
Reusable, Instant and Private Payment Guarantees for
Cryptocurrencies

Akash Madhusudan1 , Mahdi Sedaghat1 , Samarth Tiwari2 ,
Kelong Cong1 , and Bart Preneel1

1 imec-COSIC, KU Leuven, Leuven, Belgium
{akash.madhusudan,ssedagha,kelong.cong,bart.preneel}@esat.kuleuven.be

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
samarth.tiwari@cwi.nl

Abstract. Despite offering numerous advantages, public decentralized cryptocurrencies such as Bitcoin
suffer from scalability issues such as high transaction latency and low throughput. The vast array of
so-called Layer-2 solutions tackling the scalability problem focus on throughput, and consider latency
as a secondary objective. However, in the context of retail payments, instant finality of transactions is
arguably a more pressing concern, besides the overarching concern for privacy.
In this paper, we provide an overlay network that allows privacy-friendly low latency payments in a
retail market. Our approach follows that of a recent work called Snappy, which achieved low latency
but exposed identities of customers and their transaction histories. Our construction ensures this data
is kept private, while providing merchants with protection against double-spending attacks. Although
our system is still based upon customers registering with a collateral, crucially this collateral is reusable
over time.
The technical novelty of our work comes from randomness-reusable threshold encryption (RRTE), a
cryptographic primitive we designed specifically for the following features: our construction provably
guarantees payments to merchants, preserves the secret identity of honest customers and prevents their
transactions from being linked. We also present an implementation of our construction, showing its
capacity for fast global payments in a retail setting with a delay of less than 1 second.

1 Introduction

Public decentralized cryptocurrencies such as Bitcoin and Ethereum offer increased transparency
and avoid trust in a central party. However, these advantages come at the cost of performance,
rendering them unfit for high throughput, real-time applications. The throughput of cryptocur-
rencies is orders of magnitude lower than that of traditional payment service providers such as
Visa. Further, transactions require time before being considered final: the convention has been to
wait for 6 confirmations or approximately an hour. For this reason, securely improving throughput
and transaction confirmation latency (hereon referred to as latency) of public cryptocurrencies is
a major area of research.

Layer-2 solutions tackle these constraints by offloading some elements of transactions off-
chain [41]. However, these solutions focus on maximizing throughput and not on minimizing latency,
which is dealt with as a secondary objective. Rollups, an increasingly popular solution in both indus-
try and academia alike, increase the transaction throughput of Ethereum up to 100 times compared
to its current throughput [18,32,9]. Yet, their latency matches that of the underlying blockchain.
Payment Channel Networks (PCNs), another popular scaling solution, allow for arbitrarily many
transactions on their network at the cost of a constant number of on-chain transactions, thereby
drastically increasing throughput and reducing transaction fees. Yet, there are various factors neg-
atively impacting the latency of PCN transactions, such as liveness of intermediate nodes [28], and

https://orcid.org/0000-0002-1648-0665
https://orcid.org/0000-0002-1507-6927
https://orcid.org/0000-0001-7987-1519
https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0003-2005-9651

the route discovery mechanisms [57]. Retail payments is a scenario where instant finality (hereon
referred to as fast payments) is of the utmost importance; waiting an hour for a coffee is not an
option. Additionally, retail payments are usually unilateral, i.e., from customers to merchants. An
acknowledged problem with PCNs is channel depletion i.e., repeated use of channels in the same
direction results in depleted channels, prohibiting further payments in the same direction [5]. Uni-
lateral retail transactions only aggravate this issue. Similarly, by updating its layer-1, Ethereum
2.0 has increased its transaction throughput significantly. However, latency still takes ∼ 14 min-
utes [33]. This suggests a decoupling of two performance measures, namely throughput and latency,
which need to be tackled separately.

Hence, collateral reusability and fast payments become interesting properties for solutions that
perform retail payments with cryptocurrencies. Snappy is a fast on-chain payment system designed
for a retail environment, where payers can assure payees of their ability to pay for a certain com-
modity [51]. Payees are protected from double-spending at rates much faster than the underlying
blockchain while allowing collaterals to be reused. In order to work, Snappy depends on a set of
statekeepers responsible for proactively detecting double-spending attempts in the system. These
statekeepers have access to all transactions made by the customer, either by simply querying the
blockchain or locally logging them when they receive it. Thus, their system suffers from privacy
issues and all transactions involving the same payer can be linked together by third parties, such
as, the statekeepers. The general demand for greater privacy becomes even more relevant in the
retail context. For instance, the retail giant Target was able to deduce the pregnancy of a teenager
even before her own parents found out [46]. Such unfortunate leaks can be prevented, if merchants
are unable to link customers’ various purchases. Hence, there is a need for a solution that has the
following properties:

P1. Instant payments with double-spending protection that is much faster than the underlying
blockchain (fast payments).

P2. Prevents third parties in the system from being able to link different transactions involving
the same honest payer (transaction unlinkability).

P3. Privacy for honest customers is provided efficiently without incurring latency constraints of
payments (efficient privacy).

P4. Honest payers do not need to replenish their collaterals (reusability).

At ICDCS’21, Ng et al. [54] proposed LDSP that adds privacy to Snappy. LDSP achieves P1,
P2 and P3; however, at the cost of reusable collaterals (P4). Thus, previous works either trade-off
privacy in order to achieve fast payments with collateral reusability or vice-versa.
Our Contributions. In this paper, we provide a new overlay network that fulfills all aforemen-
tioned properties. To the best of our knowledge, we are the first to simultaneously achieve the
combination of properties (P1-4) in a payment system utilised in a retail context. Our contribu-
tions may be split into three as follows:
Private Low Latency Double-Spending Protection. We provide an overlay network capable of provid-
ing payees protection from double-spent transactions much faster than the underlying blockchain.
No party in the system is able to link different transactions involving the same honest payer, nor
do these privacy guarantees adversely affect latency of transactions. Customer collaterals are also
reusable, so that customers can repeatedly guarantee payments over time.
Formal Security Analysis. We formally prove that our construction preserves the secret identity of
honest customers (anonymity) and disables anyone from linking their transactions (unlinkability),
yet at the same time guarantees payment to the merchants (payment certainty).

2

Implementation and evaluation. We implement our construction and show that it allows for fast
global retail payments with a delay of less than 1 second.
Outline. The rest of this paper is organized as follows: Section 2 gives an overview of our con-
struction, its participants and how they interact. Section 3 formally describes our construction, its
threat model and proves how our construction satisfies its security requirements. Section 4 depicts
an efficient instantiation of our construction and lists the cryptographic primitives used in detail. In
Section 5 we evaluate the performance of this instantiation while focusing on latency. In Section 6
we discuss our limitations and point out the differences our construction has when compared to
similar state-of-the-art research and finally in Section 7 we conclude our paper.

2 Our construction

2.1 Design Motivation

Snappy In this section, we only give a high-level description of a transaction in Snappy in order to
point out its privacy shortcomings. For a detailed understanding of their construction, interested
readers are referred to the Snappy paper [51].

In Snappy, a customer initiates a payment intent (INTc) for a merchant of their choice. INTc

can be treated as a payment guarantee and is a normal blockchain transaction which is not yet
signed by the customer. Hence, it includes typical transaction details such as the pseudonyms of
payer and payee, transaction amount, etc. Snappy considers payment privacy to be orthogonal to
their work, and claim that it is inherited from the underlying blockchain; however, by sharing INTc

with the statekeepers, payment privacy is also not provided on a protocol-level. In Figure 1a, all
interactions impacting protocol-level privacy have been highlighted with a red dotted rectangle. By
protocol-level privacy, we mean the privacy for payer and payee interactions from all third parties
within the protocol. Even honest-but-curious statekeepers could potentially track all payments a
customer makes without the need of eavesdropping, as this data readily becomes available to them.

2.2 Strawman Construction

Here, let us see why a naive application of ZKPs to Snappy does not fulfil our desired properties.
As envisioned by Mavroudis et al. [51], one way to provide on-chain privacy in Snappy is

to utilize privacy-preserving blockchains combined with private smart contracts. However, as we
mention before, in addition to on-chain privacy, Snappy does not offer any protocol-level privacy
as well. Keeping on-chain privacy orthogonal, an obvious solution to provide protocol-level privacy
in Snappy would be to replace all sensitive and public information in the transactions on Snappy
with zk-SNARKs. Note that, due to the choice of signature scheme in Snappy, i.e., ECDSA [47]
and BLS [14], zk-SNARKs are the only option in terms of ZK proofs since less expressive proof
systems, such as, Groth-Sahai proofs cannot work in combination with non-algebraic constraints,
such as, hash functions.

Such a construction is shown in Figure 1b, which works as follows:

1. A trusted manager performs the one-time trusted setup required to use zk-SNARKs. Note that
although alternatives to avoid this trusted setup exist [17,49], their performance is not practical
for use in real-time applications.

2. The customer generates a proof π of sufficient funds to pay the merchant, in addition to a
statement x and witness ŵ.

3

Merchant Statekeepers

2. Verify1. 3.

5.
4.

6.

7.

)+ Agg(

Arbiter SC

Customer

,

(a) Snappy overview.

Merchant Statekeepers

4. Verify3. 5.

7.
6.

8.

8.

)+ Agg(

Manager

2.

1. Trusted CRS setup

Arbiter SC

Customer

(b) Snappy + zk-SNARKS.

Fig. 1: Snappy’s construction and a naive attempt to provide protocol-level privacy.

3. The customer keeps ŵ private, and forwards π and x to the merchant, along with a transaction
counter m for their new payment intention. Note that m is similar to the index of INTc in the
original Snappy construction.

4. Upon receiving π, x and m, the merchant verifies π and is ensured that the customer has
sufficient funds to pay for the services/product.

5. The merchant forwards m to the statekeepers in order for them to check whether they have
seen it before or not (proactive double-spending protection).

The rest of the protocol proceeds similar to the original snappy protocol.

Observe that m is an index of the payment intention INTc; hence, the payments from two
different customers can have an identical m. As a result, statekeepers cannot verify whether or not
a payment intention is a double-spend without also having access to the customer’s identity.

Despite utilizing zk-SNARKs, the customer’s identity cannot be hidden from statekeepers in
Snappy, whilst using their current approach for proactive double-spending. Clearly, there is a need
for a new way of (proactively) tracking double-spending attempts in order to preserve protocol-level
privacy (in combination with ZKP). Additionally, assuming this new technique was to be included
in Snappy’s construction, there would still be a big constraint of inefficient ZK proof generation
for customers. Since, the time required to generate a proof using zk-SNARKs is linear in the order
of circuit size, the customer would spend substantial time in order to create a zk-SNARK for each
INTc.

4

2.3 Our solution

The strawman solution shown in Section 2.2 depicts the difficulty of a straightforward solution in
achieving P1-4.

While designing a solution that fulfills all aforementioned properties, we faced two challenges.
First, our construction must utilize a proactive double-spending protection mechanism that is able
to selectively reveal information of dishonest parties while still keeping all information about hon-
est parties private. Second, since the payment latency needs to be low, we must enable payers to
prove vital information privately yet very efficiently. We address the first challenge by proposing a
novel variant of threshold encryptions, which we hereon refer to as randomness-reusable threshold
encryptions (RRTE) that has the unique property of revealing the plaintext if two ciphertexts are
encrypted using the same randomness. We use RRTE in combination with Pseudo-Random Func-
tions (PRF) such that the statekeepers are able to proactively protect from double-spend attempts
without having knowledge of any transaction details; yet, are still able to reveal vital information
in the case of double-spent transactions. The second challenge is addressed by a combination of
Threshold Structure-Preserving Signatures (TSPS) [24] and Non-Interactive Zero-Knowledge Proofs
(NIZKs). The compatibility of TSPS with efficient NIZKs enables a payer to prove vital information
to payees in our system in zero-knowledge, without impacting the latency of transactions.

Participants. First, in order to explain the interplay of these cryptographic primitives that
solve the aforementioned challenges and fulfill P1-4, we introduce the participants of our con-
struction. Similar to Snappy, our participants include: (1) customers willing to purchase prod-
ucts/services using their cryptocurrencies while expecting low latency; (2) an established consor-
tium of merchants willing to accept cryptocurrency payments and (3) statekeepers who are selected
from the merchant consortium. Additionally, we also include a group of authorities trusted for reg-
istration of users and verification of collaterals. Although authorities have greater power during the
setup of our network, they do not have any access to future transactions between a customer and
a merchant. For more discussion on these trust assumptions see Section 6.

Interaction of Participants. In our construction, the participants function as follows; each
customer in our systems owns collateral(s), which is uniquely linked to a secret PRF key(s). This
secret PRF key is signed by the group of authorities by utilizing TSPS once they verify its existence
on the arbiter smart contract. The PRF is used in combination with our RRTE to set up our double-
spending protection. By using this signed secret PRF key, each customer generates a randomness,
which they then use in combination with the public key of target merchant to encrypt their secret
identity. For encryption we use RRTE, that reveals the secret identity of a malicious customer
(plaintext) when they double-spend. More precisely, double-spending in our system amounts to
certifying multiple transactions with the same collateral, by which RRTE reveals the dishonest
customer’s identity. Thus, our construction fulfills P1 by enabling any statekeeper who receives
two ciphertexts that are encrypted using the same randomness to catch double-spending and reveal
the identity of the perpetrator. However, honest customers who only certify one transaction per
collateral remain unaffected; hence, also fulfilling P2.

Next, the customer needs to convince the target merchant about the existence of their collateral.
However, they must do this without revealing any identifying details. To achieve this, we utilize
TSPS and NIZKs. The payment guarantee is an indirect proof of collateral by proving knowledge
of the TSPS provided to them by the authorities. In case of a double-spend attempt, this payment
guarantee is sufficient for the merchant to be reimbursed. This can be done efficiently by efficient
proof systems fulfilling P3.

5

Payment Initiation

Creation of Collateral

Collateral locked

Double-Spending

Payment Confirmation

Reusability of collateral

Reveal IDPayment
Guarantee
created

Fig. 2: Timeline of a transaction.

Finally, our construction also allows a customer to reuse their collaterals after a certain time
interval in order to achieve P4. As illustrated in Figure 2, a collateral is considered locked for
the time period between the customer sending a payment guarantee to the merchant and the
actual confirmation of their blockchain transaction. However, after the confirmation of a blockchain
transaction, the customer’s collateral can be reused. Note that this is similar to the execution of a
multi-hop payment on PCNs, that rely on Hashed-Time-Locked-Contracts, locking up the collateral
for a similar time period [57,3]. Thus, using a collateral twice in quick succession is treated as a
double-spend and can be detected, but it may be reused once the locking period of the collateral
has elapsed.

Construction Overview. Figure 3 illustrates our construction. In order to explain our construc-
tion, we assume an established set of authorities and a fixed merchant consortium. The payment
protocol between a customer and a merchant has off-chain and on-chain components that have been
depicted in Figure 3 with dotted and solid arrows respectively. The protocol proceeds as follows:

Merchant

Smart contract

Customer

Statekeepers

Authorities

2. Collateral deposit
1. Register

3. Collateral

certification

5. Collateral

acceptance

6b. Provide payment

guarantee

7. Verify payment

guarantee

8. Accept payment

guarantee

4. Collateral

verification

9. Provide service/product

6a. Make on-chain payment

Fig. 3: Our construction.

1) The customer begins by registering themselves with a set of authorities. 2) The customer
deposits a collateral in the smart contract, controlled by this set of authorities. 3) Once the deposit
is confirmed on the blockchain, the customer requests a collateral certification, which is necessary
to generate payment guarantees for merchants. 4) Upon receiving the certification request of the
customer, the authorities check the smart contract to confirm if the customer deposited a collat-
eral. 5) The authorities provide the customer with a signed collateral certification. 6a) During

6

a transaction in the retail market, the customer makes a payment to the target merchant using
the underlying cryptocurrency. This is done by sending a payment to the merchant through the
smart contract. 6b) The customer simultaneously generates an encrypted payment guarantee by
using the collateral certification and sends this to the target merchant along with the transaction
identifier of their cryptocurrency payment. 7) The target merchant forwards this encrypted pay-
ment guarantee to the statekeepers who individually confirm that it is not a double-spend attempt.
The statekeepers compare the received guarantee with each guarantee they received within a fixed
time period. If none of these comparisons reveal the plaintext, i.e, secret identity of the customer,
they are guaranteed about its uniqueness. Note that this verification can be done by utilizing our
proposed RRTE and does not require knowing a customer’s identity. 8) Each statekeeper returns
a signed payment guarantee to the merchant. 9) If a majority of the statekeepers return a confir-
mation, the merchant aggregates these signatures and accepts the payment guarantee and provides
the customer with necessary services/products.

Double-Spending. Double-spending in our construction means a scenario where the customer
is malicious and wants to double-spend their payment guarantee, i.e., use the same collateral to
promise payments to two distinct merchants. In this case, when the statekeepers receive these
guarantees from two distinct merchants, they are able to combine them and reveal the secret
identity of the cheating customer. Along with this identity, a secret to the customer’s collateral
is also revealed. This secret is used by the victim merchant for remuneration. This is depicted in
Figure 4

More details about how RRTE enables statekeepers to reveal the secret identity of a malicious
customer are given in its formal definition in Section 4.

Malicious customer

Merchant A

Statekeepers

Provide payment

guarantee

Collateral A

Merchant B

Provide payment

guarantee

Verify

guarantee

Verify

guarantee

Reveal
ID

Fig. 4: Proactive double-spending detection.

Limitations. Although we address the privacy shortcomings of Snappy’s design, our construction
still inherits some of its other limitations, such as, the large collateral requirement for statekeepers
and inadequately defined user incentives. To be specific, we also require the merchants to deposit
collaterals in order to play the role of statekeepers fairly. We also assume that the amount of a
customer’s deposit is fixed. The assumption of a fixed set of merchants is also an additional concern,
since it does not allow for any merchant churn in the protocol. However, in this paper we do not
attempt to address these concerns. A more thorough discussion about these shortcomings is given
in Section 6.

7

3 Preliminaries and Formal Construction

Throughout this paper, we let the security parameter of the scheme to be λ with unary represen-
tation of 1λ, and negl(λ) denotes a negligible function. We use x←$X to denote that x is sampled
uniformly from the set X. [n] denotes the set of integers in the range of 1 to n. For clarity, the
secret values in our construction are represented with a hat operator (e.g., ŝk) and masked values
are represented with the notation x′ for the value x.
Threat Model. Our construction is designed to resist active adversaries that can corrupt a set
of customers, merchants (which are also statekeepers) and authorities. To be precise, an adversary
can only corrupt a minority of authorities during the initialization phase. During the processing of
transactions, the adversary can corrupt all but one customers, and a minority of merchants.
Network Assumptions. We assume the existence of secure and reliable communication channels so
that parties receive messages sent by honest parties eventually. The honest merchants/statekeepers
are also assumed to be live and responsive, for the verification of transactions. We do not expect the
customers to be online, unless they need to transact with a merchant. The underlying blockchain
is assumed to be persistent and live and the adversary cannot influence the consensus mechanism.
Beyond the threat model. Let us mention a few considerations that are outside the scope of our
model. Firstly, we consider protocol-level privacy, and not the privacy of the underlying blockchain.
We do not consider side-channel attacks, such as metadata-level attacks on communication channels.
Finally, the selection of authorities is also orthogonal to our work. One possibility is to choose them
from the set of reputable merchants in the consortium, and have them shuffled periodically to
ensure a majority of authorities always remain honest.

We would also like to note that weaker assumptions of trust or liveness are possible without
compromising security. However, we select a simple set of assumptions, following those of Snappy,
in order to focus on the privacy aspect instead of system-level optimizations.
Formal Construction. Our construction builds on Pseudo-Random Function (PRF), Non-
Interactive Zero-Knowledge (NIZK) arguments, Digital Signatures (DS), Threshold Structure-
Preserving Signatures (TSPS), Commitments (CO), and a novel randomness-reusable Threshold
Encryption (RRTE). We list the formal definition and the security properties in Appendix A and
outline the scheme in Algorithm 1 for a relationRL over three main NP-languages L := (L1,L2,L3).
The list of master public keys, mpk, is considered as an implicit input for all algorithms except
the parameter generation algorithm (PGen). Additionally, all algorithms are PPT unless otherwise
specified. We now formalise the functions in the Algorithm 1. All functions are split based on when
they happen in our construction and are formalized as follows:
Bootstrapping Phase as depicted in Figure 3:

- PGen(1λ,RL) takes λ in its unary representation and relation RL as inputs and returns the
master public key mpk.

- AuKeyGen(AU) is executed by AU that returns (ˆsgkai, vkai) for i ∈ [n] along with a global
verification key vka. AU [ˆsgkai, vkai, vka]ni=1 represents the list of credentials for AU .

- MKeyGen(Mm) is executed by merchant Mm ∈M in order to join the network. It initially gener-
ates a pair of signing/verification keys (ˆsgkbm, vkbm) and returns a tuple (ˆsgkbm, vkbm, pkbm =⊥).
The list of keys belonging to the group of merchants is recorded inM[ˆsgkbi, vkbi]

ℓ
i=1.

- MRegister(AU [ˆsgkai]ti=1,M[vkbi]
ℓ
i=1) is executed by any subset of AU of size at least t to register

the merchants who deposit a collateral to join the merchant consortium and assign them a public
key pkbm. For each merchant Mm ∈M, it takes the secret signing key of the authorities AU [ˆsgkai]

8

for 1 ≤ i ≤ t, and returns public key pkbm as output. After this phase, the list of parameters for
the mth merchant can be updated asM[ˆsgkbm, vkbm, pkbm].

- CuKeyGen(Cn) is executed by the customers, that for each customer Cn ∈ C, a Pseudo-ID gen-
erator function (PID) generates an initial secret key ŝkcn and its corresponding public key pkcn.
It returns a tuple of (pkcn, ŝkcn, ˆcertcn =⊥) with a NIZK proof π1 to prove that the relation RL1

fulfills. The list of customers’ keys are kept in C[ŝkci, pkci, ˆcertci =⊥]ki=1.

Protocol as depicted in Figure 3:

- CuRegister(AU [ˆsgkai]ti=1, C[pkcn], π1) is depicted in step 1 of Figure 3. It is executed by any subset
of AU of size at least t to certify the public key pkcn of a customer Cn corresponds to some
secret value ŝkcn under the relation RL1 . Once the customer Cn is registered by the authorities,
it receives a certificate ˆcertcn and it updates C[pkcn, ŝkcn, ˆcertcn].

- CuCreate(C[ŝkcn, ˆcertcn]) is depicted in step 2-3 of Figure 3. It is executed by the customer to
request for certification of their collateral. A successfully registered customer Cn, with certificate
ˆcertcn ̸=⊥, can deposit collaterals in the smart contract. For each deposit j in the smart con-

tract, the customer samples a random value kj from a uniform distribution KPRF in a way that

the deposit is not directly linkable to the customer. Then it returns a tuple CL[k̂j , k′j ,⊥] as an
uncertified collateral along with a proof π2 depicting the fact that the relation RL2 fulfills.

- AuCreate(AU [ˆsgkai]ti=1, C[cert′cn], CL[k̂j , k′j], π2) is depicted in step 4-5 of Figure 3. It is executed

by a group of authorities AU of size at least t. It takes the authorities’ secret signing keys (ˆsgkai),
an indexed DH message space of PRF key and a NIZK proof π2 as inputs. To create a certified
collateral, it checks the validity of the proof π2 and whether this collateral exists in the smart
contract, and returns certificate ˆcertj as output. The list of parameters for each collateral is kept

by CL[k̂j , k
′
j , ˆcertj].

- Spend(C[ŝkcn, ˆcertcn], CL[k̂j , ˆcertj],M[pkbm], t) is depicted in step 6a and 6b of Figure 3. It is
executed by a customer Cn ∈ C who performs a payment to the merchant Mm ∈ M using
the underlying cryptocurrency of their choice at time t. The registered customer uses a certified
collateral CL[k̂j , ˆcertj] to provide a payment guarantee to the merchantMm. The payment made by
the customer is always bounded by a publicly known collateral amount. It returns the transaction
details as a list of parameters T [x3, π3, TxID], which contains a pair of instance and proof (x3, π3),
along with a set of auxiliary data Rt. This function is executed in parallel with an on-chain
payment. In particular, the customer must first sign and broadcast an on-chain transaction Tx,
and then include its identifier (TxID) in the payment guarantee of Spend. The TxID could have
different formats depending on the underlying blockchain.3

- Vf(M[pkbm], T [πm, xm, TxID], t) is depicted in step 7-9 of Figure 3. The merchant Mm ∈ M
executes it to check the validity of a received payment guarantee. Once the proof is verified
successfully by merchant Mm along with the majority of statekeepers, StK, confirmation that they
have not seen a similar payment guarantee in the current epoch (by providing their signatures),
the merchant verifies their individual signatures and aggregates them. Once the aggregation is
complete, and if TxID specifies the merchant’s address as the receiver of funds, the merchant
provides the items/services to the customer without waiting for the transaction confirmation of

3 For a public blockchain such as Bitcoin or Ethereum, TxID could be the hash of a transaction (H[Tx]); for an
anonymous blockchain like Zcash, it could be the viewing key of the transaction that enables the merchant to
check if he is the receiver of the shielded transaction [29]

9

Algorithm 1: Our Construction.

Function PGen(1λ,RL):

(c⃗rs, ˆ⃗ts, ˆ⃗te)← ZK.Kc⃗rs(1
λ,RL)

(pp)← T SPS.Setup(1λ)
return mpk := (pp, c⃗rs)

Function AuKeyGen(AU):
(
ˆ⃗
sgka, v⃗ka, vka)← T SPS.KGen(mpk, n, t)
return (AU [ˆsgkai, vkai, vka]ni=1)

Function MKeyGen(Mm):

(ˆsgkbm, vkbm)← DS.KGen(pp)
return (M[ˆsgkbm, vkbm])

Function MRegister(AU [ˆsgkai]ti=1,M[vkbi]
ℓ
i=1):

for j ∈ range(ℓ) do
(pkbj , pkb)←RRT E .KGen(mpk, ℓ, t, 2)

return (M[pkbi]
ℓ
i=1, pkb)

Function CuKeyGen(Cn):

ŝkcn := PID(Cn) ∈ Z∗
p

sk′cn ← CO.Com(pp, ŝkcn)
pkcn := (sk′cn,M1,M2)← iDHH(sk′cn, ŝkcn)
x1 = (pkcn)
ŵ1 = (ŝkcn)
π1 ← ZK.P(RL1 , c⃗rs, x1, ŵ1)
return (C[pkcn, ŝkcn], π1)

Function CuRegister(AU [ˆsgkai]ti=1, C[pkcn], π1):
if ZK.Vf(RL1 , c⃗rs, x1, π1) = 1 then

(ˆcertcn)← T SPS.Sign(AU [ˆsgkai]ti=1, pkcn)

return (C[ˆcertcn])

Function CuCreate(C[ŝkcn, ˆcertcn]):

k̂j ← PRF .KGen(pp)
k′
j ← CO.Com(pp, k̂j)

Mj := (k′
j ,M1,M2)← iDHH(k′

j , kj)
x2 = (k′

j)

ŵ2 = (k̂j , ŝkcn, ˆcertcn)
π2 ← ZK.P(RL2 , c⃗rs, x2, ŵ2)
return (CL[k̂j ,Mj], C[cert′cn], π2)

Function AuCreate(AU [ˆsgkai, vka]ti=1,
C[cert′cn], CL[k̂j , k′

j], π2):
if ZK.Vf(RL2 , c⃗rs, x2, π2) = 1 then

(ˆcertj)← T SPS.ParSign(AU [ˆsgkai]ti=1,Mj)

return (CL[ˆcertj])

Function Spend(C[ˆcertcn, ŝkcn],
CL[k̂j , ˆcertj],M[pkbm], t):

(rt)← PRFk̂j
(t)

Rt := e(rt, h) ▷ h is the generator of G2.
Ctm ←RRT E .Enc(pkbm, ŝkcn; rt)
ŵ3 = (ˆcertj , k̂j , rt, ŝkcn)
x3 = (Rt, Ctm, t)
π3 ← ZK.P(RL3 , c⃗rs, x3, ŵ3)
return (T [π3, x3, TxID])

Function Vf(M[pkbm], T [π3, x3, TxID], t):
if ZK.Vf(RL3 , c⃗rs, x3, π3) = 1 then

for i ∈ StK do
if Rt ̸∈ Li then

(σRt,i)← DS.Sign(ˆsgkbi, Rt)

if DS.Vf(vkbi, σRt,i) = 1 ∧ |σRt | ≥
(|StK|/2) + 1 then

return 1

Function RevealID(Ctm, Ctm′ , v):

(ŝkcn)←RRT E .Dec(Ctm, Ctm′ , v)
return (skcn)

10

the customer’s original payment on the blockchain. If the proof verification fails, or the majority
of statekeepers do not confirm the guarantee, or the on-chain transaction specifies the wrong
receiver address, the merchant rejects the payment guarantee.

Double-spend detection as depicted in Figure 4:

- RevealID(Ctm, Ctm′ , v) is a deterministic algorithm that takes two ciphertexts Ctm and Ctm′

generated under the public key of two distinct merchants Mm and Mm′ and returns the plaintext,
i.e., the identity of the customer and the secret to their collateral to redeem it. This ID, skcn, is
no longer hidden and can be used by AU to blacklist the cheating customer and its collateral(s)
can be used to remunerate the victim merchant.

3.1 NIZK Languages

In the proposed generic construction in Algorithm 1 we rely on three languages for the NIZK
systems, described below.

– Language L1: Used to prove the correct formation of the customers’ public key pkcn, based on
the knowledge of secret key ŝkcn. We depict this language formally below, which is used during
CuKeyGen(Cn).

L1 = NIZK
{
(ŝkcn) | sk′cn := CO.Com(ŝkcn)

}
– Language L2: Used to prove eligibility to request a collateral by deriving certificate fulfillment.

This language is used during CuCreate(C[ˆcertcn]).

L2 = NIZK
{
(k̂j , ŝkcn, ˆcertcn) |k′j := CO.Com(k̂j), k̂j ∈ KPRF, T SPS.Vf(pkcn, ˆcertcn) = 1

}
– Language L3: Used to prove the possession of a valid collateral, correctness of

PRF evaluation algorithm and RRTE’s ciphertext. This language is used during
Spend(C[ŝkcn, ˆcertcn], CL[k̂j , ˆcertj],M[pkbm], t).

L3 =NIZK
{
(ˆcertj , k̂j , rt, ŝkcn) | rt ← PRFk̂j (t), Rt := e(rt, h),

Ctm := RRT E .Enc(pkbm, ŝkcn; rt), T SPS.Vf(Mj , ˆcertj) = 1
}

3.2 Security Analysis

Next we formally define the two main security requirements for our construction, namely
(1) Anonymity of honest customers and Unlinkability of payment guarantees, and (2) Payment
certainty for honest merchants. Note that the AllGen(.) algorithm (see Figure 5) generates all sys-
tem setup parameters at once. In the described definitions, it is implicitly assumed that there exists
a PPT adversary A who has access to the following oracles provided by the challenger B:

– Oracle OAuCorrupt(Aui): By calling this oracle under the input Aui, A can corrupt Aui and
receive its internal states. The set of corrupted authorities is denoted by AU ′ and we have
|AU ′| < t.

– Oracle OCuCorrupt(.): Adversary A can corrupt any customer Cn ∈ C by querying this oracle,

and receive its uncertified secret key ŝkcn.

11

– Oracle OColCorrupt(.): A can corrupt at most qD collaterals CLj ∈ CL to receive their uncertified

secret value k̂j . The list of corrupted collaterals is represented by CL′.
– Oracle OMCorrupt(.): Adversary A can corrupt a minority set of merchants (statekeepers) like

Mm ∈ M and receives its pair of public key pkbm and secret signing key ˆsgkbm. The list of
corrupted merchants is denoted byM′ s.t. we have, |M′| < |stk|/2.

– Oracle ORevoke(.): Adversary A can revoke at most qR certified collaterals CLj ∈ CL and
redeem the deposited money.

– Oracle OSpend(.): A can make at most qS payment guarantees created by any arbitrary non-
corrupted customer to any non-corrupted merchant.

Definition 1 (Payment Unlinkability and Anonymity). This construction preserves
the anonymity of honest customers and provides unlinkability of payment guarantees, if no
PPT adversary A by getting access to OAuCorrupt,OCuCorrupt,OMCorrupt,OSpend oracles, OANON

in short, and with advantage of AdvANON
A (λ, β) = 2

(
(ExpANON

A (1λ, β) = 1)− 1/2
)
, has

a non-negligible chance of winning the experiment described in Figure 5, i.e. we have,∣∣AdvANON
A (λ, β = 0)−AdvANON

A (λ, β = 1)
∣∣ ≤ negl(λ).

ExpANON
A (1λ, β)

1 : (mpk,H,AU [ˆsgkai, vkai, vka]
n
i=1,M[ˆsgkbi, vkbi, pkbi]

ℓ
i=1)← AllGen(1λ,RL)

2 : (Mm, ŝk
∗
0, ŝk

∗
1, k̂

∗
0 , k̂

∗
1)← AOANON(mpk)

3 : β←$ {0, 1}

4 : (πβ , xβ , Rt,β)← Spend
(
C[ˆcert

∗
cβ , ŝk

∗
β], CL[k̂

∗
β , ˆcert

∗
β],M[pkbm], t

)
5 : β′ ←$AOANON (T [πβ , xβ , Rt,β])

6 : return β′ == β

ExpPC
A (1λ)

1 : (mpk,H,AU [ˆsgkai, vkai, vka]
n
i=1,M[ˆsgkbi, vkbi, pkbi]

ℓ
i=1)← AllGen(1λ,RL)

2 : (π∗, x∗, R∗
t)← AOPC(mpk)

3 : if ZK.Vf (RL, c⃗rs, π
∗, x∗) == 1 ∧ qD < qS + qR : return 1

4 : else return 0

Fig. 5: Security Games.

Definition 2 (Payment Certainty). This construction provides payment certainty (PC) if no
transaction τ is approved with a non-negligible advantage s.t. qS + qR + τ > qD. No PPT adver-
sary A with access to OAuCorrupt,OCuCorrupt,OColCorrupt,ORevoke,OSpend oracles, OPC in short, can
win the experiment described in Figure 5 with a non-negligible advantage in λ and we can write,
AdvPCA (λ) := Pr[ExpPCA (1λ) = 1] ≤ negl(λ).

As a consequence of payment unlinkability and anonymity, no PPT adversary can expose any
information about the transaction such as the identity of honest customers or be able to link it to

12

any other transaction made by the customer. As a consequence of payment certainty, no entity, not
even after colluding with a group of participants, can transfer and/or revoke more money than the
amount deposited. Finally, any system satisfying both these definitions simultaneously reveals the
identity of a malicious customer attempting to use one collateral to pay multiple merchants at the
same time.

Theorem 1. The proposed generic construction in Algorithm 1 satisfies the unlinkability and
anonymity of payment guarantees as defined in Definition 1.

Proof. For each payment request, the customer should transfer a tuple T [π, x, Rt, H(Tx)] where Rt

is the auxiliary data at time slot t to convince the merchant and the group of statekeepers about the
uniqueness of a collateral. Under the existence of a privacy-preserving blockchain TxID does not
reveal any information beyond the validity of the transaction and it protects the anonymity of the
costumers. In this case, to prove that our construction preserves the anonymity of honest customers
and provides unlinkability of payments we show that no PPT adversary, A, by providing two pair of
challenge secret keys/collateral keys (ŝk

∗
0, k̂
∗
0) and (ŝk

∗
1, k̂
∗
1), can distinguish between (π0, x0, Rt,0) and

(π1, x1, Rt,1) as the output of the spending algorithm. This property is guaranteed because of the
following main security properties for the given primitives: Zero-Knowledge property of the given
NIZK proof system, computationally hiding property of the given commitment scheme, static-
semantically secure property of the given randomness-reusable threshold encryption in bilinear
groups and also the weak robustness of the given PRF.

Let the hybrid Hβ be the case where the Anonymity experiment, ExpANON
A (λ, β) is run for

β = {0, 1}. In this case, we form a sequence of hybrids and show that each of the successive hybrids
are computationally indistinguishable from the preceding ones.

– Hybrid Hβ
1 : In this game, we assume the existence of an efficient simulator Sim and then

modify the previous hybrid, Hβ, by generating the challenge NIZK proof πβ via the simulation

algorithm, π′β ← ZK.Sim(c⃗rs, ˆ⃗ts, xβ).

The Zero-Knowledge property of NIZK arguments provided in Definition 22 guarantees that this
experiment is indistinguishable from the one for Hβ and we can write Hβ

1 ≈λ Hβ.

– Hybrid H2
β: In this game, we modify Hβ

1 s.t. for generating the index id the challenger commits

ŝk
∗
1−β instead of ŝk

∗
β.

According to the hiding property of the given commitment scheme, this experiment is indistin-
guishable from H1

β and we can write, Hβ
2 ≈λ Hβ

1 .

– Hybrid H: In this game, we modify H2
β by assuming the challenger runs the RRTE encryption

algorithm under the message m1−β instead of mβ.

According to the Static Semantic Security property of the proposed randomness-reusable Threshold
encryption, this experiment is indistinguishable fromH2

β. To be more concrete, A cannot distinguish
between Ctβ and Ct1−β as long as no twin ciphertext is generated even if the proofs are simulated.
Thereby we have, H0 ≈λ H1

0 ≈λ H2
0 ≈λ H ≈λ H1

1 ≈λ H2
1 ≈λ H1.

To conclude this security property for the proposed construction, based on the weakly robust
property of the given PRF, it is straightforward to demonstrate that the output of a PRF under
two distinct keys is computationally indistinguishable and no PPT adversary can distinguish Rt,0

and Rt,1. ⊓⊔

13

Theorem 2. The proposed generic construction in Algorithm 1 satisfies the payment certainty of
payment guarantees as defined in Definition 2.

Proof. We prove this security property by contradiction and for the simplicity we avoid the hat
notion for the secret parameters. Let there is a PPT adversary A that can break the payment
certainty of the scheme and pass the verification phase without meeting at least of the following
cases.

– Case 1. The adversary A can forge a valid payment guarantee, T .
– Case 2. The adversary A can forge a valid aggregated signature σRt s.t. |σRt | ≥ (|StK|/2) + 1.

By relying on the existence of a weakly-robust PRF, a Knowledge Sound NIZK argument,
an existentially unforgeable TSPS construction we show that the success probablity of adversary
in “Case 1” is negligible. Thus having played a sequence of indistinguishable games between
BPRF
WR (1λ),BTSPS

EUF-CiMA(1
λ),BNIZK

KS (1λ) and a PPT adversary A, we gradually turn the payment cer-
tainty security game into the security features of the underlying primitives.

– Game G0: In the first security game, let A forms a challenge transaction τ∗ such that
∑
Lc +

τ∗ > colA return a valid pair (π∗, x∗) with a non-negligible advantage ϵ. By contradiction, we
assume A can win this game with a non-negligible advantage ϵ and we can write, AdvPCA (λ) =
Pr[A Wins G0] ≥ ϵ.

– Game G1: In this game, we modify G0 such that we assume the existence of an efficient

extractor Ext(.). In this case, there exists an extractor that takes the extraction trapdoor ˆ⃗te
and the received challenge tuple (π∗, π∗j , x

∗) as inputs, and returns the corresponding witness

(w∗) ← Ext(t⃗e, x∗, π∗) s.t. w∗ =
(
cert∗, µ∗, sk∗c , r

∗
t , (M

∗
j , k
∗)
)
. To be more precise, the extractor

first extracts the indexed DH message M∗j := (id∗j ,M
∗
j1,M

∗
j2), and then can extracts the secret

PRF key k∗ from the proof (π∗j) as a proof to show the well-formedness of the index id∗j .
The indistinguishability of G0 and G1 can be proven via the Knowledge Extraction property of
NIZK arguments, defined in Definition 23. This property guarantees the existence of the defined
extractor under non-falsifiable assumptions and we can write, AdvPCA (λ) = Pr[A Wins G0] ≈
Pr[A Wins G1] and this advantage consequently depends on two possible cases,

Pr[A Wins G1] = Pr[A Wins G1 : (w
∗, x∗) ∈ RL] + Pr[A Wins G1 : (w

∗, x∗) ̸∈ RL] .

The probability of an adversary in the latter case can be bounded by the advantage a NIZK’s
knowledge soundness.

AdvPCA (λ) ≤ Pr[A Wins G1 : (w
∗, x∗) ∈ RL] +AdvNIZK

Bks (λ) .

Under the assumption that the given NIZK is KS, the adversary A can win the game when the
event of (w∗, x∗) ∈ RL occurs.

– Game G2: The challenger for the payment certainty security game can modify G1 to an attacker
against the weakly-robust PRF security game. The intended key k∗ is either a valid key k∗ ∈ K
s.t. it is not corrupted by the adversary, i.e. k∗ ̸∈ CL′ or it is generated under a random key
k∗ ̸∈ K. The latter case will be bounded by the advantage of BPRF

WR (1λ) attacker, then we can
write,

Pr[A Wins G2] = Pr[A Wins G2 : k
∗ ∈ K ∧ k∗ ̸∈ CL′]+

Pr[A Wins G2 : k
∗ ̸∈ K] ≤ Pr[A Wins G2 : k

∗ ∈ K ∧ k∗ ̸∈ CL′] +AdvPRF
BWR

(λ) .

14

– Game G3: This is the game G2, except for a valid pair of witness and statement in RL and a
fresh and not queried PRF key, one can reduce it to a forgery attack for the underlying TSPS
scheme. More specifically, if k∗ ∈ K and not corrupted before then the challenger can generate
its iDH message format M∗j . Lets the set of authorities indices that are queried before to get a

certificate by the adversary is denoted by S(⋆,M∗
j2)

. If |S(⋆,M∗
j2)
∪AU ′| < t, BTSPS

EUF-CiMA(1
λ) returns

the pair (M∗j , cert
∗) as a valid forgery for the defined threshold EUF-CiMA security game in

Def. [24, 4.3]. Thus, we can write,

AdvPCA (λ) ≤ AdvNIZK
Bks (λ) +AdvPRF

BWR
(λ) + Pr[A Wins G3 : |S(⋆,M∗

j2)
∪ AU ′| < t]+

Pr[A Wins G3 : |S(⋆,M∗
j2)
∪ AU ′| ≥ t] ≤ AdvNIZK

Bks (λ)+

AdvPRF
BWR

(λ) +AdvTSPS
BEUF-CiMA

(λ) + Pr[A Wins G3 : |S(⋆,M∗
j2)
∪ AU ′| ≥ t] .

Since it is assumed that the adversary A should provide a fresh and not queried collateral, the
probability of the event, “A Wins G3 ∧ |S(⋆,M∗

j2)
∪ AU ′| ≥ t”, is equal to zero. Then we can write,

AdvPCA (λ) ≤ AdvNIZK
Bks (λ) +AdvPRF

BWR
(λ) +AdvTSPS

BEUF-CiMA
(λ) .

Similarly to demonstrate that the probability of Case 2 is negligible we rely on the unforge-
ability of the given aggregatable digital signature. If the adversary A be able to forge a valid
aggregated signature for a majority of the statekeepers then as it is assumed it only can corrupt
at most |M′| < |StK|/2, then we can form an efficient algorithm BDS

EUF-CMA(1
λ) to break the

EUF-CMA property of the underlying DS scheme. Then we can write:

AdvPCA (λ) ≤ AdvNIZK
Bks (λ) +AdvPRF

BWR
(λ) +AdvTSPS

BEUF-CiMA
(λ) +AdvDS

BEUF-CMA
(λ) .

Thus, as long as the underlying primitives are knowledge sound, weakly robust and existentially
unforgeable then we can conclude the theorem. ⊓⊔

4 An Efficient Instantiation

In this section, we specify the concrete cryptographic primitives used to instantiate our construc-
tion. With the exception of RRTE, which is our novel construction, we refer formal definitions of
primitives and their security properties to Appendix A. We would like to stress the modularity of
our construction. The below tools are used in a black box manner and can be replaced by superior
tools that future research will inevitably develop.

Randomness-Reusable Threshold Encryption. (ℓ, t, k)-RRTE is a new observation on thresh-
old encryption (TE) schemes (see Appendix A.5) and enables plaintext confidentiality as long as
less than k number of ciphertexts with the same randomness is generated. Once a data owner
issues at least k supplementary ciphertexts, it is publicly retrievable and everybody can blind out
the encrypted data. We formulate this primitive for compatibility with the rest of our system, but
it is worth noting that the underlying idea is similar to offline double spending detection used in
e-cash schemes.

15

Definition 3 (Randomness-Reusable Threshold Encryption). For a given public parame-
ters pp and security parameter λ, a (ℓ, t, k)-RRTE, ΨRRTE, over the message spaceM and ciphertext
space C consists of three main PPT algorithms defined as follows:

– (p⃗k, pk) ← RRT E .KGen(pp, ℓ, t, k): Key generation is a probabilistic and distributed algorithm
that takes pp along with three integers ℓ, t, k ∈ poly(λ) as inputs. It then returns a vector of
public key p⃗k of size ℓ and a general public key pk as outputs.

– (Ctj , v) ← RRT E .Enc(pp, pk,m, pkj): The encryption algorithm as a probabilistic algorithm
takes pp, global public key pk, a message m ∈ M along with a public key pkj as inputs. It
returns ciphertext Ctj ∈ C associated with the recipient j ∈ R and an auxiliary value v as
outputs.

– (⊥,m) ← RRT E .Dec(pp, {Ctj}j∈K, v): The decryption algorithm takes pp, a set of ciphertexts
{Ctj}j∈K along with an auxiliary value v as inputs. If |K| ≥ k, it returns m ∈ M, else it
responds by ⊥.

Note that in Appendix A.5, we elaborate more on the security requirements and then we propose
an efficient construction based on threshold ElGamal encryptions.

Pseudo-Random Function. We utilise a weakly-robust PRF proposed by Dodis and Yampol-
skiy [27] in order to make customers’ collaterals reusable. This PRF enables us to define a time
of payment, i.e. x in PRFk(x) = g1/(k+x) function and prove the validity of operations, efficiently.
This ensures that a customer always has to input the time of payment, which is then verified by
a receiving merchant. By utilizing this property and its combination with RRTE, as discussed in
Section 1, we can block a customer from reusing the same collateral for a pre-defined time period.

Digital Signature Schemes. We require two types of signatures, one for the authorities and
another for the statekeepers. These signatures need non-overlapping properties which we detail
below.

– Threshold Structure-Preserving Signatures [24]. There are two reasons to use the TSPS scheme
proposed by Crites et al. Firstly, like any other digital signature, it provides authentication,
such that no entity except the qualified authorities can issue collateral proofs. Secondly, due to
its threshold nature, TSPS enables our construction to rely on an honest majority (authorities)
instead of a central trusted party.

– BLS Signatures [14]. BLS Signatures are efficiently aggregatable, and thus they are useful in
our setting. A statekeeper must validate payment requests from various merchants, and they
do so using BLS signatures. For a victim merchant to redeem user collateral from the smart
contract, they may first aggregate the signatures allowing for a shorter interaction.

Commitment Scheme. In our construction, we use the Pedersen commitment scheme [56] due
to the following reasons; firstly, the TSPS construction is defined over the indexed DH message
spaces (Definition 5) and each secret PRF key needs to get an index. Hence, these commitments
are used to the secret scalar PRF keys as an index. Secondly, the hiding property of such com-
mitments masks the secret PRF keys used in our construction. In addition, the binding property
of Pedersen commitments ensures the unforgeability of these secret PRF keys. Finally, Pedersen
commitments are compatible with discrete logarithm-based proofs like original Sigma protocols and
enables customers to efficiently prove knowledge of these committed values.

16

NIZK Proofs. To instantiate the described NP-relations in Section 3.1, we utilize three main proof
systems: Sigma protocols [59], range-proofs [17] and GS proof systems [39] (see Appendix A.7).
Sigma protocols are an efficient choice as the main proof system in our implementation; we use
the Fiat-Shamir heuristic [34] to make then non-interactive. Range-proofs enable us to prove that
a hidden value lies in a range interval. GS proof systems are useful as they are secure in the stan-
dard model and support a straight-line extraction of the witnesses. Additionally, the instantiation
of these proofs does not require any trusted setup and can be batched: this enables an efficient
verification [45].

5 Performance Analysis

In this section, we demonstrate the performance of our system. Based on the application, the costs
incurred in each phase are divided into two parts, termed “offline phase” and “online phase”. The
former includes the parameter generation, key generation and registration functions. The latter is
solely responsible for spending and verification and is the main focus of this evaluation.

Our experimental setup is similar to the one in Snappy. Namely, we distribute various parties
in different regions around the world and measure the end to end latency of transactions.4

Specifically, our implementation uses the Charm-Crypto framework [2], a Python library for
Pairing-based Cryptography and obtained the benchmarks on four AWS EC2 instances. The sce-
nario we consider is similar to the one in Snappy. Namely, merchants, customers and statekeepers
are globally distributed in four different locations and we create 1 000 tps in order to measure the
average time it takes for one transaction to complete. Since transactions are distributed to many
merchants and the merchants run independently, it is possible to create an equivalent scenario
and only consider the work needed for one merchant. Consider the workload from the perspec-
tive of a single statekeeper: its workload depends on transactions that are passing through all
other merchants. To accurately estimate the workload of a single statekeeper, we injecting artificial
verification requests to it. Our scenario is summarized in Figure 6.

All our EC2 instances had the same computational configuration, i.e., an Ubuntu Server 20.04
LTS (HVM) with an Intel (R) Xeon(R) CPU @ 2.50 GHz and 16 GB of memory. We apply the
Barreto-Naehrig (BN254) curve (also known as type F groups), y2 = x3 + b with embedding curve
degree 12 [7]. In this pairing group, the base field order is 256 bits.

Latency. As illustrated in Figure 7, the latency for each transaction grows linearly with the number
of statekeepers verifying this transaction (depicted with the orange line). During our evaluations,
we noticed that the time required for a customer to generate and send a payment guarantee (de-
picted with the red line) is mostly constant, i.e., ∼ 240 ms. However, in the case of 40 statekeepers,
our construction allows a customer and merchant to successfully transact within ∼ 550 milliseconds
(ms). In contrast, in the case of 200 statekeepers, a transaction takes ∼ 1.3 seconds (s). Hence, the
time required to guarantee a payment to merchants in our construction is bounded by the set of
statekeepers. A direct comparison with Snappy is not possible for two reasons; firstly, the evaluation
of Snappy only considers the time taken for payment approval, i.e., it does not consider the time
spent on customer-merchant interaction. Secondly, their simulation code is not freely available.
A standalone analysis shows that our construction provides privacy against statekeepers without
impacting the latency of payments. Greater number of statekeepers provides more robustness and

4 The open-source implementation can be found in this repository.

17

https://github.com/PrinsPayments/PRINS

Merchant Merchant Merchant

Statekeeper Statekeeper Statekeeper Statekeeper

Customer Customer Customer Customer Customer

Fig. 6: Experimental setup. Dotted lines and shapes represent parties and workload that do not
affect the leftmost customer or the leftmost Merchant. Our experiment only considers the solid
lines and shapes. From the perspective of the leftmost client and the leftmost merchant, this is
equivalent to running the full system. While statekeepers are the same as merchants, we make
these two sets distinct for clarity.

better protection against double-spends, but requires stronger liveness assumptions on top of in-
creasing the latency. We find 120 statekeepers to be an optimal trade-off of these factors, ultimately
leading to latency lower than 1 sec.

Smart Contract Cost. The transition between states happens depending on the function calls
on the smart contract. For simplicity, we describe here only the functionality of the smart contract
focusing on one customer and multiple merchants. We refer to our smart contract as AuthSC , an
entity is referred to as ex where x = c or m for customer or merchant respectively. The underlying
ledger is referred to as LSC and an entity’s account on that ledger is referred to as AccxL where x = c
or m respectively. The private ledger of the merchants is referred to as Bullm, since it behaves like
a bulletin board. AuthSC has seven states as follows:

init: AuthSC is deployed. ec can now deposit funds (colc). If so, then change state to ready. Else
do not change state.

ready: ec successfully registers by depositing colc in AuthSC . If colc is available in AuthSC , change
state to pay. Else do not change state.

pay: If ec has made payment (paymi), change state to reclaimm. Else do not change state.

reclaimm: Check Bullm for double-spends from ec. If double-spend present, use secret to reclaim
paymi and change state to withdraw. If no double-spend found until actual payment received,
change state to reclaimc.

reclaimc: If 1 day has passed since paymi , reclaim paymi and add it to colc. Then, change state
to withdraw. Else do not change state.

withdraw: If ec wants to exit the system and the state is withdraw or ready, send money from
AuthSC to AcccL and change state to exit. If ew wants to exit the system and the state is withdraw,
send money from AuthSC to AccwL and change state to exit. Else do not change state.

18

40 80 120 160 200
Number of Statekeepers

0

200

400

600

800

1000

1200

1400

La
te

nc
y

(m
illi

se
co

nd
s)

Verification time
Spending time
Transaction time

Fig. 7: Latency comparison. Total transaction time for 1000 tx per second vs the number of state-
keepers.

exit: Remove ex from AuthSC and change state to init.

Table 1 lists the gas fees of executing various functions of our system. In the first column, we
mention the amount of base gas fee, and then we express it as a proportion of minimum gas fee of
a transaction. The minimum gas fee is set to 21 000 GWei, which is also the amount of gas that
standard on-chain payments require. Note that the table reflects the fees users can expect to pay,
although the actual amount also depends on the so-called priority fee which depends on the current
traffic in the Ethereum transaction market. More information about the costs incurred due to our
SC is given in Section 6.

Table 1: Costs of transactions on our smart contract deployed on Ethereum, and the cost as a
proportion of a standard transaction ∆ = 21 000.

Function Customer registration Pay Merchant registration Reclaim Withdraw Balance

Gas 107 400 44 055 54 317 34 972 22 352

×∆ 5.1 2.09 2.59 1.65 1.06

6 Discussion

Collateral reusability. The capital demands of existing layer-2 proposals have been frequently
acknowledged [57,53,26,52,43,44,48]. Roughly speaking, the risk the system is willing to take on
behalf of a user is proportional to the amount of money the user commits as collateral. This
limitation is difficult to overcome in a trustless setting, and our work can be seen as partial progress
in this direction.

19

Payment channel networks have heavy collateral requirements in order to maintain trustlessness.
A payment of, say, 10 dollars across 3 channels requires committed 10 dollar’s worth of collateral
on each of the three channels. These funds are locked up for a fixed amount of time and cannot
be used for other payments. In early works, the funds were locked up for a time proportional to
the length of the path used, but recent advances have reduced this to an amount depending only
the security parameter and block generation time [3]. Despite this recent innovation, we find the
collateral requirements prohibitive for an efficient payment scheme.

Payment channels, if used in the same direction, also suffer from collateral depletion, rendering
further payments in that direction impossible. This problem of channel depletion has somewhat
been addressed with re-balancing techniques [5]. However, rebalancing is generally not possible for
a user that only employs their channels for payments and not for getting paid. Hence, rebalancing
is incompatible with retail payments which are generally unilateral i.e., from the set of consumers
to the set of merchants.

In our system, payment guarantees assure a payee (merchant) that they will receive a payment
once the transaction on the underlying blockchain has reached its eventual finality, even if the payer
(customer) is malicious. The collateral provided by a payer is reusable: this reusability comes from
the abstraction of payment guarantees, where the customer makes a payment on the underlying
blockchain and assures the payee about this payment by using irrefutable evidence that this payment
will be successful. Unlike existing systems like Snappy, where reusability of collaterals comes at the
cost of privacy, we utilize RRTE to guarantee privacy for all honest customers. As long as customers
don’t attempt to double spend, that is, simultaneously issue multiple payment guarantees with the
same collateral, their identities are kept secret.

Trust Assumptions. There is a general trade-off between the efficiency and privacy of a
financial system and the level of trust assumed between participants. For instance, a trusted central
entity can efficiently set up a digital currency system, as evidenced by Chaumian e-cash. Measures
of transaction latency and throughput thrive at the high cost of trust in the central authority.
On the other end, decentralized blockchains achieve functional but slow financial systems without
requiring trust in any single party.

In payment channel networks, a similar trade-off has been observed by Avarikioti et al. [4],
who suggest that PCNs are more stable and efficient when centralized structures are present. In
an empirical survey, Zabka et al. [62] observe the rising centrality in the Lightning Network as the
capacity and capabilities of Lightning grew over time.

To the best of our knowledge, we are the first ones to utilize these building blocks and design
an instant finality layer-2 scheme that utilizes reusable collaterals, while offering several privacy-
preserving properties. In order to offer these properties, we need to rely on a set of trust assumptions.
Our architecture is semi-decentralized in the sense that we rely on an honest majority of authorities
to initialize our construction. This is similar to the approach of LDSP [54]. However, unlike LDSP,
our authorities do not play any role in our payment protocol. The merchants and statekeepers
have greater power to punish dishonest customers by confiscating their collateral. Yet, we allow an
honest majority of merchants to do so only against customers who attempt to double-spend, not
honest customers. Moreover, the design is permissionless in that cryptocurrency holders can freely
participate as customers. Considering the general trade-off between centrality, trust, performance
and efficiency, we consider our setup to lie in a “sweet spot.” In our case, this balance was achieved
through advances in cryptography, namely RRTE. We call for further cryptographic innovations
and welcome research into even more trustless, robust and secure systems.

20

Privacy. The main idea underlying our private double-spending protection, goes all the way back
to the e-cash schemes introduced by Chaum [22]. “On-line” e-cash tackled the problem of double
spending by having the issuing bank verify each transaction individually before it was marked
successful. Chaum, Fiat and Naor later extended this idea to support “off-line” payments, i.e, a
customer could make untraceable payments to the merchant without involving a bank for every
transaction [23]. Due to this “off-line” nature of payments, the solution for double-spending com-
bined prevention with tamper-resistant hardware along with detection through successful tracking,
i.e., the issuing bank would check the list of all coins spent, and once double-spending was spotted
the identity of the perpetrator would be revealed. This approach of realizing offline payments while
detecting double-spending, known as the Chaum-Fiat-Naor (CFN) approach was adopted and im-
proved by several following e-cash systems [15,35,20,21,6]. The existing plethora of literature has
made several improvements to Chaum’s e-cash, however, all work with centrally issued currency
and mostly rely on a custodian bank to catch double-spending. Our work is also an application
of the CFN approach, with the major difference of building upon decentralized cryptocurrencies
for safely reducing latency, instead of building an entire e-cash scheme from the ground up. When
compared to double-spend detection techniques in e-cash (for instance the one recently used in [8]),
our novel RRTE is more efficient in terms of communication rounds, allows the deposited collaterals
to be reused and by default enables anyone to track double-spends.

However, on-chain privacy is derived from the underlying blockchain, and is the highest level
of privacy that one can hope to achieve at the protocol level. In other words, implementing our
overlay on a completely de-anonymized and public blockchain cannot make the payments private,
since the underlying blockchain will reveal private data no matter how secure the protocol. Similarly,
developing on top of private blockchains such as Monero doesn’t directly solve the privacy issues
of earlier works that allowed transactions of the same user to be linked.

In this way, the question of blockchain-level privacy is relevant yet orthogonal to our work. While
Snappy claims that future improvements such as deployment on privacy-preserving blockchains that
support privacy-preserving SC will enable their construction to provide on-chain privacy, that is
not true. As explained in Section 2.1, an inherent design flaw in their proactive double-spending
detection is overlooked.

Our construction provides this proactive double-spending detection while guaranteeing protocol-
level privacy. Hence, deployment on a privacy-preserving blockchain makes our construction fully
private, even on-chain. There are possible workarounds such as change addresses and mixing services
to provide increased on-chain pseudonymity in case of public blockchains. Achieving a greater
synergy between these two levels of a privacy seems to be a promising avenue for future work.

On-chain Transaction Fees. The transaction fees in our system differ from conventional fees
since the customer pays the merchant indirectly through a smart contract (SC). This is neces-
sary to prevent an on-chain double-spend by a malicious customer. By on-chain double-spend, we
mean to distinguish between a double-spend attempt of customer collateral, and a double-spend
on the underlying blockchain itself. Even if a malicious customer can influence miners and induce
a blockchain double-spend, the SC-based transaction is able to remunerate the affected merchant.
Simply put, the SC can escrow the funds until sufficient confirmations of on-chain payment have
been found. We stick to the convention of 6 succeeding blocks after said transaction.

As discussed in Section 5, executing payment through our SC incurs twice the on-chain trans-
action fees of a standard on-chain Ethereum payment. There is an additional fee incurred by the
merchant during withdrawal of payments, but this is far less frequent than the former. Nevertheless,

21

it is desirable to construct a more cost efficient yet secure system for direct customer to merchant
payments.

A potential fix could be to encode specific spend conditions for user collaterals. To be precise,
any merchant can move the collateral by providing evidence of a conflicting transaction on the
blockchain. This could be implemented via a payment guarantee to said merchant, along with on-
chain evidence of a conflicting payment. We leave this implementation, along with other possible
optimizations of fees, for future work.

Incentives of Involved Parties. This work deals with the cryptographic challenges of achieving
privacy while reducing latency of cryptocurrency payments. Our focus is admittedly myopic, as we
overlook practical aspects of incentives. For instance, we refer to authorities that register merchants
and customers, but these authorities lack a concrete incentive to fulfil this role honestly. As an initial
and arbitrary choice, we selected a subset of involved merchants to play this role of authorities,
while requiring an honest majority of authorities.

It is unclear who should be playing this role, and what their incentives should be. Could we
perhaps allocate a small fee per merchant to authority? Or automatically grant a fraction of col-
laterals confiscated from dishonest users? Or even eliminate this issue entirely by building more
advanced cryptography so that our overlay can be set up even without their existence?

Similarly, we lack a clear explanation of incentives for statekeepers. A basic solution would be
to allocate a certain fraction of each transaction value to the statekeepers; however, this still needs
to be properly analyzed in order to confirm if such an incentive is sufficient.

7 Conclusion

In this paper, we present a new overlay network for instant confirmation of cryptocurrency trans-
actions, that also maintains anonymity of users and unlinkability of their transactions. On the one
hand, it allows merchants in a retail system to safely accept fast payments without risk of double-
spending. On the other, dishonest customers who attempt to double-spend get their identities
exposed and their collateral confiscated to reimburse the merchants. Honest customers, however,
are able to reuse their collaterals.

To this end, we designed a novel randomness-reusable threshold scheme, that enables partic-
ipants to audit the payments in the network and reveal the identity of malicious customer who
perform double-spending. This threshold encryption scheme maintains the privacy of honest cus-
tomers who do not attempt to double-spend. We provide a formal proof of security with respect to
three main features namely customers’ anonymity, unlinkability of transactions and payment cer-
tainty for merchants. We motivate our choice of cryptographic primitives and efficiently implement
them. Our evaluation shows that our construction allows for fast global payments with a delay of
less than 1 seconds.

Acknowledgment. We would like to thank Svetla Nikova, Philipp Jovanovic, Christian
Badertscher and Daniel Slamanig for the helpful discussions and the anonymous reviewers for
their valuable comments. This work was supported by CyberSecurity Research Flanders with ref-
erence number VR20192203. Akash Madhusudan, Mahdi Sedaghat and Bart Preneel were sup-
ported in part by the Flemish Government through the FWO SBO project SNIPPET S007619
and the Research Council KU Leuven C1 on Security and Privacy for Cyber-Physical Systems
and the Internet of Things with contract number C16/15/058. Samarth Tiwari was supported by

22

ERC Starting Grant QIP–805241. Kelong Cong was supported by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific)
under contract No. FA8750-19-C-0502. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
DARPA, the US Government, Cyber Security Research Flanders or the FWO. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright annotation therein.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commit-
ments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg
(Aug 2010). https://doi.org/10.1007/978-3-642-14623-7_12

2. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M., Rubin, A.D.: Charm: a framework
for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3(2), 111–128 (Jun 2013). https:
//doi.org/10.1007/s13389-013-0057-3

3. Aumayr, L., Abbaszadeh, K., Maffei, M.: Thora: Atomic and privacy-preserving multi-channel updates. IACR
Cryptol. ePrint Arch. p. 317 (2022), https://eprint.iacr.org/2022/317

4. Avarikioti, Z., Heimbach, L., Wang, Y., Wattenhofer, R.: Ride the lightning: The game theory of pay-
ment channels. In: FC 2020. pp. 264–283. LNCS, Springer, Heidelberg (2020). https://doi.org/10.1007/

978-3-030-51280-4_15

5. Avarikioti, Z., Pietrzak, K., Salem, I., Schmid, S., Tiwari, S., Yeo, M.: HIDE & SEEK: Privacy-preserving rebal-
ancing on payment channel networks. Cryptology ePrint Archive, Report 2021/1401 (2021), https://eprint.
iacr.org/2021/1401

6. Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transferable E-cash. In: Katz, J. (ed.)
PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer, Heidelberg (Mar / Apr 2015). https://doi.org/10.1007/
978-3-662-46447-2_5

7. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S.
(eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (Aug 2006). https://doi.org/10.1007/
11693383_22

8. Bauer, B., Fuchsbauer, G., Qian, C.: Transferable E-cash: A cleaner model and the first practical instantiation.
pp. 559–590. LNCS, Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75248-4_20

9. Benmeleh, Y.: Blockchain firm starkware valued at $2 billion in funding round. https://www.bloomberg.com
(2021)

10. Blazy, O., Canard, S., Fuchsbauer, G., Gouget, A., Sibert, H., Traoré, J.: Achieving optimal anonymity in
transferable e-cash with a judge. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 11. LNCS, vol. 6737, pp.
206–223. Springer, Heidelberg (Jul 2011)

11. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Proceedings of the
twentieth annual ACM symposium on Theory of computing. pp. 103–112. ACM (1988)

12. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 435–464. Springer, Heidelberg (Dec 2018). https:
//doi.org/10.1007/978-3-030-03329-3_15

13. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (Aug 2001). https://doi.org/10.1007/3-540-44647-8_13

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17(4), 297–319
(Sep 2004). https://doi.org/10.1007/s00145-004-0314-9

15. Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stinson, D.R. (ed.)
CRYPTO’93. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (Aug 1994). https://doi.org/10.1007/

3-540-48329-2_26

16. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst.
Sci. 37(2), 156–189 (1988). https://doi.org/10.1016/0022-0000(88)90005-0, https://doi.org/10.1016/

0022-0000(88)90005-0

17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential
transactions and more. In: 2018 IEEE Symposium on Security and Privacy. pp. 315–334. IEEE Computer Society
Press (May 2018). https://doi.org/10.1109/SP.2018.00020

23

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
https://eprint.iacr.org/2022/317
https://doi.org/10.1007/978-3-030-51280-4_15
https://doi.org/10.1007/978-3-030-51280-4_15
https://doi.org/10.1007/978-3-030-51280-4_15
https://doi.org/10.1007/978-3-030-51280-4_15
https://eprint.iacr.org/2021/1401
https://eprint.iacr.org/2021/1401
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-030-75248-4_20
https://doi.org/10.1007/978-3-030-75248-4_20
https://www.bloomberg.com
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020

18. Buterin, V.: An incomplete guide to rollups. https://vitalik.ca/general/2021/01/05/rollup.html (2021)
19. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous creden-

tials: Definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS,
vol. 9453, pp. 262–288. Springer, Heidelberg (Nov / Dec 2015). https://doi.org/10.1007/978-3-662-48800-3_
11

20. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (May 2005). https://doi.org/10.1007/11426639_18

21. Canard, S., Gouget, A.: Multiple denominations in e-cash with compact transaction data. In: Sion, R. (ed.) FC
2010. LNCS, vol. 6052, pp. 82–97. Springer, Heidelberg (Jan 2010)

22. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.)
CRYPTO’82. pp. 199–203. Plenum Press, New York, USA (1982)

23. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403,
pp. 319–327. Springer, Heidelberg (Aug 1990). https://doi.org/10.1007/0-387-34799-2_25

24. Crites, E., Kohlweiss, M., Preneel, B., Sedaghat, M., Slamanig, D.: Threshold structure-preserving signatures.
Cryptology ePrint Archive, Paper 2022/839 (2022), https://eprint.iacr.org/2022/839

25. Damg̊ard, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balancing privacy and accountability in
blockchain identity management. pp. 552–576. LNCS, Springer, Heidelberg (2021). https://doi.org/10.1007/
978-3-030-75539-3_23

26. Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin duplex micropayment channels.
In: Symposium on Self-Stabilizing Systems. pp. 3–18. Springer (2015)

27. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S.
(ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (Jan 2005). https://doi.org/10.1007/
978-3-540-30580-4_28

28. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment hubs over cryptocurrencies.
In: 2019 IEEE Symposium on Security and Privacy. pp. 106–123. IEEE Computer Society Press (May 2019).
https://doi.org/10.1109/SP.2019.00020

29. Electric Coin Company: Explaining viewing keys. https://electriccoin.co/blog/explaining-viewing-keys/,
accessed: 2023-02-13

30. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (Aug 1984)

31. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
630–649. Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-54631-0_36

32. Ethereum.org: Layer 2 rollups. Available in this Link (2021)
33. ethos.dev: The beacon chain ethereum 2.0 explainer you need to read first. https://ethos.dev/beacon-chain,

accessed: 2023-02-13
34. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In:

Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (Aug 1987). https://doi.
org/10.1007/3-540-47721-7_12

35. Frankel, Y., Tsiounis, Y., Yung, M.: “indirect discourse proof”: Achieving efficient fair off-line E-cash. In: Kim,
K., Matsumoto, T. (eds.) ASIACRYPT’96. LNCS, vol. 1163, pp. 286–300. Springer, Heidelberg (Nov 1996).
https://doi.org/10.1007/BFb0034855

36. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics
156(16), 3113–3121 (2008). https://doi.org/https://doi.org/10.1016/j.dam.2007.12.010, applications of
Algebra to Cryptography

37. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th FOCS.
pp. 464–479. IEEE Computer Society Press (Oct 1984). https://doi.org/10.1109/SFCS.1984.715949

38. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on
computing 18(1), 186–208 (1989)

39. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 415–432. Springer (2008)

40. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (Apr 2008). https://doi.org/10.1007/

978-3-540-78967-3_24

41. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Layer-two blockchain protocols. In:
FC 2020. pp. 201–226. LNCS, Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-51280-4_12

42. Hanzlik, L., Slamanig, D.: With a little help from my friends: Constructing practical anonymous credentials. pp.
2004–2023. ACM Press (2021). https://doi.org/10.1145/3460120.3484582

24

https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2_25
https://eprint.iacr.org/2022/839
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP.2019.00020
https://electriccoin.co/blog/explaining-viewing-keys/
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
https://ethos.dev/beacon-chain
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BFb0034855
https://doi.org/10.1007/BFb0034855
https://doi.org/https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1145/3460120.3484582

43. Hearn, M.: Micro-payment channels implementation now in bitcoinj. Bitcointalk.org (2013)
44. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit: An untrusted bitcoin-compatible

anonymous payment hub. In: NDSS 2017. The Internet Society (Feb / Mar 2017)
45. Herold, G., Hoffmann, M., Klooß, M., Ràfols, C., Rupp, A.: New techniques for structural batch verification in

bilinear groups with applications to groth-sahai proofs. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017. pp. 1547–1564. ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.
3134068

46. Hill, K.: How target figured out a teen girl was pregnant before her father did. https://www.forbes.com/sites/
kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/

?sh=53d927356668, accessed: 2022-08-30
47. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ecdsa). Int. J. Inf. Secur.

1(1), 36–63 (aug 2001). https://doi.org/10.1007/s102070100002, https://doi.org/10.1007/s102070100002
48. Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., Gervais, A.: Commit-chains: Secure, scalable off-chain

payments. Tech. rep., Cryptology ePrint Archive, Report 2018/642 (2018)
49. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKs from linear-size universal

and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019. pp. 2111–2128. ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3339817

50. Maurer, U.M.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.) AFRICACRYPT 09. LNCS,
vol. 5580, pp. 272–286. Springer, Heidelberg (Jun 2009)

51. Mavroudis, V., Wüst, K., Dhar, A., Kostiainen, K., Capkun, S.: Snappy: Fast on-chain payments with practical
collaterals. In: NDSS 2020. The Internet Society (2020)

52. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state channels: Payment networks that
go faster than lightning. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer,
Heidelberg (Feb 2019). https://doi.org/10.1007/978-3-030-32101-7_30

53. Network, Raiden: What is the raiden network. https://raiden.network/101.html (2019)
54. Ng, L.K.L., Chow, S.S.M., Wong, D.P.H., Woo, A.P.Y.: Ldsp: Shopping with cryptocurrency privately and quickly

under leadership. In: 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS). pp.
261–271 (2021). https://doi.org/10.1109/ICDCS51616.2021.00033

55. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended abstract) (rump session). In: Davies,
D.W. (ed.) EUROCRYPT’91. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (Apr 1991). https://doi.org/
10.1007/3-540-46416-6_47

56. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J.
(ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (Aug 1992). https://doi.org/10.1007/
3-540-46766-1_9

57. Poon, J., Dryja, T.: The Bitcoin lightning network: Scalable off-chain instant payments. https://lightning.
network/lightning-network-paper.pdf (2016)

58. Reyzin, L., Smith, A., Yakoubov, S.: Turning HATE into LOVE: Homomorphic ad hoc threshold encryption for
scalable MPC. Cryptology ePrint Archive, Report 2018/997 (2018), https://eprint.iacr.org/2018/997

59. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO’89. LNCS,
vol. 435, pp. 239–252. Springer, Heidelberg (Aug 1990). https://doi.org/10.1007/0-387-34805-0_22

60. Sedaghat, M., Preneel, B.: Cross-domain attribute-based access control encryption. pp. 3–23. LNCS, Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-030-92548-2_1

61. Shamir, A.: How to share a secret. Communications of the Association for Computing Machinery 22(11), 612–613
(Nov 1979)

62. Zabka, P., Foerster, K.T., Schmid, S., Decker, C.: A centrality analysis of the lightning network (2022). https:
//doi.org/10.48550/ARXIV.2201.07746, https://arxiv.org/abs/2201.07746

A Omitted Definitions and Preliminaries

In this section, we recall the needed preliminaries and definitions and then review the required
building blocks, which include pseudo-random functions, Shamir secret sharing, aggregatable dig-
ital signature, Threshold Structure-Preserving Signatures, commitments and non-interactive zero-
knowledge proofs. Finally, we also recall the definition of threshold encryptions as a starting point
for the defined RRTE in Section 4.

25

Bitcointalk.org
https://doi.org/10.1145/3133956.3134068
https://doi.org/10.1145/3133956.3134068
https://doi.org/10.1145/3133956.3134068
https://doi.org/10.1145/3133956.3134068
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/?sh=53d927356668
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/?sh=53d927356668
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/?sh=53d927356668
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://raiden.network/101.html
https://doi.org/10.1109/ICDCS51616.2021.00033
https://doi.org/10.1109/ICDCS51616.2021.00033
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2018/997
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-92548-2_1
https://doi.org/10.1007/978-3-030-92548-2_1
https://doi.org/10.48550/ARXIV.2201.07746
https://doi.org/10.48550/ARXIV.2201.07746
https://doi.org/10.48550/ARXIV.2201.07746
https://doi.org/10.48550/ARXIV.2201.07746
https://arxiv.org/abs/2201.07746

Definition 4 (Bilinear Groups [13]). A Type-III bilinear group generator5 BG(1λ) returns a
tuple (G1,G2,GT , p, e, g, h), consisting of cyclic Abelian groups G1, G2, and GT with the same prime
order p. For given generators of groups G1 and G2 namely g and h, an efficient non-degenerate
Type-III bilinear pairing is denoted by e : G1 × G2 → GT , such that, ∀ a, b ∈ Zp : e(ga, hb) =
e(gb, ha) = e(g, h)ab and e(g, h) ̸= 1GT

.

Definition 5 (Indexed Diffie-Hellman Message Space [24]). For a given bilinear group,
(G1,G2,GT , p, e, g, h)← BG(1λ), and hash function H that is modeled in the random oracle,MH

iDH

is called the indexed DH message space, if we have:

1. ∀ (id,M1,M2) ∈MH
iDH ∃ m ∈ Zp : ggg = H(id),M1 = gggm,M2 = hm.

2. No two messages use the same index, i.e., ∀ (id,M1,M2) ∈ MH
iDH, (id

′,M ′1,M
′
2) ∈ MH

iDH,
if id = id′ ⇒ (M1,M2) = (M ′1,M

′
2) ∈MiDH.

iDHH(id,m)

1 : ggg ← H(id)

2 : M1 = gggm

3 : M2 = hm

4 : return (id,M1,M2) ∈MH
iDH

H(id)

1 : If QH[id] =⊥:
2 : r←$Zp

3 : QH[id]← gr := ggg

4 : return QH[id]

Fig. 8: Indexed Diffie-Hellman Message Space in the ROM.

More formally, we recall the indexed DH message space generator in Figure 8, such that iDHH :
I× Zp → I×G1 ×G2, where I is the index space.

A.1 Pseudo-Random Function (PRF)

Definition 6 (Pseudo-Random Functions [37]). Let K and I be the key and input spaces,
respectively. We say a family of functions like f : K × I → F is a pseudo-random function (PRF)
family if it is efficiently computable and for all PPT distinguishers D we have,∣∣∣∣ Pr

k←$K
[DPRFk accepts]− Pr

g ←$G
[Dg accepts]

∣∣∣∣ ≤ negl(λ) ,

where DO denotes the output of distinguisher D when given access to oracle O. It is assumed that
the distinguisher can adaptively choose the inputs and G : I → F is a set of uniformly random
functions.

We recall the weak notion of robustness for a PRF function, defined by Damg̊ard et al. [25],
such that no PPT adversary can find a key that produces collisions with a PRF generated by an
honest key.

5 No nontrivial homomorphism between G1 and G2 exists [36].

26

Definition 7 (Weakly-Robust PRF [25]). A PRF scheme, ΨPRF , under query set Q = (x, y) ∈
I × F is weakly-robust if for all PPT adversaries A we have:

Pr

[
k←$KGen(λ), (x∗, k∗)←$APRFk(.)(1λ) : ∃ (x, y) ∈ Q,
PRFk∗(x

∗) = y = PRFk(x)

]
≤ negl(λ) .

In order to make customers’ collaterals reusable, we utilise a weakly-robust PRF proposed by
Dodis and Yampolskiy [27]. Let a cyclic group G of prime order p with a generator g. The PRF on
input x ∈ Zp under key space Zp is defined by PRFk(x) = g1/(k+x), where k←$Zp is a secret key.

A.2 Shamir Secret Sharing

A (n, t)-Shamir Secret Sharing (SSS) [61] divides a secret s among n shareholders such that each
subset of t shareholders can reconstruct secret s and any smaller subset of them learn nothing about
the secret. For this purpose, the dealer who knows the secret s forms a polynomial f(x) of degree
t + 1 with a randomly chosen coefficients such that f(0) = s. Then the dealer securely provides
each shareholder with si = f(i), i ∈ {1, , n}. Particularly, each subset of T ⊂ {1, . . . , n} with
size at least t by pooling their shares can reconstruct the secret s using the Lagrange polynomial
interpolation as s = f(0) =

∑
i∈T siL

T
i (0), where LTi (x) =

∏
j∈T ,j ̸=i

x−j
i−j .

A.3 Digital Signatures and TSPS

Digital signatures are an electronic analogue of written signatures that ensure data authentication,
and the non-repudiation of the sender. Informally, an aggregatable signature over message space
M consists of four main PPT algorithms: setup, key generation, signing and verification. On input
of the security parameter, the setup algorithm generates the public parameters pp, the randomized
key generation algorithm generates a pair of secret signing/verification key (ŝk, vk). The signing
algorithm generates a signature σ by taking a message m ∈M along with pp and the secret signing
key ŝk. The deterministic verification algorithm takes the verification key vk, a message m, and a
signature σ as inputs and outputs 1 (accept) if the signature is valid and 0 (reject), otherwise.

Definition 8 (Digital Signature). For a given security parameter λ, a digital signature consists
of the following PPT algorithms defined as follows:

- pp← DS.Setup(1λ): It takes the security parameter λ in its unary representation as input and
outputs the set of public parameters pp.

– (ˆsgki, vki)← DS.KGen(pp, i): This algorithm takes the global public parameters pp and an iden-
tification value i as inputs. It then returns the pair of signing/verification keys (ˆsgki, vki) asso-
ciated with a message spaceM and party i.

– σi ← DS.Sign(pp, ˆsgki,m): On input of the signing key ˆsgki and a message m ∈ M, this
probabilistic algorithm outputs a signature σi.

– 0/1 ← DS.Vf(pp, vk, σ,m): This deterministic algorithm takes as inputs a set of verification
keys vk := {vki} for any i ∈ [w], a signature σ and m and outputs either 1 (accept) or 0
(reject).

Next we recall the primary security requirements for a digital signature: including correctness
and unforgeability against chosen message attack and extendable to an aggregatable signature.

27

Definition 9 (Correctness). A digital signature scheme, ΨDS , is called correct, if we have,

Pr
[
∀ (ˆsgk, vk)← KGen(pp),m ∈M : Vf

(
pp, vk,m,Sign(pp, ˆsgk,m)

)
= 1

]
≥ 1− negl(λ) .

Definition 10 (EUF-CMA). A digital signature, ΨDS , is called EUF-CMA-secure if for all PPT
adversaries A with an access to the signing oracle OSign() and the following winning advantage,
AdvEUF-CMA

DS,A (λ):

Pr

[
∀ (pp)← Setup(1λ), (ˆsgk, vk)← KGen(pp),

(σ∗,m∗) ←$AOSign(pp, vk) : m∗ ̸∈ Qmsg ∧ Vf(vk, σ∗,m∗) = 1

]
,

where the signing oracle OSign takes a message m ∈M, runs Sign(pp, ˆsgk,m) and adds the message
to a query set Qmsg. A digital signature is called EUF-CMA-secure if AdvEUF-CMA

DS,A (λ) ≤ negl(λ).

The term aggregatable signature refers to those that enable the aggregation of several distinct
signatures into a single one. If all the aggregated signatures are valid then the verification algo-
rithm fulfils on the aggregated signature. Next we formally define the aggregation algorithm as a
supplementary algorithm.

– σ ← DS.Agg(pp, {σi}i∈[w]): To aggregate w different signatures σi for i ∈ [w], it takes the public
parameters pp as input and then returns as aggregated signature σ as output.

BLS Signatures: Based on the formal definition of a digital signature in Appendix A.3, we recall
BLS signatures [14] as an efficient and aggregatable signature6 For a given security parameter λ in
its unary representation and cyclic group (G, p), the BLS signature consists of the following PPT
algorithms:

– pp ← Setup(1λ): Given security parameter λ, it samples h←$G and a hash-to-curve function
H : {0, 1}∗ → G. It returns pp = (H, h) as output.

– (vk, ˆsgk) ← DS.KGen(pp): This algorithm takes public parameters pp and samples a random
integer si←$Z∗p and returns the pair of signing/verification keys (ˆsgki, vki) = (si, h

si) for all
i ∈ [1, w].

– σi ← DS.Sign(pp, ˆsgki,m): This probabilistic algorithm takes the pp, signing key ˆsgki and
message m ∈ M as inputs and then computes σi = H(m)si and returns the signature σi as
output.

– σ ← DS.Agg(pp, {σi}i∈[1,w]): The aggregation algorithm takes pp, a set of distinct signatures
{σi}i∈[1,w] and computes σ =

∏w
i=1 σi and returns the aggregated signature σ as output.

– 0/1 ← DS.Vf(vk, σ,m): The verification algorithm takes vk = {vki}wi=1, aggregated signa-
ture σ and message m as inputs. It return 1 (accept), if σ ∈ G1 and the equation e(σ, h) =
e (H(m),

∏w
i=1 vki) holds, otherwise it returns 0 (reject).

A digital signature is called structure-preserving [1], when it preserves the group structure over
bilinear group setting, if it satisfies the following criteria:

– The verification key consists of G1 and G2 group elements.

6 A rogue-key attack makes aggregatable BLS signatures insecure, but the technique described in [12] addresses this
problem.

28

– The signature consists of group elements in G1 and G2.
– The messages are composed of G1 and G2 elements.
– Only G1 and G2 membership and pairing product equations of the form of

∏
i

∏
j ê(Gi, Hj)

ci,j =
1T need to be considered in the verification algorithm, whereGi ∈ G1 andHj ∈ G2 and ci,j ∈ Zp.

By avoiding structure-destroying operations such as hash functions, SPS are able to construct
efficient schemes when combined with other primitives such as Zero-Knowledge proof systems. In
a SPS, both signed messages and signatures are group elements that can be used to verify the
validity of a signature by performing pairing-product equations. These unique properties make
the SPS schemes attractive for a variety of privacy-preserving applications, like anonymous cre-
dentials [42,19], anonymous e-cash [10] and access control encryptions [60]. Moreover, these sig-
natures are efficiently re-randomizable under the knowledge of a secret randomness such that the
re-randomized and original signatures are computationally indistinguishable. We utilise this prop-
erty of re-randomization to ensure unlinkability of transactions in our construction.

Given the fact that the SPS relies on a single issuer then it does not meet our constructions
desirable properties. In this aim, we recall the definition of Threshold Structure-Preserving Signa-
tures from a recent work of Crites et al. [24]: it preserves the SPS’s properties while mitigating the
needed trust to a single entity.

Definition 11 (Threshold Structure-Preserving Signatures [24]). For a given security pa-
rameter λ and an asymmetric bilinear group (given in Definition 4), a (n, t)-TSPS over message
spaceM, consists of the following PPT algorithms:

– pp← T SPS.Setup(1λ): Given the security parameter λ in its unary representation as input, it
returns the set of global public parameters pp as the output.

– (
ˆ⃗
sgk, v⃗k, vk) ← T SPS.KGen(pp, t, n): Given the global public parameters pp, and integers
t, n ∈ poly(1λ) s.t. 1 ≤ t ≤ n, as inputs it returns the vectors of secret signing keys
ˆ⃗
sgk = (ˆsgk1, . . . , ˆsgkn) and verification keys v⃗k = (vk1, . . . , vkn) along with a common verifi-
cation key vk as output.

– σi ← T SPS.ParSign(pp, ˆsgki,m): Given the public parameter pp, the ith signing key ˆsgki and a
message m ∈M as inputs, it returns the partial signature σi as output.

– 0/1 ← T SPS.Par-Vf(pp, vki,m, σi): Given the ith verification key vki, message m ∈ M and
partial signature σi as inputs, it returns either 1 (accept) or 0 (reject).

– (σ,⊥) ← T SPS.Reconst(pp, {i, σi}i∈T): Given pp and successfully verified partial signatures
{i, σi} over subset T ∈ {1, . . . , n} as inputs, it returns a reconstructed signature σ if |T | ≥ t,
otherwise it responds with ⊥.

– 0/1 ← T SPS.Vf(pp, vk,m, σ): Given pp, verification key vk, a message m ∈ M and a recon-
structed signature σ as inputs, it outputs either 1 (accept) or 0 (reject).

As discussed in [24], two main security requirements for a TSPS scheme over the indexed
Diffie-Hellman message spaces (as defined in Definition 5) are correctness and threshold existential
unforgeability under chosen indexed message attacks. We refer the readers to [24] for more details.

We recall the proposed non-interactive TSPS in [24] based on the Pedersens’s Distributed Key
Generation [55] as follows.

– (pp) ← T SPS.Setup(1λ): It executes the bilinear pairing group generator BG(1λ) and returns
pp = (G1,G2,GT , e, g, h, p) as output.

29

– (
ˆ⃗
sk, v⃗k, vk)← T SPS.KGen(pp, t, n): For a given group of authorities {Au1, . . . , Aun}, it acts as
follows:
1. Each authority Aui, for 1 ≤ i ≤ n, samples two initial random integers (αi0, βi0)←$Z∗p and

does the following:
a) It samples t random pairs {αij , βij}tj=1 and calculates two polynomials Ai[X] = αi0 +
αi1X + . . . + αitX

t ∈ Zp[X] and Bi[X] = βi0 + βi1X + . . . + βitX
t ∈ Zp[X] of degree t

and then commits the randomly sampled coefficients by computing, Tij = (T1ij , T2ij) =
(hαij , hβij) ∀j ∈ {0, . . . , t}.
b) Aui transfers the pair of (Ai(ℓ), Bi(ℓ)) to Auℓ s.t. ℓ ∈ {1, . . . , n} \ {i} and keeps
(Ai(i), Bi(i)) secret.

2. Authority Aui to checks the validity of the received shares from authority Auℓ, (Fℓ(i), Gℓ(i)),
computes hAℓ(i) =

∏t
j=0 T

ij

1ℓj and hBℓ(i) =
∏t

j=0 T
ij

2ℓj . It accepts the shares if these equations
hold, else it rejects the shares and report the faulty authority Auℓ.

3. An authority is called disqualified if it receives at least t complaints.Lastly t qualified au-
thorities, Q ⊂ AU , continue the next steps.

4. The qualified authorities compute the global verification key as vk := (vk1, vk2) :=
(
∏

i∈Q T1i0,
∏

i∈Q T2i0) = (h
∑

i∈Q αi0 , h
∑

i∈Q βi0).

5. Any Aui ∈ Q sets its private key share ŝki as a pair of ŝki = (ski,1, ski,2) =(∑
ℓ∈QAℓ(i),

∑
ℓ∈QBℓ(i)

)
.

6. Respectively the verification key vki can be generated by computing, vki =
(
hA(i), hB(i)

)
=(∏

ℓ∈Q
∏t

j=0 (T1ℓj)
ij ,

∏
ℓ∈Q

∏t
j=0 (T2ℓj)

ij
)
, where A[X] =

∑
ℓ∈QAℓ[X] and B[X] =∑

ℓ∈QBℓ[X].

7. For any Auj ̸∈ Q, we have ŝkj = (0, 0) and corresponding verification key vkj = (1G2 , 1G2).

It then returns the vectors
ˆ⃗
sk = (ŝk1, . . . , ŝkn) and v⃗k = (vk1, . . . , vkn) for each party Aui for

i ∈ [n] along with a common verification key vk.
– (σi) ← T SPS.ParSign(pp, ŝki,M): An authority Aui ∈ Q possesses ŝki given an indexed DH

message M := (id,M1,M2) ∈MH
iDH as input, it runs the hash function H(id) to get the random

basis ggg. If e(ggg,M2) = e(M1, h), it computes the partial signature σi = (ggg, si) = (ggg,gggski1M
ski2
1)

and returns σi as output, else it responds by ⊥.
– 0/1← T SPS.Par-Vf(pp, vki, M̃ , σi): The partial verification algorithm takes the ith verification

key, vki, a partial signature σi and message M̃ := (M1,M2) ∈MiDH as inputs. If all conditions:
M1, si ∈ G1, ggg ̸= 1G1 and M2 ̸= 1G2 , e(ggg,M2) = e(M1, h) and e(ggg, vki1)e(M1, vki2) = e(si, h)
hold, then it returns 1 and accepts the partial signature; otherwise it returns 0 and rejects it.

– (σ,⊥) ← T SPS.Reconst(pp, {i, σi}i∈T): Given a set of well-formed partial signatures {σi}i∈T ,
it returns a reconstructed signature by computing σ := (ggg, s) :=

(
ggg,

∏
i∈T s

LT
i (0)

i

)
, where LTi (0)

is the Lagrange coefficient for the ith index corresponding to set T (see Appendix A.2) and
returns the aggregated signature σ as output iff |T | ≥ t, otherwise it returns ⊥.

– 0/1← T SPS.Vf(pp, vk, M̃ , σ): If all conditions including: ggg,M1, s ∈ G1, ggg ̸= 1G1 and M2 ̸= 1G2 ,
e(ggg,M2) = e(M1, h) and e(ggg, vk1)e(M1, vk2) = e(s, h) hold, then the verification algorithm
responds by 1 (accept), else it returns 0 (reject).

The correctness and Threshold EUF-CiMA-security with adaptive adversary is formally proved
in [24]. Note that in Algorithm 1 no T SPS.Reconst(.) algorithm is operated upon, and a user may
execute this algorithm if it receives at least t partial signatures from the authorities.

30

A.4 Commitment schemes

A commitment scheme [16] is a strong cryptographic primitive, which allows a committer to commit
to a secret value with two main security properties, i.e., Perfect Hiding and Computational Bind-
ing. Informally, perfect hiding guarantees that the commitment does not reveal any information
about the hidden committed value. Computational hiding ensures that a committer cannot open a
commitment under two distinct messages.

Definition 12 (Commitment schemes [16]). A commitment scheme, ΨCO, over the message
space ofM and opening space of T consists of the following PPT algorithms:

– (pp) ← CO.Setup(1λ): The setup algorithm takes the security parameter λ in its unary repre-
sentation as input and returns the public parameters pp as output.

– (com) ← CO.Com(pp,m): The commitment algorithm takes the public parameters pp and a
message m ∈ M as inputs, and outputs a commitment com ∈ C computed under the random
opening value τ ∈ T .

– 0/1← CO.Vf(pp, com,m′, τ ′): The verification algorithm is a deterministic algorithm that given
commitment com ∈ C, public parameters pp, a message m′ ∈ M and an opening value τ ′ ∈ T
as inputs, returns a bit that indicates either accept (1) or reject (0).

The primary security requirements for a commitment can be defined as follows:

Definition 13 (Correctness). A commitment scheme, ΨCO, satisfies correctness, if we have:

Pr
[
∀ m ∈M ∧ (pp)← Setup(1λ) : Vf (pp,m,Com(pp,m; τ), τ) = 1

]
≥ 1− negl(λ) .

Definition 14 (Computationally Hiding). A commitment, ΨCO, satisfies Computationally
Hiding, if for all PPT adversaries A we have:∣∣∣∣∣2Pr

[
(pp)← Setup(1λ), (m0,m1)←$ACom(.)(pp), b←$ {0, 1},
(comb)← Com(pp,mb), b

′ ← A(pp, comb) : b == b′

]
− 1

∣∣∣∣∣ .

The commitment scheme is called computationally and perfectly hiding if the above probability is
≤ negl(λ) and equal to 0, respectively.

Definition 15 (Computationally Binding). A cryptographic commitment scheme, Ψcom, meets
computationally binding security, if for all PPT adversaries A we have,

Pr

[
(pp)← Setup(1λ), ((com,m0, τ0), (com,m1, τ1)) ←$ACom(.)(pp) :

Vf(pp, com,m0, τ0) = Vf(pp, com,m1, τ1) = 1 ∧ m0 ̸= m1

]
≤ negl(λ) .

The commitment scheme is called perfectly binding if the above probability is 0.

Our efficient instantiation utilizes Pedersen commitment [56] that is defined as follows:

– pp ← CO.Setup(1λ): It takes the security parameter, λ, as input, picks two generators g←$G
and g1←$G uniformly at random and returns the public parameters pp = (G, p, g, g1) as output.

– com ← CO.Com(pp,m): It takes the public parameters pp and a message m ∈ Zp as inputs,
picks random opening τ ←$Z∗p and computes and outputs com = gτgm1 .

– 0/1← CO.Vf(pp, com,m′, τ ′): It computes com′ = gτ
′
gm

′
1 , if com = com′ it accepts and returns

1: else it responds with 0 and rejects the commitment.

31

A.5 Threshold Encryption

Next, recall the definition of threshold encryption schemes and then slightly modify it and define
the notion of randomness reusable threshold encryption schemes.

Definition 16 (Threshold Encryption). Given a set of public parameters pp along with security
parameter λ, a (n, t)-threshold encryption, ΨTE, over the message space M and ciphertext space C
consists of four main PPT algorithms defined as follows:

– (
ˆ⃗
sk, pk) ← T E .KGen(pp, n, t): Key generation is a probabilistic algorithm that takes the set of
public parameter pp along with two integers t, n ∈ poly(λ) as inputs. It then returns a vector of

secret key
ˆ⃗
sk of size n and a general public key pk as outputs.

– Ct← T E .Enc(pp, pk,m): The encryption algorithm as a probabilistic algorithm takes the public
parameters pp, global public key pk and a message m ∈ M as inputs. It returns ciphertext
Ct ∈ C as output. When we want to assign a specific value to the random integer r, we write
Enc(pp, pk,m; r).

– pdj ← T E .PDec(pp, skj , Ct): The partial decryption algorithm is run by receiver j ∈ R and takes

the public parameters pp, the secret key ŝkj of the receiver j and a ciphertext Ct as inputs. It
returns a partially decrypted ciphertext pdj as output.

– (⊥,m) ← T E .Dec(pp, Ct, {pdj}j∈K): The decryption algorithm takes the public parameters pp,
a ciphertext Ct and the partially decrypted ciphertexts {pdj}j∈K as inputs. If |K| ≥ t, it returns
m ∈M, else it responds by ⊥.

The primary security requirements for a (n, t)-threshold encryption are correctness and static
semantic security and partial decryption simulatability based on the static security definitions of
Reyzen et al. [58].

Definition 17 (Correctness). A (n, t)-threshold encryption, ΨTE, for all security parameters λ
and messages m ∈M and set of receivers R is called correct if for any |K| ≥ t we have:

Pr

∀pp, λ, n, t, (ˆ⃗sk, pk)← KGen(pp, n, t) :

Dec
(
pp,Enc(pp, pk,m), {PDec(pp, ŝkj , Ct)}j∈K

)
= m

 ≥ 1− negl(λ) .

Definition 18 (Static Semantic Security [58]). A (n, t)-threshold encryption, ΨTE, is said
to be (n, t)-statically semantic secure (SSS) if for all PPT adversaries A in winning the following
experiment we have Pr[ExpSSSA (1λ,R, t) = 1] ≤ 1/2− negl(λ). Where adversary A has access to a
partial decryption oracle, OPDec, and can obtain up to t− 1 partially decrypted values of the given
ciphertext.

32

ExpSSS
A (1λ,R, t)

1 : C ← A(1λ,R, t)

2 : (ŝki)← T E .KGen(msk, i) For i ∈ [n];

3 : (m0,m1)← AOPDec({ŝki}i∈C);

4 : b←$ {0, 1},
5 : (Ctb)← T E .Enc(pp, pk,mb);

6 : b′ ←$AOPDec(Ctb);

7 : return (b′ = b ∧ |m0| ̸= |m1| ∧ |R ∩ K| < t)

Fig. 9: Static Semantic Security Experiment.

A.6 Collaborative Key Generation and RRTE

Collaborative Key Generation (CKG) is a slightly modified variant of DKG that uses threshold
cryptography to achieve distributed key generation. The (n, t)-DKG generates n pairs of secret and
public keys s.t. at least t parties among n are required to execute a key oriented operation, whereas
any subset of size smaller than t is not able to execute it. Likewise in a (n, t, k)-CKG, a global public
key pk corresponding to a secret key sk is shared among n parties s.t. any subset of larger than k
can rebuild pk and any subset of larger than t, where k < t ≤ n can reconstruct the sk. The main
difference here is that any operation that needs the secret key sk requires the cooperation of at
least t collaborators, whereas the public key pk itself can be reconstructed by at least k < t parties.
For a given public parameters pp = (G1,G2,GT , g, h, p, e), we instantiate a CKG construction as
follows:

– (p⃗k, pk)← CKG(pp, k, t, k) : The CKG is a collaborative algorithm that is executed by the group
of authorities AU of size n to generate public keys for ℓ merchants, defined in the Algorithm 1
with a fixed threshold k = 2, while their corresponding secret keys remain hidden as long as
the majority of the authorities are honest (t ≥ n/2 + 1).

1. Each authority AU i samples an initial random value xi0←$Z∗p and does the following:
a) It samples a random integer {xi1}, forms a polynomial Fi[X] = xi0 + xi1X ∈ Zp[X] and
commits the coefficients by publishing, Vij = hxij ∀ j ∈ {0, 1}.
b) It broadcasts Fi(j) to the rest of authorities as a share corresponding to the j

th merchants.
2. Each authority checks the consistency of the received shares, Fi(j), from AU i by computing

the equations gFi(j) = Vi0V
j
i1 for all merchants’ label j ∈ [ℓ]. If this equation holds, the

shares generated by AU i will be accepted, otherwise it will reject and then report the faulty
authority AU i.

3. Any faulty authority that receives at least t ≥ n/2+1 complaints is labelled as disqualified.
At the end of this phase t parties from the set of qualified authorities, Q ⊂ AU perform the
next steps.

4. The global public key is determined as pk :=
∏

i∈Q Vi0 = h
∑

i∈Q xi0 .
5. Each merchant Mj is assigned by a public key pkj that is obtained by computing, pkj =

hF (j) =
∏

i∈Q
(
Vi0(Vi1)

j
)
, where F [X] =

∑
i∈Q Fi[X].

These steps complete the CKG phase and return the set of public keys {pkj}1≤j≤ℓ along with
the global public key pk.

33

An efficient RRTE. We propose an efficient RRTE scheme that relies on CKG constructions
Appendix A.6.

– (p⃗k, pk)← RRT E .KGen(pp, ℓ, t, 2): It runs the CKG algorithm, CKG(pp, ℓ, k, t, 2), as described
in Appendix A.6.

– (Ctj , v) ← RRT E .Enc(pp, pk,m, pkj): The encryption algorithm takes public parameters pp,
global public key pk, the message m and public key pkj as inputs. It samples r←$G1 uniformly
at random and generates the ciphertext underlying each recipient by computing (Ctj , v) :=(
e(r, pkj),m · e(r, pk)

)
.

– (m,⊥)← RRT E .Dec(pp, Ctj , Ctj′ , v): The decryption algorithm takes twin ciphertexts (Ctj , v)
and (Ctj′ , v) along with public parameters pp as inputs. Let J = {j, j′}, it computes grsT : z =(
Ct

LJ
j (0)

j · Ct
LJ
j′ (0)

j′

)
and then returns m := v/z, otherwise, it responds with ⊥.

A.7 Non-Interactive Zero-Knowledge proofs

Zero-Knowledge proofs [38] are two-party protocols, which are a fundamental and powerful crypto-
graphic tool. They allow a prover to convince the verifier about the validity of a statement without
revealing any other information. Non-Interactive Zero-Knowledge proofs remove the interaction
between the parties in two possible settings, either the Random Oracle Model (ROM) [34] or the
Common Reference String (CRS) model [11]. We recall the definition of NIZK arguments7 in the
CRS model, in which the prover is computationally bounded to ensure the soundness. Hence, for se-
curity parameter λ, let R be a relation generator, such that R(1λ) returns an efficiently computable
binary relation RL = {(x,w)}, where x is the instance (statement) and w is the corresponding wit-
ness. Let L = {x : ∃ w | (x, ŵ) ∈ RL} be the NP-language consisting of the statements in relation
RL.

Definition 19 (NIZK arguments). Formally, a NIZK argument, ΨNIZK, for R consists of a tuple
of PPT algorithms ZK.(Kc⃗rs,P,Vf,Sim), defined as follows:

– (c⃗rs, ˆ⃗ts, ˆ⃗te)← ZK.Kc⃗rs(1
λ,RL): The CRS generator as a probabilistic algorithm takes the security

parameter 1λ and relation RL as inputs. It then generates common reference string c⃗rs by

sampling a simulation trapdoor ˆ⃗ts and an extraction trapdoor ˆ⃗te. It keeps the trapdoors (ˆ⃗te, ˆ⃗ts)
hidden while publishes c⃗rs.

– (π,⊥)← ZK.P(RL, c⃗rs, x, ŵ): Prove as a probabilistic algorithm takes the CRS, c⃗rs, and a pair
of statement and witness (x, ŵ) as inputs. If (x, ŵ) ∈ RL it returns a proof π, otherwise it
responds with ⊥. This algorithm sometimes is denoted by PoK{ŵ | (x, ŵ) ∈ RL}.

– 0/1← ZK.Vf(RL, c⃗rs, x, π): Verification as a deterministic algorithm takes CRS, c⃗rs, and a pair
of statement and proof (x, π) as inputs. It either returns 1 (accept) or 0 (reject).

– π′ ← ZK.Sim(RL, c⃗rs,
ˆ⃗ts, x): The Simulator algorithm takes the tuple (RL, c⃗rs, t⃗s, x) as input

and without knowing the corresponding secret witness, outputs a simulated proof π′ s.t. it is
computationally indistinguishable from π.

7 The CRS does not depend on the language distribution or language parameters.

34

Definition 20 (Completeness). A NIZK argument, ΨNIZK, is called complete for relation RL ∈
R, if for all security parameters 1λ and (x, ŵ) ∈ RL, we have:

Pr
[
(c⃗rs, ˆ⃗ts, ˆ⃗te)← Kc⃗rs(1

λ,RL) : Vf(RL, c⃗rs, x,P(RL, c⃗rs, x, ŵ)) = 1
]
≥ 1− negl(λ) .

Definition 21 (Soundness). A NIZK argument, ΨNIZK, is Sound for any relation RL ∈ R, if
for all PPT adversaries A, we have:

Pr
[
(c⃗rs, ˆ⃗ts, ˆ⃗te)← Kc⃗rs(1

λ,RL), (x, π)← A(RL, c⃗rs) : Vf(RL, c⃗rs, x, π) = 1 ∧ x ̸∈ LR

]
≤ negl(λ) .

Definition 22 (Statistically Zero-Knowledge). A NIZK argument, ΨNIZK, is called statis-
tically Zero-Knowledge, if for all security parameter 1λ, and all PPT adversaries A we have,
εunb0 ≈λ εunb1 , where,

εb = Pr
[
(c⃗rs, ˆ⃗ts, ˆ⃗te)← Kc⃗rs(1

λ,RL) : AOb(·,·)(RL, c⃗rs) = 1
]
·

Here, the oracle O0(x, ŵ) returns ⊥ (reject) if (x, ŵ) ̸∈ RL, otherwise it returns ZK.P(RL, c⃗rs, x, ŵ).

Similarly, O1(x, ŵ) returns ⊥ (reject) if (x, ŵ) ̸∈ RL, otherwise it returns ZK.Sim(RL, c⃗rs, x,
ˆ⃗ts).

Definition 23 (Computational Knowledge-Soundness). A NIZK argument, ΨNIZK, is called
computationally (adaptively) knowledge-sound for R, if for all PPT adversary A and RL ∈ R,
there exists an extractor ExtA, s.t. for all 1λ we have,

Pr

(c⃗rs, ˆ⃗ts, ˆ⃗te)← Kc⃗rs(1
λ,RL), (x, π)← A(RL, c⃗rs),

(ŵ)← ExtA(RL, c⃗rs,
ˆ⃗te, π) : (x, ŵ) ̸∈ RL ∧ Vf(RL, c⃗rs, x, π) = 1

 ≤ negl(λ) .

Next, we overview the used proof systems in the implementation of the proposed efficient in-
stantiation. As we already discussed in Section 4, we rely on three main proof systems including
the Sigma protocols, Groth-Sahai proof systems and Range-proofs.

Sigma Protocols [59]. In what follows we recall the standard Sigma protocols and also some
techniques used recently in [25,50]. All the protocols are interactive and we use the Fiat-Shamir
paradigm to make make then non-interactive; additionally, the existence of a collision-resistance
hash function H : {0, 1}∗ → Z∗p modeled in random oracle is assumed. Thus, the prover runs the
hash function to obtain the challenge c instead of taking the random challenges from the verifier
over an extra round of communication.

Proof of knowledge of DLog. Figure 10 outlines an interactive Sigma protocol to prove the
knowledge of discrete logarithm, x ∈ Zp, of a public value gx, where g is the generator of a cyclic
group G with prime order p.

To prove a multiplicative relation between two committed values. Figure 11 describes an in-
teractive Sigma protocol to prove the knowledge of three integers x1, x2, x3 with public Pedersen
commitments of them, i.e. comi = gτigxi

1 for i = 1, 2, 3 and also showing the fact x3 = x1x2 mod p.

35

Prover(x) Verifier(A := gx)

r←$Zp

R← gr G, p, g, R

c←$Z∗
pc

z = r − cx mod p z R == Acgz

Fig. 10: Proving the knowledge of DLog.

Prover({xi, τi}3i=1) Verifier({comi}3i=1)

r1, r2, r3 ←$Zp

s, s1, s2, s3 ←$Zp

{Ri ← grigsi1 }
3
i=1

R← comr2
1 gs1 G, p, g, g1, R1, R2, R3, R

c←$Z∗
pc

{zi = ri − cxi mod p}3i=1

{ti = si − cτi mod p}3i=1

τ ← τ3 − τ1x2, t = s− cτ {zi, ti}3i=1, t {Ri == gzigti1 }
3
i=1

R == comc
3com

z2
1 gt1

Fig. 11: To prove a multiplication relation between committed values.

To prove the well-formedness of the Dodis-Yampolskiy PRF. Figure 12 outlines a Sigma protocol
to prove the knowledge of a seed k ∈ KPRF and showing the fact that it is correctly computed. For
this, we rely on the above mentioned Sigma protocol and denote it by Σ.MultiCom(.).

Prover(k, x) Verifier(g1/k+x)

τ1, τ2, τ3 ←$Zp

com1 ← gxgτ11

com2 ← gkgτ21

com3 ← gk+xgτ31 Σ.MultiCom(com1, com2, com3)

Σ.MultiCom(com3, g
1/k+xg01 , gg

0
1)

Fig. 12: Proving well-formedness of the DY’s PRF.

36

Groth-Sahai (GS) proof system [40]. The GS proof system is a commit-and-prove system
where the prover takes CRS and commits to the hidden variables (witnesses), subsequently provid-
ing proofs to convince the verifier that the PPE relation is valid under the generated commitments.
In a subsequent work, Escala and Groth in [31] show that by replacing the commitment with El-
Gamal encryption [30] the prover’s computation cost can be reduced. Thus in this paper the prover
to commit to hidden values (witnesses) computes an ElGamal encryption of the witnesses. In the
implementation, we take one of the instantiation proposed in [40] that relies on the symmetric
external Diffie-Hellman (SXDH) assumption over prime order groups. Over an asymmetric bilin-
ear group (G1,G2,GT , p, e), the relation over variables X1, . . . ,Xm ∈ G1, Y1, . . . ,Yn ∈ G2 and a
constant T ∈ GT can be any product-pairing equation (PPE) on the form:

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi, Bi)
m∏
j=1

n∏
i=1

e(Xj ,Yi)µi,j = T ,

where (A1, . . . , An) ∈ G1, (B1, . . . , Bm) ∈ G2 and {µi,j}1≤i≤m & 1≤j≤n ∈ Zm·n
p are constant.

Range-proofs. These constructions enable a prover to prove that a hidden witness x lies within
a certain interval like (0,Max], where Max can be any integer upper bound in this relation. In the
implementation of our construction we rely on Bulletproof proposed by Bunz et al. [17].

A.8 NIZK Language Realization

Next, we briefly discuss how the described languages in Section 3.1 are implemented.

– Language L1: Towards the realization of this language we rely on Sigma protocols. The customer
runs the described Sigma protocol in Figure 10 on the proof of knowledge of ŝkcm.

– Language L2: To realize this language, we rely on Sigma protocols, Range-proofs and GS proof
systems. To show the commitment k′j is formed correctly and it is indeed the Pedersen com-

mitment of the hidden key k̂j , the prover runs the described protocol in Figure 11 on a single
commitment. To be more precise, the customer can assign x2 = 0 and perform this protocol.
Additionally, the customer runs the range-proof on the committed PRF in the previous rela-
tion and depicts the fact that it samples correctly from the key distribution of the PRF, i.e.
KPRF. To show the customer has the knowledge of a valid certificate ˆcertcn signed by at least t
authorities, we rely on GS proof systems. As we already discussed, the verification equation of
the given TSPS can be written as a pairing-product equation and the customer can convince
the merchant on this. The main advantage of this proof system is that the prover does not need
to necessarily know the discrete logarithm of the message and it is compatible with all group
element witnesses. Moreover, this enables us to have a straight-line extraction of the witnesses
and allows proof aggregation.

– Language L3: The instantiation of this language is done based on two proof systems: Sigma
protocols and GS proof systems. To prove the well-formedness of the PRF evaluation function
and showing the fact that the prover knows the key k̂j , the customer runs the described Sigma
protocol in Figure 12. Since the remaining relations of this language can be written as a PPE,
the prover can utilise the GS proof systems.

In all of the above cases, all relations and languages are proven solely and a bridge can be made
between them whenever the issued commitments are all committing to the same hidden witness.
Sigma protocols can be used to demonstrate that the committed values in two distinct commitments
are the same.

37

	Reusable, Instant and Private Payment Guarantees for Cryptocurrencies

