
168

Automated Detection of Under-Constrained Circuits in
Zero-Knowledge Proofs

SHANKARA PAILOOR∗, Veridise, USA
YANJU CHEN∗, Veridise, USA
FRANKLYN WANG, Harvard University/0xparc, USA

CLARA RODRÍGUEZ, Complutense University of Madrid, Spain

JACOB VAN GEFFEN, Veridise, USA
JASON MORTON, ZKonduit, USA
MICHAEL CHU, 0xparc, USA
BRIAN GU, 0xparc, USA
YU FENG, Veridise, USA
IŞIL DILLIG, Veridise, USA

As zero-knowledge proofs gain increasing adoption, the cryptography community has designed domain-

specific languages (DSLs) that facilitate the construction of zero-knowledge proofs (ZKPs). Many of these

DSLs, such as Circom, facilitate the construction of arithmetic circuits, which are essentially polynomial

equations over a finite field. In particular, given a program in a zero-knowledge proof DSL, the compiler

automatically produces the corresponding arithmetic circuit. However, a common and serious problem is

that the generated circuit may be underconstrained, either due to a bug in the program or a bug in the

compiler itself. Underconstrained circuits admit multiple witnesses for a given input, so a malicious party can

generate bogus witnesses, thereby causing the verifier to accept a proof that it should not. Because of the

increasing prevalence of such arithmetic circuits in blockchain applications, several million dollars worth of

cryptocurrency have been stolen due to underconstrained arithmetic circuits.

Motivated by this problem, we propose a new technique for finding ZKP bugs caused by underconstrained

polynomial equations over finite fields. Our method performs semantic reasoning over the finite field equations

generated by the compiler to prove whether or not each signal is uniquely determined by the input. Our

proposed approach combines SMT solving with lightweight uniqueness inference to effectively reason about

underconstrained circuits. We have implemented our proposed approach in a tool called QED2
and evaluate

it on 163 Circom circuits. Our evaluation shows that QED2
can successfully solve 70% of these benchmarks,

meaning that it either verifies the uniqueness of the output signals or finds a pair of witnesses that demonstrate

non-uniqueness of the circuit. Furthermore, QED2
has found 8 previously unknown vulnerabilities in widely-

used circuits.

CCS Concepts: • Theory of computation → Program verification; Program analysis; Automated
reasoning; Cryptographic protocols.

∗
Both authors contributed equally to this research.

Authors’ addresses: Shankara Pailoor, spailoor@cs.utexas.edu, Veridise, Austin, USA; Yanju Chen, yanju@cs.ucsb.edu,

Veridise, Santa Barbara, USA; Franklyn Wang, Harvard University/0xparc, New York, USA, franklynw2000@gmail.com;

Clara Rodríguez, Complutense University of Madrid, Madrid, Spain, clarrodr@ucm.es; Jacob Van Geffen, Veridise, Austin,

USA, jsvg@cs.washington.edu; Jason Morton, ZKonduit, State College, USA, jason@zkonduit.com; Michael Chu, 0xparc,

New York, USA, michael@0xparc.org; Brian Gu, 0xparc, New York, USA, brian@0xparc.org; Yu Feng, yufeng@cs.ucsb.edu,

Veridise, Santa Barbara, USA; Işıl Dillig, isil@cs.utexas.edu, Veridise, Austin, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART168

https://doi.org/10.1145/3591282

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 168. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0002-9253-9585
HTTPS://ORCID.ORG/0000-0002-6494-3126
HTTPS://ORCID.ORG/0000-0003-1659-2138
HTTPS://ORCID.ORG/0000-0002-5417-8934
HTTPS://ORCID.ORG/0009-0007-7468-4205
HTTPS://ORCID.ORG/0000-0001-8008-1960
HTTPS://ORCID.ORG/0009-0009-4461-7970
HTTPS://ORCID.ORG/0009-0009-4978-4516
HTTPS://ORCID.ORG/0000-0003-1000-1229
HTTPS://ORCID.ORG/0000-0001-8006-1230
https://orcid.org/0000-0002-9253-9585
https://orcid.org/0000-0002-6494-3126
https://orcid.org/0000-0003-1659-2138
https://orcid.org/0000-0002-5417-8934
https://orcid.org/0009-0007-7468-4205
https://orcid.org/0000-0001-8008-1960
https://orcid.org/0009-0009-4461-7970
https://orcid.org/0009-0009-4978-4516
https://orcid.org/0000-0003-1000-1229
https://orcid.org/0000-0001-8006-1230
https://doi.org/10.1145/3591282


168:2 S. Pailoor, Y. Chen, F. Wang, C. Rodríguez, J. Van Gaffen, M. Chu, B. Gu, Y. Feng, I. Dillig

Additional Key Words and Phrases: zero-knowledge proofs, SNARKs, program verification

ACM Reference Format:
Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara Rodríguez, Jacob Van Geffen, Jason Morton, Michael Chu,

Brian Gu, Yu Feng, and Işıl Dillig. 2023. Automated Detection of Under-Constrained Circuits in Zero-Knowledge

Proofs. Proc. ACM Program. Lang. 7, PLDI, Article 168 (June 2023), 25 pages. https://doi.org/10.1145/3591282

1 INTRODUCTION
Since their introduction, zero knowledge (zk) cryptographic proof systems [Goldwasser et al. 1985]

have been used to build several security-sensitive applications such as verifiable computation [fiore

and Tucker 2022], anonymous voting [Onur and Yurdakul 2022], and safe whistle-blowing [Jie 2019].

Moreover, in recent years, these systems have seen an explosion in tooling [Bellés-Muñoz et al.

2022; Eberhardt and Tai 2018] and usage [Ben Sasson et al. 2014; TornadoCash 2019a] in blockchain

applications because they allow users to create private transactions and scale the blockchain with

technologies like zkRollups.

At a high level, the goal of a zk proof system is to allow users to prove statements while using

but not revealing some secret information. In more detail, these proof systems create two entities: a

prover and a verifier. The goal of the prover is to generate a short proof that they know a witness

𝑊 satisfying a relation 𝑅(𝐼 ,𝑊 ) for an input 𝐼 specified by the verifier. The verifier will verify the

proof (with high probability) if and only if the prover actually knows a witness𝑊 satisfying the

relation. We further say the proof system is zero knowledge if the verifier cannot learn anything

about𝑊 other than the fact that 𝑅(𝐼 ,𝑊 ) is satisfied.
In most of these proof systems, 𝑅 is a set of polynomial equations over a finite field and is

commonly referred to as a ZK Circuit. Thus, in order to make use of a zero knowledge proof system,

users must be able to encode their computation as a set of polynomial equations. In particular, given

some computation 𝑃 that takes input 𝑥 and outputs 𝑦, the developer must craft a set of polynomial

equations 𝑅(𝑥,𝑦) such that 𝑅(𝑥,𝑦) is true if and only if 𝑃 (𝑥) = 𝑦. This is a highly non-trivial and

error prone task even for domain experts. To simplify this process, the cryptography community

has developed languages like Circom [Bellés-Muñoz et al. 2022], Zokrates [Eberhardt and Tai 2018],

and Halo2 [Bowe et al. 2019] that allow users to express their intended computation in a somewhat

natural way. Then, given a program in such a DSL, the compiler will generate most of the circuit

automatically. Nevertheless, even with compiler support, developers still need to manually derive a

large number of constraints, as automatically deriving such a constraint system for an arbitrary

computation is an intractably hard problem.
1

To gain some intuition, consider the example in Figure 1. The function IsZero (on the left),

takes as input a number 𝑥 and returns a boolean variable 𝑦 which is true if and only if 𝑥 = 0.

Its corresponding encoding as a circuit is shown on the right. This transformation cannot be

performed automatically by existing compilers, so the user needs to express this computation

directly as polynomial equation. The transformation introduces an existentially quantified variable

𝑤 and its correctness relies on the mathematical fact that a field element is non-zero if and only if

it has a multiplicative inverse.

One particularly dangerous problem that can arise in this context is that the circuit is undercon-
strained, meaning that multiple distinct outputs satisfy the equation for the same input value. In

other words, a circuit is underconstrained if the equations do not specify a function. Intuitively,

such circuits are problematic because there exist inputs for which it is possible for a malicious

user to generate bogus witnesses, thereby causing the verifier to accept a proof that it should not.

1
In fact, there is no decision procedure for proving 𝑅 (𝑥, 𝑦) ⇐⇒ 𝑃 (𝑥 ) = 𝑦 for arbitrary computation 𝑃 .
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Fig. 1. Example conversion of computation (left) into constraints (right)

Recently, several blockchain hacks have been due to underconstrained circuits and resulted in

several million dollars worth of cryptocurrency getting stolen [Aztec 2022; TornadoCash 2019b].

One way to detect underconstrained bugs is to encode the underconstrained property as a logical

formula and check the satisfiability of the formula using an SMT solver. Given a set of polynomial

constraints 𝑃 [𝑖, 𝑜], we can express the underconstrained property using the following formula:

∃𝑖, 𝑜1, 𝑜2. 𝑃 [𝑖, 𝑜1] ∧ 𝑃 [𝑖, 𝑜2] ∧ 𝑜1 ≠ 𝑜2
For any circuit represented by 𝑃 , the circuit is underconstrained if and only if the corresponding

logical formula is satisfiable. This solution, while straightforward, does not work well in practice

because the resulting SMT encoding is challenging for state-of-the-art solvers, including those that

incorporate built-in reasoning about polynomial equations over finite fields [Hader 2022; Ozdemir

2022].

A key observation underlying our technique is that if outputs can be expressed as functions

(rather than relations) over input signals, then those outputs are unique. Moreover, we find, in

practice, that many circuits contain intermediate and output variables that are easily expressible as

functions over inputs. For example, consider the simple set of equations below with input variable

𝑖𝑛, output variable 𝑜𝑢𝑡 , and intermediate variable 𝑠:

𝑠 = 3𝑖𝑛2 + 2
𝑜𝑢𝑡 = 𝑠2 − 4

Here, we can determine that 𝑠 is constrained by the input 𝑖𝑛 since it is expressed as a function over

𝑖𝑛. Similarly, since 𝑜𝑢𝑡 is expressed as a function of 𝑠 , we can compose these functions to express 𝑜𝑢𝑡

in terms of 𝑖𝑛 and thus deduce that the circuit is properly constrained. This lightweight reasoning,

which we refer to as uniqueness constraint propagation (UCP), can establish key properties of the

circuit without making expensive calls to an SMT solver. However, this approach alone cannot

solve the underconstrainted bug-finding problem. Specifically, it cannot find pairs of witnesses to

prove that a circuit is underconstrained.

In this paper, we pursue a new approach that combines the power of SMT-based semantic

reasoning with lightweight UCP. Our technique iteratively invokes UCP analysis to augment the

SMT encoding so that the resulting constraints are easier to solve. The workflow of our approach

is shown in Figure 2. The input to the UCP engine is the ZK Circuit 𝐶 and a set of variables 𝐾

which the algorithm has proven to be fully determined by the inputs. At the start of the algorithm,

𝐾 = ∅. The UCP phase then analyzes the equations with the knowledge that variables in 𝐾 are fully

determined and derives a new set of variables 𝐾 ′ ⊇ 𝐾 that it can prove to be uniquely determined

by the inputs.
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Fig. 2. Overall QED2 Diagram. 𝑂 denotes the set of output variables for the circuit 𝐶 . The check mark
means QED2 proved the circuit was properly constrained. The cross mark indicates QED2 proved the circuit
was underconstrained. ?? means QED2 was unable to prove the circuit was properly constrained or was
underconstrained.

When the UCP phase cannot make further progress, it queries the semantic reasoning engine

about the uniqueness of a particular variable 𝑞. The semantic reasoning engine incorporates the

information discovered by the UCP phase as part of its logical encoding and issues a satisfiability

query to an SMT solver. If the query can be discharged, then 𝑞 is added to set 𝐾 (i.e., variables

proven to be unique). This loop continues until one of three conditions is satisfied:

(1) Verified: All the output variables are a subset of 𝐾 . In this case, the circuit is proven to be

properly constrained. Our approach may terminate with this outcome either after the UCP or

the SMT solving phase.

(2) Refuted: The SMT solver finds a counterexample to uniqueness of a query variable 𝑞 which
corresponds to an output of the circuit. In this case, our approach terminates with a proof that

the circuit is underconstrained. Note that our approach can only refute the property after the

SMT solving phase.

(3) Unknown: No new unique variables are inferred in either the UCP or SMT phase. Our approach
is not complete and may return unknown. When no new unique variables are inferred in either

phase, the algorithm cannot make progress and returns unknown.

We have implemented this algorithm in a tool called QED2
and evaluated it on ZkBench, a

microbenchmark set we collected consisting of 163 real world circuits. Our evaluation shows that

QED2
can verify the uniqueness property for 70% of the benchmarks and found 8 vulnerabilities

due to a circuit being underconstrained.

In summary, our paper makes the following contributions.

• We propose a new algorithm that automatically checks whether a given zero-knowledge proof

circuit is underconstrained. Our algorithm combines lightweight inference for uniqueness with

SMT-based reasoning to generate both proofs and counterexamples.

• We make available ZkBench, a open-source micro-benchmark suite for systematically evaluating

the effectiveness of ZK circuits.

• We implement the approach in an end-to-end system called QED2
and evaluate it on 163 arith-

metic circuits from Circomlib. Our evaluation shows that QED2
can successfully solve 70% of

these benchmarks and detects 8 vulnerable templates that can be underconstrained.

2 BACKGROUND
In this section, we provide some background on Zero-Knowledge Proofs and the Circom program-

ming language.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 168. Publication date: June 2023.
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Circuit
Prover

VerifierSNARK Generator

ComputationCircuit Compiler Witness Generator

Fig. 3. Compiler workflow

Proof

Inputs

Witness Prover VerifierWitness Generator

Public SignalsCircuit

Fig. 4. Usage workflow of Circom. The left half shows the computations done by the user. The right half
shows the computations performed by an untrusted party.

Zero-Knowledge proofs. A zero-knowledge protocol allows one party, the prover, to prove some

statement to another party, called the verifier, without revealing any secret knowledge. While

there are several different types of zero-knowledge protocols, zk-snark (Zero-Knowledge Succinct
Non-interactive ARgument of Knowledge) protocols [Ben-Sasson et al. 2014] have recently gained

popularity due to their succinct proof size and constant verification time. A key property of zk-snark

protocols is that a suitable prover and verifier can be automatically generated from an arithmetic
circuit representation of some computation. An arithmetic circuit takes some input signals which

are values in the range [0, 𝑝) and performs additions and multiplications modulo a prime number

𝑝 . The output of every addition and multiplication produces a signal: an intermediate signal from
intermediate operations, and an output signal from the final operation. In particular, given the

arithmetic circuit, SNARK compilers construct the prover and verifier by translating the circuit

into a set of polynomial equations. For example, compilers for SNARK proof systems like groth-

16 [Groth 2016] first construct a set of RANK-1 constraints [Binello 2019], and then transform

those constraints into Quadratic Arithmetic Program form [Buterin 2016]. Finally, the underlying

cryptographic protocol generates the prover and verifier from these constraints. The details of

how the prover and verifier are generated from the constraints are beyond the scope of the paper

but we refer the interested reader to [Buterin 2016; Groth 2016; Parno et al. 2013] which explains

the construction. In the rest of the paper, we refer to the polynomial equations generated by the

compiler as the arithmetic circuit.

Circom language. Circom is a popular domain-specific language that facilitates the construction

of arithmetic circuits. The Circom DSL allows programmers to express computation using <-- and

--> for input and output signal assignment, === for constraint generation, and <==, ==> to perform

both simultaneously. Given some computation expressed in the Circom DSL, an end-user constructs

the prover and verifier by first compiling the program to an arithmetic circuit and then using a

SNARK Generator (e.g, SNARK-js [Iden3 2018]) to build the prover and verifier from the circuit.

Additionally, the Circom compiler produces a so-called witness generator, which may be used by

end-users to perform the computation and generate a witness that maps signals to values. This

workflow of the Circom compiler is shown in Figure 3.

To provide further intuition, Figure 4 illustrates the typical usage pattern for the output of the
compiler. First, the prover and the witness generator are executed by the user. The prover takes

as input a witness, along with the arithmetic circuit, and generates a proof. Next, the verifier is

executed by an untrusted party. The verifier takes the proof, in addition to the public inputs, and

checks the validity of the proof. When the original Circom program is correct, the verifier approves

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 168. Publication date: June 2023.
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1 pragma circom 2.0.0;

2 include "gates.circom";

3 include "comparators.circom";

4
5 template ValidateDecoding(w) {

6 signal input x;

7 signal input arr[w];

8 signal output success;

9
10 component multiAnd = MultiAND(w);

11 component checkEq[w];

12 component decoder = Decoder(w);

13 decoder.inp <== x;

14 for (var i=0; i<w; i++) {

15 checkEq[i] = IsEqual();

16 checkEq[i].in[0] <== arr[i];

17 checkEq[i].in[1] <== decoder.out[i];

18 multiAnd.in[i] <== checkEq[i].out;

19 }

20 success <== multiAnd.out;

21 }

22
23 component main = ValidateDecoding(2);

Fig. 5. A Circom program for validating decoder. <== performs signal assignment (<--) together with con-
straint generation (===)

the proof as intended. If an invalid witness is inserted by a malicious party, the verifier rejects the

faulty proof.

Underconstrained bugs. In this paper, we refer to a Circom program 𝑃 as underconstrained if its

corresponding circuit 𝐶 is underconstrained, meaning that there exists an input 𝑥 and two distinct

outputs 𝑦,𝑦′ such that 𝐶 (𝑥,𝑦) and 𝐶 (𝑥,𝑦′) are both true. Generally speaking, underconstrained

programs are often problematic because they indicate a discrepancy between the computation

expressed by 𝑃 (witness generation) and the corresponding constraints. In particular, if the compu-

tation is deterministic, then given an input 𝑥 , there is only one 𝑦 such that 𝑃 (𝑥) = 𝑦. As such, the
corresponding constraints should only evaluate to true for a unique 𝑦 given an input 𝑥 . Hence, even

though there are rare cases where unconstrained circuits may not correspond to a bug (see Section

8), they often indicate a subtle problem in the underlying program. As shown by recent studies,

underconstrained bugs in arithmetic circuits can allow an attacker to forge signatures [Connor

2021], steal user funds [Tornado.cash 2019], or mint counterfeit cryptocoins [min 2019]

To get a sense of the seriousness of underconstrained bugs, we briefly describe a real world

attack due to an underconstrained circuit in the smart contract TornadoCash [TornadoCash 2019a]

for the Ethereum blockchain. TornadoCash allows users to deposit and withdraw funds without

people being able to link the specific deposits to the withdraws. However, because a circuit used

in the TornadoCash implementation was underconstrained, attackers were able withdraw all the

funds from TornadoCash including funds of other users.

3 MOTIVATING EXAMPLE
In this section, we present an overview of our approach with the aid of the Circom program

shown in Figure 5, which is intended to check whether arr is a one-hot decoding of x. Hence,
this Circom program can be used to generate a zero-knowledge proof that arr is a valid decoding

of x without revealing any information about the value of x or contents of arr. However, this

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 168. Publication date: June 2023.
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1 pragma circom 2.0.0;

2
3
4 template Decoder(w) {

5 signal input inp;

6 signal output out[w];

7 signal output success;

8 var lc=0;

9
10 for (var i=0; i<w; i++) {

11 out[i] <-- (inp == i) ? 1 : 0;

12 out[i] * (inp-i) === 0;

13 lc = lc + out[i];

14 }

15
16 lc ==> success;

17 success * (success -1) === 0;

18 }

(a) an underconstrained (buggy) decoder

1 pragma circom 2.0.0;

2 include "comparators.circom";

3
4 template Decoder(w) {

5 signal input inp;

6 signal output out[w];

7 signal output success;

8 var lc=0;

9
10 component checkZero[w];

11 for (var i=0; i<w; i++) {

12 checkZero[i] = IsZero();

13 checkZero[i].in <== inp - i;

14 checkZero[i].out ==> out[i];

15 lc = lc + out[i];

16 }

17 lc ==> success;

18 }

(b) a properly constrained (fixed) decoder

Fig. 6. Comparison between an underconstrained circuit (a) and its properly constrained (fixed) version (b).

Circom program actually contains a subtle bug that can lead to attacks. In the rest of this section,

we explain why the code in Figure 5 is buggy and how our technique can be used to find such bugs.

Understanding the Circom program. The Circom program from Figure 5 contains two (private)

input signals x and arr and a public output signal called success. The output success should be

1 when arr is a valid one-hot decoding of x and 0 otherwise. The program first calls the Decoder
sub-circuit (lines 12-13) from the Circom standard library, presented in Figure 6(a). The Decoder
circuit takes as input a value in to be decoded and returns out, a one-hot decoding of in of size w.
If in is larger than w, then the Decoder should return an array of zeros. Next, it checks that all the

elements of arr are equal to out (lines 14-20). If they are, then success is set to 1, otherwise it is set

to 0 (line 20). To assist with value checking, it also calls the MultiAND and IsEqual sub-circuits from
the Circom standard library, where MultiAND computes and returns conjunction of provided inputs

from in, and IsZero checks whether given input is 0 or not in a safe way. Note that the correctness

of ValidateDecoding depends on the correctness of the Decoder; however, the Decoder circuit
has a subtle bug that makes ValidateDecoding vulnerable.

Bug in the program. To understand the bug in Decoder, consider its implementation in Figure

6(a). The Decoder implementation computes the decoded array out and specifies corresponding

polynomial constraints to be used in the circuit. For the implementation to be correct, the constraints

should match the computation, i.e. any satisfying assignment of the constraints should correspond

to a valid execution trace of Decoder. Otherwise a malicious prover can trick the verifier into

validating a proof that does not correspond to a valid execution of the program.

Decoder computes the out array as we would expect: for each 𝑖 ∈ [0,𝑤] (line 10) it sets out[𝑖]
to be 1 if and only if i = in and 0 otherwise (line 11). However, the way Decoder generates the
corresponding constraints is more subtle, and does so in two phases. First, it adds the constraint

that for every entry 𝑖 in the array, if 𝑖 ≠ 𝑥 then arr[i] = 0 (line 12). Note that this assertion is written

as the product of two expressions instead of a simple “if-then-else" since the compiler cannot easily

translate the latter into polynomial equations. To enforce the constraint that arr[i] = 1 if and only

if 𝑖 = x, Decoder computes the sum of the values of out using a local variable lc (line 13) and

assigns it to the signal success (line 16). lc ==> success performs an assignment followed by a

constraint that lc is equal to success. Finally, the constraint success ∗ success − 1 === 0 (line

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 168. Publication date: June 2023.
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17) ensures that the sum of all the elements is either 1 or 0. Intuitively, if out is a valid decoding of

in, then success should be 1 and 0 otherwise.

Underlying circuit. The bug in this implementation is that the constraints generated do not match

the computation. To see why, let us examine the constraints generated by the circom compiler for

the Decoder circuit when𝑤 = 2:

inp · out[0] = 0

(inp − 1) · out[1] = 0

out[0] + out[1] − success = 0

(success − 1) · success = 0

Note that when inp = 1 then out[1] can be either 0 or 1 and satisfy the constraints. Hence, the

following witness would satisfy the constraints:

{inp ↦→ 1, out[0] ↦→ 0, out[1] ↦→ 0, success ↦→ 0}
even though it does not correspond to a valid execution trace of Decoder. As a result, an attacker

can always generate a verifiable proof that they ran the program by setting arr to be an array of

zeros regardless of what gets passed in for x.

The fix. The root cause of this bug is that the value of out[i] is underconstrained when i == in
as it can be either 0 or 1. The fixed implementation of Decoder, shown in Figure 6(b), properly

constrains out[i] by first calling the circuit IsZero (line 12) with inp − 𝑖 as input (line 13). This is
because the IsZero circuit will 1 when inp−𝑖 = 0 and 0 otherwise. Both finding and understanding

this bug is non-trivial, as it requires understanding which equations are generated by the compiler

and reasoning about whether the output is uniquely determined by the input.

Our approach. The goal of the technique proposed in this paper is to automate this reasoning,

thereby preventing subtle bugs in zero-knowledge proof protocols. Our proposed technique directly

reasons about the polynomial equations generated by the compiler rather than Circom programs

themselves. This design choice has several key advantages:

(1) Our technique is language-agnostic, as all zk-snark compilers generate the samemathematical

objects.

(2) Our technique can catch bugs caused by the compiler, which are not uncommon [Aleo 2022;

Noir 2022].

(3) Our technique avoids false positives that source-level pattern matching techniques would

generate.

We have implemented our approach in a tool called QED2
to demonstrate these advantages.

QED2
can fully automatically identify the bug in the Decoder circuit of Figure 6(a) in 15 seconds

and verify the fixed circuit in Figure 6(b) in under 10 seconds.

4 PROBLEM STATEMENT
In this section, we provide background about arithmetic circuits and introduce the problem state-

ment.

4.1 Background
A finite field F is a finite set equipped with two binary operators + and × that have identities (0
and 1), inverses (except 0 for ×) and satisfy associativity, commutativity, and distributivity. A prime
field F𝑝 is a finite field of size 𝑝 where 𝑝 is a prime number. We represent F𝑝 as the set of integers
{0, .., 𝑝 − 1} and take + and × to be integer addition and multiplication modulo 𝑝 respectively.
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Given a set of variables 𝑋 over F𝑝 we write F𝑝 [𝑋 ] to denote the set of polynomials over 𝑋 whose

coefficients are in F𝑝 . We refer to any equation of the form 𝑓 = 0 where 𝑓 ∈ F𝑝 [𝑋 ] as a polynomial

equation over F𝑝 [𝑋 ].
Definition 4.1 (Arithmetic Circuit). Let 𝑋 be a set of variables over a prime field F𝑝 . An

arithmetic circuit 𝐶 (𝑋 ) is a set of polynomial equations {𝑓1 = 0, ..., 𝑓𝑛 = 0} over F𝑝 [𝑋 ].
Example 4.2. The equations on the right-hand side of Figure 1 is an example of an arithmetic

circuit for any F𝑝 .

Definition 4.3 (Logical Encoding). Given an arithmetic circuit 𝐶 (𝑋 ) = {𝑓1 = 0, . . . , 𝑓𝑛 = 0}, we
define its logical encoding J𝐶K to be the formula

∧𝑛
𝑖=1 𝑓𝑖 = 0.

In this work, we encode each polynomial equation as a formula in a specialized theory of finite
fields used by a public fork of the CVC5 SMT solver [Ozdemir 2022]. Polynomial equations can also

be encoded in Peano arithmetic by performing addition and multiplication modulo the prime in

the field.

Since an arithmetic circuit 𝐶 (𝑋 ) encodes some computation over input signals, it is common to

partition 𝑋 into three sets of variables 𝐼 ,𝑊 , and 𝑂 where 𝐼 ,𝑂 are the input and output variables

respectively, and𝑊 denotes the intermediate variables of the computation. In the rest of this paper,

we write 𝐶 (𝐼 ,𝑊 ,𝑂) to distinguish the input, intermediate, and output variables.

4.2 Underconstrained circuits
Our goal in this paper is to demonstrate a fully automated technique for proving that arithmetic

circuits are properly constrained, i.e. not underconstrained. This subsection introduces terminology

to precisely define this problem.

Definition 4.4 (Constrained Variable). Given a circuit 𝐶 (𝐼 ,𝑊 ,𝑂), let 𝑉 denote 𝑂 ∪𝑊 . We say

that a variable 𝑣 ∈ 𝑉 is properly constrained by 𝐶 (or constrained, for short), denoted 𝐶 � 𝑣 , iff:

𝐶 � 𝑣 ≡ UNSAT(J𝐶K ∧ J𝐶K[𝑉 ′/𝑉 ] ∧ 𝑣 ≠ 𝑣 ′)
Intuitively, a variable 𝑣 is constrained if any two satisfying assignments that agree on the input

variables also agree on 𝑣 .

Example 4.5. Consider the following circuit where 𝐼 = {𝑖},𝑊 = {𝑤} and 𝑂 = {𝑜}.
𝑤 ∗ (𝑤 − 1) + 𝑖 = 0

𝑤 + 1 − 𝑜 = 0

Here 𝑜 and 𝑤 are underconstrained because there exist two models of the formula, namely 𝑖 ↦→
0,𝑤 ↦→ 0, 𝑜 ↦→ 1 and 𝑖 ↦→ 0,𝑤 ↦→ 1, 𝑜 ↦→ 2, that both satisfy the constraints but differ on the values

of 𝑜,𝑤 for the same value of 𝑖 .

Definition 4.6 (Constrained Circuit). A circuit 𝐶 (𝐼 ,𝑊 ,𝑂) is constrained if, for every 𝑜 ∈ 𝑂 ,
𝐶 � 𝑜 . Conversely, a circuit is underconstrained iff it is not constrained.

5 VERIFICATION ALGORITHM
In this section, we present our verification algorithm for checking whether an arithmetic circuit is

properly constrained. As shown in Algorithm 1, the Verify procedure takes as input a circuit𝐶 and

returns ✓ if 𝐶 can be proven to be constrained and ✗ if it is provably underconstrained. However,

this algorithm is incomplete, so it can also return ? to indicate unknown.

In Algorithm 1, 𝐾 represents a set of variables that are provably constrained. Initially, this only

includes the input variables 𝐼 (line 4). Then, the verification algorithm enters a loop that terminates
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Algorithm 1 Algorithm for checking whether a circuit is under-constrained

1: procedure Verify(𝐶)
2: Input: Circuit 𝐶 (𝐼 ,𝑊 ,𝑂)
3: Output: ✓ if 𝐶 is correct, ✗ if 𝐶 is under-constrained, ? otherwise
4: 𝐾 ← 𝐼

5: while true do
6: (Δ, 𝐾 ′) ← UCP(𝐶,𝐾) ⊲ Determine range information and new set of constrained variables

7: if 𝑂 ⊆ 𝐾 ′ then return ✓ ⊲ Return when all outputs are constrained

8: 𝑉 ← (𝑂 ∪𝑊 )\𝐾 ′
9: while 𝑉 ≠ ∅ do
10: 𝑣 ← ChooseVar(𝐶,𝑉 )
11: 𝑉 ← 𝑉 \ {𝑣}
12: 𝑟𝑒𝑠 ←Query(Δ,𝐶, 𝐾 ′, 𝑣) ⊲ Query the uniqueness of chosen variable with SMT

13: if 𝑟𝑒𝑠 = ✓ then ⊲ If 𝑣 is constrained, add to 𝐾 ′ and continue

14: 𝐾 ′ ← 𝐾 ′ ∪ {𝑣}
15: break
16: else if 𝑣 ∈ 𝑂 ∧ 𝑟𝑒𝑠 = ✗ then ⊲ If 𝑣 is an output and proven unconstrained, return ✗

17: return ✗

18: if 𝐾 ′ = 𝐾 then ⊲ Return ? when no progress is made

19: return ?
20: 𝐾 ← 𝐾 ′

either when (1) all output variables are in 𝐾 , in which case the circuit is verified (line 7), or (2) the

semantic reasoning engine finds a counterexample (lines 16-17), or (3) the algorithm fails to prove

any new variables as being constrained.

In each iteration of the outer while loop, there are two possible ways to grow set 𝐾 : either

through a call to the UCP procedure at line 6 or through the loop in lines 9–17. As discussed earlier,

the UCP procedure essentially performs lightweight “static analysis" of the circuit to identify as

many constrained variables as possible. However, because the UCP procedure is based on a set

of incomplete inference rules, it may fail to prove the correctness of the circuit even though it

is actually properly constrained. Conversely, it also cannot definitively conclude that 𝐶 is under-

constrained. Thus, if 𝑂 ⊈ 𝐾 ′ at line 7, the algorithm enters the inner while loop in which it tries to

grow the set of constrained variables by invoking an SMT solver.

In each iteration of this inner loop, the algorithm chooses a variable 𝑣 at line 10 and attempts

to prove that 𝑣 is constrained with an SMT solver query (the call toQuery at line 12). If the SMT

solver proves 𝑣 to be constrained, the algorithm breaks out of the inner loop (line 15) and repeats

the process with another chosen variable. On the other hand, if 𝑣 is an output variable and the SMT

solver produces a counterexample, then the algorithm returns ✗ at line 17. Note that unconstrained

intermediate variables do not imply that the overall circuit is underconstrained, so the algorithm

only returns ✗ if 𝑣 corresponds to an output variable.

In the remainder of this section, we explain the UCP and Query procedures in more detail. We

discuss the heuristic used for query variable selection in Section 6.

5.1 Uniqueness constraint propagation
Our uniqueness constraint propagation (UCP) method is presented in Algorithm 2. Given a set of

variables 𝐾 proven to be constrained, the UCP procedure returns a new set of constrained variables

𝑄 ⊇ 𝐾 as well as a mapping Δ that maps each expression in the circuit to a set of constants that it
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Algorithm 2 Uniqueness Constraint Propagation

1: procedure UCP(𝐶,𝐾 )
2: Input: Circuit 𝐶 , variables proven to be constrained 𝐾

3: Output: Constrained variables 𝑄 , range information Δ
4: Δ← InferValues(𝐶)
5: 𝑄 ← 𝐾

6: while true do
7: 𝐾 ′ ← {𝑣 ∈ Vars(𝐶) | Δ,𝐶,𝑄 � 𝑣} ⊲ Apply inference rules to find constrained variables

8: if 𝐾 ′ = ∅ then return (Δ, 𝑄) ⊲ If no progress is made, return

9: 𝑄 ← 𝑄 ∪ 𝐾 ′

𝑥 ∈ 𝐾
𝐾 � 𝑥

(Var)

Constant(𝑐)
𝐾 � 𝑐

(Const)

𝐾 � 𝑒1 𝐾 � 𝑒2 ⊙ ∈ {+,×}
𝐾 � 𝑒1 ⊙ 𝑒2

(Op)

Fig. 7. Expression rules for uniqueness propagation

may be equal to. This value information is used both internally by the UCP procedure as well as

later in the SMT encoding.

Algorithm 2 first invokes the InferValues procedure (presented in Algorithm 3) to compute

a mapping Δ (line 4) which maps each expression 𝑒 in the circuit to a set of constants Ω ⊂ F𝑝
such that Ω over-approximates the values of 𝑒 that can satisfy the constraints in the circuit. The

algorithm then enters a loop in which it repeatedly infers new constrained variables using the set

of inference rules shown in Figure 8 (explained later). Since the inference of new variables can

trigger the application of more inference rules, these rules are applied until a fixpoint is reached. In

what follows, we first explain the rules for inferring new constrained variables and then turn our

attention to value inference.

Inference of constrained variables. The inference rules used in the UCP procedure are presented

in Figure 8 and derive judgments of the following form:

Δ,𝐶, 𝐾 � 𝑥

The meaning of this judgment is that, under the assumption that all variables in 𝐾 are constrained

and the range information in Δ is correct, then variable 𝑥 is constrained in circuit 𝐶 (i.e., 𝐶 � 𝑥).
These rules make use of the (simpler) auxiliary judgment shown in Figure 7, so we start by explaining

them first.

According to the Var rule in Figure 7, any variable in 𝐾 is constrained. The second rule, called

Const, states that all constants are also constrained. The last rule, labeled Op, infers whether a

more complex expression is constrained. In particular, given an expression 𝑒 of the form 𝑒1 ⊙ 𝑒2, 𝑒
is constrained if both 𝑒1 and 𝑒2 are constrained. Note that this rule can be recursively applied to

determine whether an arbitrary expression is constrained.

Next, the inference rules in Figure 8 correspond to common, representative patterns of equations
in arithmetic circuits that enable us to propagate uniqueness constraints to new variables. We

describe each rule in more detail below:

(1) (Assign) If the circuit contains an equation of the form 𝑐𝑥 − 𝑒 = 0, and we have inferred 𝑒

is constrained and 𝑐 is non zero, then we can infer 𝑥 is constrained since the equation can

be rewritten to 𝑥 = 𝑐−1 × 𝑒 . Such equations appear frequently in circuits since zk compilers

generate such constraints for nearly every assignment.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 168. Publication date: June 2023.



168:12 S. Pailoor, Y. Chen, F. Wang, C. Rodríguez, J. Van Gaffen, M. Chu, B. Gu, Y. Feng, I. Dillig

Δ,𝐶, 𝐾 � 𝑒 Constant(𝑐)
𝑐 ≠ 0 𝑐 × 𝑥 − 𝑒 = 0 ∈ 𝐶

Δ,𝐶, 𝐾 � 𝑥
(Assign)

𝐴®𝑥 − ®𝑏 = 0 ⊆ 𝐶 Δ,𝐶, 𝐾 � ®𝑏
𝐴 ∈ F𝑛×𝑛𝑝 ∧ det(𝐴) ≠ 0

Δ,𝐶, 𝐾 � ®𝑥
(BigInt-Mul)

𝑛∑︁
𝑖=0

𝑐𝑖 × 𝑦𝑖 − 𝑥 = 0 ∈ 𝐶 Δ,𝐶, 𝐾 � 𝑥 𝑦𝑛 <
𝑝

𝑐𝑛
− 1

𝑐 > 1 ∀𝑖 ∈ [0, 𝑛] . Δ(𝑦𝑖 ) ⊆ [0, 𝑐 − 1]
Δ,𝐶, 𝐾 � 𝑦𝑖 for 𝑖 ∈ [0, 𝑛]

(Base-Conv)

𝑛∑︁
𝑖=0

𝑦𝑖 = 𝑒 Δ,𝐶, 𝐾 � 𝑒 Δ,𝐶, 𝐾 � 𝑥 ∀𝑖 ∈ [0, 𝑛] . 𝑦𝑖 × (𝑥 − 𝑖) = 0 ∈ 𝐶

Δ,𝐶, 𝐾 � 𝑦𝑖 for 𝑖 ∈ [0, 𝑛]
(All-But-One-0)

Fig. 8. Equation rules for uniqueness propagation. We use the notation Δ,𝐶, 𝐾 � ®𝑏 as shorthand for Δ,𝐶, 𝐾 �
𝑏1, . . . ,Δ,𝐶, 𝐾 � 𝑏𝑛 where 𝑏𝑖 is an element of ®𝑏.

(2) (Base-Conv) At a high level, this rule states that if 𝑥 is constrained, then so is its base-𝑐

encoding. The premise ∀𝑖 ∈ [0, 𝑛] . Δ(𝑦𝑖 ) ⊆ [0, 𝑐 − 1] ensures that [𝑦0, . . . , 𝑦𝑛] is a valid base-𝑐

encoding of 𝑥 , and the premise 𝑦𝑛 < 𝑝/𝑐𝑛 − 1 ensures that

∑𝑛
𝑖=0 𝑐

𝑖 × 𝑦𝑖 , when interpreted

as an integer, cannot be larger than 𝑝 . To see why the latter is important, suppose 𝑝 = 5,

𝑛 = 𝑐 = 𝑥 = 2 and 𝑥 = 𝑦0 + 2𝑦1 + 4𝑦2. Then the distinct assignments [𝑦0 ↦→ 0, 𝑦1 ↦→ 1, 𝑦2 ↦→ 0]
and [𝑦1 ↦→ 1, 𝑦1 ↦→ 1, 𝑦2 ↦→ 1] both satisfy the equation. We note that zk compilers (or

programmers) frequently add such constraints to encode converting a field element into a base

𝑐 representation; this conversion allows one to encode comparison operators like inequalities

over fixed-width integers into polynomial equations over prime fields.

(3) (BigInt-Mul) If our circuit has a set of equations matching the pattern 𝐴®𝑥 − ®𝑏 = 0 where 𝐴

is a square, invertible matrix (i.e. det𝐴 ≠ 0), and
®𝑏 is constrained, then we can conclude ®𝑥

is constrained. To see why, if 𝐴 is invertible, then each 𝑥𝑖 in ®𝑥 is equal to 𝐴−1𝑖 · 𝑏 where 𝐴−1𝑖
denotes the 𝑖th row of 𝐴. Since a linear combination of constrained variables is constrained we

can conclude each 𝑥𝑖 is constrained. Constraints matching the pattern 𝐴®𝑥 − ®𝑏 = 0 are most

commonly generated to encode performing multiplication over big integers (larger than 𝑝) in

base-𝑐 for some 𝑐 > 1. Such computation is especially common in cryptographic schemes such

as ECDSA [Johnson et al. 2001] or BLS [Boneh et al. 2004].

(4) (All-But-One-0) This rule formalizes the intuition that variables 𝑦𝑖 are set to 0 precisely when

some 𝑥 ≠ 𝑖 . This rule is useful for cases like the Multiplexer circuit, where output variables can
be expressed as piece-wise functions over constrained variables. To understand why this rule is

sound, consider the piece-wise function over 𝑥 that expresses each 𝑦𝑖 : if 𝑖 = 𝑥 then 𝑒 else 0.
Since we can express each 𝑦𝑖 this way, then if 𝑥 is constrained, so is each 𝑦𝑖 .

Inference of variable values. Recall that the Base-Conv rule from Figure 8 can only be applied if

certain variables are within a range. Thus, in order to effectively propagate uniqueness constraints,

our method also needs to infer possible values that each variable can take; this is done via the

InferValues procedure presented in Algorithm 3. Given an arithmetic circuit 𝐶 , InferValues

infers a set of possible values for every arithmetic expression among 𝐶’s equations. The algorithm

initializes Δ to map every expression in 𝐶 to the set of all field elements (lines 4-5). It then enters a
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Algorithm 3 Value Inference

1: procedure InferValues(𝐶)
2: Input: Circuit 𝐶 (𝑋 )
3: Output: Value Mapping Δ
4: 𝐸 ← Exprs(𝐶)
5: Δ← {𝑒 ↦→ F𝑝 | 𝑒 ∈ 𝐸} ⊲ Initialize ranges

6: while true do
7: Δ′ ← {𝑒 ↦→ ⋂

Ω | Δ,𝐶 ⊢ 𝑒 : Ω, 𝑒 ∈ 𝐸} ⊲ Apply value inference rules to narrow ranges

8: if Δ = Δ′ then return Δ ⊲ Return when no progress is made

9: Δ← Δ′

Δ ⊢ 𝑥 : Δ(𝑥)
(Var)

Constant(𝑐)
Δ ⊢ 𝑐 : {𝑐}

(Const)

Δ ⊢ 𝑒1 : Ω1 Δ ⊢ 𝑒2 : Ω2

Δ ⊢ 𝑒1 ⊙ 𝑒2 : {𝑣1 ⊙ 𝑣2 | (𝑣1, 𝑣2) ∈ Ω1 × Ω2}
(Op)

Fig. 9. Rules for value inference over expressions. ⊙ ∈ {+,×}

Δ ⊢ 𝑒 : Ω 𝑐 ≠ 0

𝑐 × 𝑥 − 𝑒 = 0 ∈ 𝐶
Δ,𝐶 ⊢ 𝑥 : {𝑣 × 𝑐−1 | 𝑣 ∈ Ω}

(Assign)

𝑛∏
𝑖=1

(𝑥 − 𝑐𝑖 ) = 0 ∈ 𝐶

Δ,𝐶 ⊢ 𝑥 : {𝑐1, . . . , 𝑐𝑛}
(Root)

𝑛∑︁
𝑖=0

𝑐𝑖 × 𝑦𝑖 − 𝑥 = 0 ∈ 𝐶 𝑐 > 1

∀𝑖 ∈ [0, 𝑛] . Δ(𝑦𝑖 ) ⊆ [0, 𝑐 − 1]
Δ,𝐶 ⊢ 𝑥 : {𝑣 ∈ F𝑝 | 0 ≤ 𝑣 < 𝑐𝑛+1}

(Base-Conv)

Fig. 10. Rules for value inference over equations.

loop (line 6) and applies the rules in Figure 10 to infer more precise sets of values (line 7). Since

inferring the values of one variable may allow us to more precisely constrain the values of another,

we apply these rules in a loop until reaching a fixed point (line 8).

We now describe the rules in Figure 10 which derive judgements of the form

Δ,𝐶, ⊢ 𝑒 : Ω
This judgement means that, given a mapping Δ from expressions in 𝐶 to a set of values, expression

𝑒 can only take on values in Ω. Similar to our UCP propagation rules, the rules in Figure 10 make

use of helper rules presented in Figure 9 so we describe them in more detail first.

The Var and Const rules state that the values of a variable 𝑥 and constant 𝑐 given Δ must lie in

Δ(𝑥) and {𝑐} respectively. The last rule, labeled Op, infers values for more complex expression of

the form 𝑒1 ⊙ 𝑒2. In particular, the set of values obtained is the result of applying 𝑣1 ⊙ 𝑣2 for every
possible value 𝑣1 for 𝑒1 and 𝑣2 for 𝑒2.

Finally, the inference rules in Figure 10 correspond to equations that match certain common

syntactic patterns and allow us to infer more precise values for variables other than F𝑝 . Given an

equation 𝑐 × 𝑥 − 𝑒 = 0 where 𝑐 ≠ 0, the Assign rule tells us that the values of 𝑥 can only be of the

form 𝑣 × 𝑐−1 where 𝑣 is a possible value of 𝑒 and 𝑐−1 denotes the multiplicative inverse of 𝑐 mod 𝑝 .

The next rule, Root, states that if we have an equation of the form

∏𝑛
𝑖=1 (𝑥 − 𝑐𝑖 ) = 0 in our circuit,
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then 𝑥 can only be values among {𝑐1, . . . , 𝑐𝑛}. Lastly, Base-Conv allows us to infer a more precise

upper bound on the value of a variable 𝑥 if it has a valid base-𝑐 encoding. In particular, if 𝑥 has a

valid base-𝑐 encoding using 𝑛 digits, then we can infer that 𝑥 can be at most 𝑐𝑛+1 − 1.

5.2 SMT-based reasoning

Algorithm 4Query Procedure

1: procedureQuery(Δ,𝐶, 𝐾, 𝑣)
2: Input: Value information Δ, circuit 𝐶 (𝐼 ,𝑉 = 𝑂 ∪𝑊 ) , constrained variables 𝐾 , query variable 𝑣

3: Output: ✓ if 𝑣 is correct, ✗ if 𝑣 is under-constrained, ? otherwise
4: 𝜙 ← ∧

𝑢∈𝐾 (𝑢 = 𝑢′)
5: 𝜓 ← ∧

𝑤∈𝐷𝑜𝑚 (Δ)
∨
(𝑙,𝑢 ) ∈P (Δ(𝑢 ) ) 𝑙 ≤ 𝑤 ≤ 𝑢

6: 𝑟𝑒𝑠 ← VALID((𝜙 ∧𝜓 ∧ J𝐶K ∧ J𝐶K[𝑉 ′/𝑉 ]) =⇒ 𝑣 = 𝑣 ′)
7: return 𝑟𝑒𝑠

Recall that, when the UCP procedure cannot infer any new constrained variables, our verification

algorithm queries the SMT solver. The procedure for querying a variable 𝑣 is presented in Algo-

rithm 4. The basic idea is to encode two copies of the circuit, one over variables 𝐼 ,𝑉 and one over

variables 𝐼 ,𝑉 ′ as Φ ≡ J𝐶K and Φ′ ≡ J𝐶K[𝑉 ′/𝑉 ] respectively and then check whether Φ ∧ Φ′ implies

that 𝑣 = 𝑣 ′ for the given query variable 𝑣 . If this is the case, the query variable is indeed properly

constrained. However, since the variables in 𝐾 have already been proven to be constrained, the

SMT query strengthens the antecedent of the implication with the following formula:

𝜙 ≡
∧
𝑢∈𝐾

𝑢 = 𝑢′

Finally, the query to the SMT solver also utilizes the value information obtained through the

lightweight analysis presented in Figure 9. In particular, for each variable𝑤 in the domain of Δ, we
first partition the possible values of𝑤 into a set of intervals of the form (𝑙, 𝑢) — that is,

(𝑙, 𝑢) ∈ P(Δ(𝑤)) ⇐⇒ ({𝑙, 𝑙 + 1, . . . , 𝑢} ⊆ Δ(𝑤) ∧ 𝑙 − 1 ∉ Δ(𝑤) ∧ 𝑢 + 1 ∉ Δ(𝑤))
Each of these intervals (𝑙, 𝑢) ∈ P(Δ(𝑤)) is then encoded as the constraint 𝑙 ≤ 𝑤 ≤ 𝑢 (simplifying

to𝑤 = 𝑙 if 𝑙 = 𝑢), and the value of each𝑤 is a disjunction over all intervals in P(Δ(𝑤)), as shown
in line 5 of Algorithm 4. This constraint𝜓 is also added to the antecedent of the implication when

querying whether 𝑣 = 𝑣 ′ is implied by the circuit encoding.

6 OPTIMIZATION AND IMPLEMENTATION
We have implemented our proposed approach in a tool called QED2

written in Racket [Flatt and

PLT 2010]. QED2
incorporates a public fork of cvc5 [Barbosa et al. 2022] with a custom decision

procedure for solving polynomial equations over finite fields as its backend SMT solver.

Query variable selection. In Algorithm 1, we use a procedure called ChooseVar to select the next

variable to query. Our implementation uses the following heuristic for choosing variables:

ChooseVar(𝐶,𝑉 ) = argmax{𝑢 ↦→
∑︁

count(𝑓 ,𝑢) | 𝑓 ∈ 𝐶,𝑢 ∈ 𝑉 },

ChooseVar selects the variable 𝑢 ∈ 𝑉 that has the most number of terms in 𝐶 that are linear in

𝑢. To do so, it uses a helper function, count(𝑓 ,𝑢) that computes the number of terms 𝑓 that are

linear in 𝑢. The intuition behind this heuristic is twofold: variables that appear often in the circuit

are more highly restricted, and the SMT solver can more easily reason about linear terms.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 168. Publication date: June 2023.



Automated Detection of Under-Constrained Circuits in Zero-Knowledge Proofs 168:15

Counterexample construction. The finite field solver used byQED2
uses a semi-decision procedure

for proving unsatisfiability. When the solver cannot prove that the formula is unsatisfiable, it

attempts to explicitly construct a model by performing stochastic search over the prime field. This

model construction can be expensive as its expected runtime is exponential in the number of

variables in the formula. Hence, when QED2
observes that the model construction phase is taking

too long, it uses a custom strategy to construct counterexamples.

QED2
’s counterexample generation strategy starts by decomposing the circuit into sub circuits

𝐶1, ...,𝐶𝑛 using debug information from the compiler. This is feasible because circuits are often

built using other circuits (as we see from Figure 5). QED2
then builds a counterexample𝑀 incre-

mentally by iterating over each 𝐶𝑖 and querying the solver whether 𝐶𝑖 is constrained (using the

counterexample 𝑀 constructed so far). If the solver says 𝐶𝑖 is constrained, QED2
moves on to

𝐶𝑖+1. Otherwise, if 𝐶𝑖 is underconstrained, the solver returns a model𝑚 and QED2
updates𝑀 to

𝑀 ∪𝑚 before proceeding to the next circuit. If the solver returns unknown for any 𝐶𝑖 , QED2
also

continues to the next circuit. At the end of this procedure, if all 𝐶𝑖 ’s are proven to be constrained,

QED2
returns ✓. On the other hand, if𝑀 is a complete model, QED2

returns ✗ and ? otherwise.
Because each query to the solver is often exponentially smaller than the query for the full circuit,

we found this compositional counterexample construction strategy to be helpful in a few cases.

7 EVALUATION
In this section, we describe the results for the experimental evaluation, which are designed to

answer the following key research questions:

• RQ1: How effective is QED2
in verifying real-world circuits?

• RQ2: Is QED2
useful for detecting unknown vulnerabilities in real-world circuits?

• RQ3: What is the relative importance of uniqueness constraint propagation (UCP), and how

important is it to use an SMT solver?

Benchmarks. We evaluated QED2
on circuits built from Circom programs as Circom is one of

the most popular languages for writing ZKPs and powers applications that manage millions of

dollars on the blockchain. In particular, we gathered circuits from circomlib2, the standard library

for Circom. Circomlib is a set of circuit templates like the Decoder example in Figure 6(a). The

templates themselves are not circuits but can become circuits by setting their template parameters

to a constant. For example, line 23 in Figure 5 builds a circuit from the template ValidateDecoding
by initializing 𝑤 to 2. It is critically important that the templates from Circomlib are properly

constrained as they are used in nearly every Circom application.

With this in mind, we collected two representative benchmark sets from Circomlib:

• The circomlib-utils benchmarks. These benchmarks consist of circuits built from 59 utility
templates. These templates help developers perform fixed-width integer computation like range

checks or integer arithmetic. It also contains some commonly used blockchain primitives like

Merkle-tree verification and ZKP friendly hash functions like the Poseidon hash [Grassi et al.

2021]. Since these utility functions are instantiated in many different ways by applications, we

constructed the circuits by randomly selecting parameters for the templates.

• The circomlib-core benchmarks. This contains 104 circuits collected from circomlib, but with

a focus of a more in-depth coverage of different instantiations of the 50 most security-critical

templates in the library. We generated the circuits from these templates by instantiating them

with the most widely used values. For example, in this benchmark set, we instantiated the

2
https://github.com/iden3/circomlib
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Table 1. Key statistics of the benchmark sets: number of circuits in each benchmark set, average size of each
circuit, and average number of output variables per circuit. The size of a circuit is the number of equality
constraints that describes the circuit.

Benchmark Set # circuits Avg. # constraints Avg. # output signals

circomlib-utils 59 352 10

circomlib-core 104 6,690 32

All 163 4,396 24

Table 2. Main experimental results. For each benchmark set, we categorize circuits based on size: small (< 100

constraints), medium ([100, 1000)), and large (≥ 1000). The top half of the table describes information about
the types of variables and constraints in each sub-group of benchmarks. The bottom half of the table describes
performance metrics per sub-group. Overall, QED2 successfully solves 70% (114 / 163) of all benchmarks.

Benchmark circomlib-utils circomlib-core

overall

Size small medium large overall small medium large overall

Avg.

Variables

(#)

in 5 76 103 21 27 30 167 55 43

out 2 2 103 10 11 81 41 32 24

witness 14 318 3,465 342 11 391 34,102 6,651 4,368

total 20 396 3,671 374 49 502 34,310 6,738 4,435

Avg.

Constraints

(#)

linear 7 170 2,159 209 5 198 28,002 5,432 3,541

non-linear 7 149 1,413 143 12 274 6,189 1,258 854

total 15 319 3,571 352 17 472 34,190 6,690 4,396

Total (#) 47 7 5 59 61 23 20 104 163

Avg. Time (s) 9s 10s 9s 9s 8s 13s 18s 10s 9s

✓ (#) 36 4 3 43 44 10 4 58 101

✗ (#) 6 0 0 6 7 0 0 7 13

Solved (%) 89% 57% 60% 83% 84% 43% 20% 63% 70%

template to perform the Pedersen hash[Pedersen 1991] with values that would be used in most

smart contracts.

Table 1 shows key statistics of the collected benchmarks. Overall, the average number of con-

straints in circomlib-utils benchmark is 352, with 10 output signals on average. The circomlib-core

benchmarks are more challenging: they contain 6,690 constraints and 32 output signals on average.

Experimental setup. All experiments are conducted on an Amazon EC2 t3a.xlarge instance. The

time limit for each benchmark is 10 minutes and the memory limit is 32GB.

Evaluation metrics. We use the following two key metrics to evaluate our tool:

• Solved benchmarks: Recall that QED2
has three possible outcomes, namely, verified, refuted,

or unknown. In particular, QED2
can return unknown either because it exhausts the allocated

resource limit or reaches a fix point without finding a proof or counterexample. Hence, one of

our key evaluation metrics is the percentage of benchmarks that QED2
can solve successfully,

meaning that it returns an answer other than unknknown.

• Solving time: In addition to the percentage of solved benchmarks, we also measure the time it

takes QED2
to return an answer for the benchmarks that it can successfully solve.
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7.1 Main results
Table 2 summarizes the main results of our evaluation on the circomlib-utils and circomlib-core

benchmarks. This table classifies circuits into three categories as either small, medium, or large

based on the number of constraints (denoted by C):

• Small: C < 100.

• Medium: 100 ≤ C < 1000.

• Large: 1000 ≤ C.

As we can see from Table 2, QED2
can successfully solve 70% of the benchmarks, meaning

that it finds either a proof or counterexample. As expected, benchmarks in the large category are

much harder to solve, which explains why the overall success rate for circomlib-core is lower

than that of circomlib-utils. Also as expected, QED2
’s success rate is higher for circuits in the

small category for both benchmark sets. Finally, we note that among the benchmarks that QED2

can solve, its runtime is fairly fast, including the large circuits in circomlib-core which take an

average of 18 seconds to solve. This is because, on those benchmarks, our UCP engine is able to

quickly detect that most of the output signals are unique, and so our semantic reasoning engine

only has to check at most a handful of signals.

Among the circuits that QED2
can solve, QED2

returns verified for the vast majority (89%).

This result is expected since many of circuits that are part of circomlib-utils and circomlib-core

are written by cryptographers who are also Circom experts. However, there are 13 circuits for

whichQED2
produces counterexamples, meaning that these circuits are provably underconstrained.

Looking at the results closer we found that these circuits were generated from 8 distinct templates.

Since these circuits belong to widely-used libraries that are used by other clients, this evaluation

shows that QED2
can find critical vulnerabilities in real-world circuits. For example, we found an

underconstrained bug in the EdwardsToMontgomery circuit, which converts points on an Edwards

curve [Boudabra and Nitaj 2019] to their corresponding point on a Montogmery curve [Costello

and Smith 2017], which is used frequently in the Circomlib implementation of the Pedersen Hash

function [Pedersen 1991].

Failure analysis. For the 49 circuits that QED2
could not solve, we manually analyzed the root

causes of the failures. Among the 5 circuits that QED2
could not solve in the small category in

circomlib-utils, all failures were due to timeouts caused by two complex sub-circuits. One of them is

the BabyAdd circuit which implements elliptic curve addition [Baylina 2021]. In order to show that

this circuit is properly constrained, the semantic reasoning engine must essentially prove Theorem

3.3 from [Bernstein and Lange 2007], which is an extremely difficult task for an automated tool.

However if we were to add this theorem as an axiom into our tool, QED2
can quickly prove the 5

additional circuits in the circomlib-utils (small) category as well as one additional circuit in the

medium category of circomlib-utils. A similar problem arises in several circomlib-core circuits

due to a shared sub-circuit called Num2BitsNeg. This circuit encodes a prime field element as

a bitvector and takes the bitwise negation of the bitvector. In this case, the bitvector conversion

generates constraints where the polynomials have very large degrees as well as coefficients (> 10
5
).

The underlying SMT solver uses a Groebner Basis engine to check if the queries are unsatisfiable,

but the runtime of Groebner basis computation is very sensitive to the degree and coefficients of the

polynomials, so the solver times out. In particular, among the remaining medium and large circuits

that QED2
times out on, we observed that the timeout is due to the Groebner basis computation

within the SMT solver.
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Fig. 11. Comparison betweenQED2 and its ablations.QED2-Ucp performs uniqueness constraint propagation
but does not utilize the SMT solver. On the other hand, QED2-Smt only uses the SMT solver but does not
perform lightwight analysis to infer constrained variables.

7.2 Ablation study
Since there is no prior published research on finding under-constrained zk circuits, we are not

able to compare QED2
against existing baselines. Instead, we present the results of an ablation

study to assess the relative importance of SMT-based reasoning as well as our proposed uniqueness

constraint propagation technique. In particular, we compare QED2
against the following two

ablations:

• QED2
-Ucp is a variant of QED2

that only performs uniqueness constraint propagation using

Algorithm 2. However, it does not invoke the SMT solver either for verification or refutation.

• QED2
-Smt is a variant of QED2

that only performs symbolic reasoning through an off-the-shelf

SMT solver. As mentioned in Section 6, we leverage the state-of-the-art finite field solver from

CVC5 [Ozdemir 2022]. This ablation does not leverage uniqueness constraint propagation to

perform lightweight inference of constrained variables.

The results of this ablation study are presented in Figure 11. As we see from this bar chart,QED2

can solve more benchmarks on than the other two ablations on both the circomlib-utils and

circomlib-core benchmarks. For the circomlib-utils benchmarks, QED2
-Smt performs slightly

better than QED2
-Ucp, but both are considerably worse than the full version of QED2

that incor-

porates both the UCP engine as well as the SMT solver. For the larger circomlib-core benchmarks,

QED2
-Ucp outperforms QED2

-Smt by a fairly large margin. This is because many of the circuits

in the circomlib-core benchmark suite can be verified using lightweight uniqueness inference, but,

because these circuits are fairly large, the SMT solver is unable to successfully decide satisfiability

of the corresponding constraints.

8 DISCUSSION
Intentionally underconstrained circuits. As we mentioned in Section 1, an underconstrained circuit

could allow a malicious user to verify a proof that the circuit programmer did not intend to get

verified. However, there are cases where the programmer intends for a circuit to be underconstrained.

For example, suppose the programmer constructs a circuit which states that the output must be

the square root of the input (if it exists). They may express this circuit with a single equation:

out = in2. This circuit is underconstrained as there may be two roots for a single input; however,

the developer may intend for this behavior to give users flexibility in the choice of root. Such cases

of intentional nondeterminism occasionally occur when a circuit is designed to be used by other
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circuits and very rarely occur for top-level circuits. Thus, while underconstrained circuits do not

necessarily always indicate a bug, we believe it is important for developers to know whether or not

their circuits are properly constrained.

Bugs in ZK circuits. This work focuses on detecting a specific class of bugs in ZK circuits; however,

there are other ways (beyond being underconstrained) that ZK circuits could be problematic. For

instance, a ZK circuit could also be overconstrained, meaning that the constraint system is inconsis-

tent for a given input. Intuitively, overconstrained circuits can result in denial of service attacks, as

the verifier can reject proofs that should actually be accepted. In practice, however, overconstrained

circuits are much less common and considered less security critical than underconstrained circuits.

More generally, both underconstrained and overconstrained bugs can be viewed as symptoms of

equivalence violations, where the witness generation semantics do not agree with the constraints.

In particular for a given program 𝑃 that takes input 𝑥 and produces 𝑦, its constraints 𝐶 should be

such that 𝐶 (𝑥,𝑦) is true iff 𝑃 (𝑥) = 𝑦. We believe that proving and finding violations of equivalence

bugs in ZK circuits is an important and challenging problem, and we see the techniques proposed

in this paper being a first step in achieving this goal. Finally, just like in traditional programs, the

computation 𝑃 expressed in a ZK program could have functional correctness bugs as the imple-

mentation may not match the developer’s intentions. While finding such functional correctness

bugs is also very important, this paper only focuses on a specific (but common) class of problems

caused by underconstrained circuits.

9 RELATEDWORK
ZK programming languages & compilers. Due to the increasing importance of zero-knowledge

proofs in many application domains, there have been several proposals for new programming

languages and compilers that target this domain. Similar to Circom, Zokrates [Eberhardt and Tai

2018], Zinc [Matter-Labs 2022], Snarky [o1 Labs 2022], and Leo [Chin 2021] are other domain-

specific language that facilitate the construction of zk-snarks. Because our approach operates over

finite field equations generated by the compiler, our proposed technique can be used to reason

about bugs in all of these languages, including those introduced by the compiler. CirC [Ozdemir

et al. 2020] is a recent effort that aims to provide a unified compiler infrastructure for all DSLs that

compile down to arithmetic circuits. In this way, CirC is somewhat akin to LLVM but targeted

towards ZKP DSLs that produce existentially quantified circuits (EQCs). Our proposed technique

can also be used to analyze circuits that are generated by a CirC-based compiler. All of the afore-

mentioned programming languages produce mathematical objects that fall in the class of Rank 1

Constraint System (R1CS). There are also languages such as Halo2 [Bowe et al. 2019] that produce

a more general class of polynomial equations over finite fields. Under-constrained output variables

are also problematic in that setting, and our technique can be applied here. However, because our

uniqueness constraint propagation rules are primarily targeted for R1CS constraints, our UCP

algorithm may not work as well for languages like Halo2.

Another popular programming language for the verifiable computing domain is Cairo [Goldberg

et al. 2021], which is a Turing complete language that allows general computation. Unlike SNARK-

based languages like Circom, Cairo programs do not get compiled to polynomial constraints over

finite fields. They are instead based on a different protocol called STARKs (Scalable, Transparent,

Arguments of Knowledge) with a different type of prover and verifier. In particular, Cairo consists

of a single prover and verifier for all Cairo programs. The prover takes as input an execution trace

of a Cairo program and generates a proof asserting that the trace is a valid execution of a Cairo

program. The trace consists of (1) the program input, (2) a memory function mapping memory

cells to concrete values (including the program’s bytecode), (3) a value N indicating the number of
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instructions executed, (4) a sequence of N+1 state transitions. Intuitively, the memory function

can be viewed as a mapping from signals (program variables) to values where the last memory

cell written is the output signal of the program. The prover encodes the trace as a sequence of

polynomial equations and then uses the STARK protocol to transform the equations into a short

proof. We believe QED2
can be used to find underconstrained bugs after the prover constructs the

polynomial equations. In particular, QED2
can check if for the same input, bytecode, and sequence

of states, whether a different memory function (with a distinct output and fixed bytecode layout)

can satisfy the polynomial constraints.

Formal methods for cryptography. There is a rich body of work on applying formal verification

techniques to cryptographic protocols. For instance, Corin et al. [Corin and den Hartog 2005]

leverage a variant of probabilistic Hoare logic to prove the security of ElGamal; Gagne et al. [Gagné

et al. 2013] use similar methods to prove the security of the front-end of many CBC-based MACs,

PMAC and HMAC. Tiwari et.al [Tiwari et al. 2015] leverages component-based program synthesis

to automatically generate padding-based encryption schemes, and block cipher modes of operations.

EasyCrypt [Barthe et al. 2013] is a toolset that allows user to specify and prove the correctness of

cryptographic protocols.

Despite the rich literature at the intersection of cryptography and formal methods, there is

little work on applying formal methods to reason about the correctness of zero-knowledge proofs.

Almeida1 et al. [Almeida et al. 2010] developed a certifying compiler for Σ−protocols, a broad class

of zero knowledge protocols which includes zk-SNARKs [Ben-Sasson et al. 2014]. Given a high level

description of the protocol, the compiler generates an executable implementation that is provably

correct using the Isabelle/HOL [Nipkow et al. 2002] theorem prover. Sidorenco et al.[Sidorenco

et al. 2021] produced the first machine checked proofs of ZK protocols based on the Multi-Party-

Computation-In-The-Head paradigm using EasyCrypt. More recent work has focused on building

specialized solvers for polynomial equations over finite fields. While it is theoretically possible to

encode finite field arithmetic in the theory of integers or bitvectors, the resulting constraints are

very difficult to solve using off-the-shelf solvers. Hader et al. [Hader 2022] developed a decision

procedure for solving polynomial equations over finite fields using a combination of a custom

quantifier elimination procedure and by computing Groebner bases. Since this solver is not open

source, we use a public fork of CVC5 [Ozdemir 2022] which implements a custom decision procedure

for polynomial equations over a finite field.

Bug finders for zero-knowledge programs. Writing correct yet efficient zk programs requires

specialized domain expertise. To the best of our knowledge, there are very few tools apart from

QED2
that automatically find bugs [aztec 2022; electriccoin 2019; TornadoCash 2019b; trailofbits

2022] in zk programs. The most related work to QED2
is an open source static analyzer called

Circomspect [Dahlgren 2022] designed to find bugs in Circom programs. Circomspect looks for

simple syntactic patterns such as using the <-- operator when <== can be used. Such a syntactic

pattern-matching approach generates many false positives and can also miss real bugs, such as

the motivating example from Section 2. In particular, we emphasize that, while our motivating

example does use the <– operator, it cannot be replaced with <== . Furthermore, none of the bugs

detect by QED2
conform to this pattern, so Circomspect would not be useful for identifying any of

the 8 bugs that QED2
detected. Finally, since Circomspect only operates on the Circom AST, it is

limited to Circom programs, whereas QED2
, can, in principle, analyze any polynomial equations

over a finite field.
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10 CONCLUSION
We have presented a technique for detecting zero-knowledge proof bugs that are caused by under-

constrained arithmetic circuits. Our method uses lightweight reasoning based on inference rules to

propagate uniqueness constraints and switches to SMT-based reasoning when it can no longer make

progress. The process terminates either when the SMT solver finds a proof or counterexample, the

inference engine proves all output variables to be constrained, or no further inference is possible.

Because our approach reasons directly about arithmetic circuits, it is not tied to a particular DSL

and can be applied to a wide range of DSLs that support zk-snarks. We have implemented our

approach in a tool called QED2
and evaluated it on 163 Circom circuits. Our approach was able to

successfully verify or refute 70% of these benchmarks and found 8 serious vulnerabilities.
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A APPENDIX
A.1 Uniqueness Constraint Propagation.
In this section, we give soundness proofs for each of the rules in Uniqueness Constraint Propagation.

Proof of All-But-One-Zero. Because 𝑥 is uniquely determined, we can see that 𝑦 𝑗 · (𝑥 − 𝑖) = 0

means that for any 𝑗 ≠ 𝑥 , 𝑦 𝑗 = 0. Then, we have

∑𝑛
𝑖=0 𝑦𝑖 = 𝑦𝑥 = 𝑆 , so

𝑦𝑖 =

{
𝑆 if 𝑖 = 𝑥

0 otherwise

and we may conclude, since all of 𝑦𝑖 are uniquely determined. □

Proof of Assign. One can show that 𝑥 must be equal to 𝑒𝑐−1, because 𝑐 is nonzero in mod 𝑝

and hence invertible. □

Proof of Base-Conv. For any 𝑥 in F𝑝 , let 𝑥 denote the smallest positive integer 𝑧 so that 𝑧 ≡ 𝑥
(mod 𝑝).
Lemma A.1. Defining 𝑆 :=

∑𝑛
𝑖=0 𝑐

𝑖 · 𝑦𝑖 , we have that 𝑆 = 𝑥 .

Proof. Since 𝑦𝑖 ≤ 𝑐 − 1 for 𝑖 ≤ 𝑛 − 1, and 𝑦𝑛 ≤ (𝑝/𝑐𝑛) − 1, we have that
𝑛∑︁
𝑖=0

𝑐𝑖 · 𝑦𝑖 ≤
𝑛−1∑︁
𝑖=0

𝑐𝑖 · (𝑐 − 1) + 𝑐𝑛 ·
( 𝑝
𝑐𝑛
− 1

)
= 𝑐𝑛 − 1 + 𝑐𝑛 ·

( 𝑝
𝑐𝑛
− 1

)
< 𝑝

Since 𝑥 and 𝑆 both have integer values between 0 and 𝑝 , since they are equivalent they must be

exactly equal.

Thus, we have that

𝑛∑︁
𝑖=0

𝑐𝑖 · 𝑦𝑖 = 𝑥 . (1)

□

Now, by taking Equation 1 modulo 𝑐 , we can show that 𝑦0 ≡ 𝑥 (mod 𝑐). Since 𝑦0 is between
0 and 𝑐 − 1, 𝑦0 must be equal to the remainder when 𝑥 is divided by 𝑐 , which we denote 𝑥%𝑐 .

Subtracting it out from the equation, we have 𝑦1 = ((𝑆 − 𝑦0)/𝑐)%𝑐 , and by the same token we have

𝑦𝑖 = ((𝑆 − 𝑦0 − 𝑐𝑦1 − . . . − 𝑐𝑖−1𝑦𝑖−1)/𝑐𝑖 )%𝑐
so that each of 𝑦0, 𝑦1, . . . 𝑦𝑛−1 are uniquely determined. In light of Equation 1, since variables

𝑦0, 𝑦1, . . . 𝑦𝑛−1 and 𝑥 are uniquely determined, 𝑦𝑛 is uniquely determined as well and we may

conclude. □

A.2 Value Inference.
In this section, we prove the soundness of our inference rules in Figures 10 and 9. Before doing so,

we first define what it means for a value map Δ to be sound with respect to a circuit 𝐶 .

We use the notation 𝜎J𝑒K to indicate the value of 𝑒 evaluated under 𝜎 .

Definition A.2 (Over-Approximation). Given a circuit 𝐶 and an expression 𝑒 ∈ Exprs(𝐶) we say
that the set 𝑉 ⊂ F𝑝 over-approximates 𝑒 if and only if for every satisfying assignment 𝜎 of 𝐶 we

have 𝜎J𝑒K ∈ 𝑉 .
Note that F𝑝 is an over-approximation for every expression in a circuit.

Definition A.3 (Sound Δ). We say that a range map Δ is sound with respect to a circuit 𝐶 (𝑋 ) if
and only if for every 𝑥 ∈ 𝑋 , Δ(𝑥) over-approximates 𝑥 .
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Lemma A.4 (Soundness (Expressions)). The rules in Figure 9 are sound. In particular, if Δ is
sound and Δ ⊢ 𝑒 : 𝑆 , then 𝑆 over-approximates 𝑒 .

Proof. We prove this by induction and start with the base cases.

Base Cases.
• Var. From the fact that Δ is sound and 𝑆 = Δ(𝑥) we conclude that 𝑆 over-approximates 𝑥 .

• Const. Since 𝑐 is a constant, 𝑆 = {𝑐} over-approximates 𝑐 .

Op. Take any satisfying assignment 𝜎 . Then 𝜎J𝑒1⊙𝑒2K = 𝜎J𝑒1K⊙𝜎J𝑒2K. By hypothesis, 𝜎J𝑒1K ∈ Ω1

and 𝜎J𝑒2K ∈ Ω2. Thus, 𝜎J𝑒1 ⊙ 𝑒2K ∈ {𝑣1 ⊙ 𝑣2 | (𝑣1, 𝑣2) ∈ Ω1 × Ω2} and we can conclude that 𝑆

over-approximates 𝑒1 ⊙ 𝑒2. □

Lemma A.5 (Soundness (Eqations)). The rules in Figure 10 are sound. In particular, if Δ is sound
and Δ,𝐶 ⊢ 𝑥 : 𝑆 then 𝑆 over-approximates 𝑥 .

Proof. We prove that each rule is sound.

• Assign. Take any 𝜎 that satisfies 𝐶 . Then 𝜎 |= 𝑐 × 𝑥 − 𝑒 = 0 which means 𝜎 (𝑥) = 𝑐−1 × 𝜎J𝑒K.
From LemmaA.4we know thatΩ over-approximates 𝑒 and so𝜎J𝑒K ∈ Ω. Thus,𝑥 = 𝑐−1×𝜎J𝑒K ∈
{𝑐−1 × 𝑣 | 𝑣 ∈ Ω} and we conclude that 𝑆 over-approximates 𝑥 .

• Root. Take any 𝜎 that satisfies𝐶 . Then 𝜎 |= ∏𝑛
𝑖=1 (𝑥 −𝑐𝑖 ) = 0. From the polynomial remainder

theorem we know that 𝜎 |= ∏𝑛
𝑖=1 (𝑥 −𝑐𝑖 ) = 0 if and only if 𝜎 (𝑥) ∈ {𝑐1, . . . , 𝑐𝑛}. Thus, 𝜎 (𝑥) ∈ 𝑆

and so 𝑆 over-approximates 𝑥 .

• Base-Conv From the fact that Δ(𝑦) ⊆ [0, 𝑐 − 1] we know that 0 ≤ ∑𝑛
𝑖=0 𝑐

𝑖𝑦𝑖 ≤
∑𝑛
𝑖=0 𝑐

𝑖 (𝑐 − 1).
Furthermore, since 𝑐 > 1 we can derive the following upper bound.

𝑛∑︁
𝑖=0

𝑐𝑖 (𝑐 − 1) = 𝑐𝑛+2 − 𝑐
𝑐 − 1 −

𝑐𝑛+1 − 1
𝑐 − 1

=
𝑐𝑛+2 − 𝑐𝑛+1 − 𝑐 + 1

𝑐 − 1

<
𝑐𝑛+2 − 𝑐𝑛+1
𝑐 − 1

<
𝑐𝑛+1 (𝑐 − 1)
𝑐 − 1

< 𝑐𝑛+1

Finally, as 𝑥 =
∑𝑛
𝑖=0 𝑐

𝑖𝑦𝑖 we can conclude that 𝑆 = {𝑣 ∈ F𝑝 | 0 ≤ 𝑣 < 𝑐𝑛+1} over-approximates

𝑥 .

□
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