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Abstract. Non-malleability is one of the basic security goals for en-
cryption schemes which ensures the resistance of the scheme against
ciphertext modifications in the sense that any adversary, given a ci-
phertext of a plaintext, cannot generate another ciphertext whose un-
derlying plaintext is meaningfully related to the initial one. There are
multiple formulations of non-malleable encryption schemes, depending
on whether they are based on simulation or comparison, or whether
they impose valid ciphertext condition, in which an adversary is re-
quired to generate only valid ciphertexts, or not. In addition to the
simulation-based and comparison-based formulations (SNM and CNM),
non-malleability has an indistinguishability-based characterization called
ciphertext indistinguishability (IND) against parallel chosen-ciphertext
attacks. These three formulations, SNM, CNM and IND, have been
shown to be equivalent if the valid ciphertext condition is not imposed;
however, if that condition is imposed, then the equivalence among them
has been shown only against the strongest type of attack models, and
the relations among them against the weaker types of the attack mod-
els remain open. This work answers this open question by showing the
separations SNM∗ 6=⇒ CNM∗ and IND∗ 6=⇒ SNM∗ against the weaker
types of the attack models, where the asterisk attached to the short-hand
notations represents that the valid ciphertext condition is imposed. More-
over, motivated by the proof of the latter separation, this paper intro-
duces simulation-based and comparison-based formulations of semantic
security (SSS∗ and CSS∗) against parallel chosen-ciphertext attacks, and
shows the equivalences SSS∗ ⇐⇒ SNM∗ and CSS∗ ⇐⇒ CNM∗ against
all types of the attack models. It thus follows that IND∗ 6=⇒ SSS∗, that
is, semantic security and ciphertext indistinguishability, which have been
shown to be equivalent in various settings, separate against the weaker
parallel chosen-ciphertext attacks under the valid ciphertext condition.
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1 Introduction

The security of public key encryption schemes is commonly specified by the se-
curity goal and the attack model. Here, the security goals formulate what type
of security of the scheme is intended to be protected, and the attack models
formulate what type of external resources is assumed to be available to an ad-
versary attacking the scheme. Non-malleability [8] is one of the basic security
goals which ensures the resistance of the scheme against ciphertext modifications
in the sense that any adversary, given a ciphertext of a plaintext called a chal-
lenge ciphertext, cannot generate another ciphertext whose underlying plaintext
is meaningfully related to the initial one.

There are multiple formulations of non-malleable encryption schemes, de-
pending on whether they are based on simulation or comparison, or whether
they impose valid ciphertext condition, in which an adversary is required to
generate only valid ciphertexts, or not.1 The difference between the simulation-
based and comparison-based formulations is in the baseline against which the
probability of successful ciphertext modifications by an adversary is compared;
namely, the baseline in the former formulation is that probability by a simulator
without a challenge ciphertext, while the baseline in the latter formulation is that
probability by “random guess” which corresponds to coincidence that a plaintext
independently sampled according to the message distribution specified by the ad-
versary is meaningfully related to the initial plaintext. Since a simulator is more
powerful than “random guess”, it can be shown that the comparison-based for-
mulation is stronger than the simulation-based formulation regardless of whether
the valid ciphertext condition is imposed or not [3]. The original work by Dolev et
al. [8] introduced non-malleability in the simulation-based formulation with the
valid ciphertext condition, which would be the most natural one at least from our
intuition for non-malleability.2 Later, the comparison-based formulation of non-
malleability was proposed [2] and then shown to be equivalent to the simulation-
based one if the valid ciphertext condition is not imposed [3]. On the other hand,
if that condition is imposed, then these two notions were known to be equiva-
lent only against the strongest attack model, namely adaptive chosen-ciphertext
attack (CCA2) [19], and the relation between them against the weaker attack
models, namely chosen plaintext attack (CPA) and non-adaptive chosen cipher-
text attack (CCA1) [17], still remains open.3 Moreover, an indistinguishability-
based characterization of non-malleability, called ciphertext indistinguishability
1 In addition to encryption schemes, non-malleability has been formulated for various
primitives (see e.g. [4, 7–9,13,20]).

2 In fact, Katz and Yung [15] imposed the valid ciphertext condition to formulate non-
malleability for private-key encryption based on the consideration that “the current
definition more closely corresponds to our intuitive notion.” It should, however, be
mentioned that they employed the comparison-based formulation. Here, one advan-
tage of the comparison-based formulation for private key encryption schemes would
be that it frees us from considering the encryption oracle for a simulator.

3 In the full version of [3], clarifying this relation was mentioned as the last open
question. This work was inspired by this question.
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against parallel chosen-ciphertext attacks (PCA0, PCA1 and PCA2), was also
introduced and shown to be equivalent to non-malleability if the valid ciphertext
condition is not imposed [3]. On the other hand, if that condition is imposed,
then these notions were known to be equivalent only against the strongest type
of the attack models, and the relation between them against the weaker types of
the attack models, also remains open. Here, it should be stated that different for-
mulations of non-malleability, in which a distribution of decrypted plaintexts is
considered instead of a relation among decrypted plaintexts, were introduced
and the relation among the formulations was studied in [18]. Although the
formulations have similar names, simulation-based security (SIM-NME’) and
indistinguishability-based security (IND-NME’), they are different from those
in [3]; in fact, the indistinguishability-based and simulation-based formulations
are equivalent (IND ⇐⇒ SNM) in [3] but they separate (IND-NME’ 6=⇒ SIM-
NME’) in [18] for the case where the valid ciphertext condition is not imposed.

1.1 Contributions of this work

This work shows that (perhaps surprisingly) the simulation-based formulation
of non-malleability (SNM∗) is strictly weaker than the comparison-based one
(CNM∗) against CPA and CCA1, which answers the last open question men-
tioned in the full version of [3]. Moreover, this work also shows that ciphertext
indistinguishability (IND∗) against PCA0 and PCA1 is strictly weaker than the
simulation-based non-malleability against CPA and CCA1, respectively. Here,
the asterisk attached to the above short-hand notations represents that the valid
ciphertext condition is imposed. The proofs of these results follow the standard
procedure to show the separation X 6=⇒ Y for computational security notions
X and Y , in which (a) the existence of an X-secure encryption scheme Π is
assumed and then (b) Π is modified to Π ′ so that Π ′ is still X-secure but not
Y -secure; however, the modifications of encryption schemes and the estimation
of adversaries’ advantages given in this paper are specifically aimed at showing
the separations.

In addition, motivated by the proof of the latter separation, this paper in-
troduces simulation-based and comparison-based formulations of semantic se-
curity (SSS∗ and CSS∗) against parallel chosen-ciphertext attacks, and shows
that SSS∗ and CSS∗ are equivalent to SNM∗ and CNM∗, respectively. This, to-
gether with the latter separation, shows that semantic security and ciphertext
indistinguishability, which have been shown equivalent in various settings (see
e.g. [1, 10–12, 16, 21]), separate against parallel chosen-ciphertext attacks under
the valid ciphertext condition. We note that parallel chosen-ciphertext attacks
were introduced not to show this separation, but to give an indistinguishability-
based characterization of non-malleability, which is expected to facilitate the
study on non-malleability.4 Figure 1 shows the complete relations among formu-
lations of non-malleable encryption.

4 It may be of interest to note that parallel chosen-ciphertext attacks have been ex-
tended to self-destruct attacks (SDA) [6], yielding NM-SDA security, which has nat-
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Fig. 1. Relations among formulations of non-malleability. The bold barred arrows rep-
resent the separations shown by this paper. The separation CNM∗-CCA1 6=⇒ CNM-
CPA follows from the result CNM∗-CPA 6=⇒ CNM-CPA shown by the full version
of [14], together with the idea mentioned in the full version of [3]. The other relations
are consequences of [2, 3, 12].

2 Preliminaries

Let A be a probabilistic algorithm. The result of running A on inputs x1, x2, . . .
and randomness r is denoted by A(x1, x2, . . . ; r). The notation y ← A(x1, x2, . . .)
denotes the experiment of choosing r at random and setting y = A(x1, x2, . . . ; r).
If S is a distribution (resp. a finite set), then S in the notation x ← S is
considered an algorithm which returns a sample drawn according to S (resp. the
uniform distribution over S). For an event E, the notation

Pr[x← A(a1, a2, . . .); y ← B(b1, b2, . . .); · · · : E]

denotes the probability that E occurs after ordered execution of the listed ex-
periments.

The length of a string s is denoted by |s|. The concatenation of strings s1 and
s2 is denoted by s1s2. A sequence is denoted in boldface. The length of a sequence
x is denoted by |x| and its i-th component by xi, so that x = (x1, · · · ,xl) with
l = |x|. The concatenation of sequences x and y is denoted by x||y. For an
operation F and a sequence x of length l whose components are in the domain
of F , we use the notation F (x) to denote

F (x) = (F (x1), · · · , F (xl)).

ural applications and can be achieved from IND-CPA security [5]. Here, in SDA, an
adversary is allowed to make multiple (and so adaptive) parallel chosen-ciphertext
queries up to the point when the first invalid ciphertext is submitted.



Separations among formulations of non-malleable encryption 5

For a sequence x of length l1 whose components are sequences of length l2,

x = ((x11, · · · ,x1l2), · · · , (xl11, · · · ,xl1l2)),

we define a sequence x∗j for j ∈ [l2] by

x∗j = (x1j , · · · ,xl1j). (1)

For sequences a, b, c and d of the same length l, we introduce the notation
〈a : b|c = d〉 to denote the sequence of length l whose i-th component is given
by

〈a : b|c = d〉i =

{
ai if ci = di,

bi otherwise,
(2)

with i ∈ [l]. In this notation, a symbol x not in boldface is considered as the
sequence (x)l of length l whose components are all x; e.g.,

〈a : b|c = d〉 = 〈(a)l : b|c = (d)l〉.

A function ε from N to R, ε : N → R, is called negligible if for all c > 0, there
exists an integer nc such that ε(n) ≤ n−c for all n ≥ nc.

A public key encryption scheme is a triple of algorithms, Π = (K, E ,D), such
that

– K, the key generation algorithm, is a probabilistic, polynomial-time algo-
rithm which takes as input a security parameter k ∈ N (in unary) and
returns a pair (pk, sk) of matching public and secret keys,

– E , the encryption algorithm, is a probabilistic, polynomial-time algorithm
which takes as input a public key pk and a plaintext x ∈ {0, 1}∗ and returns
a ciphertext y,

– D, the decryption algorithm, is a deterministic, polynomial-time algorithm
which takes as input a secret key sk and a ciphertext y and returns either
a plaintext x ∈ {0, 1}∗ or a special symbol ⊥ to indicate that the ciphertext
is invalid,

where the correctness condition Pr[Dsk(Epk(x)) = x] = 1 has to hold for all
k ∈ N, for all (pk, sk) which can be output by K(1k) and for all x ∈ {0, 1}∗.
In this paper, we assume that all algorithms have access to the key generation
algorithm K(1k) given the security parameter k.5

2.1 Formulations of non-malleability

The simulation-based and comparison-based formulations of non-malleability
can be described in the common framework [2]. In the simulator-based for-
mulation introduced in [8] and refined in [3], an adversary A, its simulator S
5 This is necessary in some proofs where a simulator (which is not explicitly given the
security parameter k in our definition) runs K(1k), and has also been assumed e.g.
in [3].
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and a relation R are considered. Here, A is a pair of algorithms, A = (A1, A2),
corresponding to two stages of an attack. Before the execution of A, the key
generation algorithm on the security parameter k generates a pair of matching
public and secret keys, (pk, sk). At the first stage of the attack, A1 takes as input
the public key pk and outputs a distribution M over messages (plaintexts) such
that all plaintexts in the support of M are of the same length, together with
state information s1 for A2 and side information s2 for R. Next, a plaintext x
is sampled according to M and then encrypted to give a challenge ciphertext y.
At the second stage of the attack, A2 takes as input the challenge ciphertext y
and the state information s1 and outputs a sequence y of ciphertexts such that
y /∈ y. Finally, y is decrypted to give x. Here, A is supposed to have access to
the decryption oracle Dsk(·) depending on the attack model ATK; namely, A
has no access to Dsk(·) for chosen plaintext attack (CPA), only A1 has access
to Dsk(·) for non-adaptive chosen plaintext attack (CCA1) and both A1 and A2

have access to Dsk(·) for non-adaptive chosen plaintext attack (CCA1), where
A2 is prohibited from asking the challenge ciphertext y to Dsk(·) for the last
case. The experiment for a simulator S = (S1, S2) is the same as that for A
except for that S is not given a challenge ciphertext y and S has no access to
Dsk(·) regardless of the attack models. Then, A and S are considered success-
ful if R(x,x,M, s2) = 1 and ⊥/∈ x hold, and an encryption scheme is called
secure in the sense of SNM∗-ATK if for all probabilistic, polynomial-time ad-
versary A which outputs M samplable in polynomial-time and for all relation
R computable in polynomial-time, there exists a probabilistic, polynomial-time
simulator S which outputs M samplable in polynomial-time, such that the ad-
vantage in success probability of A against S is negligible as a function of k. A
formal definition of SNM∗-ATK is described below.

Definition 1 (SNM∗-ATK [3, 8]). Let Π = (K, E ,D) be an encryption
scheme and R be a relation. Let A = (A1, A2) be an adversary attacking Π
and S = (S1, S2) be its simulator. For k ∈ N and ATK ∈ {CPA,CCA1,CCA2},
consider the following two experiments:

Experiment ExptSNM∗-ATK-1
Π,R,A (k)

(pk, sk)← K(1k)
(M, s1, s2)← AO1

1 (pk)
x←M ; y ← Epk(x0)
y ← AO2

2 (s1, y); x← Dsk(y)
if R(x,x,M, s2) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Experiment ExptSNM∗-ATK-0
Π,R,S (k)

(pk, sk)← K(1k)
(M, s1, s2)← S1(pk)
x←M
y ← S2(s1); x← Dsk(y)
if R(x,x,M, s2) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Here, O1 and O2 are oracles given by

O1 = ε(·) and O2 = ε(·) if ATK = CPA,

O1 = Dsk(·) and O2 = ε(·) if ATK = CCA1,

O1 = Dsk(·) and O2 = Dsk(·) if ATK = CCA2,

respectively, where ε(·) denotes the empty function which, on any input, outputs
the empty string ε, and it is supposed that (i) all strings in the support of M are
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of the same length, (ii) y /∈ y and (iii) y /∈ query(A;O2) in the above experiment
ExptSNM∗-ATK-1

Π,R,A (k), where query(A;O2) denotes a sequence of queries from A
to O2 for the case of ATK = CCA2. An adversary A is called legitimate if its
outputs and queries satisfy the above conditions (i)–(iii). For a function f of k,
an adversary A (resp. a simulator S) is called bounded by time f(k) if A (resp.
S) runs in time f(k) and outputsM samplable in time f(k). Then, an encryption
scheme Π is called secure in the sense of SNM∗-ATK if for all polynomial p, all
probabilistic adversary A bounded by time p(k) and all relation R computable
in time p(k), there exist a polynomial p′(k) and a simulator S bounded by time
p′(k) such that AdvSNM∗-ATK

Π,R,A,S (k) is negligible, where AdvSNM∗-ATK
Π,R,A,S denotes the

advantage of A against S defined by

AdvSNM∗-ATK
Π,R,A,S (k)

= Pr[ExptSNM∗-ATK-1
Π,R,A (k) : w = 1]− Pr[ExptSNM∗-ATK-0

Π,R,S (k) : w = 1].

In the comparison-based formulation introduced in [2], only an adversary A
is considered. Again, A is a pair of algorithms, A = (A1, A2), corresponding to
two stages of an attack. Before the execution of A, the key generation algorithm
on the security parameter k generates a pair of matching public and secret keys,
(pk, sk). At the first stage of the attack, A1 takes as input the public key pk and
outputs a distribution M over messages (plaintexts) such that all plaintexts in
the support of M are of the same length, together with state information s for
A2. Next, a plaintext x is sampled according to M and then encrypted to give a
challenge ciphertext y. At the second stage of the attack, A2 takes as input the
challenge ciphertext y and the state information s and outputs a relation R and
a sequence y of ciphertexts such that y /∈ y. Finally, y is decrypted to give x.
Here, A is supposed to have access to the decryption oracle Dsk(·) depending on
the attack model, as in the simulation-based formulation. Then, A is considered
successful if R(x,x) = 1 and ⊥/∈ x hold. In contrast to the simulation-based
formulation, the success probability of A is compared with that of “random
guess” which is considered successful if a plaintext x′ independently sampled
according toM satisfiesR(x′,x) = 1 (with⊥/∈ x). Then, an encryption scheme is
called secure in the sense of CNM∗-ATK if for all probabilistic, polynomial-time
adversary A which outputs M samplable in polynomial-time and R computable
in polynomial-time, the advantage in success probability of A against “random
guess” is negligible as a function of k. A formal definition of CNM∗-ATK is
described below.

Definition 2 (CNM∗-ATK [2]). Let Π = (K, E ,D) be an encryption scheme.
Let A = (A1, A2) be an adversary attacking Π. For b ∈ {0, 1}, k ∈ N and
ATK ∈ {CPA,CCA1,CCA2}, consider the following experiment:
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Experiment ExptCNM∗-ATK-b
Π,A (k)

(pk, sk)← K(1k); (M, s)← AO1
1 (pk); x0, x1 ←M

y ← Epk(x1); (R,y)← AO2
2 (s, y); x← Dsk(y)

if R(xb,x) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are defined
as in Definition 1. For a function f of k, an adversary A is called bounded by
time f(k) if A runs in time f(k) and outputs M samplable in time f(k) and
R computable in time f(k). Then, an encryption scheme Π is called secure in
the sense of CNM∗-ATK if for all polynomial p and all probabilistic adversary
A bounded by time p(k), AdvCNM∗-ATK

Π,A (k) is negligible, where AdvCNM∗-ATK
Π,A

denotes the advantage of A defined by

AdvCNM∗-ATK
Π,A (k)

= Pr[ExptCNM∗-ATK-1
Π,A (k) : w = 1]− Pr[ExptCNM∗-ATK-0

Π,A (k) : w = 1].

In the indistinguishability-based characterization of non-malleability intro-
duced in [3], only an adversary A is considered. In this case, A is a triple of
algorithms, A = (A1, A2, A3), corresponding to three stages of an attack. Before
the execution of A, the key generation algorithm on the security parameter k
generates a pair of matching public and secret keys, (pk, sk). At the first stage
of the attack, A1 takes as input the public key pk and outputs two plaintexts x0
and x1 such that |x0| = |x1|, together with state information s1 for A2. Next,
one of the two plaintexts x0 and x1, say xb (b ∈ {0, 1}), is chosen at random
and then encrypted to give a challenge ciphertext y. At the second stage of the
attack, A2 takes as input the challenge ciphertext y and the state information
s1 and outputs a sequence y of ciphertexts such that y /∈ y, together with state
information s2 for A3. Then, y is decrypted to give x. At the third stage of
the attack, A3 takes as input the sequence x and the state information s2 and
outputs d ∈ {0, 1}. Here, A is supposed to have access to the decryption oracle
Dsk(·) depending on the attack model PCAX; namely, A has no access to Dsk(·)
for PCA0, only A1 has access to Dsk(·) for PCA1 and all A1, A2 and A3 have
access to Dsk(·) for PCA2, where A2 and A3 are prohibited from asking the
challenge ciphertext y to Dsk(·) for the last case. Then, A is considered success-
ful if d = b and ⊥/∈ x hold, and an encryption scheme is called secure in the
sense of IND∗-PCAX if for all probabilistic, polynomial-time adversary A, the
advantage in success probability of A against baseline probability 1

2 is negligible
as a function of k. A formal definition of IND∗-PCAX is described below.

Definition 3 (IND∗-PCAX [3]). Let Π = (K, E ,D) be an encryption scheme
and A = (A1, A2, A3) be an adversary attacking Π. For k ∈ N and PCAX ∈
{PCA0,PCA1,PCA2}, consider the following experiment:
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Experiment ExptIND∗-PCAX
Π,A (k)

(pk, sk)← K(1k); (x0, x1, s1)← AO1
1 (pk); b← {0, 1}; y ← Epk(xb)

(y, s2)← AO2
2 (x0, x1, s1, y); x← Dsk(y); d← AO2

3 (x, s2)
if d = b∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are
oracles given by

O1 = ε(·) and O2 = ε(·) if PCAX = PCA0,

O1 = Dsk(·) and O2 = ε(·) if PCAX = PCA1,

O1 = Dsk(·) and O2 = Dsk(·) if PCAX = PCA2,

respectively, where ε(·) denotes the empty function as before. Then, an encryption
scheme Π is called secure in the sense of IND∗-PCAX if for all polynomial p
and all probabilistic adversary A runnable in time p(k), AdvIND∗-PCAX

Π,A (k) is
negligible, where AdvIND∗-PCAX

Π,A denotes the advantage of A defined by

AdvIND∗-PCAX
Π,A (k) = 2Pr[ExptIND∗-PCAX

Π,A (k) : w = 1]− 1.

The above definitions of SNM∗-ATK, CNM∗-ATK and IND∗-PCAX can be
modified by removing the valid ciphertext condition ⊥/∈ x, giving stronger no-
tions, denoted as SNM-ATK, CNM-ATK and IND-PCAX, respectively. It has
been shown that these three security notions are equivalent [3]. Here, it should be
stated that whether imposing the valid ciphertext condition is more appropriate
or not depends on applications, as mentioned in [3, 15].

3 Separation between simulation-based and
comparison-based formulations

Let X and Y be security notions for encryption schemes. In order to show the
separation X 6=⇒ Y , it is necessary to show that there exists an encryption
scheme which is secure in the sense of X but not secure in the sense of Y . Since
the existence of computationally secure encryption schemes has not been proved,
it is standard to show the separation by modifying an encryption scheme Π to
another encryption scheme Π ′ so that if Π is X-secure, then Π ′ is still X-secure
but not Y -secure.6 The proofs in this paper follow this standard.

To prove the separation between SNM∗ and CNM∗, we modify an encryption
scheme Π = (K, E ,D) to Π ′ = (K′, E ′,D′) so that the modified decryption
algorithm D′ has an additional “option” which gives no (absolute) advantage to
an adversary and a simulator. More precisely, E ′ takes a plaintext x and outputs
a ciphertext (0, Epk(x)), and D′ takes a ciphertext (a, y) and outputs Dsk(y) if
6 Since the existence of computationally secure private key encryption schemes is
equivalent to that of one-way functions, we may show separations for private key
encryption schemes by assuming the latter (see e.g. [15]).
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a = 0 or x equals a specific string (say, 0), otherwise ⊥. It can be seen from this
definition of D′ that there is no advantage to choose the option a 6= 0. An SNM∗
simulator may not choose this option, while a CNM∗ adversary can force the
“random guess” to choose the option so as to take relative advantage against it.

From a technical point of view, it is convenient to slightly modify SNM∗ to
SNM~ so that the output of the side information s2 for the relation R is delayed
from the first stage to the second one. This modification does not change the
strength of security, and below we consider SNM~ instead of SNM∗, which could
make the intuition behind the proof clearer. A formal definition of SNM~ and
the proof of its equivalence to SNM∗ (which may seem more complicated than
expected) are given in Appendix A. We are now ready to show the separation
between SNM~ and CNM∗.

Theorem 1. SNM~-CCA1 6=⇒ CNM∗-CPA.

Proof. Let Π = (K, E ,D) be an encryption scheme. By using Π, let us construct
another encryption scheme Π ′ = (K′, E ′,D′) as

Algorithm K′(1k)
(pk, sk)← K(1k)
return (pk, sk)

Algorithm E ′pk(x)
y ← Epk(x)
return (0, y)

Algorithm D′sk((a, y))
x← Dsk(y)
if a = 0 then return x
else if x = 0 then return x

else return ⊥

It can be seen from this definition that for a and x such that x ← D′sk((a, y))
for some y,

x 6=⊥ ∧a 6= 0 ⇐⇒ x 6=⊥ ∧a 6= 0 ∧ x = 0. (3)

Then, the theorem follows from the following two lemmas. ut

The following two lemmas claim that (a) If Π is SNM~-CCA1, then so is Π ′ and
(b)Π ′ is not CNM∗-CPA, respectively. To show the first lemma (a), we construct
an adversary A attacking Π and a relation R for A by using an adversary A′
attacking Π ′ and a relation R′ for A′, respectively. The construction of A from
A′ is straightforward except for the case where A′2 outputs a sequence y′ of
ciphertexts which contains a component (a′, y) such that a′ 6= 0 and y is a
challenge ciphertext for A (we note that challenge ciphertexts for A′ have a form
(0, y)). In fact, A2 can generate a sequence y of ciphertexts by simply ignoring
the first component a′ of each component (a′, y′) of y′. On the other hand,
in the exceptional case mentioned above, the sequence y generated as above
contains the challenge ciphertext y, which violates the legitimate condition (ii)
(see Definition 1 for this condition). This violation can be avoided as follows.
If y ∈ y, then A2 replaces y in y by e such that e 6= y, and then includes the
position of this replacement in the side information s2 for the relation R.7 Then,
7 Since SNM~ allows an adversary to output s2 at the second stage, SNM~ is conve-
nient for simplifying the proof based on this construction.
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the relation R can replace Dsk(e) at the position of the above replacement by the
specific string 0. Here, note that (3) implies that a ciphertext (a, y) with a 6= 0
is valid only if x = Dsk(y) = 0. It thus follows that the advantage of A is no less
than that of A′. Moreover, we can show the second lemma (b) by considering a
CNM∗-CPA adversary which simply transforms a challenge ciphertext (0, y) to
(1, y) and outputs it as a component of y. In fact, if the adversary outputs the
message distribution M = {0, 1} and the relation R defined by R(x,x) = 1 iff
x = (x), then the adversary is successful if and only if x1 = 0 (which occurs with
probability 1

2 ), while the “random guess” is successful if and only if x0 = x1 = 0
(which occurs with probability 1

4 ), and so the former has the advantage 1
4 against

the latter. Detailed proofs of these lemmas are described below.

Lemma 1. If Π is SNM~-CCA1, then so is Π ′.

Proof. Let p be a polynomial of k. Let R′ be a relation computable in time
p(k) and A′ = (A′1, A

′
2) be a legitimate SNM~-CCA1 adversary attacking Π ′,

bounded by time p(k) (see Definition 1 for an adversary bounded by time p(k)).
By using A′ and R′, let us construct an SNM~-CCA1 adversary A = (A1, A2)
attacking Π and a relation R as

Algorithm A
Dsk
1 (pk)

(M, s1)← A
′D′sk
1 (pk)

x′ ←M
L← |x′|+ 1
e← Epk(0L)
return (M, (s1, e))

Algorithm A2((s1, e), y)
(y′, s2)← A′2(s1, (0, y))
a′ ← y′∗1
y ← 〈y′∗2 : e|a′ = 0〉
s← (s2)||a′
return (y, s)

Relation R(x,x,M, s)
if |s| = 0 then return 0
parse s as (s2)||a′ with |(s2)| = 1
x̃← 〈x : 0|a′ = 0〉
return R′(x, x̃,M, s2)

(see (1) and (2) for the notations x∗j and 〈a : b|c = d〉, respectively), where
the length L is chosen so that |0Ls2| > |x| for any s2 ∈ {0, 1}∗ and any output
x of M (note that M outputs messages of a fixed length), which ensures that
Epk(0Ls2) 6= y with probability 1. Since A′ is bounded by time p(k) (and so every
string output by A′ has a length bounded by p(k)), R′ is computable in time
p(k) and Epk is polynomial-time, it follows thatM is samplable in time p(k) and
A and R are polynomial-time. Moreover, A can be seen legitimate as follows:
the condition (i) follows from that A′ is legitimate and the condition (iii) from
that A2 has no oracle access to Dsk; since (0, y) /∈ y′ and so ∀i((y′∗2)i = y =⇒
a′i 6= 0), we have y /∈ y = 〈y′∗2 : e|a′ = 0〉, from which the condition (ii) follows.
We note that A1 can answer queries from A′1 by using her own oracle Dsk to
compute D′sk.

It is now convenient to consider the experiment Expt1(k) defined by

Experiment Expt1(k)

(pk, sk)← K(1k); (M, s1)← A
′D′sk
1 (pk); x, x′ ←M ; y ← Epk(x)

L← |x′|+ 1; e← Epk(0L); (y′, s2)← A′2(s1, (0, y))
a′ ← y′∗1; y ← 〈y′∗2 : e|a′ = 0〉; x′ ← D′sk(y′); x← Dsk(y); x̃← 〈x : 0|a′ = 0〉
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and to introduce, for an event E, the short-hand notation p1(E) = Pr[Expt1(k) :
E]. Since x = 〈x′ : 0L|a′ = 0〉 and x̃ = 〈x : 0|a′ = 0〉, we have

⊥∈ x ⇐⇒ ⊥∈ x̃ =⇒ ⊥∈ x′. (4)

Moreover, since x̃ can be written as x̃ = 〈x′ : 0|a′ = 0〉, we have x′ = x̃ ⇐⇒
∀i(a′i = 0 ∨ x′i = 0). It thus follows from (3) that

⊥/∈ x′ ⇐⇒ ∀i(x′i 6=⊥ ∧(a′i = 0 ∨ a′i 6= 0))

⇐⇒ ∀i(x′i 6=⊥ ∧(a′i = 0 ∨ (a′i 6= 0 ∧ x′i = 0)))

⇐⇒ ∀i(x′i 6=⊥ ∧(a′i = 0 ∨ x′i = 0))

⇐⇒ ⊥/∈ x′ ∧ x′ = x̃.

Therefore,

Pr[ExptSNM~-CCA1-1
Π,R,A (k) : w = 1]

= p1(R(x,x,M, (s2)||a′) = 1∧ ⊥/∈ x)

= p1(R′(x, x̃,M, s2) = 1∧ ⊥/∈ x̃)

≥ p1(R′(x, x̃,M, s2) = 1∧ ⊥/∈ x′)

= p1(R′(x, x̃,M, s2) = 1∧ ⊥/∈ x′ ∧ x′ = x̃)

= p1(R′(x,x′,M, s2) = 1∧ ⊥/∈ x′ ∧ x′ = x̃)

= p1(R′(x,x′,M, s2) = 1∧ ⊥/∈ x′)

= Pr[ExptSNM~-CCA1-1
Π′,R′,A′ (k) : w = 1],

where the inequality follows from (4).
It follows from Definition 4 that if Π is secure in the sense of SNM~-CCA1,

then there exist a polynomial p′ and a simulator S = (S1, S2) of the above
adversary A, bounded by time p′(k), such that AdvSNM~-CCA1

Π,R,A,S (k) is negligible.
By using such S, let us next construct a simulator S′ = (S′1, S

′
2) of A′ as

Algorithm S′1(pk′)
(pk, sk)← K(1k); (M, s1)← S1(pk)
(y, s)← S2(s1); x← Dsk(y)
if |s| = 0 then return (M, ((), ε))
parse s as (s2)||a′ with |(s2)| = 1
x̃← 〈x : 0|a′ = 0〉; y′ ← Epk′(x̃)
return (M, (y′, s2))

Algorithm S′2((y′, s2))
return (y′, s2)

Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is polynomial-time. It can also
be seen from the above construction of S′ and R that

Pr[ExptSNM~-CCA1-0
Π′,R′,S′ (k) : w = 1] ≥ Pr[ExptSNM~-CCA1-0

Π,R,S (k) : w = 1]

(where equality holds if and only if S′ always fails when |s| = 0), and so

AdvSNM~-CCA1
Π′,R′,A′,S′ (k) ≤ AdvSNM~-CCA1

Π,R,A,S (k).
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Consequently, if Π is secure in the sense of SNM-CCA1, then AdvSNM~-CCA1
Π,R,A,S (k)

is negligible, and so is AdvSNM-CCA1
Π′,R′,A′,S′(k). This completes the proof. ut

Lemma 2. Π ′ is not CNM∗-CPA.

Proof. Let A = (A1, A2) be a CNM∗-CPA adversary attacking Π ′ defined by

Algorithm A1(pk)
return ({0, 1}, ε)

Algorithm A2(s, (0, y))
return (R, ((1, y)))

where the relation R output by A2 is given by

Relation R(x,x)
if x = (x) then return 1
else return 0

It can be seen from this definition that M is samplable in time O(1) and A is
polynomial-time; moreover, since |0| = |1| and (0, y) 6= (1, y), A is legitimate.
Since ⊥/∈ x ⇐⇒ x1 = 0, it also follows that

Pr[ExptCNM∗-ATK-1
Π,A (k) : w = 1] = Pr[ExptCNM∗-ATK-1

Π,A (k) : x1 = x1 ∧ x1 = 0] =
1

2
,

Pr[ExptCNM∗-ATK-0
Π,A (k) : w = 1] = Pr[ExptCNM∗-ATK-0

Π,A (k) : x0 = x1 ∧ x1 = 0] =
1

4
,

and so

AdvCNM∗-ATK
Π,A (k) =

1

2
− 1

4
=

1

4
,

which is not negligible. This completes the proof. ut

4 Relation to indistinguishability-based characterizations

To prove the separation between SNM∗ and IND∗, we modify an encryption
scheme Π = (K, E ,D) to Π ′ = (K′, E ′,D′) so that the modified decryption algo-
rithm D′ has an additional “option” which makes an adversary and a simulator
fail with probability at least 1

2 . More precisely, E ′ takes a plaintext x and outputs
a ciphertext (0, Epk(ux)) with u being a random bit, and D′ takes a ciphertext
(a, y) and outputs x̂ if a = 0 or û = 0, otherwise ⊥, where we have introduced
û and x̂ to denote the first bit and the remaining bits of Dsk(y), respectively
(i.e. Dsk(y) = ûx̂ with |û| = 1). It can be seen from this definition of D′ that
an adversary and a simulator fail with probability at least Pr[û = 1] = 1

2 if they
choose the option a 6= 0. Hence, there is no advantage for an IND∗ adversary
with a message distribution whose support consists of two elements x0 and x1
to choose this option, while an SNM∗ adversary may take advantage from this
option by choosing a message distribution M whose support consists of more
than two elements. We are now ready to show the separation between SNM∗
and IND∗.
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Theorem 2. IND∗-PCA1 6=⇒ SNM∗-CPA.

Proof. Let Π = (K, E ,D) be an encryption scheme. By using Π, let us construct
another encryption scheme Π ′ = (K′, E ′,D′) as

Algorithm K′(1k)
(pk, sk)← K(1k)
return (pk, sk)

Algorithm E ′pk(x)
u← {0, 1}
y ← Epk(ux)
return (0, y)

Algorithm D′sk((a, y))
x′ ← Dsk(y)
if |x′| = 0 then return ⊥
else parse x′ as ux with |u| = 1
if a = 0 then return x
else if u = 0 then return x

else return ⊥

Then, the theorem follows from the following two lemmas. ut

The following two lemmas claim that (a) If Π is IND∗-PCA1, then so is Π ′
and (b) Π ′ is not SNM∗-CPA, respectively. To show the first lemma (a), we
construct an adversary A attacking Π by using an adversary A′ attacking Π ′ as
before. Again, the construction of A from A′ is straightforward except for the
case where A′2 outputs a sequence y′ of ciphertexts which contains a component
(a′, y) such that a′ 6= 0 and y is a challenge ciphertext for A. Let us thus describe
the construction for the exceptional case. Receiving two plaintexts x0 and x1
from A′1, A1 generates two plaintexts vx0 and v̄x1 with v being a random bit,
where v̄ denotes the flipping of v. Note that vx0 and v̄x1 can be expressed as
vx0 = (v ⊕ 0)x0 and v̄x1 = (v ⊕ 1)x1, respectively, and the distributions of
(v ⊕ b)xb and uxb are identical if b, v and u are independent random bits. If we
consider v as a guess of b, then (v⊕b)xb has a form 0xb if the guess is correct (i.e.
v = b), otherwise it has a form of 1xb and so D′sk returns ⊥. Now, A2 generates
a sequence y of ciphertexts by simply ignoring the first component a′ of each
component (a′, y′) of y′. Next, A2 replaces y in y by e such that e 6= y, and
then includes the position of this replacement in the state information s2 for A3.
Finally, A3 replaces Dsk(e) at the position of the above replacement by xv. It can
be seen from this construction that A can completely simulate the view of A′ if
the guess is correct, while if the guess is not correct, then A′ always fails because
⊥∈ Dsk(y′). It thus follows that the advantage of A′ is upper-bounded by that
of A. Moreover, we can show the second lemma (b) by considering an SNM∗-
CPA adversary which simply transforms a challenge ciphertext (0, y) to (1, y)
and outputs it as a component of y. In fact, if the adversary outputs a message
distribution whose support consists of more than two (say, M = {0, 1}2), then
for the relation R given by R(x,x,M, s2) = 1 iff M = {0, 1}2 ∧ x = x1, the
adversary is successful if and only if u = 0 (which occurs with probability 1

2 ),
while the simulator is successful with probability at most 1

4 , and so the former
has the advantage at least 1

4 against the latter. Detailed proofs of these lemmas
are described below.

Lemma 3. If Π is IND∗-PCA1, then so is Π ′.
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Proof. Let p be a polynomial of k. Let A′ = (A′1, A
′
2, A

′
3) be a legitimate IND∗-

PCA1 adversary attacking Π ′, bounded by time p(k). By using A′, let us con-
struct an IND∗-PCA1 adversary A = (A1, A2, A3) attacking Π as

Algorithm A
Dsk
1 (pk)

(x0, x1, s1)← A′1
D′sk (pk)

v ← {0, 1}; L← |x0|+ 1; e← Epk(0L)
return (vx0, v̄x1, (s1, e, xv))

Algorithm A2(vx0, v̄x1, (s1, e, xv), y)
(y′, s2)← A′2(s1, (0, y))
y ← 〈e : y′∗2|y′∗2 = y〉
return (y, (s2,y

′
∗2, y, xv))

Algorithm A3(x, (s2,y
′
∗2, y, xv))

x̃← 〈xv : x|y′∗2 = y〉; d← A′3(x̃, s2)
return d

where v̄ denotes the flipping of v. Since A′ is bounded by time p(k) and Epk
is polynomial-time, it follows that M is samplable in time p(k) and A and R
are also polynomial-time. Moreover, A can be seen legitimate as follows: the
condition (i) follows from that A′ is legitimate, the condition (ii) from that
y = 〈e : y′∗2|y′∗2 = y〉, where every component y has been replaced by e, and the
condition (iii) from that A2 has no oracle access to Dsk. We note that A1 can
answer queries from A′1 by using her own oracle Dsk to compute D′sk.

It is now convenient to consider the experiment Expt2(k) defined by

Experiment Expt2(k)

(pk, sk)← K(1k); (x0, x1, s1)← A′1
D′sk (pk); L← |x0|+ 1; e← Epk(0L)

b, u, v ← {0, 1}; y ← Epk((v ⊕ b)xb); ŷ ← Epk(uxb)
y′ ← A′2(s1, (0, y)); x′ ← D′sk(y′); d′ ← A′3(x′, s2)
ŷ ← A′2(s1, (0, ŷ)); x̂← Dsk(ŷ); d̂← A′3(x̂, s2)
y ← 〈e : y′∗2|y′∗2 = y〉; x← Dsk(y); x̃← 〈xv : x|y′∗2 = y〉; d← A′3(x̃, s2)

where we have used that vx0 and v̄x1 can be expressed as vx0 = (v ⊕ 0)x0
and v̄x1 = (v ⊕ 1)x1, respectively, and to introduce the short-hand notation
p2(E) = Pr[Expt2(k) : E], as before. We first note that the distributions of
(v ⊕ b)xb and uxb are identical. Since x = 〈0L : x′|y′∗2 = y〉, we have

⊥∈ x =⇒ ⊥∈ x′.

It thus follows that

Pr[ExptIND∗-PCA1
Π,A (k) : w = 1] = p2(d = b∧ ⊥/∈ x)

≥ p2(d = b∧ ⊥/∈ x′)

= p2(d = b∧ ⊥/∈ x′ ∧ v = b)

+ p2(d = b∧ ⊥/∈ x′ ∧ v 6= b ∧ y ∈ y′∗2)

+ p2(d = b∧ ⊥/∈ x′ ∧ v 6= b ∧ y /∈ y′∗2).

We now estimate the above three terms in the right-hand side. To consider the
first term, we begin with expressing x as x = 〈0L : x′|y′∗2 = y〉. It can be seen
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from this expression that x̃ = 〈xv : x|y′∗2 = y〉 = 〈xv : x′|y′∗2 = y〉, and so

v = b =⇒ x̃ = 〈xb : x′|y′∗2 = y〉 = x′ =⇒ d = d′.

Hence, on noting that v = b ⇐⇒ v ⊕ b = 0 and p2(v ⊕ b = 0) = p2(u = 0) = 1
2 ,

we have

p2(d = b∧ ⊥/∈ x′ ∧ v = b) = p2(d′ = b∧ ⊥/∈ x′ ∧ v = b)

= p2(d′ = b∧ ⊥/∈ x′|v ⊕ b = 0)p2(v ⊕ b = 0)

= p2(d̂ = b∧ ⊥/∈ x̂|u = 0)p2(u = 0)

= p2(d̂ = b∧ ⊥/∈ x̂ ∧ u = 0).

To consider the second term, suppose that y ∈ y′∗2, and let i be an index such
that y′i = (a, y). Then, since A′ is legitimate, we have (0, y) /∈ y′ and so a 6= 0.
Note here that v 6= b ⇐⇒ v ⊕ b = 1, and hence Dsk(y) = 1xb. It thus follows
from the definition of D′sk that x′i = D′sk((a, y)) =⊥. Similarly, if ŷ ∈ ŷ∗2 and
u 6= 0, then ⊥∈ x̂. Therefore,

p2(d = b∧ ⊥/∈ x′ ∧ v 6= b ∧ y ∈ y′∗2) = p2(d̂ = b∧ ⊥/∈ x̂ ∧ u 6= 0 ∧ ŷ ∈ ŷ∗2) = 0.

To consider the third term, we begin with

y /∈ y′∗2 =⇒ x̃ = 〈xv : x′|y′∗2 = y〉 = x′ =⇒ d = d′.

Hence, on noting that v 6= b ⇐⇒ v ⊕ b = 1, u 6= 0 ⇐⇒ u = 1 and
p2(v ⊕ b = 1) = p2(u = 1) = 1

2 , we have

p2(d = b∧ ⊥/∈ x′ ∧ v 6= b ∧ y /∈ y′∗2)

= p2(d′ = b∧ ⊥/∈ x′ ∧ v 6= b ∧ y /∈ y′∗2)

= p2(d′ = b∧ ⊥/∈ x′ ∧ y /∈ y′∗2|v ⊕ b = 1)p2(v ⊕ b = 1)

= p2(d̂ = b∧ ⊥/∈ x̂ ∧ ŷ /∈ ŷ∗2|u = 1)p2(u = 1)

= p2(d̂ = b∧ ⊥/∈ x̂ ∧ u 6= 0 ∧ ŷ /∈ ŷ∗2).

Having estimated the three terms, we now combine these terms to give

Pr[ExptIND∗-PCA1
Π,A (k) : w = 1] ≥ p2(d = b∧ ⊥/∈ x′)

= p2(d̂ = b∧ ⊥/∈ x̂)

= Pr[ExptIND∗-PCA1
Π′,A′ (k) : w = 1],

and hence

AdvIND∗-PCA1
Π′,A′ (k) ≤ AdvIND∗-PCA1

Π,A (k).

Consequently, if Π is secure in the sense of IND∗-PCA1, then AdvIND∗-PCA1
Π,A (k)

is negligible, and so is AdvIND∗-PCA1
Π′,A′ (k). This completes the proof. ut
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Lemma 4. Π ′ is not SNM∗-CPA.

Proof. Let A = (A1, A2) be an SNM∗-CPA adversary attacking Π ′ defined by

Algorithm A1(pk)
return ({0, 1}2, ε, ε)

Algorithm A2(s1, (0, y))
return ((1, y))

and let R be a relation defined by

Relation R(x,x,M, s2)
if M = {0, 1}2 ∧ x = x1 then return 1
else return 0

It can be seen from the above definition of A that M is samplable in time O(1)
and A is polynomial-time; it also follows from |00| = |01| = |10| = |11| and
(0, y) 6= (1, y) that A is legitimate. Now, it follows from the construction of A
that

Pr[ExptSNM∗-ATK-1
Π′,R,A (k) : w = 1] = Pr[ExptSNM∗-ATK-1

Π′,R,A (k) : u = 0] =
1

2
,

where u is the random variable introduced in the definition of E ′pk. On the other
hand, S is given no information about the plaintext x, and hence the outputs
from S are statistically independent of x. Consequently, since x is uniformly
distributed on {0, 1}2, we have

Pr[ExptSNM∗-ATK-0
Π′,R,S (k) : w = 1] = Pr[ExptSNM∗-ATK-0

Π′,R,S (k) : x = x1]

≤ 1

|{0, 1}2|
=

1

4

(where equality holds if and only if S outputs M = {0, 1}2 and y such that
Dsk′(y1) ∈ {0, 1}2), and so

AdvSNM∗-ATK
Π′,R,A,S (k) ≥ 1

4
,

which is not negligible. This completes the proof. ut

We have examined the relation between the simulator-based non-malleability
and the indistinguishability-based characterization of non-malleability under the
valid ciphertext condition. Hence, it may be natural to next consider the rela-
tion between the comparison-based non-malleability and an indistinguishability-
based characterization of non-malleability. In the private-key setting, a slightly
modified indistinguishability-based characterization of non-malleability, denoted
as IND†-PCAX in this paper, was introduced and shown to be equivalent to
CNM∗-ATK [15]. The proof of this equivalence for the private-key setting straight-
forwardly applies to the public key setting. A formal definition of IND†-PCAX
is given in Appendix C.
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5 Concluding remarks

We have shown two separations SNM∗ 6=⇒ CNM∗ and IND∗ 6=⇒ SNM∗ against
the weaker types of the attack models. As long as we consider the attack by
the CNM∗ adversary in the proof of Lemma 2, CNM∗ may seem stronger than
expected from our intuition for non-malleability, and so SNM∗-CPA and SNM∗-
CCA1 may receive independent interest as (intuitively) natural formulations
of non-malleability. Here, one motivation to consider a weaker security notion
would be to provide a better construction of cryptosystems secure in the sense
of the weaker notion, and thus it may be of interest to consider the possibility
of an indistinguishability-based characterization of SNM∗.

In the proof of the latter separation, it is essential that an IND∗ adver-
sary has to output a message distribution whose support consists of exactly two
elements, but an SNM∗ adversary is free of such restriction on a message dis-
tribution. This may motivate us to consider simulation-based and comparison-
based formulations of semantic security against parallel chosen-ciphertext at-
tacks, SSS∗-PCAX and CSS∗-PCAX, because semantic security is commonly
formulated without such restriction on a message distribution, and so may be
(potentially) stronger than IND∗-PCAX. In fact, it turns out that SSS∗-PCAX
and CSS∗-PCAX are equivalent to SNM∗-ATK and CNM∗-ATK, respectively
(see Appendix B). Hence, it follows from this equivalence, together with Theo-
rem 2, that (simulation-based) semantic security and ciphertext indistinguisha-
bility separate against the weaker parallel chosen-ciphertext attacks under the
valid ciphertext condition.

The pairs of notions appearing in the above two separations, SNM∗ 6=⇒ CNM∗
and IND∗ 6=⇒ SSS∗, have in common that one is a natural formulation of secu-
rity and the other is its simpler characterization shown to be equivalent to the
original one in some standard settings. Therefore, these results demonstrate that
even such security notions may separate if we additionally impose some natural
condition (such as the valid ciphertext condition) or we introduce some techni-
cally useful setting (such as the parallel chosen-ciphertext attack).
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A Equivalence between SNM∗ and SNM~

In this appendix, we first provide a formal definition of SNM~, a slight modifi-
cation of SNM∗ in which the output of the side information s2 for the relation
R is delayed from the first stage to the second one.

Definition 4 (SNM~-ATK). Let Π = (K, E ,D) be an encryption scheme
and R be a relation. Let A = (A1, A2) be an adversary attacking Π and S =
(S1, S2) be its simulator. For k ∈ N and ATK ∈ {CPA,CCA1,CCA2}, consider
the following two experiments:
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Experiment ExptSNM~-ATK-1
Π,R,A (k)

(pk, sk)← K(1k)
(M, s1)← AO1

1 (pk)
x←M ; y ← Epk(x0)
(y, s2)← AO2

2 (s1, y); x← Dsk(y)
if R(x,x,M, s2) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Experiment ExptSNM~-ATK-0
Π,R,S (k)

(pk, sk)← K(1k)
(M, s1)← S1(pk)
x←M
(y, s2)← S2(s1); x← Dsk(y)
if R(x,x,M, s2) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are defined
as in Definition 1. For a function f of k, an adversary A (resp. a simulator S)
is called bounded by time f(k) analogously to Definition 1. Then, an encryption
scheme Π is called secure in the sense of SNM~-ATK if for all polynomial p,
all probabilistic adversary A bounded by time p(k) and all relation R computable
in time p(k), there exist a polynomial p′(k) and a simulator S bounded by time
p′(k) such that AdvSNM~-ATK

Π,R,A,S (k) is negligible, where AdvSNM~-ATK
Π,R,A,S denotes the

advantage of A against S defined by

AdvSNM~-ATK
Π,R,A,S (k)

= Pr[ExptSNM~-ATK-1
Π,R,A (k) : w = 1]− Pr[ExptSNM~-ATK-0

Π,R,S (k) : w = 1].

Having provided a formal definition of SNM~, we next show that SNM~-ATK is
equivalent to SNM∗-ATK. The proof is rather straightforward, but it may help
to note how to construct an SNM∗ adversary, which outputs side information s2
for relation R at the first stage, from an SNM~ adversary, which outputs it at
the second stage. For this construction, we may refer to the proof of SNM =⇒
IND in [3] in which an SNM∗ adversary concatenates an encryption Epk(s2)
of the side information s2 received from an SNM~ adversary to the sequence
y of ciphertexts, so that the relation R can take the side information s2 as a
component of x = Dsk(y). A detailed proof of the equivalence is described below.

Proposition 1. SNM∗-ATK⇐⇒ SNM~-ATK for ATK ∈ {CPA,CCA1,CCA2}.

Proof. (I) SNM∗-ATK =⇒ SNM~-ATK: Let p be a polynomial of k. Let R′ be
a relation computable in time p(k) and A′ = (A′1, A

′
2) be a legitimate SNM~-

ATK adversary attacking an encryption scheme Π = (K, E ,D), bounded by time
p(k). By using A′ and R′, let us construct an SNM∗-ATK adversary A = (A1, A2)
attacking Π and a relation R as

Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

x′ ←M ; L← |x′|+ 1
return (M, (s1, pk, 0

L), 0L)

Algorithm AO2
2 ((s1, pk, 0

L), y)
(y′, s2)← A′O2

2 (s1, y)
y ← y′||(Epk(0Ls2))
return y
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Relation R(x,x,M, s2)
L← |s2|
if |x| = 0 then return 0
else parse x as x̃||(s′) with |(s′)| = 1
parse s′ as s′1s′2 with |s′1| = min(L, |s′|)
return R′(x, x̃,M, s′2)

where L is chosen so that Epk(0Ls2) 6= y with probability 1 as before. Since A′ is
bounded by time p(k), R′ is computable in time p(k) and Epk is polynomial-time,
it follows that M is samplable in time p(k) and A and R are also polynomial-
time. Moreover, since A′ is legitimate and Epk(0Ls2) 6= y, A is also legitimate.
We note that A can answer queries from A′ by using her own oracle. It is now
straightforward to see from the above construction of A and R that x̃ = Dsk(y′)
and s′2 = s2, and so

Pr[ExptSNM~-ATK-1
Π,R′,A′ (k) : w = 1] = Pr[ExptSNM∗-ATK-1

Π,R,A (k) : w = 1].

It follows from Definition 1 that if Π is secure in the sense of SNM∗-ATK,
then there exist a polynomial p′ and a simulator S = (S1, S2) of the above
adversary A, bounded by time p′(k), such that AdvSNM∗-ATK

Π,R,A,S (k) is negligible. By
using such S, let us next construct a simulator S′ = (S′1, S

′
2) of A′ as

Algorithm S′1(pk′)
(pk, sk)← K(1k); (M, s1, s2)← S1(pk)
y ← S2(s1); L← |s2|; x← Dsk(y)
if |x| = 0 then return (M, ((), ε))
else parse x as x̃||(s′) with |(s′)| = 1
parse s′ as s′1s

′
2 with |s′1| = min(L, |s′|)

y′ ← Epk′(x̃)
return (M, (y′, s′2))

Algorithm S′2((y′, s′2))
return (y′, s′2)

Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is also polynomial-time. Then,
the above construction of S′ and R gives that

Pr[ExptSNM~-ATK-0
Π,R′,S′ (k) : w = 1] ≥ Pr[ExptSNM∗-ATK-0

Π,R,S (k) : w = 1]

(where equality holds if and only if S′ always fails when |x| = 0), and so

AdvSNM~-ATK
Π,R′,A′,S′ (k) ≤ AdvSNM∗-ATK

Π,R,A,S (k).

Consequently, if Π is secure in the sense of SNM-ATK, then AdvSNM∗-ATK
Π,R,A,S (k) is

negligible, and so is AdvSNM~-ATK
Π′,R′,A′,S′ (k). This completes the proof of (I).

(II) SNM~-ATK =⇒ SNM∗-ATK: Let p be a polynomial of k. Let R′ be a
relation computable in time p(k) and A′ = (A′1, A

′
2) be a legitimate SNM∗-ATK

adversary attacking an encryption scheme Π = (K, E ,D), bounded by time p(k).
By using A′ and R′, let us construct an SNM~-ATK adversary A = (A1, A2)
attacking Π and a relation R as
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Algorithm AO1
1 (pk)

(M, s1, s2)← A′O1
1 (pk)

return (M, (s1, s2))

Algorithm AO2
2 ((s1, s2), y)

y′ ← A′O2
2 (s1, y)

return (y′, s2)

Relation R(x,x,M, s2)
return R′(x,x,M, s2)

Since A′ is bounded by time p(k) and R′ is computable in time p(k), it follows
that M is samplable in time p(k) and A and R are polynomial-time. Moreover,
since A′ is legitimate, A is also legitimate. We note that A can answer queries
from A′ by using her own oracle. The above construction of A and R at once
gives that

Pr[ExptSNM∗-ATK-1
Π,R′,A′ (k) : w = 1] = Pr[ExptSNM~-ATK-1

Π,R,A (k) : w = 1].

It follows from Definition 4 that if Π is secure in the sense of SNM~-ATK,
then there exist a polynomial p′ and a simulator S = (S1, S2) of the above
adversary A, bounded by time p′(k), such that AdvSNM~-ATK

Π,R,A,S (k) is negligible.
By using such S, let us next construct a simulator S′ = (S′1, S

′
2) of A′ as8

Algorithm S′1(pk′)
(pk, sk)← K(1k); (M, s1)← S1(pk); (y, s2)← S2(s1)
x← Dsk(y); x̃← 〈0 : x|x =⊥〉; y′ ← Epk′(x̃)
return (M, (y′, s2))

Algorithm S′2((y′, s2))
return (y′, s2)

Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is also polynomial-time. It is
now convenient to consider the experiment Expt0(k) defined by

Experiment Expt0(k)
(pk, sk), (pk′, sk′)← K(1k); (M, s1)← S1(pk); x←M ; (y, s2)← S2(s1)
x← Dsk(y); x̃← 〈0 : x|x =⊥〉; y′ ← Epk′(x̃); x′ ← Dsk′(y′)

and to introduce the short-hand notation p0(E) = Pr[Expt0(k) : E], as before.
Since x′ = x̃ = 〈0 : x|x =⊥〉, we have

⊥/∈ x′ and ⊥/∈ x =⇒ x = x′.

Therefore,

Pr[ExptSNM∗-CCA1-0
Π,R′,S′ (k) : w = 1]

= p0(R′(x,x′,M, s2) = 1∧ ⊥/∈ x′)

= p0(R(x,x′,M, s2) = 1)

≥ p0(R(x,x′,M, s2) = 1∧ ⊥/∈ x)

= p0(R(x,x′,M, s2) = 1∧ ⊥/∈ x ∧ x = x′)

= p0(R(x,x,M, s2) = 1∧ ⊥/∈ x ∧ x = x′)

8 The notation 〈0 : x|x =⊥〉 represents a copy of sequence x such that every compo-
nent ⊥ in x has been replaced by 0. If the symbol ⊥ is in the domain of Epk′ , then
we may omit this replacement, which makes the proof simpler.
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= p0(R(x,x,M, s2) = 1∧ ⊥/∈ x)

= Pr[ExptSNM~-CCA1-0
Π,R,S (k) : w = 1],

and so

AdvSNM∗-ATK
Π,R′,A′,S′ (k) ≤ AdvSNM~-ATK

Π,R,A,S (k).

Consequently, if Π is secure in the sense of SNM~-ATK, then AdvSNM~-ATK
Π,R,A,S (k)

is negligible, and so is AdvSNM∗-ATK
Π′,R′,A′,S′(k). This completes the proof of (II), and

the proposition follows. ut

B Semantic security against parallel chosen-ciphertext
attacks

In this appendix, we first provide formal definitions of simulation-based and
comparison-based semantic security against parallel chosen-ciphertext attacks
under the valid ciphertext condition, SSS∗-PCAX and CSS∗-PCAX, each of
which is just a combination of the definitions of semantic security [12] and par-
allel chosen-ciphertext attacks [3], with reference to the (comparison-based) for-
mulation of semantic security for the private key encryption [1].

Definition 5 (SSS∗-PCAX). Let Π = (K, E ,D) be an encryption scheme
and F be a function. Let A = (A1, A2, A3) be an adversary attacking Π and S =
(S1, S2, S3) be its simulator. For k ∈ N and PCAX ∈ {PCA0,PCA1,PCA2},
consider the following two experiments:

Experiment ExptSSS∗-PCAX-1
Π,F,A (k)

(pk, sk)← K(1k)
(M, s1)← AO1

1 (pk)
x←M ; y ← Epk(x0)
(y, s2)← AO2

2 (s1, y); x← Dsk(y)
(v, s3)← AO2

3 (x, s2)
if F (x,M, s3) = v∧ ⊥/∈ x then w ← 1
else w ← 0

Experiment ExptSSS∗-PCAX-0
Π,F,S (k)

(pk, sk)← K(1k)
(M, s1)← S1(pk)
x←M
(y, s2)← S2(s1); x← Dsk(y)
(v, s3)← S3(x, s2)
if F (x,M, s3) = v∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are defined
as in Definition 3. Then, an encryption scheme Π is called secure in the sense of
SSS∗-PCAX if for all polynomial p, all probabilistic adversary A bounded by time
p(k) and all function F computable in time p(k), there exist a polynomial p′(k)

and a simulator S bounded by time p′(k) such that AdvSSS∗-ATK
Π,R,A,S (k) is negligible,

where AdvSSS∗-ATK
Π,R,A,S denotes the advantage of A against S defined by

AdvSSS∗-PCAX
Π,F,A,S (k)

= Pr[ExptSSS∗-PCAX-1
Π,F,A (k) : w = 1]− Pr[ExptSSS∗-PCAX-0

Π,F,S (k) : w = 1].
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Definition 6 (CSS∗-PCAX). Let Π = (K, E ,D) be an encryption scheme
and A = (A1, A2, A3) be an adversary attacking Π. For k ∈ N and PCAX ∈
{PCA0,PCA1,PCA2}, consider the following experiment:

Experiment ExptCSS∗-PCAX-b
Π,A (k)

(pk, sk)← K(1k); (M, s1)← AO1
1 (pk); x0, x1 ←M ; y ← Epk(x1)

(y, s2)← AO2
2 (s1, y); x← Dsk(y); (f, v)← AO2

3 (x, s2)
if f(xb) = v∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are
defined as in Definition 3. Then, an encryption scheme Π is called secure in
the sense of CSS∗-PCAX if for all polynomial p and all probabilistic adversary
A runnable in time p(k), AdvCSS∗-PCAX

Π,A (k) is negligible, where AdvCSS∗-PCAX
Π,A

denotes the advantage of A defined by

AdvCSS∗-PCAX
Π,A (k)

= Pr[ExptCSS∗-PCAX-1
Π,A (k) : w = 1]− Pr[ExptCSS∗-PCAX-0

Π,A (k) : w = 1].

Having provided formal definitions, we next show that SSS∗-PCAX and CSS∗-
PCAX are equivalent to SNM∗-ATK and CNM∗-ATK, respectively. Again, the
proof is rather straightforward, and we may refer to the proof of the equivalence
among SNM, CNM and IND in [3]; for example, in order for relation R to run
a probabilistic algorithm A(x1, . . . ; r), one can include the randomness r for the
algorithm A in the side information s2 for the relation R. A detailed proof of the
equivalence is described below. (Here, it should be noted that the equivalence
for (PCA2,CCA2) follows from the equivalence between IND-CCA2 and CNM-
CCA2 [2].) For simplicity of the proof, we consider SNM~ instead of SNM∗ as
before.

Proposition 2. SSS∗-PCAX ⇐⇒ SNM~-ATK and CSS∗-PCAX ⇐⇒ CNM∗-
ATK for (PCAX,ATK)∈ {(PCA0,CPA), (PCA1,CCA1), (PCA2,CCA2)}.

Proof. (I) SSS∗-PCAX =⇒ SNM~-ATK: Let p be a polynomial of k. Let R′ be a
relation computable in time p(k) and A′ = (A′1, A

′
2) be a legitimate SNM~-ATK

adversary attacking an encryption scheme Π = (K, E ,D), bounded by time p(k).
By using A′ and R′, let us construct an SSS∗-PCAX adversary A = (A1, A2, A3)
attacking Π and a function F as

Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

return (M, s1)

Algorithm AO2
2 (s1, y)

(y, s2)← A′O2
2 (s1, y)

return (y, s2)

Algorithm AO2
3 (s2,x)

s← x||(s2)
return (1, s)

Function F (x,M, s)
if |s| = 0 then return 0
else parse s as x||(s) with |(s)| = 1
return R′(x,x,M, s)
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Since A′ is bounded by time p(k) and R′ is computable in time p(k), it follows
that M is samplable in time p(k) and A and F are also polynomial-time. More-
over, since A′ is legitimate, A is also legitimate. We note that A can answer
queries from A′ by using her own oracle. It is now straightforward to see from
the above construction of A and F that

Pr[ExptSNM~-ATK-1
Π,R′,A′ (k) : w = 1] = Pr[ExptSSS∗-ATK-1

Π,F,A (k) : w = 1].

It follows from Definition 5 that if Π is secure in the sense of SSS∗-PCAX,
then there exist a polynomial p′ and a simulator S = (S1, S2, S3) of the above
adversary A, bounded by time p′(k), such that AdvSSS∗-PCAX

Π,F,A,S (k) is negligible.
By using such S, let us next construct a simulator S′ = (S′1, S

′
2) of A′ as

Algorithm S′1(pk′)
(pk, sk)← K(1k); (M, s1)← S1(pk)
(y, s2)← S2(s1); x← Dsk(y); (v, s)← S3(x, s2)
if |s| = 0 then return (M, ((), ε))
else parse s as x′||(s) with |(s)| = 1
y′ ← Epk′(x′)
return (M, (y′, s))

Algorithm S′2((y′, s))
return (y′, s)

Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is also polynomial-time. Then,
the above construction of S′ and F gives that

Pr[ExptSNM~-ATK-0
Π,R′,S′ (k) : w = 1] ≥ Pr[ExptSSS∗-PCAX-0

Π,F,S (k) : w = 1]

(where equality holds if and only if S′ always fails when |s| = 0), and so

AdvSNM~-ATK
Π,R′,A′,S′ (k) ≤ AdvSSS∗-PCAX

Π,F,A,S (k).

Consequently, if Π is secure in the sense of SSS∗-PCAX, then AdvSSS∗-PCAX
Π,F,A,S (k)

is negligible, and so is AdvSNM~-ATK
Π,R′,A′,S′ (k). This completes the proof of (I).

(II) SNM~-ATK =⇒ SSS∗-PCAX: Let p be a polynomial of k. Let F ′ be a
function computable in time p(k) and A′ = (A′1, A

′
2, A

′
3) be a legitimate SSS∗-

PCAX adversary attacking an encryption scheme Π = (K, E ,D), bounded by
time p(k). By using A′ and F ′, let us construct an SSS∗-ATK adversary A =
(A1, A2) attacking Π and a relation R as

Algorithm A
Dsk(·)
1 (pk)

(M, s1)← A
′Dsk(·)
1 (pk)

return (M, s1)

Algorithm A
Dsk(·)
2 (s1, y)

(y, s2)← A
′Dsk(·)
2 (s1, y); x← Dsk(y)

(v, s3)← A
′Dsk(·)
3 (s2,x); s← (v, s3)

return (y, s)

Relation R(x,x,M, s)
if |s| 6= 2 then return 0
else parse s as (v, s3)
if F ′(x,M, s3) = v then return 1
else return 0
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for (PCAX,ATK) = (PCA2,CCA2), otherwise as

Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

return (M, s1)

Algorithm A2(s1, y)
(y, s2)← A′2(s1, y)
choose randomness r for A′3
s← (r, s2)
return (y, s)

Relation R(x,x,M, s)
if |s| 6= 2 then return 0
else parse s as (r, s2)
(v, s3)← A′3(s2,x; r)
if F ′(x,M, s3) = v then return 1
else return 0

Since A′ is bounded by time p(k), F ′ is computable in time p(k) and Dsk is
polynomial-time, it follows that M is samplable in time p(k) and A and R are
also polynomial-time. Moreover, since A′ is legitimate, A is also legitimate. We
note that A can answer queries from A′ by using her own oracle. It is now
straightforward to see from the above construction of A and R that

Pr[ExptSSS∗-ATK-1
Π,F ′,A′ (k) : w = 1] = Pr[ExptSNM~-ATK-1

Π,R,A (k) : w = 1].

It follows from Definition 4 that if Π is secure in the sense of SNM~-ATK,
then there exist a polynomial p′ and a simulator S = (S1, S2) of the above
adversary A, bounded by time p′(k), such that AdvSNM~-ATK

Π,R,A,S (k) is negligible.
By using such S, let us next construct a simulator S′ = (S′1, S

′
2, S
′
3) of A′ as

Algorithm S′1(pk′)
(pk, sk)← K(1k); (M, s1)← S1(pk); (y, s)← S2(s1)
if |s| 6= 2 then return (M, ((), ε, ε))
else parse s as (v, s3)
x← Dsk(y); y′ ← Epk′(x)
return (M, (y′, v, s3))

Algorithm S′2((y′, v, s3))
return (y′, (v, s3))

Algorithm S′3((v, s3),x)
return (v, s3)

for (PCAX,ATK) = (PCA2,CCA2), otherwise as

Algorithm S′1(pk′)
(pk, sk)← K(1k); (M, s1)← S1(pk); (y, s)← S2(s1)
if |s| 6= 2 then return (M, ((), ε, ε))
else parse s as (r, s2)
x← Dsk(y); (v, s3)← A′3(s2,x; r); y′ ← Epk′(x)
return (M, (y′, v, s3))

Algorithm S′2((y′, v, s3))
return (y′, (v, s3))

Algorithm S′3((v, s3),x)
return (v, s3)

Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is also polynomial-time. Then,
the above construction of S′ and R gives that

Pr[ExptSSS∗-PCAX-0
Π,F ′,S′ (k) : w = 1] ≥ Pr[ExptSNM~-ATK-0

Π,R,S (k) : w = 1]
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(where equality holds if and only if S′ always fails when |s| 6= 2), and so

AdvSSS∗-PCAX
Π,F ′,A′,S′ (k) ≤ AdvSNM~-ATK

Π,R,A,S (k).

Consequently, if Π is secure in the sense of SNM~-ATK, then AdvSNM~-ATK
Π,R,A,S (k)

is negligible, and so is AdvSSS∗-PCAX
Π,F ′,A′,S′ (k). This completes the proof of (II).

(III) CSS∗-PCAX =⇒ CNM∗-ATK: Let p be a polynomial of k. Let A′ =
(A′1, A

′
2) be a legitimate CNM∗-ATK adversary attacking an encryption scheme

Π = (K, E ,D), bounded by time p(k). By using A′, let us construct an CSS∗-
PCAX adversary A = (A1, A2, A3) attacking Π as

Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

return (M, s1)

Algorithm AO2
2 (s1, y)

(y, R)← A′O2
2 (s1, y)

return (y, R)

Algorithm AO2
3 (R,x)

return (FR,x, 1)

where the function FR,x output by A3 is given by

Function FR,x(x)
return R(x,x)

Since A′ is bounded by time p(k), it follows thatM is samplable in time p(k) and
A is also polynomial-time. Moreover, since A′ is legitimate, A is also legitimate.
We note that A can answer queries from A′ by using her own oracle. It is now
straightforward to see from the above construction of A that

AdvCNM∗-ATK
Π,A (k) = AdvCSS∗-PCAX

Π,A′ (k).

Consequently, if Π is secure in the sense of CSS∗-PCAX, then AdvCSS∗-PCAX
Π,A (k)

is negligible, and so is AdvCNM∗-ATK
Π,A′ (k). This completes the proof of (III).

(IV) CNM∗-ATK =⇒ CSS∗-PCAX: Let p be a polynomial of k. Let A′ =
(A′1, A

′
2, A

′
3) be a legitimate CSS∗-PCAX adversary attacking an encryption

scheme Π = (K, E ,D), bounded by time p(k). By using A′, let us construct
an SSS∗-ATK adversary A = (A1, A2) attacking Π as

Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

return (M, s1)

Algorithm A2(s1, y)
(y, s2)← A′2(s1, y)
choose randomness r for A′3
return (y, Rr,s2)

where the relation Rr,s2 output by A2 is given by

Relation Rr,s2(x,x)
(f, v)← A′3(s2,x; r)
if f(x) = v then return 1
else return 0
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Since A′ is bounded by time p(k), it follows thatM is samplable in time p(k) and
A is also polynomial-time. Moreover, since A′ is legitimate, A is also legitimate.
We note that A can answer queries from A′ by using her own oracle. It is now
straightforward to see from the above construction of A and R that

AdvCSS∗-PCAX
Π,A′ (k) = AdvCNM∗-ATK

Π,A (k).

Consequently, if Π is secure in the sense of CNM∗-ATK, then AdvCNM∗-ATK
Π,A (k)

is negligible, and so is AdvCSS∗-PCAX
Π,A′ (k). This completes the proof of (IV), and

the proposition follows. ut

C Indistinguishability-based characterization of
comparison-based non-malleability

In this appendix, we describe an indistinguishability-based characterization of
comparison-based non-malleability, denoted as IND†-PCAX in this paper, which
was introduced in [15] for private key encryption schemes. The difference between
IND∗-PCAX and IND†-PCAX is that an IND∗ adversary always fails if ⊥∈ x,
while the success of an IND† adversary is determined at random if ⊥∈ x; namely,
if ⊥∈ x, then an IND† adversary succeeds with probability 1

2 and fails with the
same probability. A formal definition of IND†-PCAX is described below.
Definition 7 (IND†-PCAX [15]). Let Π = (K, E ,D) be an encryption scheme
and A = (A1, A2) be an adversary attacking Π. For k ∈ N and PCAX ∈
{PCA0,PCA1,PCA2}, consider the following experiment:

Experiment ExptIND†-PCAX
Π,A (k)

(pk, sk)← K(1k)
(x0, x1, s1)← AO1

1 (pk); b← {0, 1}; y ← Epk(xb)
(y, s2)← AO2

2 (x0, x1, s1, y); x← Dsk(y)
d← AO2

3 (x, s2)
if ⊥∈ x then w ← {0, 1}
else if d = b then w ← 1

else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are
defined as in Definition 3. Then, an encryption scheme Π is called secure in
the sense of IND†-PCAX if for all polynomial p and all probabilistic adversary
A runnable in time p(k), AdvIND†-PCAX

Π,A (k) is negligible, where AdvIND†-PCAX
Π,A

denotes the advantage of A defined by

AdvIND†-PCAX
Π,A (k) = 2Pr[ExptIND†-PCAX

Π,A (k) : w = 1]− 1

The proof of the equivalence between CNM∗ and IND† for the private key
setting given in [15] straightforwardly applies to the public key setting, yielding
the following proposition.
Proposition 3. IND†-PCAX⇐⇒ CNM∗-ATK for (PCAX,ATK)∈ {(PCA0,CPA),
(PCA1,CCA1), (PCA2,CCA2)}.


