
TFHE Public-Key Encryption
Revisited

Marc Joye

Zama, Paris, France

Abstract

This note introduces a public-key variant of TFHE. The output
ciphertexts are of LWE type. Interestingly, the public key is shorter
and the resulting ciphertexts are less noisy. The security of the scheme
holds under the standard RLWE assumption. Several variations and
extensions are also described.

Keywords: Fully homomorphic encryption (FHE) · Public-key encryp-
tion · Ring LWE (RLWE) · TFHE cryptosystem.

1 Public-Key TFHE Encryption

TFHE and its variants (e.g., [4, 3]) are natively private-key encryption
schemes. The same key is used to encrypt or to decrypt messages. As
already demonstrated in [6, § 6.1], certain private-key homomorphic en-
cryption schemes can be turned into a public-key encryption scheme by
providing encryptions of zero. See [12] for a more general result.

If [[·]]sk denotes the probabilistic [private-key] encryption algorithm, the
public encryption key consists of z encryptions of 0; i.e., pk =

(
a1 ←

[[0]]sk, . . . , az ← [[0]]sk
)
. Let � denote the ciphertext addition. The public-

key encryption of a plaintext m then proceeds as follows:

• Draw a random bit-string (r1, . . . , rz)
$← {0, 1}z;

• Compute a randomized encryption of zero as S← z
i=1 ri ai;

1

• Compute a trivial1 encryption of m and get M← [[m]]sk;

• Output the ciphertext C← S�M.

Noting that C = [[m]]sk, the ciphertext C can be decrypted using the
private key sk.

In the case of TFHE, the private decryption key is an n-bit string
s = (s1, . . . , sn). The matching public encryption key is{

(ai, bi) ∈ (Z/qZ)n × Z/qZ
}
16i6z

where {
ai

$← (Z/qZ)n

bi ← ei +
∑n

j=1(ai)j sj (mod q)

and (ai)j denotes the j-th component of vector ai. The encryption of
a plaintext m ∈ Z/tZ is given by c = (a, b) ∈ (Z/qZ)n+1 with a =∑z

i=1 ri ai and b =
∑z

i=1 ri bi + ∆m where ∆ = q/t. This assumes that t
divides q. If not, an option is for example to define ∆ = bq/tc (flooring),
∆ = dq/te (ceiling), or ∆ = dq/tc (rounding).

Another option is for example to define m̃ = bmq/tc (flooring), m̃ =

dmq/te (ceiling), or m̃ = dmq/tc (rounding). The body b of the cipher-
text is then defined as b =

∑z
i=1 ri bi + m̃. An example of plaintexts

encoded using the flooring function is given in [11, Sect. 5] for t = 2.

Remark 1. Using matrix notation with vectors as column matrices, if we
view the public key as the pair pk = (A,b) with

A =

(a1)1 . . . (az)1
...

...
(a1)n . . . (az)n

 ∈ (Z/qZ)n×z and b =

b1...
bz

 ∈ (Z/qZ)z

where b = Aᵀ
s+ e, then ciphertext c can be expressed as c = (a, b) with

a = A r and b = b
ᵀ
r+ ∆m where r =

(
r1 . . . rz

)ᵀ

∈ (Z/qZ)z.

The decryption of a ciphertext c = (a1, . . . , an, b) ∈ (Z/qZ)n+1 pro-
ceeds in two steps. The first step is to recover the corresponding phase
defined as

φs(c) = b−

n∑
j=1

aj sj mod q

1A “trivial” encryption is an (insecure) encryption that can be obtained without the
knowledge of the private key. The so-obtained ciphertext decrypts to the input plaintext.

2

which represents a noisy value of plaintext m. Indeed, it turns out from
the definition that φs(c) = ∆m+Err(c) (resp. φs(c) = m̃+Err(c)). The
second step is to remove the noise Err(c) to get ∆m (resp. m̃) and, in
turn, m.

Remark 2. The above description makes use of the ring Z/qZ. TFHE and
the likes can similarly be defined over the discretized torus Tq = 1

q
Z/Z;

see [8].

In order to have a sufficient security margin, the leftover hash lemma
teaches that the value of z should verify

z = (n+ 1) |q|2 + κ ;

the additional term κ, where κ is the security parameter, accounts for the
corresponding subset-sum problems.

For a random variable X, its expectation is denoted by E[X] and its
variance by Var(X); see Appendix A. Assuming that the noise ei is centered
and that its variance is bounded by the same threshold σ2 = Var(ei), the
noise variance in an output ciphertext—where r

$← {0, 1}z—is of 1
2
zσ2. In

the worst case, r = (1, 1, . . . , 1) and Var(Err(c)) = zσ2.

Proof. Let c denote the output ciphertext. It is easy to check that φs(c) =∑z
i=1 ri ei + ∆m and thus Err(c) =

∑z
i=1 ri ei. Noting that for a uniform

bit b in {0, 1}, E[b] = 1/2 and Var(b) = 1/4, it follows that Var(Err(c)) =∑z
i=1 Var(ri ei) =

∑z
i=1

(
1
4
σ2 + 1

4
0 + σ2 (1

2
)2
)
= z 1

2
σ2. If r = (1, 1, . . . , 1)

then Var(Err(c)) =
∑z

i=1 Var(ei) = zσ2.

Further, assuming the masks ai are derived from a random seed ϑ ∈
{0, 1}κ where κ is the security parameter, the size of the public encryption
key is of |ϑ|2 +

(
(n+ 1)|q|2 + κ

)
|q|2 bits.

Illustration For example, at the 128-bit security level, with n = 1024, q =

264 and σ = 2−25q = 239, we have z = 65728 ≈ 216. This results in
an increase of the noise variance in an output ciphertext by an expected
factor of 215. With σ = 239, the standard deviation of the noise in an
output ciphertext is of 246.5. We also have that the public encryption key
takes 4206720 bits, that is, about 526 kB.

3

2 Smaller Public Keys, Less Noisy Ciphertexts

It is useful to introduce a new vector operator. The reverse negative
wrapped convolution of two vectors u = (u1, . . . , un), v = (v1, . . . , vn) ∈
Zn is the vector w = u~ v = (u~1 v, . . . ,u~n v) ∈ Zn defined by

wi = u~i v =
∑i

j=1 uj vn+j−i −
∑n

j=i+1 uj vj−i .

For example, (1, 2, 3)~ (4, 5, 6) is the vector (−17, 5, 32).

Remark 3. For a vector v ∈ Zn, −↼
v denotes vector v in reverse order; i.e.,

if v = (v1, . . . , vn) then −↼
v = (vn, . . . , v1). The above convolution bears

its name from the classical negative wrapped convolution (a.k.a. skew
circular convolution or negacyclic convolution) defined by w = u∗v where
wi =

∑i
j=1 uj vi+1−j−

∑n
j=i+1 uj vn+1+i−j. Indeed, it turns out that u~v =

u ∗ −↼
v .

The main properties of the reverse negative wrapped convolution are
captured by the next lemma.

Lemma 1. Given three vectors t,u, v ∈ Zn, it holds that

1. u~ v = −↼
v ~ −↼

u ;

2. u~n v = 〈u, v〉 ;

3. 〈t~ u, v〉 = 〈t~ v,u〉 .

Proof. The first property is immediate. Since ∗ is commutative, it follows
that u~ v = u ∗ −↼

v = −↼
v ∗ u = −↼

v ~ −↼
u.

Now, write t = (t1, . . . , tn), u = (u1, . . . , un), and v = (v1, . . . , vn).
From the definition, denoting [pred] = 1 if some predicate pred is true and
[pred] = 0 otherwise, we can express u~i v compactly as

n∑
j=1

(−1)[j>i] uj v[j6i]n+j−i .

Plugging i = n, we so get u~n v =
∑n

j=1 uj vj = 〈u, v〉.
Likewise, we also get

〈t~ u, v〉 =
n∑

i=1

(∑n
j=1(−1)

[j>i] tj u[j6i]n+j−i

)
vi

=

n∑
j=1

tj

(∑n
i=1(−1)

[i<j] u[i>j]n+j−i vi

)
4

=

n∑
j=1

tj

(
−
∑j−1

i=1 uj−i vi +
∑n

i=j un+j−i vi

)
=

n∑
j=1

tj

(
−
∑j−1

i=1 vj−i ui +
∑n

i=j vn+j−i ui

)
= 〈t~ v,u〉

by symmetry.

2.1 Description

Equipped with the ~ operator, we can now present a public-key cryptosys-
tem. Interestingly, the encryption algorithm outputs regular LWE-type
ciphertexts. As a consequence, the decryption algorithm is unchanged.

A public-key LWE-type scheme

KeyGen(1κ) On input security parameter κ, define an integer n = 2η

for some η > 0, select positive integers t and q with t | q, let
∆ = q/t, and define two discretized error distributions χ̂1 and
χ̂2 over Z.

Sample uniformly at random a vector s = (s1, . . . , sn)
$←

{0, 1}n. Using s, select uniformly at random a vector a
$←

(Z/qZ)n and form the vector b = a ~ s + e ∈ (Z/qZ)n with
e← χ̂1

n.

The plaintext space is M = {0, 1, . . . , t− 1}. The public param-
eters are pp = {n, σ, t, q, ∆}, the public key is pk = (a,b), and
the private key is sk = s.

Encryptpk(m) The public-key encryption of a plaintext m ∈ M is
given by c = (a, b) ∈ (Z/qZ)n+1 with{

a = a~ r+ e1

b = 〈b, r〉+ ∆m+ e2

for a random vector r
$← {0, 1}n, and where e1 ← χ̂1

n and
e2 ← χ̂2.

Decryptsk(c) To decrypt c = (a, b), using secret decryption key s,
return

d(µ∗ mod q)/∆c mod t

5

where µ∗ = b− 〈a, s〉.

2.2 Correctness

Let c = (a, b)← Encryptpk(m). Then, by Lemma 1, we have b− 〈a, s〉 =
〈a~ s + e, r〉 + ∆m + e2 − 〈a~ r + e1, s〉 = ∆m + e2 + 〈e, r〉 − 〈e1, s〉 +
〈a~ s, r〉− 〈a~ r, s〉 = ∆m+E where E = e2+ 〈e, r〉− 〈e1, s〉. Decryption
correctness thus requires that |E| < ∆/2.

2.3 Security

We state the semantic security [7] of the proposed cryptosystem under the
RLWE assumption [9] in Zn,q[X] := (Z/qZ)[X]/(Xn + 1).

Definition 1 (RLWE Assumption). Given a security parameter κ, let n, q ∈ N
with n a power of 2 and let s

$← B[X]/(Xn + 1) where B = {0, 1}. Let also
χ̂ be an error distribution over Z[X]/(Xn + 1); namely, over polynomials of
Z[X]/(Xn + 1) with coefficients drawn according to χ̂. The ring learning
with errors (RLWE) problem is to distinguish samples chosen according
to the following distributions:

dist0(1κ) =
{
(a, b) | a

$← Zn,q[X], b
$← Zn,q[X]

}
and

dist1(1κ) =
{
(a, b) | a

$← Zn,q[X],

b = as+ e ∈ Zn,q[X], e← χ̂
}
.

The RLWE assumption posits that for all probabilistic polynomial-
time algorithms R, the function∣∣∣Pr

[
R(a, b) = 1 | (a, b)

$← dist0(1κ)
]
−

Pr
[
R(a, b) = 1 | (a, b)

$← dist1(1κ)
]∣∣∣

is negligible in κ.

We identify polynomials in Zn,q[X] with their coefficient vectors in
(Z/qZ)n, and conversely. A vector u = (u1, . . . , un) ∈ (Z/qZ)n corre-
sponds to polynomial u =

∑n−1
i=0 uj+1 X

j ∈ Zn,q[X]; the correspondence is
written u ∼= u.

The next lemma relates the corresponding operations.

6

Lemma 2. Let u = (u1, . . . , un) and v = (v1, . . . , vn) ∈ (Z/qZ)n. Let also
u =

∑n−1
j=0 uj+1 X

j and v =
∑n−1

j=0 vj+1 X
j ∈ Zn,q[X]. Then

u~ −↼
v = v~ −↼

u ∼= u · v .

Proof. From Remark 3, if ∗ denotes the negative wrapped convolution, it
turns out that w = (w1, . . . , wn) := u~−↼

v = u∗v withwi =
∑i

j=1 uj vi+1−j−∑n
j=i+1 uj vn+1+i−j. Now looking at the corresponding polynomials u and

v, it is easily seen that their multiplication in Zn,q[X] = (Z/qZ)[X](Xn+1)

yields polynomial w =
∑n−1

j=0 wj+1 X
j. Hence, we have w ∼= w or, equiva-

lently, u~−↼
v ∼= u·v. The equality u~−↼

v = v~−↼
u follows from Lemma 1.

Back to the encryption scheme, it is instructive to observe that the pub-
lic key pk = (a,b = a~ s+ e) corresponds to a (polynomial) RLWE sam-
ple under secret key

∑n−1
j=0 sn−j X

j ∼=
−↼
s = (sn, . . . , s1). Under the RLWE

assumption, the public key as output by the key generation algorithm is
therefore pseudo-random; i.e., indistinguishable from uniform. Regarding a
ciphertext c = (a, b) with a = a~r+e1 and b = 〈b, r〉+∆m+e2, consider
the vector b := b~ r+ e2 for some e2 ∈ χ̂2

n such that (e2)n = e2. Again,
it is worth noting that the pairs (a,a = a~ r+e1) and (b,b = b~ r+e2)

correspond respectively to two (polynomial) RLWE samples under ‘secret
key’

∑n−1
j=0 rn−j X

j ∼=
−↼
r and thus appear to be pseudo-random. The same

is true for 〈b, r〉+e2 since, from Lemma 1, this turns out to be the nth com-
ponent of vector b~r+e2: 〈b, r〉+e2 = b~nr+(e2)n. It is also important
that the randomness can be re-used in multiple ciphertexts provided they
are all encrypted under different keys. This follows from [2]. Indeed, when
the randomness is given explicitly in a ciphertext, it is readily verified that
the “reproducibility” criterion [1, Definition 9.3] is satisfied.

The semantic security under the RLWE assumption is established by a
series of hybrid games where the different RLWE samples are successively
replaced with uniform samples.

2.4 Performance

The public key expands to 2n |q|2 bits. If the component a of the public key
is generated from a random seed, the public key only requires n |q|2+κ bits
for its storage or transmission. With the example parameters of Section 1,
this amounts to 65664 bits, or about 8.2 kB.

Suppose χ̂i = N(0, σi
2) for i ∈ {1, 2}. For a ciphertext c output by

the encryption algorithm, from Section 2.2, the noise variance satisfies

7

Var(Err(c)) = Var(e2 + 〈e, r〉 − 〈e1, s〉) = Var(e2) +
∑n

j=1 Var((e)i ri) +∑n
j=1 Var((e1)j sj) = σ2

2+2n
(
σ1

2 1
4
+σ1

2 (1
2
)2+ 1

4
0
)
= σ2

2+nσ1
2. Again,

with the example parameters of Section 1, for σ12 = σ2
2, this translates in

an increase of n + 1 ≈ 210 in the noise variance. With σ1 = σ2 = 239, the
standard deviation of the noise in an output ciphertext is of 244. Larger
values for ciphertext modulus q lead to larger gains compared to the direct
approach using encryptions of 0 for the public key (Section 1).

3 Generalization

Let p be a monic (irreducible) polynomial of degree n. Let also R and Rq

denote the polynomial rings Z[X]/(p(X)) and R/(q) = (Z/qZ)[X]/(p(X)),
respectively. A polynomial a ∈ R (resp. a ∈ Rq) of degree less than
n and given by a(X) =

∑n−1
i=0 ai X

i with ai ∈ Z (resp. ai ∈ Z/qZ) can
be identified with its coefficient vector a := (a0, a1, . . . , an−1) ∈ Zn (resp.
∈ (Z/qZ)n). Over Rq, we let Υq denote the corresponding map

Υq : Rq
∼−→ (Z/qZ)n,

a=
∑n−1

i=0 ai X
i 7−→ Υq(a) = (a0, a1, . . . , an−1) .

This one-to-one correspondence defines the convolution ∗ between two vec-
tors in (Z/qZ)n. Given a,b ∈ (Z/qZ)n, their convolution is defined as

a ∗ b = Υq

(
Υq

−1(a) · Υq
−1(b)

)
∈ (Z/qZ)n

where · denote the polynomial multiplication in Rq.

Interestingly, the convolution operator allows expressing a ring-LWE
(in short, RLWE) ciphertext with vectors. One advantage of RLWE-type
encryption is that it comes with an efficient public-key variant. For exam-
ple, adapting [5, Sect. 3.2] following [10] (see also [9]), an RLWE public-key
encryption scheme can be abstracted as follows. The key generation draws
at random a small secret key s ∈ R and forms the matching public key
(A,B) ∈ (Rq)

2 where A is a random polynomial in Rq and B= A · s+ e

for a small random noise error e ∈ R. Let t | q and ∆ = q/t. The public-
key encryption of a plaintext m := m(X) =

∑n−1
i=0 mi X

i ∈ Rt is given by
the pair of polynomials (a, b) ∈ (Rq)

2 with{
a= A · r+ e1

b = B · r+ ∆m+ e2

8

for some small random polynomial r ∈ R and small random noise errors
e1, e2 ∈ R. The decryption of ciphertext (a, b), using secret key s, pro-
ceeds in two steps: (i) compute in Rq the phase b− a · s= ∆m+ E with
E := e · r + e2 − e1 · s ∈ R, and (ii) remove E to get ∆m and, in turn,
m ∈ Rt.

Using the convolution operator as defined above, we get the correspond-
ing formulation using vectors. The secret key is a small vector s ∈ Zn and
the public key is a pair of vectors (A,B) where A is a random vector in
(Z/qZ)n and B = A∗s+e (mod q) for some small random vector e ∈ Zn.
Then encryption of a plaintext m seen as a vector in (Z/tZ)n is given by
the pair of vectors (a,b) in (Z/qZ)n where{

a = A ∗ r+ e1

b = B ∗ r+ ∆m+ e2

(1)

for some small random vector r ∈ Zn and small random noise errors
e1,e2 ∈ Zn. Next, given ciphertext (a,b), plaintext m can be recov-
ered using secret key s from the phase b−a ∗ s = ∆m+E (mod q) where
E := e ∗ r+ e2 − e1 ∗ s ∈ Zn.

Three important observations are in order:

1. If bi (resp. mi) denotes the i-th component of vector b (resp. m)
in (1) then the pair (a, bi) is an LWE-type encryption of message
mi ∈ Z/tZ provided that

bi − 〈a, s〉 = ∆mi + (small noise) .

In particular, we have

bi − 〈a, s〉 = (B ∗ r)i + ∆mi + (e2)i − 〈A ∗ r+ e1, s〉
=

(
(A ∗ s+ e) ∗ r

)
i
+ ∆mi + (e2)i − 〈A ∗ r+ e1, s〉

= ∆mi + (A ∗ s ∗ r)i − 〈A ∗ r, s〉
+ (e ∗ r)i + (e2)i − 〈e1, s〉 .

As a consequence, if the condition

(A ∗ s ∗ r)i ≈ 〈A ∗ r, s〉 (2)

is satisfied, one ends up with an LWE-type ciphertext for plaintext
mi ∈ Z/tZ.

9

2. If the public key is replaced with (A,B = A∗ϕ1(s)+e) ∈ (Z/qZ)n×
(Z/qZ)n for some (bijective) map ϕ1 : (Z/qZ)n → (Z/qZ)n then
Condition (2) relaxes to

(A ∗ϕ1(s) ∗ r)i ≈ 〈A ∗ r, s〉 . (3)

3. Further, the above encryption scheme is unchanged if vector r is
replaced with vector ϕ2(r) for some (bijective) map ϕ2 : (Z/qZ)n →
(Z/qZ)n. In particular, taking ϕ2 = ϕ1 and letting u~v = u∗ϕ1(v),
Condition (3) can be written as

(A~ s~ r)i = (A~ r~ s)i ≈ 〈A~ r, s〉 . (4)

We argue that one can find a map ϕ1 such that Condition (4) is strictly
verified. Define C = A~ r = (C1, . . . , Cn) and write ϕ1(s) = (s ′1, . . . , s

′
n).

Then

(C~ s)i := (C ∗ϕ1(s))i = 〈C, s〉 ⇐⇒(
Υq

((∑n
j=1Cj X

j−1
)
·
(∑n

j=1 s
′
j X

j−1
)))

i
=

∑n
j=1Cj sj (mod q) . (5)

The left-hand side of the last equation can be rewritten as

n∑
j=1

Cj

(∑n
k=1 αj,k s

′
k

)
(6)

for some αj,k ∈ Z/qZ given by the multiplication · in Rq. Equating each
multiplier of Cj yields a system of n equations,

∑n
k=1 αj,k s

′
k = sj (for

1 6 j 6 n), from which values for s ′1, . . . , s
′
n can be derived and, in turn,

map ϕ1.

This leads to the following public-key encryption scheme. For security
reasons, we restrict quotient polynomial p(X) to cyclotomic polynomials
ΦM(X). We so have Rq = (Z/qZ)[X]/(ΦM(X)) with n = deg(ΦM). The
multiplication in Rq is denoted by · and the corresponding convolution
in (Z/qZ)n by ∗. The ‘specialized’ convolution operator in (Z/qZ)n is
denoted by ~. For any two vectors u, v ∈ (Z/qZ)n, we define u ~ v =

u∗ϕ1(v). With this corresponding definition of ϕ1, it holds by construction
that u~i v = 〈u, v〉; see Equation (5).

10

A public-key LWE-type scheme (General case)

KeyGen(1κ) On input security parameter κ, define an integer n =

φ(M) for some integer M and where φ denotes Euler’s totient
function, select positive integers t and q with t | q, let ∆ = q/t,
and define two discretized error distributions χ̂1 and χ̂2 over Z.

Sample uniformly at random a vector s = (s1, . . . , sn)
$←

{0, 1}n. Using s, select uniformly at random a vector a
$←

(Z/qZ)n and form the vector b = a ~ s + e ∈ (Z/qZ)n with
e← χ̂1

n.

The plaintext space is M = {0, 1, . . . , t− 1}. The public param-
eters are pp = {n, σ, t, q, ∆}, the public key is pk = (a,b), and
the private key is sk = s.

Encryptpk(m) The public-key encryption of a plaintext m ∈ M is
given by c = (a, b) ∈ (Z/qZ)n+1 with{

a = a~ r+ e1

b = 〈b, r〉+ ∆m+ e2

for a random vector r
$← {0, 1}n, and where e1 ← χ̂1

n and
e2 ← χ̂2.

Decryptsk(c) To decrypt c = (a, b), using secret decryption key s,
return

d(µ∗ mod q)/∆c mod t

where µ∗ = b− 〈a, s〉.

Remark 4. Applied the basic scheme given in Section 2, this corresponds
to M = 2η+1, p(X) = Xn + 1 with n = 2η and, letting s = (s1, . . . , sn),
ϕ1(s) = (sn, . . . , s1). Indeed, for i = n and p(X) = Xn + 1, left-hand side
of Equation (5) becomes

(
Υq

((∑n
j=1Cj X

j−1
)
·
(∑n

j=1 s
′
j X

j−1
)))

n
=

n∑
j=1

Cj s
′
n+1−j

11

that is, comparing with Equation (6),

(αj,k)16j6n
16k6n

=


0 0 . . . 0 1

0 0 . . . 1 0
...

...
0 1 . . . 0 0

1 0 . . . 0 0

 .

Equating each multiplier of Cj with those of
∑n

j=1Cj sj yields s ′n+1−j = sj
or, equivalently, (s ′1, . . . , s

′
n) = (sn, . . . , s1); and thus ϕ1(s) = (sn, . . . , s1).

Remark 5. The map ϕ1 in the basic scheme of Section 2 is obtained by
selecting i = n; namely, ϕ1(s) = (sn, . . . , s1). However, another vector
convolution operator that is ‘compatible’ with the multiplication in Rq =

Zn,q[X] := (Z/qZ)/(Xn + 1) can be used. An alternative therefore consists
in choosing another value for i. For a general value for i 6= n, the vector
s = (s1, . . . , sn) is mapped to

ϕ1(s) = (si, . . . , s1,−sn, . . . ,−si+1)

=
(
(−1)[j>i] s1+(i−j mod n)

)
16j6n

.

For example, for i = n − 1, we get ϕ1(s) = (sn−1, . . . , s1,−sn). The
matching specialized convolution operator is defined as u~ v = u ∗ϕ1(v)

for any two vectors u and v, where ∗ denotes the classical negative wrapped
convolution operator.

The general construction presents the advantage that the condition n
being a power of two can be relaxed. For quotient polynomial p(X) =

ΦM(X), the corresponding value for n is given by the Euler’s totient func-
tion of M. For example, if M = 3w then n = 2 · 3w−1 = 2M/3 and
p(X) = Xn + Xn/2 + 1. For i = n, ∗ corresponds to the multiplication in
(Z/qZ)[X]/(Xn + Xn/2 + 1) and

ϕ1(s) = (sn + sn/2, sn−1 + sn/2−1, . . . , sn−(n/2−1) + sn/2−(n/2−1),

sn/2, sn/2 − 1, . . . , sn/2−(n/2−1))

=
(
sn+1−j + [j 6 n/2] s1+(n/2−j mod n)

)
16j6n

.

Again, by construction, letting u~ v = u ∗ ϕ1(v), it holds that u~n v =

〈u, v〉 for any two vectors u and v.

12

4 Encrypting Multiple Plaintexts

When multiple plaintexts need to be encrypted, the natural way is to en-
crypt them individually. For Z plaintexts this requires Z · (n + 1) dlog2 qe
bits for the corresponding ciphertexts. We show in this section how to only
make use of (dZ/nen+ Z) dlog2 qe bits. This saves

(Z− dZ/ne) · n dlog2 qe

bits.

Given an LWE dimension n and a convolution operator ∗ operating on
n-dimensional vectors, fix an integer i ∈ {1, . . . , n}. This integer i defines a
map ϕ1 and, in turn, the matching specialized convolution operator ~ as
u~v = u∗ϕ1(v) for any two n-dimensional vectors u and v. As detailed in
the previous sections, this operator ~ gives rise to a public-key encryption
scheme. With the previous notations, a plaintext m is encrypted under
public key (a,b) ∈ (Z/qZ)2n as{

a = a~ r+ e1

b = 〈b, r〉+ ∆m+ e2

for some r
$← {0, 1}n, e1 ← χ̂1

n, and e2 ← χ̂2. Part a is called the mask of
the ciphertext and part b is called the body of the ciphertext.

When Z plaintexts, m1, . . . ,mZ, need to be encrypted, they are first
put in dZ/ne bins so that each bin contains at most n plaintexts. Next,
for each bin:

1. A fresh mask a is generated from a fresh randomizer r $← {0, 1}n and
a fresh noise vector e1 ← χ̂1

n as a← a~ r+ e1;

2. The first plaintext, say m1, is encrypted as above; namely, by adding
the body b := b1 ← 〈b, r〉 + ∆m1 + e2,1 for a fresh random noise
e2,1 ← χ̂2;

3. The remaining plaintexts in the bin (if any), saym2, . . . ,mL for some
L 6 n, are represented by pairs of the form

{(a, b`)}26`6L

where a is the mask generated in 1 and

b` ← (b~ r)j` + ∆m` + e2,` (for 2 6 ` 6 L)

13

for a fresh random noise e2,` ← χ̂2 and distinct indexes j` ∈ {1, . . . , n}\

{i}.

(Note that, by construction, (b~ r)i = 〈b, r〉.)

Ciphertext (a, b1) is an LWE-type ciphertext but ciphertexts in {(a, b`)}26`6L

are not. To turn them into LWE-type ciphertexts the common mask a

needs first to be converted into the corresponding mask Ψj`(a) to get the
LWE-type ciphertext (Ψj`(a), bj`) for some map Ψj` : (Z/qZ)n → (Z/qZ)n.
There is always such a map. For instance, map Ψj` can be chosen as a
linear map satisfying

(C~ s)j` ≈ 〈Ψj`(C), s〉

for any vector C = (C1, . . . , Cn). An expression for ψj` can be obtained in
a way similar to what is done to derive map ϕ1; see Section 3.

For example, for i = n and n a power of two as in Section 2.1, for a
vector x = (x1, . . . , xn), we can define

Ψj`(x) =
(
(−1)[k6n−j`] x1+(k+j`−1 mod n)

)
16k6n

.

For such a choice for Ψj` , it can be verified that (Ψj`(a), bj`) is an LWE-type
ciphertext encrypting plaintext m`; that is, that

bj` − 〈Ψj`(a), s〉 = ∆m` + (small noise) .

It is also interesting to observe that when i = n, replacing j` by i yields
Ψi(x) = (xk)16k6n = (x1, . . . , xn); namely, Ψi is the identity map.

5 Variants

There are a number of possible variants. Instead of selecting t | q, plaintext
modulus t can be more generally chosen as an arbitrary positive integer< q.
In this case, a plaintext m is encrypted as c = (a, b) with a = a~ r+ e1

and b = 〈b, r〉+ bq/tcm+ e2 or b = 〈b, r〉+ d(q/t)mc+ e2. See Section 1.
Another variant is to select private key s and/or randomizer r at random

in e.g. {−1, 0, 1}n, or in any small subset of Z/qZ.

References

[1] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica
Staddon. Multi-recipient encryption schemes: How to save on band-

14

width and computation without sacrificing security. IEEE Trans-
actions on Information Theory, 53(11):3927–3943, 2007. doi:
10.1109/TIT.2007.907471.

[2] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Random-
ness re-use in multi-recipient encryption schemes. In Y. Desmedt,
editor, Public Key Cryptography (PKC 2003), volume 2567 of
Lecture Notes in Computer Science, pages 85–99. Springer, 2003.
doi:10.1007/3-540-36288-6_7.

[3] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption over the torus.
Journal of Cryptology, 33(1):34–91, January 2020. doi:10.1007/
s00145-019-09319-x.

[4] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homo-
morphic encryption in less than a second. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part I, volume 9056 of Lecture Notes in Com-
puter Science, pages 617–640. Springer, Heidelberg, April 2015. doi:
10.1007/978-3-662-46800-5_24.

[5] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012. https://eprint.iacr.org/2012/144.

[6] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium
on Theory of Computing, pages 197–206. ACM Press, May 2008.
doi:10.1145/1374376.1374407.

[7] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 28(2):270–299, 1984.

[8] Marc Joye. SoK: Fully homomorphic encryption over the [discretized]
torus. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 2022(4):661–692, 2022. doi:10.46586/tches.v2022.
i4.661-692.

[9] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances

15

https://doi.org/10.1109/TIT.2007.907471
https://doi.org/10.1109/TIT.2007.907471
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.46586/tches.v2022.i4.661-692
https://doi.org/10.46586/tches.v2022.i4.661-692

in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes
in Computer Science, pages 1–23. Springer, Heidelberg, May / June
2010. doi:10.1007/978-3-642-13190-5_1.

[10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. Cryptology ePrint Archive, Report
2012/230, 2012. https://eprint.iacr.org/2012/230.

[11] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors,
37th Annual ACM Symposium on Theory of Computing, pages
84–93. ACM Press, May 2005. doi:10.1145/1060590.1060603.

[12] Ron Rothblum. Homomorphic encryption: From private-key to public-
key. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryp-
tography Conference, volume 6597 of Lecture Notes in Computer
Science, pages 219–234. Springer, Heidelberg, March 2011. doi:
10.1007/978-3-642-19571-6_14.

A Variance and Covariance

The variance captures how much a randomly drawn variable is spread out
from the average value. Formally, the variance of a random variable X is
defined as

Var(X) = E
[
(X− E[X])2

]
or, equivalently, as Var(X) = E[X2] − E[X]2.

Composition formulas For two independent variables X1 and X2, the expec-
tation and variance of their sum and of their product satisfy{

E[X1 + X2] = E[X1] + E[X2]

Var(X1 + X2) = Var(X1) + Var(X2)

and 
E[X1 X2] = E[X1]E[X2]

Var(X1 X2) = Var(X1)Var(X2) + Var(X1)E[X2]
2

+ Var(X2)E[X1]
2

.

The covariance indicates the joint variability of two random variables
X1 and X2; it is written Cov(X1, X2). In particular, the covariance is zero
when X1 and X2 are independent.

16

https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2012/230
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-642-19571-6_14
https://doi.org/10.1007/978-3-642-19571-6_14

For correlated random variables X1 and X2, the composition formulas
generalize to{

E[X1 + X2] = E[X1] + E[X2]

Var(X1 + X2) = Var(X1) + Var(X2) + 2Cov(X1, X2)

and 
E[X1 X2] = E[X1]E[X2] + Cov(X1, X2)

Var(X1 X2) = Cov(X1
2, X2

2)

+ (Var(X1) + E[X1]
2)) (Var(X2) + E[X2]

2)

− (Cov(X1, X2) + E[X1]E[X2])
2

.

17

	Public-Key TFHE Encryption
	Smaller Public Keys, Less Noisy Ciphertexts
	Description
	Correctness
	Security
	Performance

	Generalization
	Encrypting Multiple Plaintexts
	Variants
	Variance and Covariance

