⊕ C · α′ = 1}) /D.

The expected value Q is larger (in absolute value) for the cipher than for a
random permutation and can be observed with high probability when D =
O(Cor(α→ α′)−2).

Differential-Linear Cryptanalysis. Differential-linear cryptanalysis, proposed
by Langford and Hellman in 1994 [8], is a technique to combine differential and
linear cryptanalysis. Let E be a cipher which can be described as a cascade of
three subciphers, E0, Em and E1, i.e., E = E1 ◦Em ◦E0. Let δin and δout denote
the input and output difference of E0, α and α′ be the input and output linear
mask of E1. Asume that the differential trail δin −→ δout in E0 is satisfied with
probability p, and the linear trail α −→ α′ in E1 is satisfied with correlation q.
The correlation of δout −→ α in Em is satisfied with

r = Cor
(
δout

Em−−→ α
)
= 2Pr

x
[Em(x) · α = Em(x⊕ δout) · α]− 1.

Then, the correlation of the trail δin
E−→ α′ is satisfied with correlation Cor(δin

E−→
α′) = pq2r. One can collect D ciphertexts corresponding to pairs of plaintexts
(P, P ⊕ δin) and evaluate the experimental correlation:

Q = (# {P : α′ · (E(P )⊕ E(P ⊕ δin)) = 0)} −# {P : α′ · (E(P )⊕ E(P ⊕ δin)) = 1)}) /D.

Similarly, the expected value is larger (in absolute value) for the cipher than
for a random permutation and can be observed with high probability when

D = O(Cor(δin
E−→ α′)−2).
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3 Further Study on Operations of SPEEDY

In general, the extended path before and after the distinguisher determines the
number of guessed key bits, the attack rounds, and the time complexity. To
control the number of active S-boxes in the extended path, we add the constraint
of the propagation through key recovery rounds and propose the concept of
TDDT (short for truncated differential distribution table). Since the security of
SPEEDY highly relies on the 6-bit S-box and the MC operation, we did in-depth
research for SB operation with the TDDT in Sect. 3.1 and for MC operation in
Sect. 3.2, respectively. With these newly observed properties, we can construct
the automated search method for the differential and linear distinguishers by
taking the key recovery into account in Sect. 4.

3.1 Truncated Differential Distribution Table

In general, the time complexity of differential cryptanalysis is affected by the
number of active bits in plaintext and ciphertext. To control the number of
active bits, we limit some bits being inactive before the second SB operation to
reduce the number of active bits in plaintext, as shown in Sect. 4.

On average, each bit is limited inactive in rounds of key recovery with prob-
ability 2−1. However, we have found that in a specific S-box, e.g., the S-box of
SPEEDY, this probability is fluctuate considerably. Two examples are provided in
Equations (2a) and (2b) below, although the input sets of these two situations
are both one bit inactive, the probabilities of Equations (2a) and (2b) are much
higher than 2−1.

**0***
SB−−−−−−→

p=2−0.54
010000 , (2a)

0*****
SB−−−−−−→

p=2−0.83
010000 , (2b)

where * denotes a arbitrary bit ∈ {0, 1}. The probability is computed as follows.
Taking Equation (2b) as an example. The input set ∆in contains 25 differences,
i.e., {0b000000,0b000001,· · · ,0b011111}. We assume that each difference in ∆in

appears with equal probability. Besides, the output difference is δout =0b010000.

Then this probability is computed by Pr(∆in
SB−→ δout) =

∑
δin∈∆in

Pr(δin
SB−→δout)

|∆in| .

In order to get an optimal probability in rounds of key recovery, we need to
consider how to select inactive bits. In this section, we introduce the TDDT and
show how it can select inactive bits using the automatic solver in Sect. 4.

Compared to DDT (short for differential distribution table [4]) which contains
the number of transition situations of each fixed input-output difference, for a N -
bit S-box, the TDDT is a 2N ×2N table which contains the number of transition
situation from a set of input differences to a set of output differences. To clarify,
we define the following notation to represent a set of differences named bit-
string k. For an n-bit bit-string k = (k0, k1, ..., kn−1),k ∈ Fn

2 , we define k′ ⪯ k,
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if k′i ≤ ki for all i. Then, we denote B∆in
/B∆out

as the bit-string representation of
the input/output difference set ∆in/∆out. For example, when a truncated input
difference ∆in is "00*00*", the bit-string representation B∆in is 0b001001(S)

5,
i.e., B∆in = 0b001001(S) denotes the differential set "00*00*" which contains
differences {0b000000,0b000001,0b001000,0b001001}. Thus, we can construct
TDDT from the DDT using Algorithm 1 and the probability of the truncated
difference propagation from ∆in to ∆out is:

Pr(∆in
SB−→ ∆out) =

TDDT[B∆in
][B∆out]

|∆in| · 2N
, (3)

where N is the size of S-box and |∆in| denotes the number of input differences
δin that fulfills δin ⪯ ∆in.

Algorithm 1: Construct TDDT

Input: S-box
Output: TDDT; // Truncated difference distribution table

1 L[i][j]← 0,(0 ≤ i, j < 2N ); // Initial an empty list for TDDT

2 L[0][0]← 2N ; // Initialize the case 0
SB−→ 0 with probability 1

3 Generate the DDT of S-box;

4 for B∆in ∈ [1(S), 2
N
(S)) do

5 for B∆out ∈ [1(S), 2
N
(S)) do

6 for δout ⪯ ∆out do
7 for δin ⪯ ∆in do
8 L[B∆in ][B∆out ]← L[B∆in ][B∆out ] + DDT[δin][δout];

9 return L as TDDT of the S-box;

By exploiting the differential property of the transition from a set of differ-
ences that are inactive in certain bits to another set of differences with different
inactive bits, TDDT can help us make a universal search model for key recovery.
Moreover, we also consider the cases of differential propagation from the fixed
input difference to a set of output differences. Then, we define FTDDT(short for
fixed-input truncated difference distribution table) to describe the probability
distribution of this transition and introduce it as follows.

Fixed-input Truncated Difference Distribution Table. As aforementioned,
FTDDT contains the number of transition situations of a fixed input difference
to a set of output differences. For the special case, when the input difference is
zero, the output difference must be zero, i.e., the set of output differences ∆out

5 To distinguish the set of differences from the single differential, we use numbers with
subscript (S) to represent the set of differences.
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contains only zero differences. More precise, when δin = 0, we have

FTDDT[0][0] = 2N and FTDDT[0][i] = 0, i ∈ [1, 2N ).

We show the construction of FTDDT in Algorithm 2. By modeling these dif-
ference distribution tables into our automated search model, we can find a
key recovery-oriented differential which contains key recovery rounds as well
as distinguishers. Time complexity of Algorithm 2 is(2N − 1) ·

∑N
i=1

(
N
i

)
2i =

O(2N ·log2 6), which is evaluated as the number of the look-up table operations.

Algorithm 2: Construct FTDDT

Input: S-box;
Output: FTDDT; // Fixed input/output truncated difference

distribution table

1 L[i][j]← 0, (0 ≤ i, j < 2N ); // Initialize an empty list for FTDDT

2 L[0][0]← 2N ; // Initial the case 0
SB−→ 0 with probability 1

3 Generate the DDT of S-box;

4 for δin ∈ [1, 2N ) do
5 for ∆out ∈ [1(S), 2

N
(S)) do

6 for δout ⪯ ∆out do
7 L[δin][∆out]← L[δin][∆out] + DDT[δin][δout];

8 return L as FTDDT of the S-box;

In summary, FTDDT shows the non-randomness of S-box with bit-wise trun-
cated differential propagation. Considering the differential propagation through
a random permutation, the fixed input difference δin will propagate to the out-
put difference set ∆out with probability 2−i where the number of zero bits in
B∆out

is i. As mentioned before, due to the non-randomness of a specific S-box,
the probability is changed to FTDDT[δin][B∆out

]/2N . In order to verify the cor-
rectness of FTDDT, we have conducted an experiment in Appendix B. With this
accurate propagation probability of differential, we can gain a better-extended
path for a key recovery attack as shown in Sect. 4.

Inverse Probability of FTDDT. During key recovery, we need to partially
encrypt (resp. decrypt) the plaintext pair (resp. ciphertext pair) to validate the
input (resp. output) of the distinguisher. To filter the good pairs of plaintext
more precisely in validating the input of the distinguisher, we utilize the inverse of
FTDDT. We denote Na as the number of active bits in ∆out. For example, Na =
5 if ∆out =0b110111, i.e., **0***. Then, when considering a fixed difference
δout ⪯ ∆out propagating to δin which is the inverse of FTDDT[δin][B∆out

], the
average probability of this transition is FTDDT[δin][B∆out

]/2N+Na . The proof is
shown in Appendix C. With the inverse probability of FTDDT, we will get the
more precise time complexity of the key-recovery procedure.
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3.2 Differential Propagation Property of MC

The MC operation of SPEEDY generates each new bit in a column by XOR-
ing seven current bits. It also can be seen as multiplying each column by a
cyclic matrix M. In this section, we research the MC operation in-depth by con-
sidering the matrix M. Here we traverse all possible inputs with HW (short
for Hamming weight) from one to eight and find that their minimum output
HW are (7, 8, 7, 8, 7, 6, 5, 4). Table 2 summarizes which choices of active differen-
tial bits are associated with these minimal output HW cases. Specifically, we use
{a0, a1, · · · } to denote that the ai-th bit of the input difference is active. More-
over, due to the property of the MC operation of SPEEDY, we rotate the array
and make the 0-th bit active to represent the rotation invariant array class. From
Table 2, we can observe that when the input HW is one, there is a minimum
sum of the input and output minimum HW. Meanwhile, when the input HW is
two and three, the minimal sum of the input and output HW is relatively small.

Table 2: Summary of active differentials yielding low output HW from M. When
the input HW is greater than 3, the cases of active bits are too large to list. We
record their number to simplify. For the input differences with different HW, we
list its output difference which have the minimum HW.

In HW Out HW Active Bits Total HW

1 7 {0} 8

2 8
{0,6} 10
{0,11} 10

3 7 {0,4,15} 10
4 8 10 cases 12
5 7 7 cases 12
6 6 8 cases 12
7 5 8 cases 12
8 4 5 cases 12

When building the automated search model, one can utilize the property of
MC to control the diffusion of the differential, which can reduce the size of the
search space. In this work, we utilize a divide-and-conquer method to search
for a longer differential by dividing it into several parts. More precisely, for a
four rounds differential, we first search several two rounds differentials with the
input difference of the last MC is of relatively low HW as in Table 2. Then, we
search the last two rounds of differential and connect them with the middle MC.
By limiting the sum of input-output HW of the middle MC, we can control the
diffusion of the 4-round differential, i.e.minimizing the total number of activated
S-boxes involved in the middle, and achieve a higher probability.

We note here that Boura et al. [5] proposed a different strategy to utilize the
properties of the MC operation. In their approach, a differential is divided into
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several one-round parts and they consider the case that the HW of both input
and output are small.

4 Automated Search Method Oriented to Key Recovery

In this section, we introduce the automated search strategies of differential, linear
and differential-linear distinguishers against SPEEDY following the divide-and-
conquer strategy, as well as taking the key recovery procedure into consideration.

Usually, cryptanalysts perform key recovery attacks based on a strong distin-
guisher. By appending several rounds before and after the distinguisher, one can
obtain an extended path containing both distinguisher and key recovery rounds.
However, this two-step process of key recovery cannot promise optimal results
as shown in [18,15]. Therefore, automated search oriented to key recovery can
obtain better attack results. To find such key-recovery-friendly distinguishers,
properties of SB and MC are introduced in Sect. 3 are utilized.

We implement our search algorithms using STP6, which is a solver developed
based on the SAT (short for boolean satisfiability problem) [12]/SMT(short for
satisfiability modulo theories) [2] problem and has been widely used in the field
of cryptography [6,10,14,11].

4.1 Differential Search Model against SPEEDY

Since we aim to search for distinguishers in the single-key setting, we can omit
Akr

and Acr in our model. We denote Si
j as the j-th intermediate state of the

i-th round and set the first round indexed with zero as the key recovery round.

SB SC SB SC MCKey 

Recovery

SB SC SB SC MC2-nd

round

SB SC SB SC MC3-rd

round

SB SC SB SC MC4-th

round

SB SC SB SC MC5-th

round

SB SC SB SC MC1-st

round

SB SC SB6-th

round

0

1S0

0S 0

2S 0

3S 0

4S

1

1S1

0S 1

2S 1

3S 1

4S

2

0S 2

1S 2

2S 2

3S 2

4S

3

0S 3

1S 3

2S 3

3S 3

4S

4

0S 4

1S 4

3S 4

4S4

2S

5

0S 5

1S 5

2S 5

3S 5

4S

6

1S
6

2S 6

3S6

0S

Fig. 2: 7-round differential attack of SPEEDY.
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Generally, the variable number and the size of each variable will determine
the total scale of the search model and affect the complexity of solving the
SAT/SMT problem. As the number of rounds increases, the time and memory
complexity of solving the problem increases exponentially. Specifically, when the
model exceeds four rounds, we cannot obtain a solution in a reasonable time
with STP in the case of SPEEDY. For obtaining a longer distinguisher, we employ
a divide-and-conquer [18] approach to search several models with a short round
to form the entire differential. As shown in Fig. 2, our automated search model
is divided into several steps. Motivated by [15], we also consider a key recovery-
oriented search model where the distinguisher rounds and key recovery rounds
are all included.

Model One: 7-Round Differential Contains 1.5-Round of Key Re-
covery. The 7-round differential consists of 5.5-round differential distinguisher
S1
0 → S6

1 and 1.5 key recovery rounds S0
0 → S1

0 , S
6
1 → S6

3 . For convenience, we
use backward FTDDT to represent the FTDDT of SPEEDY S-box and forward
FTDDT to represent the FTDDT of the inverse of SPEEDY S-box.

Step 1: From S1
3 to S3

4 , the search strategies are as follows.

Rule 1: Model SB to comply with DDT.
Rule 2: Model each active S-box in S1

3 to comply with 2−3×2 probability.
This strategy is mainly used to limit the active S-box in the S1

3 . More
precisely, we measure this trail with probability 2−6×Na × p, where Na

is the number of active S-box in S1
3 and p is the probability generated

from Rule 1 in Step 1. Indeed, Na active S-boxes imply that there will
have 2 × Na S-boxes in trail S1

0 → S1
3 . Since the maximum probability

transition through the S-box is 2−3, we measure each active S-box in S1
3

with probability 2−6.
Rule 3: Constrain only one of the columns to be activated in S3

4 . For the
input before MC, consider only entries with low HW from Table 2.

Step 2: From S3
4 to S6

0 , the strategies to reduce search space are as follows.

Rule 1: Due to the differential must be linked, we fix the input differences
as those in S3

4 .
Rule 2: Model the active S-box in S6

0 to comply with a maximum proba-
bility of 2−3.

Step 3: After running the above two steps in parallel, we obtain several four
rounds of differentials with high probability. Then, we choose the differential
whose probability is higher than 2−170 and search the corresponding last 1.5-
round differential of distinguisher and 1.5-round of key recovery as follows.

Rule 1: Model S1
0

SB−→ S1
1 and S1

2
SB−→ S1

3 to comply with DDT.

Rule 2: Model S0
1

SB−1

−→ S0
0 and S6

0
SB−→ S6

1 to comply with FTDDT.
Rule 3: Constrain the active S-box in S0

1 and S6
2 less than 32.

Rule 4: Constrain the active S-box number in S0
1 less than 16.

Rule 5: Constrain the active S-box number in S6
2 more than 6.
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Here, rules 3 to 5 are used to constrain the active bits to reduce the time
complexity of the key recovery phase as shown in Sect. 5.1.

Step 4: Following step one to three, we can get several 5.5-round distinguishers
with 1.5-round of key recovery. Then, we choose the distinguisher with max-
imum probability and search an extended path for key recovery as shown in
Algorithm 6 (Appendix G). To reduce the time complexity, we consider the
differential rotation invariant of SPEEDY. More precisely, we use one of the
32 rotation-invariant distinguishers to implement the key recovery attack,
and the chosen one makes the lowest time complexity.

With the above four steps, we find a differential trail with probability 2−185.53

which can be used to attack on the 7-round SPEEDY. More precisely, this trail
consists of a 5.5-round differential distinguisher with probability 2−182.49 and a
1.5-round key-recovery phase with probability 2−3.04. We illustrate it as Fig. 3.

Model Two: 4-Round Differential Contains Two Rounds of Key Re-
covery. From Step 2, we can get several two rounds distinguisher from S3

4 to
S6
0 . Then, we use backward FTDDT and forward FTDDT to search 2-round of

key recovery. We show this distinguisher with probability 2−59.35 in Appendix J.
For the property of linear key relation between k0 and k4, the rotation invari-
ant property does not affect the time complexity when attacking the 4-round
SPEEDY.

4.2 Searching Linear Distinguishers against SPEEDY

For linear cryptanalysis, we use a similar strategy used for differential search,
which is a model oriented toward key recovery. Then, we search for a five-round
distinguisher with two rounds of key recovery by following a four-step process.
Due to the page number limit of the paper, we have placed the specifics in
Appendix D.

Finally, we found a 5-round distinguisher combined with two key recovery
rounds with correlation 2−93.01. We show the detail of the linear distinguisher
in Appendix I. In this distinguisher, the bits of k7 which is derived from k0 by
linear key schedule is 139. We reduce the guessed key bits to 185 bits in the key
recovery phase.

4.3 Searching Differential-Linear Distinguishers against SPEEDY

Similarly, we search for distinguishers against 4-round SPEEDY. More specifically,
we search for three rounds of differential-linear distinguishers and extend half a
round forward and backward for key recovery. The detailed strategy is shown in
Appendix E.

Finally, the distinguisher is shown in Fig. 5 of Appendix F. The correlation
of this 3-round distinguisher is 2−23.095 and the probability of rounds of key-
recovery is 2−6.972. The bits of k7 deduced from k0 by linear key schedule are
29.
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5 Key Recovery Attack against SPEEDY

In this section, we first implemented both differential and linear cryptanalysis
on full SPEEDY with the newly obtained distinguishers in Sect. 4. Then, the key
recovery attack against other versions of SPEEDY are also provided.

5.1 7-Round Differential Attack against Full SPEEDY

Using the newly obtained 7-round differential containing distinguishers and key
recovery rounds, we can perform key recovery attacks on full SPEEDY. Before
the attack, we first introduce some techniques that will be used in this section
as follows.

Deduce k0 from k7 by Linear Key Schedule. Due to the linear key schedule,
we can get the relationship between k0 and k7 and deduce the key bits of k0 from
k7. We call these bits of k0 deduced key bits from k7. The detailed relationship
between k0 and k7 is shown as the purple squares in Fig. 3.

Function to Sieve Possible Key Guesses. The FirstSboxSieve function
uses the key bits of k7 to deduce the six bits of each row in k0 using the linear key
schedule. After deducing the six bits of k0 from k7, we can filter the corresponding
key guessing of the plaintext pair with the zero difference in S0

1 . Then, for each
plaintext pair and the corresponding six bit keys of each row, there will leave
26−d−n key guesses after sieving by the first S-box, where d is the bit number
deduced from k7 and n is the inactive bit number after the first S-box. We show
the details of FirstSBoxSieve in Algorithm 3. The SecondSboxSieve is used
to combine the sets Li of possible key bits in a bigger set. The function can sieve
the elements of the bigger set using the difference in S0

3 . The detail is shown in
Algorithm 4.

Distinguisher with Rounds of Key Recovery. The 5.5-round differential
distinguisher is shown in Fig. 3, where the black square and the blue square
denote the active bits from S1

4 to S5
4 and the active bits from S0

3 to S1
3 , respec-

tively. To distinguish the differential propagation of the key recovery round, we
use different colors to indicate the propagation of each active bit in the extended
rounds, where the gray square indicates the active bits whose differences are
forced zero. Further, we use the shaded square to denote the bits random from
{0, 1}. Then, we use the red square to denote the active bits in S0

0 and S6
3 . To

represent the bits in k0 that are derived from k7 using the linear key schedule,
we use the purple square to denote the deduced bits in k0 and the green square
to denote the guessed key bits when performing the key recovery attack. Note
that 180 key bits in k0 are involved in the key recovery attack.

The attack procedure contains three parts, i.e., data collection, key recovery
and brute force the master key.
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Fig. 3: Key recovery attack on 7-round SPEEDY with differential cryptanalysis.
When the output set of a FTDDT has only one single bit, it is shown as a single
difference in this figure since it has one possible case for such an output set,
e.g., 0b00*000 is shown as 0b001000 since the active difference is impossible to
transit to the 0b000000 through the S-box of SPEEDY.
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Algorithm 3: Sieving keys with the first S-box

Input: (mi
0,m

i
1); // The i-th row of the plaintext pair

Input: ∆k; // The set of 6-bit keys

Input: δout; // The output difference for right pair

Output: Possible 6-bit keys for the i-th row with the corresponding
compressed internal state of pairs in S0

1 ;
1 function FirstSboxSieve(mi

0,m
i
1,∆k,δout)

2 L ← ∅;
3 for all ki ∈ ∆k do
4 x0 ← S-box(m0 ⊕ ki);
5 x1 ← S-box(m1 ⊕ ki);
6 if x0 ⊕ x1 == δout then
7 Compress x0 by the active bits in δout;
8 Compress x1 by the active bits in δout;

9 L ∪←− (x0, x1, ki);

10 if L == ∅ then
11 Discard the 6-bit last round key for this (mi

0,m
j
i ) pair;

12 else
13 return L;

Data Collection. Consider structure S which consists of 2156 plaintexts and for
each plaintext pair P0, P1 ∈ S, P0⊕P1 = (N,N,N,N,N,N,N,N,N,N,N,N,N,
0, N,N,N,N,N,N,N,N,N,N,N, 0, 0, 0, 0, 0, N,N), where N denotes any 6-bit
cell. We require the oracle to encrypt those 2156 plaintexts and collect the cipher-
texts by the hash table which is indexed by the 156-bit inactive bits in cipher-
texts. From the hash table, we expect to get 2155 pairs of plaintext-ciphertext pair
(P0, C0), (P1, C1) that satisfy C0 ⊕ C1 = (0, N, 0, N, 0, 0, 0, N, 0, 0, 0, 0, N, 0, 0,
0, N, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, 0, 0, 0).

Next, we briefly introduce the key recovery and brute force phases, the detail
of the pseudocode is shown in Appendix G. We use δiin to denote the i-th row
of the input difference of the 5.5-round distinguisher.

Key Recovery. For each pair obtained from the data collection phase, we first
use C0 ⊕ C1 to deduce the 36-bit k7 from DDT. Note that, since we evaluate
the propagation probability of key-recovery rounds by FTDDT, the number of
deduced 36-bit k7 should be calculated by the inverse probability of FTDDT as
shown in Sect. 3.1. For each deduced 36-bit k7, we fix the deduced keys in k0
from k7 due to the linear key schedule and guess other 144-bit k0 as follows.

Firstly, we use the early abort technique which is guessing the key-bits of
row 14,15,17 and partial encrypt to run FisrtSboxSieve. If there are no
satisfied key guesses to validate the output difference of the SubBox opera-
tion, we consider the 36-bit deduced k7 is wrong and discard it. If all the
deduced k7 are wrong, we consider this pair of plaintext-ciphertext is wrong
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Algorithm 4: Sieving keys with the second S-box

Input: [Li, ...,Li+n−1]; // The sets obtained from FisrtSboxSieve or

SecondSboxSieve
Input: δout; // The output difference for right pair in S0

3

Output: The set of possible keys with the corresponding compressed internal
state of pairs in S0

3 .
1 function SecondSboxSieve(mi

0,m
i
1,∆k, δout)

2 L ← ∅;
3 for all (xi

0, x
i
1, ki) ∈ Li do

4 for all (xi+n−1
0 , xi+n−1

1 , ki+n−1) ∈ Li do
5 x0 ← ComActBit(xi

0, · · ·xi+n−1
0 );

6 x1 ← ComActBit(xi
1, · · ·xi+n−1

1 );
/* ComActBit function is used to combine the bits

propagated by the δout in (xi
t, · · ·xi+n−1

t ) into xt */

7 y0 ← S-box(x0);
8 y1 ← S-box(x1);
9 if y0 ⊕ y1 == δout then

10 key ← ki||...||ki+n−1;

11 x0 ← SaveBit(xi
0, · · ·xi+n−1

0 );

12 x1 ← SaveBit(xi
1, · · ·xi+n−1

1 );
/* SaveBit function is used to save the bits used in

the following algorithm */

13 L ∪←− (x0, x1, key);

14 if L == ∅ then
15 Discard the 6-bit last round key for this (mi

0,m
j
i ) pair;

16 else
17 return L;

and discard it. Next, for each plaintext-ciphertext pair, we sieve k0 in row
11,12,13,16 with FisrtSboxSieve and partial encrypt to δ11in with SecondS-
boxSieve. After this step, the plaintext-ciphertext pair and corresponding k0
can validate the input difference δ11in . Similarly, we discard the deduced k7 if
there are no satisfied k0 guesses to validate δ11in and discard the pair if no de-
duced k7 is left. Then, we employed the same method to those deduced keys
in the row of k0 with FisrtSboxSieve and partial encrypt plaintext pairs to
δ14in , δ

15
in , δ

18
in , δ

19
in , δ

7
in, δ

5
in, δ

4
in, δ

3
in, δ

2
in, δ

1
in, δ

30
in , δ

29
in , δ

21
in to further sieve with Sec-

ondSboxSieve.

Finally, it will leave 2135.46 pairs and 26.5 180-bit keys for each pair on av-
erage, and we will get 2141.96 candidate keys of this 180-bit master key for each
structure. Then, we use the brute force procedure to sieve the wrong candidate
keys.
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Brute Force. For each candidate key from the key recovery procedure, we guess
the remaining 12-bit of the master key to get the complete 192-bit candidate
master key kc. Then we use a test pair (mt, ct) from encrypt oracle to check if
Ekc(mt) = ct to verify if kc is the right key.

Complexity and Success Probability. Since the memory access of storing
the ciphertexts to the hash table is negligible compared to the time for collecting
the ciphertexts, the time complexity of data collection for each structure is 2156.
Since the hash table storing 2155 pairs is very large, we treat the time to access
this table as one encryption. Further, since the 7-round SPEEDY encryption has
7 × 2 × 32 = 448 SubBox operations, the time complexity of the key recovery
phase is less than 2155+(70×2155)/448 for each structure (details are shown in
Appendix H). Then, the time complexity of Brute Force phase is 2151.96 times 7-
round SPEEDY encryption for each structure. Overall, the total time complexity
of each structure is 2156 + 2155 + (70 × 2155)/448 + 2153.96 ≈ 2156.86 7-round
SPEEDY encryptions.

The signal-to-noise-ratio is 2180×2−185.53

2135.46/2155×26.5 ≈ 27.51. Using 2185.53/2155 ≈
230.53 structures, we can ensure the success rate of 79.15% with 7.51-bit advan-
tage according to [17]. Hence, the data complexity is 2186.53, the time complexity
is 230.53 × 2156.86 ≈ 2187.39 and the memory required is 2156.

Reducing Memory Requirement. The above attack require 2156 bits in
memory, which is too large. To obtain lower memory complexity, we can use
the chosen ciphertext attack mode and select the active 36-bit structure at the
ciphertext. After using the inactive 36 bits in the plaintext as the index, we get
235 pairs, and then one can follow the key recovery procedure used in the above
attack to obtain the right key.

5.2 7-Round Linear Attack against Full SPEEDY

With the 5-round linear distinguisher shown in Appendix I, we compute the
attack parameter on SPEEDY-7-192 using the symbols borrowed from [7]. With the
FWT approach in [7], the time complexity is 2(ρM +ρA)2

|k0|+|k7|−l07 , where the
|ki| means the bit number guessed in ki, and l07 means the key bits of k7 deduced
from k0. Following the notation in [7], ρA is the cost of an addition, and ρM is the
cost of a multiplication. Assuming that two multiplications correspond to roughly
one evaluation of the cipher, we have the time complexity of key recovery phase
2186 encryptions. The memory required is 2144+2180+2185 ≈ 2185.04. According
to [17], we need 2188.50 data and the advantage a = 4 to achieve the success rate
69.12%. Finally, we exhaustively search the remaining 7 key bits. The total time
complexity of the attack is 2188.50 + 2186 + 2188 ≈ 2189.41.

5.3 4-Round Differential Attack against SPEEDY.

As shown in Appendix J, we choose ciphertexts in S3
3 to make a 60-bit structure

and filter the corresponding plaintext pairs in S2
0 . After running this step, it will
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leave
(
260

2

)
/236 ≈ 283 pairs. Then, we sieve the key bits of the 108-bit involved

k4 according to the 283 pairs and leave 243.692 possible k4 for each pair. Then,
for the combination of these 283 × 243.692 = 2126.692 plaintext-ciphertext pairs
and corresponding key guesses, we guess the 156-bits k0 using the method in
Sect. 5.1.

Due to the differential probability being 2−59.35 and one structure can only
provide 260 data, we construct two structures to collect the data. The data
complexity of this attack is 261, the time complexity is 2119.692 and the memory
required is 283. With above attack parameters, the success rate is 94.17%.

5.4 4-Round Differential-Linear Attack against SPEEDY

With the distinguisher searching in Sect. 4.3, we obtain a 4-round differential-
linear attack against SPEEDY with 261 data complexity 2105 time complexity and
2105 memory requirement. The detail of this attack is shown in Appendix F .

6 Conclusion

In this paper, we first show how to find key-recovery friendly distinguishers for
SPEEDY by following the divide-and-conquer strategy as well as some other new
techniques. With such strategies, we found a 5.5-round differential distinguisher
which is key-recovery friendly and with higher probability than the one used
in the previous result. Using this distinguisher, we are able to mount the first
chosen-plaintext full-round attack on SPEEDY-7-192. Besides, with the same dis-
tinguisher, we can also mount a full-round attack under the chosen-ciphertext
setting, which slightly reduces the attack complexities compared with the previ-
ous one proposed in the same setting. Meanwhile, using a similar search strategy,
we also found a 5-round linear distinguisher which leads to the first known-
plaintext full-round attack. Although the full-round security of this variant has
recently been announced to be broken, our attacks here need a weaker ability
requirement for the adversary. Besides, for SPEEDY-5-192, which requires more
restricted attack parameters, we also propose two 4-round key recovery attacks
using a differential distinguisher and a differential-linear one, respectively. Ac-
cording to our best knowledge, both attacks are the best ones on this variant in
terms of the number of rounds. However, its full-round security is not threatened.
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A The 6-bit S-box of SPEEDY

Table 3: The 6-bit S-box of SPEEDY. All elements are expressed in hexadecimal.

x0x1 x2x3x4x5

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 08 00 09 03 38 10 29 13 0c 0d 04 07 30 01 20 23

1 1a 12 18 32 3e 16 2c 36 1c 1d 14 37 34 05 24 27

2 02 06 0b 0f 33 17 21 15 0a 1b 0e 1f 31 11 25 35

3 22 26 2a 2e 3a 1e 28 3c 2b 3b 2f 3f 39 19 2d 3d

B Experiment to Verify The Correctness of FTDDT

In this section, we conducted an experiment to calculate the probability of prop-
agation to verify the correctness of FTDDT. For several random-chosen fixed-
input differences δin, we tested the transfer probability from a single difference
δin (shown in the left-hand side of Equation 4) to a set of differences ∆out (shown
in the right-hand side of Equation 4) in the S-box used in SPEEDY.

More precisely, we randomly choose 220 42-bit plaintexts p and denote the
number of p that satisfies {S-box(p) ⊕ S-box(p ⊕ δin) ∈ ∆out} as N . Then the
probability obtained from this test is N/220.

010000
SB−→ **0***

010000
SB−→ ****00

010000
SB−→ 0*****

001000
SB−→ 00**** (4)

001000
SB−→ ****00

000100
SB−→ ***0**

000100
SB−→ 0**0**

Our validation algorithm is written in python code and we run it on an In-
tel(R) Core(TM) i7-8700 CPU. Finally, the tested probability is 2−5.9671 while
the transfer probability caculated from FTDDT is 2−5.9622. Therefore, we con-
sider that the accuracy obtained by FTDDT is verified.
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C Inverse Probability of FTDDT.

Theorem 1. When considering a fixed difference δout ⪯ ∆out propagate to
δin which is the inverse of FTDDT[δin][B∆out ], the average probability of this
transition is

FTDDT[δin][B∆out
]/2N+Na .

Proof. Since the S-box is bijective, the inverse probability of FTDDT is equal

to the average probability of δin
SB−→ δout (averaged over all δout ∈ ∆out). Next,

remember that the FTDDT describes the probability of a group of differential
transition. Thus, with this probability, we can obtain the average probability

of δin
SB−→ δout, δout ⪯ ∆out by dividing by the size of the output differential

set |∆out|. The probability of the case δin
SB−→ ∆out is FTDDT[δin][B∆out

]/2N

and the number of difference in ∆out is 2Na . Thus, the probability of the case

δin
SB−→ δout is FTDDT[δin][B∆out ]/2

n+Na on average if δout ∈ ∆out.

D Searching Linear Distinguishers against SPEEDY

Since the MC operation can be seen as Γin = MT ·Γout in linear attack where Γin

is the input mask and Γout is the output mask of matrixM. Following the method
in Sect. 3.2, we get the linear mask transition properties for MC, precisely, the
correspondence between the input mask Γin and the output mask Γout of the
minimum HW.

For linear cryptanalysis, we use a similar strategy used for differential search,
which is a model oriented toward key recovery. Then, we search for a five-round
distinguisher with two rounds of key recovery by following four steps.

Step 1: We found the 4-round distinguishers from S0
3 to S5

0 using the same
method in searching differentials.

Step 2: For each of the 4-round linear distinguishers, we found the distinguish-
ers with two rounds of key recovery from S5

0 to S6
2 according to the following

conditions: the probability from S5
0 to S6

0 is as high as possible and after
spreading from S6

0 to S6
2 with probability one, the active S-box number in

S6
2 is less than 32.

Step 3: Then, the linear mask propagates from S0
3 to S0

1 with probability one
and limits the number of active S-box at S0

1 is less than 32.
Step 4: Finally, we consider the linear rotation invariant of the 7-round distin-

guishers combined with key recovery and choose the case where the number
of bits of k7 deduced from k0 by linear key schedule is maximized.

Following step one to four, we found a 5-round distinguisher combined two
key recovery rounds with correlation 2−93.01. We show the detail of the linear
distinguisher in Appendix I. In this distinguisher, the bits of k7 which is derived
from k0 by linear key schedule is 139. We reduce the guessed key bits to 185 bits
in the key recovery phase.
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E Searching Differential-Linear Distinguishers against
SPEEDY

We show the four rounds differential-linear search model in Fig. 4. More specif-
ically, we search for three rounds of differential-linear distinguishers from S0

4 to
S4
0 and extend half a round forward and backward for key recovery. Detailed

strategy is as follows.

SB SC MCKey 

Recovery

SB SC SB SC MC2-nd

round

SB SC SB SC MC3-rd

round

SBKey 

Recovery

SB SC SB SC MC1-st

round

0

2S 0

3S 0

4S

1

1S1

0S 1

2S 1

3S 1

4S

2

0S 2

1S 2

2S 2

3S 2

4S

3

0S 3

1S 3

2S 3

3S 3

4S

4

0S 4

1S

Fig. 4: 4-round differential-linear attack model of SPEEDY.

Step 1: We search the differential part contains key recovery rounds from S0
3

to S1
4 , the search strategies are as follows.

Rule 1: Constrain the active bit numbers in S0
3 less than 64.

Rule 2: Model S0
3

SB−1

−→ S0
2 to comply with FTDDT.

Rule 3: Model S1
0

SB−→ S1
1 , S

1
2

SB−→ S1
3 to comply with DDT.

Rule 4: Constrain only one bit active in S1
4 .

Step 2: Meanwhile, we search the linear part contains key recovery rounds from
S3
0 to S4

0 , the search strategies are as follows.

Rule 1: Constrain only one bit active in S3
0 .

Rule 2: Model S3
0

SB−→ S3
1 , S

3
2

SB−→ S3
3 to comply with LAT (short for linear

approximation table).
Rule 2: Model the active S-box in S4

0 to comply with a maximum correla-
tion of 2−1.415.

Step 3: We search the connect round from S1
4 to S3

0 as follows.

Rule 1: Constrain only one bit active in S1
4 and S3

0 .

Rule 2: Model S2
0

SB−→ S2
1 with backward FTDDT.

Rule 3: Model S2
2

SB−→ S2
3 to comply with LAT.

Rule 4: Constrain the difference of the i-th row in S2
2 is zero if the difference

of corresponding row in S2
2 is active.
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Step 4: From Step one to three, we get several distinguishers. Then, we choose
the one with the highest correlation and run an experiment for obtaining
the estimated correlation from S1

2 to S3
1 . After testing 128 random keys with

230 plaintexts under a certain key, we obtained the correlation estimated as
2−8.85.

Step 5: Finally, we consider the rotation invariant property of SPEEDY such that
the bits of k7 deduced from k0 by linear key schedule are maximized.

Finally, the distinguisher is shown in Fig. 5. The correlation of this 3-round
distinguisher is 2−23.095 and the probability of rounds of key-recovery is 2−6.972.
The bits of k7 deduced from k0 by linear key schedule are 29.

F 4-Round Differential-Linear Attack against SPEEDY

2-8.85

SBSB SCSC MCMC

2-2*2

2-1.415*2
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SBSB SCSC
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k0
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k5

Fig. 5: Key recovery attack on 4-round SPEEDY with differential-linear cryptanal-
ysis.

With the 3-round differential-linear distinguisher shown in Fig. 5, we can im-
plement the differential-linear attack against 4-round SPEEDY. Firstly, we choose
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the active bits in plaintext to make a 61-bit structure and obtain corresponding
ciphertexts. After guessing the 61-bit k0, we use Algorithm 5 to put the pairs that
can validate the input difference of the 3-round differential-linear distinguisher
into the set S. Then we recover the master key by applying the FWHT (short
for Fast Walsh-Hadamard Transform) which has already been used in [3].

Since the time complexity of the Algorithm 5 is negligible compared to those
of FWHT, we use the same computing method for our attack. Then, we choose
the advantage a = 88, use one structure to collect data, the time complexity
of this attack is 261 + 2104 + 2104 ≈ 2105. The data complexity is 261 and the
memory required is 261+272+2105 ≈ 2105. We denote |S| as the number of pairs
in S, according to [17] the distribution of |S| is

|S| ∼ 1

2
N(261 · 2−6.972, 261 · 2−6.972) = N(253.028, 252.028).

Then, the success rate is

PS =

∫ +∞

0

P (|S| = x) · PS′(|S| = x)dx

≥ P (|S| ≥ 253.027) · PS′(|S| = 253.027)

≈ 45.31%,

where PS′(|S| = n) is the success rate for this attack, if |S| = n.

Algorithm 5: Sieving pairs for differential-linear attack

Input: P; // The set of plaintexts

Input: C; // The set of ciphertexts indexed by plaintexts

Input: k; // The guessed 61-bit k0
Input: δin; // The begin of differential-linear distinguisher

Output: S; // The set of pairs can encrypt to the begin of

differential-linear distinguisher by k

1 S ← ∅;
2 for p ∈ P do
3 p′ ← D(E(p⊕ k)⊕ δin)⊕ k ;

/* E(·) is the function encrypt plaintext to the begin of

distinguisher */

/* D(·) is the decrypt function of E(·) */

4 c← C[p];
5 c′ ← C[p′];
6 S ∪←− ((p, c), (p′, c′));

7 Delete duplicate pairs in S;
8 return S;

25



G Pseudocode of Key Recovery and Brute Force Parts
on the 2155 Pairs for Each Structure in the 7-Round
Differential Attack

Algorithm 6: Deduce key from the data set P
Input: P; // The set of 2155 pairs, each pair consist of two

plaintexts with their ciphertexts

Input: δout; // The output difference of the 5.5-round

distinguisher

Input: δiin; // The input difference of the i-th row of

5.5-round distinguisher

Input: (mt, ct); // ct is the ciphertext of mt. At the end of

this algorithm, we use it to test if the candidate keys

are the right key.

Output: K; // The set of possible full master key

1 K ← ∅;

2 for ((m0, c0), (m1, c1)) ∈ P do

3 m0
0||...||m31

0 ← DividePlain(m0);
4 m0

1||...||m31
1 ← DividePlain(m1);

/* DividePlain(mi) is use to divide plaintext mi into 32

row, mj
i is the 6-bit j-th row of mi */

5 K7 ← Deduce the 36-bit k7 by m0 ⊕m1 and δout according to DDT;
// |K7| = 4 on average for each pair, details are shown

in Appendix H.

6 for k7 ∈ K7 do

7 Deduce the k0 from k7 due to the linear key schedule;
8 For i-th row of k0, fix the deduced bits and traverse other bits to

get set K0
i , i = 0, · · · , 26, 29, 30, 31;

9 L14 ← FirstSboxSieve(m14
0 ,m14

1 ,K0
14,0b*00*00);

10 L15 ← FirstSboxSieve(m15
0 ,m15

1 ,K0
15,0b**00*0);

11 L17 ← FirstSboxSieve(m17
0 ,m17

1 ,K0
17,0b00**00);

12 L11 ← FirstSboxSieve(m11
0 ,m11

1 ,K0
11,0b*000*0);

13 L12 ← FirstSboxSieve(m12
0 ,m12

1 ,K0
12,0b0*000*);

14 L13 ← FirstSboxSieve(m13
0 ,m13

1 ,K0
13,0b******);

15 L16 ← FirstSboxSieve(m16
0 ,m16

1 ,K0
16,0b0**00*);

16 L ← SecondSboxSieve([L11,L12,L13,L14,L15,L16], δ
11
in);

17 L18 ← FirstSboxSieve(m18
0 ,m18

1 ,K0
18,0b*00**0);

18 L19 ← FirstSboxSieve(m19
0 ,m19

1 ,K0
19,0b**000*);

19 L ← SecondSboxSieve([L,L17,L18,L19], δ
14
in);

20 L20 ← FirstSboxSieve(m20
0 ,m20

1 ,K0
20,0b0**00*);

21 L ← SecondSboxSieve([L,L20], δ
15
in);
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22

23

24 L21 ← FirstSboxSieve(m21
0 ,m21

1 ,K0
21,0b*0**00);

25 L22 ← FirstSboxSieve(m22
0 ,m22

1 ,K0
22,0b0*0**0);

26 L23 ← FirstSboxSieve(m23
0 ,m23

1 ,K0
23,0b00*0**);

27 L ←SecondSboxSieve([L,L21,L22,L23], δ
18
in);

28 L24 ← FirstSboxSieve(m24
0 ,m24

1 ,K0
24,0b000*0*);

29 L ←SecondSboxSieve([L,L24], δ
19
in);

30 L7 ← FirstSboxSieve(m7
0,m

7
1,K0

7,0b*0****);
31 L8 ← FirstSboxSieve(m8

0,m
8
1,K0

8,0b0*0***);
32 L9 ← FirstSboxSieve(m9

0,m
9
1,K0

9,0b00*0**);
33 L10 ← FirstSboxSieve(m10

0 ,m10
1 ,K0

10,0b000*0*);
34 L ←SecondSboxSieve([L7, L8, L9, L10,L], δ7in);
35 L5 ← FirstSboxSieve(m5

0,m
5
1,K0

5,0b*****0);
36 L6 ← FirstSboxSieve(m6

0,m
6
1,K0

6,0b0*****);
37 L ←SecondSboxSieve([L5,L6,L], δ5in);
38 L4 ← FirstSboxSieve(m4

0,m
4
1,K0

4,0b****00);
39 L ←SecondSboxSieve([L4,L], δ4in);
40 L3 ← FirstSboxSieve(m3

0,m
3
1,K0

3,0b***00*);
41 L ←SecondSboxSieve([L3,L], δ3in);
42 L2 ← FirstSboxSieve(m2

0,m
2
1,K0

2,0b**00**);
43 L ←SecondSboxSieve([L2,L], δ2in);
44 L1 ← FirstSboxSieve(m1

0,m
1
1,K0

1,0b*00**0);
45 L ←SecondSboxSieve([L1,L], δ1in);
46 L30 ← FirstSboxSieve(m30

0 ,m30
1 ,K0

30,0b**0000);
47 L31 ← FirstSboxSieve(m31

0 ,m31
1 ,K0

31,0b0**000);
48 L0 ← FirstSboxSieve(m0

0,m
0
1,K0

0,0b00**00);
49 L ←SecondSboxSieve([L30,L31,L0,L], δ30in);
50 L29 ← FirstSboxSieve(m29

0 ,m29
1 ,K0

29,0b******);
51 L ←SecondSboxSieve([L29,L], δ29in);
52 L25 ← FirstSboxSieve(m25

0 ,m25
1 ,K0

25,0b******);
53 L26 ← FirstSboxSieve(m26

0 ,m26
1 ,K0

26,0b******);
54 L ←SecondSboxSieve(L,L25,L26],L21);

55 for k′ ∈ L do
56 for k′′ traverse unguessed 12-bit keys do
57 Combine k′ and k′′ to get the 192-bit keys k;
58 if E(mt, k) == ct then

59 K ∪←− k;

60 return K as the set of candidate keys;

27



H Details for the Time Complexity of the Key Recovery
on the 2155 Pairs for Each Structure in the 7-Round
Differential Attack

In this section, we mainly consider the time of operating the Algorithm 6 in
Appendix G. In order to make it easier to understand, we show the details of
each step in Algorithm 6 in Table 4.

Position in table 4 denotes the location in Algorithm 6, e.g., position 9 de-
notes the operation that generates L14 at line 9 in Algorithm 6. The filtering
probability of FirstSboxSieve is determined by the number of inactive bits in
the output of the S-box, e.g., when generating the L14, the output different set
of the S-box is 0b*00*00 so that the filtering probability is 2−4 while the filter-
ing probability of SecondSboxSieve is calculated by the inverse probability of
FTDDT.

Besides, to facilitate the calculation of the time complexity, we see the 2155

pair of each structure as a group. Then, we compute the time complexity of
each operation in Algorithm 6 in this group. More precisely, we introduce two
new parameters, i.e., the number of the remaining pairs and the number of
remaining keys for each pair. Further, for an operation with filtering probability
p, the number of the remaining pairs and remaining keys before this operation is
Np and Nk, respectively. Besides, we use Na to denote the number of imported
keys in this operation. For the FisrtSboxSieve operation, Ik is the number of
keys in the input key set, e.g., |K0

14| in position 9. For the SecondSboxSieve
operation, Ia is zero. Then, the complexity of this operation for the whole group
in this operation, the remaining pairs and the remaining keys after this operation
is calculated by Algorithm 7.

In fact, the sum of the time complexity in Table 4 is about 68.8× 2155 times
SubBox operation. Since there are other operations that have not been evaluated,
we give a generous estimate for the complexity of the key recovery phase, i.e.,
70× 2155 times SubBox operation.

Evaluation the number of elements in K7. In this section, we use Si
j [k, :

] to denote the k-th line in the Si
j , i.e., the 6k-th bit to (6k + 5)-th bit of

Si
j . As shown in Fig. 3, there are only two active differences transitioning to

a set of differences through the process S6
0

SB−→ S6
1 , i.e., the S6

0 [3, :]
SB−→ S6

1 [3, :

] (0b000010
SB−→ 0b*0*000) and S6

0 [6, :]
SB−→ S6

1 [6, :] (0b000010
SB−→0b000*0*).

Other active differences propagate to a single difference.
Therefore, when deducing the key bits of k7 by DDT (position 5 in Algorithm

6), on average, there is only one 6-bit partial key will be deduced for the states
k7[i, :], where i ∈ {7, 2, 16, 25} since the corresponding difference in S6

2 is a spe-
cific single difference. However, k7[1, :] and k7[3, :] will have several possibilities
since the corresponding state S6

2 [1, :] and S6
2 [3, :] are sets of differences. Thus,

the average number of elements in K7 is determined by the average number of
deduced k7[1, :] and k7[3, :].
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Algorithm 7: Compute parameters in Table 4.

Input: Ik: the number of imported keys in this operation.
Input: Np: the number of remaining pairs before this operation.
Input: Nk: the number of remaining keys before this operation.
Input: p: the number of remaining keys before this operation.
Output: T : time complexity of this operation.
Output: Np: the number of remaining pairs after this operation.
Output: Nk: the number of remaining keys after this operation.

1 if This operation is FirstSboxSieve then
2 T ← 2× Ik ×Np;

// Each pair has two plaintexts so that need two SubBox

operation for an imported key.

3 if Ik × p ≥ 1 then
4 Nk ← Nk × Ik × p;
5 Np ← Np;

6 if Ik × p < 1 then
7 Nk ← Nk;
8 Np ← Np × Ik × p;

9 if This operation is SecondSboxSieve then
10 T ← 2×Nk ×Np;
11 if Nk × p ≥ 1 then
12 Nk ← Nk × p;
13 Np ← Np;

14 if Nk × p < 1 then
15 Nk ← 1;
16 Np ← Np ×Nk × p;

17 return T,Np, Nk;

Note that the state S6
2 [1, :] and S6

2 [3, :] are propagated by S6
1 [3, :] and S6

1 [6, :]
while the state S6

1 [i, :] is propagated by S6
0 [i, :] through the S-box. Thus, we did

an in-depth study of the propagation S6
0 [i, :]

SB−→ S6
0 [i, :], where i ∈ {3, 6}.

– In our trail, the S6
0 [3, :]

SB−→ S6
0 [3, :] will have two cases since the propagation

0b000010
SB−→ 0b*0*000 have two possible propagations, i.e., 0b000010

SB−→
0b100000 and 0b000010

SB−→ 0b001000 (indeed, there are four cases for this
propagation, but other two cases have zero probability).

– For the same reason, the S6
0 [6, :]

SB−→ S6
0 [6, :] also has two cases.

Above all, there are 2 × 2 = 4 possible cases for the propagation of the two
active S-boxes and each case will deduce one possible 12-bit keys for k7. Besides,
each case needs two Subox operations. Thus, the average number of elements
in K7 is and the time complexity of deducing 36-bit k7 is 4 × 2 + 4 = 12 times
SubBox operation.
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Table 4: Details for the Time Complexity of Algorithm 6. The set parameter
is the output of the operation, e.g., L14 for position 9. The time complexity is
measured by the SubBox operation. Ik is the number of imported keys in this
operation. Np and Nk are the number of the remaining pairs and remaining keys
after the operation calculated by Algorithm 7.

Position set Ik
Time

complexity
Filtering

probability
Np Nk

5 K7 - 12× 2155 1 2155 4
9 L14 22 2158 2−4 2155 1
10 L15 22 2158 2−3 2154 1
11 L17 23 2158 2−4 2153 1
12 L11 24 2158 2−4 2153 1
13 L12 24 2158 2−4 2153 1
14 L13 23 2157 1 2153 23

15 L16 23 2157 2−3 2153 23

16 L 0 2157 2−5.54 2150.46 1
17 L18 24 2155.46 2−3 2150.46 2
18 L19 24 2155.46 2−2 2150.46 23

19 L 0 2154.46 2−6 2147.46 1
20 L20 24 2152.46 2−3 2147.46 2
21 L 0 2149.46 2−6 2142.46 1
24 L21 25 2148.46 2−3 2142.46 22

25 L22 26 2149.46 2−3 2142.46 25

26 L23 26 2149.46 2−3 2142.46 28

27 L 0 2151.46 2−6 2142.46 22

28 L24 26 2149.46 2−4 2142.46 24

29 L 0 2147.46 2−6 2140.46 1
30 L7 25 2146.46 2−1 2140.46 24

31 L8 26 2147.46 2−2 2140.46 28

32 L9 25 2146.46 2−3 2140.46 210

33 L10 25 2146.46 2−4 2140.46 211

34 L 0 2152.46 2−6 2140.46 25

35 L5 25 2146.46 2−1 2140.46 29

36 L6 25 2146.46 2−1 2140.46 213

37 L 0 2154.46 2−6 2140.46 27

38 L4 25 2146.46 2−2 2140.46 210

39 L 0 2151.46 2−6 2140.46 24

40 L3 25 2146.46 2−2 2140.46 27

41 L 0 2148.46 2−6 2140.46 2
42 L2 26 2147.46 2−2 2140.46 25

43 L 0 2146.46 2−6 2139.46 1
44 L1 25 2145.46 2−3 2139.46 22

45 L 0 2142.46 2−6 2135.46 1
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46 L30 26 2142.46 2−4 2135.46 22

47 L31 26 2142.46 2−4 2135.46 24

48 L0 26 2142.46 2−4 2135.46 26

49 L 0 2142.46 2−6 2135.46 1
50 L29 26 2142.46 1 2135.46 26

51 L 0 2142.46 2−5.83 2135.46 20.17

52 L25 26 2142.46 1 2135.46 26.17

53 L26 26 2142.46 1 2135.46 212.17

54 L 0 2148.63 2−5.67 2135.46 26.5
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I Key Recovery Attack against 7-round SPEEDY with
Linear Cryptanalysis
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Fig. 6: Key recovery attack on 7-round SPEEDY with linear cryptanalysis.
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Fig. 7: Key recovery attack on 4-round SPEEDY with differential cryptanalysis.
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