
Breaking DPA-protected Kyber via the
pair-pointwise multiplication

Estuardo Alpirez Bock1, Gustavo Banegas2, Chris Brzuska3,  Lukasz
Chmielewski4, Kirthivaasan Puniamurthy3, and Milan Šorf4

1 Xiphera LTD, Finland estuardo.alpirezbock@xiphera.com
2 Qualcomm France SARL, France gustavo@cryptme.in

3 Aalto University, Finland {chris.brzuska,kirthivaasan.puniamurthy}@aalto.fi
4 Masaryk University, Czech Republic {chmiel,xsorf}@fi.muni.cz

Abstract. We introduce a novel template attack for secret key recovery
in Kyber, leveraging side-channel information from polynomial multipli-
cation during decapsulation. Conceptually, our attack exploits that Ky-
ber’s incomplete number-theoretic transform (NTT) causes each secret
coefficient to be used multiple times, unlike when performing a complete
NTT.
Our attack is a single trace known ciphertext attack that avoids machine-
learning techniques and instead relies on correlation-matching only. Ad-
ditionally, our template generation method is very simple and easy to
replicate, and we describe different attack strategies, varying on the num-
ber of templates required. Moreover, our attack applies to both masked
implementations as well as designs with multiplication shuffling.
We demonstrate its effectiveness by targeting a masked implementation
from the mkm4 repository. We initially perform simulations in the noisy
Hamming-Weight model and achieve high success rates with just 13 316
templates while tolerating noise values up to σ = 0.3. In a practical
setup, we measure power consumption and notice that our attack falls
short of expectations. However, we introduce an extension inspired by
known online template attacks, enabling us to recover 128 coefficient
pairs from a single polynomial multiplication. Our results provide evi-
dence that the incomplete NTT, which is used in Kyber-768 and similar
schemes, introduces an additional side-channel weakness worth further
exploration.

Keywords: Post-quantum Cryptography · Template attack · Kyber ·
Side-channel Attack · Single Trace.

∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/

CultureStatement04.pdf. E. Alṕırez Bock conducted part of this research while at
Aalto University. His work at Aalto and the work of K. Puniamurthy were sup-
ported by MATINE, Ministry of Defence of Finland. The work of  L. Chmielewski
and M. Šorf was supported by the Ai-SecTools (VJ02010010) project. Computa-
tional resources were provided by the e-INFRA CZ project (ID:90254), supported
by the Ministry of Education, Youth and Sports of the Czech Republic. Date of this
document: 2024-04-05.

https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf


2 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

1 Introduction

NIST selected Kyber [9,4] to be standardized as a post-quantum secure key
encapsulation mechanism (KEM) after a rigorous competition. The primary se-
curity requirement of the NIST competition is achieving message confidential-
ity against chosen-plaintext (CPA) and chosen-ciphertext attacks (CCA) based
on plausibly post-quantum hard problems. Additionally, the competition em-
phasizes the resistance of implementations to side-channel attacks. This paper
builds upon the previous research exploiting differences in side-channel traces
based on the chosen inputs [21,20,7] to design a new single-trace template at-
tack against masked Kyber implementations. In particular, we target the decap-
sulation phase, leveraging templates to extract the long-term secret key from
the polynomial multiplication process. Our goal is to show that in this context,
masking is not sufficient protection, even considering relatively simple attacks.

Kyber’s key encapsulation (encryption) performs a matrix-vector multiplica-
tion in the ring of polynomials Rq = Zq[x]/(x256+1) and then adds a small noise
vector to the result. In turn, Kyber’s decapsulation (decryption), multiplies a
ciphertext b and a secret a, each of which corresponds to a polynomial. Poly-
nomials in Kyber are of degree 255 and their coefficients are integers between 0
and q − 1, with q = 3329. Kyber turns this core IND-CPA-secure scheme into
IND-CCA-secure encryption using the Fujisaki-Okamoto (FO) transform [16].
Black-box security against IND-CCA security, however, does not protect against
known/chosen ciphertext side-channel attacks, since the input ciphertext is al-
ways multiplied with the secret key right at the beginning of the decapsulation
process, cf. [14,35,17,5].

Number theoretic transform. The standard multiplication of two polynomi-
als is quadratic. Thus, in Kyber (and other lattice-based systems), polynomials
are first translated via the number theoretic transform (NTT) into a representa-
tion where multiplication only takes linear time. Namely, in the NTT domain,
polynomial multiplications can be computed point-wise. Given two polynomials
â and b̂ with coefficients (a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1) in the NTT do-
main, their point-wise multiplication is equal to â ◦ b̂ = (a0 · b0, a1 · b1, . . . , an−1 ·
bn−1). However, at this point In Kyber the NTT is not performed on its entirety
due to its modulus polynomial, and the multiplication performed on NTT do-
main is actually pair-pointwise (see Subsection 2.2). This property will play a
role in the effectiveness of our template attack since, per each pair-point mul-
tiplication, the coefficients are multiplied more than once, thus providing more
points of comparison between our templates and our target trace.

Pair-pointwise multiplication. The size of the modulus q in Kyber underlies
several constraints: (1) The ciphertext size grows linearly with the modulus,
(2) the modulus needs to be large enough to enable a the rounding operation
required for the correctness and (3) the modulus needs to allow to perform the
NTT, which requires decomposing the ring of polynomials Zq[X]/(X255 + 1),



Breaking DPA-protected Kyber via the pair-pointwise multiplication 3

which is a 256-dimensional vector space over Zq. In its original proposal [3], the
selected modulus q for Cyber was 7681. The modulus q = 7681 allows to perform
a full NTT on the polynomials as a full NTT requires to find a 512-th root of
unity, i.e., a number ζ such that ζ512 ≡ 1 mod q. Therefore in the original
proposal of Kyber, the multiplications between the NTT representations of the
secret key and ciphertexts were indeed performed in a point-wise fashion.

Nevertheless, a series of works later showed that Kyber could also be imple-
mented using a smaller modulus q = 3329, in exchange for performing incomplete
NTTs and calculating the multiplication in a pair-pointwise fashion [45,26]. Us-
ing this smaller modulus allows for a more compact implementation of Kyber
since we need one bit less to encode each coefficient of a ciphertext and secret key.
Moreover, this new modulus still allows fast multiplications between the NTT
representations of the polynomials to be performed. Thus, the specification of
Kyber was updated, and as of today, the chosen modulus is q = 3329.

With respect to q = 3329, only the 256-th root of unity ζ exists, not the 512-th
root. For this reason, Kyber only performs incomplete NTTs, where polynomials
of degree 256 are transformed into 128 polynomials of degree 1. This is the reason
why the multiplication between two polynomials on the NTT domain in Kyber
corresponds to a pair-pointwise multiplication. That is, for two transformed poly-
nomials â and b̂ we multiply (a0+a1x)(b0+b1x), . . . , (a254+a255x)(b254+b255x).

Unfortunately, as we will show in this work, pair-pointwise multiplications
also lead to more leakage in the presence of side-channel adversaries. Consider
that we are multiplying a secret key with some known value. Within each pair-
point multiplication, two coefficients of the secret key will be multiplied with
two different known values, and then they will be added to each other. This
means that each pair-point multiplication corresponds to a series of operations
where the only unknown values are two coefficients with values between 0 and
3328. This simple observation motivates us to study whether we can exploit the
leakage coming from a pair-point multiplication and use it to identify the value
of the secret coefficients.

1.1 Our contribution

We propose an attack on the pair-pointwise multiplication of Kyber-like imple-
mentations and start by observing that Kyber executes more secret-dependent
operations than lattice-based schemes, which perform a full NTT:

1. Instead of one multiplication (as in full NTT), in pair-point multiplications,
three multiplications (cf. Equation (3)) depend on the same coefficient pair.

2. Since multiplications are performed mod q, the code requires 3 additional
operations to execute a modulus reduction after each multiplication.

3. While ai ∈ [0, . . . , q − 1] are 12-bit integers, the registers operate on 24-bit
and 28-bit integers before the modulus reduction. Thus, in the Hamming
weight model, the expected information per instruction is H(24) ≈ 3.34 and
H(28) ≈ 3.45 bits of information rather than only H(12) ≈ 2.84.



4 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Starting from these observations, we devise an attack which extracts each
coefficient from a pair-point multiplication individually. We also present varia-
tions of our attack, changing the number of templates needed. All our attack
strategies are based on the same idea, which we illustrate next by means of a
simple example. For ease of explanation, we assume in the following that (a) the
pair-pointwise multiplication is implemented in a straightforward way without
any optimisations (see Equation 1) and (b) each multiplication in Equation 1 will
provide enough leakage for successful template matching. In practice, these two
assumptions will not always hold, but they will help clarifying the idea behind
our attack.

Attack Idea. Let us assume that we want to find out whether the secret â (a
on NTT domain) of some implementation of Kyber has some coefficient with
value, e.g., 328. To determine whether â has some coefficient with value 328, we
will construct a template for the case that 328 is a coefficient in â and it is used
as an operand in the polynomial multiplication. We construct such a template
as follows. In our own device, we fix the key a such that (in NTT domain) all
its coefficients have the value 328, i.e.,

â = (3280, 3281, 3282, . . . , 328254, 328255).

As input ciphertext, we will provide a value b which on NTT domain has half
of its coefficients equal to (e.g.) 2649, and the other half equal to 317,5 i.e.,

b̂ = (26490, 3171, 26492, 3173, . . . , 2649254, 317255).

We then run the implementation on said inputs and record a power trace, which
we will use as our template and which we denote T328.

We now turn to the target device and run it on an input equal to the cipher-
text used for constructing our template, i.e., b s.t.
b̂ = (26490, 3171, 26492, 3173, . . . , 2649254, 317255). We record a power trace,
which we will denote as our target trace Tt.

We will now perform a template matching, which will help us find out whether
the secret â running on the target device has some coefficient equal to 328. The
template matching will also help us find out exactly which coefficient of â has the
value 328. Recall first that in the decapsulation process of Kyber, we multiply
the ciphertext b̂ with the secret â in a pair-pointwise fashion. That means that
our template trace T328 corresponds to multiplications

(3280 + 3281)(26490 + 3171), (3282 + 3283)(26492 + 3173), . . . ,

(328254 + 328255)(2649254 + 317255).

Note that we perform the operations described in Equation 1 for each multipli-
cation. Moreover, each multiplication is performed sequentially, and the result

5 Note that these are just example values. In principle, we can choose any two values
between 0 and q−1. What is important is that the values are located in the ciphertext
on NTT domain, as shown in the example.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 5

of one multiplication does not affect any other . Suppose the secret â in the
target device has some coefficient ai equal to 328. In that case, we should be
able to find good correlations at the points where that coefficient was multi-
plied by 2649 (ai · b0 in Equation 1), or at the points where it was multiplied
by 317 (ai · b1 in Equation 1) during some pair-pointwise multiplication. The
location of regions where we find good correlations lets us know which coef-
ficient in â has the value 328. For instance, assume the coefficients of â are
(70, 821, 1042, . . . , 328128, . . . , 2013255). When we perform template matching, we
should find good correlations halfway through the trace at the position corre-
sponding to the pair-pointwise multiplications using the 128th coefficient as an
operand. Namely, in both the template trace T328 and the target trace Tt, the
given region corresponds to the power consumption of the same operations using
the same operands: 328 · 2649 (or 328 · 317).

Moreover, we expect low correlations at all other regions in the trace (unless
a coefficient with a value of 328 appears elsewhere). Namely, in all other regions
of the traces, the power consumption corresponds to multiplications between
different operands; thus, the template should not match the target trace.

We can perform a complete extraction of all coefficients in â by repeating the
same process described above, checking whether â has some coefficient equal to
0, equal to 1, equal to 2, . . ., or equal to 3328. Thus, we all need to generate a
total of 3329 templates and try matching each template with the target trace.
Once we have recovered all coefficients in â, we need to transform them back to
their standard domain, which will let us recover a. Moreover, this same attack
strategy will also allow us to attack masked implementations since we need to
recover the coefficients of each share and then combine them to reconstruct the
key.

Attacking Kyber in practice and our results. The attack strategy de-
scribed above corresponds to the basic idea behind our attack, and it requires
only a total of q templates for a complete key extraction from a masked or
unmasked implementation. Later in Section 3, we provide concrete steps for
performing our attack. We explain that sometimes, q traces may only allow us
to extract one coefficient within each pair-point multiplication. However, with
knowledge of that one coefficient, we can easily build an additional set of q tem-
plates, which will allow us to extract the remaining coefficient of each pair-point
multiplication. Thus, we devise an attack requiring q+q templates. Finally, we
explore an extension of our attack that extracts pairs of coefficients from each
pair-point multiplication via q2 templates but has a much higher success proba-
bility given that the templates target complete regions of pair-point multiplica-
tions and thus have more samples for comparison with the target trace. We refer
the reader to Section 3 for the specific steps of our attack and its adaptations.
Then, we validate our attacks against the masked implementation of [2], first via
simulations and then via experiments with power consumption measurements.
We show how our attack strategy requires a single target trace from a known



6 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

ciphertext and avoids complex attack methods like machine learning since it
succeeds by performing simple correlation analysis.

Simulations for the Hamming weight model. On a high level, we want to
know whether each possible secret coefficient value (values between 0 and 3328)
leads to unique hamming weight values during the pair-point multiplication pro-
cess. If this is the case, we should see enough leakage to uniquely determine the
value of a secret coefficient processed during pair-point multiplication. For each
possible secret coefficient, we calculate the hamming weight of the result of all
instructions executed during the pair-point multiplication. We obtain thus ham-
ming weight tuples for each possible secret coefficient. As we show for all odd
coefficients in a secret polynomial, about 90% of the coefficient values actually
have a unique hamming weight tuple. We interpret this as positive evidence of
our chances of extracting odd secret coefficients. Later in the paper, we explain
how to use the extracted odd coefficients to extract all even coefficients. Finally,
our simulations show that a template attack with 100q templates succeeds with
the probability ≥ 0.999 even in the presence of Gaussian noise with standard
deviation σ ≤ 0.87.

Experimental results. We perform a power analysis attack also on the masked
implementation of Kyber [2] using the ChipWhisperer Lite platform [31]. We
detect leakage for both q+q and q2 attacks, but unfortunately it is not enough
to recover a pair of coefficients from a pair-point multiplication. We show that
the low success of these experiments is influenced by microarchitectural aspects
and the implementation we target: essentially, the power profile of a pair-point
multiplication is slightly influenced by the operations done before it started 6.

However, the success rate, especially for the q2 attack, is quite promising
and therefore, to make the attack work we come up with an extension inspired
by the Online Template Attack (OTA), originally used to attack elliptic curve
cryptography [6,7]. OTA is a powerful technique residing between horizontal
and template attacks with the main distinctive characteristics of building the
templates after capturing the target trace and not before. The combined attack
works as follows: first we reduce the number of candidate templates using the
q2 attack and then we launch iteratively OTA to limit the microarchitectural
noise. This way we are able to recover all the coefficients of 128 pair-pointwise
multiplications. In particular, we completely recover all coefficients for 3 attacked
target traces at the cost of maximum 43M templates. While these numbers are
high, they are required to recover all the coefficients from a single trace.

We also estimated how many templates we need to attack masked Kyber768
with the order 2. Here we need more templates since such implementation uses
6 full polynomial multiplications. For such attack we would need 78M to achieve
43% success rate and to increase it to 90% we need approximately 105M traces.

With respect to the experiments it is also an interesting question whether our
experiments may provide better results if we use electro-magnetic emanations

6 For details the attacks and the experiments see Section 5.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 7

as the side-channel information instead of power consumption (see for instance
[38,32] for EM attacks on real life implementations). It would be also interesting
to see whether we can lower the number of used templates. We leave these
investigations as future work.

1.2 State of the art

Attacks on the polynomial multiplication of Kyber were successfully performed
using correlation power analysis techniques [28]. However, early proposals recog-
nized the need to apply masking to the polynomial multiplication in lattice-based
schemes as a countermeasure against side-channel analysis [30,36,37]. Conse-
quently, many research efforts have focused on attacking other components of
the Kyber decapsulation process. Primas, Pessl, and Mangard introduced a tem-
plate attack on the inverse NTT during decryption, enabling them to recover
a decrypted message and subsequently extract the session key [34]. This attack
leverages belief propagation for template matching and has since been extended
and improved in subsequent works [33,17]. In a different approach, Dubrova, Ngo,
and Gärtner propose the use of deep learning techniques to recover the message
and subsequently extract the long-term secret key [15] from the re-encryption
step of decapsulation. Notably, research in this area has demonstrated the suc-
cess of deep learning in attacking lattice-based schemes [5,22,29,27]. Further SCA
attacks on masked implementations of Kyber were presented on the message en-
coding [41] and on the arithmetic-to-boolean conversion step [42]. Note that all
works cited above attack parts of Kyber other than the pointwise multiplication.

Our attack differs from the previous attacks in two significant ways when
applied to masked implementations: we directly extract the long-term secret
key from pointwise multiplication and we do not require deep learning or belief
propagation for template construction and matching. Although machine learning
(ML) techniques were shown to be particularly successful again post-quantum
schemes, for example, in [15], we prefer a more classical approach based on Pear-
son correlation matching due to the following reasons: (1) the attack description
is simpler, (2) the attack is easier to replicate since the adversary does not re-
quire the knowledge of ML, (3) it is easier to explain where the leakage comes
from and thus come up with countermeasures, and (4) crucially we wanted to
show that (even) classic side-channel methods effectively extract the key from
masked Kyber.

In parallel to this work, the authors of [44] also developed a template attack
on the polynomial multiplication in Kyber. Their attack targets key generation
and encryption. It thus exploits the fact that each secret polynomial is multiplied
with k different values in the matrix A (see Algorithm 1), leading thus to more
side-channel leakage for each secret polynomial. Their approach relies on Ham-
ming Weight templates for multiple intermediates and thus utilizes a key enu-
meration, similar to belief propagation. Unfortunately, the current manuscript
does not provide many details about template building and matching, including
how many templates their attack requires. Therefore, currently it is difficult to
fairly compare our attacks to theirs. We do observe from their results that the



8 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

complexity of their attack grows drastically as the dimension k of Kyber de-
creases (see Table 5 in [44]). In fact, the smaller k, the smaller the probability
of success for their attack. This is because their attack relies on multiple poly-
nomial multiplications for each secret polynomial, and thus, the larger k (with
k = 2, 3 or 4), the more multiplications are performed during key generation.
Our attack, on the other hand, does not have such dependencies on the size of k.
The complexity of our attack increases slightly with the size of k since there are
more coefficients to extract, but the attack steps and their success probability
remain basically the same.

Following our remarks above, we should point out that our attack can also
be applied to target the key generation in Kyber, since we just require one target
trace and knowledge of the operand coefficients (coefficients of the polynomials
of the public value A). On the other hand, it is unlikely that the attack from
[44] succeeds on the key decapsulation, given that each secret polynomial is only
multiplied once in the key decapsulation.

2 Notation and preliminaries

We represent matrices by bold capital letters A, and vectors by bold small letters
b, b. Given a polynomial a =

∑n−1
i=0 aiX

i of degree n − 1, we usually write a
as a vector a = (a0, a1, a2, ..., an−1). Also, the operation · represents standard
multiplication between two integers, while ◦ represents point-wise multiplication
between two polynomials in NTT domain (cf. Subsection 2.2). When writing
polynomial a in NTT domain, we will often write â for clarity and also use the
hat notation for matrices, e.g., Â.

We next provide descriptions of Kyber. Our descriptions of the algorithms
will be simplified and we will elaborate mostly on the parts of the KEM that
are relevant to our attack. We refer the reader to the supporting documentation
from Kyber for more details on the KEM [4].

2.1 Kyber

As previously mentioned, Kyber is a lattice-based KEM. It relies on the hardness
of the Module-LWE problem. The latest parameters for Kyber are: n = 256, q =
3329, η = 2 and module dimension k = 2, 3, or 4. The security level of Kyber
increases with its module dimension (in the case k).

Algorithm 1 gives the overview of the key generation. The private key of
Kyber consists of a vector of polynomials of degree n = 256, and with coefficients
in Rq with q = 3329. The k determines the dimension of the vector. The functions
SampleU and SampleB are functions which uniformly sample values in the
ring Rq given a seed. The SampleU provides a uniform random matrix, and
SampleB gives uniform random vectors. The function H is a secure hash function
(SHA3 in Kyber).

Algorithms 2 and 3 describe the encryption and encapsulation functions in
Kyber. Particularly relevant for this work are the functions Compress and



Breaking DPA-protected Kyber via the pair-pointwise multiplication 9

Algorithm 1: Kyber-CCA2-KEM Key Generation (simplified)

Output: Public key pk , secret key sk
1 Choose uniform seeds ρ, σ, z

2 Â ∈ Rk×k
q ← SampleU (ρ)

3 a, e ∈ Rk
q ← SampleB(σ)

4 â← NTT(a)

5 t̂← Â ◦ â + NTT(e)

6 pk ← (̂t, ρ)
7 sk ← (â, pk ,H(pk), z)
8 return pk , sk

Decompress, which are defined as Compress(u) := bu · 2d/qe mod (2)d and
Decompress := bq/2d · ue, with d = 10 if k = 2 or 3 and d = 11 if k = 4.
Note that the output of the encryption corresponds to a ciphertext c, which
consists of two compressed ciphertexts. This ciphertext c will be the input to
the decapsulation algorithm.

Algorithm 2: Kyber-PKE Encryption (simplified)

Input: Public key pk = (̂t, ρ), message m, seed τ
Output: Ciphertext c

1 Â ∈ Rk×k
q ← SampleU (ρ)

2 r, e1 ∈ Rk
q , e2 ∈ Rq ← SampleB(τ)

3 b← NTT−1(ÂT ◦ NTT(r)) + e1

4 v ← NTT−1(̂tT ◦ NTT(r)) + e2 + Encode(m)
5 c1, c2 ← Compress(b, v)
6 c = (c1, c2)
7 return c

Algorithm 4 shows the decapsulation algorithm. Note that the ciphertext is
first decompressed into its standard form b, and then in line 2 the ciphertext
is transformed to its NTT domain. After this transformation, a pair-pointwise
multiplication between â and b̂. This operation will be the target of our attack.

2.2 Number Theoretic Transform (NTT)

Kyber performs polynomial multiplications and speeds it up to linear time by
transforming the polynomials into the NTT domain, allowing for a so-called
pointwise multiplication between the polynomials. The NTT is a version of Fast
Fourier Transform (FFT) over a finite ring. To perform the transformation, one
evaluates the polynomial at powers of a primitive root of unity, which are usually
represented by the symbol ζ. We refer to [23] for details on how to implement



10 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Algorithm 3: Kyber-CCA2-KEM Encapsulation (simplified)

Input: Public key pk = (̂t, ρ)
Output: Ciphertext c, shared key K

1 Choose uniform m
2 (K̄, τ)← H(m||H(pk))
3 c← PKE.Enc(pk,m, τ)
4 K ← KDF(K̄||H(c))
5 return c,K

Algorithm 4: Kyber-CCA2-KEM Decryption (simplified)

Input: secret key sk = (â, pk ,H(pk), z), ciphertext c = (c1, c2)
Output: Shared key K

1 b, v ← Decompress(c1, c2)
2 m← Decode(v − NTT−1(â ◦ NTT(b)))
3 (K̄, τ)← H(m||H(pk))
4 c′ ← PKE.Enc(pk ,m, τ)
5 if c = c′ then
6 K ← KDF(K̄||H(c))
7 else
8 K ← KDF(z||H(c))

9 return K

the NTT (in Kyber and Dilithium) and cover relevant aspects of Kyber below.
Kyber has dimension k, and each dimension has its own roots ζ0k , ζ

1
k , . . . , ζ

n−1
k .

In the following, we focus on a single dimension for ease of presentation.

The NTT on Kyber. In Kyber, the n-th root of unity does not exist and
therefore, the 2n-th roots of unity are used so that modulus polynomial Xn + 1
is factored into polynomials of degree 2 rather, i.e., Kyber performs an in-
complete NTT, where the last layer is not executed. Therefore, in Kyber, af-
ter the (incomplete) NTT transformation, a polynomial a corresponds to 128
polynomials of degree 1 each. Polynomial a is thus transformed to NTT(a) =
a0 + a1x, . . . , a254x + a255x. The incomplete transformation of the polynomials
to their NTT domains has an impact on the way, multiplications are performed
in Kyber. Namely, when computing the multiplication between two transformed
polynomials, we are not computing a point-wise multiplication between the co-
efficients of the polynomials (i.e. a · b = (a0b0 = c0, a1b1 = c1, . . . , anbn = cn)).
Instead, we multiply the coefficients pairwise and, for instance, the first two
coefficients of the resulting polynomial are obtained as follows:

c1 = a0b1 + a1b0, c0 = a0b0 + a1b1ζ. (1)

We will denote the multiplication in Equation (1) as pair-pointwise.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 11

Multiplication optimizations. In Equation (1), we see a very straightforward
way of calculating a pair-pointwise multiplication, and obtaining the resulting
two adjacent coefficients of a polynomial. We see that a total of 5 multiplications
are performed. This multiplication process can be optimized via the Karatsuba
algorithm in such a way that we only need to perform 4 multiplications per each
pair-pointwise multiplication:

(a0 + a1x)(b0 + b1x) mod (x2 − ζ)

= a0b0 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)x+ a1b1x
2

= a0b0 + a1b1ζ + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)x.

(2)

Thus, we can obtain the resulting polynomial c0 + c1x via

c0 = a0b0 + a1b1ζ, c1 = (a0 + a1)(b0 + b1)− (a0b0 + a1b1). (3)

Observe that Karatsuba multiplication is the most popular approach for im-
plementing pair-pointwise multiplication in Kyber. It allows us to reduce the
number of multiplications from five to four. The software implementation has
adopted the approach we analyze in this paper; it was also used in public hard-
ware implementations of Kyber such as [43].

Masking Kyber. There are several proposals to mask lattice-based schemes
such as NTRU [30] and Saber [8], whereby the following works present concrete
masking schemes for Kyber [11,18]. The masking of the schemes addresses various
secret-dependent operations, such as computing inverse NTT, the key derivation
function in the decapsulation process, or more commonly, masking polynomial
multiplication with the long-term secret. The approach for masking polynomial
multiplication in Kyber follows a similar pattern to other cryptographic schemes:
the secret is divided into shares, and secret-dependent operations are performed
on each share. The results are then combined. In the case of Kyber, this involves
splitting the secret polynomials into shares and multiplying the input ciphertext
separately with each share.

2.3 Online Template Attacks

Online Template Attack (OTA), introduced in [6,7], is a powerful technique resid-
ing between horizontal and template attacks. The main distinctive characteristic
is building the templates after capturing the target trace and not before like in
classical template attacks [13]. In general, creating templates in advance is fea-
sible when the number of possible templates is small, like for example, for a
binary exponentiation algorithm, where templates need to distinguish a single
branch result, which only requires two templates [13]. However, if the number of
leaking features increases, the number of different templates could be infeasible
to generate in advance. This scenario is where OTAs enter into play by capturing
templates on-demand based on secret guesses [6,7].



12 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

In general, OTA works as follows: the attacker creates templates correspond-
ing to partial guesses of the secret and then matches the templates to the target
trace; the best matching indicates which guess was correct. The attacker contin-
ues by iteratively targeting new parts of the secret until it is fully recovered.

In recent years OTA was applied in many scenarios, most notably, against
Frodo post-quantum proposal [10] and several crypto-libraries (libgcrypt, mbedTLS,
and wolfSSL) using microarchitectural side-channels [12].

We will use OTA in our experiments to improve the success rate of our attacks
to 100%, namely, we will first use attacks to learn the secret coefficients and the
remaining entropy we will recover using OTA (for details see Section 5).

3 Our attack

In this section we explain our template attack on the decapsulation process of
Kyber. We recall that our attack allows us to extract the coefficients of the secret
a during the polynomial multiplication at the beginning of the decapsulation
process. Note that the coefficients that we extract will be in NTT domain, and
after correctly recovering, we need to transform them back to their standard
domain.

In what follows we first describe our main attack and its steps. Subsequently,
we show how variants of our attack with a smaller or larger number of templates
affect the success probability of key recovery. Moreover, we explain how our
attack can be directly applied for targeting masked implementations and explain
how we can extend our attack in order to target implementations which apply
shuffling to the polynomial multiplication.

Attacking Kyber in practice. In Subsection 1.1, we provided an example
describing the idea behind our attack. However, when targeting real-life im-
plementations of Kyber, we should consider several aspects that may affect the
probability of success of our attack. First, as noted in Subsection 2.2, many imple-
mentations of Kyber optimize the pair-pointwise multiplication via Karatsuba,
and thus, the multiplication is not performed exactly as described in Equation 1,
and we may have fewer points of comparison for each multiplication with a co-
efficient value we are trying to extract. Second, it is not clear whether we will
always get enough leakage from a multiplication operation such that it would
allow us to distinguish the values of the operands being used. In practice, this
will depend on the environment running the implementation of Kyber and how
the multiplication operations are implemented. For instance, the more clock cy-
cles needed for calculating one multiplication, the more points of comparison
we will have when performing template matching. However, some implementa-
tions and environments allow multiplications between operands to be performed
within just one clock cycle. On the other hand, we note that a single multiplica-
tion usually involves more operations than just the multiplication itself, such as
load operations and modular reductions. In any case, it is worth analyzing the
number of operations within a pair-pointwise multiplication that depends solely



Breaking DPA-protected Kyber via the pair-pointwise multiplication 13

on one of the two coefficients a0 or a1 and tries to exploit such operations for
trying to distinguish. In the following, we first analyze possible leakage points
for attacking implementations of Kyber, which uses Karatsuba to implement
pair-pointwise multiplication. This analysis will help us craft a template attack
that will succeed with high probability and will not require many templates.

3.1 Attack steps - extracting the key via q + q templates

As we point out in Subsection 2.2, many implementations of Kyber implement
the pair-pointwise multiplication via Karatsuba, reducing thus the number of
single multiplications during the process. As we can see in Equation 3, for each
pair of coefficients a0 and a1, coefficient a0 is multiplied only once times b0, while
coefficient a1 is multiplied once with b1 and their product is multiplied with
ζ. If one multiplication is enough for extracting a secret coefficient, then our
attack would still work using only q templates. Nevertheless, there exist better
chances of extracting each coefficient a1 alone since there exist more operations
within the pair-pointwise multiplication which depend solely on a1 without any
influence of a0. In the following, we will explain how we can use q templates
for extracting all such a1 values within each pair-point multiplication. These
coefficients correspond to all coefficients a1, a3, a5, a7, . . . , a253, a255 in â. Then,
with knowledge of all extracted values, we will build new templates and will use
them for extracting all remaining values a0.

Generating the inputs. Note that when building templates and when obtain-
ing the target trace, we will be using chosen ciphertexts (and chosen keys when
building templates), which on NTT domain have a specific structure. Therefore
we need to find polynomials in standard domain which have the desired structure
on NTT domain. It turns out we can do this very easily since the NTT (and its
incomplete version applied in Kyber) is a bijection. Thus all we need to do is set
a polynomial with the desired coefficients and run the inverse NTT on it. More
precisely for Kyber, we set 128 polynomials of degree 1, each with the desired
coefficients (see Subsection 2.2) and run the inverse NTT on them. In addition,
we also need to consider the compression and decompression properties of the
ciphertext in standard domain, since the input ciphertexts are provided to the
decapsulation algorithm in compressed form (see Algorithm 4). We recall that
the compression and decompression algorithms may introduce some errors in the
least significant bits of some coefficients of the polynomials. Thus, when setting
a value b̂ with a desired structure, and then transforming it into its standard
domain b, we should check whether b can be compressed and decompressed,
such that

Decompress(Compress(b)) = b.

If the equation above holds, we ensure that on line 2 of Algorithm 4, NTT(b) is
indeed transformed into a vector with the structure we initially desired. In [17],
the authors dealt with the same issue for their chosen ciphertext attack on the



14 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

decapsulation process of Kyber. The authors needed a ciphertext b which on
NTT domain would be sparse, and they presented two methods for generating
such ciphertexts and ensuring that they would preserve the desired properties
after compression and decompression. It turns out that for us it is much easier
to deal with this issue, since the structure we desire for the NTT-d value is
much more flexible as we explain below (and as will be seen in the attack steps
described in the rest of this section).

In essence for our attack, we simply require a ciphertext vector which on
NTT domain has either of the two following properties:

– For each pair of coefficient values b0, b1, it holds that b0 6= b1, or
– For any two coefficients bi, bj in b it holds that bi 6= bj .

The first property is enough for attacking unprotected and even masked imple-
mentations. The second property will be relevant for attacking implementations
which implement shuffling of the polynomial multiplication (see Subsection 3.4).
Naturally, vectors with the second property can also be used for attacking masked
or unprotected implementations since the second property implies the first prop-
erty. Our advantage is that there is no restriction with respect to the specific
values these coefficients should have. Thus when generating the inputs, we could
simply set the desired vector b̂, run the inverse NTT on it and then check
whether the resulting vector preserves its form after compression and decom-
pression. Moreover, it is not even necessary that the vector in standard domain
preserves its original form. It is only important that the resulting vector can be
transformed via the NTT into a vector with any of the properties listed above.
Therefore, it should be very easy to just try out some values. Another simple
strategy could be to set a vector in standard domain b with small coefficient
values. The small values ensure that the coefficients will preserve their original
values after compression and decompression. Then we can simply apply the NTT
to b and check whether the resulting vector b̂ has the desired properties listed
above. Finally we point out that finding input ciphertexts which achieve the
second property can be done very easily and we may not even need to choose
those ciphertexts ourselves.

We now proceed to explaining the attack steps for extracting the secret a
using a total of 2q templates.

Step 1: Template building. We start by building templates in the exact same
way as described in our earlier example, starting by building the template T0.
That is, we first build a template for the case that the secret â consists completely
of coefficients equal to 0

â = (00, 01, 02, . . . , 0255).

For the input ciphertext, we can choose a ciphertext equal to the one used
in our example. What’s important is that the polynomial has a structure where



Breaking DPA-protected Kyber via the pair-pointwise multiplication 15

coefficients corresponding to b0 and b1 are always different, i.e. b0 6= b1. As an
example, we consider the ciphertext below.

b̂ = (26490, 3171, 26492, 3173, . . . , 2649254, 317255).

We record thus a power trace and obtain the template T0. We repeat this
process for all possible values between 0 and q − 1. For each new template,
we change the value of â accordingly (i.e. setting â = (10, 11, 12, . . . , 1255), â =
(20, 21, 22, . . . , 2255), etc) and we always use the same ciphertext b̂.

Step 2: Obtaining the target trace. We now turn to the target device
running a key decapsulation of Kyber and query it using our chosen ciphertext
b, which on NTT domain maps to the ciphertext b̂ described above. We record
a power trace during execution and obtain our target trace Tt.

We now have our set of templates and our target trace and can proceed to
perform template matching. The idea is that we will obtain enough information
to identify good matches for operations involving the operands a1, since this
coefficient is used independently in several operations during each pair-point
multiplication. We will assume that we will not be able to identify any matches
for coefficients a0 since this coefficient is only used once independently during
each pair-point multiplication.

Step 3: Template matching. We now match the target trace Tt with each
template Tj . We expect to see no correlations between any regions of the traces,
unless both the target trace and the template used the same operands a1, b0, b1
within some pair-point multiplication. First we compare the target trace with the
template T0. There are a total of 128 pair-pointwise multiplications and thus, a
total of 128 regions corresponding to this operation in the power traces. We can
numerate each region sequentially from 0 to 127. If we observe some correlations
between the target Tt and our template T0 on region i, then we will know that
the operand a2i+1 has the value 0. We then repeat the process with all remaining
templates, or until we have extracted all a1 operands of the polynomial â.

Step 4: Template building with extracted coefficients. In the previous
step, we extracted all operands corresponding to a1 during a pair-point multipli-
cation. We will now use the knowledge of the extracted coefficients for building
a new set of templates which will help us extract all operands corresponding to
a0 in each pair-point multiplication.

Let us denote by ψ an operand a1 whose value was extracted in the previous
step. In essence, we can now build templates in the same way as we did in
Step 1, but the keys â will now have the following structure. For each value
j ∈ [0, 1, . . . , 3328] we construct a template for, i.e. each value we set for the key
during each template generation, we set the key as follows:

â = (j0, ψ1, j2, ψ3, . . . , j254, ψ255).



16 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

We will denote the templates generated during this step as Tj,ψ, and we will
generate all of them the same way as described in Step 1, using the same input
ciphertext b̂. We obtain a total of q new templates Tj,ψ.

Step 5: Template matching We now perform template matching in the exact
same way as we did in Step 3, but using the templates Tj,ψ we obtained in
Step 4. We now expect to see correlations which will let us extract all a0 values.
As opposed to the template matching we performed on Step 3, we now will
have more points of comparison for finding correlations between some template
Tj,ψ and the target trace Tt. Namely for a template corresponding to a correct
value j for some a0, we now expect to find correlations not only on the single
multiplication a0 · b0, but also on all remaining operations dependent on a0 and
a1, i.e. all operations within the pair-point mutliplication. Since the value for a1
has already been rightly taken into consideration, a correct guess for a0 will lead
to a good match for the complete region corresponding to the whole pair-point
multiplication.

3.2 Attack alternatives varying the number of templates

We now discuss how the attack above may be implemented using a larger or a
smaller number of templates. The attack strategy remains the same, but having
a larger number of templates may increase our probabilities of success.

Attack using q templates. As explained in the beginning of this section,
ideally our attack would work using only q templates. Here, the templates would
allow us to extract each coefficient in â one by one. This would allow us to
attack Kyber with only 3329 templates, which is a fairly small number for such an
attack. Moreover, such an attack could potentially generalise to implementations
of Dilithium [25] when collecting q traces for the (larger) Dilithium modulus.
Namely, Dilithium actually performs complete NTTs on its polynomials and
thus, multiplications are actually point-wise, and not pair-pointwise. Thus each
secret coefficient is multiplied once, and then a modulus reduction is performed.
In the Hamming weight model (see Section 4), this might not provide sufficient
leakage (since Hamming leakage of k bits scales with

√
k), but the real-life leakage

might nevertheless suffice to attack also Dilithium.

Attack using q2 templates. As we have noted throughout this section, each
pair-poitnt multiplication provides the result of two coefficients of the product
â◦ b̂. Each pair-point multiplication involves two adjacent coefficients of â, which
we have referred so far as a0 and a1 (see Equation 1). Therefore, we could actu-
ally build templates for each possible pair of coefficients a0, a1. When performing
template matching, we will have many points of comparison between the tem-
plates and the target traces, since we will be comparing regions corresponding
to the complete pair-point multiplication (similar to how we did in Step 5 in



Breaking DPA-protected Kyber via the pair-pointwise multiplication 17

Subsection 3.1). This increases thus our chances of successfully performing a key
extraction.

Making templates for each possible pair of coefficients implies that we need
a total of q2 tamplates, which in Kyber translates to 33292 ≈ 11M templates.
While this number is much larger than what we considered initially, this attack
strategy is very likely to work. Acquiring 11M traces may need several days.
However such an attack complexity is still considered a real threat.

Improving success rates of the attacks using Online Template Attack.
We now consider the case where the success rate of an attack (either q or q2) is
too low to recover all coefficients, e.g., when mounting a single-trace attack or
when the attack is affected by noise. Then, in the q2 attack, correlation analysis
might not rank the template with the correct pair (a0, a1) first, but rather as the
x-th most likely template. To recover (a0, a1), enumerating over all possible x
pairs is prohibitive for all 128 coefficient pairs since it would require 2128 trials.

In this case, it is worth to check whether the first pair of coefficients is always
determined correctly. Indeed, this is the case in our experiments (Section 5). Our
interpretation is that values in registers set by multiplications in previous itera-
tions slightly affect the power consumption when the registers are overwritten.
On the other hand, since there is no previous operation for the first multiplica-
tion, the initial register state is deterministic, and the attack is successful. Thus,
the attack improves if we proceed adaptively and only attack the y-th pair after
having correctly recovered the y−1 coefficient pairs before. Since all registers are
now set correctly, the attack on the y-th multiplication should succeed similarly
to the attack on the first multiplication. This attack creates template online, i.e.,
after obtaining the target power trace. Similarly to improving the q2 attack, it
can also improve the accuracy of the q + q attack and all intermediate variants.
For details about this method in practice, see Section 5.

3.3 Attack on DPA-protected Kyber

We now explain how we can apply or extend our attack to target DPA-protected
implementations of Kyber. We start by discussing our attack on masked imple-
mentations.

We can apply the same attack as described above on masked implementations
of Kyber. Our templates and the corresponding template matching can help us
recover each share of the secret key (exactly as described above). Once we have
recovered all shares, we just need to add them to obtain the secret key.

Note that one target trace suffices since each share is used independently
and sequentially. We assume here that in masked Kyber, we first multiply the
ciphertext with share one and then multiply the ciphertext with share two (and
so on in case of higher order masking). Such an assumption is very likely to
hold for software implementations. For hardware implementations, there exists
the possibility of performing some multiplications in parallel, particularly since
each pair of multiplications is performed independently of each other (see Sub-
section 2.2). However, for performing two or more multiplications at once, the



18 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

hardware design needs to count with two multiplier modules, and not all hard-
ware designs of Kyber will be implemented as such since having extra multipliers
may imply high costs in terms of the design area.

Below, we elaborate on how the chosen masking scheme may affect the com-
plexity of our attack. The main takeaways are: if the target implementation uses
a masking scheme with a modulus q, then the attack complexity and success
probability are barely affected. However, if the masked implementation operates
on a modulus notably larger than q, the complexity increases linearly, and the
probability of success is also affected.

Masking schemes with modulus q. As explained in Section 2, masking
schemes may vary on the modulus q they operate on. Let us first assume that
we are attacking an implementation with a masking scheme that produces shares
that all have coefficients with values between 0 and q − 1 = 3328. In this case,
we will be able to perform a key extraction using the same number of tem-
plates as for an unmasked implementation. Namely, the templates we need for
attacking such a masked implementation correspond to multiplications between
known coefficients (for our chosen ciphertext) and unknown coefficients with val-
ues between 0 and q − 1. Thus, after obtaining all q templates, we only need to
perform the template matching twice concerning an unmasked implementation
(once for each share). The number of template matchings we perform increases
linearly with the degree of the masking scheme. However, if we perform tem-
plate matching over a power trace corresponding to the complete multiplication
process involving both shares, we only need to perform the matching once for
each template. For each 0 ≤ j ≤ q − 1, each match will reveal which coefficient
in any of the two shares has a value equal to j.

Masking schemes with modulus q′ >> q. Notably, the complexity of our
attack increases if the masking scheme generates shares with coefficients with
values between 0 and some q′, which is notably larger than q. This is simply
because we need to generate a corresponding number of q′ templates. At the
same time, we may have more collisions given the larger number of possible
values.

3.4 Attack on shuffled implementations - distinguishing via the
input ciphertext

Initially, one may think that a straightforward countermeasure against the attack
proposed in this section is the randomized shuffling of the pair-point multipli-
cations. Indeed, such pair-pointwise multiplications may be easily shuffled since
each pair-point multiplication is independent, and it does not really matter in
which order they are computed as long as the results are later placed on the
correct coefficients of the resulting product. If we target a shuffled implemen-
tation of Kyber, our attack as described in Subsection 3.1 would allow us to
extract all coefficients correctly. However, we would not know the correct order



Breaking DPA-protected Kyber via the pair-pointwise multiplication 19

in which they appear on the resulting polynomial. Nevertheless, we observe that
our attack can be easily extended such that it is also effective on shuffled imple-
mentations, given only one target trace. We explain the attack steps below. The
main idea is to use a chosen ciphertext whose coefficients all have a different and
unique value. We will use such a ciphertext to generate our templates the same
way described before, thus obtaining q templates. Then, we will use the same
ciphertext to obtain our target trace. When performing template matching, for
each template, we will try matching it a total of n

2 times, where for each try,
we will shift the positions of each pair-point multiplication. Whenever we obtain
some match, we will know the value of the operands for the chosen ciphertext.
Since each of these is unique, we will know its original position, revealing the po-
sition of the extracted secret coefficient. The following description corresponds
to an attack where we will first use q templates for extracting all coefficients
a2i+1 (i.e. the coefficient a1 within each pair-point multiplication), as we did in
Subsection 3.1.

Generating the inputs. We choose an input ciphertext for which (on the NTT
domain) each of its coefficients has a unique value. That is, given the ciphertext
b̂ = b0, b1, b2, . . . , b255, it holds that for each bi, bj , with i 6= j, bi 6= bj . For

illustration purposes, let us assume we choose b̂ as follows:

b̂ = 90, 781, 17532, 73, . . . , 17254, 104255.

Template building. We build templates in the same way as described in Step
1 of Subsection 3.1. Thus, we obtain a total of q templates, each template for
each possible coefficient value. For a coefficient j, the templates will be of the
form

Tj =(j0 + j1) · (90 + 781), (j2 + j3) · (17532 + 73), . . . ,

(j254 + j255) · (17254 + 104255).

Obtaining the target trace. We obtain the target trace the same way as
described in Step 2 of Subsection 3.1, i.e., by providing our chosen ciphertext
b̂ as input. Note, however, that our ciphertext (on the NTT domain) consists of
coefficients with unique values this time. Moreover, note that the resulting target
trace corresponds to a shuffled evaluation of the pair-pointwise multiplications.
For instance, the target trace might correspond to the following shuffled sequence
of operations

Tt =(a22 + a23) · (b22 + b23), (a104 + a105) · (b104 + b105), . . . ,

(a0 + a1) · (b0 + b1), (a56 + a57) · (b56 + b57).

(Secret) coefficient extraction and location identification via template
matching. We now proceed to match our templates with the target trace in a



20 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

similar way as described in Step 3 of Subsection 3.1 with some additional steps.
For each template Tj , we will perform a template matching the target trace as
follows:

1. We first test a matching with the template Tj and target Tt the same way as
tested for our original attack. Let us assume we find a match at position i,
revealing thus that the secret coefficient used at that position has the value
j, i.e., a2i+1 = j. At this point of our analysis, the template Tj corresponds
to a non-shuffled sequence of pair-point multiplications. Let us also recall
that to generate the template and the target trace, we used a ciphertext
polynomial whose coefficients (on the NTT domain) are different from each
other. Finally, let us recall that for obtaining a match, all input operands
used within the analyzed computations must be the same. I.e., for a pair-
point multiplication, the same b0, b1, and a1 values need to be used in the
template and in the target.
Given the observations above, we know that if at this point we obtain a
match at position i, then the original, non-shuffled position of the extracted
coefficient in the secret key is at position i. The coefficients of our input
ciphertext serve as orientation since they are unique, and we know their
position in the template traces.

2. We will now try to find out whether a value j appears in some shuffled pair-
point multiplication, and we will also find out where in the non-shuffled key
the value j is located. For this, we start shifting the multiplication regions
of our trace Tj . Concretely, we will shift the positions of all pair-point mul-
tiplications. Thus, we can do a total of 128 shifts for each template since
each template corresponds to 128 pair-point multiplications. Let w denote
the number of shifts we do on a template and let T>wj denote the template
built for the coefficient value j and shifted a total of w times. For instance,
if we shift the multiplications only once, we obtain the template with the
following form:

T>1
j =(j254 + j255) · (b254 + b255), (j0 + j1) · (b0 + b1),

(j2 + j3) · (b2 + b3), . . . , (j252 + j253) · (b252 + b253)

3. Next we perform template matching with T>wj and our target trace Tt. Let us
assume we find a match at position i. The match tells us that the coefficient
a2i+1 in the target trace has the value j. However since we know that the
template T>wj shifted the pair-point multiplications a total of w positions,
we know that that it is actually the coefficient a2(i−w)+1 in the (non-shuffled)
secret key, which has the value j.

4. We repeat the same matching + shifting process with all templates until we
recover all coefficients. Recall that we are recovering all coefficients a1 for
each pair-point multiplication. Once we have recovered them, we can build
a new set of q templates by placing all recovered coefficients in their shuffled
position and then just repeat the matching process from Step 5 in Subsec-
tion 3.1. This will let us recover all coefficients a0 in each (shuffled) pair-point



Breaking DPA-protected Kyber via the pair-pointwise multiplication 21

multiplication. Since we learned the original (non-shuffled) position of each
pair-point multiplication in the previous step, we will also know the original
position of the extracted a0 coefficients in the non-shuffled secret key.

4 Simulations

This section presents leakage simulation of our attacks (Section 3) on the imple-
mentation in [18,2] for Cortex-M4.

4.1 Implementation of pair-point multiplication

Listing 1.1: Multiplication.

1 ldr poly0, [aptr], #4
2 ldr poly1, [bptr], #4
3 ldr poly2, [aptr], #4
4 ldr poly3, [bptr], #4
5

6 ldrh zeta, [zetaptr], #2
7

8 smultt tmp, poly0, poly1
9 montgomery q, qinv, tmp, tmp2

10 smultb tmp2, tmp2, zeta
11 smlabb tmp2, poly0, poly1, tmp2
12 montgomery q, qinv, tmp2, tmp
13

14 smuadx tmp2, poly0, poly1
15 montgomery q, qinv, tmp2, tmp3

The code which we analyze imple-
ments the pair-pointwise multiplica-
tion as in Listing 1.1 and corresponds
to the Karatsuba multiplication algo-
rithm [24] (see Equation (3) for refer-
ence). The procedure first loads a pair
of secret coefficients a0||a1 into a 32-
bit register poly0 and a pair of public
coefficients b0||b1 into a 32-bit register
poly1. The coefficients a0, a1, b0, and
b1 are 12-bit integers in {0, . . . , 3328}.
In this overview, we skip over the in-
structions at lines 3 and 4 which are the
analogous load operations for the next Listing 1.2: Montgomery subroutine.

1 .macro montgomery q, qinv, a, tmp
2 smulbt \tmp, \a, \qinv
3 smlabb \tmp, \q, \tmp, \a
4 .endm

pair of coefficients in the key and in the
ciphertext. Next, in line 8, we multiply
the top parts of the registers poly0 and
poly1, obtaining a product correspond-
ing to a1 ·b1. This product is a 24-bit result and it is stored in tmp. The value in
tmp is then reduced mod 3329 (line 9). Listing 1.2 gives the code of the Mont-
gomery subroutine and Appendix A explains why the deployed Montgomery
reduction algorithm for mod 3329 computation induces 3 further operations on
28-bit values. Next, the result is multiplied by ζ (line 10), added to a0 · b0 (line
11) and reduced mod 3329 via Montgomery reduction (line 12), resulting in the
term a1 · b1 · ζ+a0 · b0 (cf. Equation (1)). Next, the code sums of the cross terms
as a1 · b0 + a0 · b1 (line 14) and reduces it mod 3329 (line 15).

4.2 Hamming weight model

We analyze our attack in the Hamming weight model which leaks the number of
ones in the processed values. We assume that the power consumption of a device
correlates with the Hamming weights of the computed states. In our analysis,
we will check whether each possible secret coefficient ai ∈ {0, .., 3328} (or each
possible pair of coefficients) leads to a unique sequence of hamming weight values



22 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

during the pair-point multiplication. If this is the case, then we expect that the
leakage coming from a pair-point multiplication will allow us to identify the value
of the secret coefficients used within that pair-point multiplication.

For the first heuristic estimate, let us compute an upper bound on the leaked
information by assuming that all computations correspond to independent uni-
formly random k-bit strings. The expected information we obtain from the Ham-
ming weight of a uniformly random k-bit string |log Pr[HW = i ]| is the number
of bits of information which we weigh by the probability of obtaining a state with
hamming weight i, leading to the expected information (or Shannon Entropy)

H(k) :=

k∑
i=0

Pr[ HW = i ] · |log (Pr[ HW = i ])| =
k∑
i=0

(
k
i

)
2k

∣∣∣∣∣log

((
k
i

)
2k

)∣∣∣∣∣
for a uniformly random k-bitstring. Asymptotically, the expected information
H(k) grows linearly in

√
k. For example, we have H(24)=3.34 and H(28)=3.45.

Recall that our attack using q+q templates (see Subsection 3.1) first extracts
a1 before extracting a0. Concretely, the five operations up to and including
line 10 in Listing 1.1 only depend on a1. They first write a 24-bit value for
multiplication of a1 and b1, then three 28-bit values in the Montgomery reduction
(cf. Appendix A) and then another 24-bit value for multiplication of a1 ·b1 ·ζ. We
obtain the overall expected information of H(24) + 3 · H(28) + H(24) ≈ 13.69
bits leakage about a1 only. Since a1 is a 12-bit value, it is plausible that we
extract a1 correctly with good probability from these five operations, even if not
always, since 13.69 bits is only slightly above 12 bits and the random variable is
concentrated around its expectation rather than exactly at its expectation.

To extract both values a0 and a1, we have two Montgomery reductions (line 12
and line 15), each resulting in 3 more operations, leaking together 6·H(28) ≈ 20.7
additional bits and the computation and addition of cross terms in line 14, which
generate another H(24)-bit value, leading to an overall leakage of 13.69 + 20.7 +
3.34 = 37.73 bits to extract a 12 + 12 = 24-bit value (a0, a1), suggesting that
trying out all pairs should succeed with a high probability. Appendix B confirms
our heuristic calculus with simulations. Additionally, the heuristic calculations
and the simulations from the next section suggest that the q + q attack and the
q2 attack are robust even when adding a certain amount of Gaussian noise.

4.3 Simulations of Gaussian Noise

We now simulate the aforementioned operations while adding a small Gaussian
noise with standard deviation σ to the simulated target trace. Subsequently, we
list the best coefficient candidates according to the L2-norm.

Using this method (see Appendix B for details), we analyze the probability
of a2i being amongst the top 1, 2, 3, 10, 100 candidates (cf. Fig. 6) when ana-
lyzing only the operations that depend on a2i alone as well as the probability
of (a2i, a2i+1) being amongst the top candidates (cf. Fig. 7) when analyzing all
operations depending on (a2i, a2i+1). Since the probability of a2i being the top
1 candidate is only 0.9475 when no noise is added, the probability of obtaining



Breaking DPA-protected Kyber via the pair-pointwise multiplication 23

all 128 correct a2i is (0.9475)128 ≈ 0.001 and thus too low to be useful. However,
up to σ = 0.87, the probability of a2i being amongst the top 100 candidates is
≥ 0.999 and thus, up to a noise of σ = 0.7, with probability 0.99128 ≈ 0.88, we
can significantly reduce the search space for the coefficient pairs from q2 to 100q.

For larger noise, we need to run the q2 attack. The probability of (a2i, a2i+1)
being the top 1 candidate drops below 15

16 at σ = 0.54. In turn, the probability
of (a2i, a2i+1) being amongst the top 100 candidates stays above 0.99 up to
σ = 0.72. When aiming to brute-force the remaining uncertainty, in expectation,
for σ = 0.72, we have 15

16 · 128 ≈ 16 positions where we need to try out 100

candidates yielding a computation cost of 10016 ≤ 220 times
(
128
16

)
≈ 2128. The

brute-forcing cost is thus dominated by the binomial coefficient
(
128
`

)
, determined

by the number ` positions which we need to brute-force.
(
128
`

)
remains below 240

for ` ≤ 5. For each noise rate, we can now compute the probability of extracting
all 128 coefficients if we brute-force only up to 5 positions as follows:

p128100 ·
5∑
`=0

(
128

`

)
· (1− p1)` · p128−`1 ,

where p100 is the probability that (a2i, a2i+1) is amongst the top 100 candidates
and p1 is the probability that it is the top candidate. This probability is almost
1 when σ ≤ 0.4 and then drops to almost 0 sharply for 0.4 ≤ σ ≤ 0.55, also see
the dashed line in Fig. 7.

5 Experimental evidence

This section presents experimental results for three attack variations from Sec-
tion 3: q2, q, and an improved version using an online template attack (OTA)7.
Similar to the original OTA [6,7], we calculate the correlation between the target
trace and a template, resulting in a matching trace that indicates a match. If the
secret coefficient pair in the template matches that used in some multiplication
in the target trace, we observe a region in the matching trace with values close
to one. We first describe our experimental setup and then discuss our results.

We target the masked Kyber implementation from the mkm4 repository [18].
Our experiments use the same setup as described in that paper, utilizing the
ChipWhisperer Lite platform with an STM32F303 target [31], featuring an Arm
Cortex-M4 core. This setup ensures low noise and well-aligned traces. Our focus
is the poly basemul function, where we compute pair-pointwise multiplication.

In our experiments, we use the same physical instance of the ChipWhisperer
device for profiling and attacking, which is the best scenario for an attacker.
However, this might not reflect a real-world scenario and we leave investigating
the portability of templates in our attack as future work.

7 Paper supplementary materials, the attack scripts in particular, are available at:
https://github.com/crocs-muni/Attack_Kyber_ACNS2024

https://github.com/crocs-muni/Attack_Kyber_ACNS2024


24 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Fig. 1: Characterization: target trace (top), subtraction of the target trace from
an incorrect template (middle) and from the correct template (bottom).

Before launching the attack, we need to select relevant regions of the traces.
After testing multiple methods and approaches, the Difference-of-Means ap-
proach described in [6] proved to be the best. We always select 33 points of
interest per pair-pointwise multiplication for all our attacks (since that number
yiels the best results).

In the q + q attack, we observe a limited leakage and the results are rather
modest. We obtain a more accurate success rate for the first pair-pointwise mul-
tiplication than the remaining ones. On average, the correct candidate for the
first multiplication is ranked at 282, and for all multiplications, it is at 1623 (out
of 3329). This is insufficient for the attack to succeed. Improving the success
rate, possibly using deep learning, is left for future work.

5.1 q2 attack

Next, we attempt q2 attack. We obtain the q2 templates for all pairs of coefficients
and each template is exactly one trace. Therefore, for this experiment, we use
exactly 11082241 template traces to attack single target traces separately.

In Figure 1, we illustrate our method for visualizing leakage, following the
approach outlined in [21]. This approach involves calculating the difference be-
tween a template and our target trace, as depicted in Figures 3 and 4 of [21].
The top trace in Figure 1 represents our target trace, with the highlighted area
indicating the calculation of a pair-point multiplication. The middle trace shows
the result when we subtract the target from a template that does not match the
secret coefficients used in the highlighted pair-point multiplication. The bottom
trace corresponds to the difference between the target and a template using the
correct pair of secret coefficients. Notably, the highlighted region in this trace
contains sample values very close to zero.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 25

Fig. 2: The effect of previous multiplication on the following one: the correlation
between the current multiplication value and the whole trace (in blue).

When comparing a target traces to the template corresponding to the pair of
coefficients found in the secret key, our difference trace consistently contains a
region with samples close to zero, as shown at the bottom of Figure 1. However,
when attempting to compare a template for a pair of coefficients that do not
appear in the key, the difference trace does not exhibit such a low region.

In the q2 attack, we compare each pair of coefficients with templates, result-
ing in an ordered list of candidate values. Notably, there is a significant difference
in accuracy between the first pair of coefficients and the rest. As shown in Fig-
ure 3, the first pair is correctly recovered in about 86% of cases, while the average
success rate across all multiplications is 34%. This discrepancy is due to traces
being influenced by previous multiplications, as illustrated in Figure 2, where the
coefficient from the first multiplication affects slightly the subsequent multiplica-
tion, too. The first multiplication is not affected by any previous multiplication
and that is why the corresponding success rate is much better.

Given the high success rates of the q2 attack in recovering the first multiplica-
tion, we can reduce the number of candidate templates and initiate a combined
attack using both q2 and OTA. We begin with the q2 attack. Assuming success-
ful recovery of the first multiplication, we generate a new set of templates by
combining the top two results for the first multiplication with a select number of
top candidates for the second multiplication. These new templates cover a larger
portion of the trace and are fewer in number, resulting in improved matching
rates. We now repeat this process, assuming the first two multiplication coef-
ficients have been recovered correctly, iterating through the whole trace. The
main downside of this approach is requiring additional templates.

We successfully recover all coefficients for 3 attacked traces with this ap-
proach, at the cost of the increased number of templates – 20 600 000, 43 000 000,



26 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Fig. 3: q2 attack success rate: blue line corresponds to the first candidate being
correct and orange line to the correct candidate being in the top 100 results.

Fig. 4: Left: success rates of the full attack on masked Kyber768 wrt. the number
of captured templates, estimated from 100 random target traces. Right: the extra
number of templates required for the OTA attack (only non-zero values).

and 20 600 000, respectively. These numbers can be lowered, as described in the
analysis of the required number of traces in the following section. With our
setup, gathering additional 15 000 templates per multiplication takes about 9
days 8 and cover 87% of attacked traces. The success rates for different amounts
of templates for the full attack on masked Kyber768 are shown in Figure 4.

5.2 Attack analysis

In order to launch the q2 + OTA attack, it is necessary to collect the 11M tem-
plates for the q2 attack and the additional traces for each multiplication. Based
on the analysis of 100 random traces, the additional requirement is, on average
13 000 - 15 000 per candidate for each multiplication, as shown in Figure 4.

8 Note, however, that we did not optimize our setup for the speed of acquisition.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 27

To successfully attack unmasked Kyber768, we need to repeat the attack
3 times, reducing the experimental success rate to 65%. Kyber768 performs
three polynomial multiplications: the initial poly basemul and two subsequent
poly basemul acc operations. The poly basemul acc function is similar to op-
eration poly basemul but also accumulates its results into the previous multi-
plication, hence the name “accumulation.”

The code of poly basemul acc mixes accumulation instructions with other
multiplication instructions, necessitating separate template collection. These
templates rely on results from previous multiplications. However, we already
have these coefficients from previous attacks (notably, on poly basemul). While
the attack on poly basemul acc should perform better due to more leaking in-
structions, new templates must be collected for each execution, depending on
the previously recovered coefficients.9 For a complete attack on unmasked Ky-
ber768, we would need approximately 44.5M templates: 3 × 11 million (for 3
executions) and 3× 15 000× 2× 128. Here, we assume that we need 15 000 addi-
tional templates per multiplication and a conservative estimate that we cannot
reuse templates for poly basemul acc if accumulation inputs differ. Based on
preliminary characterization, it seems that re-using templates for different inputs
is challenging and we leave it to be investigated in future work.

To attack masked Kyber768 with order 2, we need to execute attack 6 times:
2 times for poly basemul and 4 times for poly basemul acc. For poly basemul

we would need to collect templates once, but for poly basemul acc templates
need to be collected each time. Therefore, we would need the following number
of templates: 5 ∗ 11M + 6 ∗ 15000 ∗ 2 ∗ 128 ≈ 78M to achieve 43% success rate;
to increase it to 90% we need approximately 105M traces as shown in Figure 4.
At the time of writing, the current setup was able to capture 1 500 traces per
minute. At this rate, gathering the full 78M templates would take about 45 days.
In general, we leave improving the efficiency of this attack as future work.

6 Countermeasures

The standard countermeasures of masking or shuffling the polynomial multipli-
cation in Kyber do not seem to be effective for protecting against the type of
template attack we present in this paper. In the following, we discuss possible
countermeasures which, to the very least, should impose significant obstacles to
the success of our attack.

Shuffling of the multiplication steps. One possible countermeasure may be
the random shuffling of the operations performed within each pair-point multi-
plication. This would make our template matching steps more difficult since the
operation sequence in our templates may not align with the sequential opera-
tion of the pair-point multiplication. However, if the pair-point multiplication is

9 Initial tests hint at a 30% acquisition reduction for the OTA step with a single
poly basemul acc experiment. However, we exclude this result from our estimates,
reserving exploration of this optimization for future work.



28 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

optimized and implemented via Karatsuba, there are not many different ways
in which the operation sequence can be permuted while maintaining correctness
(see the listings in Section 4).

Masking schemes with larger modulus. As discussed in Subsection 3.3,
masking schemes that generate shares with coefficients with much larger values
would certainly make our attack more difficult. Such schemes would imply an
increase in the number of templates needed for our attack, and the chances of
getting false positive matches would also increase. Unfortunately, such masking
schemes imply an increase in the usage of computational resources (e.g. memory
and stack usage) and the online complexity of Kyber.

Randomisation of the secret coefficients. The works in [46,19] propose and
improve a countermeasure based on randomizing the polynomials of the secret
coefficients via the redundant number representation (RNR). Secret coefficients
are randomized by adding a randomly chosen value r · q, with r ∈ [1, 2k). The
computations are then performed mod (2kq). Given such a countermeasure,
we can still apply the same attack described in this paper and extract the ran-
domized secret coefficients. A polynomial with such randomized coefficients is
equivalent to the original secret polynomial, and thus, the extracted values are
just as helpful in breaking the security of decryption. We note, however, that
this countermeasure would make our attack more difficult since now there is a
larger set of possible values for the secret coefficients.

Masking of the input ciphertext. Reparaz et al. proposed masking of the
input ciphertext as a countermeasure against side-channel attacks [36]. Such
an approach would effectively mitigate our attack since we would not know
the value of the ciphertext polynomial used when performing the polynomial
multiplication during decryption. However, masking of an input ciphertext is
an expensive countermeasure against SCA given that (1) one needs to integrate
a source of randomness during decapsulation. Such a source is needed because
for blinding the ciphertext, one needs first to generate a random message; (2)
the newly generated message needs to be encrypted (see Algorithm 2); and (3)
the extra noise added to the encryption of the new message may affect the
homomorphic property of the complete scheme and the chances of decryption
failure increase.

Polynomial blinding. Polynomial blinding may be a straightforward way of
mitigating our attack [39]. The idea of this countermeasure is to multiply both
polynomials a, b ∈ Rq by a randomly chosen integer t ∈ Z, s.t. ta · t−1b = a · b.
Since the value t is unknown, the adversary does not know the value of any of
the two operand polynomials and thus cannot construct useful templates. The
adversary could attempt to extract either the value t or its inverse via some
other side-channel attack. Recall that the adversary knows the value of one of
the two polynomials, which would be blinded.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 29

Parallelisation of the pair-point multiplication. Parallelizing several of the
pair-point multiplications prevents a straightforward application of our attack.
Namely, the parallelization forces us to recover several coefficients simultane-
ously so that the complexity of our attack is squared when running 2 parallel
threads and quadrupled when running 4 parallel threads. The success proba-
bility, in turn, is expected to decrease since the expected information increases
sub-linearly. Concretely, with 2 threads, the implementation would leak from 56-
bit values, whose expected information leakage is ≈ 3.95, which is less than two
times the expected information from 28-bit values, which is ≈ 2·3.45 = 6.9. With
4 threads, the implementation would leak from 112-bit values, whose expected
information leakage is ≈ 4.45, which is less than four times the expected informa-
tion from 28-bit values, which is ≈ 4 ·3.45 = 13.8. As already discussed, however,
performing multiplications in parallel seems out of scope for constrained devices
as integrating an additional multiplier entity would imply a high cost in terms
of size.

Complete NTT and actual point-wise multiplication. Certainly, some of
our attack strategies cannot be applied to schemes that implement a complete
NTT to its polynomials and then multiply them in a proper point-wise fashion.
For instance, our attack using q2 templates does not work anymore since two
adjacent coefficients will be processed in independent multiplications. We could
still try applying our simplest attack using only q templates, and the success
would be dependent on how much leakage we obtain from one integer multipli-
cation plus one modular reduction. If that sequence of operations leads to enough
leakage, we could extend our attack, for instance, to Dilithium [25], which was
selected as a post-quantum candidate signature scheme. Dilithium performs a
full NTT and a point-wise multiplication.

References

1. Github repository: Collection of post-quantum cryptographic algorithms for the
arm cortex-m4. Last modified: 2023, https://github.com/mupq/pqm4.

2. Github respository for masked Kyber presented in [18], 2022. https://github.

com/masked-kyber-m4/mkm4.
3. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Kyber (version 1.0) – submission to round 1 of the
NIST post-quantum project. submission to the NIST post-quantum cryptography
standardization project, 2017. https://pq-crystals.org/kyber/data/kyber-

specification.pdf.
4. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Kyber (version 3.0) – submission to round 3 of the
NIST post-quantum project. submission to the NIST post-quantum cryptography
standardization project, 2020. https://pq-crystals.org/kyber/data/kyber-

specification-round3-20210804.pdf.

https://github.com/mupq/pqm4
https://github.com/masked-kyber-m4/mkm4
https://github.com/masked-kyber-m4/mkm4
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf


30 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

5. Linus Backlund, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Secret key recovery
attacks on masked and shuffled implementations of CRYSTALS-Kyber and saber.
Cryptology ePrint Archive, Paper 2022/1692, 2022. https://eprint.iacr.org/

2022/1692.

6. Lejla Batina,  Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and
Michael Tunstall. Online template attacks. In Willi Meier and Debdeep Mukhopad-
hyay, editors, Progress in Cryptology - INDOCRYPT 2014 - 15th International
Conference on Cryptology in India, New Delhi, India, December 14-17, 2014, Pro-
ceedings, volume 8885 of Lecture Notes in Computer Science, pages 21–36. Springer,
2014.

7. Lejla Batina,  Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and
Michael Tunstall. Online template attacks. Journal of Cryptographic Engineering,
9:1–16, 04 2019.

8. Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation of
SABER. ACM J. Emerg. Technol. Comput. Syst., 17(2):10:1–10:26, 2021.

9. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS
- Kyber: A cca-secure module-lattice-based KEM. In 2018 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018, pages 353–367. IEEE, 2018.

10. Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn
Stam. Assessing the feasibility of single trace power analysis of frodo. In Carlos
Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC
2018 - 25th International Conference, Calgary, AB, Canada, August 15-17, 2018,
Revised Selected Papers, volume 11349 of Lecture Notes in Computer Science, pages
216–234. Springer, 2018.

11. Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van
Vredendaal. Masking Kyber: First- and higher-order implementations. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–214, 2021.

12. Alejandro Cabrera Aldaya and Billy Bob Brumley. Online template attacks: Re-
visited. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):28–59, July 2021. Artifact available at https://artifacts.iacr.org/

tches/2021/a11.

13. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.
Kaliski, çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2002, pages 13–28, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

14. Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Proceedings of ACM Workshop on Theory of Implementation Security Work-
shop, TIS’19, page 2–9, New York, NY, USA, 2019. Association for Computing
Machinery.

15. Elena Dubrova, Kalle Ngo, Joel Gärtner, and Ruize Wang. Breaking a fifth-order
masked implementation of crystals-kyber by copy-paste. In Proceedings of the 10th
ACM Asia Public-Key Cryptography Workshop, APKC ’23, page 10–20, New York,
NY, USA, 2023. Association for Computing Machinery.

16. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. J. Cryptol., 26(1):80–101, 2013.

https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2022/1692
https://artifacts.iacr.org/tches/2021/a11
https://artifacts.iacr.org/tches/2021/a11


Breaking DPA-protected Kyber via the pair-pointwise multiplication 31

17. Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas
Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. Cho-
sen ciphertext k-trace attacks on masked CCA2 secure Kyber. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2021(4):88–113, 2021.

18. Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann, Peter
Schwabe, and Amber Sprenkels. First-order masked Kyber on ARM Cortex-M4.
Cryptology ePrint Archive, Paper 2022/058, 2022. https://eprint.iacr.org/

2022/058.
19. Daniel Heinz and Thomas Pöppelmann. Combined fault and dpa protection for

lattice-based cryptography. IEEE Transactions on Computers, 72(4):1055–1066,
2023.

20. Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi
Shamir. Collision-based power analysis of modular exponentiation using chosen-
message pairs. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lec-
ture Notes in Computer Science, pages 15–29. Springer, 2008.

21. Michael Hutter, Mario Kirschbaum, Thomas Plos, Jörn-Marc Schmidt, and Stefan
Mangard. Exploiting the difference of side-channel leakages. In Werner Schindler
and Sorin A. Huss, editors, Constructive Side-Channel Analysis and Secure Design
- Third International Workshop, COSADE 2012, Darmstadt, Germany, May 3-4,
2012. Proceedings, volume 7275 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2012.

22. Yanning Ji, Ruize Wang, Kalle Ngo, Elena Dubrova, and Linus Backlund. A side-
channel attack on a hardware implementation of CRYSTALS-Kyber. Cryptology
ePrint Archive, Paper 2022/1452, 2022. https://eprint.iacr.org/2022/1452.

23. M. J. Kannwischer. Polynomial Multiplication for Post-Quantum Cryptography.
PhD thesis, Nijmegen U., 2022.

24. A. Karatsuba and Yu. Ofman. Multiplication of Multidigit Numbers on Automata.
Soviet Physics Doklady, 7:595, January 1963.

25. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-Dilithium, 2020. https://
csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

26. Vadim Lyubashevsky and Gregor Seiler. NTTRU: truly fast NTRU using NTT.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):180–201, 2019.

27. Soundes Marzougui, Ievgen Kabin, Juliane Krämer, Thomas Aulbach, and Jean-
Pierre Seifert. On the feasibility of single-trace attacks on the Gaussian sampler
using a CDT. In Elif Bilge Kavun and Michael Pehl, editors, Constructive Side-
Channel Analysis and Secure Design - 14th International Workshop, COSADE
2023, Munich, Germany, April 3-4, 2023, Proceedings, volume 13979 of Lecture
Notes in Computer Science, pages 149–169. Springer, 2023.

28. Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers, Jose
Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis of lattice-
based post-quantum cryptography: Exploiting polynomial multiplication. ACM
Trans. Embed. Comput. Syst., Nov 2022.

29. Kalle Ngo, Ruize Wang, Elena Dubrova, and Nils Paulsrud. Side-channel attacks on
lattice-based kems are not prevented by higher-order masking. Cryptology ePrint
Archive, Paper 2022/919, 2022. https://eprint.iacr.org/2022/919.

30. Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practi-
cal CCA2-secure and masked Ring-LWE implementation. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(1):142–174, 2018.

https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/1452
https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/919


32 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

31. Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source plat-
form for hardware embedded security research. In Emmanuel Prouff, editor, Con-
structive Side-Channel Analysis and Secure Design - 5th International Workshop,
COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers, volume
8622 of Lecture Notes in Computer Science, pages 243–260. Springer, 2014.

32. David F. Oswald and Christof Paar. Breaking mifare desfire MF3ICD40: power
analysis and templates in the real world. In Bart Preneel and Tsuyoshi Takagi,
editors, Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th In-
ternational Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
volume 6917 of Lecture Notes in Computer Science, pages 207–222. Springer, 2011.

33. Peter Pessl and Robert Primas. More practical single-trace attacks on the number
theoretic transform. In Peter Schwabe and Nicolas Thériault, editors, Progress in
Cryptology - LATINCRYPT 2019 - 6th International Conference on Cryptology
and Information Security in Latin America, Santiago de Chile, Chile, October 2-
4, 2019, Proceedings, volume 11774 of Lecture Notes in Computer Science, pages
130–149. Springer, 2019.

34. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks
on masked lattice-based encryption. In Wieland Fischer and Naofumi Homma, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Inter-
national Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume
10529 of Lecture Notes in Computer Science, pages 513–533. Springer, 2017.

35. Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based PKE and kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

36. Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and In-
grid Verbauwhede. Additively homomorphic ring-lwe masking. In Tsuyoshi Takagi,
editor, Post-Quantum Cryptography, pages 233–244, Cham, 2016. Springer Inter-
national Publishing.

37. Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and Ingrid
Verbauwhede. Masking ring-lwe. J. Cryptogr. Eng., 6(2):139–153, 2016.

38. Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert. A side
journey to titan. In 30th USENIX Security Symposium (USENIX Security 21),
pages 231–248. USENIX Association, August 2021.

39. Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures for
lattice signatures - engineering a side-channel resistant post-quantum signature
scheme with compact signatures. J. Cryptogr. Eng., 8(1):71–84, 2018.

40. Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. IACR Cryptol. ePrint Arch., page 39, 2018.

41. Jian Wang, Weiqiong Cao, Hua Chen, and Haoyuan Li. Practical side-channel
attack on masked message encoding in latticed-based kem. Cryptology ePrint
Archive, Paper 2022/859, 2022. https://eprint.iacr.org/2022/859.

42. Ruize Wang, Martin Brisfors, and Elena Dubrova. A side-channel attack on a bit-
sliced higher-order masked crystals-kyber implementation. IACR Cryptol. ePrint
Arch., page 1042, 2023.

43. Yufei Xing and Shuguo Li. A compact hardware implementation of cca-secure
key exchange mechanism CRYSTALS-Kyber on FPGA. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(2):328–356, Feb. 2021.

44. Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen, and Shivam Bhasin. STAMP-
single trace attack on M-LWE pointwise multiplication in Kyber. Cryptology
ePrint Archive, Paper 2023/1184, 2023. https://eprint.iacr.org/2023/1184.

https://eprint.iacr.org/2022/859
https://eprint.iacr.org/2023/1184


Breaking DPA-protected Kyber via the pair-pointwise multiplication 33

Alg. 5: Montgomery reduction

1 modulus q, R = 2n > q, q−1 mod (R), a ∈ Z such that a < qR Output: t ≡ aR−1

(mod q), 0 ≤ t ≤ 2sq

2 t← a(−q−1) mod (R);
3 t← (a+ tq)/R;
4 s return t;

Alg. 6: Signed Montgomery reduction from [40]

1 modulus q, R = 2n > q, q−1 mod± (R), a ∈ Z such that a < qR Output: t ≡ aR−1

(mod q), |t| ≤ q
2 t← aq−1 mod± (R);
3 t← (tq)/R;
4 t← ba/Rc − t;
5 return t;

45. Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu, Bao Li,
and Jingnan He. Preprocess-then-NTT technique and its applications to Kyber
and NewHope. In Fuchun Guo, Xinyi Huang, and Moti Yung, editors, Information
Security and Cryptology - 14th International Conference, Inscrypt 2018, Fuzhou,
China, December 14-17, 2018, Revised Selected Papers, volume 11449 of Lecture
Notes in Computer Science, pages 117–137. Springer, 2018.

46. Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. FPGA implementation and
comparison of protections against SCAs for RLWE. In Feng Hao, Sushmita Ruj,
and Sourav Sen Gupta, editors, Progress in Cryptology – INDOCRYPT 2019, pages
535–555, Cham, 2019. Springer International Publishing.

A Montgomery reduction

Kyber represents elements in Montgomery representation in order to avoid ex-
pensive division by q and computation mod q and replace it by division by 216

(taking the top half of a register) and computation mod 216 (taking the bottom
half of a register). In the following, we present the Montgomery reduction with
general R and q, but Kyber indeed uses R = 216.Consider R = 2k > q, and an
element a < qR. To reduce the memory footprint, we can store a/R and this
reduces the element a by k bits, and it can be efficiently implemented. In the
Montgomery domain, the idea is to make sure that the element a is a multiple
of R by introducing a correction step. More precisely, imagine that we want to
find a value t, such that a − tq is divisible by R. To bring the element to the
Montgomery domain, one computes t as aq−1 (mod R) in a way that a− aq−1q
(mod R) = 0. Following closely Section 2.3.2 in [23], Algorithm 6 shows the case
of signed Montgomery reduction from [40].

We now provide more details on how we determined the length of values for
the Hamming weight that we use in our numerical estimates in Section 4.2:

1. a1 · b1 12 + 12 = 24 bits
take bottom of register 16 bits
then multiply by qinv |qinv| = 12 bits



34 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

2. (a1 · b1)B · qinv 16 + 12 = 28 bits
take bottom of register 16 bits
then multiply by q |q| = 12 bits

3. ((a1 · b1)B · qinv)B · q 16 + 12 = 28 bits
add (a1 · b1) |a1 · b1| = 24 bits

4. ((a1 · b1)B · qinv)B + (a1 · b1) max{24, 48} = 28 bits
take top of register and call it c |c| = 12 bits

5. c · ζ 12 + 12 = 28 bits

B Details on noiseless and noisy simulations

We now discuss our simulations for noiseless operations within the pair-point
multiplications comprehensively and additionally explain how we calculated prob-
abilities in our noisy simulations. We first focus on the first 5 instructions of the
pair-point multiplication, cf. Section 4.2. Our simulations calculate which coeffi-
cients a2i+1 ∈ [0, . . . , q− 1] have unique combinations of hamming weight values
(hamming weight tuples) during these instructions. Recall from Equation 3 that
pair-point multiplication also computes the term a1b1ζ, where the value of ζ
changes for each pair-point multiplication. So for our simulations, we initially
fix ζ0 and try out all possible values for a1 and all possible values b1. We obtain
the average probability that a value for a1 leads to a unique hamming weight
tuple. Then, we change to ζ1 and iterate over all possible values for a3 and all
possible values for b3. We continue this process, obtaining the averages for all
a2i+1, given all ζi. We thus obtain probabilities for extracting each odd coef-
ficient, given a random ciphertext. Observe that in our simulations we do not
consider micro-architectural aspects, like instruction pipelining, of our target.

As we show, most of the values for an odd coefficient indeed lead to unique
hamming weight tuples. Only a small fraction of coefficients have collisions. On
average, 3031 of these values have unique hamming weight tuples, i.e. there ex-
ist 3031 hamming weight tuples which map to exactly one coefficient value. 259
coefficients lead to 2-way collisions. This means that there exist 259/2 ≈ 130
hamming weight tuples which map to exactly two different coefficient values.
Subsequently, there exist 34 coefficients which have 3-way collisions and 4 coeffi-
cients which have 4-way collisions each. On the average only a 0.03125 fraction of
tuples maps to more than 4 different coefficient values. We now provide further
details about the results of our simulations.

Extracting odd coefficients (a2i+1). Our simulations show that for a uniformly
random b2i+1, the probability of extracting a2i+1 from the first 5 instruction
is ≈ 0.90. This means that given a random ciphertext, we have good chances
of extracting each odd coefficient. The probability of obtaining two possible
candidates for each odd coefficient is ≈ 0.085, and the probability of obtaining
three possible candidates for each odd coefficient is ≈ 0.011. Thus, taking a union
bound, we obtain that the probability that a given a2i+1 has either a unique
hamming weight tuple, or a 2- or 3-way collision is ≈ 0.996. For this reason



Breaking DPA-protected Kyber via the pair-pointwise multiplication 35

in the rest of this analysis we only consider the case that we are dealing with
coefficients with unique hamming weight tuples, or with 2- or 3-way collisions.

In the table under Number of Matches (1), we see the probability that
each odd coefficient a1, a3, ..., a255 has a unique hamming weight tuple. We cal-
culate this probability over all b1 ∈ [1, . . . , q−1], and note that the probability is
dependent on the value of ζ. Thus, the probability that a1 has a unique hamming
weight tuple is different from that of a3, a5, etc, but the probability is always
between 0.801 and 0.937, with an average of 0.90. Under Number of Matches
(2) and (3), we see the analogous probabilities that each odd coefficient a2i+1

has a hamming weight tuple with a 2- and 3-way collision correspondingly.

We recall that in our attack using q+ q templates (cf Subsection 3.1), we use
the first set of q templates for extracting the odd coefficients. According to our
results, we should have a 90% chance of correctly extracting each odd coefficient
- but we should recall that in Kyber, the secret keys consist of polynomials
of degree 255. Thus, the probability of extracting all odd coefficients correctly
is notably smaller. In fact, if we consider all probabilities of Figure 5 for the
chances that each odd coefficient has a unique hamming weight tuple, we obtain
a probability of Π127

i=0pi ≈ 1.2967 × 10−6 of extracting all odd coefficients from
one polynomial, given only q templates. We will explain later in this section how
we can use the results of our simulations to outline an attack strategy that easily
increases our success probabilities, with just a linear increase in the number of
templates needed.

Extracting coefficient pairs (a2i, a2i+1). The lower part of Figure 5 gives the
probabilities that each secret coefficient pair leads to a unique hamming weight

Nr. of templates Root Number of Matches
1 2 3

q-templates

ζ0 2226 0.8696 0.108 0.018
ζ1 −2226 0.9344 0.0603 0.0042
ζ2 430 0.8688 0.1087 0.0178
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ζ126 1628 0.8715 0.1067 0.0173
ζ127 −1628 0.9329 0.0615 0.0044

q2-templates
ζ0 2226 0.9974 0.0025 1.01× 10−5

ζ1 −2226 0.9973 0.0026 7.1474× 10−6

ζ2 430 0.9978 0.0021 4.6282× 10−6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ζ126 1628 0.9973 0.0027 7.4805× 10−6

ζ127 −1628 0.9976 0.0024 5.5263× 10−6

Fig. 5: Number of Matches: given ζi, probability of
a 1-, 2- or 3-way collision. Upper part: the prob-
ability of extracting odd coefficients with q tem-
plates. Lower part: probability of extracting pairs
of coefficients with q2 templates.

tuple. We obtain these prob-
abilities in an analogous way
as for the odd coefficients.
Thus, the probabilities for
each pair (a0, a1), (a2, a3),
(a4, a5), . . . , (a254, a255) are
different as they are depen-
dent on ζ. Note that in this
case, the hamming weight
tuples consist of more val-
ues since we are consider-
ing all instructions within
one pair-point multiplica-
tion. Hence, the very high
probabilities under Num-
ber of Matches (1). We
can conclude from these re-
sults that if we create tem-
plates for all possible pairs
of secret coefficients, our



36 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

# templates σ Probability of being amongst top .. matches
1 2 3

q-templates

0.3 0.8915 0.9775 0.9936
0.4 0.7851 0.9205 0.9617
0.5 0.6530 0.8231 0.8948
0.6 0.5291 0.7027 0.7911
0.7 0.4214 0.5860 0.6775

q2-templates

0.5 0.9336 0.9788 0.9890
0.6 0.8234 0.9112 0.9415
0.7 0.6707 0.7906 0.8419
0.8 0.4998 0.6310 0.7027
0.9 0.3697 0.4839 0.5517
1.0 0.2581 0.3559 0.4135

Table 1: Simulation results for noisy traces.

success probabilities are fairly high, while, on the other hand, it also requires
creating a total of q2 templates.

Efficiency Optimizations. While q2 is a reasonable number of template traces,
collecting all of them is still quite consuming. Thus, we may indeed try extract-
ing all odd coefficients first and then extracting all even coefficients with an
additional set of templates. From the discussions above, we can conclude that
our success probabilities of running a q + q attack are not as high as we would
originally hope (for the mkm4 implementation in the Hamming weight model).
However, the simulation results suggest a natural and very simple way of opti-
mizing the success of the attack. In the following, we outline an attack adaptation
that increases the success probability of our attack and only requires a linear
increase in the number of templates.

First, we can perform a template matching using q templates (as originally
done in Subsection 3.1). For each coefficient we are trying to extract, we rank
the top 3 candidate values for which we get the best matches. Now, we build
templates for extracting the even coefficients. We will create 3 versions of these
templates. In each version, we use a different top 3 candidate for each odd
coefficient, creating an additional set of 3q templates. Thus, we first determine
the top three candidates for each a2i+1 (with high probability) and then try all
three of them in combination with all possible a2i, leading to an overall number
of q + 3q templates. When trying to extract the even coefficients, we get a very
high success rate iff we are using the correct odd coefficient a2i+1. Namely, as
we see in Figure 5, each secret coefficient pair has a very high probability of
having a unique hamming weight tuple.

We can even optimize our attack further by considering the top 4 match
candidates for each coefficient, generating an additional set of 4q templates.
Concretely for the optimized attacks using q+3q and q+4q templates, we obtain
success probabilities of Π127

i=0pi ≈ 0.6755 and Π127
i=0pi ≈ 0.875, respectively.

With 6q = 19974 templates, we have a very high success probability of 0.944,
given a single target trace and a random ciphertext. Subsequently, we can use
our analysis of the coefficients to determine the (expected) ≈ 0.875 fraction
of coefficients that are unique, given our list of coefficients that have a unique
Hamming weight pattern. For the remaining ≈ 0.125 coefficients, brute-forcing
over 40.125·128 = 232 coefficients is feasible.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 37

Fig. 6: Noisy q + q attack simulations.

Fig. 7: Noisy q2 attack simulations.

Noise. We now add Gaussian noise with standard deviation σ to the target
trace and see for which σ we can still extract one or both coefficients. Instead
of searching for perfect matchings, we minimize the L2-norm of the differences
between the simulated target trace and the template. Unfortunately, even for the
q2 attack, the best match under the L2 norms provides the correct (a2i, a2i+1)
value with probability ≤ 0.5 when σ ≥ 0.8. All probabilities are calculated via
10,000 samples and using a random root out of all possible 128 roots.

C Comparison

To the best of our knowledge, there exist two other works in the literature that
target polynomial multiplication in Kyber. In [28], the authors present a CPA
attack on an unprotected polynomial multiplication implementation of Kyber.
This attack led to the extraction of the long-term secret using approximately
200 traces. The main difference in comparison to our work is that the attack [28]
requires multiple target traces and thus is not successful in the presence of a
masking countermeasure. Our attack, on the other hand, requires a single tar-
get trace and, therefore, can successfully target masked implementations. The



38 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

drawback of our approach is that we consider an adversary who can build tem-
plate traces using a profiling device on which the secret can be freely changed.
A classic CPA attack, as presented in [28], does not require any such profiling.

Another related work [44] presents a single-trace template attack on the
polynomial multiplication of an unmasked implementation pqm4 [1] during key
generation 10. There are several differences between this work and ours. First,
note that they did not attack any masked implementation, but only argue about
the attack’s applicability to masking schemes since it attacks single traces. The
attack is performed against a non-optimized implementation, utilizing straight-
forward polynomial multiplication without Karatsuba, leading to each secret
coefficient being loaded twice, while our attack is on the mkm4 masked imple-
mentation, which accesses the secret only once. Second, the attack [44] cannot
be replicated on decapsulation since their template requires the leakage from the
multiplication of k different polynomial values in the matrix A — which happens
in the key generation. On the other hand, our attack can be applied to the key
generation by utilizing the public polynomial values in A. Finally, their attack
does not recover the full secret, but employs an extra key enumeration to finish
the attack; as a result, their attack works for Kyber768 and Kyber1024, but not
for Kyber512. Precise performance comparison is challenging due to uncertain-
ties about the number of required templates in [44]. The authors mention using
500 traces to build templates for each intermediate, with approximately 14 at-
tacked intermediates in each multiplication. This means that their attack would
require only 7 000 templates if one template can be created for all pairwise mul-
tiplications or 896 000 if each multiplication needs to be templated separately.
Consequently, it seems that the attack [44] requires fewer template traces for pro-
filing than our approach, albeit with increased complexity and a lower success
rate, necessitating final key enumeration.

Comparing our approach with [44] is intricate due to the mentioned differ-
ences. Foremost, [44] attacks key generation of the unprotected implementation,
which involves a broader range of secret-dependent operations than our target.
Therefore, we cannot estimate how well the attack from [44] would work against
protected implementation like mkm4. In summary, the attack in [44] has ad-
vantages as it exploits various leaks and capitalizes on them. However, it is not
easy to adapt to other procedures, such as the technique presented in this paper.
Thus, this makes our attack more generic than the one presented in [44].

In Table 2, we give a summary of the comparison with [28] and [44]. From
our work, we present the two versions, i.e., “Simulation” refers to the numbers
of the original introduction of our attack described in Section 3 and concerning
the results obtained via simulations in Section 4. The “Experiment” work refers
to the real-world attack from Section 5, where 78M traces give a 43% success
of extracting the secret key, while 105M traces give over 90% success rate.

10 They also attack a reference implementation, but we do not concentrate on that since
this implementation leaks much more than pqm4 and the attacked by us mkm4. We
are only looking at the long-term secret key and we do not consider the attacks on
the encryption procedure.



Breaking DPA-protected Kyber via the pair-pointwise multiplication 39

Table 2: Comparison of attacks on the long-term secret key from the polynomial
multiplications; the analysis is made for Kyber768 unless stated otherwise.
Work Implementation No. of target

traces
No. of templates Target algorithm Remaining Brute-

Force

[28] Non-masked pqm4 200 0 Decapsulation No

[44] Non-masked refer-
ence and pqm4 im-
plementations

1 Not provided, estimation:
7 000 or 896 000

Key generation For pqm4 Kyber:
512 – infeasible; 768
– 240; 1024 – 25.

This work
(Simulation)

Optimized masked
mkm4 imp.

1

6 628 (q + q attack), or
11 082 241 (q2 attack)

Key generation and
Decapsulation

No
This work
(Experiment)

q2+OTA attack: 78M (43%
SR) or 105M (90% SR)


	Breaking DPA-protected Kyber via the pair-pointwise multiplication

