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Abstract

In this paper, we propose the first linear two-party secure-computation
private set intersection (PSI) protocol, in the semi-honest adversary model,
computing the following functionality. One of the parties (PX) inputs a
set of items X = {xj | 1 ≤ j ≤ nX}, whereas the other party (PY )
inputs a set of items Y = {yi | 1 ≤ i ≤ nY } and a set of correspond-
ing data pairs DY = {(d0i , d1i ) | 1 ≤ i ≤ nY } having the same cardi-
nality with Y . While PY outputs nothing, PX outputs a set of data
DX = {dbii | bi = 1 if yi ∈ X, bi = 0 otherwise}. This functionality is
generally required when the PSI protocol is used as a part of a larger se-
cure two-party computation such as threshold PSI or any function of the
intersection in general. In literature, there are linear circuit and secure-
computation PSI proposals, such as Pinkas et al. PSI protocol (Eurocrypt
2019), our PSI protocol (CANS 2020) and Chandran et al. PSI protocol
(PETS 2022), for similar functionalities but having a cuckoo table map-
ping in the functionality, which complicates the application of different
secure computation techniques on top of the output of the PSI protocol.
We also show that the idea in the construction of our secure-computation
PSI protocol having the functionality mentioned above can be utilized
to convert the existing circuit PSI and secure-computation PSI protocols
into the protocols realizing the functionality not having the cuckoo ta-
ble mapping. We provide this conversion method as a separate protocol,
which is one of the main contributions of this work. While creating the
protocol, as a side contribution, we provide a one-time batch oblivious
programmable pseudo-random function based on garbled Bloom filters.

Keywords— Private set intersection, two-party computation, Bloom filters, oblivious
transfer, cuckoo hashing, circuit-PSI, OPPRF

1 Introduction

Private set intersection (PSI) protocols are one of the commonly used two party secure
communication primitives, where two parties, PX and PY , have their own respective
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private sets, X and Y , and at least one of the parties learn the intersection X ∩ Y
but nothing more. Since it fits very well into a real world problem and finds many
application areas such as health genome testing, online advertising, and discovery of
contact lists, considerable amount of custom PSI protocols have been proposed in
the literature. Another recent PSI use case is the Cyber-Physical-Social Systems (3),
which is an extension of Cyber-Physical Systems (4). The studies (5; 6) utilizes PSI to
have a privacy-preserving profile matching scheme in this use case. In some use cases,
instead of having the set intersection itself, a function of it is required. However,
revealing the intersection to at least one of the parties makes the PSI protocol not
usable as a building block in a larger secure computation protocol, because in that
larger protocol, intermediate information would leak due to the nature of the employed
PSI protocol.

In this work, we focus on designing a PSI protocol in the semi-honest security
model, which allows PY obliviously to send data to PX , where neither PX nor PY know
the choice bits, which depend on the intersection. This type of PSI protocols can be
called PSI with bi-oblivious data transfer. This functionality allows the realization of
secure-computation PSI protocols which are usable as a building block in larger secure
computation protocols. Secure-computation PSI protocols include the functionality of
circuit PSI protocols which is defined as outputting secret shares of the intersection to
the parties (7). More precisely, in the PSI with bi-oblivious data transfer, PY inputs a
set of data pairs DY = {(d0i , d1i ) | 1 ≤ i ≤ nY } in addition to a set of items Y = {yi |
1 ≤ i ≤ nY } as usual, and PX inputs a set of items X = {xi | 1 ≤ i ≤ nX}. While
PY outputs nothing, PX outputs a set of data DX = {dbii | 1 ≤ i ≤ nY , bi ∈ {0, 1}}
where bi = 1 if yi ∈ X, bi = 0 otherwise. With different choices for (d0i , d

1
i ), different

functionalities can be realized. For example, when each (d0i , d
1
i ) = (0, 1), we obtain

regular PSI. When (d0i , d
1
i ) is a pair of two strings, we obtain PSI with data transfer

(8; 9). To see how our protocol can be utilized for cardinality computation, consider
d0i and d1i respectively as additively-homomorphic encryption of ‘0’ and ‘1’ (Ek(0)
and Ek(1) for key k picked by PY ), respectively, and that our protocol is followed
by additively-homomorphic evaluation of the obtained values by PX , and then PY

decrypts the result. This corresponds to PSI cardinality. Alternatively, d0i and d1i
output values can be secret shares of the membership result for each item of Y , or
labels for the corresponding input wires for garbled-circuit-based secure computation
protocols. For example, the value d0i can be a wire label corresponding to zero for
wire i and d1i can be wire label corresponding to one for wire i. This way, after our
protocol concludes, the parties have the wire labels corresponding to the intersection,
without knowing the intersection. The computation can then continue, for example,
computing a threshold over the intersection cardinality, or any other secure two-party
computation protocol whose input should be the intersection. More applications and
details are given in Section 6.

Related Work: To the best of our knowledge, protocols that output a function of
the membership results were proposed by Ciampi and Orlandi (10), Pinkas et al. (11),
Falk et al. (12), ourselves (1), and Chandran et al. (7) in addition to the circuit based
solutions of (13; 14). Among these protocols, only the protocols proposed in (10; 1)
allows application of any secure computation protocol on the output of the PSI protocol
by providing different kinds of outputs, while the others allow only learning the secret
shares of the items in the intersection. This type of protocols that output secret shares
is called circuit PSI protocols. We name the PSI protocols allowing execution of any
the of secure computation protocols secure-computation set intersection protocols or
secure-computation PSI protocols.

In (10), a custom private set membership protocol (PSM) (where one of the par-
ties has only one item instead of a set) based on oblivious navigation of a graph
was introduced, and this PSM protocol was converted to a PSI protocol with O(n
logn/ log log n) communication and computation complexities using the hashing tech-
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niques proposed in (15; 16; 14), where n is the number of items in the sets. (12)
has a communication complexity of O(n log log n) when the output can be secret
shared. In (11), Pinkas et al. proposed a PSI protocol with O(n) communication
and ω(n(log logn)2) computation using the oblivious programmable pseudo-random
function (OPPRF) in (17). That protocol uses OPPRF to check the private set mem-
bership relation in the hashed bins, where the result is not output in clear text, and
then deploys a comparison circuit for the output of the membership result that can
be given to a function as the input. Our work in (1) followed a similar approach
with the circuit-PSI protocol of (11) but utilized garbled Bloom filters to have the
first protocol with linear communication and computation complexity. (7) also fol-
lowed the idea of (11) but in a different way from (1) to have another linear-cost
secure-computation PSI protocol. Note that, to the best of our knowledge, the ex-
isting linear-cost circuit-PSI (11; 7) and secure-computation PSI protocols (1) have a
mapping such that f : {1, 2, ..., n} −→ {1, 2, ..., β} which maps the elements of one of
the party to a cuckoo table, where n is the number of items in the set of the party
and β is the size of the cuckoo table. The reason why these protocols have this map-
ping in their functionality is the usage of cuckoo table in their constructions. Having
such a mapping reduces the feasibility of usage of these PSI protocols in larger secure
computation protocols because the output of the PSI protocol becomes a function of
the cuckoo table not the set of the party.

Also in literature, there have been special purpose PSI protocols such as (18; 19;
20; 21; 22; 23; 24; 25; 26; 27), which output a specific function of the intersection such
as cardinality of the set, intersection-sum, or a threshold function.

Our Contribution: In this work, we convert our linear secure-computation PSI
protocol introduced in (1) to a secure-computation PSI protocol having natural func-
tionality, which does not include any other parameters except the sets to be intersected
and the sizes of the sets, by removing the cuckoo table mapping from the functionality,
so that the new protocol can be easily utilized to build larger secure computation pro-
tocols using the PSI protocol as a primitive. We then generalize the conversion idea
to make it applicable to other linear-cost circuit PSI protocols to remove the cuckoo
table mapping from their functionalities as well. While improving our protocol in (1),
we continue to follow the idea of Pinkas et al. (11) in that we first run a PSM protocol
for each bin in the cuckoo hash table and then execute a comparison protocol, but
we diverge from their idea in the following ways. The first one is that we construct
a Bloom-filter (BF) based PSM protocol by modifying Dong et al. PSI solution (28)
to reduce the computation complexity. The second point is that, instead of using
a comparison circuit, we execute Ciampi-Orlandi PSM protocol as a secure equality
testing protocol such as the one used in (29), which makes the equality testing free
by using the base oblivious transfer already executed in the BF-based PSM protocol.
Following these two methods along the idea of Pinkas et al., we are able construct the
first custom PSI protocol having linear computation and communication complexities
in the number of items for the functionality we consider (outputting not the result set,
but a function of the membership results), to the best of our knowledge.

Overview of our conversion protocol: To remove the cuckoo table mapping from
the protocol functionality, we incorporate additional steps that use additively homo-
morphic encryption. PY obliviously learns additively homomorphic encryption of ’0’
or ’1’ under the key of PX for each bin of the cuckoo table depending on the bin-wise
membership, and then PY obliviously sends the d0i or d1i for only the bins where the
items of PY were located. We provide a new protocol consisting of these new steps,
which can also be utilized for other circuit-PSI protocols to remove the weird cuckoo
table mapping from their functionality. The overhead of our conversion protocol (to
convert cuckoo table mapping into natural PSI functionality) does not increase the
asymptotic complexity of the underlying circuit PSI protocol, i.e., keeps the complex-
ity linear.
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Scenarios that our conversion protocol fits best: Since the complexity of our conver-
sion protocol depends on the number of items in Y , its concrete overhead is light when
the size of Y is less than the size of X. For example, when nX = 216 and nY = 26, our
overhead over the best concrete complexity circuit PSI in a wide-are network setting
is only 6%. As the size of X increases, the relative overhead decreases even further.
This case is mainly seen in applications where one of the parties PY is a mobile device
while the other party PX is a server. Private contact discovery problem could be given
as an example use case (30). More concretely, a user of a messaging application would
like to discover his/her contacts who use the messaging application, without revealing
the information of other contacts to the messaging application server. In this case,
one party (i.e., the user) has a set containing a few hundred items, while the other
party (i.e., the messaging server) could have a set containing a million items (30).

Summary of our contributions including our preliminary publication (1):

• We provide a generic conversion protocol that converts circuit PSI and secure-
computation PSI protocols having the cuckoo table mapping functionality into
secure-computation PSI protocols having the natural PSI functionality.

• We provide the first linear-cost secure-computation PSI protocol with natural
functionality by applying the conversion protocol on our PSI protocol introduced
in (1).

• We show that the concrete overhead of the conversion protocol is light especially
when one of the parties has much fewer number of items than the other party,
by comparing our results with the performance of the protocol of (7), which has
the best concrete performance results so far. For example, when nX = 216 and
nY = 26, the overhead of our solution becomes only 6%).

• As already presented in (1), we introduce a batch OPPRF protocol that allows
us to construct secure-computation PSI protocols with linear communication
and computation complexity.

The following items summarize the new contributions compared to the original
CANS 2020 paper (1).

• A new conversion protocol (in Section 5) that can be utilized to convert secure
computation PSI protocols including cuckoo table mapping into secure compu-
tation PSI protocols having the natural functionality.

• An improved version of our protocol (in Section 5.3) presented in the CANS
2020 paper, having the natural PSI functionality.

• An improved version of Chandran et al. circuit PSI protocol (7), having the
natural PSI functionality (in Section 5.4).

• Utilization of the secure-computation PSI protocol with natural functionality to
have different types of outputs (in Section 6).

2 Preliminaries and Similar Protocols

Notation: PX and PY are the parties who run the protocol, X and Y are the corre-
sponding item sets of the parties, DY is the set of message pairs inputted by PY , and
DX is the set of corresponding received messages by PX depending on the intersection
X ∩ Y .

The remaining notation we use throughout the paper is as follows:
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ℓ : The length of the items in the sets
κ : Security parameter
η : Statistical correctness parameter
nX : The number of items in X
nY : The number of items in Y
n : max(nX , nY )
m : Bloom filter size
nh : Number of hash functions used in Bloom filter
Hi : Set of k hash functions used in the construc-

tion of Bloom filters for i-th bin in the cuckoo
table where Hi = {hi,1, ..., hi,k}

β : The number of bins in cuckoo table

2.1 Sub-Protocols

Oblivious Transfer: A 1-out-of-2 oblivious transfer (OT) (31) is a secure two-party
protocol that realizes Functionality 1.

OT is one of the commonly used primitives in secure protocols and considerable
amount of studies on it have been seen in literature, such as (32). To reduce the
number of asymmetric key operation executions, OT extension (OTE) method was
proposed in (33) and practically realized with some studies such as (34). To execute
1-out-of-2 OT for m pairs of length ℓ (OTm

ℓ ) it is enough to run OTκ
κ, called base

OTs, where κ is the security parameter, which keeps the number of heavy public key
operations as a constant independent from the number of pairs m and item lengths ℓ.

In recent works, it was shown that the number of rounds can be 2 instead of 3
for an OT extension protocol by executing some of the computations in the offline
phase of the protocol (35; 36). In our solution, we don’t consider the preprocessing
operations and so we don’t use these constructions in our protocols.

Cuckoo hashing (37) is a hashing primitive that allows to map items of a set to
bins, where there is at most one item in each bin. This primitive employs two hash
functions h0 and h1 and maps n items to a table T of (1 + ϵ)n bins. An item xi

is inserted into bin T [hb(xi)]. If this bin already accommodates a previous item xj ,
then xj is relocated to bin T [h1−b(xj)]. If in that bin there is another item, then this
procedure is repeated until there is no need or a replacement threshold is reached. If
a threshold is employed, then a stash is used to store the items that are not located
into the bins.

Bloom Filter Based PSI: A Bloom filter (BF) (38) is a representation of a set
X = x1, ..., xn of n elements using an m-bit string BF . BF is constructed with the
help of a set of nh independent and uniform hash functions (H = h1, ..., hnh) where
hi : {0, 1}ℓ → {1, 2, ...,m} as follows: BF is first set to 0m. Then, for each item in X,
BF [hi(xj)] is set to 1 where 1 ≤ i ≤ nh and 1 ≤ j ≤ n. To check whether an item x
is in the set X, one checks BF [hi(x)] is equal to 1 or not for each i (1 ≤ i ≤ nh). If
for all i (1 ≤ i ≤ nh) the corresponding bit in BF is equal to 1, then it means that
the item is probably in the set. Otherwise (for some i the corresponding bit is 0), the
item is not in the set.

A Bloom filter based PSI was proposed by Dong et al. (28). In that solution,
a variant of BF called Garbled Bloom Filter (GBF) was used. A GBF of a set X,

Functionality 1 Oblivious Transfer
Inputs. The sender inputs a pair (x0, x1), the receiver inputs a choice bit b ∈
{0, 1}.
Outputs. The functionality returns the message xb to the receiver and returns
nothing to the sender.
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GBF , is similar to BF except that while for each hash function hi in H we have
BF [hi(x)] = 1, GBF [hi(x)] is a secret share of x: that is,

nh⊕
i=1

GBF [hi(x)] = x

and other cells are random values instead of simple zeros. In the first step of the
protocol, P1 and P2 construct a GBF (GBFX) using the GBF building algorithm
provided in (28) and a BF (BFY ), respectively. Then, P1 and P2 run m-pair oblivious
transfer of ℓ-bit strings (OTm

ℓ ) where P1’s input is (0ℓ, GBFX [i]) and P2’s input is
BFY [i] for the i-th OT, and the output of P2 is GBFY [i]. In this way, P2 learns
GBFX [i] if BFY [i] = 1. P2 checks, for each item yj ∈ Y , whether it is in X or not, by
comparing

nh⊕
i=1

GBFY [hi(yj)]
?
= yj .

Oblivious Pseudo-Random Function Based PSM: An oblivious pseudo-random func-
tion (OPRF), introduced in (39), is a two-party protocol where party P1 holds a key
K, party P2 holds a string x, and at the end of the protocol P1 learns nothing, while
P2 learns FK(x) where F is a pseudo-random function family that gets a κ-bit key K
and an ℓ-bit input string x and outputs an ℓ-bit random-looking result. An oblivious
programmable pseudo-random function (OPPRF) (17) is similar to an OPRF except
that in OPPRF, the protocol outputs predefined values for some of the programmed
inputs. In that protocol P2 should not be able to distinguish which inputs are pro-
grammed. Note that OPPRF is very similar to PSI with data transfer (8; 9) by just
setting the data of the latter to random values. Indeed, the GBF-based construction
of OPPRF in (17) is essentially the GBF-based construction in (9). In this paper, we
extend this GBF-based construction to batch OPPRF.

The basic idea in OPRF based PSM protocols is as follows. P1 holds a key K to
compute a pseudo-random function FK , P2 learns FK(y) for his item y obliviously, and
P1 sends FK(xi) for her items xi ∈ X to P2. P2 checks if FK(y) is in the set {FK(xi)}.
An example PSI protocol can be found in (14). In the OPRF solution, P2 learns
whether or not his item is in the set of P1. This solution cannot be used in our setting
where nobody learns the result in cleartext and the parties only learn a function result
of the intersection. Pinkas et al. (11) converted the OPRF solution to the setting we
consider using an oblivious programmable pseudo-random function. In that solution,
P1 sends the same (random) output r for the items in her set. Otherwise, she sends
some random output to P2. Then P1 and P2 run a circuit to check the equality of r
and the outputs P1 sent to P2. At the end of this equality check circuit, one party
obtains a function based on the result of the equality, i.e, of the membership.

Usage of Ciampi-Orlandi PSM Protocol to Test Equality of Two Strings: The
private set membership (PSM) protocol proposed by Ciampi and Orlandi (10) works
in the setting that P1 and P2’s inputs are a set of items X and an item y, respectively,
and at the end of the protocol, P2 learns a function of the membership relation and
P1 learns nothing. The protocol is based on oblivious graph tracing and uses oblivious
transfer. In our construction, we use that protocol for the case that P1’s input is
just one item instead of a set, as considered in (29). In this case, the PSM protocol
becomes a secure equality testing outputting a function (we call functional equality
testing - FEQT) protocol that realizes Functionality 2. This simplification also greatly
increases efficiency, helping us achieve linear costs. Protocol 1 presents the steps of
Ciampi-Orlandi PSM protocol for the case of testing two strings as used in (29).
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Functionality 2 Functional Secure Equality Testing
Inputs. P1 inputs x and a pair of strings (d0, d1), P2 inputs y.

Outputs. The functionality checks the equality of x and y and returns d0 or d1

according to the truth value of x
?
= y to P2.

Protocol 1 Ciampi-Orlandi PSM Protocol to test equality of two strings
Parameters. Ek(.) is a symmetric encryption under the key k with a polynomial-
time verification algorithm outputting whether a given ciphertext is in the range
of Ek(.) with false positive probability being 2−η.
Inputs. P1 inputs x and a string pair (d0, d1), P2 inputs y.

Outputs. P2 outputs d0 or d1 according to the truth value of x
?
= y. P1 outputs

nothing.
The protocol steps:

1. P1 prepares the message pairs (si0, s
i
1) for x[i] (1 < i < ℓ) as follows: (x[i]

denotes the i-th bit of x and x[1] is the right-most bit)

• chooses random symmetric keys kℓ and k∗ℓ and sets sℓx[ℓ] = kℓ and

sℓ1−x[ℓ] = k∗ℓ

• For i = (ℓ− 1) to 1

– chooses random symmetric keys ki and k∗i and sets six[i] =

{Eki+1
(ki), Ek∗

i+1
(k∗i )} and si1−x[i] = {Eki+1

(k∗i ), Ek∗
i+1

(k∗i )}.
– permutes the ciphertexts in six[i] and si1−x[i] randomly.

2. P1 sends Ek1
(d1) and Ek∗

1
(d0) to P2 in random order.

3. P2 learns corresponding siy[i]’s by running OT from P1 for 1 < i < ℓ.

4. P2 recovers only one of the keys k1 or k∗1 by decrypting the ciphertexts in
the following way:

• decrypts the ciphertexts in sℓ−1
y[ℓ−1] using sℓy[ℓ] as the key where the

plaintext in the encryption domain is the key that will be used to
decrypt the ciphertexts in sℓ−2

y[ℓ−2].

• decrypts the ciphertexts in siy[i] using the plaintext recovered from

si+1
y[i+1] as the key to recover the key used in the next received message

si−1
y[i−1].

5. P2 decrypts the ciphertexts Ek1(d1) and Ek∗
1
(d0) using the key recovered

in Step 4 where only one of the plaintexts will be in the domain and this
plantext will be equal to d1 or d0. P2 outputs the result.

2.2 Security Definitions

Since there are two parties who run the protocol, it is enough to prove that the protocol
is secure when one of the parties is corrupted. There are two possible cases: either P1

7



or P2 is corrupted.
We follow the simulation-based security proof paradigm. Since we only consider

honest-but-curious adversaries, the existence of a simulation in the “ideal world” whose
protocol transcript is computationally indistinguishable from the adversary’s view in
the protocol execution in the “real world” (together with the parties’ outputs in both
worlds) proves that the protocol is secure. The basic idea in this proof paradigm is
that if it is possible for the simulator to create a protocol transcript indistinguishable
from the real execution transcript, then the transcript doesn’t reveal any piece of infor-
mation about the private input of the honest party. This security proof paradigm was
formalized in (40) as follows. Protocol π implements the functionality F = (F1,F2)
where the output of P1 and P2 are F1(x, y) and F2(x, y), respectively, and x and y
are the inputs of the parties. The view of Pi for i ∈ {1, 2} (denoted as viewπ

i (x, y))
in the execution of the protocol π is the input of Pi, the internal random number coin
tosses, the messages received from the other party in the execution of the protocol,
and the outputs. The existence of probabilistic polynomial-time (PPT) algorithms Si

(the simulators) that takes the input of Pi and the output of Pi such that

{Si(wi,Fi(x, y))}x,y ≈ {viewπ
i (x, y)}x,y

for i ∈ {1, 2} where w1 = x and w2 = y proves that the protocol π realizes the
functionality F securely.

As for the underlying primitives, namely OT and FEQT, whose functionalities
were presented as Functionalities 1 and 2, respectively, there exists simulators who
can simulate the view for both parties. These simulators take the input and output of
the corresponding party as input, and produce indistinguishable views as output. In
our proofs, we make use of these simulators for the underlying primitives.

Lastly, in our proofs, we provide simulators that create simulated views (including
the outputs) which are indistinguishable from the real views. In all our proofs, this is
either obvious (directly comes from the security of the underlying primitive, or comes
from the fact that the simulated values are picked from the same distribution as the
original ones), or were proven by others (in which case we also cite those papers).

3 Bloom Filter Based OPPRF Construction

We present a one-time OPPRF construction based on PSI protocols proposed in (28)
and (9). For our usage, we put secret shares of random values chosen by the sender
as the data to be transferred by the PSI protocol (9).

The OPPRF functionality we use in our PSM protocol is given in Functionality 3
and our construction that implements the functionality is presented in Protocol 2. The
probability of false negative is zero because when y ∈ X, P2 learns all shares required
to recover the related programmed value. There may be false positives only with
probability that is negligible in nh and η, where nh is the number of hash functions
used in GBF construction and η is the minimum bit length of each cell in GBF, as
shown in (28). Note that we use only one programmed value (t). Because of that, the
functionality is secure only if the receiver makes only one query. For the purposes of
PSM, we notice that one query is enough.

Functionality 3 (One-Time) Oblivious Programmable Pseudo Random Func-
tion
Inputs. P1 inputs predefined items X = {x1, ..., xnX

} and a programmed value
t, P2 inputs y.
Outputs. The functionality returns t to P2 if y ∈ X; otherwise returns a random
value to P2, and returns nothing to P1.
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Protocol 2 Our One-Time OPPRF Protocol
Parameters. A set of hash functions H = {h1, ..., hnh

}

Inputs. P1 inputs a set of items X = {x1, ..., xnX
} and a programmed value t,

P2 inputs an item y.
Outputs. P1 outputs nothing. P2 outputs t if y ∈ X, otherwise outputs a
random value.
The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX having max(η, ℓ)-bit strings
in each cell such that

nh⊕
i=1

GBFX [hi(xj)] = t

for 1 ≤ j ≤ nX .

2. P2 constructs a (standard) Bloom filter BFy for the item y.

3. P1 and P2 run m oblivious transfers where P1’s input is (0, GBFX [i]) and
P2’s input is BFy[i] for the i-th oblivious transfer, and the output of P2

is 0 if BFy[i] = 0 or GBFX [i] if BFy[i] = 1. Call the output of P2 as
GBFy[i].

4. P1 outputs nothing and P2 outputs
⊕nh

i=1 GBFy[hi(y)].

Asymptotic Complexity. Since the number of hash functions used in the construc-
tion of Bloom filters is a constant related to the statistical correctness parameter that
is independent of the number of items, Protocol 2 requires O(n) hash function com-
putations for the construction of the garbled Bloom filter in Step 1. Also, the size
of the Bloom filters is m = O(nX), which makes the total asymptotic complexity of
running oblivious transfers in Step 3 O(nX). Step 2 requires O(nX) non-cryptographic
computation and space. Considering the complexity of Step 4 as O(1), we conclude
that the OPPRF protocol has a communication, computation, and space complexity
of O(nX).

Theorem 1. Protocol 2 securely realizes Functionality 3 when P1 is corrupted by a
semi-honest adversary A, assuming that the OT protocol is semi-honest secure.

Proof. The input set X and the programmed value t are given to the simulator S. The
simulator computes a garbled Bloom filter GBFX using its random tape such that

nh⊕
i

GBFX [hi(xj)] = t

for 1 ≤ j ≤ nX . S runs the simulator of OT as the sender m times, where for the
i-th run, the input of the simulator is ((0, GBFX [i]),⊥). Here, (0, GBFX [i]) is the
input of the sender in the OT protocol and there is no output of the sender. Thus, the
simulated view and output of the parties, and the view of the adversary in the real
execution of the protocol and the output of the parties are indistinguishable.

Theorem 2. Protocol 2 securely realizes Functionality 3 when P2 is corrupted by a
semi-honest adversary A, assuming that the OT protocol is semi-honest secure.
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Proof. The input item y and the output
⊕nh

i=1 GBFy[hi(y)] are given to the simulator
S. The simulator constructs the Bloom filter using y regularly, and creates GBF ′

y by
running the following steps:

1. Set random values to GBF ′
y[hi(y)] for 1 ≤ i < nh.

2. Set

GBF ′
y[hnh(y)] =

nh⊕
i=1

GBFy[hi(y)]⊕
nh−1⊕
i=1

GBF ′
y[hi(y)]

3. Set GBF ′
y[i] = 0 if BFy[i] = 0.

Finally, S runs the OT simulator as the receiver m times, where in the i-th, run the
receiver’s input is BFy[i] and the receiver’s output is GBF ′

y[i]. The proof concludes
when we show that GBF ′

y is indistinguishable from GBFy. The cells in both GBF ′
y

and GBFy are equal to ‘0’ for the indices i where BFy[i] = 0. Now we need to show
that for the remaining nh cells these GBFs are indistinguishable. Any combination of
(nh − 1) cells are random due to the property of secret sharing and the xor of nh cells
equals to

⊕nh
i=1 GBFy[hi(y)] in both GBFs, which concludes the proof.

4 Our Private Set Membership Protocol

In this section, we propose a new PSM protocol that realizes Functionality 4. As
discussed in the introduction, our protocol does not output the membership result,
but instead outputs some function of it, so that it can be directly integrated into a
larger secure computation protocol. After this section, we show how to extend our
protocol to set intersection as well.

In the construction of the protocol, we use the following idea of (11): If y ∈ X,
then both parties learn the same random value. Otherwise, they learn different random
values. Then, the parties run a comparison protocol that outputs a function of the
equality instead of the equality itself (Functionality 2). Our solution diverges from the
solution of (11) in two ways. To realize the first part, (11) makes use of an OPPRF
construction based on polynomials. We propose a new OPPRF construction based
on Bloom filters. The selection of Bloom filters enables us to reduce the computation
complexity of the protocol to a linear complexity. The other difference is that we
utilize Ciampi-Orlandi PSM protocol (10) for secure equality testing as done in (29)
for Functionality 2, instead of running a comparison circuit.

Functionality 4 Private Set Membership
Inputs. P1 inputs X = {x1, ..., xnX

} and a pair of strings (d0, d1), P2 inputs y.

Outputs. The functionality checks the membership of y in X and returns d1 to
P2 if y ∈ X. Otherwise, returns d0 to P2.

The overall view of our PSM protocol is as follow. To achieve private set mem-
bership, the parties first run the one-time OPPRF protocol based on garbled Bloom
filters, where P1 outputs r (a random value chosen by P1), whereas P2 learns some
random value that may be r or something different. The value P2 learns is always
random and cannot distinguish which of the two random values it received; but, this
random value is equal to r if and only if y ∈ X. Following this part, the parties run a
secure functional equality testing protocol, where at the end of the protocol P2 learns
the function result of the equality relation, which is also the function result of the
membership relation. We make use of the PSM protocol of Ciampi-Orlandi (10) for
secure functional equality testing by reducing the number of items of the sender set
to one. We present our semi-honest secure PSM solution in Protocol 3.
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Protocol 3 Our Private Set Membership Protocol
Parameters. A set of hash functions H = {h1, ..., hnh

}.

Inputs. P1 inputs a set of items X = {x1, ..., xnX
} and a pair of strings (d0, d1),

P2 inputs an item y.
Outputs. P2 outputs d1 if y ∈ X. Otherwise, P2 outputs d0. P1 outputs nothing.

The protocol steps:

1. P1 picks an η-bit random value r and sets T = {t1 = r, ..., tnX
= r}.

2. P1 and P2 run Protocol 2 for one-time OPPRF with the respective inputs
(X,T ) and y. Denote the output of P2 as r′.

3. P1 and P2 run Protocol 1 for functional equality testing with the respective
inputs (r, (d0, d1)) and r′. The output of the PSM protocol is the output
of Protocol 1.

Asymptotic Complexity of our PSM protocol. Protocol 2 requires O(n) hash func-
tion computations as stated in the previous section. FEQT employs O(η) operations
for η oblivious transfers in the Ciampi-Orlandi PSM protocol. Thus, the asymptotic
computation complexity of our PSM protocol becomes O(nX). The communication
complexity comes from the oblivious transfers. Considering the oblivious transfer ex-
tension communication complexity as linear in the number of OTs, the communication
complexity of Protocol 3 is also O(nX).

Theorem 3. Protocol 3 securely realizes Functionality 4 when P1 is corrupted by a
semi-honest adversary A, assuming that the OPPRF and FEQT protocols are semi-
honest secure.

Proof. The simulator S is given the input set X. S picks a random value r using
its random tape and sets T = {t1 = r, ..., tnX = r}. The simulator S runs the
simulator of OPPRF protocol with the input ((X,T ),⊥). Then, S runs the simulator
of FEQT protocol with the input (r,⊥). This completes the whole simulation, and
indistinguishability is a direct result of the underlying simulators.

Theorem 4. Protocol 3 securely realizes Functionality 4 when P2 is corrupted by a
semi-honest adversary A, assuming that the OPPRF and FEQT protocols are semi-
honest secure.

Proof. The simulator S is given the input item y and the output db for b = y
?
∈ X.

The simulator picks a η-bit random value r′′. S runs the simulator of OPPRF with
the input (y, r′′) and the simulator of FEQT with the input (r′′, db). S does not know
the uniform random value r′ used in the real execution, but it follows the same distri-
bution as r′′, and therefore they are perfectly indistinguishable. The computational
indistinguishability comes from the FEQT and OPPRF simulations, which are based
on OT simulations.

5 A Protocol to Improve Secure-Computation
PSI Functionality

To the best of our knowledge, existing custom secure-computation PSI protocols (10; 1)
including the circuit PSI ones (11; 12; 7) need a mapping function in their function-
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alities which prevents to have a natural functionality. The reason of seeing such a
functionality is the use of cuckoo tables in these protocols. Functionality 5 presents
such a functionality that includes the mapping denoted by f .

Functionality 5 PSI functionality including cuckoo table mapping
Inputs. PX inputs X = {x1, ..., xnX

} and MX = {(m0
j ,m

1
j ) | 1 ≤ j ≤ β =

O(n)}. PY inputs Y = {y1, ..., ynY
}.

Outputs. PX outputs nothing. PY outputs a mapping f from Y to the cuckoo
table, such that f : {1, 2, ..., n} −→ {1, 2, ..., β}, and PY also outputs MY =

{mbj
j | 1 ≤ j ≤ β, bj ∈ {0, 1}} where bj = 1 for j = f(i) if yi ∈ X, bj = 0

otherwise.

Existence of the mapping in the functionality prevents the secure-computation
PSI protocols from having the natural functionality (see Functionality 6) where one
of the parties should learn the membership results for its items (or the items of the
other party) in the set of the other party (or in its own set) in a somehow encrypted
form. Construction of some kind of protocols such as threshold PSI protocols can
be possible using primitives having Functionality 5, but there are some drawbacks of
using PSI protocols realizing Functionality 5 when used within the construction of
larger secure two-party protocols. These drawbacks can be collected in three points:
1) performance, 2) usability, and 3) security. Below, we provide some examples to
explain these points.

Functionality 6 PSI with natural functionality
Inputs. PX inputs X = {x1, ..., xnX

}. PY inputs Y = {y1, ..., ynY
} and DY =

{(d0i , d1i ) | 1 ≤ i ≤ nY }.
Outputs. PX outputs DX = {dbii | 1 ≤ i ≤ nY , bi ∈ {0, 1}} where bi = 1 if
yi ∈ X, bi = 0 otherwise. PY outputs nothing.

5.1 Comparison of Functionality 5 and 6 in terms of Per-
formance, Usability, and Security.

Performance: One drawback of Functionality 5 is that, due to the cuckoo table map-
ping, the parties have more outputs than the number of items in the sets. While this
may not result in a potential increase in the asymptotic complexity, it leads to an in-
crease in the concrete computation and communication cost for the remaining secure
computation protocol on the set intersection. When we consider the cardinality com-
putation on the set intersection, in the case that one party has only hundreds of items
while the other has millions of items, the cardinality circuit on top of the encrypted
PSI result needs to get millions of inputs if a PSI protocol having Functionality 5 is
used. On the other hand, only a circuit with hundreds of inputs will be enough for
the remaining secure computation if a PSI protocol with Functionality 6 is employed
instead. This example clearly shows the performance drawback of Functionality 5.

Usability: It could be argued that general construction of a larger secure compu-
tation protocol after Functionality 5 may become more complex when compared to
the usage a PSI protocol having Functionality 6. In the case of Functionality 5, the
circuit that is to be executed on the PSI result needs to get the cuckoo table mapping
function and it may need to invert that mapping function, which makes the construc-
tion of the secure two-party computation circuit more complex. The design of such
circuits taking into account the cuckoo table mapping is not a straightforward task,
as opposed to simply continuing computation after Functionality 6.
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Security: The last but maybe most important point is about security, which could
be the most serious drawback of Functionality 5. The parties need to be very careful
about the construction of circuits on the PSI output, so that it does not leak any
information about their sets. For example, when an identity circuit is employed on the
intersection in order to have a classical PSI protocol at the end, the usage of the identity
circuit on the output of the PSI having Functionality 5 will reveal information about
Y because PX will learn the location of the items in the cuckoo table of PY . Another
example could be the following. Assume that the output of the secure-computation
PSI protocol is wire labels for inputs of a circuit. Since the mapping is known by the
party who constructs the cuckoo table, the circuit should be generated by that party
and shared with the other party. If the party who generates the circuit is not careful
about the generation of the circuit, it can generate the circuit by ignoring the inputs
corresponding to the randomly filled bins in the cuckoo table, and so this may lead to
information leakage to the other party. For example, the receiving party can analyse
the circuit to detect if there is any input wire that does not affect the result in the
plain (not garbled) circuit. If there is such an input wire, it could be understood that
the corresponding cuckoo table bin does not include an item from the set, which may
reveal some kind of information about the set. For example, PY may want to make
some optimization on the circuit considering the mapping function in the cuckoo table,
but this optimized circuit, which will be sent to PX , may leak some information about
the cuckoo table computed from Y . This will result in information leakage about the
set of PY . A very simple example for such optimization could be that PY designs
a circuit that ignores the inputs from the bins which do not include any item from
Y , to reduce the computation of the circuit, but this optimization will reveal some
information about the cuckoo table to PX .

5.2 Conversion Protocol to Natural Functionality

To overcome of these drawbacks of secure-computation PSI protocols having Func-
tionality 5, we introduce a conversion protocol that converts these PSI protocols into
a secure-computation PSI protocol that realizes Functionality 6 that does not include
the cuckoo table mapping.

The main idea in our conversion protocol presented in Protocol 4 is allowing PY

who knows the cuckoo table mapping to eliminate the results corresponding to the
random bins in the cuckoo table in the main PSI protocol, without leaking any infor-
mation to PX . To be able to realize this functionality without leaking any information,
PX construct the data set MX by setting the message pairs as the additively homo-
morphic encryption of ’0’ and ’1’ values. Learning one message from the message pairs
will not leak any information to PY about the membership because the encryption re-
sults will look random to PY . Since the response from PY will include only encryption
of the data in the data set of PY , PX will not be able to identify the location of the
places of the items of Y in the cuckoo table, which prevent information leakage about
the items of PY to PX .

In addition to having a simple functionality that makes the construction of larger
secure computation protocol easier, the conversion protocol also makes the function-
ality of circuit PSI and secure-computation PSI protocols more flexible. While the
circuit-PSI supports the functionality where each party learns only secret shares of
the intersection, Functionality 6 not only support secret share type of outputs but
also supports other type of outputs, for example, the receiving party can learn the
(partially) homomorphic encryption result of the intersection under encryption key of
the sender party, or the receiving party can learn the corresponding one of wire labels
chosen by the sender party. Section 6 provides detailed explanation how to use the
functionality for different types of outputs.

Asymptotic Complexity. The steps that are related to the protocol conversion are
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Protocol 4 The conversion protocol
Inputs. PX inputs X = {x1, ..., xnX

}. PY inputs Y = {y1, ..., ynY
} and DY =

{(d0i , d1i ) | 1 ≤ i ≤ nY }.
Outputs. PX outputs DX = {djbj | 1 ≤ j ≤ nY , bj ∈ {0, 1}} where bj = 1 if
yj ∈ X, bj = 0 otherwise. PY outputs nothing.
The protocol steps:

1. PX constructs a set MX = {(Ex(0), Ex(1)) | 1 ≤ j ≤ β} where E is a
additively homomorphic encryption algorithm, Ex(.) is encryption under
the key of PX , and β is the number of bins in the cuckoo table, which can
be computed from nX . Note that this step can be executed in advance as
an offline operation, since it is independent of Y (or even X).

2. PX and PY run a protocol realizing Functionality 5. PX inputs X
and MX = {(Ex(0), Ex(1)) | 1 ≤ j ≤ β}. PY inputs Y . After this
execution PX learns nothing and PY learns the mapping f such that
f : {1, 2, ..., n} −→ {1, 2, ..., β}, and MY = {Ex(bj) | 1 ≤ j ≤ β, bj ∈ {0, 1}}
where bj = 1 for j = f(i) if yi ∈ X, bj = 0 otherwise.

3. PY computes the set {Ex(bf(i)d
1
i + (1− bf(i))d

0
i ) | 1 ≤ i ≤ nY } and sends

it to PX .

4. PX decrypts the items in the received set to learn the corresponding values
and outputs DX = {dbii | 1 ≤ i ≤ nY , bi ∈ {0, 1}} where bi = 1 if yi ∈ X,
bi = 0 otherwise.

steps 1, 3 and 4. Note that in step 1, PX computes β encryption of ’0’ and ’1’ values
which are independent of the input X. Thus these encryption operations can be done
offline before the execution of the protocol. As a result, the overhead complexity
of the protocol comes from Step 3 and Step 4. PY needs to compute and send nY

encryption results and PX needs to decrypt these encryption results in steps 3 and
4, respectively. Thus, the overhead of the conversion protocol on top of the protocol
realizing Functionality 5 is O(nY ) both in computation and communication.

Theorem 5. Protocol 4 securely realizes Functionality 6 when PX is corrupted by a
semi-honest adversary, assuming that the protocol in Step 2 securely realizes Func-
tionality 5 against semi-honest adversaries and that the encryption scheme used is
CPA-secure.

Proof. The simulator S is given the input X = {x1, ..., xnX} and the output DX =
{dbii | 1 ≤ i ≤ nY , bi ∈ {0, 1}}. S computes step 1 as done by honest PX to have addi-
tively homomorphic encryptions MX of zeros and ones. S then invokes the simulator of
the protocol realizing Functionality 5, by giving ((X,MX),⊥) as input. The last thing
to complete to proof is to show that S is able to compute a set that is indistinguishable
with the set of ciphertexts in step 3. S computes the set {EX(dbii ) | 1 ≤ i ≤ nY } by
directly encrypting the values in the given output DX . Since E is a secure randomized
encryption scheme, the set {EX(dbii ) | 1 ≤ i ≤ nY } and the set of ciphertexts in step
3 are computationally indistinguishable (otherwise a straightforward reduction can be
performed to the CPA security of E).

Theorem 6. Protocol 4 securely realizes Functionality 6 when PY is corrupted by a
semi-honest adversary, assuming that the protocol in Step 2 is semi-honest secure.
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Proof. As seen from the protocol, the view of PY consists of the input Y of PY and
the transcript of the secure protocol executed in step 2. There is no additional step
in the conversion protocol which affects the view of PY . Thus directly running the
simulator of the underlying protocol is enough.

5.3 Application to our PSI protocol presented at CANS
2020

In this section, we present how the conversion protocol can be applied to our CANS
2020 PSI protocol to show a concrete example and to improve our PSI protocol. Since
the PSI protocol utilizes a one-time OPPRF construction introduced in our CANS
2020 paper, we first give that construction and then show the implementation of the
conversion protocol on the PSI protocol.

5.3.1 Batch One-Time OPPRF

We propose a new batch one-time OPPRF construction in Protocol 5 that implements
Functionality 7, to be used in our PSI protocol. For the construction of a batch
OPPRF from Protocol 2, instead of using different garbled Bloom filters for each
programmed value set, we construct only one garbled Bloom filter, and store the
shares of programmed values in the same garbled Bloom filter. Note that for each set
Xi, a different set of hash functions (hash function set Hi for the programmed value
set Xi) is used, since there might be some items which belong to more than one set.
In our PSI protocol we use only one programmed value ti for each Xi.

Functionality 7 Batch One-Time Oblivious Programmable Pseudo Random
Function
Inputs. P1 inputs a predefined set of item sets X = {X1, ..., Xβ} and cor-
responding programmed value set T = {t1, ..., tβ}. P2 inputs a set of items
Y = {y1, ..., yβ}.
Outputs. The functionality checks the membership relations yi ∈ Xi and returns
ti if yi ∈ Xi to P2; otherwise returns a random ri to P2, for each i where
1 ≤ i ≤ β.

Asymptotic Complexity. Since the size of the garbled Bloom filter is linear in the
number of items to be stored in it and OT extension is also linear in the number of OT
executions, the computation and communication complexities of our batch one-time
OPPRF protocol becomes linear in the total number of programmed values in the
programmed value sets.

Theorem 7. Protocol 5 securely realizes Functionality 7 when P1 is corrupted by a
semi-honest adversary A, assuming that the OT protocol is semi-honest secure.

Proof. The simulator S is given the input set of sets X and the programmed values
set T . The simulator computes a garbled Bloom filter using its random tape such
that

⊕k
j=1 GBFX [hi,j(xi,l)] = ti. S runs the simulator of the OT protocol as the

sender with the input (GBFX ,⊥). This concludes the simulation. Indistinguishability
directly comes from the garbled Bloom filter construction following the protocol, and
the OT simulator.

Theorem 8. Protocol 5 securely realizes Functionality 7 when P2 is corrupted by a
semi-honest adversary A, assuming that the OT protocol is semi-honest secure.

Proof. The input set Y and the output R′ are given to the simulator S. The simulator
constructs a Bloom filter for Y and a garbled Bloom filter GBF ′

Y following the steps:
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Protocol 5 Bloom Filter Based Batch One-Time OPPRF Protocol
Parameters. A set of hash function sets H = {H1, ...,Hβ} where Hi =
{hi,0, ...hi,nh

}
Inputs. P1 inputs a set of item sets X = {X1, ..., Xβ} and corresponding pro-
grammed value sets T = {t1, ..., tβ}. P2 inputs a set of items Y = {y1, ...yβ}.
Outputs. P2 outputs a set of random values R′ = {r′1, ..., r′β}, where r′i = ti if
yi ∈ Xi; otherwise r′i is a random value; for 1 ≤ i ≤ β.

The protocol steps:

1. P1 constructs a garbled Bloom filter GBFX having max(η, ℓ)-bit strings
in each cell such that

nh⊕
j=1

GBFX [hi,j(xi,l)] = ti

for 1 ≤ i ≤ β and 1 ≤ j ≤ nh.

2. P2 constructs a Bloom filter BFY for the items in Y .

3. P1 and P2 run m oblivious transfers where P1’s input is (0, GBFX [i]) and
P2’s input is BFY [i] for the i-th oblivious transfer, and the output of P2 is
0 if BFy[i] = 0 or GBFX [i] if BFY [i] = 1. Call the OT output P2 obtains
as GBFY [i].

4. P2 outputs R′ = {r′1, ..., r′β} where

r′i =

nh⊕
j=1

GBFY [hi,j(yi)]

1. Constructs a BF BFY for Y .

2. Constructs a GBF GBF ′
Y such that

⊕k
j=1 GBF ′

Y [hi,j(yi)] = r′i for 1 ≤ i ≤ β.

3. Sets GBF ′
Y [i] = 0 if BFY [i] = 0.

Then, S runs the simulator of the OT protocol as the receiver with the input (BFY , GBF ′
Y ).

Note that the garbled bloom filters GBF ′
Y and GBFY are indistinguishable as dis-

cussed in the proof of Theorem 2.

5.3.2 Improving CANS 2020 PSI construction

Our PSM protocol can be used to build an efficient PSI protocol using the hashing
techniques introduced in (15; 16). In this technique, one party constructs a cuckoo
table as mentioned in Section 2.1 using two hash functions and the other party maps
her items into bins in a hash table using the two hash functions that are applied on
each item. Then, a private set membership protocol is applied on each bin where
the party who constructs the cuckoo table inputs the (single) item in the i-th bin,
and the other party inputs the set of items in the i-th bin of its hash table, for
the i-th execution of the PSM protocol. If one were to directly employ our PSM
construction to obtain a PSI protocol using this hashing technique, the computation
and communication complexities of the full PSI protocol would be O(n logn/ log logn),
since the number of items in each hash table bin is O(logn/ log logn) and the number
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of bins is O(n). Note that with this usage, for each bin, P2 and P1 run O(n) parallel
OPPRF protocols and then apply O(n) parallel FEQT protocols. Instead of following
this straightforward way, we show that it is possible to make the communication and
computation complexities linear while extending our PSM solution to a PSI solution
using our batch one-time OPPRF protocol.

Our full PSI protocol that realizes Functionality 6 is introduced in Protocol 6.
Note that in Step 5 of the protocol, the bins of the hash table are given as the item
sets to the batch one-time OPPRF protocol. While there are many items in the bins of
the hash table, most of them are random values and the total number of non-random
items in the hash table will be the product of the number of items (n) and the number
of cuckoo hash functions (chosen as 3 in our protocol). Thus, the size of the garbled
Bloom filter constructed in the batch one-time OPPRF protocol will be O(n), which
allows our PSI protocol to have linear complexity.

Protocol 6 Our improved PSI protocol
Parameters. A set of hash function sets H = {H1, ..., hβ} where Hi =
{hi,1, ..., hi,nh

} for 1 ≤ i ≤ β.
Inputs. PX inputs X = {x1, ..., xnX

}. PY inputs Y = {y1, ..., ynY
} and DY =

{(d0i , d1i ) | 1 ≤ i ≤ nY }.
Outputs. PX outputs DX = {djbj | 1 ≤ j ≤ nY , bj ∈ {0, 1}} where bj = 1 if
yj ∈ X, bj = 0 otherwise. PY outputs nothing.
The protocol steps:

1. PX constructs a set MX = {(Ex(0), Ex(1)) | 1 ≤ j ≤ β} where Ex(.) is
encryption under the public key of PX and E is a partially homomorphic
encryption algorithm.

2. PX constructs a hash table for the set X.

3. PY constructs a cuckoo table for the set Y . f denotes the mapping such
that f(i) = j if yi is mapped to the j-th bin of the cuckoo table.

4. PX picks a set of β η-bit random values R = {r1, ..., rβ}.

5. PX and PY run Protocol 5 with their respective inputs: (hash table, R)
and cuckoo table. Let the output of PY be R′ = {r′1, ..., r′β}.

6. PX and PY run β parallel executions of Protocol 1 for functional equal-
ity testing, where for the j-th run, the inputs of PX and PY are
(rj , (Ex(0), Ex(1))) and r′j .

7. PY computes the set {Ex(bf(i)d
1
i + (1− bf(i))d

0
i ) | 1 ≤ i ≤ nY } and sends

it to PX .

8. PX decrypts the items in the received set to learn the corresponding values
and outputs DX = {dbii | 1 ≤ i ≤ nY , bi ∈ {0, 1}} where bi = 1 if yi ∈ X,
bi = 0 otherwise.

Note that when we use two hash functions for cuckoo hashing, then there will be
some items in Y which cannot be placed into the table and have to be moved to a stash.
For each of these items in the stash, a PSM protocol also has to be executed. When we
consider the number of these items as ω(1), then the complexity of our PSI protocol
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becomes bigger than O(n). To make the complexity linear, Pinkas et al. proposed to
use dual execution or a stash-less cuckoo hashing (11). In dual execution, after the
first run of the PSI protocol, P2 learns the membership result for its items except the
ones in the stash. Then the parties run the PSI protocol swapping their roles, that is,
P1 constructs a cuckoo table for X and P2 constructs a hash table for the items in the
stash. Since there may be some items of P1 which have not been placed in the cuckoo
table and moved to a stash, P1 and P2 should run the PSM protocol for their items in
the stashes. However, this usage does not realize the Functionality 6 that we consider,
since in the second run, P2 learns the function of the membership result between its
items in the stash and the set X, and in the final PSM protocols run for the items in
the stashes, P2 again learns the function of the membership result between its items
in the stash and P1’s items in the stash. That is, P2 learns two different results for
its items in the stash that makes the protocol diverge from Functionality 6. Because
of these two reasons, we make use of the second method of Pinkas et al., which is the
usage of stash-less cuckoo hashing with three hash functions.

The steps that helps to have such a functionality are Steps 1, 7 and 8 in Protocol
6. Note that these steps can also be injected to other existing PSI protocols to make
them address Functionality 6.

Asymptotic Complexity. For simplicity we take n = nX = nY . While it seems that
there are O(n logn/ log log n) items in the hash table of PX , which makes the length
of the Bloom filters O(n logn/ log logn), the actual number of items is O(3n) = O(n)
since the other items are random values padded to the bins to make the number of
items in the bins O(logn/ log log n). Thus, the complexity of Step 5 of Protocol 6
becomes O(n). Since the number of bins is O(n) and for each bin only one equality
testing is executed in Step 6, the complexity of Step 6 will be O(n). As stated in
Section 5, the overhead of the application of conversion protocol (steps 1, 7 and 8 in
Protocol 6) is O(nY ). Thus, the communication and computation complexities of our
PSI protocol becomes O(n).

Security. The security arguments of the conversion protocol is presented with The-
orems 5 and 6 with the assumption that the PSI protocol is semi-honest secure. Also,
the security of the PSI protocol is shown in (1). Thus these two security arguments
completes the security proof of our improved protocol presented in Protocol 6.

5.4 Application on Chandran et al. PSI protocol

Before presenting how our conversion protocol can be applied on the Chandran et al.
PSI protocol (7), we remind their PSI protocol with the following mains steps.

1. Hashing (steps 1 and 2 of the PSI protocol in (7)): PY and PX (P0 and P1 in
(7)) respectively compute the cuckoo table and the hash table of their sets Y
and X. This corresponds to the steps 1 and 2 of our PSI protocol in (1).

2. Relaxed Batch OPPRF (steps 3-5): PY and PX compute the relaxed batch
OPPRF respectively using the cuckoo table and hash table as their inputs. In
the end of the computation, for each bin of the tables PY learns a set (Wi) of
three items while PX learns a target value tj . This corresponds to the steps 3
and 4 of our PSI protocol. Note that in our PSI protocol, PY learns an item
instead of a set of items for each cuckoo table bin.

3. Comparing OPPRF Outputs (step 6): PY and PX run the PSM protocol for
each corresponding bin of the cuckoo table and hash table. In the end of the
protocol, they learn secret shares of the membership result for the each bin. This
step is similar to the step 5 in our protocol. Note that, since in our protocol PY

learns an item instead of a set, we run an equality testing protocol instead of a
PSM protocol.
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4. Circuit (step 7): The parties run a circuit by providing the secret shares and
the cuckoo table as input.

As seen from the brief and high level description of the PSI protocol of (7), the
protocol outputs secret shares for β bins and the circuit needs to get the cuckoo table as
input in addition to the secret shares. To convert that protocol to a protocol realizing
Functionality 6, the following modifications can be applied on the PSI protocol.

• PX executes step 1 of Protocol 4 to have the set of encryption results of ’0’s and
’1’s (i.e., MX = {(Ex(0), Ex(1)) | 1 ≤ j ≤ β}). This will correspond to step 1 of
our improved PSI protocol (Protocol 6).

• Hashing and Relaxed Batch OPPRF main steps are executed as done in the
original protocol. This step is similar to the steps 2-5 in our improved PSI
protocol.

• Instead of using their PSM protocols, a PSM protocol realizing Functionality 8
is executed by PX and PY assuming the role of P2 and P1, respectively. This
functionality is very similar to Functionality 4 except the difference that the
party who holds an item inputs the string pair instead of the party who holds
the set. We introduce a protocol (Protocol 7) for this functionality, which is very
similar to Protocol 3. This step corresponds to step 6 of our protocol except the
difference that we run β parallel equality testing protocol while β parallel PSM
protocol is executed here.

• PY and PX runs steps 3 and 4 of the conversion protocol presented in Protocol
4, as done in our improved PSI protocol.

Functionality 8 Secure Computation Private Set Membership Functionality 2

Inputs. P1 inputs X = {x1, ..., xnX
}, P2 inputs y and a pair of strings (d0, d1).

Outputs. The functionality checks the membership of y in X and returns d1 to
P1 if y ∈ X. Otherwise, returns d0 to P1.

Protocol 7 Secure Computation Private Set Membership Protocol 2
Parameters. A set of hash functions H = {h1, ..., hnh

}.

Inputs. P1 inputs a set of items X = {x1, ..., xnX
}, P2 inputs an item y and a

pair of strings (d0, d1).
Outputs. P1 outputs d1 if y ∈ X. Otherwise, P1 outputs d0. P2 outputs nothing.

The protocol steps:

1. P1 picks an η-bit random value r and sets T = {t1 = r, ..., tnX
= r}.

2. P1 and P2 run Protocol 2 for one-time OPPRF with the respective inputs
(X,T ) and y. Denote the output of P2 as r′.

3. P1 and P2 run Protocol 1, by respectively assuming the roles of P2 and
P1, for functional equality testing with the respective inputs (r) and
(r′, (d0, d1)). The output of the PSM protocol is the output of Proto-
col 1.
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With these changes in the PSI protocol of (7), we have a PSI protocol that realizes
the natural functionality expected from a PSI protocol that allow secure computation
on the PSI result.

6 Applications of Secure-Computation PSI Pro-
tocol with Natural Functionality

In this section, we present some applications of our protocol to exemplify how it can
be integrated into a larger two-party protocol.

6.1 Having a Classical PSI Protocol

If one would like to compute the intersection itself, this is easily doable using our
protocol. PY prepares the set DY by setting (d0i , d

1
i ) = (0, 1) for 1 ≤ i ≤ nY and

inputs its set Y and DY to our PSI protocol. PX inputs its set X. After running our
PSI protocol, PY learns nothing and PX learns the set DX = {dbii | 1 ≤ i ≤ nY , dbii ∈
{0, 1}} where dbii = 1 if yi ∈ X, dbii = 0 otherwise. PX sends DX to PY , and so PY

learns the intersection.

6.2 Having a PSI Cardinality Protocol

To just learn the cardinality of the intersection and no additional information about the
intersection, PY chooses a key pair for an additively homomorphic encryption scheme
and prepares the data set DY by setting (d0i , d

1
i ) = (Epk(0), Epk(1)) for 1 ≤ j ≤ nY .

PY inputs Y and DY and PX inputs X to our protocol and PX learns the data
set DX where di = Epk(1) if yi ∈ X and the other di values are encryption of ‘0’
under the public key of PY . PX homomorphically sums up the di values using the
additive homomorphism property of the encryption scheme and obtains the result∑

Epk(di) = Epk(|X∩Y |). PX sends Epk(|X∩Y |) to PY and PY learns the cardinality
by decrypting the received ciphertext.

6.3 Having a Threshold PSI Protocol

Assume that the parties want to learn the intersection if and only if the cardinality
of the intersection is equal to or bigger than a threshold t. Our PSI protocol can
be utilized as follows. PY generates a key K for a probabilistic encryption scheme
and divides the decryption key into nY secret shares such that t of the shares are
enough to construct the key (using a t out of nY threshold secret sharing scheme). PY

also sets (d0i , d
1
i ) = ((EK(0), ri), (EK(1), ki)) where EK(.) is the encryption operation

under the key K chosen by PY , ri is a random value having the same length with the
key, and ki is the i-th secret share of the decryption key K. After running our PSI
protocol, PX obtains the data set DX such that di = (EK(1), ki) for the i-th items of
Y that are in the intersection. If the number of items are equal to or bigger than the
threshold t, then PX will be able to construct the decryption key and able to decrypt
the left parts of the di values that are the encryption of ‘0’ or ‘1’, which allows PX

to learn the intersection in a similar way as explained in Section 6.1. Otherwise, if
the number of items in the intersection is fewer than t, PX will have fewer than t key
shares and will not be able to construct the decryption key, and therefore will not be
able to decrypt the ciphertexts of ‘0’ and ‘1’ correctly, which means that PX will not
be able to learn the intersection. When a threshold secret sharing scheme such as (41)
is used, PX needs to compute all possible (potentially exponentially-many, depending
on t and nY ) combinations of secret shares to construct the decryption key. To avoid
considering all possible combinations of secret shares for construction of the decryption
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key and to not leak more information, usage of other tools such as the Reed-Solomon
decoding algorithm, as done in (42), can be investigated as future work.

On the other hand, one needs to be very careful with such constructions. When
a verifiable secret sharing scheme such as (43) is used, then PX will be able to learn
which secret shares are valid ones, and this allows PX to learn which items in the
cuckoo table is in the hash table of PX , thereby leaking more information than what
is desired.

6.4 General Secure Computation over Set Intersection

In general, any secure two-party computation can be computed where the input con-
tains the set intersection, on top of our protocol. Below, we analyze different types of
secure two-party computation techniques, and explain how our protocol can be em-
ployed to provide the intersection as input to the corresponding continuation protocol
securely. Our protocol’s outputs will be the continuation protocol’s inputs.

6.4.1 Secret share type of outputs.

PY sets the set DY as follows. For each index i where 1 < i < nY , PY chooses a
random string (si) with enough length and sets d0i = si and d1i = si ⊕ 1. According to
the functionality, if yi ∈ X then PX learns d1i where si and d1i will be the secret shares
of the membership. Similar argument will be valid also for the case that yi /∈ X.

6.4.2 Homomorphic encryption result type of outputs.

To be able to have such kind of outputs, PY generates a key pair to be used in the
(partially, somewhat, fully) homomorphic encryption, and constructs the set DY by
setting d0i = E(0) and d1i = E(1) where E is a (partially, somewhat, fully) homomor-
phic encryption under the public key of PY . In the end of the protocol, PX will be
able to learn E(1) is yi ∈ X or E(0) otherwise.

6.4.3 Wire label type of outputs.

PY constructs a circuit that gets our protocol’s output as its input and computes the
function on the intersection. For this aim, PY chooses wire label pairs (w0

j , w
1
j ) for

each input wire that represent the membership result of yj on X, and creates the set
DY as d0j = w0

j and d1j = w1
j . Then PX learns the corresponding wire labels depending

on the intersection and obliviously evaluates the circuit. With this approach, only the
output of the function on the intersection will be learned without leaking any other
information about the intersection.

6.5 Handling the Associated Data

In same cases, in addition to the set, the parties may have some data associated with
each item in the set. One example in a real world scenario could be advertisement
use cases, where one party (PX) holds a set of identifiers and the other party (PY )
has the set of identifiers and the amount of payment made by people having those
identifiers. The parties require a protocol that reveals only the sum of the associated
data (payments) of the items (identifiers) in the intersection. (7; 11) propose such
protocols by modifying their circuit PSI protocol. In our protocol, we do not need to
modify the protocol; instead, it is enough to fill the set DY in an appropriate way (see
below) to support this advertisement type of use case with associated (payment) data.

One way could be utilization of secret shares. At the end of the protocol, the
parties learn secret shares of the associated data of the items in the intersection. For
the other items, the parties learn secret shares of ‘0’. Then the parties execute a
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summation protocol that takes secret shares of the items to be summed up. For this
purpose, the sender party PY includes the secret shares of the associated data in the
set DY as follows. For each index i where 1 ≤ i ≤ nY , PY chooses a random string (ri)
with enough length and respectively includes ri and ri ⊕ ai in d0i and d1i , respectively,
where ai is the associated data. According to the functionality, if yi ∈ X then PX

learns the secret share of the associated data, otherwise PX learns the secret share of
‘0’.

If some computation using homomorphic encryption is desired, then instead of
including ri and ri ⊕ ai in d0i and d1i , the values d0i and d1i are respectively set to
Ey(0) and Ey(ai), where Ey is an additively homomorphic encryption scheme using
the public key of PY . After learning the corresponding data values Ey(0) or Ey(ai),
PX uses them to homomorphically compute the encryption result of the sum of 0 or ai

values, and then returns the resulting ciphertext to PY . After decryption, PY learns
the sum of the associated data for the intersection.

7 Performance Evaluation

7.1 Concrete Complexity

Parameter Choices. We take the number of hash functions used in the construction of
Bloom filters as nh = η and follow the choice of (28) to set the size of the Bloom filter
as taking m = 1.44kn. Note that taking nh = η doesn’t reduce the security level to
statistical correctness parameter because the result of BF-based OPPRF protocol are
random numbers which then be inputs of the equality testing protocol. Following the
parameters in (11), we choose the number of bins as 1.27n and the number of cuckoo
hashes as 3, which makes the probability of having at least one item in the stash 2−40,
consistent with our preferred statistical correctness parameter η.

Concrete Complexity of our PSM protocol. For the Bloom filters, P1 and P2 com-
pute n×nh and nh hash functions, respectively. For the OT-extension in the OPPRF
part, they run m oblivious transfer whose total computation complexity is approx-
imately equal to 3m symmetric key operations thanks to the oblivious transfer ex-
tension (34). Finally, the parties execute Ciampi-Orlandi PSM protocol where the
number of items in the set of P1 is one, which makes the computation complexity 6η
symmetric key operations at P1 and 5η symmetric key operations at P2 (the reader
can refer to (29) for the complexity calculation for the FEQT protocol) 1. Thus the
computation complexity of the protocol at the party where majority of workload is
done is n × nh + 3m + 6η. Since we choose m = 1.44 × nh × n and nh = η then
the complexity becomes 5.32nη + 6η. For the parameter η = 40 the complexity will
be 212.8n + 240 symmetric key operations. The communication complexity comes
from the oblivious transfers. In the OPPRF step, the message lengths in the oblivi-
ous transfer is η bits, while for the FEQT part, it is 2(κ + η) bits. Considering that
the total number of bits transferred in the OT extension equals to 2 times the items’
length times number of pairs, the communication complexity of the protocol becomes
2×m×η+2×η×2×(κ+η) = 2×(1.44×n×η)×η+2η×2×(κ+η) = 2.88nη2+4κη+4η2.

Concrete Complexity of our Conversion Protocol Overhead The computational
overhead introduced by our conversion protocol comes from the steps 1, 3 and 4 in
Protocol 4. In step 1, PX needs to compute 2 × β encyption operations, but since
these operations are independent from the input of PX , this step can be executed
offline before the execution of the protocol. In step 3, for each of the items in the set
PY needs to execute one encryption, one inverse, 2× |d|+ 1 multiplication operations

1The item lengths in the GBF and so the lengths of the items to be tested for equality
are max(η, ℓ) bits as stated in Protocol 2. In concrete complexity analysis, we take it as η for
simplicity considering that in practice generally η > ℓ.
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where |d| denotes the bit length of the items in DY . These operation numbers comes
from the following equation:

Ex(bf(i)d
1
i + (1− bf(i))d

0
i ) = (Ex(bf(i)))

d1i × (E(1)/Ex(bf(i)))
d0i

Finally, in step 4, PX performs nY decryption operations. Regarding the communi-
cation overhead, we only need to consider the data transfer from PY to PX in step 3
where nY encryption results are sent in that communication.

7.2 Experimental Verification

Setup. We implemented Ciampi-Orlandi PSM protocol, our PSM and PSI protocols,
and our conversion protocol using C programming language and GMP library. Run-
time estimates are done for LAN and WAN under the assumption that the bandwidth
in LAN (respectively in WAN) is 1 Gbps (100 Mbps) and RTT is 1 ms (100 ms). In
our experiment setup, P1 and P2 run on the same machine as different processes and
communicate with each other over a TCP channel. We run the protocols for different
size of sets and item lengths on a single CPU core of a computer that has 2.1 Ghz
16-core Intel Xeon CPU with 64 GB RAM. In the experiments, we chose RSA 2048
as asymmetric encryption algorithm in base OT, the statistical correctness parameter
η as 40 bits, AES as the encryption algorithm, SHA-256 with different initialization
vectors as the hash functions. We take the f function such that it outputs 128-bit
wire labels. We take the number of hash functions in the construction of Bloom filters
in our protocols as nh = 40. The results are the averages over 10 executions of the
protocols.

PSM. Table 1 shows the total amount of data transmitted between P1 and P2

during the execution of the protocols and the run-times in LAN and WAN setting.
As can be seen from the table, our BF-based semi-honest PSM protocol has linear
complexity both on computation and communication, and we provide comparable
performance. Our asymptotic advantage becomes visible with larger ℓ values.

Table 1: Performance results of Ciampi-Orlandi and our PSM protocols.
Protocol Ciampi-Orlandi PSM Our PSM
Set size n n = 212 n = 214 n = 216 n = 212 n = 214 n = 216

Comm. [MB]
ℓ = 32 5.4 21.3 84.5 6.0 23.6 93.8
ℓ = 48 8.1 31.8 126.5 6.5 25.4 101.0
ℓ = 64 10.7 42.3 168.5 7.4 29.0 115.4

LAN [s]
ℓ = 32 2.05 4.20 11.72 2.58 6.51 22.03
ℓ = 48 2.44 5.76 18.12 2.66 6.56 22.34
ℓ = 64 2.80 7.36 24.40 2.66 6.60 22.54

WAN [s]
ℓ = 32 10.21 36.39 139.44 11.65 42.12 163.75
ℓ = 48 14.69 53.82 209.32 12.42 44.90 174.97
ℓ = 64 18.97 71.30 279.05 13.78 50.37 196.90

Overhead of Our PSI Conversion Protocol. We also implemented our PSI conver-
sion protocol to validate our performance analysis and compare the overhead with the
performance of our PSI protocol and Chandran et al. PSI protocol. We used Paillier
encryption scheme (44) for the additevely homomorphic encryption need and run the
implementation in the same computation environment mentioned above. We chose the
length of the prime numbers as 2048-bit. We excluded the cost of step 1 since it can
be done offline. The remaining (online) cost of our conversion protocol is independent
of the number of items in PX . While the length of the items in the sets X and Y
does not affect the cost of the protocol, the length of the items in the data set DY

has an impact on the cost. In the experiment, we selected the length of these items
as 128-bits, considering them as wire labels for a garbled circuit. Table 2 presents our
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conversion protocol overhead with different set sizes of Y , where we choose the set size
nY as 24, 26, and 28 considering the use case of private contact discovery mentioned in
Section 1. Note that since the performance of our conversion protocol is independent
of nX , we fixed it to 216 in the experiments. Table 3 presents the overhead cost of
our conversion protocol on top of the PSI protocols introduced in (1) and (7). The
percentage values in the table are computed using the performance results presented
in Table 2 and the PSI protocols’ performance results given in (1) and (7). According
to the results, it can be concluded that our conversion protocol converts the PSI pro-
tocol to having the natural functionality with neglectable overhead, especially when
the number of items in Y is much fewer than the number of items in X.

Table 2: Performance of our conversion protocol (independent of nX).
nY Comm. [MB] LAN [s] WAN [s]
24 0.008 0.09 0.10
26 0.031 0.34 0.39
28 0.125 1.34 1.53

Table 3: Overhead of our conversion protocol on top of PSI protocols in (1) and
(7), nX = 216.

PSI Protocol nY Comm. LAN WAN

PSI in (1)

24 0.001% 0.106% 0.010%
26 0.005% 0.399% 0.040%
28 0.021% 1.574% 0.157%

PSI in (7)

24 0.008% 4.918% 1.495%
26 0.032% 18.579% 5.830%
28 0.129% 73.224% 22.870%

8 Conclusion

As a main contribution, we proposed a conversion protocol having some steps that
enables linear-complexity circuit PSI and secure-computation PSI protocols to realize
the expected natural functionality of secure computation PSI protocols. To illustrate
how the conversion protocol can be applied to the existing protocols, we applied the
conversion on our PSI protocol introduced at CANS 2020 and on Chandran et al.
protocol introduced at PETS 2022. While converting these linear protocols into PSI
secure computation protocols having the natural functionality, our conversion protocol
also keeps the complexity in linear. In addition saving the asymptotic complexity, the
overhead of our protocol becomes negligible especially for the cases that the number of
items in one party is very small when compared with the number of items in the other
party. This assumption is especially valid for the non-silo use cases, e.g., one party
can be a mobile phone having less number of items and the other party can be a server
having huge amount of items. Finally, in the conversion protocol, we used public key
cryptography (partially homomorphic encryption). Improvement of this construction
with the use of symmetric key primitives to have better performance is left as a future
work.

As side contributions, we propose a private set intersection (PSI) protocol achieving
linear communication and computation complexities while outputting a function of
the membership results to be used in larger secure two-party protocols to compute
other functionalities over the intersection set. To construct such a protocol, we first
used one-time oblivious programmable pseduo-random function (OPPRF) based on
existing Bloom filter based PSI solutions and then proposed a private set membership
(PSM) protocol. To reduce the complexity while converting the PSM solution to
a PSI protocol using hashing techniques, we constructed another primitive that is
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called a batch one-time OPPRF. Finally, using these new constructions, we introduced
our PSI protocol with linear communication and computation complexities. We also
implemented our protocols to validate our performance analysis and show concrete
efficiency of our protocols. We leave security against malicious adversaries, and multi-
party PSI with bi-oblivious data transfer as future work.
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