Implementing and Optimizing Matrix Triples with
Homomorphic Encryption

Johannes Mono e Tim Glneysu e
johannes.mono@rub.de tim.gueneysu@rub.de
0000-0002-0839-058% 0000-0002-3293-4989

® Ruhr University Bochum, Bochum, Germany
DFKI GmbH, Bremen, Germany

In today’s interconnected world, data has become a valuable asset, lead-
ing to a growing interest in protecting it through techniques such as pri-
vacy-preserving computation. Two well-known approaches are multi-
party computation and homomorphic encryption with use cases such as
privacy-preserving machine learning evaluating or training neural net-
works. For multi-party computation, one of the fundamental arithmetic
operations is the secure multiplication in the malicious security model
and by extension the multiplication of matrices which is expensive to
compute in the malicious model. Transferring the problem of secure ma-
trix multiplication to the homomorphic domain enables savings in com-
munication complexity, reducing the main bottleneck.

In this work, we implement and optimize the homomorphic gener-
ation of matrix triples. We provide an open-source implementation for
the leveled BGV (Brakerski Gentry Vaikuntanathan) scheme supporting
plaintext moduli of arbitrary size using state-of-the-art implementation
techniques. We also provide a new, use-case specific approach to pa-
rameter generation for leveled BGV-like schemes heuristically optimiz-
ing for computation time and taking into account architecture-specific
constraints. Finally, we provide an in-depth analysis of the homomor-
phic circuit enabling the re-use of key switching keys and eliminating
constant multiplications, combining our results in an implementation to
generate homomorphic matrix triples for arbitrary plaintext moduli.

Our implementation is publicly available and up to 2.1x faster com-
pared to previous work while also providing new time-memory trade-offs
for different computing environments. Furthermore, we implement and
evaluate additional, use-case specific optimization opportunities such as
matrix slicing for the matrix triple generation.

mailto:johannes.mono@rub.de
mailto:tim.gueneysu@rub.de
https://orcid.org/0000-0002-0839-058X
https://orcid.org/0000-0002-3293-4989

Introduction
Section 1

The sensitive nature of data in our interconnected world is leading to a
growing interest in protecting it through techniques such as privacy-pre-
serving computation. One approach to privacy-preserving computation
is Multi-Party Computation (MPC). MPC involves multiple parties that
want to compute a function together without revealing their inputs to
each other. A well-known example is Yao’s millionaire problem, where
two millionaires want to determine who is wealthier without disclosing
their wealth.

MPC protocols use so-called secret sharing where each party holds
a share of a given variable during the function evaluation. Most com-
monly, additive secret sharing is used: during function evaluation, each
party holds a share of a given variable and its actual value can only be
reconstructed by adding up all values.

Computing simple operations such as addition or subtraction is rather
straightforward as each party performs these operations on their shares
locally. More sophisticated operations such as multiplications however
require the parties to communicate, increasing the complexity of MPC
protocols. Even worse, this complexity grows with more powerful, yet
more realistic adversary models.

There are two security models to consider when designing protocols
for MPC: the semi-honest model, where corrupted parties follow the pro-
tocol specification but try to discover information about the inputs of
honest parties, and the malicious model, where corrupted parties are al-
lowed to deviate from the protocol and collude to break security. In gen-
eral, the semi-honest model provides weaker security guarantees in real-
world settings as it does not account for the possibility of corrupted par-
ties deviating from the protocol in order to break security.

One approach to multiplication of two values a and b in the semi-
honest model is to locally multiply the shares a; - b;, afterward commu-
nicating with the other parties and re-randomizing their sum), a; - b;.
However, this approach does not transfer to the malicious model. Here,
we make use of so-called Beaver triples, a secret-shared tuple (a, b, c) sat-
isfying a - b = c. Using this triple, the parties can randomize their local
multiplication and perform a secure multiplication even in the malicious
security model.

Generating these triples using only MPC requires expensive public
key operations and using other privacy-preserving techniques such as
Homomorphic Encryption (HE) results in more efficient MPC protocols.
HE enables the computation on encrypted data by operating on the ci-
phertext. Most commonly, it uses a client-server model where the clients

PAGE 2

encrypt their data and send it to the server. The server can then perform
arbitrary computations such as additions or multiplications on the en-
crypted data and return the encrypted result to the clients.

When used in conjunction with MPC, we operate in a slightly differ-
ent model where the idea is as follows: each party encrypts random val-
ues a; and b;, broadcasting the encryption to the other parties. Then, us-
ing the homomorphic properties of the encryption, the random shares are
added up and multiplied homomorphically such that each party holds an
encrypted triple (a, b, a-b). Finally, the triple is decrypted in a distributed
fashion resulting in a shared triple ready for use in the MPC protocol.

This idea can be extended to more complex forms of multiplication
such as matrix multiplication, a pivotal operation in data analysis such as
neural networks. Here, each party generates random matrices A; and B;
and applying the same process leads to a shared matrix triple (A, B, A-B).

There are multiple challenges associated with the generation of ma-
trix triples such as an efficient approach to homomorphic matrix multi-
plication or an HE implementation supporting the large parameters that
are required for the security of the MPC protocol.

For the former, Jiang et al. [15] provide a state-of-the-art method to
compute matrix multiplication homomorphically. Building upon their
work, Chen et al. [6] propose and implement a protocol to compute ma-
trix triples in the malicious model. However, their implementation is
not available as their research focused on mathematically improving the
Zero-Knowledge Proof (ZKP) used in the matrix triple protocol.

Thus, to the best of our knowledge, there currently is no HE library
for either the Brakerski Gentry Vaikuntanathan (BGV) or Brakerski Fan
Vercauteren (BFV) scheme, the two most relevant schemes to homomor-
phic matrix multiplication, that supports the large plaintext moduli that
are required for the secure generation of matrix triples. Also, there is no
additional research further analyzing and optimizing the homomorphic
computations, the main bottleneck of the matrix triple generation.

Hence, our goal in this work is to improve the current state-of-the-art
in generating matrix triples and to provide an efficient, publicly-available
implementation for the research community. Overall, our work provides
the following contributions:

O We analyze homomorphic matrix multiplication and, as a
consequence, eliminate constant multiplications and enable
the re-use of key switching keys. We also implement the ma-
trix triple protocol, improving performance compared to pre-
vious work, and evaluate the implementation for different
time-memory trade-offs.

O We provide a new approach to parameter generation for lev-
eled BGV-like schemes heuristically optimizing for compu-

PaGE 3

tation time. Our algorithm is applicable to HE uses cases
in general and takes into account architecture-specific con-
straints such as the native integer size of the computing en-
vironment.

O We provide an open-source implementation for the leveled
BGV scheme supporting plaintext moduli of arbitrary size
using state-of-the-art implementation techniques.

Outline

In Section 2, we provide the theoretical background for our contributions
focusing on BGV and the existing protocol for matrix triple generation.
In Section 3, we introduce our new approach to parameter generation
and our analysis results of the square matrix multiplication before we
describe our implementation and present results on benchmarking and

profiling in Section 4. We conclude our work in Section 6 by summariz-

ing our results and discussing possible future work.

Preliminaries
Section 2

In the following, we provide the theoretical background of our work. We
first describe the underlying ring arithmetic and continue with the BGV
scheme. Then, we describe a homomorphic approach to square matrix
multiplication and the matrix triple generation in the malicious adversary
model.

2.1 DCRT Representation

Current state-of-the-art HE schemes are based on the Learning with Er-
rors over Rings (RLWE) hardness assumption [16]. Software and hard-
ware implementations of these schemes usually operate on elements in
the ring R = Z[x]/(x" + 1) using Chinese Remainder Theorem (CRT)
representations (we assume n as power-of-two). For a given polynomial
in coefficient representation, we apply two variants: the Residue Num-
ber System (RNS) to operate on native integer sizes (for example 64 bit)
and the Number Theoretic Transform (NTT) for faster polynomial mul-
tiplication in time O(nlogn). The Double CRT (DCRT) representation
combines both variants.

Residue Number System

Given a composite modulus m = [[m;, the RNS representation of a poly-
nomial ais [a],, where [-] . denotes modular reduction of each coefficient
to the integer set Z,,, = [-m;/2,m;/2). The inverse of the RNS is the
CRT over Z,, and reconstructs the multi-precision representation of a.

PAGE 4

Number Theoretic Transform

Given the ring R, with a primitive 2n-th root of unity &, the NTT repre-
sentation of a polynomial « is the factorization HieZ;n (x — &%) mod g into
linear terms [11] where Z3,, is the multiplicative group over Zagy,.

The NTT and its inverse, the Inverse NTT (INTT), can be computed
using a Fast Fourier Transform in time O(nlogn). Modular polynomial
multiplication corresponds to coefficient-wise multiplication in the NTT
representation.

2.2 Canonical Embedding Norm

Evaluating a polynomial o € R at all primitive 2n-th roots of unity ¢! is
also known as canonical embedding. The canonical embedding norm is
then defined as [|a[[can = maxiez; l(¢H)|loo- It has the useful property
that || - Blcan = ||]|can - || B]can for any «, 3 € R. For a power-of-two
degree, [|alloc < [[c[|can [8]-

2.3 BGV Scheme

The BGV scheme [4]] operates on elements in R for a power-of-two n. For
a plaintext modulus ¢ and a ciphertext modulus g, a ciphertext (co,¢1) €
R4 x R4 encrypts a message m € R; if

co+c1-s=m+te (modq),

given a secret key s and a small error e.

The error grows with each homomorphic operation and decryption
is correct as long as the error e does not wrap around modulo q. For
a given n, a larger q allows for more homomorphic operations while a
smaller ¢ increases the security level A. A plaintext polynomial can en-
code two vectors of size n/2 using packing such that operations are ap-
plied element-wise [20].

The leveled BGV scheme supports the following operations on the
underlying plaintext vector: element-wise addition, constant multipli-
cation, element-wise multiplication and rotation. All these operations,
excluding rotation, influence the error. Other operations influencing the
error are modulus switching and key switching.

Mono et al. [17] describe the leveled BGV scheme and analyze the
associated bound B = ||[co + ¢1 - §],|can for each operation in the DCRT

representation. We simplify their formulas in based on

use-case and implementation-specific parameter choices.

Hoisting

Hoisting is an optimization technique applied to multiple rotations on
the same ciphertext. For a fixed input ciphertext, the default process is
usually as follows:

PAGE 5

1 Rotate the ciphertext (computationally cheap).

2 Compute the so-called base extension of each rotation (com-
putationally expensive).

3 Perform the dot-product with the key switching key and ap-
ply modulus switching.
For hoisting, we can switch the order of operations [14]:
1 Compute the base extension on the initial ciphertext (com-
putationally expensive).
2 Rotate the extended ciphertext (computationally cheap).
3 Perform the dot-product with the key switching key and ap-

ply modulus switching.

Thus, instead of computing the base extension for each rotation, we only
perform this computationally expensive operation once.

2.4 Homomorphic Matrix Multiplication

Jiang et al. [[15] present an efficient version of homomorphic matrix mul-
tiplication. For a square matrices A, B € Z%*%, their idea is roughly the
following:

1 Encode the matrix as vector and use homomorphic packing
techniques to encrypt one matrix in one ciphertext.

2 Rewrite matrix multiplication based on matrix permutations
and component-wise multiplication.

3 Apply the permutations using linear transformations on the
packed vector using matrix-vector multiplication.

4 Use a diagonal-based matrix-vector multiplication to reduce
the number of constant multiplications.

Using these techniques, the homomorphic matrix multiplication takes
O(d) operations with one multiplication and two constant multiplica-
tions. In the following, we will take a closer look at each step.

Encoding

The encoding of a matrix A with row ¢ and column j to a vector a is simply
a concatenation of rows. Thus, we define the decoding isomorphism ¢ :
7% s 7dxd g5

via— A= (Qdrj)o<ij<d

Jiang et al. [15] also propose an interleaved encoding packing m ma-
trices into one vector that reduces the complexity of the matrix multipli-
cation from O(d) to O(d/m). For the interleaved encoding, we define the

PAGE 6

T

I
v +1 +1 +1
¢\ I

+—+0- Qoo Qo1 Qo2 «—+1— Qoo Qo1 Qo2
+—4+1—- @10 @11 Q12 “—+1— Q10 A11 Q12
+— 42— Q20 QA21 Q22 —+1— Q20 Q21 Q22

Figure 1: Matrix permutations o, 7, ¢ and v for d = 3.

decoding isomorpishm as
v: (2T — gmaxd
a— A™ = ((agatj)ym1)o<ij<d) oiom:
Permutation-based multiplication
First, we define four permutations o, 7, ¢ and ¢ (see also [Figure I):
0(A)ij = AijriT(A)ij = Aiyjj
P(A)ij = Aijrrb(A)ij = Ay

Then, for matrices A, B € R**?, we define matrix multiplication as

Correctness follows by computing each resulting component, we refer the
interested reader to the original paper for the details [15].

Linear transformations

Each matrix permutation can also be expressed as a linear transformation
on the encoded vector a. Hence, we define transformations U,, U, U,
and U, corresponding to the permutations as

1,
<U"> ied+j 0 - 0

1,
(UT>i-d+j,£ - {07
1,
#)e |
1,
(Uﬁ’>i~d+j,£ - {0,

ife=i-d+[j+1),
else
if0=1[i+j, -d+j
else
ife=1i-d+[j+k],
else
ifl=[+k]; -d+]

else

PaGe 7

for 0 < i,j < dand 0 < ¢ < d2. When counting the non-zero diagonals
for each matrix, U, has (2d — 1), U has d, U, has two and U, has one.
For more details, we again refer the interested reader to the original paper
[15].

Diagonal matrix-vector multiplication

Halevi and Shoup [13] introduce the idea of diagonal matrix-vector mul-
tiplication in the context of HE for a linear transformation L : Z¢ — Z¢,
defined as L : a — U - a for a vector a = (ao,...,aq—1) and a matrix
U e 744

We sum the element-wise multiplications of all rotations

PZ(“) = (C{g, ceey Og—1,0Q0, - . '7“@—1) € Zd

with all ¢-th diagonal vectors

we = Uogs-»Usv-14-1,Ua—00s- -, Ug_1,0-1) € Z°
such that
d—1
U-a=> (u© pyla)).
=0

2.5 Block Matrix Multiplication

For two matrices A and B with dimensions kid x kod and kod x ksd, the
matrices can be partitioned into blocks of size d x d. Then, we can com-
pute the matrix product A - Bwith dimension k;d x ksd using block matrix
multiplication:

ko
(AB)jy iy = D Ak kBreks -
k=1

2.6 Matrix Triple Protocol

Chen et al. [6] provide an MPC protocol for matrix triples (A, B, A - B)
in the malicious security model with a dishonest majority based on HE.
Each party encrypts and broadcasts their matrix shares A* and Bi. Addi-
tionally, each party invokes a ZKP to prove that the encryption is valid.

Then, all parties reconstruct the matrices homomorphically and com-
pute cap using the square matrix multiplication. As dishonest majority
settings require authenticated triples, the three ciphertexts c4, cg and
cap are authenticated with the encrypted Message Authentication Code
(MAC) key ct,, and each party runs the distributed decryption receiving
a MAC output share (A - B)'.

Rotaru et al. [[18] show how to create shared keys for BGV that keep
the same properties as a non-shared key with respect to the error analysis.
Additionally, Baum, Cozzo, and Smart [3] provide a ZKP for the BGV

PAGE 8

7(BY)

N

cth cth ot ctd
8 o o

Figure 2: Matrix Triple Generation for Party 1.

ct Cly,
NG

’71

Figure 3: MAC Computation for Party 1.

scheme integrated in the SPDZ frameworkl and one of its successors,
SCALE-MAMBAE.

For parameters, Chen et al. [6] use A = 128, n = 215, logq = 720,
logt = 128, 0 ~ 3.2 and \' = 80. For encoding, Chen et al. [6] encode
two vectors of size n/2 = 2!* in each plaintext, thus multiplying two
matrices with d = 128. In addition, they refer to the interleaved packing
of Jiang et al. [[15] as optimization if smaller matrices are desired.

In Figure 2, we display the high-level homomorphic computation of
each party as circuit with MAC computation separated out to [Figure 3.
The parts of the circuit requiring communication such as the distributed
decryption are highlighted with a gray background.

1 https://github.com/bristolcrypto/SPDZ-2
2 https://github.com/KULeuven-COSIC/SCALE-MAMBA

PAGE 9

https://github.com/bristolcrypto/SPDZ-2
https://github.com/KULeuven-COSIC/SCALE-MAMBA

Improvements to Homormophic Operations and Parameters
Section 3

In the following, we improve the squared matrix multiplication of Jiang
et al. [15] to enable the re-use of key-switching keys and we eliminate con-
stant multiplications for both variants. We also integrate the former with
an optimization known as hoisting and provide additional mathematical
context and analysis to the matrix packing for squared matrix multiplica-
tion. Finally, we describe our new approach to parameter generation and
its application to the use case of matrix triple generation.

3.1 Re-Use of Key Switching Keys

Common patterns in the rotations of a homomorphic circuit can help to
save on key switching keys. For the sake of simplicity, we assume that
the plaintext vector contains one encoded matrix with dimension d, how-
ever, our approach scales to more complex packing scenarios (see
kion 3.2). Our proposed adjustments are based on the following observa-
tions:

1 o and 7 can be applied before encryption, thus performing
homomorphic constant multiplications with U, and U, can
be avoided [6].

2 Asthe encoding is a concatenation of rows, rotating the en-
crypted vector by k- d corresponds to the transformation .
Since the rotation itself already corresponds to the transfor-
mation, we do not need to apply the multiplication with the
non-zero diagonal of U,. Additionally, when iterating over
k, we can continuously rotate by ig = d and reuse the key
switching key.

3 For the transformation ¢*, the two non-zero diagonals are
at index k and k — d. If we encrypt p;,(c(A)) for ig = —ip
and apply an initial rotation of iz to a copy, we can work in
parallel on two encrypted vectors with “initial positions”
of 0 and —ig. Then, when iterating over k, we can contin-
uously rotate the encrypted vector by i4 = 1 and reuse the
key switching key.

Overall, we need three key switching keys: two keys to realize the
matrix transformations and one additional key for the homomorphic mul-
tiplication. This compares to the naive approach of key switching that
requires 2d keys for matrix A and d keys for matrix B. Additionally, we
eliminate 2d constant multiplications. The changes to the original circuit

are depicted in [Figure 4.

PaGe 10

rotation/key
switching for

g ©® —iy

®ip

Figure 4: Comparison of the original (left) and improved (right) circuit
for the inner loop of squared matrix multiplication.

@0,0C0,0 @0,1 C0,1 @0,2C0,2 @1,0 C1,0 A1,1 C1,1 @12 C12 A2 0C2,0 A2,1 C2.1 A2 2C2 2
bo,odo,0bo,1do,1bo2doobiodiobi1diibiadiabaodaobaideibaods o

Figure 5: Packing of matrices A, B, C and D for d = 3.

Integration with Hoisting

Contrary to hoisting, the approach of reusing key switching keys is an

iterative algorithm and thus cannot be easily parallelized. However, both

approaches can be combined depending on the computing environment.
As an example, consider a squared matrix dimension d = 128 and a

server with 16 threads. We generate 2 - 16 key switching keys for

{?:A, 27:A7 ey 16’LA} and {iB, 2’L'B7 ey 1613}

and make full use of our threads to apply these rotations. Afterward, we
base extend the new ciphertexts rotated by 16i4 and 16ig, respectively,
only slightly increasing computation time and significantly reducing the
amount of memory required.

In Subsection 4.5, we compare each method as well as the integrated

approach with respect to the running time and memory usage.

3.2 Matrix Packing Enhancements

For matrix packing, we combine the natural encoding of BGV with two
row vectors with the interleaved encoding applied to each row vector with
n = 2-m-d? (see also [Figure 5). Instead of using Uy as is, we diagonally
compose two copies to transform both vectors in parallel. Since we com-
pose diagonally, the resulting matrix still has two non-zero diagonals.
The previous observations on key switching keys can be adapted to
our new encoding and we can also re-use the key switching keys with

Pace 11

packed ciphertexts. More specifically, we adjust our previous observa-
tions as follows:

1 We can apply o and 7 before the encoding on each matrix and
thus before encryption.

2 Theinterleaved encoding is still a concatenation of rows and
rotating by k - m - d corresponds to the transformation .
Thus, we can continuously rotate by iz = m-d and reuse the

key switching key.
3 The definition of Uy has to be adjusted for the interleaved
encoding to
1, fe=(@-d+[j+k];) m-+
(UJ;) _ if £ = ([+ klg) [
(i-dj)-mpu, 0, else

for0 <i,j<d,0<pu<mand0 </¢<m-d>2 U, still has
two non-zero diagonals, one at index k - m and one at index
(k —d) - m. Thus, we can continuously rotate by 4 = m and
again reuse the key switching key.

Instead of generating Uy, composing it with itself and extracting the
non-zero diagonals, we generate the diagonals itself. Then, we can use
the diagonals directly for the constant multiplication:

ukkd _ 1, if [f],,<m-(d—k)
$lk=d)-m 0, else

v)0, if [0],.4<m-(d—k)
u(b?km -
1, else

For completeness, we also define the other linear transformation matrices

(U) 1, ifl=@-d+[j+1i];) m+p
7) (i-dtj) mtpu b 0, else

(U) L ifl=([i+jl;-d+j) m+p
") (idt)ymbpl 0, else

9

<Uk) 1, ifl=([i+k];-d+j) - m+p
v (-d)mipt 0, else

0<ijk<d 0<pu<m 0<l<m-d?
as well as the vector formulas for Uy,

1, if [, <m-d-(d—k)

k
u =
P.k-d-m
0, else

PaGe 12

0, if [f],, <m-d-(d—k)

u/k / ==
Yn/2kdom =
1, else

O0<k<d 0</?<n.

Matrix Slicing

Combining the interleaved encoding with block matrix multiplication can
result in better performance depending on the desired output dimensions.
If the desired dimension is for example 192 x 192, then using d = 64 re-
sults in much better performance than d = 128. Similar to bit slicing, this
slices the matrix in smaller chunks on purpose to improve performance.
For the previously mentioned example, we present benchmark numbers

in Subsection 4.5

3.3 Use-Case Specific Parameters

When generating parameters for the leveled BGV scheme, the most im-
portant parameters are the polynomial degree n, the ciphertext modulus
q and the key switching modulus P. Currently, there are two main ap-
proaches to generate these: dynamic generation or static generation.

In dynamic parameter generation, the HE library tracks an associ-
ated error and automatically applies modulus switching once a certain
threshold has been reached. The process usually follows the following
steps [12]:

1 Implement the homomorphic circuit with the chosen HE li-
brary.

2 Choose a starting bit length for the ciphertext modulus q.

3 Execute the implementation and see if it fails: if yes, in-
crease g, else decrease it.

4 Repeat until a comfortable error margin is reached.

5 Check the security with the lattice estimator [2] and then
choose your degree accordingly.

The advantage of this approach is that the user does not have to worry
about modulus switching making implementation more accessible. The
disadvantage is that the exact error margin is not easy to compute and
depends on the number of circuit evaluations, thus this method quickly
gets computationally expensive.

In static parameter generation, the homomorphic circuit is consid-
ered in levels separated by modulus switching applied directly before or
after each multiplication. Here, the process of generating parameters
usually is as follows [17]:

1 Split up the homomorphic circuit into levels and determine
the level with the longest path.

PaGE 13

2 Calculate an error threshold and the error growth for the
level with the biggest growth.

3 Based on this, calculate the level modulus size and set the
ciphertext modulus accordingly.

4 Check the security with the lattice estimator, then choose
your degree accordingly.

The advantages of this approach are compile-time known parameters and
a known error margin. As for disadvantages, modulus switching is ap-
plied regardless of its necessity and the prime size does not necessarly
match the native integer size of implementations resulting in more RNS
moduli used than necessary.

Our new approach combines multiple of these advantages. We dy-
namically generate the parameters evaluating only the noise growth of
the homomorphic circuit ahead of time, providing compile-time known
parameters, and heuristically adjust the ciphertext modulus providing a
known error margin. For modulus switching, the user inserts the candi-
dates into the circuit design and the algorithm heuristically determines
the number of primes to switch taking into account the native integer
size.

More specifically, our algorithm evaluates the following steps:

1 We set our initial bit width b to the native integer size and
fix an initial degree n, for example b = 64 and n = 21°,

2 Then, we compute and heuristically optimize the number of
RNS moduli g; and P; with our core algorithm.

3 Afterward, we reduce the bit width of our native integer un-
til the number of moduli increases again, thus increasing se-
curity by reducing the overall ciphertext modulus without
increasing computation costs.

4 Finally, we increase or decrease the degree as required for
the desired security estimate and stop once our parameters
do not change anymore.

The main idea of our core algorithm is to automatically determine and
reduce the number of RNS moduli by looking ahead multiple levels and
is based on the following observations:

O If increasing the number of moduli P; for key switching de-
creases the number of ciphertext moduli ¢; by at least the
same amount, this reduces ciphertext size and the number
of primes to compute on.

O If modulus switching reduces the number of ciphertext mod-
uli after the look-ahead, then we need to compute on less
moduli in the future and thus applying the switch is good.

PaGe 14

Table 1: Comparison of HE Parameters

Our work Chen et al. [6]

A 128 128
n 32768 32768
q 600 bit 712 bit
P 240 bit
t 128 bit 128 bit
sw 0,1,1

O If the error after these optimizations is still larger than the
maximum decryption error, we need to increase the cipher-
text modulus.

We provide pseudocode for the core part of our algorithm in
. Here, genprime(n, b) is a function returning a unique prime p of
bit size b with p = 1 mod 2n and L;(-) evaluates all levels down to level ¢
and returns the corresponding error estimate.

Note that this approach to parameter generation extends to BGV-like
schemes in general as we do not rely on BGV-specific mechanisms.

Generating Parameters for Squared Matrix Multiplication

For the squared matrix multiplication, we have to insert modulus switch-
ing candidates and fix the look-ahead parameter x. For the former, we
insert three candidates:

1 after the addition of all encrypted shares;
2 before each multiplication of transformed ciphertexts; and

3 after the addition and key switching of all these products.

For the latter, we fix x = 1 due to the small depth of our circuit.
depicts the full homomorphic circuit including the modulus switching
candidates and the MAC key computation.

The resulting parameters are displayed in where we also com-
pare them to the BFV parameters of Chen et al. [6] (they do not provide
specific information on modulus switching or the key-switching modu-
lus). The algorithm determines that the first modulus switching candi-
date does not reduce the error enough and that removing one prime from
the ciphertext modulus results in good error development for the other
two candidates.

PaGEe 15

Algorithm 1: Core Algorithm for Parameter Generation

Require: degree n, bit size b, look-ahead x, levels L;(-)
Ensure: ciphertext moduli g, switch moduli P, switch count sw

q < {genprime(n,b)}
P {}
sw <+ (0,0,...,0)
Gnew <
i1/
while i > 0 do
j 4L
whilej >iandj—x > 0do
p < {genprime(n, b)}
By < Lj(q, P, sw)

Bnew <~ Ljfx(QaP Up, S'IU)
if [Bnew/b]| < [Beur/b] then
P+~ PuUp
jt
continue
end if

SWhew — SW

SWhew,j < $SWhew,j + 1

Brew < Lj—x(q, P, $SWhey)

if [Bnew/b] + swj < [Beyr/b] then
SW — SWhew
j
continue

end if

if not 2B¢r < [] g then
new < q U {genprime(n, b)}
break
end if
Jej-1
end while
if § = Qnew then
1+1—1
end if
end while

PAGE 16

+

C
=2
2
||I|.
@
C
2

Encryption

Addition

(Constant) Multiplication
Rotation by i,

Rotation by ip

Key switching for x

Key switching for

Key switching for C

Modulus switching

Distributed decryption

Figure 6: HE circuit of the Squared Matrix Multiplication

PaGe 17

Implementation
Section 4

In the following, we describe our implementation of the leveled BGV
scheme and the matrix triples including the parameter generation, pub-
licly available at GitHub®. We start by describing the arithmetic layer
for ciphertext operations, continuing with the message layer for arbitrary
plaintext moduli and the parameter generation. Finally, we provide bench-
marks for our implementation.

4.1 Ciphertext Arithmetic

For ciphertext arithmetic, we implement two variants for the RNS primes
g;: a 64 bit signed variant and a 64 bit unsigned variant.

Signed variant

The signed variant uses signed Barrett reduction for addition and sub-
straction and signed Montgomery multiplication [19]. For the NTT, we
follow the pseudo-code from Seiler [19]; the same NTT is used as refer-
ence code in the Kyber implementation@. The largest supported bit size
for each modulus is b = 62 as one bit is reserved for the sign bit and one
bit for additions.

Unsigned variant

The unsigned variant is based on the HE Acceleration Library (HEXL)
library by Intelf and supports a modulus size of up to b = 63 as no signed
bitisneeded. Asthisimplementation is optimized and thus faster, we use
it as default choice in our build system.

4.2 Plaintext Arithmetic

For plaintext arithmetic, we implement the arithmetic for an arbitrary
large plaintext modulus ¢. Here, we face two main challenges: the repre-
sentation of ¢ in the RNS and correcting the modulus switching error.

Representation of the plaintext modulus

For the RNS, we precompute £ mod ¢; and store it with the ciphertext
modulus. For key generation and encryption, we need multiplication by
t and for modulus and key switching, we need the inversion of t. Both
operations also work in the RNS representation and hence we are able to
compute on native integers. However, for the error generation, we need
to pass a one-time seed with each RNS prime instead of generating the

3 https://github.com/Crypto-TII/mat3
4 https://github.com/pg-crystals/kyber
5 https://github.com/intel/hexl]

PAGE 18

https://github.com/Crypto-TII/mat3
https://github.com/pq-crystals/kyber
https://github.com/intel/hexl

polynomial once as the multiplication by ¢ can wrap around each individ-
ual modulus.

Modulus switching error

During modulus switching, we multiply the ciphertext by ql For ¢q; =
1 mod t, we do not need to correct the plaintext m, the common approach
in state-of-the-art libraries. For q; # 1mod ¢ such as with arbitrarily
large t, we receive the factor %m mod ¢ and need to multiply the plain-
text by g; at some point. These factors can accumulate across operations
and need to be corrected either before encryption, after encryption, or
integrated with a constant multiplication.

In our library, we implement a semi-automated approach to handle
this factor. When modulus switching, a user chooses how often this fac-
tor should be corrected for, a process which is then automatically per-
formed during decryption.

4.3 Parameter Generation

Parameters are generated with a Python script. A bounds class contains
the computed BGV bounds for each operation, thus only small changes
are required to support other BGV-like schemes. Then, each level (that
is each part separated by the modulus switching candidates) is imple-
mented as function and passed to the implementation of the core algo-
rithm. The script also has an option to set the flooding error during dis-
tributed decryption, automatically taking it into account when optimiz-
ing the parameters.

Computing the Bounds

In our implementation, we already make specific choices and therefore
can simplify some of the error bounds. For the original bounds and the
details on notation, we refer the interested reader to the original paper
[17].

We set D = 6 for a failure probability of roughly 2755, Additionally,
we sample the coefficients of the secret and the error from a centered bi-
nomial distribution in [—1, 1] and [-21, 21] with variances V; = 0.5 and
V. = 10.5, respectively. Note that the Homomorphic Encryption Stan-
dard [[1] recommends the standard deviation o = 3.2 resulting in the vari-
ance o2 = 10.24.

For key switching, k and k’ are the number of primes ¢; and P;, re-
spectively, and the g; are evenly distributed in w products. We denote
the maximum of these products as g.

Encryption

1
Bene < Dt\/n <12 +2nV,V, + Ve>

PaGE 19

< t\/3n(126n + 127)
Addition & Multiplication

Bag <B+B
Bmul S B. B/

Constant Multiplication

n
B <Dt\/—-B
const = 12

<tv3n-B

Modulus Switching

B
Brs < — + Dty | =

i 12(1+nVs)

B t
< —+ —+/3n(2n+4
< VBN

Key Switching

Ktk +w-1 K
%Ve—i—Dt "1+ nvy)

12
q k+k+w—-1 t
< — - — /
_B—I—Ptn\/63 9 —|—2\/3nk (2n + 4)
4.4 Matrix Triples

B < B+ lq)Dtn\/

For the triples implementation, we use our BGV implementation and and
add multi-threading capabilities using OpenMPE. A user can decide to
turn the hoisted version on or off and decide whether to pre-rotate all
blocks or save on memory and rotate them each time the block is multi-
plied.

Lazy key switching

As suggested by Chen et al. [6], we also implement lazy key switching as
shown in [Figure 6. This means, that we first add up the ciphertexts after
the first multiplication, hence lazily deferring the key switching, and only
need to apply it once on the final sum. Note that the following modulus
switching can be combined with this key switching for a slightly better
error growth.

Distributed decryption

In our implementation, we currently assume pre-generated shared keys
[18] and only simulate the flooding error added during distributed decryp-
tion. This ensures our tests are working correctly. For a more detailed
discussion on the integration with existing work, we refer the interested

reader to Subsection 5.1

6 https://www.openmp.org/

PaGE 20

https://www.openmp.org/

4.5 Benchmarking

We run our benchmarks on Ubuntu 18.04.1 with Linux kernel 5.4.0-87-
generic. The Central Processing Unit (CPU) isan AMD EPYC 7742 CPU
at 2.25 GHz featuring 64 cores and 2 TiB of available memory, a L1 cache
of size 32 KiB, a L2 cache of size 512 KiB and a L.3 cache of size 16 MiB.
For comparison, Chen et al. [6] use an Intel Xeon Platinum 8168 CPU at
2.7 GHz featuring 16 cores and SEAL version 3.3.

Here, we investigate four different scenarios:

O comparison of our work with previous work;
O evaluating the time-memory trade-off for key re-use;
O evaluating the time-memory trade-off for pre-rotation; and

O measuring the performance increase with matrix slicing.

For benchmarking itself, we use the Google benchmark library@.

Comparison with Previous Work

We summarize our comparison with Chen et al. [6] in [Table 2. Here, we
set d = 128 and run our implementation with 16 threads, but only using
multi-threading for rotation and multiplication as in their original work.
Note that all times are amortized, that is divided by m = 2. Addition-
ally, we enable hoisting and pre-rotation to match their implementation
as close as possible.

Since we do not have access to the original code including the bench-
marks, we do not exactly know how the benchmarks were composed, thus
making comparison a difficult task. The most notable difference is in
the addition of the MAC key where our implementation is significantly
faster. We suppose that two things are influencing the result here: first,
the BFV multiplication requires a scaling option which might influence
running times. Second, our decryption routine supports ciphertexts with
three polynomials, thus we do not need to apply key switching down to
polynomials, an operation that might still be applied in the implementa-
tion by Chen et al. [6].

Our implementation of rotations is slightly slower compared to Chen
et al. [6], the core part of the square matrix multiplication on the other
hand is much faster. Thus, combining the times of rotation, multiplica-
tion/block composition and MAC addition is up to 2.1x faster. As we
only simulate distributed decryption (see also Subsection 4.4), we can-
not make conclusions about the different numbers here.

Time-Memory Trade-0ffs

The results for the time-memory trade-offs for key re-use with dim = 128

and pre-rotation enabled are summarized in [Table 3 and [Table 4 with a

7 https://github.com/google/benchmark

PaGe 21

https://github.com/google/benchmark

Table 2: Comparison of our work with previous work.

d Encrypt RotA RotB Multiply AddMAC DDec
Chen et al. [6]

128 0.10s 1.8s 0.9s 14s 0.6s 1s

256 0.38s 5.6s 2.3s 10.1s 2.4s 4s

384 0.86s 12.8s 4.9s 34.0s 5.4s 9s

512 1.52s 21.8s 8.0s 79.6 s 9.6 16s

1024 6.08s 79.6s 32.9s 648.0s 38.4s 64s
Our Work

128 0.09s 1.50s 0.85s 0.56s 0.00s 0.09s
256 0.38s 6.25s 3.20s 3.31s 0.01s 0.34s
384 0.85s 14.15s 6.95s 10.85s 0.03s 0.77s
512 1.51s 24.80s 12.30s 27.35s 0.05s 1.38s
1024 6.10s 98.00s 49.35s 236.00s 0.20s 5.55s

single thread and 16 threads, respectively. Here, the latter version with
compares full hoisting to hoisting combined with key re-use as described

in Subsection 3.1. In [Table 5, we compare memory usage and running

time for pre-rotation with d = 128 for a single thread.

For all benchmarks, we check the total running time and the total
amount of memory. For the latter, we use the command line tool time,
that is the memory allocated by the program on a whole. This for example
alsoincludes the memory required by the benchmarking library, giving us
only arough estimate of the memory usage of the actual triple generation.

For the hoisting/re-use time-memory trade-off, the single-threaded
results show that we roughly save 4 GiB of memory for a 20 % increase in
the running time. This is especially interesting for hardware implemen-
tations that are limited in their memory resources, but can easily offset
the performance overhead 20 %. In the multi-threaded setting, we only
save roughly 3.5 GiB of memory, but the overhead to the running time is
only 5-10 %, getting less with an increasing amount of blocks.

The impact of pre-rotation on the other hand is much larger. Without
pre-rotation, the memory usage stays almost the same (the slight increase
is due to the unencrypted input and output matrices). Here, the overhead
as expected roughly corresponds to a multiple of the running time of the
rotations: for input matrices with two blocks by a factor of one, with three
blocks by two and with four blocks by three.

Matrix Slicing

For matrix slicing, we run the benchmarks with 128 threads, enabling
hoisting and pre-rotation ford = 32,d = 64 and d = 128. Note that even

PAGE 22

Table 3: Evaluation of hoisting and key re-use (one thread).

128 256 384 512

Time in s
Hoisting 74.8 325 792 1535
Key Re-Use 90.8 392 952 1839

Memory in GiB
Hoisting 9.08 20.94 40.96 68.35
Key Re-Use 5.30 17.18 36.99 64.72

Table 4: Evaluation of hoisting and key re-use (16 threads).

128 256 384 512

Time in s
Hoisting 6.48 32.3 804 154
KeyRe-Use 7.72 35.3 86.2 163

Memory in GiB
Hoisting 9.84 21.02 40.77 68.43
Key Re-Use 5.83 17.68 37.44 65.10

Table 5: Evaluation of pre-rotation and re-computation.

128 256 384 512

Time in s
Pre-Rotation 74.8 325 792 1535
Re-Computation 75.3 597 2024 4741

Memory in GiB
Pre-Rotation 9.08 20.94 40.96 68.35
Re-Computation 4.49 4.84 542 6.23

PAGE 23

Table 6: Comparison of sliced versus non-sliced triples.

d m Blocks Time

32 32 6 4.53s
64 8 3 3.81s
128 2 2 710s

though we run all the benchmarks with 128 threads, the implementation
only makes use of d threads. A summary of our results with amortized
timing is presented in [Table 6. The table also contains the amount of
packed matrices m for each dimension and how many blocks are needed
to construct the output matrix of size 192 x 192.

Here, it clearly shows that using the smaller dimension of 64 bit for
the square matrix blocks results in a better performance compared to the
128 bit blocks. However, using the even smaller 32 bit blocks results in a
worse amortized performance compared to the 64 bit blocks. In general,
we recommend to benchmark the performance difference for the desired
output dimensions, thus making sure to choose the best configuration
possible.

Discussion
Section 5

Before concluding our work, we will discuss some possibilities for im-
provement and continuation for our work and reflect on general learnings
for implementing HE use cases. We will start by discussing the selection
process for the HE scheme, talk about further possibilities for advanc-
ing parameter generation and the challenges memory presents for HE use
cases in general.

5.1 Choosing the HE Scheme

BGV-like schemes in general perform well for highly parallelizable tasks
based on addition and multiplication. As matrix multiplication is such a
task, using BGV-like schemes is a natural fit.

For the matrix triples, we are interested in integer arithmetic, for
which there currently are two state-of-the-art schemes: BGV and BFV.
For the matrix triple implementation, we believe that BGV is the superior
choice for two reasons: parameter generation and the current ecosystem.

Previous work shows that BGV performs better for large plaintext
moduli compared to BFV [[7]]. Thus, a BGV library and a BGV implemen-
tation of the matrix triples also requires less memory. Additionally, due
to the smaller parameters, we also reduce runtime costs since we need to

PAGE 24

compute on less RNS primes.

Additionally, the well known SCALE-MAMBA framework uses BGV
as its homomorphic scheme using a custom version of HELbE. It also
includes the ZKP implementation of TopGear [3]. Using our BGV back-
end instead, this provides a full solution to generate maliciously secure
matrix triples and we currently work on providing this solution to the re-
search community.

5.2 Advancing Parameter Generation

Our work is a next step in generating parameters for BGV-like schemes
and opens up further possibilities for future research.

The most obvious possibility is automatically determining places for
modulus switching candidates for a given circuit. Optimally, this also
would take into account further opportunities for optimization such as
combining the modulus switching with key switching or lazy modulus
switching where, for example, modulus switching is applied after multi-
ple results are accumulated and thus less computations have to be per-
formed.

Extending this idea to larger circuits, another possibility is automati-
cally determining where bootstrapping has to take place in any given cir-
cuit. Finding solutions for both approaches and combining it with our
newly proposed approach would lead to automatic parameter generation
for arbitrary BGV circuits, not only leveled circuits.

Other future research could look at modulus switching when ¢; #
1 mod t, needed for arbitrarily large plaintext moduli, as it is no longer
possible to compute between ciphertexts with different scaling factors.
Automatically determining where scaling factors could be applied pre-
encryption and post-encryption and where only a constant multiplica-
tion, which then influences error growth again, is needed is still an open
research question.

5.3 Dealing with Memory Costs

As in previous work [5], we noticed two main bottlenecks for implement-
ing the HE use case: the NTT computation and memory operations. For
the former, there are multiple interesting approaches to accelerate these
in hardware [9, 10] and reduce the NTT as computational bottleneck to
a minimum.

For the latter, there are still open challenges such as reducing the
amount of temporary buffers needed or optimizing the data layout de-
pending on the circuit to be computed. However, we believe it to be a
necessity to find solutions dealing with the memory wall to bring HE for-
ward.

8 https://github.com/homenc/HElib

PaGE 25

https://github.com/homenc/HElib

5.4 Designing the API
As discussed in Subsection 5.3, there are still large computing and mem-

ory bottlenecks when implementing HE use cases. With the design of our
Application Programming Interface (API) for the BGV library, we put the
focus on enabling the full use of available computing resources if suitable
for the specific use case. This includes transparent data structures, ac-
cess to lower-level API functions for experts and the possibility to apply
multi-threading across the individual RNS moduli.

For ease of use, we also handle the conversion of ciphertexts from and
to the NTT domain automatically as manual handling proved to be to er-
ror prone for library users. One of the things we would like to improve
on in a future version of the library is the control over memory resources
of the library as we currently need temporary allocations for certain sub-
routines.

Although this is the same approach other libraries currently take, we
believe that due to the memory bottlenecks in HE implementations, this
aspect should receive more attention from the research and developer
community.

Conclusion
Section 6

In this work, we implement and optimize the homomorphic generation of
matrix triples. We provide an open-source implementation for the leveled
BGV scheme supporting plaintext moduli of arbitrary size using state-
of-the-art implementation techniques. We also provide a new, use-case
specific approach to parameter generation for leveled BGV-like schemes
heuristically optimizing for computation time and taking into account
architecture-specific constraints.

Additionally, we provide an in-depth analysis of the homomorphic
circuit enabling the re-use of key switching keys and eliminating constant
multiplications, combining our results in the first publicly available im-
plementation to generate homomorphic matrix triples for arbitrary plain-
text moduli.

Furthermore, we benchmark and evaluate our work compared to the
previous implementation of Chen et al. [6] and evaluate different time-
memory tradeoffs as well as matrix slicing for certain output dimensions.
We also highlight additional optimization opportunities such as matrix
slicing.

Our implementation is publicly available and up to 2.1x faster com-
pared to previous work and provides additional time-memory trade-offs
for different computing environments.

PAGE 26

6.1 Acknowledgements

The work described in this paper has been supported by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2092 CASA - 390781972 and by the
Cryptography Research Center at Technology Innovation Institute (TII),
Abu Dhabi.

References

(1]

Martin R. Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin E. Lauter,
Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sa-
hai, and Vinod Vaikuntanathan. “Homomorphic Encryption Standard”. In:
IACR Cryptol. ePrint Arch. 2019.939 (2019). URL: https://eprint.iacr.org/
2019/939.

Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness
of Learning with Errors”. In: J. Math. Cryptol. 9.3 (2015), pp. 169-203. URL:
http://www.degruyter.com/view/j/jme.2015.9.issue- 3 /jmc-2015-
0016/jmc-2015-0016.xml.

Carsten Baum, Daniele Cozzo, and Nigel P. Smart. “Using TopGear in Over-
drive: A More Efficient ZKPoK for SPDZ”. In: Selected Areas in Cryptogra-
phy - SAC 2019 - 26th International Conference, Waterloo, ON, Canada, Au-
gust 12-16, 2019, Revised Selected Papers. Ed. by Kenneth G. Paterson and
Douglas Stebila. Vol. 11959. Lecture Notes in Computer Science. Springer,
2019, pp. 274-302. DOI: 10.1007/978-3-030-38471-5 12. URL: https:
//doi.org/10.1007/978-3-030-38471-5 12.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully
Homomorphic Encryption without Bootstrapping”. In: ACM Trans. Comput.
Theory 6.3 (2014), 13:1-13:36. DOI: 10.1145/2633600. URL: https://doi.
org/10.1145/2633600.

Leo de Castro, Rashmi Agrawal, Rabia Tugce Yazicigil, Anantha P. Chan-

drakasan, Vinod Vaikuntanathan, Chiraag Juvekar, and Ajay Joshi. “Does

Fully Homomorphic Encryption Need Compute Acceleration?” In: TACR Cryp-
tol. ePrint Arch. 2021.1636 (2021). URL: https://eprint.iacr.org/2021/

1636.

Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song,
and Sameer Wagh. “Maliciously Secure Matrix Multiplication with Applica-
tions to Private Deep Learning”. In: Advances in Cryptology - ASTACRYPT
2020 - 26th International Conference on the Theory and Application of Cryp-
tology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part III. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12493.
Lecture Notes in Computer Science. Springer, 2020, pp. 31-59. DOI: 10 .
1007/978-3-030-64840-4 2. URL: https://doi.org/10.1007/978-3-
030-64840-4 2.

PaGE 27

https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2019/939
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://eprint.iacr.org/2021/1636
https://eprint.iacr.org/2021/1636
https://doi.org/10.1007/978-3-030-64840-4_2
https://doi.org/10.1007/978-3-030-64840-4_2
https://doi.org/10.1007/978-3-030-64840-4_2
https://doi.org/10.1007/978-3-030-64840-4_2

[7]

(9]

[13]

Ana Costache and Nigel P. Smart. “Which Ring Based Somewhat Homomor-
phic Encryption Scheme is Best?” In: Topics in Cryptology - CT-RSA 2016
- The Cryptographers’ Track at the RSA Conference 2016, San Francisco,
CA, USA, February 29 - March 4, 2016, Proceedings. Ed. by Kazue Sako.
Vol. 9610. Lecture Notes in Computer Science. Springer, 2016, pp. 325-340.
DOI: 10.1007/978-3-319-29485-8 19. URL: https://doi.org/10.1007/
978-3-319-29485-8 19.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. “Multi-
party Computation from Somewhat Homomorphic Encryption”. In: Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-
Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer,
2012, pp. 643-662. DOI: 10.1007/978-3-642-32009-5 38. URL: https:
//doi.org/10.1007/978-3-642-32009-5 38.

Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srinivas Devadas,
Ronald G. Dreslinski, Christopher Peikert, and Daniel Sanchez. “F1: A Fast
and Programmable Accelerator for Fully Homomorphic Encryption”. In: MI-
CRO ’21: 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture, Virtual Event, Greece, October 18-22, 2021. ACM, 2021, pp. 238-
252. DOI: 10.1145/3466752.3480070. URL: https://doi.org/10.1145/
3466752.3480070.

Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Ver-
bauwhede, Frederik Vercauteren, and David W. Archer. “BASALISC: Flexi-
ble Asynchronous Hardware Accelerator for Fully Homomorphic Encryption”.
In: TACR Cryptol. ePrint Arch. 2022.657 (2022). URL: https://eprint.iacr.
org/2022/657.

Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic Evaluation of
the AES Circuit”. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture
Notes in Computer Science. Springer, 2012, pp. 850-867. DOI: 10.1007/
978-3-642-32009-5 49. URL: https://doi.org/10.1007/978-3-642-
32009-5 49.

Charles Gouert, Rishi Khan, and Nektarios Georgios Tsoutsos. “Optimizing
Homomorphic Encryption Parameters for Arbitrary Applications”. In: IACR
Cryptol. ePrint Arch. 2022.575 (2022). URL: https://eprint.iacr.org/2022/
575.

Shai Halevi and Victor Shoup. “Algorithms in HEIlib”. In: Advances in Cryp-
tology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part I. Ed. by Juan A. Garay and
Rosario Gennaro. Vol. 8616. Lecture Notes in Computer Science. Springer,
2014, pp. 554-571. DOI: 10.1007/978-3-662-44371-2 31. URL: https:
//doi.org/10.1007/978-3-662-44371-2 31.

Shai Halevi and Victor Shoup. “Faster Homomorphic Linear Transformations
in HElib”. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I. Ed. by Hovav Shacham and Alexandra Boldyreva.

PAGE 28

https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3466752.3480070
https://eprint.iacr.org/2022/657
https://eprint.iacr.org/2022/657
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://eprint.iacr.org/2022/575
https://eprint.iacr.org/2022/575
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31

(18]

(19]

Vol. 10991. Lecture Notes in Computer Science. Springer, 2018, pp. 93-120.
DOI: 10.1007/978-3-319-96884-1 4. URL: https://doi.org/10.1007/978-
3-319-96884-1 4.

Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. “Secure
Outsourced Matrix Computation and Application to Neural Networks”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
Ed. by David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang.
ACM, 2018, pp. 1209-1222. DOI: 10.1145/3243734.3243837. URL: https:
//doi.org/10.1145/3243734.3243837.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: J. ACM 60.6 (2013), 43:1-43:35. DOLI:
10.1145/2535925. URL: https://doi.org/10.1145/2535925.

Johannes Mono, Chiara Marcolla, Georg Land, Tim Giineysu, and Najwa Aaraj.
“Finding and Evaluating Parameters for BGV”. In: IACR Cryptol. ePrint Arch.
2022.706 (2022). URL: https://eprint.iacr.org/2022/706.

Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and
Tim Wood. “Actively Secure Setup for SPDZ”. In: J. Cryptol. 35.1 (2022),
p. 5. DOI: 10.1007/s00145-021-09416-w. URL: https://doi.org/10.1007/
s00145-021-09416-w.

Gregor Seiler. “Faster AVX2 optimized NTT multiplication for Ring-LWE lat-
tice cryptography”. In: IACR Cryptol. ePrint Arch. 2018.39 (2018). URL:
http://eprint.iacr.org/2018/039.

Nigel P. Smart and Frederik Vercauteren. “Fully homomorphic SIMD oper-
ations”. In: Des. Codes Cryptogr. 71.1 (2014), pp. 57-81. DOI: 10.1007 /
510623-012-9720-4. URL: https://doi.org/10.1007/s10623-012-9720-4.

PAGE 29

https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/2535925
https://doi.org/10.1145/2535925
https://eprint.iacr.org/2022/706
https://doi.org/10.1007/s00145-021-09416-w
https://doi.org/10.1007/s00145-021-09416-w
https://doi.org/10.1007/s00145-021-09416-w
http://eprint.iacr.org/2018/039
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4

	Introduction
	Preliminaries
	DCRT Representation
	Canonical Embedding Norm
	BGV Scheme
	Homomorphic Matrix Multiplication
	Block Matrix Multiplication
	Matrix Triple Protocol

	Improvements to Homormophic Operations and Parameters
	Re-Use of Key Switching Keys
	Matrix Packing Enhancements
	Use-Case Specific Parameters

	Implementation
	Ciphertext Arithmetic
	Plaintext Arithmetic
	Parameter Generation
	Matrix Triples
	Benchmarking

	Discussion
	Choosing the HE Scheme
	Advancing Parameter Generation
	Dealing with Memory Costs
	Designing the API

	Conclusion
	Acknowledgements

