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Abstract

We construct quantum public-key encryption from one-way functions. In our construction, public
keys are quantum, but ciphertexts are classical. Quantum public-key encryption from one-way functions
(or weaker primitives such as pseudorandom function-like states) are also proposed in some recent works
[Morimae-Yamakawa, eprint:2022/1336; Coladangelo, eprint:2023/282; Barooti-Grilo-Malavolta-Sattath-
Vu-Walter, TCC 2023]. However, they have a huge drawback: they are secure only when quantum public
keys can be transmitted to the sender (who runs the encryption algorithm) without being tampered with by
the adversary, which seems to require unsatisfactory physical setup assumptions such as secure quantum
channels. Our construction is free from such a drawback: it guarantees the secrecy of the encrypted
messages even if we assume only unauthenticated quantum channels. Thus, the encryption is done with
adversarially tampered quantum public keys. Our construction is the first quantum public-key encryption
that achieves the goal of classical public-key encryption, namely, to establish secure communication over
insecure channels, based only on one-way functions. Moreover, we show a generic compiler to upgrade
security against chosen plaintext attacks (CPA security) into security against chosen ciphertext attacks
(CCA security) only using one-way functions. As a result, we obtain CCA secure quantum public-key
encryption based only on one-way functions.

1 Introduction

1.1 Background

Quantum physics provides several advantages in cryptography. For instance, statistically-secure key exchange,
which is impossible in classical cryptography, becomes possible if quantum states are transmitted [BB84].
Additionally, oblivious transfers and multiparty computations are possible only from one-way functions (OWFs)
in the quantum world [BCKM21, GLSV21]. Those cryptographic primitives are believed to require stronger
structured assumptions in classical cryptography [IR89, GKM+00]. Furthermore, it has been shown that
several cryptographic tasks, such as (non-interactive) commitments, digital signatures, secret-key encryption,
quantum money, and multiparty computations, are possible based on new primitives such as pseudorandom
states generators, pseudorandom function-like states generators, one-way states generators, and EFI, which
seem to be weaker than OWFs [JLS18, Kre21, MY22b, AQY22, BCQ23, AGQY22, CX22, MY22a, KQST23].
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Quantum public key encryption from OWFs. Despite these developments, it is still an open problem
whether public-key encryption (PKE) is possible with only OWFs (or the above weaker primitives) in the
quantum world. PKE from OWFs is impossible (in a black-box way) in the classical cryptography [IR90].
However, it could be possible if quantum states are transmitted or local operations are quantum. In fact, some
recent works [MY22a, Col23, BGH+23a] independently constructed quantum PKE (QPKE) with quantum
public keys based on OWFs or pseudorandom function-like states generators. However, the constructions
proposed in those works have a huge drawback as explained below, and thus we still do not have a satisfactory
solution to the problem of “QPKE from OWFs”.

How to certify quantum public keys? When we study public key cryptographic primitives, we have to
care about how to certify the public keys, that is, how a sender (who encrypts messages) can check if a given
public key is a valid public key under which the secrecy of the encrypted messages is guaranteed. When the
public keys are classical strings, we can easily certify them using digital signature schemes. However, in the
case where the public keys are quantum states, we cannot use digital signature schemes to achieve this goal in
general1, and it is unclear how to certify them.

As stated above, some recent works [MY22a, Col23, BGH+23a] realized QPKE with quantum public
keys from OWFs or even weaker assumptions. However, those works did not tackle this quantum public key
certification problem very much. In fact, as far as we understand, to use the primitives proposed in those
works meaningfully, we need to use secure quantum channels to transmit the quantum public keys so that a
sender can use an intact quantum public key. This is a huge drawback since the goal of PKE is to transmit a
message without assuming secure channels. If the sender can establish a secure channel to obtain the quantum
public key, the sender could use it to transmit the message in the first place, and there is no advantage to using
the PKE scheme.

QPKE with tamper-resilient quantum public keys. One of our goals in this work is to solve this issue
and develop a more reasonable notion of QPKE with quantum public keys. Especially, we consider the
setting with the following two natural conditions. First, we assume that every quantum state (that is, quantum
public keys in this work) is sent via an unauthenticated channel, and thus it can be tampered with by an
adversary. If we do not assume secure quantum channels, we have to take such a tampering attack into account
since authentication generally requires secrecy for quantum channels [BCG+02]. Second, we assume that
every classical string is sent via an authenticated channel. This is the same assumption in classical PKE and
can be achieved using digital signatures. Note that the security of the constructions proposed in the above
works [MY22a, Col23, BGH+23a] is broken in this natural setting. In this work, we tackle whether we can
realize QPKE with quantum public keys that provides a security guarantee in this natural setting, especially
from OWFs.

1.2 Our Results

We affirmatively answer the above question. We realize the first QPKE scheme based only on OWFs that
achieves the goal of classical PKE, which is to establish secure communication over insecure channels. We
define the notions of QPKE that can be used in the above setting where unauthenticated quantum channels
and classical authenticated channels are available. Then, we propose constructions satisfying the definitions
from OWFs. Below, we state each result in detail.

1There is a general impossibility result for signing quantum states [AGM21].
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Definitional work. We redefine the syntax of QPKE. The difference from the previous definitions is that
the key generation algorithm outputs a classical verification key together with the secret key. Also, this
verification key is given to the encryption algorithm with a quantum public key and a message so that the
encryption algorithm can check the validity of the given quantum public key. We require ciphertexts to be
classical.2 We require a QPKE scheme to satisfy the following two basic security notions.

• Indistinguishability against public key tempering chosen plaintext attacks (IND-pkT-CPA security).
Roughly speaking, it guarantees that indistinguishability holds even if messages are encrypted by a
public key tampered with by an adversary. More specifically, it guarantees that no efficient adversary
can guess the challenge bit b with a probability significantly better than random guessing given
Enc(vk, pk′,msgb), where vk is the correct verification key and (pk′,msg0,msg1) are generated by the
adversary who is given the verification key vk and multiple copies of the correctly generated quantum
public keys.3 IND-pkT-CPA security captures the setting where the classical verification key is sent via
a classical authenticated channel. Thus, everyone can obtain the correct verification key. However, a
quantum public key is sent via an unauthenticated quantum channel and thus can be tampered with by
an adversary.

• Decryption error detectability. In our setting, an adversary may try to cause a decryption error by
tampering with the quantum public key. To address this issue, we introduce a security notion that we
call decryption error detectability. It roughly guarantees that a legitimate receiver of a ciphertext can
notice if the decrypted message is different from the message intended by the sender.

IND-pkT-CPA security considers adversaries that may tamper with quantum public keys but only passively
observe ciphertext. For classical PKE, the golden standard security notion is indistinguishability against
chosen ciphertext attacks (IND-CCA security) that considers active adversaries that may see decryption
results of any (possibly malformed) ciphertexts. Thus, we also define its analog for QPKE. In Section 1.3, we
discuss its importance in a natural application scenario.

• Indistinguishability against public key tempering chosen ciphertext attacks (IND-pkT-CCA
security). This is similar to IND-pkT-CPA security except that the adversary is given access to the
decryption oracle that returns a decryption result on any ciphertext other than the challenge ciphertext.4
Moreover, we allow the adversary to learn one-bit information indicating if the challenge ciphertext is
decrypted to ⊥ or not. We note that it is redundant for classical PKE since the challenge ciphertext is
always decrypted to the challenge message, which is not ⊥, by decryption correctness. On the other
hand, it may give more power to the adversary for QPKE since if the adversary tempers with the public
key that is used to generate the challenge ciphertext, decryption correctness may no longer hold.

IND-pkT-CPA secure construction from OWFs. We propose a QPKE scheme satisfying IND-pkT-CPA
security from a digital signature scheme that can be constructed from OWFs. Our construction is inspired by
the duality between distinguishing and swapping shown by Aaronson, Atia, and Susskind [AAS20] and its
cryptographic applications by Hhan, Morimae, and Yamakawa [HMY23]. Our construction has quantum
public keys and classical ciphertexts. We also propose a general transformation that adds decryption error
detectability. The transformation uses only a digital signature scheme.

2We could also consider QPKE schemes with quantum ciphertexts if we only consider IND-pkT-CPA security. However, it
is unclear how we should define IND-pkT-CCA security for such schemes because the decryption oracle cannot check if a given
ciphertext is equivalent to the challenge ciphertext. Thus, we focus on schemes with classical ciphertexts in this paper.

3The tampered quantum public key pk′ can be entangled with the adversary’s internal state.
4Recall that ciphertexts are classical in our definition, and thus this is well-defined.
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Upgrading to IND-pkT-CCA security. We show a generic compiler that upgrades IND-pkT-CPA security
into IND-pkT-CCA security while preserving decryption error detectability only using OWFs. It is worth
mentioning that constructing such a generic CPA-to-CCA compiler is a long-standing open problem for
classical PKE, and thus we make crucial use of the fact that public keys are quantum for constructing our
compiler. By plugging our IND-pkT-CPA secure construction into the compiler, we obtain a QPKE scheme
that satisfies IND-pkT-CCA security and decryption error detectability only based on OWFs.

Recyclable variant. Our above definitions for QPKE assume each quantum public key is used to encrypt
only a single message and might be consumed. We also introduce a notion of recyclable QPKE where the
encryption algorithm given a quantum public key outputs a ciphertext together with a classical state that can be
used to encrypt a message many times. Then, we show that any standard IND-pkT-CPA (resp. IND-pkT-CCA)
secure QPKE scheme with classical ciphertexts can be transformed into a recyclable one with IND-pkT-CPA
(resp. IND-pkT-CCA) security while preserving decryption error detectability. The transformation uses only
a CPA (resp. CCA) secure classical symmetric key encryption scheme that is implied by OWFs. Thus, by
combining the transformation with the above results, we obtain a recyclable IND-pkT-CCA QPKE scheme
with decryption error detectability from OWFs.

1.3 Discussion

Pure State Public Keys vs. Mixed State Public Keys. The quantum public keys of our QPKE schemes are
mixed states. Some recent works [Col23, BGH+23a] that studied QPKE explicitly require that a quantum
public key of QPKE be a pure quantum state. The reason is related to the quantum public key certification
problem, which is this work’s main focus. Barooti et al. [BGH+23a] claimed that a sender can check the
validity of given quantum public keys by using SWAP test if they are pure states, but not if they are mixed
states. However, as far as we understand, this claim implicitly requires that at least one intact quantum public
key be transmitted via secure quantum channels where an adversary cannot touch it at all5, which is an
unsatisfactory assumption that makes QPKE less valuable. It is unclear how a sender can check the validity
of a given quantum public key in the constructions proposed in [BGH+23a] without assuming such secure
transmission of intact quantum public keys.

We believe that it is not important whether the quantum public keys are pure states or mixed states, and
what is really important is whether a sender can check the validity of given quantum public keys without
assuming unsatisfactory setups such as quantum secure channels. Although our QPKE schemes have mixed
state quantum public keys, they provide such a validity checking of quantum public keys by a sender without
assuming any unsatisfactory setups. In addition, we can easily extend our construction into one with pure
state quantum public keys. We provide the variant in Appendix A.

1.4 Related Works

The possibility that QPKE can be achieved from weaker assumptions was first pointed out by Gottesman [Got],
though he did not give any concrete construction. The first concrete construction of QPKE was proposed by
Kawachi, Koshiba, Nishimura, and Yamakami [KKNY05]. They formally defined the notion of QPKE with
quantum public keys, and provided a construction satisfying it from a distinguishing problem of two quantum
states. Recently, Morimae and Yamakawa [MY22a] pointed out that QPKE defined by [KKNY05] can be

5More precisely, their model seems to require a physical setup assumption that enables a sender to obtain at least one intact
quantum public key, such as secure quantum channels or tamper-proof quantum hardware.
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achieved from any classical or quantum symmetric key encryption almost trivially. The constructions proposed
in these two works have mixed state quantum public keys. Then, subsequent works [Col23, BGH+23b]
independently studied the question whether QPKE with pure state quantum public keys can be constructed
from OWFs or even weaker assumptions.

The definition of QPKE studied in the above works essentially assume that a sender can obtain intact
quantum public keys. As far as we understand, this requires unsatisfactory physical setup assumptions such as
secure quantum channels or tamper-proof quantum hardware, regardless of whether the quantum public keys
are pure states or mixed states. In our natural setting where an adversary can touch the quantum channel
where quantum public keys are sent, the adversary can easily attack the previous constructions by simply
replacing the quantum public key on the channel with the one generated by itself that the adversary knows the
corresponding secret key. We need to take such adversarial behavior into consideration, unless we assume
physical setup assumptions that deliver intact quantum public keys to the sender. Our work is the first one that
proposes a QPKE scheme secure in this natural setting assuming only classical authenticated channels that is
the same assumption as classical PKE and can be implemented by digital signature schemes. It is unclear if
we could solve the problem in the previous constructions by using classical authenticated channels similarly
to our work. Below, we review the constructions of QPKE from OWFs proposed in the recent works.

The construction by Morimae and Yamakawa [MY22a] is highly simple. A (mixed state) public key of
their construction is of the form (ct0, ct1), where ctb is an encryption of b by a symmetric key encryption
scheme. The encryption algorithm with input message b simply outputs ctb.

Coladangelo [Col23] constructed a QPKE scheme with quantum public keys and quantum ciphertexts
from pseudorandom functions (PRFs), which are constructed from OWFs. The public key is

|pk⟩ :=
∑

y

(−1)PRFk(y) |y⟩ , (1)

and the secret key is k. The ciphertext for the plaintext m is

(Zx |pk⟩ =
∑

y

(−1)x·y+PRFk(y) |y⟩ , r, r · x⊕m), (2)

where r is chosen uniformly at random.
Barooti, Grilo, Huguenin-Dumittan, Malavolta, Sattath, Vu, and Walter [BGH+23b] constructed three

QPKE schemes: (1) CCA secure QPKE with quantum public keys and classical ciphertexts from OWFs (2)
CCA16 secure QPKE with quantum public keys and ciphertexts from pseudorandom function-like states
generators, (3) CPA secure QPKE with quantum public keys and classical ciphertexts from pseudo-random
function-like states with proof of destruction. All constructions considers security under the encryption oracle.
We review their construction based on OWFs.

Their construction is hybrid encryption of CPA secure QPKE (the KEM part) and CCA secure classical
symmetric key encryption (the DEM part). The public key is

|pk⟩ :=
∑

x

|x⟩ |PRFk(x)⟩ , (3)

and the secret key is k. The encryption algorithm first measures |pk⟩ in the computational basis to get
(x,PRFk(x)) and outputs (x, SKE.Enc(PRFk(x),m)) as the ciphertext for the plaintext m, where SKE.Enc
is the encryption algorithm of a symmetric key encryption scheme.

6Afther the adversary received a challenge ciphertext, they cannot access the decryption oracle.
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We finally compare Quantum Key Distribution (QKD) [BB84] with our notion of QPKE. QKD also enables
us to establish secure communication over an untrusted quantum channel assuming that an authenticated
classical channel is available similarly to our QPKE. An advantage of QKD is that it is information theoretically
secure and does not need any computational assumption. On the other hand, it has disadvantages that it must
be interactive and parties must record secret information for each session. Thus, it is incomparable to the
notion of QPKE.

1.5 Concurrent Work

A concurrent and independent work by Malavolta and Walter [MW23] constructs a two-round quantum key
exchange protocol from OWFs. Their underlying idea is similar to our IND-pkT-CPA secure construction.
Indeed, the technical core of their work is a construction a QPKE scheme that is secure against adversaries
that only see one copy of the quantum public key. A nice feature of their scheme is that it satisfies everlasting
security. That is, as long as the adversary is quantum polynomial-time when tampering with the public
key, it cannot recover any information of the encrypted message even if it has an unbounded computational
power later. They also show how to extend the scheme to satisfy security in the many-copy setting at the
cost of sacrificing everlasting security. This gives an alternative construction of IND-pkT-CPA secure QPKE
scheme from OWFs using our terminology. On the other hand, they do not consider CCA security, and our
CPA-to-CCA compiler is unique to this work.

1.6 Open Problems

In our construction, public keys are quantum states. It is an open problem whether QPKE with classical
public keys are possible from OWFs. Another interesting open problem is whether we can construct QPKE
defined in this work from an even weaker assumption than OWFs such as pseudorandom states generators.

In our model of QPKE, a decryption error may be caused by tampering attacks on the quantum public key.
To address this issue, we introduce the security notion we call decryption error detectability that guarantees
that a legitimate receiver of a ciphertext can notice if the decrypted message is different from the message
intended by the sender. We could consider even stronger variant of decryption error detectability that requires
that a sender can notice if a given quantum public key does not provide decryption correctness. It is an open
problem to construct a QPKE scheme satisfying such a stronger decryption error detectability.

The notion of IND-pkT-CCA security is defined with respect to a classical decryption oracle. In fact, this
is inherent for our proof technique. We leave it open to construct a tamper-resilient QPKE scheme that resists
attacks with a quantumly-accessible decryption oracle.

2 Technical Overview

We provide a technical overview of our work.

2.1 Definition of QPKE

Syntax. We define QPKE that can be used in the setting where quantum unauthenticated channels and
classical authenticated channels are available. To this end, we introduce the following two modifications to
the previous definitions.

• The secret key generation algorithm outputs a classical verification key together with the secret key.
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• The verification key is given to the encryption algorithm together with a quantum public key and a
message so that the encryption algorithm can check the validity of the given quantum public key.

Concretely, in our definition, a QPKE scheme consists of four algorithms (SKGen,PKGen,Enc,Dec). SKGen
is a classical secret key generation algorithm that is given the security parameter and outputs a classical secret
key sk and a classical verification key vk. PKGen is a quantum public key generation algorithm that takes as
input the classical secret key sk and outputs a quantum public key pk. Enc is a quantum encryption algorithm
that takes as inputs the classical verification key vk, a quantum public key pk, and a plaintext msg, and outputs
a classical ciphertext ct. Finally, Dec is a classical decryption algorithm that takes as input the classical secret
key and a ciphertext, and outputs the decryption result.

The above definitions for QPKE assume each quantum public key is used to encrypt only a single message
and might be consumed. We also introduce a notion of recyclable QPKE where the encryption algorithm
given a quantum public key outputs a ciphertext together with a classical state that can be used to encrypt a
message many times. In this overview, we mainly focus on non-recyclable QPKE for simplicity.

IND-pkT-CPA security. IND-pkT-CPA security roughly guarantees that indistinguishability holds even if
messages are encrypted by a public key pk′ tampered with by an adversary as long as the encryption is done
with the correct verification key vk. Formally, IND-pkT-CPA security is defined using the following security
experiment played by an adversary A. The experiment first generates classical secret key and verification key
pair (sk, vk)← SKGen(1λ) and m copies of the quantum public key pk1, . . . , pkm ← PKGen(sk). Then, A
is given the classical verification key vk and m quantum public keys pk1, . . . , pkm, and outputs a tampered
quantum public key pk′ and a pair of challenge plaintexts (msg0,msg1). The experiment generates the
challenge ciphertext using the adversarially generated quantum public key, that is, ct∗ ← Enc(vk, pk′,msgb),
where b← {0, 1}. Finally, A is given ct∗ and outputs the guess for b. IND-pkT-CPA security guarantees that
any efficient quantum adversary cannot guess b significantly better than random guessing in this experiment.

IND-pkT-CPA security captures the setting where the classical verification key is sent via a classical
authenticated channel and thus everyone can obtain correct verification key, but a quantum public key is
sent via an unauthenticated quantum channel and thus can be tampered with by an adversary. Especially, it
captures an adversaryA who steals a quantum public key pk sent to a user, replace it with a tampered one pk′,
and try to break the secrecy of a message encrypted by pk′.

To capture wide range of usage scenarios, we give multiple copies of the quantum public keys pk1, ..., pkm

toA. We also consider a relaxed security notion where an adversary is given a single quantum public key and
denote it as IND-pkT-CPA(1).

Decryption error detectability. We also define a security notion related to the correctness notion that we
call decryption error detectability. It roughly guarantees that a legitimate receiver of a ciphertext can notice if
the decrypted message is different from the message intended by the sender. Such a decryption error could
occur frequently in our setting as a result of the tampering attacks on the quantum public key sent via an
unauthenticated quantum channel. Note that our definition of QPKE requires a ciphertext of QPKE to be
a classical string and we assume all classical information is sent through a classical authenticated channel.
Thus, similarly to the verification key, we can assume that ciphertexts can be sent without being tampered.

2.2 IND-pkT-CPA Secure Construction

We provide the technical overview for IND-pkT-CPA secure construction.
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Duality between distinguishing and swapping. Our construction is inspired by the duality between
distinguishing and swapping shown by Aaronson, Atia, and Susskind [AAS20] and its cryptographic
applications by Hhan, Morimae, and Yamakawa [HMY23].7 We first review their idea. Let |ψ⟩ and |ϕ⟩ be
orthogonal states. [AAS20] showed that |ψ⟩+ |ϕ⟩ and |ψ⟩ − |ϕ⟩ are computationally indistinguishable8 if
and only if one cannot efficiently “swap” |ψ⟩ and |ϕ⟩ with a non-negligible advantage, i.e., for any efficiently
computable unitary U , | ⟨ϕ|U |ψ⟩+ ⟨ψ|U |ϕ⟩ | is negligible. Based on the above result, [HMY23] suggested
to use |ψ⟩+ (−1)b |ϕ⟩ as an encryption of a plaintext b ∈ {0, 1}. By the result of [AAS20], its security is
reduced to the hardness of swapping |ψ⟩ and |ϕ⟩.

Basic one-time SKE. We can construct one-time SKE scheme with quantum ciphertext using the above
duality between distinguishing and swapping as follows. A secret decryption key is (x0, x1) for uniformly
random bit strings x0, x1 ∈ {0, 1}λ, and the corresponding secret encryption key is

|0⟩ |x0⟩+ |1⟩ |x1⟩ . (4)

Then, when encrypting a plaintext b ∈ {0, 1}, it transforms the secret encryption key into the ciphertext

|0⟩ |x0⟩+ (−1)b |1⟩ |x1⟩ . (5)

One-time indistinguishability of this scheme is somewhat obvious because the adversary has no information
of x0 or x1 besides the ciphertext, but let us analyze it using the idea of [AAS20] to get more insights.
Suppose that the above scheme is insecure, i.e., |0⟩ |x0⟩+ |1⟩ |x1⟩ and |0⟩ |x0⟩ − |1⟩ |x1⟩ are computationally
distinguishable with a non-negligible advantage. Then, by the result of [AAS20], there is an efficient unitary
U that swaps |0⟩ |x0⟩ and |1⟩ |x1⟩ with a non-negligible advantage. By using this unitary, let us consider the
following procedure:

1. Given a state |0⟩ |x0⟩ ± |1⟩ |x1⟩, measure it in the computational basis to get |α⟩ |xα⟩ for random
α ∈ {0, 1}.

2. Apply the unitary U to |α⟩ |xα⟩ and measure it in the computational basis.

Since U swaps |0⟩ |x0⟩ and |1⟩ |x1⟩ with a non-negligible advantage, the probability that the outcome of the
second measurement is |α⊕ 1⟩ |xα⊕1⟩ is non-negligible. This yields the following observation: If one can
efficiently distinguish |0⟩ |x0⟩ + |1⟩ |x1⟩ and |0⟩ |x0⟩ − |1⟩ |x1⟩, then one can efficiently compute both x0
and x1 from |0⟩ |x0⟩ ± |1⟩ |x1⟩. On the other hand, it is easy to show that one cannot compute both x0 and
x1 from |0⟩ |x0⟩ ± |1⟩ |x1⟩ with a non-negligible probability by a simple information theoretical argument.
Thus, the above argument implies one-time indistinguishability of the above construction.

Extension to IND-pkT-CPA(1) secure QPKE with quantum ciphertext. We show how to extend the
above SKE scheme into an IND-pkT-CPA(1) secure QPKE scheme with quantum ciphertext. One natural
approach is to use the secret encryption key |0⟩ |x0⟩+ |1⟩ |x1⟩ as a quantum public key. However, it does not
work since the adversary for IND-pkT-CPA(1) who is given |0⟩ |x0⟩+ |1⟩ |x1⟩ as the public key can replace it
with |0⟩ |x′

0⟩+ |1⟩ |x′
1⟩ for x′

0, x
′
1 of its choice. To fix this issue, we partially authenticate a quantum public

key by using classical digital signatures. Concretely, the secret key generation algorithm SKGen generates a
signing key and verification key pair (sk, vk) of a digital signature scheme, and use them as the secret key and

7In the main body, we do not explicitly use any result of [AAS20, HMY23] though our analysis is similar to theirs.
8We often omit normalization factors.
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verification key of the QPKE scheme. Then, public key generation algorithm PKGen takes as input sk and
outputs a quantum public key

|0⟩ |σ(0)⟩+ |1⟩ |σ(1)⟩, (6)
where σ(α) is a signature for α ∈ {0, 1} by the signing key sk. Here, we assume that the signature scheme
has a deterministic signing algorithm. The encryption algorithm Enc that is given vk, a quantum public key,
and a plaintext b ∈ {0, 1} first coherently verifies using vk the validity of the signatures in the second register
of the public key and aborts if the verification rejects. Otherwise, Enc generates the ciphertext by encoding
the plaintext b into the phase of the quantum public key as before.

The IND-pkT-CPA(1) security of the construction is analyzed as follows. We assume that the digital
signature scheme satisfies strong unforgeability, i.e., given message-signature pairs (msg1, σ1), ..., (msgn, σn),
no efficient adversary can output (msg∗, σ∗) such that (msg∗, σ∗) ̸= (msgi, σi) for all i ∈ [n].9 Then, no
matter how the adversary who is given a single correctly generated quantum public key tampers with it, if it
passes the verification in Enc, the state after passing the verification is negligibly close to a state in the form of

c0 |0⟩ |σ(0)⟩ |Ψ0⟩+ c1 |1⟩ |σ(1)⟩ |Ψ1⟩ (7)

with some complex coefficients c0 and c1, and some states |Ψ0⟩ and |Ψ1⟩ over the adversary’s register (except
for a negligible probability). The encryption of a plaintext b ∈ {0, 1} is to apply Zb on the first qubit of
Equation (7). The cipertext generated under the tampered public key is therefore

c0 |0⟩ |σ(0)⟩ |Ψ0⟩+ (−1)bc1 |1⟩ |σ(1)⟩ |Ψ1⟩ . (8)

By a slight extension of the analysis of the above SKE scheme, we show that if one can efficiently distinguish
c0 |0⟩ |σ(0)⟩ |Ψ0⟩ + c1 |1⟩ |σ(1)⟩ |Ψ1⟩ and c0 |0⟩ |σ(0)⟩ |Ψ0⟩ − c1 |1⟩ |σ(1)⟩ |Ψ1⟩, then one can efficiently
compute both σ(0) and σ(1). On the other hand, recall that the adversary is only given one copy of the public
key |0⟩ |σ(0)⟩+ |1⟩ |σ(1)⟩. We can show that it is impossible to compute both σ(0) and σ(1) from this state
by the strong unforgeability as follows. By [BZ13, Lemma 2.1], the probability to output both σ(0) and
σ(1) is only halved even if |0⟩ |σ(0)⟩+ |1⟩ |σ(1)⟩ is measured in the computational basis before given to the
adversary. After the measurement, the adversary’s input collapses to a classical state |α⟩ |σ(α)⟩ for random
α ∈ {0, 1}, in which case the adversary can output σ(α⊕ 1) only with a negligible probability by the strong
unforgeability. Combining the above, security of the above scheme under tampered public keys is proven.

Achiving IND-pkT-CPA security. The above QPKE scheme satisfies IND-pkT-CPA(1) security, but does
not satisfy IND-pkT-CPA security where the adversary is given multiple copies of quantum public keys. If the
adversary is given two copies of the quantum public key, by measuring each public key in the computational
basis, the adversary can learn both σ(0) and σ(1) with probability 1/2. In order to extend the scheme into
IND-pkT-CPA security, we introduce a classical randomness for each public key generation. Specifically, a
public key is

(r, |0⟩ |σ(0, r)⟩+ |1⟩ |σ(1, r)⟩) (9)
where r ∈ {0, 1}λ is chosen uniformly at random for every execution of the public key generation algorithm,
and σ(α, r) is a signature for α∥r.10 An encryption of a plaintext b ∈ {0, 1} is

(r, |0⟩ |σ(0, r)⟩+ (−1)b |1⟩ |σ(1, r)⟩). (10)

Since each quantum public key uses different r, security of this scheme holds even if the adversary obtains
arbitrarily many public keys.

9At this point, two-time security (where n = 2) suffices but we finally need to allow n to be an arbitrary polynomial.
10α∥r is the concatenation of two bit strings α and r.
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Making ciphertext classical. The above constructions has quantum ciphertext, but our definition explicitly
requires that a QPKE scheme have a classical cipheretxt. We observe that the ciphertext of the above schemes
can be made classical easily. In the IND-pkT-CPA secure construction, the ciphertext contains a quantum
state |0⟩ |σ(r, 0)⟩+ (−1)b |1⟩ |σ(r, 1)⟩. Suppose that we measure this state in Hadamard basis and let d be
the measurement outcome. Then an easy calculation shows that we have

b = d · (0∥σ(0, r)⊕ 1∥σ(1, r)). (11)

Thus, sending (r, d) as a ciphertext is sufficient for the receiver who has the decryption key to recover the
plaintext b. Moreover, this variant is at least as secure as the original one with quantum ciphertexts since the
Hadamard-basis measurement only loses information of the ciphertext.

Achieving recyclability. Given that we achieve classical ciphertext property, it is rather straightforward
to transform the construction into recyclable one where the encryption algorithm outputs a classical state
that can be used to encrypt many plaintexts. The transformation uses standard hybrid encryption technique.
Concretely, the encryption algorithm first generates a key K of a SKE scheme, encrypt each bit of K by
the above non-recyclable scheme in a bit-by-bit manner, and encrypt the plaintext msg by the symmetric
key encryption scheme under the key K. The final ciphertext is (ct, ctske), where ct is the ciphertext of
K by the non-recyclable scheme and ctske is the ciphertext of msg by the SKE scheme. The encryption
algorithm outputs a classical state (ct,K) together with the ciphertext. The encryptor can reuse the state
when it encrypts another message later.11

Adding decryption error detectability. So far, we are only concerned with IND-pkTA security. On the
other hand, the schemes presented in the previous paragraphs do not satisfy decryption error detectability. (See
Definition 4.2 for formal definition.) Fortunately, there is a simple generic conversion that adds decryption
error detectability while preserving IND-pkTA security by using digital signatures. The idea is that the
encryption algorithm first generates a signature for the message under a signing key generated by itself,
encrypts both the original message and signature under the building block scheme, and outputs the ciphertexts
along with the verification key for the signature scheme in the clear. Then, the decryption algorithm can verify
that the decryption result is correct as long as it is a valid message-signature pair (except for a negligible
probability).

2.3 CPA-to-CCA Transformation

We now explain how to transform IND-pkT-CPA secure QPKE scheme into IND-pkT-CCA secure one using
OWFs.

Definition of IND-pkT-CCA security. IND-pkT-CCA security is defined by adding the following two
modifications to the security experiment for IND-pkT-CPA security.

• Throughout the experiment, the adversary can get access to the decryption oracle that is given a
ciphertext ct and returns Dec(sk, ct) if ct ̸= ct∗ and ⊥ otherwise.

• The adversary is given the 1-bit leakage information that the challenge ciphertext is decrypted to ⊥ or
not.

11The idea to achieve the recyclability by the hybrid encryption technique was also used in one of the constructions in [BGH+23a].
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As discussed in Section 1.3, the second modification is needed to support a natural usage scenario of QPKE.
For simplicity, we will ignore this second modification for now and proceed the overview as if IND-pkT-CCA
security is defined by just adding the decryption oracle to the security experiment for IND-pkT-CPA security.

We also define a weaker variant of IND-pkT-CCA security where the adversary is allowed to make only
a single query to the decryption oracle. We denote it as IND-pkT-1CCA security. We consider a relaxed
variant of IND-pkT-CCA security and IND-pkT-1CCA security where the adversary is given only a single
copy of quantum public key. We denote them as IND-pkT-CCA(1) security and IND-pkT-1CCA(1) security
respectively, similarly to IND-pkT-CPA(1) security.

IND-pkT-1CCA from IND-pkT-CPA. In classical cryptography, the CCA security where the number of
decryption query is a-priori bounded to q is called q-bounded-CCA security. It is known that any CPA secure
classical PKE scheme can be transformed into q-bounded-CCA secure one using only a digital signature
scheme [CHH+07]. We show that by using a similar technique, we can transform an IND-pkT-CPA secure
QPKE scheme into an IND-pkT-1CCA secure one using only a digital signature scheme.

Boosting 1-bounded-CCA into full-fledged CCA. Classically, it is not known how to boost bounded-CCA
security into CCA security without using additional assumption, and as a result, “general transformation
from CPA to CCA” is a major open question in classical public key cryptography. Surprisingly, we show
that 1-bounded-CCA security can be boosted into CCA security for QPKE assuming only OWFs. More
specifically, we show that IND-pkT-1CCA(1) secure QPKE can be transformed into IND-pkT-CCA(1) secure
one assuming only OWFs.

The key component in the transformation is tokenized message authentication code (MAC) [BSS21].
Tokenized MAC is a special MAC scheme where we can generate a quantum MAC token using the secret
MAC key. The quantum MAC token can be used to generate a valid signature only once. In other words,
an adversary who is given a single quantum MAC token cannot generate valid signatures for two different
messages. Tokenized MAC can be realized using only OWFs [BSS21].

The high level idea is to design CCA secure scheme so that a public key contains quantum MAC token and
an adversary can generate a valid ciphertext only when it consumes the MAC token, which ensures that the
adversary can make only one meaningful decryption query and CCA security is reduced to 1-bounded-CCA
security. Consider the following construction of a QPKE scheme CCA based on IND-pkT-1CCA(1) secure
QPKE scheme 1CCA and tokenized MAC scheme TMAC. The secret key of CCA consists of the secret
keys of 1CCA and TMAC, and the verification key of CCA is that of 1CCA. A quantum public key of CCA
consists of that of 1CCA and a MAC token of TMAC. The encryption algorithm of CCA first generates a
ciphertext 1cca.ct of 1CCA and then generates a signature tmac.σ for the message 1cca.ct by consuming
the MAC token contained in the public key. The resulting ciphertext is (1cca.ct, tmac.σ). The decryption
algorithm of CCA that is given the ciphertext (1cca.ct, tmac.σ) first checks validity of tmac.σ by using the
secret MAC key included in the secret key. If it passes, the decryption algorithm decrypts 1cca.ct by using
the secret key of 1CCA.

In the experiment of IND-pkT-CCA(1) security for CCA, we can ensure that an adversary can make at
most one decryption query whose result is not ⊥ by the power of TMAC, as we want. However, the adversary
in fact can make one critical query (1cca.ct∗, tmac.σ′), where 1cca.ct∗ is the first component of the challenge
ciphertext, which allows the adversary to obtain the challenge bit. This attack is possible due to the fact that
the adversary is allowed to tamper the quantum public key.12 Fortunately, this attack can be prevented by using

12More specifically, the attack is done as follows. The adversary is given a quantum public key (1cca.pk, token) where 1cca.pk
is a public key of 1CCA and token is a MAC token of TMAC. The adversary generates another token token′ of TMAC by itself
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a digital signature scheme and tying the two components 1cca.ct∗ and tmac.σ′ together. Once this issue is
fixed, we can successfully reduce the IND-pkT-CCA(1) security of the construction to the IND-pkT-1CCA(1)

security of 1CCA, since now the adversary can make only one non-critical decryption query.

Upgrading IND-pkT-CCA(1) to IND-pkT-CCA. We can easily transform an IND-pkT-CCA(1) secure
QPKE scheme into an IND-pkT-CCA secure one. The transformation is somewhat similar to the one
from IND-pkT-CPA(1) secure scheme to IND-pkT-CPA secure one. We bundle multiple instances of
IND-pkT-CCA(1) secure scheme each of which is labeled by a classical random string. The transformation
uses pseudorandom functions and digital signatures both of which are implied by OWFs.

How to deal with 1-bit leakage “the challenge is decrypted to ⊥ or not”. So far, we ignore the fact that
our definition of IND-pkT-CCA security allows the adversary to obtain 1-bit leakage information whether the
challenge is decrypted to ⊥ or not. We introduce an intermediate notion between IND-pkT-CPA security and
IND-pkT-CCA security that we call IND-pkT-CVA security where the adversary is given the 1-bit leakage
information but is not allowed to get access to the decryption oracle. We then show that an IND-pkT-CPA
secure QPKE scheme can be transformed into IND-pkT-CVA secure one using the cut-and-choose technique.
Moreover, we show that the above construction strategy towards IND-pkT-CCA secure construction works
even if the adversaries are given the 1-bit leakage information, if we start with IND-pkT-CVA secure scheme.

Some Remarks. We finally provide some remarks.

Recyclability: Similarly to IND-pkT-CPA secure scheme, we consider recyclable variant for IND-pkT-CCA
secure one. We show that a recyclable IND-pkT-CCA secure QPKE scheme can be constructed
from non-recyclable one using the hybrid encryption technique similarly to IND-pkT-CPA secure
construction.

Strong decryption error detectability: In the proof of the construction from IND-pkT-1CCA(1) secure
scheme to IND-pkT-CCA(1) secure one, we use the underlying scheme’s decryption error detectability.
The proof of CCA security is sensitive to decryption errors, and it turns out that decryption error
detectability that only provides security guarantee against computationally bounded adversaries is not
sufficient for this part. Thus, we introduce statistical variant of decryption error detectability that we call
strong decryption error detectability. We also prove that our IND-pkT-CVA secure construction based
on the cut-and-choose technique achieves strong decryption error detectability, and the subsequent
transformations preserve it.

3 Preliminaries

3.1 Basic Notations

We use the standard notations of quantum computing and cryptography. We use λ as the security parameter.
For any set S, x← S means that an element x is sampled uniformly at random from the set S. We write negl

and sends (1cca.pk, token′) to the challenger as the tempered public key. Since there is no validity check on the MAC token in the
encryption algorithm, this tampered public key is not rejected and the challenge ciphertext (1cca.ct∗, tmac.σ∗) is generated. Given
the challenge ciphertext, the adversary generates a signature tmac.σ′ for 1cca.ct∗ using token contained in the given un-tampered
public key and queries (1cca.ct∗, tmac.σ′) to the decryption oracle. Since tmac.σ′ is a valid signature generated using the correct
token, this query is successful and the adversary obtains the challenge bit.
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to mean a negligible function. PPT stands for (classical) probabilistic polynomial-time and QPT stands for
quantum polynomial-time. For an algorithm A, y ← A(x) means that the algorithm A outputs y on input
x. For two bit strings x and y, x∥y means the concatenation of them. For simplicity, we sometimes omit
the normalization factor of a quantum state. (For example, we write 1√

2(|x0⟩+ |x1⟩) just as |x0⟩+ |x1⟩.)
I := |0⟩⟨0|+ |1⟩⟨1| is the two-dimensional identity operator. For the notational simplicity, we sometimes
write I⊗n just as I when the dimension is clear from the context.

3.2 Digital Signatures

Definition 3.1 (Digital signatures). A digital signature scheme is a set of algorithms (Gen,Sign,Ver) such
that

• Gen(1λ)→ (k, vk) : It is a PPT algorithm that, on input the security parameter λ, outputs a signing
key k and a verification key vk.

• Sign(k,msg)→ σ : It is a PPT algorithm that, on input the message msg and k, outputs a signature σ.

• Ver(vk,msg, σ)→ ⊤/⊥ : It is a deterministic classical polynomial-time algorithm that, on input vk,
msg, and σ, outputs ⊤/⊥.

We require the following correctness and strong EUF-CMA security.

Correctness: For any msg,

Pr[⊤ ← Ver(vk,msg, σ) : (k, vk)← Gen(1λ), σ ← Sign(k,msg)] ≥ 1− negl(λ). (12)

Strong EUF-CMA security: For any QPT adversary A with classical oracle access to the signing oracle
Sign(k, ·),

Pr[(msg∗, σ∗) /∈ Q∧⊤ ← Ver(vk,msg∗, σ∗) : (k, vk)← Gen(1λ), (msg∗, σ∗)← ASign(k,·)(vk)] ≤ negl(λ),
(13)

where Q is the set of message-signature pairs returned by the signing oracle.

Remark 3.2. Without loss of generality, we can assume that Sign is deterministic. (The random seed used
for Sign can be generated by applying a PRF on the message signed, and the key of PRF is appended to the
signing key.)

Theorem 3.3 ([Gol04, Sec. 6.5.2]). Strong EUF-CMA secure digital signatures exist if OWFs exist.

3.3 Pseudorandom Functions

Definition 3.4 (Pseudorandom functions (PRFs)). A keyed function {PRFK : X → Y}K∈{0,1}λ that is
computable in classical deterministic polynomial-time is a quantum-query secure pseudorandom function if
for any QPT adversary A with quantum access to the evaluation oracle PRFK(·),

|Pr[1← APRFK(·)(1λ)]− Pr[1← AH(·)(1λ)]| ≤ negl(λ), (14)

where K ← {0, 1}λ and H : X → Y is a function chosen uniformly at random.
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As we can see, we consider PRFs that is secure even if an adversary can get access to the oracles in
superposition, which is called quantum-query secure PRFs. We use the term PRFs to indicate quantum-query
secure PRFs in this work.

Theorem 3.5 ([Zha12]). (Quantum-query secure) PRFs exist if OWFs exist.

3.4 Symmetric Key Encryption

Definition 3.6 (Symmetric Key Encryption (SKE)). A (classical) symmetric key encryption (SKE) scheme
with message space {0, 1}ℓ is a set of algorithms (Enc,Dec) such that

• Enc(K,msg)→ ct : It is a PPT algorithm that, on input K ∈ {0, 1}λ and the message msg ∈ {0, 1}ℓ,
outputs a ciphertext ct.

• Dec(K, ct)→ msg′ : It is a deterministic classical polynomial-time algorithm that, on input K and ct,
outputs msg′.

We require the following correctness.

Correctness: For any msg ∈ {0, 1}ℓ,

Pr[msg← Dec(K, ct) : K ← {0, 1}λ, ct← Enc(K,msg)] = 1. (15)

Definition 3.7 (IND-CPA Security). For any QPT adversaryA with classical oracle access to the encryption
oracle Enc(K, ·),

Pr

b← A(ct∗, st)Enc(K,·) :

K ← {0, 1}λ
(msg0,msg1, st)← AEnc(K,·)(1λ)

b← {0, 1}
ct∗ ← Enc(K,msgb)

 ≤ 1
2 + negl(λ). (16)

Theorem 3.8 ([GGM86, HILL99]). IND-CPA secure SKE exists if OWFs exist.

Definition 3.9 (IND-CCA Security). For any QPT adversaryA with classical oracle access to the encryption
oracle Enc(K, ·),

Pr

b← A(ct∗, st)Enc(K,·),ODec,2(·) :

K ← {0, 1}λ
(msg0,msg1, st)← AEnc(K,·),ODec,1(·)(1λ)

b← {0, 1}
ct∗ ← Enc(K,msgb)

 ≤ 1
2 + negl(λ). (17)

Here, ODec,1(ct) returns Dec(K, ct) for any ct. ODec,2 behaves identically to ODec,1 except that ODec,2
returns ⊥ to the input ct∗.

Theorem 3.10 ([BN08]). IND-CCA secure SKE exists if OWFs exist.

3.5 Lemma by Boneh and Zhandry

In this paper, we use the following lemma by Boneh and Zhandry [BZ13].

Lemma 3.11 ([BZ13, Lemma 2.1]). Let A be a quantum algorithm, and let Pr[x] be the probability that
A outputs x. Let A′ be another quantum algorithm obtained from A by pausing A at an arbitrary stage of
execution, performing a partial measurement that obtains one of k outcomes, and then resuming A. Let
Pr′[x] be the probability that A′ outputs x. Then Pr′[x] ≥ Pr[x]/k.
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4 Definition of QPKE

In this section, we define QPKE.

Definition 4.1 (Quantum Public-Key Encryption (QPKE)). A quantum public-key encryption scheme with
message space {0, 1}ℓ is a set of algorithms (SKGen,PKGen,Enc,Dec) such that

• SKGen(1λ) → (sk, vk) : It is a PPT algorithm that, on input the security parameter λ, outputs a
classical secret key sk and a classical verification key vk.

• PKGen(sk)→ pk : It is a QPT algorithm that, on input sk, outputs a quantum public key pk.

• Enc(vk, pk,msg) → ct : It is a QPT algorithm that, on input vk, pk, and a plaintext msg ∈ {0, 1}ℓ,
outputs a classical ciphertext ct.

• Dec(sk, ct)→ msg′ : It is a classical deterministic polynomial-time algorithm that, on input sk and ct,
outputs msg′ ∈ {0, 1}ℓ ∪ {⊥}.

We require the following correctness and IND-pkTA security.

Correctness: For any msg ∈ {0, 1}ℓ,

Pr[msg← Dec(sk, ct) : (sk, vk)← SKGen(1λ), pk← PKGen(sk), ct← Enc(vk, pk,msg)] ≥ 1−negl(λ).
(18)

IND-pkT-CPA Security: For any polynomial m, and any QPT adversary A,

Pr

b← A(ct∗, st) :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg0,msg1, st)← A(vk, pk1, ..., pkm)
b← {0, 1}

ct∗ ← Enc(vk, pk′,msgb)

 ≤
1
2 + negl(λ). (19)

Here, pk1, ..., pkm ← PKGen(sk)⊗m means that PKGen is executed m times and pki is the output of the ith
execution of PKGen. st is a quantum internal state of A, which can be entangled with pk′.

As we discussed in Section 1.3, the above definition does not require the quantum public key pk to be a
pure state.

We also define a security notion related to the correctness notion that we call decryption error detectability.

Definition 4.2 (Decryption error detectability). We say that a QPKE scheme has decryption error detectability
if for any polynomial m, and any QPT adversary A,

Pr

msg′ ̸= ⊥ ∧ msg′ ̸= msg :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg)← A(vk, pk1, ..., pkm)
ct← Enc(vk, pk′,msg)

msg′ ← Dec(sk, ct)

 ≤ negl(λ). (20)
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It is easy to see that we can generically add decryption error detectability by letting the sender generate a
signature for the message under a signing key generated by itself, encrypt the concatenation of the message
and signature, and send the ciphertext along with the verification key of the signature to the receiver. The
receiver can check that there is no decryption error (except for a negligible probability) if the decryption result
is a valid message-signature pair. That is, we have the following theorem.

Theorem 4.3. If there exist OWFs and a QPKE scheme that satisfies correctness and IND-pkT-CPA
security, there exists a QPKE scheme that satisfies correctness, IND-pkT-CPA security, and decryption error
detectability.

We omit the proof since it is straightforward by the construction explained above. Since we have this
theorem, we focus on constructing QPKE that satisfies correctness and IND-pkT-CPA security.

5 Construction of QPKE

In this section, we construct a QPKE scheme that satisfies correctness and IND-pkT-CPA security (but
not decryption error detectability) from strong EUF-CMA secure digital signatures. The message space
of our construction is {0, 1}, but it can be extended to be arbitrarily many bits by parallel repetition. Let
(Gen, Sign,Ver) be a strong EUF-CMA secure digital signature scheme with a deterministic Sign algorithm
and message space {0, 1}u for u = ω(log λ).

Our construction of QPKE is as follows.

• SKGen(1λ)→ (sk, vk) : Run (k, vk)← Gen(1λ). Output sk := k. Output vk.

• PKGen(sk)→ pk : Parse sk = k. Choose r ← {0, 1}u. By running Sign coherently, generate the state

|ψr⟩ := |0⟩A ⊗ |Sign(k, 0∥r)⟩B + |1⟩A ⊗ |Sign(k, 1∥r)⟩B (21)

over registers (A,B). Output pk := (r, |ψr⟩).

• Enc(vk, pk, b) → ct : Parse pk = (r, ρ), where ρ is a quantum state over registers (A,B). The Enc
algorithm consists of the following three steps.

1. It coherently checks the signature in ρ. In other words, it applies the unitary

Ur,vk |α⟩A |β⟩B |0...0⟩D = |α⟩A |β⟩B |Ver(vk, α∥r, β)⟩D (22)

on ρA,B ⊗ |0...0⟩ ⟨0...0|D,13 and measures the register D in the computational basis. If the result
is ⊥, it outputs ct := ⊥ and halts. If the result is ⊤, it goes to the next step.

2. It applies Zb on the register A.
3. It measures all qubits in the registers (A,B) in the Hadamard basis to get the result d. It outputs

ct := (r, d).

• Dec(sk, ct)→ b′ : Parse sk = k and ct = (r, d). Output

b′ := d · (0∥Sign(k, 0∥r)⊕ 1∥Sign(k, 1∥r)). (23)
13C is skipped, because C will be used later.
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Theorem 5.1. If (Gen, Sign,Ver) is a strong EUF-CMA secure digital signature scheme, then the QPKE
scheme (SKGen,PKGen,Enc,Dec) above is correct and IND-pkT-CPA secure.

The correctness is straightforward. First, the state over the registers (A,B) is |ψr⟩ if pk was not tampered
with and the first step of Enc algorithm got ⊤. Second, in that case, the state becomes

|0⟩ |Sign(k, 0∥r)⟩+ (−1)b |1⟩ |Sign(k, 1∥r)⟩ (24)

after the second step of Enc algorithm. Finally, because in that case d obtained in the third step of Enc
algorithm satisfies

b = d · (0∥Sign(k, 0∥r)⊕ 1∥Sign(k, 1∥r)), (25)
we have b′ = b.

We prove IND-pkT-CPA security in the next section.

6 Proof of IND-pkT-CPA Security

In this section, we show IND-pkT-CPA security of our construction to complete the proof of Theorem 5.1.
The outline of the proof is as follows. The security game for the IND-pkT-CPA security of our QPKE (Hybrid
0) is given in Figure 1. We introduce two more hybrids, Hybrid 1 (Figure 2) and Hybrid 2 (Figure 3). Hybrid
1 is the same as Hybrid 0 except that the challenger does not do the Hadamard-basis measurement in the
third step of Enc algorithm, and the challenger sends the adversary r and the state over the registers (A,B).
Hybrid 2 is the same as Hybrid 1 except that the adversary outputs two bit strings µ0, µ1 and the adversary
wins if µ0 = Sign(k, 0∥r) and µ1 = Sign(k, 1∥r). The formal proof is as follows.

Assume that the IND-pkT-CPA security of our construction is broken by a QPT adversaryA. It means the
QPT adversary A wins Hybrid 0 with a non-negligible advantage. Then, it is clear that there is another QPT
adversary A′ that wins Hybrid 1 with a non-negligible advantage. (A′ has only to do the Hadamard-basis
measurement by itself.) From the A′, we can construct a QPT adversary A′′ that wins Hybrid 2 with a
non-negligible probability by using the idea of [HMY23]. (For details, see Section 6.1). Finally, we show in
Section 6.2 that no QPT adversary can win Hybrid 2 except for a negligible probability. We thus have the
contradiction, and therefore our QPKE is IND-pkT-CPA secure.

6.1 From Distinguishing to Outputting Two Signatures

We present the construction ofA′′. Assume that there exists a QPT adversaryA′ and a polynomial p such that

|Pr[1← A′ | b = 0]− Pr[1← A′ | b = 1]| ≥ 1
p(λ) (27)

in Hybrid 1 (Figure 2) for all λ ∈ I with an infinite set I . From the A′, we construct a QPT adversary A′′

such that
Pr[(Sign(k, 0∥r),Sign(k, 1∥r))← A′′] ≥ 1

q(λ) (28)

in Hybrid 2 (Figure 3) with a polynomial q for infinitely many λ.
Let t := (k, vk, r1, ..., rm, r), and Pr[t] be the probability that t is generated in Item 1, Item 2, and Item 4

in the game of Figure 2. Let Good be the event that C gets ⊤ in Item 5 in the game of Figure 2. Let Bad be
the event that Good does not occur. Then, from Equation (27), we have

1
p(λ) ≤

∣∣∣∑
t

Pr[t] Pr[Good | t] Pr[1← A′ | t,Good, b = 0] (29)
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Hybrid 0
1. C runs (k, vk)← Gen(1λ). C sends vk to A.
2. C chooses r1, ..., rm ← {0, 1}u.
3. C sends {(ri, |ψri⟩)}m

i=1 to the adversary A, where

|ψri⟩ := |0⟩ ⊗ |Sign(k, 0∥ri)⟩+ |1⟩ ⊗ |Sign(k, 1∥ri)⟩ . (26)

4. A generates a quantum state over registers (A,B,C). ((A,B) corresponds to the quantum part of pk′, and C
corresponds to st.) A sends a bit string r and the registers (A,B) to C. A keeps the register C.

5. C coherently checks the signature in the state sent fromA. If the result is ⊥, it sends ⊥ toA and halts. If the result
is ⊤, it goes to the next step.

6. C chooses b← {0, 1}. C applies Zb on the register A.
7. C measures all qubits in (A,B) in the Hadamard basis to get the result d. C sends (r, d) to A.
8. A outputs b′. If b′ = b, A wins.

Figure 1: Hybrid 0

Hybrid 1
1.-6. All the same as Figure 1.

7. C does not do the Hadamard-basis measurement, and C sends r and registers (A,B) to A.
8. The same as Figure 1.

Figure 2: Hybrid 1

+
∑

t

Pr[t] Pr[Bad | t] Pr[1← A′ | t,Bad, b = 0]

−
∑

t

Pr[t] Pr[Good | t] Pr[1← A′ | t,Good, b = 1] (30)

−
∑

t

Pr[t] Pr[Bad | t] Pr[1← A′ | t,Bad, b = 1]
∣∣∣ (31)

≤
∑

t

Pr[t] Pr[Good | t]
∣∣∣Pr[1← A′ | t,Good, b = 0]− Pr[1← A′ | t,Good, b = 1]

∣∣∣
+
∑

t

Pr[t] Pr[Bad | t]
∣∣∣Pr[1← A′ | t,Bad, b = 0]− Pr[1← A′ | t,Bad, b = 1]

∣∣∣ (32)

=
∑

t

Pr[t] Pr[Good | t]
∣∣∣Pr[1← A′ | t,Good, b = 0]− Pr[1← A′ | t,Good, b = 1]

∣∣∣ (33)

for all λ ∈ I , because if Bad occurs, A′ gets only ⊥ which contains no information about b. (Here, we often
abuse notation to just write t to mean the event that t is generated in Item 1, Item 2, and Item 4.) Therefore, if
we define

Tλ :=
{
t : Pr[Good | t] ·

∣∣∣Pr[1← A′ | t,Good, b = 0]− Pr[1← A′ | t,Good, b = 1]
∣∣∣ ≥ 1

2p(λ)
}
, (34)

we have, for all λ ∈ I ,

Pr[Good | t] ≥ 1
4p(λ) (35)
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Hybrid 2
1.-7. All the same as Figure 2.

8. A outputs (µ0, µ1). If µ0 = Sign(k, 0∥r) and µ1 = Sign(k, 1∥r), A wins.

Figure 3: Hybrid 2

and ∣∣∣Pr[1← A′ | t,Good, b = 0]− Pr[1← A′ | t,Good, b = 1]
∣∣∣ ≥ 1

2p(λ) (36)

for any t ∈ Tλ and
∑

t∈Tλ
Pr[t] ≥ 1

2p(λ) .

Let |ϕt,good
b ⟩ be the state over the registers (A,B,C) immediately before Item 8 of Figure 2 given that t

is generated, Good occurred, and b is chosen in Item 6 of Figure 2. We can show the following lemma. (Its
proof is given later.)

Lemma 6.1. If (Gen, Sign,Ver) is strong EUF-CMA secure, there exists a subset T ′
λ ⊆ Tλ such that the

following is satisfied for all λ ∈ I ′, where I ′ := {λ ∈ I : λ ≥ λ0} with a certain λ0.

•
∑

t∈T ′
λ

Pr[t] ≥ 1
4p(λ) .

• For any t ∈ T ′
λ, |ϕt,good

b ⟩ is close to a state

|ϕ̃t,good
b ⟩ := c0 |0⟩A |Sign(k, 0∥r)⟩B |Ψ0⟩C + (−1)bc1 |1⟩A |Sign(k, 1∥r)⟩B |Ψ1⟩C (37)

within the trace distance 1
p10(λ) , where c0 and c1 are some complex coefficients such that |c0|2+|c1|2 = 1,

and |Ψ0⟩ and |Ψ1⟩ are some normalized states.

Now let us fix t ∈ T ′
λ. Also, assume that Good occurred. Because T ′

λ ⊆ Tλ, it means that t ∈ Tλ. Then,
from Equation (36),∣∣∣Pr[1← A′ | t,Good, b = 0]− Pr[1← A′ | t,Good, b = 1]

∣∣∣ = ∆ (38)

for a non-negligible ∆ ≥ 1
2p(λ) for all λ ∈ I . Without loss of generality, we can assume that in Item 8 of

Figure 2, A′ applies a unitary V on the state |ϕt,good
b ⟩, and measures the register A in the computational basis

to get b′ ∈ {0, 1}. By Equation (38) we have

V |ϕt,good
0 ⟩ = √p |1⟩A |ν1⟩B,C +

√
1− p |0⟩A |ν0⟩B,C (39)

V |ϕt,good
1 ⟩ =

√
1− p+ ∆ |0⟩A |ξ0⟩B,C +

√
p−∆ |1⟩A |ξ1⟩B,C (40)

for some real number p and some normalized states |ν0⟩ , |ν1⟩ , |ξ0⟩ , |ξ1⟩. (This is because any state can be
written as p |1⟩ |ν1⟩+

√
1− p |0⟩ |ν0⟩ with some p and normalized states |ν0⟩ , |ν1⟩, and due to Equation (38),

the coefficients of |1⟩ |ξ1⟩ has to be
√
p−∆.) If we define W as W := V †(Z ⊗ I)V, we have

| ⟨ϕ̃t,good
b |W |ϕ̃t,good

b ⟩ − ⟨ϕt,good
b |W |ϕt,good

b ⟩ | ≤ 2
p10(λ) (41)
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for all λ ∈ I ′ from Lemma 6.1. Therefore,

|c∗
0c1 ⟨0| ⟨Sign(k, 0∥r)| ⟨Ψ0|W |1⟩ |Sign(k, 1∥r)⟩ |Ψ1⟩ (42)

+ c0c
∗
1 ⟨1| ⟨Sign(k, 1∥r)| ⟨Ψ1|W |0⟩ |Sign(k, 0∥r)⟩ |Ψ0⟩ | (43)

= 1
4 |(⟨ϕ̃

t,good
0 |+ ⟨ϕ̃t,good

1 |)W (|ϕ̃t,good
0 ⟩ − |ϕ̃t,good

1 ⟩) (44)

+ (⟨ϕ̃t,good
0 | − ⟨ϕ̃t,good

1 |)W (|ϕ̃t,good
0 ⟩+ |ϕ̃t,good

1 ⟩)| (45)

= 1
2 | ⟨ϕ̃

t,good
0 |W |ϕ̃t,good

0 ⟩ − ⟨ϕ̃t,good
1 |W |ϕ̃t,good

1 ⟩ | (46)

≥ 1
2 | ⟨ϕ

t,good
0 |W |ϕt,good

0 ⟩ − ⟨ϕt,good
1 |W |ϕt,good

1 ⟩ | − 2
p10(λ) (47)

= 1
2

∣∣∣(√p ⟨1| ⟨ν1|+
√

1− p ⟨0| ⟨ν0|
) (
−√p |1⟩ |ν1⟩+

√
1− p |0⟩ |ν0⟩

)
−
(√

1− p+ ∆ ⟨0| ⟨ξ0|+
√
p−∆ ⟨1| ⟨ξ1|

) (√
1− p+ ∆ |0⟩ |ξ0⟩ −

√
p−∆ |1⟩ |ξ1⟩

)∣∣∣− 2
p10(λ)

(48)

= 1
2 |−p+ (1− p)− (1− p+ ∆) + (p−∆)| − 2

p10(λ) (49)

= ∆− 2
p10(λ) (50)

≥ 1
2p(λ) −

2
p10(λ) (51)

≥ 1
p(λ) (52)

for all λ ∈ I ′. Here, Equation (47) follows from Equation (41), and Equation (48) follows from Equations (39)
and (40) and the definition of W . From the triangle inequality and the facts that |c0| ≤ 1 and |c1| ≤ 1,

1
p(λ) ≤ |c1| · | ⟨0| ⟨Sign(k, 0∥r)| ⟨Ψ0|W |1⟩ |Sign(k, 1∥r)⟩ |Ψ1⟩ | (53)

+ |c0| · | ⟨1| ⟨Sign(k, 1∥r)| ⟨Ψ1|W |0⟩ |Sign(k, 0∥r)⟩ |Ψ0⟩ | (54)

for all λ ∈ I ′. Then,

1
2p(λ) ≤ |c1| · | ⟨0| ⟨Sign(k, 0∥r)| ⟨Ψ0|W |1⟩ |Sign(k, 1∥r)⟩ |Ψ1⟩ | (55)

or
1

2p(λ) ≤ |c0| · | ⟨1| ⟨Sign(k, 1∥r)| ⟨Ψ1|W |0⟩ |Sign(k, 0∥r)⟩ |Ψ0⟩ | (56)

holds for all λ ∈ I ′. Assume that the latter holds. (The following proof can be easily modified even if the
former holds.) Then

1
4p2(λ) ≤ |c0|2 · | ⟨1| ⟨Sign(k, 1∥r)| ⟨Ψ1|W |0⟩ |Sign(k, 0∥r)⟩ |Ψ0⟩ |2 (57)

≤ |c0|2 · ∥(I ⊗ ⟨Sign(k, 1∥r)| ⊗ I)W |0⟩ |Sign(k, 0∥r)⟩ |Ψ0⟩ ∥2 (58)
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A′′

1. Simulate A′ in steps 1.-7. of Figure 3. If ⊥ is sent from C, output ⊥ and halt.
2. Measure the register A in the computational basis. If the result is 1, output ⊥ and halt. If the result is 0, measure

the register B of the post-measurement state in the computational basis to get the measurement result µ0.
3. ApplyW on the post-measurement state and measure the register B in the computational basis to get the result µ1.
4. Output (µ0, µ1).

Figure 4: A′′

for all λ ∈ I ′. With this W , we construct the QPT adversary A′′ as is shown in Figure 4.
We show that A′′ wins the game of Figure 3 with a non-negligible probability for infinitely many λ. The

probability that t ∈ T ′
λ and Good occur in Item 1 of Figure 4 is at least 1

16p2(λ) for all λ ∈ I ′, because of the
following reasons. First,

∑
t∈T ′

λ
Pr[t] ≥ 1

4p(λ) for all λ ∈ I ′ from Lemma 6.1. Second, because t ∈ T ′
λ means

t ∈ Tλ, Pr[Good | t] ≥ 1
4p(λ) for all λ ∈ I from Equation (35).

Assume that t ∈ T ′
λ and Good occur. If A′′ does the operations in Item 2 and Item 3 on |ϕ̃t,good

b ⟩, the
probability that (µ0, µ1) = (Sign(k, 0∥r), Sign(k, 1∥r)) is at least 1

4p2(λ) for all λ ∈ I ′ from Equation (58).
From Lemma 6.1, the trace distance between |ϕt,good

b ⟩ and |ϕ̃t,good
b ⟩ is at most 1

p10(λ) for all λ ∈ I ′.
Therefore, if A′′ does the operations in Item 2 and Item 3 on |ϕt,good

b ⟩, the probability that (µ0, µ1) =
(Sign(k, 0∥r),Sign(k, 1∥r)) is at least 1

4p2(λ) −
1

p10(λ) for all λ ∈ I ′. Hence, the overall probability that A′′

outputs (µ0, µ1) = (Sign(k, 0∥r),Sign(k, 1∥r)) is non-negligible for infinitely many λ.
We prove Lemma 6.1 to complete this subsection.

Proof of Lemma 6.1. Fix t ∈ Tλ. Immediately before the coherent signature test in Item 5 of Figure 2, the
entire state over the registers (A,B,C) is generally written as

∑
α,β dα,β |α⟩A |β⟩B |Λα,β⟩C , where dα,β are

some complex coefficients such that
∑

α,β |dα,β|2 = 1, and |Λα,β⟩ are some normalized states. Define the set

S := {(α, β) : Ver(vk, α∥r, β) = ⊤ ∧ β ̸= Sign(k, α∥r)}. (59)

The (unnormalized) state after obtaining ⊤ in the coherent signature test in Item 5 of Figure 2 is

d0,Sign(k,0∥r) |0⟩A |Sign(k, 0∥r)⟩B |Λ0,Sign(k,0∥r)⟩C
+ d1,Sign(k,1∥r) |1⟩A |Sign(k, 1∥r)⟩B |Λ1,Sign(k,1∥r)⟩C
+

∑
(α,β)∈S

dα,β |α⟩A |β⟩B |Λα,β⟩C . (60)

Define
T ′

λ :=
{
t ∈ Tλ :

∑
(α,β)∈S

|dα,β|2 ≤
1

4p21(λ)
}
. (61)

If
∑

t∈Tλ\T ′
λ

Pr[t] ≥ 1
4p(λ) for infinitely many λ ∈ I , it contradicts the strong EUF-CMA security of the

digital signature scheme. Therefore,
∑

t∈Tλ\T ′
λ

Pr[t] ≤ 1
4p(λ) for all λ ∈ I ′, where I ′ := {λ ∈ I : λ ≥ λ0}

with a certain λ0. This means that∑
t∈T ′

λ

Pr[t] ≥
∑
t∈Tλ

Pr[t]− 1
4p(λ) ≥

1
2p(λ) −

1
4p(λ) = 1

4p(λ) (62)
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for all λ ∈ I ′.
Moreover, because t ∈ T ′

λ means t ∈ Tλ, Pr[Good | t] ≥ 1
4p(λ) for all λ ∈ I from Equation (35).

Therefore, for any t ∈ T ′
λ,

|d0,Sign(k,0∥r)|2 + |d1,Sign(k,1∥r)|2 +
∑

(α,β)∈S

|dα,β|2 ≥
1

4p(λ) (63)

for all λ ∈ I . If we renormalize the state of Equation (60) and apply Zb, we have

|ϕt,good
b ⟩ (64)

=
d0,Sign(k,0∥r)√

|d0,Sign(k,0∥r)|2 + |d1,Sign(k,1∥r)|2 +
∑

(α,β)∈S |dα,β|2
|0⟩A |Sign(k, 0∥r)⟩B |Λ0,Sign(k,0∥r)⟩C (65)

+ (−1)b d1,Sign(k,1∥r)√
|d0,Sign(k,0∥r)|2 + |d1,Sign(k,1∥r)|2 +

∑
(α,β)∈S |dα,β|2

|1⟩A |Sign(k, 1∥r)⟩B |Λ1,Sign(k,1∥r)⟩C

(66)

+ Zb

∑
(α,β)∈S dα,β√

|d0,Sign(k,0∥r)|2 + |d1,Sign(k,1∥r)|2 +
∑

(α,β)∈S |dα,β|2
|α⟩A |β⟩B |Λα,β⟩C . (67)

For any t ∈ T ′
λ, its trace distance to the state

d0,Sign(k,0∥r)√
|d0,Sign(k,0∥r)|2 + |d1,Sign(k,1∥r)|2

|0⟩A |Sign(k, 0∥r)⟩B |Λ0,Sign(k,0∥r)⟩C (68)

+ (−1)b d1,Sign(k,1∥r)√
|d0,Sign(k,0∥r)|2 + |d1,Sign(k,1∥r)|2

|1⟩A |Sign(k, 1∥r)⟩B |Λ1,Sign(k,1∥r)⟩C (69)

is less than 1
p10(λ) for all λ ∈ I .

6.2 No QPT Adversary Can Output Two Signatures

Here we show that no QPT adversary can win Hybrid 2 (Figure 3) with a non-negligible probability. We first
give an intuitive argument for the proof, and them give a precise proof.

Intuitive argument for the proof is as follows. First, note that the probability that all {ri}mi=1 are distinct
in Item 2 in Figure 3 is at least 1− negl(λ). Therefore, we can assume that all {ri}mi=1 are distinct with a
negligible loss in the adversary’s winning probability. If r /∈ {ri}mi=1, it is clear that A cannot win the game
of Figure 3 except for a negligible probability. The reason is that A cannot find Sign(k, 0∥r) or Sign(k, 1∥r)
except for a negligible probability due to the security of the digital signature scheme. Therefore, we assume
that r is equal to one of the {ri}mi=1.

Assume that, in the game of Figure 3, C is replaced with C′ who is the same as C except that it measures
the first qubit of |ψr⟩ in the computational basis before sending the states in Item 3. Let s ∈ {0, 1} be the
measurement result. Then, for any QPT adversary A, the probability that A wins the game of Figure 3 is
negligible. The reason is that A cannot find Sign(k, s⊕ 1∥r) except for a negligible probability due to the
strong EUF-CMA security of the digital signature scheme. From Lemma 3.11, we therefore have

Pr[(Sign(k, 0∥r), Sign(k, 1∥r))← A | C] ≤ 2 Pr[(Sign(k, 0∥r),Sign(k, 1∥r))← A | C′] (70)
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≤ negl(λ), (71)

where the left-hand-side of Equation (70) is the probability that A outputs (Sign(k, 0∥r),Sign(k, 1∥r)) with
the challenger C, and the right-hand-side is that with the challenger C′.

We give a precise proof below. Let Alg be an algorithm that, on input (r1, ..., rm), simulates C and A in
Figure 3 and outputs (r, µ0, µ1). The probability that A wins in the game of Figure 3 is

1
2um

∑
r1,...,rm

∑
r

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] (72)

= 1
2um

∑
(r1,...,rm)∈R

∑
r

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] (73)

+ 1
2um

∑
(r1,...,rm)/∈R

∑
r

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] (74)

≤ 1
2um

∑
(r1,...,rm)∈R

∑
r

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] + 1
2um

∑
(r1,...,rm)/∈R

(75)

≤ 1
2um

∑
(r1,...,rm)∈R

∑
r

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] + (m− 1)m
2u

(76)

= 1
2um

∑
(r1,...,rm)∈R

∑
r∈{ri}m

i=1

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] (77)

+ 1
2um

∑
(r1,...,rm)∈R

∑
r /∈{ri}m

i=1

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] + (m− 1)m
2u

(78)

≤ 1
2um

∑
(r1,...,rm)∈R

∑
r∈{ri}m

i=1

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] (79)

+ 1
2um

∑
(r1,...,rm)∈R

negl(λ) + (m− 1)m
2u

(80)

≤ 1
2um

∑
(r1,...,rm)∈R

∑
r∈{ri}m

i=1

Pr[(r, Sign(k, 0∥r), Sign(k, 1∥r))← Alg(r1, ..., rm)] (81)

+ negl(λ) + (m− 1)m
2u

(82)

≤ 1
2um

∑
(r1,...,rm)∈R

∑
r∈{ri}m

i=1

2Pr′[(r, Sign(k, 0∥r),Sign(k, 1∥r))← Alg(r1, ..., rm)] (83)

+ negl(λ) + (m− 1)m
2u

(84)

≤ 1
2um

∑
(r1,...,rm)∈R

∑
r∈{ri}m

i=1

negl(λ) + negl(λ) + (m− 1)m
2u

(85)

≤ negl(λ) + negl(λ) + (m− 1)m
2u

(86)

= negl(λ). (87)

Here, R := {(r1, ..., rm) : All of them are distinct}. In Equation (80), we have used the strong EUF-CMA

23



security of the digital signature scheme. Pr′ is the probability that, in Alg, C is replaced with C′ who is the
same as C except that it measures the first qubit of |ψr⟩ in the computational basis before sending the states in
Item 3. Equation (83) comes from Lemma 3.11. Equation (85) is from the strong EUF-CMA security of the
digital signature scheme.

7 Definition of Chosen Ciphertext Security

In this section, we define CCA security for QPKE and related security notions. We start with an intermediate
notion between CPA security and CCA security that we call security against challenge validity attack (CVA).

Definition 7.1 (IND-pkT-CVA security). For any polynomial m, and any QPT adversary A, we have

Pr


b← A(ct∗, cv, st) :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg0,msg1, st)← A(vk, pk1, ..., pkm)
b← {0, 1}

ct∗ ← Enc(vk, pk′,msgb)
cv := 0 if Dec(sk, ct∗) = ⊥ and otherwise cv := 1


≤ 1

2 + negl(λ). (88)

Here, pk1, ..., pkm ← PKGen(sk)⊗m means that PKGen is executed m times and pki is the output of the ith
execution of PKGen. st is a quantum internal state of A, which can be entangled with pk′.

We then define CCA security for QPKE.

Definition 7.2 (IND-pkT-CCA security). For any polynomial m, and any QPT adversary A, we have

Pr


b← AODec,2(·)(ct∗, cv, st) :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg0,msg1, st)← AODec,1(·)(vk, pk1, ..., pkm)
b← {0, 1}

ct∗ ← Enc(vk, pk′,msgb)
cv := 0 if Dec(sk, ct∗) = ⊥ and otherwise cv := 1


≤ 1

2 + negl(λ).

(89)
Here, pk1, ..., pkm ← PKGen(sk)⊗m means that PKGen is executed m times and pki is the output of the ith
execution of PKGen. st is a quantum internal state of A, which can be entangled with pk′. Also, ODec,1(ct)
returns Dec(sk, ct) for any ct. ODec,2 behaves identically to ODec,1 except that ODec,2 returns ⊥ to the input
ct∗.

Definition 7.3 (IND-pkT-1CCA security). IND-pkT-1CCA security is defined in the same way as IND-pkT-CCA
security except that in the security game we require that the total number of A’s query to ODec,1 and ODec,2
is at most one.

Security under single public key. ForX ∈ {IND-pkT-CPA, IND-pkT-CVA, IND-pkT-CCA, IND-pkT-1CCA}
security, we defineX(1) security as its variant where the number of public keys given to the adversary is fixed to
one. Note thatX(1) security is implied byX security for anyX ∈ {IND-pkT-CPA, IND-pkT-CVA, IND-pkT-CCA,
IND-pkT-1CCA}.

We also define statistical variant of decryption error detectability that is useful to achieve CCA security
with our transformations.
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Definition 7.4 (Strong decryption error detectability). We say that a QPKE scheme has strong decryption
error detectability if for any sk′, vk′, pk′, and msg, we have

Pr
[
msg′ ̸= ⊥ ∧ msg′ ̸= msg : ct← Enc(vk′, pk′,msg)

msg′ ← Dec(sk′, ct)

]
≤ negl(λ). (90)

8 Transformations Achieving Chosen Ciphertext Security

In this section, we present the transformation from CPA secure QPKE scheme to CCA secure one. The
transformation consists of the following four subroutines.

1. Transformation from IND-pkT-CPA secure one to IND-pkT-CVA secure one presented in Section 8.2.

2. Transformation from IND-pkT-CVA(1) secure one to IND-pkT-1CCA(1) secure one presented in Sec-
tion 8.3.

3. Transformation from IND-pkT-1CCA(1) secure one to IND-pkT-CCA(1) secure one presented in
Section 8.4.

4. Transformation from IND-pkT-CCA(1) secure one to IND-pkT-CCA secure one presented in Section 8.5.

Below, we first introduce the notion of tokenized MAC [BSS21] in Section 8.1 that is used in the third
transformation, and then provide each transformations.

8.1 Preparations

Definition 8.1 (Tokenized MAC [BSS21]). A tokenized MAC scheme with the message space {0, 1}ℓ is a set
of algorithms (SKGen,TKGen,Sign,Ver) such that

• SKGen(1λ)→ sk : It is a PPT algorithm that, on input the security parameter λ, outputs a classical
secret key sk.

• TKGen(sk)→ token : It is a QPT algorithm that, on input sk, outputs a quantum signing token token.

• Sign(token,msg) → σ : It is a QPT algorithm that, on input token and a message msg ∈ {0, 1}ℓ,
outputs a classical signature σ.

• Ver(sk,msg, σ)→ ⊤/⊥ : It is a classical deterministic polynomial-time algorithm that, on input sk,
msg, and σ, outputs ⊤ or ⊥.

We require the following correctness and unforgeability.

Correctness: For any msg,

Pr[⊤ ← Ver(sk,msg, σ) : sk← SKGen(1λ), token← TKGen(sk), σ ← Sign(token,msg)] ≥ 1−negl(λ).
(91)
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Unforgeability: For any QPT adversaryA with classical oracle access to the verification oracle Ver(sk, ·, ·),

Pr

 msg1 ̸= msg2
∧ ⊤ ← Ver(sk,msg1, σ1)
∧ ⊤ ← Ver(sk,msg2, σ2)

:
sk← SKGen(1λ),

token← TKGen(sk),
(msga, σa)a∈[2] ← AVer(sk,·,·)(token)

 ≤ negl(λ). (92)

Theorem 8.2 ([BSS21]). Tokenized MAC exists if OWFs exist.
Note that the unforgeability in the above definition is weaker than that in the original definition by [BSS21].

We use this weaker definition that is sufficient for our purpose for ease of exposition.

8.2 IND-pkT-CVA Secure QPKE via Cut-and-Choose

We show a generic construction of IND-pkT-CVA secure QPKE from IND-pkT-CPA secure QPKE using the
cut-and-choose technique.

Let QPKE = (QPKE.SKGen,QPKE.PKGen,QPKE.Enc,QPKE.Dec) be a QPKE scheme with message
space {0, 1}ℓ. Then we construct a QPKE scheme CVA = (CVA.SKGen,CVA.PKGen,CVA.Enc,CVA.Dec)
with message space {0, 1}ℓ as follows:

• CVA.SKGen(1λ) → (sk, vk) : Run (ski, vki) ← QPKE.SKGen(1λ) for every i ∈ [4λ]. Output
sk := (ski)i∈[4λ] and vk := (vki)i∈[4λ].

• CVA.PKGen(sk) → pk : Parse sk := (ski)i∈[4λ]. Run pki ← QPKE.PKGen(ski) for i ∈ [4λ] and
outputs pk := (pki)i∈[4λ].

• CVA.Enc(vk, pk,msg) → ct : Parse vk := (vki)i∈[4λ] and pk := (pki)i∈[4λ]. Generate a random 2λ
size subset Test of [4λ]. Generate ui ← {0, 1}ℓ, run cti ← QPKE.Enc(vki, pki, ui) for every i ∈ [4λ].
Set vi := ui if i ∈ Test and vi := ui ⊕msg otherwise. Output ct := (Test, (cti, vi)i∈[4λ]).

• CVA.Dec(sk, ct) → msg : Parse sk := (ski)i∈[4λ] and ct = (Test, (cti, vi)i∈[4λ]). Output ⊥ if
QPKE.Dec(ski, cti) ̸= vi for some i ∈ Test. Otherwise, run ui ← QPKE.Dec(ski, cti) and compute
msgi := vi ⊕ ui for every i ∈ [4λ] \ Test, and output most frequently appeared msg. (If there are
multiple such msg, output the lexicographically first one.)

Correctness. Correctness of CVA immediately follows from correctness of QPKE.

Strong decryption error detectability. Let (sk′, vk′, pk′,msg) be any tuple of a secret key, verification
key, public key, and message, where sk′ := (sk′

i)i∈[4λ], vk′ := (vk′
i)i∈[4λ], pk′ := (pk′

i)i∈[4λ], and msg ∈
{0, 1}ℓ. Suppose we pick ui ← {0, 1}ℓ, generate cti ← QPKE.Enc(vk′

i, pk′
i, ui), and compute u′

i ←
QPKE.Dec(sk′

i, cti) for every i ∈ [4λ]. We consider the following two cases.
• The first case is ui ̸= u′

i for more than λ indices. In this case, a randomly chosen 2λ size subset Test
includes at least one index i such thatui ̸= u′

i and thus the decryption result of ct := (Test, (cti, vi)i∈[4λ])
for randomly chosen Test is⊥with overwhelming probability, where vi := ui if i ∈ Test and otherwise
vi := ui ⊕msg.

• The second case is ui ̸= u′
i for less than λ indices. In this case, for every choice of Test, msg occupies

the majority among msgi := msg ⊕ ui ⊕ u′
i for i ∈ [4λ] \ Test. Thus, the decryption result of

ct := (Test, (cti, vi)i∈[4λ]) is either ⊥ or msg, regardless of the choice of Test.
This proves the strong decryption error detectability of CVA.
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IND-pkT-CVA security. We prove that if QPKE satisfies IND-pkT-CPA security, then CVA satisfies
IND-pkT-CVA security. We consider the following games.

Hyb0: This is the original security experiment for the IND-pkT-CVA security of CVA played between A and
the challenger. The detailed description is as follows.

1. The challenger generates (ski, vki) ← QPKE.SKGen(1λ) for every i ∈ [4λ], and set sk :=
(ski)i∈[4λ] and vk := (vki)i∈[4λ]. The challenger generates pki ← QPKE.PKGen(ski) for
i ∈ [4λ] and set pk := (pki)i∈[4λ].

2. The challenger runs (pk′,msg0,msg1, st)← A(vk, pk).
3. The challenger parses pk′ := (pk′

i)i∈[4λ] and picks b← {0, 1}. The challenger generates ct∗ as
follows.

• Generate a random 2λ size subset Test∗ of [4λ].
• Generate u∗

i ← {0, 1}ℓ, run ct∗
i ← QPKE.Enc(vki, pk′

i, u
∗
i ) for every i ∈ [4λ].

• Set v∗
i := u∗

i if i ∈ Test∗ and v∗
i := u∗

i ⊕msgb otherwise.
• Output ct∗ := (Test∗, (ct∗

i , v
∗
i )i∈[4λ]).

The challenger also sets cv := 0 if CVA.Dec(sk, ct∗) = ⊥ and otherwise sets cv := 1.
4. The challenger runs b′ ← A(cv, ct∗, st). The challenger outputs 1 if b = b′ and otherwise outputs

0.

Hyb1: This is the same as Hyb0 except that the challenger generates ct∗
i ← QPKE.Enc(vki, pk′

i, 0ℓ) for every
i ∈ [4λ] \ Test∗.

We can prove |Pr[1← Hyb0]− Pr[1← Hyb1]| = negl(λ) using the IND-pkT-CPA security of QPKE
with respect to instances such that the corresponding index i is not included in Test∗. Note that the reduction
needs to know whether CVA.Dec(sk, ct∗) = ⊥ or not. This is possible since it can be computed with only ski

for i ∈ Test∗, which is generated by the reduction itself.
In Hyb1, the challenge bit b is completely hidden from the view of A since b is masked by ui for

i ∈ [4λ] \ Test∗. Thus, we have Pr[1 ← Hyb2] = 1
2 . From the above discussions, CVA satisfies

IND-pkT-CVA security.

8.3 IND-pkT-1CCA Secure QPKE from IND-pkT-CVA Secure One

We show how to construct IND-pkT-1CCA(1) secure QPKE from IND-pkT-CVA(1) secure one.
Let CVA = (CVA.SKGen,CVA.PKGen,CVA.Enc,CVA.Dec) be a QPKE scheme with message space

{0, 1}ℓ and SIG = (SIG.Gen, SIG.Sign,SIG.Ver) be a digital signature scheme whose verification key is of
lengthn. Then we construct a QPKE scheme 1CCA = (1CCA.SKGen, 1CCA.PKGen, 1CCA.Enc, 1CCA.Dec)
with message space {0, 1}ℓ as follows, where for a verification key sigvk of SIG and an integer i ∈ [n], sigvk[i]
denotes the i-th bit of sigvk:

• 1CCA.SKGen(1λ) → (sk, vk) : Run (cva.ski,α, cva.vki,α) ← CVA.SKGen(1λ) for every i ∈ [n] and
α ∈ {0, 1}. Output sk := (cva.ski,α)i∈[n],α∈{0,1} and vk := (cva.vki,α)i∈[n],α∈{0,1}.

• 1CCA.PKGen(sk)→ pk : Parse sk := (cva.ski,α)i∈[n],α∈{0,1}. Run cva.pki,α ← CVA.PKGen(cva.ski,α)
for every i ∈ [n] and α ∈ {0, 1}. Output pk := (cva.pki,α)i∈[n],α∈{0,1}.
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• 1CCA.Enc(vk, pk,msg)→ ct : Parse vk := (cva.vki,α)i∈[n],α∈{0,1} and pk := (cva.pki,α)i∈[n],α∈{0,1}.
Run (sigvk, sigk) ← SIG.Gen(1λ). Generate ui ← {0, 1}ℓ for every i ∈ [n − 1] and set un :=
msg⊕

⊕
i∈[n−1] ui. Run cva.cti ← CVA.Enc(cva.vki,sigvk[i], cva.pki,sigvk[i], ui) for every i ∈ [n]. Run

σ ← SIG.Sign(sigk, cva.ct1∥ · · · ∥cva.ctn). Output ct := (sigvk, (cva.cti)i∈[n], σ).

• 1CCA.Dec(sk, ct) → msg : Parse sk := (cva.ski,α)i∈[n],α∈{0,1} and ct = (sigvk, (cva.cti)i∈[n], σ).
Output ⊥ if SIG.Ver(sigvk, cva.ct1∥ · · · ∥cva.ctn, σ) = ⊥ and otherwise go to the next step. Run
ui ← CVA.Dec(cva.ski,sigvk[i], cva.cti) for every i ∈ [n], and output ⊥ if ui = ⊥ for some i ∈ [n].
Otherwise, output

⊕
i∈[n] ui.

Correctness and strong decryption error detectability. The correctness and the strong decryption error
detectability of 1CCA immediately follow from those of CVA and the correctness of SIG.

IND-pkT-1CCA(1) security. We prove that if CVA satisfies IND-pkT-CVA(1) security and SIG satisfies
strong unforgeability, then 1CCA satisfies IND-pkT-1CCA(1) security.

Let A be any QPT adversary attacking the IND-pkT-1CCA(1) security of 1CCA. Without loss of
generality, we assume that A makes exactly one decryption query. We proceed the proof using a sequence of
experiments.

Hyb0: This is the original security experiment for the IND-pkT-1CCA(1) security of 1CCA played between
A and the challenger. The detailed description is as follows.

1. The challenger generates (cva.ski,α, cva.vki,α) ← CVA.SKGen(1λ) for every i ∈ [n] and
α ∈ {0, 1}, and sets sk := (cva.ski,α)i∈[n],α∈{0,1} and vk := (cva.vki,α)i∈[n],α∈{0,1}. The
challenger generates cva.pki,α ← CVA.PKGen(cva.ski,α) for i ∈ [n] and α ∈ {0, 1}, and sets
pk := (cva.pki,α)i∈[n],α∈{0,1}.

2. The challenger runs (pk′,msg0,msg1, st) ← A(vk, pk)ODec,1(·), where ODec,1(ct) behaves as
follows.

• Parse ct = (sigvk, (cva.cti)i∈[n], σ).
• Output ⊥ if SIG.Ver(sigvk, cva.ct1∥ · · · ∥cva.ctn, σ) = ⊥ and otherwise go to the next step.
• Run ui ← CVA.Dec(cva.ski,sigvk[i], cva.cti) for every i ∈ [n], and output ⊥ if ui = ⊥ for

some i ∈ [n].
• Otherwise, output

⊕
i∈[n] ui.

3. The challenger parses pk′ := (cva.pk′
i,α)i∈[n],α∈{0,1} and picks b ← {0, 1}. The challenger

generates ct∗ as follows.
• Run (sigvk∗, sigk∗)← SIG.Gen(1λ).
• Generate u∗

i ← {0, 1}ℓ for every i ∈ [n− 1] and set u∗
n := msgb ⊕

⊕
i∈[n−1] u

∗
i .

• Run cva.ct∗
i ← CVA.Enc(cva.vki,sigvk∗[i], cva.pk′

i,sigvk∗[i], u
∗
i ) for every i ∈ [n].

• Run σ∗ ← SIG.Sign(sigk∗, cva.ct∗
1∥ · · · ∥cva.ct∗

n) and set ct∗ := (sigvk∗, (cva.ct∗
i )i∈[n], σ

∗).
The challenger also sets cv := 0 if 1CCA.Dec(sk, ct∗) = ⊥ and otherwise sets cv := 1.

4. The challenger runs b′ ← A(cv, ct∗, st)ODec,2(·), where ODec,2 behaves exactly in the same way as
ODec,1 except that ODec,2 given ct returns ⊥ if ct = ct∗. The challenger outputs 1 if b = b′ and
otherwise outputs 0.
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Hyb1: This is the same as Hyb0 except that the challenger generates the key pair (sigvk∗, sigk∗) of SIG that is
used to generate the challenge ciphertext at the beginning of the game, and ODec,1 and ODec,2 behave
as follows.

• Parse ct = (sigvk, (cva.cti)i∈[n], σ).
• Output ⊥ if sigvk = sigvk∗ and otherwise go to the next step.
• Output ⊥ if SIG.Ver(sigvk, cva.ct1∥ · · · ∥cva.ctn, σ) = ⊥ and otherwise go to the next step.
• Run ui ← CVA.Dec(cva.ski,sigvk[i], cva.cti) for every i ∈ [n], and output ⊥ if ui = ⊥ for some
i ∈ [n].

• Otherwise, output
⊕

i∈[n] ui.

We define the following two events.

Forgej,1: In Hybj , A queries ct = (sigvk, (cva.cti)i∈[n], σ) to ODec,1 such that sigvk = sigvk∗ and
SIG.Ver(sigvk, cva.ct1∥ · · · ∥cva.ctn, σ) = ⊤.

Forgej,2: In Hybj , A queries ct = (sigvk, (cva.cti)i∈[n], σ) to ODec,2 such that sigvk = sigvk∗, ct ̸= ct∗,
and SIG.Ver(sigvk, cva.ct1∥ · · · ∥cva.ctn, σ) = ⊤.

We also let Forgej = Forgej,1 ∨ Forgej,2. Hyb0 and Hyb1 are identical games unless the events Forge0
and Forge1 happen in Hyb0 and Hyb1, respectively. Thus, we have Pr[1← Hyb0 ∧ ¬Forge0] = Pr[1←
Hyb1 ∧ ¬Forge1] and Pr[Forge0] = Pr[Forge1]. Then, we have

|Pr[1← Hyb0]− Pr[1← Hyb1]| ≤ |Pr[1← Hyb0 ∧ Forge0]− Pr[1← Hyb1 ∧ Forge1]| (93)
+ |Pr[1← Hyb0 ∧ ¬Forge0]− Pr[1← Hyb1 ∧ ¬Forge1]| (94)
= |Pr[1← Hyb0 ∧ Forge0]− Pr[1← Hyb1 ∧ Forge1]| (95)
≤ Pr[Forge1] · |Pr[1← Hyb0|Forge0]− Pr[1← Hyb1|Forge1]|

(96)
≤ Pr[Forge1] (97)
≤ Pr[Forge1,1] + Pr[Forge1,2]. (98)

From the strong unforgeability of SIG, we have Pr[Forge1,1] ≤ negl(λ) and Pr[Forge1,2] ≤ negl(λ), and
thus obtain |Pr[1← Hyb0]− Pr[1← Hyb1]| ≤ negl(λ).

Hyb2: This is the same as Hyb1 except that the challenger generates

cva.ct∗
i∗ ← CVA.Enc(cva.vki∗,sigvk∗[i∗], cva.pk′

i∗,sigvk∗[i∗], 0
ℓ) (99)

for randomly chosen i∗ ← [n].

To estimate |Pr[1← Hyb1]− Pr[1← Hyb2]|, we construct the following adversary B that uses A and
attacks the IND-pkT-CVA(1) security of CVA.

1. Given (cva.vk, cva.pk), B generates (sigvk∗, sigk∗) ← SIG.Gen(1λ), picks i∗ ← [n], and sets
cva.vki∗,sigvk∗[i∗] := cva.vk and cva.pki∗,sigvk∗[i∗] := cva.pk. B generates (cva.ski,α, cva.vki,α) ←
CVA.SKGen(1λ) and cva.pki,α ← CVA.PKGen(cva.ski,α) for every (i, α) ∈ [n]×{0, 1}\{(i∗, sigvk∗[i∗])}.
B sets vk := (cva.vki,α)i∈[n],α∈{0,1} and pk := (cva.pki,α)i∈[n],α∈{0,1}.
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2. B runs (pk′,msg0,msg1, st)← A(pk, vk)ODec,1(·), where ODec,1(ct) is simulated as follows.

• Parse ct := (sigvk, (cva.cti)i∈[n], σ).
• If sigvk = sigvk∗ or SIG.Ver(sigvk, cva.ct1∥ · · · ∥cva.ctn, σ) = ⊥, return ⊥ with probability 1

n
and abort with output β′ = 0 with probability n−1

n . Otherwise, go to the next step.
• If i∗ is not the smallest index i such that sigvk[i] ̸= sigvk∗[i], abort with output β′ = 0. Otherwise,

go to the next step.
• Return 1CCA.Dec(sk, ct). Note that in this case, B can compute 1CCA.Dec(sk, ct) by using

cva.ski,α for (i, α) ∈ [n]× {0, 1} \ {(i∗, sigvk∗[i∗])}.

3. B parses pk′ := (cva.pk′
i,α)i∈[n],α∈{0,1} and picks b← {0, 1}. B generates ct∗ as follows.

• Generate u∗
i ← {0, 1}ℓ for every i ∈ [n] \ {i∗} and set u∗

i∗ := msgb ⊕
⊕

i∈[n]\{i∗} u
∗
i .

• Run cva.ct∗
i ← CVA.Enc(cva.vki,sigvk∗[i], cva.pki,sigvk∗[i], u

∗
i ) for every i ∈ [n] \ {i∗}.

• Output (cva.pk′
i∗,sigvk∗[i∗], u

∗
i∗ , 0ℓ, stB), where stB includes all information B knows at this point.

• Obtain (ct∗
i∗ , cvi∗ , stB). Set cva.ct∗

i∗ := ct∗
i∗ .

• Generate σ∗ ← SIG.Sign(sigk∗, cva.ct∗
1∥ · · · ∥cva.ct∗

n) and set ct∗ := (sigvk∗, (cva.ct∗
i )i∈[n], σ

∗).

B also sets cv = 0 if cvi∗ = 0. Otherwise,B sets cv = 1 if and only if CVA.Dec(cva.ski,sigvk∗[i], cva.ct∗
i ) ̸=

⊥ holds for every i ∈ [n] \ {i∗}.

4. B runs b′ ← A(ct∗, cv, st)ODec,2(·), where ODec,2 is simulated in exactly the same way as ODec,1. B
outputs β′ = 1 if b = b′ and otherwise outputs β′ = 0.

We define Good as the event that B does not abort when simulating decryption oracles. We also let the
challenge bit in the security experiment played by B be β. B aborts with probability n− 1/n regardless of
the value of β, that is, Pr[Good|β = 0] = Pr[Good|β = 1] = 1/n holds. Then, B’s advantage is calculated
as follows.

|Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]| = |Pr[b = b′ ∧ Good|β = 0]− Pr[b = b′ ∧ Good|β = 1]| (100)

= 1
n
|Pr[b = b′|β = 0 ∧ Good]− Pr[b = b′|β = 1 ∧ Good]|

(101)

= 1
n
|Pr[1← Hyb1]− Pr[1← Hyb2]|. (102)

The second line follows from the fact that we have Pr[Good|β = 0] = Pr[Good|β = 1] = 1/n as
stated above. The third line follows since B perfectly simulates Hyb1 (resp. Hyb2) conditioned that β = 0
(resp. β = 1) and the event Good occurs. Thus, from the IND-pkT-CVA(1) security of CVA, we have
|Pr[1← Hyb1]− Pr[1← Hyb2]| ≤ negl(λ).

Clearly, we have Pr[1 ← Hyb2] = 1
2 . From the above discussions, 1CCA satisfies IND-pkT-1CCA(1)

security.
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8.4 Boosting IND-pkT-1CCA(1) Security into IND-pkT-CCA(1) Security

We show how to transform IND-pkT-1CCA(1) secure QPKE into IND-pkT-CCA(1) secure one using tokenized
MAC.

We construct a QPKE scheme CCA = (CCA.SKGen,CCA.PKGen,CCA.Enc,CCA.Dec) using the
following building blocks.

• A QPKE scheme 1CCA = (1CCA.SKGen, 1CCA.PKGen, 1CCA.Enc, 1CCA.Dec).

• A tokenized MAC scheme TMAC = (TMAC.SKGen,TMAC.TKGen,TMAC.Sign,TMAC.Ver).

• A signature scheme SIG = (SIG.Gen,SIG.Sign, SIG.Ver).

The construction of CCA is as follows.

• CCA.SKGen(1λ)→ (sk, vk) : Run (1cca.sk, 1cca.vk)← 1CCA.SKGen(1λ) and mk← TMAC.SKGen(1λ).
Output sk := (1cca.sk,mk) and vk := 1cca.vk.

• CCA.PKGen(sk) → pk : Parse sk := (1cca.sk,mk). Run 1cca.pk ← 1CCA.PKGen(1cca.sk) and
token← TMAC.TKGen(mk) and outputs pk := (1cca.pk, token).

• CCA.Enc(vk, pk,msg)→ ct : Parse vk := 1cca.vk and pk := (1cca.pk, token). Run (sigvk, sigk)←
SIG.Gen(1λ). Run 1cca.ct← 1CCA.Enc(1cca.vk, 1cca.pk, sigvk∥msg). Run tmac.σ ← TMAC.Sign(token,
1cca.ct). Run sig.σ ← SIG.Sign(sigk, 1cca.ct∥tmac.σ). Output ct := (1cca.ct, tmac.σ, sig.σ).

• CCA.Dec(sk, ct) → msg : Parse sk := (1cca.sk,mk) and ct = (1cca.ct, tmac.σ, sig.σ). Output
⊥ if TMAC.Ver(mk, 1cca.ct, tmac.σ) = ⊥ and otherwise go to the next step. Run sigvk∥msg ←
1CCA.Dec(1cca.sk, 1cca.ct), and output⊥ if sigvk∥msg = ⊥ or SIG.Ver(sigvk, 1cca.ct∥tmac.σ, sig.σ) =
⊥. Otherwise, output msg.

Correctness and strong decryption error detectability. The correctness and the strong decryption error
detectability of CCA immediately follow from those of 1CCA and the correctness of TMAC and SIG.

IND-pkT-CCA(1) security. We prove that if 1CCA satisfies IND-pkT-1CCA(1) security, TMAC satisfies
unforgeability, and SIG satisfies strong unforgeability, then CCA satisfies IND-pkT-CCA(1) security.

Let A be any QPT adversary attacking the IND-pkT-CCA(1) security of CCA. We proceed the proof
using a sequence of experiments.

Hyb0: This is the original security experiment for the IND-pkT-CCA(1) security of CCA played between A
and the challenger. The detailed description is as follows.

1. The challenger generates (1cca.sk, 1cca.vk)← 1CCA.SKGen(1λ) and mk← TMAC.SKGen(1λ),
and sets sk := (1cca.sk,mk) and vk := 1cca.vk. The challenger also generates 1cca.pk ←
1CCA.PKGen(1cca.sk) and token← TMAC.TKGen(mk) and sets pk := (1cca.pk, token).

2. The challenger runs (pk′,msg0,msg1, st) ← A(vk, pk)ODec,1(·), where ODec,1(ct) behaves as
follows.

• Parse ct = (1cca.ct, tmac.σ, sig.σ).
• Output ⊥ if TMAC.Ver(mk, 1cca.ct, tmac.σ) = ⊥ and otherwise go to the next step.
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• Run sigvk∥msg ← 1CCA.Dec(1cca.sk, 1cca.ct), and output ⊥ if sigvk∥msg = ⊥ or
SIG.Ver(sigvk, 1cca.ct∥tmac.σ, sig.σ) = ⊥. Otherwise, output msg.

3. The challenger parses pk′ := (1cca.pk′, token′) and picks b← {0, 1}. The challenger generates
ct∗ as follows.

• Run (sigvk∗, sigk∗)← SIG.Gen(1λ).
• Run 1cca.ct∗ ← 1CCA.Enc(1cca.vk, 1cca.pk′, sigvk∗∥msgb).
• Run tmac.σ∗ ← TMAC.Sign(token′, 1cca.ct∗).
• Run sig.σ∗ ← SIG.Sign(sigk∗, 1cca.ct∗∥tmac.σ∗).
• Set ct∗ := (1cca.ct∗, tmac.σ∗, sig.σ∗).

The challenger sets cv = 0 if CCA.Dec(sk, ct∗) = ⊥ and cv = 1 otherwise.
4. The challenger runs b′ ← A(ct∗, cv, st)ODec,2(·), where ODec,2(ct) behaves in the same way as
ODec,1 except that ODec,2 returns ⊥ if ct = ct∗. The challenger outputs 1 if b = b′ and otherwise
outputs 0.

Hyb1: This is the same as Hyb0 except that ODec,2 given ct = (1cca.ct, tmac.σ, sig.σ) returns ⊥ if
1cca.ct = 1cca.ct∗.

We define the following events.

DecErrorj: In Hybj , It holds that 1CCA.Dec(1cca.sk, 1cca.ct∗) /∈ {sigvk∗∥msgb,⊥}.

Forgej: In Hybj , A queries ct = (1cca.ct, tmac.σ, sig.σ) to ODec,2 such that 1cca.ct = 1cca.ct∗, ct ̸= ct∗,
and SIG.Ver(sigvk, 1cca.ct∥tmac.σ, sig.σ) = ⊤, where sigvk∥msg← 1CCA.Dec(1cca.sk, 1cca.ct).

ODec,2 returns ⊥ for a queried ciphertext ct = (1cca.ct, tmac.σ, sig.σ) such that 1cca.ct = 1cca.ct∗ in
Hyb0, unless the event DecError0 or Forge0 occur. Thus, we have |Pr[1 ← Hyb0] − Pr[1 ← Hyb1]| ≤
Pr[DecError1 ∨ Forge1] ≤ Pr[DecError1] + Pr[Forge1]. We have Pr[DecError1] ≤ negl(λ) from the
strong decryption error detectability of 1CCA and Pr[Forge1] ≤ negl(λ) from the strong unforgeability of
SIG. From these, we obtain |Pr[1← Hyb0]− Pr[1← Hyb1]| ≤ negl(λ).

Hyb2: This is the same as Hyb1 except that ODec,1 has a state (s, t) that is initially set to (0,⊥) and behaves
as follows.

• Parse ct = (1cca.ct, tmac.σ, sig.σ).
• If s = 1, do the following

– Output ⊥ if 1cca.ct ̸= t. Otherwise, go to the next step.
– If TMAC.Ver(mk, 1cca.ct, tmac.σ) = ⊥ output ⊥. Otherwise, go to the next step.
– Run sigvk∥msg ← 1CCA.Dec(1cca.sk, 1cca.ct), and output ⊥ if sigvk∥msg = ⊥ or

SIG.Ver(sigvk, 1cca.ct∥tmac.σ, sig.σ) = ⊥. Otherwise, output msg.
• If s = 0, do the following.

– If TMAC.Ver(mk, 1cca.ct, tmac.σ) = ⊥ output ⊥. Otherwise, update the state (s, t) into
(1, 1cca.ct) and go to the next step.

– Run sigvk∥msg ← 1CCA.Dec(1cca.sk, 1cca.ct), and output ⊥ if sigvk∥msg = ⊥ or
SIG.Ver(sigvk, 1cca.ct∥tmac.σ, sig.σ) = ⊥. Otherwise, output msg.
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Also, the state (s, t) is passed to ODec,2 at the end of the execution of ODec,1 and ODec,2 behaves
in the same way as ODec,1 except that ODec,2 given ct = (1cca.ct, tmac.σ, sig.σ) returns ⊥ if
1cca.ct = 1cca.ct∗.

From the unforgeability of TMAC, we have |Pr[1← Hyb1]− Pr[1← Hyb2]| ≤ negl(λ).
In Hyb2, the decryption oracle decrypts at most one queried ciphertext ct = (1cca.ct, tmac.σ, sig.σ) such

that 1cca.ct ̸= 1cca.ct∗. Then, from the IND-pkT-1CCA(1) security of 1CCA, we have Pr[1 ← Hyb2] ≤
1
2 + negl(λ). From the above discussions, CCA satisfies IND-pkT-CCA(1) security.

8.5 IND-pkT-CCA(1) Security to IND-pkT-CCA Security

We show how to construct IND-pkT-CCA secure QPKE from IND-pkT-CCA(1) secure one.
We construct a QPKE scheme MKey = (MKey.SKGen,MKey.PKGen,MKey.Enc,MKey.Dec) using

the following building blocks.

• A QPKE scheme 1Key = (1Key.SKGen, 1Key.PKGen, 1Key.Enc, 1Key.Dec).

• PRFs {PRFK}K∈{0,1}λ .

• A signature scheme SIG = (SIG.Gen,SIG.Sign, SIG.Ver).

The construction of MKey is as follows.

• MKey.SKGen(1λ) → (sk, vk) : Generate K ← {0, 1}λ and (sigvk, sigk) ← SIG.Gen(1λ). Output
sk := (K, sigk) and vk := sigvk.

• MKey.PKGen(sk) → pk : Parse sk := (K, sigk) and generate snum ← {0, 1}λ. Run r ←
PRFK(snum), (1key.sk, 1key.vk) ← 1Key.SKGen(1λ; r), and 1key.pk ← 1Key.PKGen(1key.sk).
Run σ ← SIG.Sign(sigk, snum∥1key.vk). Outputs pk := (snum, 1key.vk, 1key.pk, σ).

• MKey.Enc(vk, pk,msg) → ct : Parse vk := sigvk and pk := (snum, 1key.vk, 1key.pk, σ). Out-
put ⊥ if SIG.Ver(sigvk, snum∥1key, σ) = ⊥ and otherwise go to the next step. Run 1key.ct ←
1Key.Enc(1key.vk, 1key.pk,msg). Output ct := (snum, 1key.ct).

• MKey.Dec(sk, ct)→ msg : Parse sk := (K, sigk) and ct = (snum, 1key.ct). Run r ← PRFK(snum)
and (1key.sk, 1key.vk)← 1Key.SKGen(1λ; r). Output msg← 1Key.Dec(1key.sk, 1key.ct).

Correctness and strong decryption error detectability. The correctness and the strong decryption error
detectability of MKey immediately follow from those of 1Key and the correctness of SIG.

IND-pkT-CCA security. We prove that if 1Key satisfies IND-pkT-CCA(1) security, {PRFK}K∈{0,1}λ is a
secure PRF, and SIG satisfies strong unforgeability, then MKey satisfies IND-pkT-CCA security.

LetA be any QPT adversary attacking the IND-pkT-CCA security of MKey. Let m be a polynomial of λ.
We proceed the proof using a sequence of experiments.

Hyb0: This is the original security experiment for the IND-pkT-CCA security of MKey played between A
and the challenger. The detailed description is as follows.
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1. The challenger generatesK ← {0, 1}λ and (sigvk, sigk)← SIG.Gen(1λ), and sets sk := (K, sigk)
and vk := sigvk. The challenger generates pki for every i ∈ [m] as follows.

• Generate snumi ← {0, 1}λ.
• Run ri ← PRFK(snumi), (1key.ski, 1key.vki) ← 1Key.SKGen(1λ; ri), and 1key.pki ←

1Key.PKGen(1key.ski).
• Run σi ← SIG.Sign(sigk, snumi∥1key.vki).
• Set pki := (snumi, 1key.vki, 1key.pki, σi).

2. The challenger runs (pk′,msg0,msg1, st) ← A(vk, pk1, · · · , pkm)ODec,1(·), where ODec,1(ct)
behaves as follows.

• Parse ct = (snum, 1key.ct).
• Run r ← PRFK(snum) and (1key.sk, 1key.vk)← 1Key.SKGen(1λ; r).
• Return msg← 1Key.Dec(1key.sk, 1key.ct).

3. The challenger parses pk′ := (snum′, 1key.vk′, 1key.pk′, σ′) and picks b← {0, 1}. The challenger
generates ct∗ as follows.

• Set ct∗ := ⊥ if SIG.Ver(sigvk, snum′∥1key.vk′, σ′) = ⊥ and otherwise go to the next step.
• Run 1key.ct∗ ← 1Key.Enc(1key.vk′, 1key.pk′,msgb).
• Set ct∗ := (snum′, 1key.ct∗).

The challenger also sets cv := 0 if MKey.Dec(sk, ct∗) = ⊥ and otherwise sets cv := 1.
4. The challenger runs b′ ← A(cv, ct∗, st)ODec,2(·), where ODec,2 behaves exactly in the same way as
ODec,1 except that ODec,2 given ct returns ⊥ if ct = ct∗. The challenger outputs 1 if b = b′ and
otherwise outputs 0.

Hyb1: This is the same as Hyb1 except that PRFK(·) is replaced with a truly random function.

From the security of PRF, we have |Pr[1← Hyb0]− Pr[1← Hyb1]| ≤ negl(λ).

Hyb2: This is the same as Hyb1 except that if snum′∥1key.vk′ ̸= snumi∥1key.vki for every i ∈ [m], the
challenger sets ct∗ := ⊥.

From the strong unforgeability of SIG, we have |Pr[1← Hyb1]− Pr[1← Hyb2]| ≤ negl(λ).

Hyb3: This is the same as Hyb2 except that if snum′∥1key.vk′ = snumi∥1key.vki for some i ∈ [m], the
challenger generates 1key.ct∗ ← 1Key.Enc(1key.vki, 1key.pk′, 0ℓ).

To estimate |Pr[1← Hyb2]− Pr[1← Hyb3]|, we construct the following adversary B that uses A and
attacks the IND-pkT-CCA(1) security of 1Key.

1. Given (1key.vk, 1key.pk), B picks i∗ ← [m], generates (sigvk, sigk)← SIG.Gen(1λ), and sets vk :=
sigvk. B then generates snumi∗ ← {0, 1}λ, sets 1key.vki∗ := 1key.vk and 1key.pki∗ := 1key.pk, gen-
erates σi∗ ← SIG.Sign(sigk, snumi∗∥1key.vki∗), and sets pki∗ := (snumi∗ , 1key.vki∗ , 1key.pki∗ , σi∗).
B prepares an empty list KL. B does the following for every i ∈ [m] \ {i∗}.

• Generate snumi ← {0, 1}λ and ri ← {0, 1}λ.
• Run (1key.ski, 1key.vki)← 1Key.SKGen(1λ; ri) and 1key.pki ← 1Key.PKGen(1key.ski).
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• Run σi ← SIG.Sign(sigk, snumi∥1key.vki).
• Set pki := (snumi, 1key.vki, 1key.pki, σi) and adds (snumi, 1key.ski) to KL.

2. B runs (pk′,msg0,msg1, st)← A(vk, pk1, · · · , pkm)ODec,1(·), whereODec,1(ct) is simulated as follows.

• Parse ct := (snum, 1key.ct).
• If snum = snumi∗ , queries 1key.ct to its decryption oracle and forwards the answer to A.

Otherwise, go to the next step.
• If there exists an entry of the form (snum, 1key.sk) in KL, return 1Key.Dec(1key.sk, 1key.ct) to
A. Otherwise, go to the next step.

• Generate r ← {0, 1}λ and (1key.vk, 1key.sk)← 1Key.SKGen(1λ; r), and add (snum, 1key.sk)
to KL.

• Return 1Key.Dec(1key.sk, 1key.ct) to A.

3. B parses pk′ := (snum′, 1key.vk′, 1key.pk′, σ′) and picks b← {0, 1}. B does the following.

• Set ct∗ := ⊥ if SIG.Ver(sigvk, snum′∥1key.vk′, σ′) = ⊥ and otherwise go to the next step.
• Set ct∗ := ⊥ if snum′∥1key.vk′ ̸= snumi∥1key.vki for every i ∈ [m]. Otherwise, go to the next

step.
• Abort with β′ := 0 if snum′∥1key.vk′ ̸= snumi∗∥1key.vki∗ . Otherwise, go to the next step.
• Output (1key.pk′,msgb, 0ℓ, stB), where stB is all information that B knows at this point.
• Obtain (1key.ct∗, cv, stB).
• Set ct∗ := (snum′, 1key.ct∗).

4. B runs b′ ← A(cv, ct∗, st)ODec,2(·), where ODec,2 is simulated exactly in the same way as ODec,1 except
that ODec,2 given ct returns ⊥ if ct = ct∗. B outputs β′ := 1 if b = b′ and otherwise outputs β′ := 0.

We define Good as the event that B does not abort when generating the challenge ciphertext. Then, letting
the challenge bit in the security experiment played by B be β, B’s advantage is calculated as follows.

|Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]| = |Pr[b = b′ ∧ Good|β = 0]− Pr[β′ = 1 ∧ Good|β = 1]| (103)

≥ 1
m
|Pr[b = b′|β = 0 ∧ Good]− Pr[β′ = 1|β = 1 ∧ Good]|

(104)

= 1
m
|Pr[1← Hyb2]− Pr[1← Hyb3]|. (105)

The second line follows from the fact that we have Pr[Good|β = 0] = Pr[Good|β = 1] ≥ 1
m . The third

line follows since B perfectly simulates Hyb2 (resp. Hyb3) conditioned that β = 0 (resp. β = 1) and the
event Good occurs. Thus, from the IND-pkT-CCA(1) security of CCA, we have |Pr[1← Hyb2]− Pr[1←
Hyb3]| ≤ negl(λ).

Clearly, we have Pr[1 ← Hyb3] = 1
2 . From the above discussions, MKey satisfies IND-pkT-CCA

security.
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9 Recyclable Variants

In the construction given in Sections 5 and 8, a quantum public key can be used to encrypt only one message
and a sender needs to obtain a new quantum public key whenever it encrypts a message. This is not desirable
from practical perspective. In this section, we define recyclable QPKE where a sender only needs to receive
one quantum public key to send arbitrarily many messages, and then show how to achieve it.

9.1 Definitions

The definition is similar to QPKE as defined in Definition 4.1 except that the encryption algorithm outputs a
classical recycled key that can be reused to encrypt messages many times.

Definition 9.1 (Recyclable QPKE). A recyclable QPKE scheme with message space {0, 1}ℓ is a set of
algorithms (SKGen,PKGen,Enc, rEnc,Dec) such that

• SKGen(1λ) → (sk, vk) : It is a PPT algorithm that, on input the security parameter λ, outputs a
classical secret key sk and a classical verification key vk.

• PKGen(sk)→ pk : It is a QPT algorithm that, on input sk, outputs a quantum public key pk.

• Enc(vk, pk,msg)→ (ct, rk) : It is a QPT algorithm that, on input vk, pk, and a plaintext msg ∈ {0, 1}ℓ,
outputs a classical ciphertext ct and classical recycled key rk.

• rEnc(rk,msg)→ ct : It is a PPT algorithm that, on input rk and a plaintext msg ∈ {0, 1}ℓ, outputs a
classical ciphertext ct.

• Dec(sk, ct)→ msg′ : It is a classical deterministic polynomial-time algorithm that, on input sk and ct,
outputs msg′ ∈ {0, 1}ℓ ∪ {⊥}.

We require the following correctness.

Correctness: For any msg,msg′ ∈ {0, 1}ℓ,

Pr

msg← Dec(sk, ct) ∧msg′ ← Dec(sk, ct′) :

(sk, vk)← SKGen(1λ)
pk← PKGen(sk)

(ct, rk)← Enc(vk, pk,msg)
ct′ ← rEnc(rk,msg′)

 ≥ 1− negl(λ). (106)

Definition 9.2 (IND-pkT-CPA Security for Recyclable QPKE). We require the followings.

Security under quantum public keys: For any polynomial m, and any QPT adversary A,

Pr

b← ArEnc(rk,·)(ct∗, st) :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg0,msg1, st)← A(vk, pk1, ..., pkm)
b← {0, 1}

(ct∗, rk)← Enc(vk, pk′,msgb)

 ≤
1
2 + negl(λ). (107)
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Security under recycled keys: For any polynomial m, and any QPT adversary A,

Pr


b← ArEnc(rk,·)(ct∗, st′) :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg, st)← A(vk, pk1, ..., pkm)
(ct′, rk)← Enc(vk, pk′,msg)

(msg0,msg1, st′)← ArEnc(rk,·)(ct′, st)
b← {0, 1}

ct∗ ← rEnc(rk,msgb)


≤ 1

2 + negl(λ). (108)

Here, pk1, ..., pkm ← PKGen(sk)⊗m means that PKGen is executed m times and pki is the output of the ith
execution of PKGen, rEnc(rk, ·) means a classically-accessible encryption oracle, and st and st′ are quantum
internal states of A, which can be entangled with pk′.

Definition 9.3 (IND-pkT-CCA Security for Recyclable QPKE). We require the followings.

Security under quantum public keys: For any polynomial m, and any QPT adversary A,

Pr


b← ArEnc(rk,·),ODec,2(·)(ct∗, cv, st) :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg0,msg1, st)← AODec,1(·)(vk, pk1, ..., pkm)
b← {0, 1}

(ct∗, rk)← Enc(vk, pk′,msgb)
cv := 0 if Dec(sk, ct∗) = ⊥ and otherwise cv := 1


≤ 1

2+negl(λ).

(109)

Security under recycled keys: For any polynomial m, and any QPT adversary A,

Pr


b← ArEnc(rk,·),ODec,2(·)(ct∗, cv, st′) :

(sk, vk)← SKGen(1λ)
pk1, ..., pkm ← PKGen(sk)⊗m

(pk′,msg, st)← AODec,1(·)(vk, pk1, ..., pkm)
(ct′, rk)← Enc(vk, pk′,msg)

(msg0,msg1, st′)← ArEnc(rk,·),ODec,1(·)(ct′, st)
b← {0, 1}

ct∗ ← rEnc(rk,msgb)
cv := 0 if Dec(sk, ct∗) = ⊥ and otherwise cv := 1


≤ 1

2+negl(λ).

(110)
Here, pk1, ..., pkm ← PKGen(sk)⊗m means that PKGen is executed m times and pki is the output of the ith
execution of PKGen, rEnc(rk, ·) means a classically-accessible encryption oracle, and st and st′ are quantum
internal states of A, which can be entangled with pk′. Also, ODec,1(ct) returns Dec(sk, ct) for any ct. ODec,2
behaves identically to ODec,1 except that ODec,2 returns ⊥ to the input ct∗.

9.2 Construction

We show a generic construction of recyclable QPKE from (non-recyclable) QPKE with classical ciphertexts
and SKE via standard hybrid encryption.

Let QPKE = (QPKE.SKGen,QPKE.PKGen,QPKE.Enc,QPKE.Dec) be a (non-recyclable) QPKE
scheme with message space {0, 1}λ and SKE = (SKE.Enc, SKE.Dec) be an SKE scheme with message space
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{0, 1}ℓ. Then we construct a recyclable QPKE scheme QPKE′ = (QPKE′.SKGen,QPKE′.PKGen,QPKE′.Enc,
QPKE′.rEnc,QPKE′.Dec) with message space {0, 1}ℓ as follows:

• QPKE′.SKGen(1λ)→ (sk′, vk′) : Run (sk, vk)← QPKE.SKGen(1λ) and output a secret key sk′ := sk
and verification key vk′ := vk.

• QPKE′.PKGen(sk′)→ pk′ : Run pk← QPKE.PKGen(sk) and outputs pk′ := pk.

• QPKE′.Enc(vk′, pk′,msg) → (ct′, rk′) : Parse pk′ = pk and vk′ = vk, sample K ← {0, 1}λ, run
ct← QPKE.Enc(vk, pk,K) and ctske ← SKE.Enc(K,msg), and output a ciphertext ct′ := (ct, ctske)
and recycled key rk′ := (K, ct).

• QPKE′.rEnc(rk′,msg) → ct′ : Parse rk′ = (K, ct), run ctske ← SKE.Enc(K,msg), and output a
ciphertext ct′ := (ct, ctske).

• QPKE′.Dec(sk′, ct′)→ msg′ : Parse ct′ = (ct, ctske) and sk′ = sk, run K ′ ← QPKE.Dec(sk, ct) and
msg′ ← SKE.Dec(K ′, ctske), and output msg′.

Correctness and decryption error detectability. Correctness of QPKE′ immediately follows from
correctness of QPKE and SKE. Also, the decryption error detectability of QPKE′ directly follows from that
of QPKE.

IND-pkT-CPA security and IND-pkT-CCA security. If QPKE satisfies IND-pkT-CPA (resp. IND-pkT-CCA)
security and SKE satisfies IND-CPA (resp. IND-CCA) security, then QPKE′ satisfies IND-pkT-CPA (resp.
IND-pkT-CCA) security. The proofs can be done by standard hybrid arguments, thus omitted.
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A Pure State Public Key Variant

As discussed in Section 1.3, we believe that the distinction between pure state and mixed state public keys is
not important from a practical point of view. Nonetheless, it is a mathematically valid question if we can
construct an IND-pkT-CPA secure QPKE scheme with pure state public keys. We give such a scheme based
on the existence of quantum-secure OWFs by extending the construction given in Section 5. For the ease of
exposition, we first show a construction based on slightly superpolynomially secure OWFs in Appendix A.1.
Then, we explain how to modify the scheme to base its security on standard polynomially secure OWFs in
Appendix A.2.

Preparation. We define a fine-grained version of strong EUF-CMA security for digital signature schemes.

Definition A.1 (T -strong EUF-CMA security). A digital signature scheme (Gen, Sign,Ver) is T -strong
EUF-CMA secure if the following holds: For any quantum adversary A that runs in time T and makes at
most T classical queries to the signing oracle Sign(k, ·),

Pr[(msg∗, σ∗) /∈ Q ∧ ⊤ ← Ver(vk,msg∗, σ∗) : (k, vk)← Gen(1λ), (msg∗, σ∗)← ASign(k,·)(vk)] ≤ T−1,
(111)

where Q is the set of message-signature pairs returned by the signing oracle.

Remark A.2. Strong EUF-CMA security defined in Definition 3.1 holds if and only if T -strong EUF-CMA
security holds for all polynomials T .
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Remark A.3. We can show that there exists a T -strong EUF-CMA secure digital signature scheme for some
T = λω(1) if slightly superpolynomially secure OWFs exist similarly to the proof of Theorem 3.3 in [Gol04,
Sec. 6.5.2]. Here, a superpolynomially secure OWF is a function f for which there exists T = λω(1) such
that any adversary with running time T can invert f with probability at most T−1.

We also need the following lemma in the security proof.

Lemma A.4. For a function H : {0, 1}u+1 → {0, 1}v, let |ψH⟩ :=
∑

R∈{0,1}u+1 |R⟩ |H(R)⟩. For any
integer m and (unbounded-time) quantum algorithm A,

Pr
H

[y0 = H(0∥r) ∧ y1 = H(1∥r) : (r, y0, y1)← A(|ψH⟩⊗m)] ≤ (2m+ 1)4(2−u + 2−v) (112)

where H is a uniformly random function from {0, 1}u+1 to {0, 1}v.

We prove it using the result of [YZ21]. We defer the proof to Appendix A.3.

A.1 Construction from Slightly Superpolynomially Secure OWFs

In this section, we construct a QPKE scheme that satisfies correctness and IND-pkT-CPA security (but
not decryption error detectability) and has pure state public keys from T -strong EUF-CMA secure digital
signatures for a superpolynomial T and quantum-query secure PRFs. Note that they exist assuming the
existence of slightly superpolynomially secure OWFs as noted in Remark A.3 and Theorem 3.5. The message
space of our construction is {0, 1}, but it can be extended to be arbitrarily many bits by parallel repetition.
Let (Gen, Sign,Ver) be a T -strong EUF-CMA secure digital signature scheme with a deterministic Sign
algorithm and message space {0, 1}u+v+1 and {PRFK : {0, 1}u+1 → {0, 1}v}K∈{0,1}λ be a quantum-query
secure PRF where T = λω(1), u := ⌊(log T )/2⌋, and v = ω(log λ).

Then we construct a QPKE scheme (SKGen,PKGen,Enc,Dec) as follows.

• SKGen(1λ)→ (sk, vk) : Run (k, vk)← Gen(1λ) and sample K ← {0, 1}λ. Output sk := (k,K) and
vk.

• PKGen(sk) → pk : Parse sk = (k,K). Choose r ← {0, 1}u. By running Sign and PRF coherently,
generate the state

|ψsk⟩ :=
∑

r∈{0,1}u

|r⟩R ⊗
(
|0⟩A ⊗ |y(0, r)⟩B ⊗ |σ(0, r)⟩C
+ |1⟩A ⊗ |y(1, r)⟩B ⊗ |σ(1, r)⟩C

)
(113)

over registers (R,A,B,C) where y(b, r) := PRFK(b∥r) and σ(b, r) := Sign(k, b∥r∥y(b, r)) for
b ∈ {0, 1} and r ∈ {0, 1}u. (We omit K and k from the notations for simplicity.) Output

pk := |ψsk⟩ . (114)

• Enc(vk, pk, b)→ ct : Parse pk = ρ, where ρ is a quantum state over registers (R,A,B,C). The Enc
algorithm consists of the following three steps.

1. It coherently checks the signature in ρ. In other words, it applies the unitary

Uvk |r⟩R |α⟩A |β⟩B |γ⟩C |0...0⟩E = |r⟩R |α⟩A |β⟩B |γ⟩C |Ver(vk, α∥r∥β, γ)⟩E (115)

on ρR,A,B,C ⊗ |0...0⟩⟨0...0|E, and measures the register E in the computational basis. If the
result is ⊥, it outputs ct := ⊥ and halts. If the result is ⊤, it goes to the next step.
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2. It applies Zb on the register A.
3. It measures R in the computational basis to get r and all qubits in the registers (A,B,C) in the

Hadamard basis to get the result d. It outputs

ct := (r, d). (116)

• Dec(sk, ct)→ b′ : Parse sk = (k,K) and ct = (r, d). Output

b′ := d · (0∥y(0, r)∥σ(0, r)⊕ 1∥y(1, r)∥σ(1, r)). (117)

Theorem A.5. If (Gen, Sign,Ver) is a T -strong EUF-CMA secure digital signature scheme and {PRFK :
{0, 1}u+1 → {0, 1}v}K∈{0,1}λ is a quantum-query secure PRF, then the QPKE scheme (SKGen,PKGen,Enc,Dec)
above is correct and satisfies IND-pkT-CPA security.

Proof (sketch). The correctness is easily seen similarly to the proof of Theorem 5.1.
For IND-pkT-CPA security, we only explain the differences from the proof of Theorem 5.1 since it is very

similar. We define Hybrid 0, 1, and 2 similarly to those in the proof of Theorem 5.1. For clarity, we describe
them in Figures 5 to 7.

Assume that the IND-pkT-CPA security of our construction is broken by a QPT adversaryA. It means the
QPT adversary A wins Hybrid 0 with a non-negligible advantage. Then, it is clear that there is another QPT
adversary A′ that wins Hybrid 1 with a non-negligible advantage. (A′ has only to do the Hadamard-basis
measurement by itself.)

From the A′, we construct a QPT adversary A′′ that wins Hybrid 2 with a non-negligible probability
based on a similar proof to that in Section 6.1. Indeed, the proof is almost identical once we show that any
QPT adversary given polynomially many copies of the public key can output a valid signature for a message
that is not of the form b∥r∥y(b, r) only with a negligible probability. To prove this, we consider a reduction
algorithm that queries signatures on all messages of the form b∥r∥y(b, r). Thus, the reduction algorithm
makes 2u+1 queries and runs in time 2u · poly(λ). Since we have 2u+1 < T and 2u · poly(λ) < T for
sufficiently large λ by u = ⌊(log T )/2⌋, which in particular implies 2u ≤ T 1/2, and T = λω(1), the reduction
enables us to prove the above property assuming the T -strong EUF-CMA security of the digital signature
scheme.14

Thus, we are left to prove that no QPT adversary can win Hybrid 2 with a non-negligible probability. Let
Hybrid 2’ be a hybrid that works similarly to Hybrid 2 except that y(b, r) is defined as y(b, r) := H(b∥r)
for a uniformly random function H instead of PRF. By the quantum-query security of PRF, the winning
probabilities in Hybrid 2’ and Hybrid 2 are negligibly close. Thus, it suffices to prove the winning probability
in Hybrid 2’ is negligible. This is proven by a straightforward reduction to Lemma A.4 noting that |ψsk⟩ with
the modification of y(b, r) as above can be generated from |ψH⟩ =

∑
R∈{0,1}u+1 |R⟩ |H(R)⟩ by coherently

running Sign. This completes the proof of IND-pkT-CPA security.

Remark A.6. We can add decryption error detectability by Theorem 4.3 and extend it to recyclable QPKE by
the construction of Section 9. These extensions preserve the property that public keys are pure states.

14In the proof for the mixed state public key version in Section 6.1, the reduction algorithm only needs to query signatures on b∥r
for r’s used in one of the public keys given to the adversary. On the other hand, in the pure state public key case, each public key
involves all r’s and thus the reduction algorithm needs to query signatures on superpolynomially many messages. This is why we
need superpolynomial security for the digital signature scheme.
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Hybrid 0
1. C runs (k, vk)← Gen(1λ). C sends vk to A.
2. C sends |ψsk⟩⊗m to the adversary A, where

|ψsk⟩ :=
∑

r∈{0,1}u

|r⟩ ⊗
(
|0⟩ ⊗ |y(0, r)⟩ ⊗ |σ(0, r)⟩
+ |1⟩ ⊗ |y(1, r)⟩ ⊗ |σ(1, r)⟩

)
(118)

3. A generates a quantum state over registers (R,A,B,C,D). ((R,A,B,C) corresponds to the quantum part of
pk′, and D corresponds to st.) A sends the registers (R,A,B,C) to C. A keeps the register D.

4. C coherently checks the signature in the state sent fromA. If the result is ⊥, it sends ⊥ toA and halts. If the result
is ⊤, it goes to the next step.

5. C chooses b← {0, 1}. C applies Zb on the register A.
6. C measures R in the computational basis to get r.
7. C measures all qubits in (A,B,C) in the Hadamard basis to get the result d. C sends (r, d) to A.
8. A outputs b′. If b′ = b, A wins.

Figure 5: Hybrid 0

Hybrid 1
1.-6. All the same as Figure 5.

7. C does not do the Hadamard-basis measurement, and C sends r and registers (A,B,C) to A.
8. The same as Figure 5.

Figure 6: Hybrid 1

A.2 Construction from Polynomially Secure OWFs

We explain how to extend the construction in Appendix A.1 to base security on standard polynomial hardness
of OWFs. We rely on a similar idea to the “on-the-fly-adaptation” technique introduced in [DS15]. The reason
why we need superpolynomial security in Appendix A.1 is that the reduction algorithm for the transition
from Hybrid 1 to 2 has to make 2u+1 ≈ 2T 1/2 signing queries for a superpolynomial T . Suppose that we
set T to be a polynomial. i.e., T = λc for some constant c. Then, the reduction algorithm for the transition
from Hybrid 1 to 2 works under polynomial security of the digital signature scheme. The problem, however,
is that we cannot show that the winning probability in Hybrid 2 is negligible: It can be only bounded by
(2m+ 1)4(2−u + 2−v), which is not negligible since 2u ≈ T 1/2 = λc/2. On the other hand, we can make
it arbitrarily small inverse-polynomial by making c larger. Based on this observation, we can show the
following: Let (SKGenc,PKGenc,Encc,Decc) be the QPKE scheme given in Appendix A.1 where T := λc.
Then, for any polynomials p and m, there exists a constant c such that any QPT adversary given m copies of
the quantum public key has an advantage to break IND-pkT-CPA security of (SKGenc,PKGenc,Encc,Decc)
at most 1/p(λ) for all sufficiently large λ.

Then, our idea is to parallelly run (SKGenc,PKGenc,Encc,Decc) for c = 1, 2, ..., λ where the encryption
algorithm generates a λ-out-of-λ secret sharing of the message and encrypts c-th share under Encc.15 Suppose
that this scheme is not IND-pkT-CPA secure. Then, there is a polynomial q and QPT adversary A given

15In fact, it suffices to parallelly run (SKGenc,PKGenc,Encc,Decc) for c = 1, 2, ..., η(λ) for any super-constant function η.
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Hybrid 2
1.-7. All the same as Figure 6.

8. A outputs (µ0, µ1). If µ0 = y(0, r)∥σ(0, r) and µ1 = y(1, r)∥σ(1, r), A wins.

Figure 7: Hybrid 2

m = poly(λ) copies of the quantum public key that has an advantage to break the IND-pkT-CPA security
at least 1/q(λ) for infinitely many λ. For each c, it is easy to construct a QPT adversary Ac that breaks
IND-pkT-CPA security of (SKGenc,PKGenc,Encc,Decc) with the same advantage asA’s advantage. On the
other hand, by the observation explained above, we can take a constant c (depending on q and m) such that
any QPT adversary given m copies of the public key has an advantage to break IND-pkT-CPA security of
(SKGenc,PKGenc,Encc,Decc) at most 1/2q(λ) for all sufficiently large λ. This is a contradiction. Thus, the
above scheme is IND-pkT-CPA secure.

A.3 Proof of Lemma A.4

For proving Lemma A.4, we rely on the following lemma shown by [YZ21].

Lemma A.7 ([YZ21, Theorem 4.2]). Let H : X → Y be a uniformly random function. Let A be an
(unbounded-time) randomized algorithm that makes q quantum queries to H and outputs a classical string z.
Let C be an (unbounded-time) randomized algorithm that takes z as input, makes k classical queries to H ,
and outputs ⊤ or ⊥. Let B be the following algorithm that makes at most k classical queries to H:

BH(): It does the following:

1. Choose a function H ′ : X → Y from a family of 2q-wise independent hash functions.
2. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q]× {0, 1}) ∪ {(⊥,⊥)} under the constraint that

there does not exist j ̸= j′ such that ij = ij′ ̸= ⊥.
3. Initialize a stateful oracle O to be a quantumly-accessible classical oracle that computes H ′.
4. Run AO() where O is simulated as follows. When A makes its i-th query, the oracle is simulated

as follows:
(a) If i = ij for some j ∈ [k], measure A’s query register to obtain x′

j , query x′
j to the random

oracle H to obtain H(x′
j), and do either of the following.

i. If bj = 0, reprogram O to output H(x′
j) on x′

j and answer A’s ij-th query by using the
reprogrammed oracle.

ii. If bj = 1, answerA’s ij-th query by using the oracle before the reprogramming and then
reprogram O to output H(x′

j) on x′
j .

(b) Otherwise, answer A’s i-th query by just using the oracle O without any measurement or
reprogramming.

5. Output whatever A outputs.

Then we have

Pr
H

[CH(z) = ⊤ : z ← BH()] ≥ 1
(2q + 1)2k

Pr
H

[CH(z) = ⊤ : z ← AH()]. (119)
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Remark A.8. There are the following differences from [YZ21, Theorem 4.2] in the statement of the lemma:

1. They consider inputs to A and B. We omit them because this suffices for our purpose.

2. They consider a more general setting where A and B interact with C. We focus on the non-interactive
setting.

3. They do not explicitly write how B works in the statement of [YZ21, Theorem 4.2]. But this is stated at
the beginning of its proof.

Using the above lemma, it is easy to prove Lemma A.4.

Proof of Lemma A.4. For an algorithm A in Lemma A.4, let Ã be an oracle-aided algorithm that generates
m copies of |ψH⟩ by making m quantum queries to H on uniform superpositions of inputs and then runs
A(|ψH⟩⊗m). Let C be an oracle-aided algorithm that takes z = (r, y0, y1) as input, makes two classical
queries 0∥r and 1∥r to H , and outputs ⊤ if and only if y0 = H(0∥r) and y1 = H(1∥r). By Lemma A.7, we
have

Pr
H

[y0 = H(0∥r) ∧ y1 = H(1∥r) : (r, y0, y1)← B̃H()] (120)

≥ 1
(2m+ 1)4 Pr

H
[y0 = H(0∥r) ∧ y1 = H(1∥r) : (r, y0, y1)← ÃH()] (121)

where B̃ is to Ã as B (defined in Lemma A.7) is to A. By the definition of B̃, it just makes at most two
classical queries toH on independently and uniformly random inputs R0, R1. The probability that we happen
to have {R0, R1} = {0∥r, 1∥r} for some r ∈ {0, 1}u is 2−u. Unless the above occurs, either H(0∥r) or
H(1∥r) is uniformly random to B̃ for all r, and thus the probability that its output satisfies y0 = H(0∥r) and
y1 = H(1∥r) is at most 2−v. Thus, we have

Pr
H

[y0 = H(0∥r) ∧ y1 = H(1∥r) : (r, y0, y1)← B̃H()] ≤ 2−u + 2−v. (122)

Combining Equations (121) and (122), we obtain Lemma A.4.
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