
Compact Aggregate Signature from
Module-Lattices

Toi Tomita1 and Junji Shikata1

Yokohama National University, Yokohama, Japan.
{tomita-toi-sk, shikata-junji-rb}@ynu.ac.jp

Abstract. We propose the first aggregate signature scheme such that:
(1) its security is based on the standard lattice assumptions in the random
oracle model; (2) the aggregate signature size is logarithmic; (3) it is not
one-time; and (4) it supports non-interactive aggregation. To obtain such a
scheme, we combine the most compact SNARK (Succinct Non-interactive
ARgument of Knowledge) system and a SNARK-friendly signature scheme.
As a result, our aggregated signature size is sufficiently compact. For
example, the size required to aggregate 220 signatures is only a few
hundred kilobytes. This result shows that our scheme is superior to the
existing lattice-based schemes in compressing many signatures.

1 Introduction

1.1 Background

The notion of aggregate signature schemes, introduced by Boneh, Gentry,
Lynn, and Shacham [7], allows individual signatures σ1, . . . , σN for different
messages M1, . . . , MN created by N signers to be aggregated into a compact
signature σagg. The aggregated signature σagg gives the verifier confidence that
all the signatures aggregated into σagg are valid. The original motivation for
signature aggregation was to compress certificate chains and aggregate signatures
in secure BGP. More recently, it has gained significant practical interest in the
context of blockchains.

There is a plethora of work on constructing aggregate signature schemes
by using bilinear maps [7,23,6,4,17] or trapdoor permutations [24,30,12,19]. On
the other hand, post-quantum, in particular, lattice-based aggregate signature
schemes have not been widely proposed. The first lattice-based scheme was
proposed by Döroz et al. [16]. However, this scheme was found to be either less
efficient than a trivial concatenation of signatures or more vulnerable to attack by
compression techniques, as pointed out by Boudgoust and Roux-Langlois [9,10].
Boudgoust and Roux-Langlois also presented in [9,10] a (module) lattice-based
scheme following the Fiat-Shamir with aborts paradigm. Boneh and Kim [8]
proposed two types of lattice-based schemes such that the security is based on the
standard Short Integer Solution (SIS) assumption and the aggregate signature
size is logarithmic in the number of signatures to be aggregated. However, the
first scheme is a one-time scheme, and the second scheme requires interactions

for aggregation. Sato and Shikata [32] presented the first identity-based aggregate
signatures scheme, although interaction is necessary for aggregation. Recently,
Jeudy et al. [20] proposed a (module) lattice-based scheme following the new
hash-and-sign with aborts technique. Unfortunately, the aggregated signature size
of the schemes [9,10,20] is linear in the number of signatures being aggregated.
Based on the above literature, we raise the following natural question in this
paper:

Can we construct a lattice-based aggregate signature scheme such that: (1) its
security is based on the standard lattice-based assumptions; (2) the aggregate

signature size is logarithmic; (3) it is not one-time (i.e., many-time); and (4) it
supports non-interactive aggregation?

1.2 Our Contributions

In this paper, we answer the above question in the affirmative: in this paper, we
construct a lattice-based aggregate signature scheme that meets all the conditions
(1)–(4). Table 7 provides a comparison between our aggregate signature scheme
and the existing ones. As we can see from the table, our scheme is the first one
that meets all the conditions (1)–(4). The main idea of our construction is to
construct a succinct non-interactive argument of knowledge (SNARK) system for
Batch NP such that a lattice-based signature can be combined with it to obtain
the resultant aggregate signature scheme satisfying the conditions (1)–(4).

Table 1. Comparison of lattice-based aggregate signature schemes. The column |σagg|
indicates the size of the aggregate signature. N is the number of signatures to be
aggregated.

Scheme Aggregated Sig. Size Many-time Non-interactive Assumption
[8, Sec. 4] O(logN) - ✓ SIS
[8, Sec. 6] O(logN) ✓ - SIS
[32] O(logN) ✓ - SIS
[9,10,20] Õ(N) ✓ ✓ MSIS & MLWE
Ours Õ(logN) ✓ ✓ MSIS & MLWE

Here, a SNARK system for Batch NP allows a prover to construct a proof
of N NP statements, where the size of the proof grows sublinearly with N ,
and to convince the verifier that all these statements are true. By the following
straightforward construction, a SNARK system for Batch NP directly yields
an aggregate signature scheme. Consider the NP relation R, which takes the
verification key-message pair (vk, M) as an NP statement and the signature σ
as an NP witness, and ((vk, M), σ) ∈ R if and only if σ is a valid signature
on M under vk. An aggregate signature on (vk1, M1, σ1), . . . , (vkN , MN , σN) is a
SNARK proof that ((vki, Mi), σi) ∈ R for all i = 1, . . . , N . The compactness of
the SNARK system ensures that the size of the aggregate signature is sublinear

2

in N . Recently, several lattice-based SNARK systems for Batch NP have been
proposed [14,2,15,31,21,11]. However, these SNARK systems are not so practical
in the real world though they are asymptotically efficient from a theoretical
viewpoint.

In order to construct a practical aggregate signature scheme, we take the
following approach in this paper. We adopt LaBRADOR [5], currently the most
compact, as our SNARK system. We then combine the SNARK system and a
SNARK-friendly variant of Lyubashevsky’s signature scheme [13] to construct an
aggregate signature scheme. Here, “SNARK-friendly” means that the signature
verification equations can be described by simple NP relations, in particular, the
signature scheme does not require the computation of a (complex) cryptographic
hash function with the signature as input during verification. This property is
similar to the so-called “structure-preserving” property. Thanks to this friendli-
ness, we can avoid the overheads incurred by converting the verification circuit
to a quadratic format.

Consequently, the resultant aggregate signature scheme is concretely compact
as shown in Table 2. Table 2 shows the aggregated signature size in our scheme for
varying the number N of signatures to be aggregated from 210 to 220. For example,
our aggregated signature size requires 63 KB and 132 KB for approximately
N = 210 and N = 220, respectively. This result shows that our scheme is superior
to the existing lattice-based schemes in compressing many signatures.

Table 2. Aggregated signature size of our scheme. The first row indicates the number
of signatures to be aggregated. The second row indicates the aggregated signature sizes
of our scheme.

N Aggregated Sig. Size
210 63.48 KB
212 65.02 KB
214 69.38 KB
216 77.46 KB
218 103.42 KB
220 131.54 KB

2 Preliminaries

2.1 Notation

For a positive integer n ∈ N, let [n] denote the set of integers {1, . . . , n}. For
a distribution X , let x

$← X denote the process of sampling the value x according
to the distribution X . Let x

$← S denote the process of sampling x according to
a uniform distribution on a finite set S. Let negl(λ) be a negligible function.
Rings. Let q ∈ N be a modulus and Zq be the ring of integers modulo q. For a
positive integer n ∈ N, we denote by a⃗ ∈ Zn

q a vector over Zq and by ai ∈ Zq the

3

i-th entry of a⃗, i.e., a⃗ = (a1, . . . , an)⊤. Let In ∈ {0, 1}n×n be the n-by-n identity
matrix. Let d ∈ N be a power of two and let R and Rq be the polynomial rings
Z[X]/(Xd + 1) and Zq[X]/(Xd + 1), respectively. We denote column vectors over
R or Rq by bold lowercase letters such as a, and matrices over R or Rq by bold
uppercase letters such as A. If a = a0 + a1X + · · ·+ ad−1Xd−1 ∈ Rq, then we
denote by ct(a) the constant term of a, i.e., ct(a) = a0 ∈ Zq.

Norms. For a = a0 + a1X + · · ·+ ad−1Xd−1 ∈ R, we have the coefficient norm
∥a∥2 =

√∑d−1
i=0 |ai|2 and the infinity norm ∥a∥∞ := maxi ai. The norms are

naturally extended to vectors a ∈ Rn
q of polynomials, i.e., ∥a∥2 =

√∑n
i=1 ∥ai∥2

2
and ∥a∥∞ := maxi ∥ai∥∞. For a ∈ R, we also have the operator norm ∥a∥op =
supr∈R ∥ar∥2/∥r∥2.

The Conjugation Automorphism. The ring Rq has a group of automorphisms
Aut(Rq) that is isomorphic to Z×2d. Let Σi ∈ Aut(Rq) be defined by Σi(X) = Xi.
For readability, we denote for an arbitrary vector a ∈ Rn:

Σi(a) := (Σi(a1), . . . , Σi(ak)).

Let Σ−1 ∈ Aut(Rq) be defined by Σ−1(X) = X−1. This was introduced in [26].
For coefficient vectors a⃗, b⃗ ∈ Znd

q and its corresponding polynomial vectors
a, b ∈ Rn

q , we have ⟨⃗a, b⃗⟩ = ct(⟨σ−1(a), b⟩).

2.2 Lattices

Gaussian. For x⃗ ∈ Zd, let ρs(x⃗) := exp(−π∥x⃗∥2
2/s2) be a Gaussian function of

parameter s ∈ R. The discrete Gaussian distribution Dn
s is

Dn
s (x⃗) := ρs(x⃗)∑

y⃗∈Rn ρs(y⃗) .

To simplify notations, we occasionally use a
$← Ds to mean that the coefficient

vector of a ∈ R is sampled from Dd
s . The definitions naturally extend to vectors

over Rn. Finally, let Sη denote the set of all elements in a ∈ Rq such that
∥a∥∞ ≤ η.

The following are useful lemmas for bounding the norm of an element sampled
from a discrete Gaussian distribution.

Lemma 1 ([29,25,1]). For any real t > 0 and t′ > 1, we have

Pr
x⃗

$←Dn
s

[∥x⃗∥∞ > ts] < 2n · 2−
log e

2 ·t
2
,

Pr
x⃗

$←Dn
s

[∥x⃗∥2 > t′s
√

n] < 2n·(log e
2 (1−t′2)+log t′).

The following is the rejection sampling lemma.

4

Lemma 2 (Rejection Sampling [25, Lemmas 4.3, 4.6]). Let V ⊂ Zm in
which all elements have norm less than T , H be a distribution over V, ϕ, err ∈ R
be positive reals with err < 1, and set y := ϕ ·T . Now, sample e⃗

$← H and y⃗
$← Dm

y ,
set z⃗ := e⃗ + y⃗, and run b

$← Rej(z⃗, e⃗, ϕ, T, err) in Figure 1. Then, the probability
that b = ⊤ is at least (1− err)/µ(ϕ, err) for

µ(ϕ, err) = exp
(√
−2 log err

log e
· 1

ϕ
+ 1

2ϕ2

)

and the distribution of (e⃗, z⃗) conditioned on b = ⊤ is within statistical distance
of err/µ(ϕ, err) of the product distribution H×Dm

y .

Rej(z⃗, e⃗, ϕ, T, err)

u
$← [0, 1)

if u > 1
µ(ϕ, err) · exp

(
−2z⃗⊤e⃗+ ∥e⃗∥2

2

2y2

)
:

then return ⊥
else return ⊤

Fig. 1. Rejection Sampling.

As a concrete example often used, by setting ϕ = 11 and err = 2−100, we
get µ(ϕ, err) ≈ 3. We can also set for example ϕ = 14 and err = 2−256 to obtain
µ(ϕ, err) ≈ 4 if we want better statistical bounds.

Gadget. For any integer k ≥ 1, we define the gadget matrix [28]

Gb,k := Ik ⊗ g⊤ ∈ Rk×k⌈logb q⌉
q ,

where g := (1∥b∥ · · · ∥b⌈logb q⌉−1)⊤ ∈ R⌈logb q⌉
q . The function G−1

b,k : Rk
q →

Rk⌈logb q⌉
b is the base-b decomposition function. Then, for any vector c ∈ Rk

q , we
have

Gb,kG−1
b,k(c) = c mod q.

Hardness Assumptions. We define the module short integer solutions (MSIS)
and module learning with errors (MLWE) assumptions, first introduced in [22].

Definition 1 (MSIS Assumption). Let n, m ∈ N be positive integers and
β ∈ R be a positive real with 0 < β < q. For an algorithm A, the advantage of
the module short integer solutions MSISn,β,q problem of A is defined as follows:

Advmsis
A (λ) := Pr

[
As = 0 mod q ∧ 0 < ∥s∥2 ≤ β | s← A(1λ, A)

]
,

5

where A $← Rn×m
q . We say the MSISn,β,q assumption holds if the above advantage

is negligible for all probabilistic polynomial time (PPT) algorithms A.

Definition 2 (MLWE Assumption). Let n, l ∈ N be a positive integer and
η ∈ R be a positive real. For an algorithm A, the advantage of the module short
integer solutions MLWEn,η,q problem of A is defined as follows:

Advmlwe
A (λ) :=

∣∣Pr
[
A(1λ, A, AS + E)→ 1

]
− Pr

[
A(1λ, A, B)→ 1

]∣∣ ,
where A $← Rn×n

q , S, E $← Sn×m
η , and B $← Rn×m

q . We say the MLWEn,η,q

assumption holds if the above advantage is negligible for all PPT algorithms A.

Challenge Space. Let τCh, TCh ∈ R be positive reals. Let Ch ⊂ R be a challenge
space such that c−c′ is invertible for any pair of distinct c, c′ ∈ Ch and ∥c∥2 ≤ τCh
and ∥c∥op ≤ TCh for all c ∈ Ch.

In our concrete instantiations, we use the polynomial ringR = Z[X]/(X64+1),
and as challenges we use ring elements with 23 zero coefficients, 31 coefficients
that are ±1, and 10 coefficients that are ±2. There are over 2128 such elements.
All these polynomials have the norm 8.43, and we use the rejection sampling [25]
to restrict to challenges with operator norm at most 15. (On average, we need
to sample about 6 elements before sampling an element c with ∥c∥op < 15).
Differences in different challenges are invertible according to [27].

Approximate Proofs of Smallness. The following lemma, provided in [18],
can be used to efficiently prove the smallness of a long vector.

Lemma 3 ([18, Lemma 3.4]). Let q, d ∈ N be positive integers. Let ChmJL
be a distribution on {−1, 0, 1} with Pr[ChmJL = 0] = 1/2 and Pr[ChmJL = 1] =
Pr[ChmJL = −1] = 1/4. Then, for any vector w⃗ ∈ [±q/2]d, we have

Pr
[
∥Pw⃗ mod q∥∞ <

1
2∥w⃗∥∞ : P

$← Ch128×d
mJL

]
< 2−128.

2.3 Succinct Non-Interactive Argument of Knowledge in the
Random Oracle Model

We consider the succinct non-interactive argument of knowledge (SNARK)
system for NP in the random oracle model (ROM). Before defining SNARK, we
introduce some NP relations that we use in this paper.

NP Relations. Let ℓx, ℓw ∈ N be positive integers. Let Rel ⊆ {0, 1}ℓx ×{0, 1}ℓw

be an NP relation and LRel be an NP language corresponding to Rel, i.e.,

LRel := {X : ∃W ∈ {0, 1}ℓw s.t. (X, W) ∈ Rel}.

We call X a statement and W a witness.
Then, we define the SNARK system for NP in the ROM. In the random oracle

model, algorithms have black-box access to an oracle RO : {0, 1}∗ → Y, called a

6

random oracle. The oracle RO is instantiated by a uniform random function with
domain {0, 1}∗ and range Y . We denote by ARO an algorithm that has black-box
access to RO, and we may occasionally omit the superscript RO for simplicity if
the meaning is clear from the context.

Syntax. Let ℓx, ℓw, ℓ ∈ N and let Rel, R̃el ⊆ {0, 1}ℓx × {0, 1}ℓw be NP relations
with Rel ⊆ R̃el. A succinct non-interactive argument of knowledge (SNARK)
system ΠSNARK for the relations Rel and R̃el and a common random string
crs ∈ {0, 1}ℓ consists of the following oracle-calling PPT algorithms.

– ProveRO
Rel,R̃el(crs, X, W)→ π: On input of the crs ∈ {0, 1}ℓ, a statement X, and

a witness W, the prover algorithm outputs a proof π.
– VerifyRO

Rel,R̃el(crs, X, π)→ ⊤/⊥: On input of the crs, a statement X, and a proof
π, the verifier algorithm outputs either ⊤ (accept) of ⊥ (reject).

Definition 3. A SNARK system ΠSNARK = (ProveRO
Rel,R̃el, VerifyRO

Rel,R̃el) is required
to satisfy the following properties:

Completeness: For any λ ∈ N, crs ∈ {0, 1}ℓ, and (X, W) ∈ Rel, it holds that

Pr
[
VerifyRO

Rel,R̃el(crs, X, π) = ⊤ : π
$← ProveRO

Rel,R̃el(crs, X, W)
]

= 1− negl(λ).

Argument of knowledge: For any λ ∈ N, crs ∈ {0, 1}ℓ, X ∈ {0, 1}ℓx , and any
PPT adversary A, there exists a PPT algorithm Extract, called an extractor,
such that

Pr
[
(X, W) ∈ R̃el : W $← ExtractA(crs, X)

]
≥ ϵ(A, X)− negl(λ),

where ϵ(A, X) is the success probability of A for the statement X, which is
defined as

ϵ(A, X) := Pr
[
VerifyRO

Rel,R̃el(crs, X, π) = ⊤ : π
$← ARO(crs, X)

]
.

Here, Extract implements RO for A, in particular, Extract can program RO
arbitrarily.

Succinctness: The length of the proof π is at most poly(λ, log ℓx, log ℓw)1.

2.4 Digital Signature

Here, we recall the standard digital signature (DS) scheme.

Syntax. A digital signature scheme ΠDS with message space M consists of the
following PPT algorithms.

– KGen(1λ)→ (sk, vk): On input of the security parameter λ, the key generation
algorithm outputs a signing key sk and a verification key vk.

1 In this work, we consider only the succinctness of the proof size, not the running
time of the verification time.

7

– Sign(sk, M)→ σ: On input of the signing key sk and a message M ∈M, the
signing algorithm outputs a signature σ.

– Verify(vk, M, σ) → ⊤/⊥: On input of the verification key vk, a message
M ∈ M, and a signature σ, the verification algorithm outputs either ⊤
(accept) or ⊥ (reject). The verification algorithm is deterministic.

Definition 4. A DS scheme ΠDS = (KGen, Sign, Verify) is required to satisfy the
following properties:

Correctness: For any λ ∈ N and any M ∈M, it holds that

Pr
[

Verify(vk, M, σ) = ⊤ : (sk, vk) $← KGen(1λ),
σ

$← Sign(sk, M)

]
= 1− negl(λ).

Unforgeability: For any λ ∈ N and any PPT adversary A,

Pr
[
Verify(vk, M∗, σ∗) = ⊤ : (sk, vk) $← KGen(1λ),

(M∗, σ∗)← AOsk(·)(vk)

]
= negl(λ),

where an oracle Osk(M) returns σ
$← Sign(sk, M) for M ̸= M∗.

2.5 Aggregate Signature

Here, we provide the definition of the aggregate signature (AS) scheme.

Syntax. A (bounded) aggregate signature scheme ΠAS with message space M
consists of the following PPT algorithms.

– Setup(1λ, 1N)→ pp: On input of the security parameter λ and an aggregation
bound N , the setup algorithm outputs the public parameter pp.

– KGen(pp)→ (sk, vk): On input of the public parameter pp, the key generation
algorithm outputs a signing key sk and a verification key vk.

– Sign(pp, sk, M)→ σ: On input of the public parameter pp, the signing key sk,
and a message M ∈M, the signing algorithm outputs a signature σ.

– Verify(pp, vk, M, σ)→ ⊤/⊥: On input of the public parameter pp, the verifica-
tion key vk, a message M ∈M, and a signature σ, the verification algorithm
outputs either ⊤ (accept) or ⊥ (reject).

– Agg(pp, {(vki, Mi, σi)}i∈[N ′]) → σagg: On input of the public parameter pp
and a collection of up to N ′ ≤ N verification keys vki, messages Mi, and
signatures σi, the aggregation algorithm outputs an aggregated signature
σagg.

– AggVer(pp, v⃗k, M⃗, σagg) → ⊤/⊥: On input of the public parameter pp, a
collection of N ′ ≤ N verification keys v⃗k = (vk1, . . . , vkN ′), messages M⃗ =
(M1, . . . , MN ′), and an aggregated signature σagg, the aggregate verification
algorithm outputs either ⊤ (accept) or ⊥ (reject).

Definition 5 ([7,33]). An AS scheme ΠAS = (Setup, KGen, Sign, Verify, Agg,
AggVer) is required to satisfy the following properties:

8

Correctness: For any λ, N ∈ N and any M ∈M, it holds that

Pr

Verify(pp, vk, M, σ) = ⊤ :
pp $← Setup(1λ, 1N),
(sk, vk) $← KGen(pp),
Sign(pp, sk, M)

 = 1− negl(λ).

In addition, for any N ′ ∈ N with N ′ ≤ N and any M1, . . . , MN ′ ∈ M, it
holds that

Pr [AggVer(pp, (vk1, . . . , vkN ′), (M1, . . . , MN ′), σagg) = ⊤] = 1− negl(λ),

where pp $← Setup(1λ, 1N), (ski, vki)
$← KGen(pp) and σi

$← Sign(ski, Mi) for
all i ∈ [N ′], and σagg

$← Agg(pp, {(vki, Mi, σi)}i∈[N ′]).
Unforgeability: For any λ ∈ N and any PPT adversary A,

Pr

∃i ∈ [N ′] s.t. vki = vk
∧AggVer(pp, v⃗k, M⃗, σ∗) = ⊤ :

pp $← Setup(1λ),
(sk, vk) $← KGen(pp),
(v⃗k, M⃗, σ∗)← AOsk(·)(pp, vk)

 = negl(λ),

where v⃗k = (vk1, . . . , vkN ′), M⃗ = (M1, . . . , MN ′), an oracle Osk(M) returns
σ

$← Sign(sk, M) for M ̸= Mi.
Efficiency: The length of the aggregated signature σagg is at most poly(λ, log N).

3 Building Blocks

In this section, we describe the building blocks used in our main construction.
We respectively provide in Sections 3.1 and 3.2, our concrete building blocks for
the SNARK system Πpr

SNARK and the digital signature scheme ΠCLMQ
DS .

3.1 Main Protocol for LaBRADOR

The SNARK system Πpr
SNARK used in our main construction is the non-

interactive variant (via Fiat-Shamir) of the interactive proof system for the
principal relations, proposed by Beullens and Seiler [5]. To do so, we first define
the principal relations and then provide the non-interactive protocol for the
principal relations.

Principal Relations. The principal relation is parameterized by a rank n ≥ 1,
a multiplicity r ≥ 1, and a norm bound β > 0. It consists of short solutions to
dot product constraints over RQ. Specifically, a statement consists of a family
F := {f (1), . . . , f (K)} of quadratic dot product functions f : (Rn

Q)r → RQ of the
form

f(s1, . . . , sr) =
r∑

i=1

r∑
j=1

ai,j⟨si, sj⟩+
r∑

i=1
⟨φi, si⟩ − b,

9

where ai,j , b ∈ RQ and φi ∈ Rn
Q. Without loss of generality, we assume ai,j = aj,i.

We now define the principal relation. In the following, we identify a quadratic
dot product function f (k) and its coefficients ({a(k)

i,j }i,j∈[r], {φ
(k)
i }i∈[r], b(k)) for

all k ∈ [K].

Definition 6 (Principal Relation). Let n, r ∈ N and let β > 0 be a positive
real. The principal relation Relpr is defined by

Relpr,β :=

(X = (F , F̂), W = (s1, . . . , sr)) :
f(s1, . . . , sr) = 0 ∀f ∈ F ,

ct(f̂(s1, . . . , sr)) = 0 ∀f̂ ∈ F̂ ,∑r
i=1 ∥si∥2

2 ≤ β2

 ,

where F and F̂ are two families of quadratic dot product functions.

Non-Interactive Protocol. Here, we provide the non-interactive protocol
Πpr

SNARK for the principal relations (Relpr,β , Relpr,β′) proposed in [5], where β′ =√
128/30β. For reference, we give in Table 3 the parameters used in the Πpr

SNARK.
The prove and verify algorithms of Πpr

SNARK are described in Figure 2 and Figure 3,
respectively. The following algorithms use the common random string crs that is
sampled as follows:

crs =
(
A, (Bi)i∈[r], (Ci,j)1≤i≤j≤r, (Di,j)1≤i≤j≤r

)
,

where A $← Rκ0×n
Q , Bi

$← Rκ1×κ0⌈logb1 Q⌉
Q , Ci,j

$← Rκ1×⌈logb2 Q⌉
Q , and Di,j

$←

Rκ2×⌈logb1 Q⌉
Q .

Table 3. Overview of parameters used in Πpr
SNARK.

Parameter Explanation
RQ Ring RQ = ZQ[X]/(Xd + 1)
n A rank for Relpr,β and Relpr,β′

r A multiplicity for Relpr,β and ˜Relpr,β′

β A norm bound for Relpr,β

β′(=
√

128/30β) A norm bound for Relpr,β′

K The number of quadratic dot product functions in F
L The number of quadratic dot product functions in F̂

K′(= ⌈128/ logQ⌉) The number of functions after aggregation
(κ0, κ1, κ2) The sizes of matrices in crs
(b, b1, b2) The decomposition parameters

Hpr The hash function Hpr : {0, 1}∗ → {0, 1}∗

Beullens and Seiler showed the following lemma for Πpr
SNARK.

Lemma 4 ([5, Theorem 5.1]). Let Ch be the challenge space Ch ⊂ RQ

from Sec. 2.2 consisting of polynomials with norm τCh and operator norm TCh.

10

ProveHpr
Relpr,β ,Relpr,β′ (crs,X,W)→ πpr

1 : for i ∈ [r] : ti := Asi

2 : for (i, j) ∈ [r]× [r] : gi,j := ⟨si, sj⟩

3 : u1 :=
r∑

i=1

BiG−1
b1,κ(ti) +

∑
i≤j

Ci,jG−1
b2,1(gi,j)

4 : (π⃗i,j)i∈[r],j∈[256] ← Hpr(1,X,u1), where π⃗i,j ∈ Chnd
mJL ⊆ {−1, 0, 1}nd

5 : for j ∈ [256] : pj :=
r∑

i=1

⟨π⃗i,j , s⃗i⟩

6 : (ψ⃗k, ω⃗k)k∈[K′] ← Hpr(2,X,u1, (pj)j∈[256]), where ψ⃗k ∈ ZL
Q, ω⃗k ∈ Z256

Q

7 : for k ∈ [K′] :

8 : a
′(k)
i,j :=

L∑
l=1

ψ
(k)
l âi,j

9 : φ
′(k)
i :=

L∑
l=1

ψ
(k)
l φ̂

(l)
i +

256∑
j=1

ω
(k)
j σ−1(π⃗i,j)

10 : b′(k) :=
r∑

i,j=1

a
′(k)
i,j ⟨si, sj⟩+

r∑
i=1

⟨φ(k)
i , si⟩

11 : (α,β)← Hpr(3,X,u1, (pj)j∈[256], (b′(k))k∈[K′]), where α ∈ RK
Q , β ∈ RK′

Q

12 : for i ∈ [r] : φ⃗i :=
K∑

k=1

αkφ
(k)
i +

K′∑
k=1

βkφ
′(k)
i

13 : for (i, j) ∈ [r]× [r] : hi,j := 1
2(⟨φi, sj⟩+ ⟨φj , si⟩)

14 : u2 :=
∑
i≤j

Di,jG−1
b1,1(hi,j)

15 : (ci)i∈[r] ← Hpr(4,X,u1, (pj)j∈[256], (b′(k))k∈[K′],u2), where ci ∈ Ch
16 : z := c1s1 + · · ·+ crcr

17 : return πpr := (u1, (pj)j∈[256], (b′(k))k∈[K′],u2, z, (ti)i∈[r], (gi,j , hi,j)i,j∈[r])

Fig. 2. Prove algorithm of Πpr
SNARK.

11

VerifyHpr
Relpr,β ,Relpr,β

(crs,X, πpr)→ ⊤/⊥

for k ∈ [K′] :

a
′(k)
i,j :=

L∑
l=1

ψ
(k)
l âi,j ,

φ
′(k)
i :=

L∑
l=1

ψ
(k)
l φ̂

(l)
i +

256∑
j=1

ω
(k)
j σ−1(π⃗i,j)

for (i, j) ∈ [r]× [r] : ai,j :=
K∑

k=1

αka
(k)
i,j +

256∑
j=1

βka
′(k)
i,j

for i ∈ [r] : φi :=
K∑

k=1

αkφ
(k)
i +

256∑
j=1

βkφ
′(k)
i

b :=
K∑

k=1

αkb
(k) +

256∑
j=1

βkb
′(k)

z := z(0) + z(1)b, where ∥z(0)∥∞ ≤
b

2
for i ∈ [r] : t′

i := G−1
b1,κ(ti)

for (i, j) ∈ [r]× [r] : g′
i,j := G−1

b2,1(gi,j), h′
i,j := G−1

b1,1(hi,j)

if



∥p⃗∥ ≤
√

128β
∧ b′(k)

0 = ⟨ω⃗(j), p⃗⟩+
∑L

l=1 φ
(k)
l b̂

(l)
0

∧ gi,j = gj,i

∧ hi,j = hj,i

∧ (β′)2 ≥ ∥z(0)∥2 + ∥z(1)∥2 +
∑r

i=1

(
∥t′

i∥2 +
∑r

j=1(∥g′
i,j∥2 + ∥h′

i,j∥2)
)

∧ Az =
∑r

i=1 citi

∧ ⟨z, z⟩ =
∑r

i=1

∑r

j=1 gi,jcicj

∧
∑r

i=1 ⟨φi, z⟩ci =
∑r

i=1

∑r

j=1 hi,jcicj

∧
∑r

i=1

∑r

j=1 ai,jgi,j +
∑r

i=1 hi,i − b = 0
∧ u1 =

∑r

i=1 Bit′
i +
∑

i≤j
Ci,jg′

i,j

∧ u2 =
∑

i≤j
Di,jhi,j

then return ⊤
else return ⊥

Fig. 3. Verify algorithm of Πpr
SNARK.

12

Suppose that MSISκ1,2β′,Q, MSISκ2,2β′,Q, and MSISκ0,β′′,Q are hard, where β′′ =
max{8TCh(b + 1)β′, 2(b + 1)β′ + 4TCh

√
128/30β}. Further suppose that β ≤√

30/128Q/125. Then, Πpr
SNARK in Figures 2 and 3 is a SNARK for Relpr,β and

Relpr,β′ in the random oracle model.

Remark 1 (Recursion and proof size.). The target relation of the above main
protocol is almost another instance of the dot product constraint. To reduce the
size of the proof, we recursively apply the protocol several times. Asymptotically,
we need only O(log log n) iterations of the main protocol. Finally, the proof size
can be logarithmic in the witness size. See [5] for details.

3.2 CLMQ Signature Scheme

We rely on a module version of the CLMQ signature scheme ΠCLMQ
DS by Chen

et al. [13]. For reference, we give in Table 4 the parameters used in the ΠCLMQ
DS .

We present the algorithms of ΠCLMQ
DS in Figure 4.

Table 4. Overview of parameters and notations used in ΠCLMQ
DS .

Parameter Explanation
Rq A Ring Rq = Zq[X]/(Xd + 1)
n The size of A in vk

m(= n⌈log q⌉) The length of challenge vector c
η The norm bound of S

(ϕ, T, err) Parameters for rejection sampling (Lemma 2)
t(=

√
2(1 + lognd+ λ)/ log e) Parameter for Lemma 1

HM The hash function HM : {0, 1}∗ →Rn
q

From the results of [25,13], we obtain the following lemma.
Lemma 5. Let β0 =

√
(tϕT)22nd + md. Suppose that T = mη

√
2nd and tϕT ≤

q/2. Assuming MSISn,β,q and MLWEn,η,q assumptions hold, then ΠCLMQ
DS is a DS

scheme in the random oracle model.

4 Our Aggregate Signature Scheme

In this section, we give our lattice-based AS scheme ΠAS. To construct ΠAS,
we follow the approach of [33, Sec. 7]. ΠAS is obtained by combining the SNARK
system Πpr

SNARK in Sec. 3.1 and the CLMQ signature scheme ΠCLMQ
DS in Sec. 3.2.

4.1 Construction of Aggregate Signature

Parameters. For reference, we provide in Table 5 the parameters used in the
scheme. We require that these parameters satisfy certain conditions for correctness
and security to hold.

13

KGen(1λ)

1 : S $← S2n×m
η

2 : A0
$←Rn×n

q

3 : A := (A0∥In)
4 : B := AS
5 : sk := (S,A)
6 : vk := (A,B)
7 : return (sk, vk)

Sign(sk,M)

1 : y $← D2n
ϕT

2 : u := Ay

3 : c := G−1
2,n(u− HM(vk,M))

4 : z := y + Sc
5 : if Rej(z,y, ϕ, T, err) = ⊤ :
6 : then return σ := (z, c)
7 : else restart

Verify(vk,M, σ)

1 : if (G2,n + B)c = Az− HM(vk,M) ∧ ∥z∥∞ ≤ tϕT :
2 : then return ⊤
3 : else return ⊥

Fig. 4. CLMQ signature scheme ΠCLMQ
DS .

Building Blocks. Our AS scheme ΠAS relies on the following building blocks.

– A SNARK system Πpr
SNARK = (pr.ProveHpr

Relpr,β ,Relpr,β
, pr.VerifyHpr

Relpr,β ,Relpr,β
) with

crspr for the principal relations Relpr,β , Rpr,β′ in Sec. 3.1. Here, Relpr (resp.
Rpr,β′) is a principal relation of a rank m, a multiplicity r, and a norm bound
β =
√

Q (resp. β′ =
√

128/30
√

Q).
– The CLMQ signature scheme ΠCLMQ

DS = (DS.KGenHM , DS.SignHM , DS.VerifyHM)
in Sec. 3.2.

– Four hash functions HM, Hpr, H, and Hcrs modeled as a random oracle. HM
and Hpr are hash functions used by ΠCLMQ

DS and Πpr
SNARK, respectively. A

hash function H : {0, 1}∗ → {−1, 0, 1}128×2Nnd is used to generate challenge
vectors. We assume that the distribution of the output of H is Ch128×2Nnd

mJL .
Hcrs is a special hash function and Hcrs(0) = crspr contains the common
random string crspr used by Πpr

SNARK.

Construction. Below, we give the construction of our AS scheme ΠAS =
(Setup, KGen, Sign, Verify, Agg, AggVer) with message space {0, 1}∗. We assume
that Hcrs(0) = (crspr, U1, . . . , UN) is correctly derived by all the algorithms and
omits the process of generating them.

– Setup(1λ, 1N)→ pp := 1λ:
– KGen(pp)→ (sk, vk): (Same as DS.KGenHM(1λ).)

1. Sample S $← S2n×m
η and A0

$← Rn×n
q .

14

Table 5. Overview of parameters and notations which are used in ΠAS.

Parameter Description
Rq A Ring Rq = Zq[X]/(Xd + 1) for ΠCLMQ

DS
n The size of A in vk

m(= n⌈log q⌉) The length of challenge vector c
η The norm bound of S

(ϕ, T, err) Parameters for rejection sampling (Lemma 2)
t(=

√
2(1 + lognd+ λ)/ log e) Parameter for Lemma 1

HM The hash function HM : {0, 1}∗ →Rn
q for ΠCLMQ

DS
N The number of signatures to be aggregated
q′ Integer to increase modulus
Q Modulus s. t. Q = qq′

H The hash function H : {0, 1}∗ → {−1, 0, 1}128×2Nnd

2. Set A := (A0∥In) ∈ Rn×2n
q and B := AS ∈ Rn×m

q .
3. Output (sk, vk) := ((S, A), (A, B)).

– Sign(pp, sk, M)→ σ: (Same as DS.SignHM(sk, M).)
1. Sample y $← D2n

ϕT .
2. Set u := Ay ∈ Rn

q , c := G−1
2,n(Ay−HM(vk, M)) ∈ Rm

2 , and z := y + Sc ∈
R2n.

3. Output σ := (z, c) if Rej(z, y, ϕ, T, err) = ⊤.
4. Otherwise, restart.

– Verify(pp, vk, M, σ)→ ⊤/⊥: (Same as DS.VerifyHM(vk, M, σ).)
1. Output ⊤ if (G2,n + B)c = Az− HM(vk, M) ∧ ∥z∥∞ ≤ tϕT .
2. Otherwise, output ⊥.

– Agg(pp, {(vki, Mi, σi)}i∈[N ′])→ σagg:
1. If there exists i ∈ [N ′] such that Verify(vki, Mi, σi) = ⊥, then output ⊥.
2. For i ∈ [N], parse vki = (Ai, Bi) ∈ Rn×2n

q ×Rn×m
q and σi = (⃗zi, c⃗i) ∈

R2n
q ×Rm

2 .
3. For i ∈ [N], compute c′i := Σ−1(ci).
4. Compute Pz := H((vki, Mi)i∈[N]) and

p⃗z := Pz

 z⃗1
...

z⃗N

 mod q ∈ Z128
q ,

where Pz ∈ Ch128×2Nnd
mJL ⊆ {−1, 0, 1}128×2Nnd.

5. Define two families of quadratic dot product function (F , F̂) as follows:

F := {q′(Aizi − (G2,n + Bi)ci − HM(vki, Mi)), ⟨ci, c′i − 1m⟩}i∈[N]

F̂ :=

q′

Σ−1(Pz)

 z1
...

zN

− pz


 ∪ {c′i −Σ−1(ci)}i∈[N] ,

where 1l ∈ Rl is a vector all of whose coefficients are 1.

15

6. Set Xpr := (F , F̂) and Wpr := (z1, c1, c′1, . . . , zN , cN , c′N).
7. Compute πpr

$← pr.ProveHpr
Relpr,β ,Rpr,β′ (crspr, Xpr, Wpr).

8. Output σagg := (p⃗z, πpr).
– AggVer(pp, (vk1, . . . , vkT), (M1, . . . , MT), σagg)→ ⊤/⊥:

1. Parse σagg = (p⃗z, πpr).
2. Compute Pz := H((vki, Mi)i∈[N]).
3. Define Xpr := (F , F̂) as Item 5 in Agg(pp, {(vki, Mi, σi)}i∈[T]).
4. Output ⊤ if pr.VerifyHpr

Relpr,β ,Relpr,β′ (crspr, Xpr, πpr) = ⊤ ∧ ∥p⃗z∥∞ ≤ tϕT/2.
5. Otherwise, output ⊥.

4.2 Correctness

The following establishes the correctness of our aggregate signature ΠAS.

Lemma 6. The aggregate signature ΠAS is correct if Πpr
SNARK is complete and

ΠCLMQ
DS is correct.

Proof. We first verify the correctness of the pre-aggregated signature of ΠAS. The
relationship that the verifier checks within the Verify algorithm can be expanded
as in

(G2,n + B)c = G2,nc + Bc
= G2,nG−1

2,n(u− HM(vk, M)) + ASc
= u− HM(vk, M) + ASc
= Ay− HM(vk, M) + ASc
= A(y + Sc)− HM(vk, M)
= Az− HM(vk, M).

We then check the correctness of the aggregated signature of ΠAS. We assume
that all signatures (z1, c1), . . . , (zN , cN) ∈ R2n

q × Rm
2 are valid signature of

ΠCLMQ
DS . That is, for all i ∈ [N] we have

(G2,n + Bi)ci = Aizi − HM(vki, Mi) mod q, (1)
∥zi∥∞ ≤ tϕT. (2)

Furthermore, we assume that the aggregator correctly processes the Agg algorithm.
That is, we have

c′i = Σ−1(ci) for all i ∈ [N], (3)

p⃗z = Pz

 z⃗1
...

z⃗N

 mod q. (4)

16

Since Q = qq′, Equations (1) and (4) implies

q′(Aizi − (G2,n + Bi)ci − HM(vki, Mi)) = 0 mod Q for all i ∈ [N], (5)

ct

q′

Σ−1(Pz)

 z1
...

zN

− pz


 = 0 mod Q. (6)

In addition, since c ∈ Rm
2 , we have

⟨ci, c′i − 1l⟩ = 0 (7)

for all i ∈ [N]. From Equations (3) and (5) to (7), we have

(Xpr, Wpr) =
(

(F , F̂), (z1, c1, c′1, . . . , zN , cN , c′N)
)
∈ Relpr,β .

Therefore, by the completeness of Πpr
SNARK, πpr outputted by pr.ProveHpr

Relpr,β ,Relpr,β′

will be accepted by pr.VerifyHpr
Relpr,β ,Relpr,β′ . Furthermore, by Lemma 3, Equations (2)

and (4) implies ∥p⃗z∥∞ ≤ tϕT/2 with overwhelming probability.
Putting these together, any aggregated signature σagg outputted by Agg will

be accepted by AggVer with overwhelming probability. We conclude that ΠAS is
correct.

4.3 Security: Unforgeability

Theorem 1. The aggregate signature ΠAS is unforgeable if Πpr
SNARK is an argu-

ment of knowledge and ΠCLMQ
DS is unforgeable.

Proof. Assume there exists a PPT adversary A with non-negligible probability ϵ
against the unforgeability experiment. We consider a sequence of games, where
we denote Ei as the event A that succeeds in generating a forgery in Hybi.

Hyb0: This game is the real unforgeability experiment:
– At the beginning of the experiment, we set pp := 1λ, sample (sk, vk) $←

KGen(pp), and gives pp and vk to A.
– Upon receiving signing queries on messages M, we computes σ

$←
Sign(pp, sk, M) and replies with σ to A.

– At the end of the experiment, A outputs a tuple of verification keys
v⃗k = (vk1, . . . , vkN), a tuple of messages M⃗ = (M1, . . . , MN), and an
aggregated signature σ∗agg = (p⃗∗z, π∗pr).

– If there exists an index i ∈ [N] such that vki = vk, ∥p⃗∗z∥∞ ≤ tϕT/2, and
pr.VerifyHpr

Relpr,β ,Relpr,β′ (crspr, X∗pr, π∗pr) = ⊤, then σ∗agg is a valid forgery. Here
Xpr = (F , F̂) is two families of quadratic dot product function derived
from v⃗k, M⃗, and p⃗∗z.

By definition, we have Pr[E0] = ϵ.

17

Hyb1: This game is the same as Hyb0 except at the end of the experiment, we
additional computes

pr.Extract(crspr, Xpr, π∗pr)→ W̃pr = (z1, c1, c′1, . . . , zN , cN , c′N),

where pr.Extract is an extractor of Πpr
SNARK. If Verify(pp, vki, Mi, (zi, ci)) = ⊥,

i.e.,

(G2,n + Bi)ci ̸= Aizi − HM(vki, Mi) mod q ∨ ∥zi∥∞ > tϕT,

then the experiment is aborted, where vki = (Ai, Bi).

Lemma 7. If Πpr
SNARK is an argument of knowledge, then we have Pr[E1] ≥

Pr[E0]− negl(λ).
Proof of Lemma. The only difference between Hyb0 and Hyb1 is the extra check
performed in Hyb1. That is, for Hyb0 to output ⊤ and Hyb1 to be aborted, it
must be the case that

– pr.VerifyHpr
Relpr,β ,Relpr,β′ (crspr, X∗pr, π∗pr) = ⊤ ∧ ∥p⃗∗z∥∞ ≤ tϕT/2 and

– (G2,n + Bi)ci ̸= Aizi − HM(vki, Mi) mod q ∨ ∥zi∥∞ > tϕT .

We first assume that pr.VerifyHpr
Relpr,β ,Relpr,β′ (crspr, X∗pr, π∗pr) = ⊤ ∧ ∥p⃗∗z∥∞ ≤ tϕT/2.

Since Πpr
SNARK is an argument of knowledge for the relations Relpr,β and Relpr,β′

the extracted witness W̃pr = (z1, c1, c′1, . . . , zN , cN , c′N) satisfies(
(F , F̂), (z1, c1, c′1, . . . , zN , cN , c′N)

)
∈ Relpr,β′

with overwhelming probability. This implies that

⟨ci, c′i − 1m⟩ = 0,

c′i −Σ−1(ci) = 0,

Aizi − (G2,n + Bi)ci − HM(vki, Mi) = 0 mod q,

Pz

 z⃗1
...

z⃗N

− p⃗∗z = 0 mod q,

N∑
j=1

(∥zj∥2
2 + ∥cj∥2

2 + ∥c′j∥2
2) ≤ β′

2 = 128β2/30.

If md ≤ 15Q/128, the ℓ2-norm of
(
c⊤1 ∥c′1

⊤∥ · · · ∥c⊤N∥c′N
⊤)⊤ is smaller than

√
Q

by at least the slack factor
√

128/30. Hence, the above first and second equations
imply that ci has binary coefficients. Next, the third equation immediately
implies (G2,n + Bi)ci = Aizi − HM(vki, Mi) mod q. Finally, by Lemma 3, the
forth equation and the fact that ∥p⃗∗z∥∞ ≤ tϕT/2 imply that ∥zi∥∞ ≤ tϕT with
overwhelming probability.

Putting these together, if pr.VerifyHpr
Relpr,β ,Relpr,β′ (crspr, X∗pr, π∗pr) = ⊤ ∧ ∥p⃗∗z∥∞ ≤

tϕT/2, then we have Verify(pp, vki, Mi, (zi, ci)) = ⊤. Therefore, we have Pr[E1] ≥
Pr[E0]− negl(λ).

18

Lemma 8. If ΠCLMQ
DS is unforgeable, then we have Pr[E1] = negl(λ).

Proof of Lemma 8. This proof is (almost) the same as the proof of [33, Lemma
7.10].

Assuming that there exists a PPT algorithmA with a non-negligible advantage
ϵ in Hyb1. We useA to build an efficient algorithm B that breaks the unforgeability
of ΠCLMQ

DS .

1. B receives the verification key vk∗ from its challenger.
2. B gives pp := 1λ and vk∗ to A.
3. Whenever A makes a signing query on a message M, B makes a signing query

on M and gets a signature σ. It replies to A with σ.
4. At the end of the experiment,A outputs v⃗k = (vk1, . . . , vkN), M⃗ = (M1, . . . , MN),

and σ∗ = (p⃗∗z, π∗pr). B check that vki = vk∗, A did not issue a signing query
on Mi, and that

pr.VerifyHpr
Relpr,β ,Relpr,β′ (crspr, X∗pr, π∗pr) = ⊤ ∧ ∥p⃗∗z∥∞ ≤ tϕT/2.

If any checks do not pass, B aborts. Otherwise, it computes

pr.Extract(crspr, Xpr, π∗pr)→ W̃pr = (z1, c1, c′1, . . . , zN , cN , c′N)

and outputs (Mi, (zi, ci)) as its forgery.

By construction, B simulates an execution of Hyb1 for A. Thus, with a probability
of at least ϵ, A outputs v⃗k, M⃗, and σ∗ = (p⃗∗z, π∗pr), where vki = vk∗, A never
queried the signing oracle on Mi, and Verify(pp, vki, Mi, (zi, ci)) = ⊤. Therefore,
B succeeds with the advantage ϵ.

By Lemmas 7 and 8, we have Pr[E0] = negl(λ).

4.4 Parameter Selection and Efficiency

Parameter Selection. Here, we first summarize the conditions that our pa-
rameters in Table 5 must satisfy for the correctness and unforgeability of ΠAS.
These conditions are only asymptotic. We then show a set of concrete parameters
in Table 6 for 128 bits of security.

– For ΠAS:
• N(nd(tϕT)2 + md) < 15Q/128.
• β =

√
Q and β′ =

√
128/30

√
Q.

– For Πpr
SNARK:

• The MSISκ1,2β′,Q, MSISκ2,2β′,Q, and MSISκ0,β′′,Q assumptions hold.
• β′′ = max{8TCh(b + 1)β′, 2(b + 1)β′ + 4TCh

√
128/30β}.

– For ΠCLMQ
DS :

• m = n⌈log q⌉.
• t =

√
2(1 + log nd + λ)/ log e.

• T = mη
√

2nd.

19

Table 6. Concrete parameters for our scheme.

Parameter Value
q ≈ 230

d 64
n 9
m 270
η 2
ϕ 14
T 18328.21
err 2−256

t 13.84
N 210 ∼ 220

q′ ≈ 246

Q ≈ 276

• tϕT ≤ q/2.
• β0 =

√
2nd(tϕT)2 + md.

• The MSISn,β0,q and MLWEn,η,q assumptions hold.

Concrete Efficiency. We evaluate concrete aggregated signature sizes of ΠAS.
The size of the aggregated signature is given by the size of the proof π of ΠSNARK.
Furthermore, the size of the proof π is given by p⃗ ∈ Z128

q and πpr, which is a
proof of Πpr

SNARK. Then, we have the following proof size in bits:

128 log q︸ ︷︷ ︸
|p⃗|

+|πpr|.

To evaluate the concrete size of πpr, we refer to [3, Sec. F]. Table 7 contains
the aggregated signature sizes of the comparison of our scheme with other
lattice-based aggregate signature schemes in the literature. Table 8 contains the
aggregated signature sizes of our scheme for the number of signatures to be
aggregated N varying between 210 and 220.

Table 7. Comparison of various lattice-based many-time and non-interactive aggregate
signature schemes, and their aggregation over 210 signatures. We assume 128-bit security.
Schemes that do not support aggregation are marked with *.

Scheme Individual Sig. Size Aggregated Sig. Size
Dilithium3∗ 3.3 KB 3300 KB
Falcon-512∗ 0.6 KB 618 KB
[9,10] 8.9 KB 4400 KB
[20] 7.9 KB 7444 KB
Ours 6.3 KB 63 KB

20

Table 8. Aggregate signature sizes for our scheme with a varying N .

N Aggregated Sig. Size
210 63.48 KB
212 65.02 KB
214 69.38 KB
216 77.46 KB
218 103.42 KB
220 131.54 KB

We note that we can also obtain an aggregate signature scheme by simply
combining LaBRADOR for rank 1 constraint systems (R1CS) and the CLMQ
signature scheme. However, this construction is less efficient than ours in Sec. 4.1.
This is because we have to convert its verification algorithm into an R1CS. This
conversion induces a quite larger statement and witness. As a result, the simple
combination has a larger aggregated signature size.

5 Conclusion

In this paper, we presented the first aggregate signature scheme such that: (1)
its security is based on the standard lattice-based assumptions (MSIS and MLWE)
in the random oracle model, (2) the size of the aggregated signature is logarithmic
in N , (3) it is many-time, and (4) it can be aggregated non-interactively. In
addition, our scheme is quite compact because the size of the aggregated signature
required to aggregate 220 signatures is only a few hundred kilobytes. This result
shows that our scheme is superior to the existing lattice-based aggregate signature
schemes in compressing many signatures.

Acknowledgment. This research was in part conducted under a contract of
”Research and development on new generation cryptography for secure wireless
communication services” among “Research and Development for Expansion of
Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of
Internal Affairs and Communications, Japan. This work was in part supported
by JSPS KAKENHI Grant Numbers JP22H03590, JP22K19773.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-5_28
(Cited on page 4.)

2. Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.K.: Lattice-
based SNARKs: Publicly verifiable, preprocessing, and recursively composable -
(extended abstract). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II.
LNCS, vol. 13508, pp. 102–132. Springer, Heidelberg (Aug 2022). https://doi.
org/10.1007/978-3-031-15979-4_4 (Cited on page 3.)

21

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4

3. Albrecht, M.R., Davidson, A., Deo, A., Gardham, D.: Crypto dark matter on the
torus: Oblivious PRFs from shallow PRFs and FHE. Cryptology ePrint Archive,
Report 2023/232 (2023), https://eprint.iacr.org/2023/232 (Cited on page 20.)

4. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411–422. Springer, Heidelberg (Jul 2007). https://doi.org/10.
1007/978-3-540-73420-8_37 (Cited on page 1.)

5. Beullens, W., Seiler, G.: LaBRADOR: Compact proofs for R1CS from module-SIS.
In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol.
14085, pp. 518–548. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/
978-3-031-38554-4_17 (Cited on page 3, 9, 10, 13.)

6. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007.
pp. 276–285. ACM Press (Oct 2007). https://doi.org/10.1145/1315245.1315280
(Cited on page 1.)

7. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003). https://doi.org/10.
1007/3-540-39200-9_26 (Cited on page 1, 8.)

8. Boneh, D., Kim, S.: One-time and interactive aggregate signatures from lattices.
preprint (2020) (Cited on page 1, 2.)

9. Boudgoust, K., Roux-Langlois, A.: Non-interactive half-aggregate signatures based
on module lattices-a first attempt. Cryptology ePrint Archive (2021) (Cited on
page 1, 2, 20.)

10. Boudgoust, K., Roux-Langlois, A.: Overfull: Too large aggregate signatures based
on lattices. The Computer Journal p. bxad013 (2023) (Cited on page 1, 2, 20.)

11. Brakerski, Z., Brodsky, M.F., Kalai, Y.T., Lombardi, A., Paneth, O.: SNARGs
for monotone policy batch NP. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 252–283. Springer, Heidelberg
(Aug 2023). https://doi.org/10.1007/978-3-031-38545-2_9 (Cited on page 3.)

12. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy
verification from trapdoor permutations - (extended abstract). In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg
(Dec 2012). https://doi.org/10.1007/978-3-642-34961-4_39 (Cited on page 1.)

13. Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does fiat-shamir require a cryptographic
hash function? In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS,
vol. 12828, pp. 334–363. Springer, Heidelberg, Virtual Event (Aug 2021). https:
//doi.org/10.1007/978-3-030-84259-8_12 (Cited on page 3, 13.)

14. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: 62nd FOCS.
pp. 68–79. IEEE Computer Society Press (Feb 2022). https://doi.org/10.1109/
FOCS52979.2021.00016 (Cited on page 3.)

15. Devadas, L., Goyal, R., Kalai, Y., Vaikuntanathan, V.: Rate-1 non-interactive
arguments for batch-NP and applications. In: 63rd FOCS. pp. 1057–1068. IEEE
Computer Society Press (Oct / Nov 2022). https://doi.org/10.1109/FOCS54457.
2022.00103 (Cited on page 3.)

16. Doröz, Y., Hoffstein, J., Silverman, J.H., Sunar, B.: MMSAT: A scheme for mul-
timessage multiuser signature aggregation. Cryptology ePrint Archive, Report
2020/520 (2020), https://eprint.iacr.org/2020/520 (Cited on page 1.)

22

https://eprint.iacr.org/2023/232
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1145/1315245.1315280
https://doi.org/10.1145/1315245.1315280
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-031-38545-2_9
https://doi.org/10.1007/978-3-031-38545-2_9
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1109/FOCS54457.2022.00103
https://eprint.iacr.org/2020/520

17. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signatures.
In: Visconti, I., Prisco, R.D. (eds.) SCN 12. LNCS, vol. 7485, pp. 113–130. Springer,
Heidelberg (Sep 2012). https://doi.org/10.1007/978-3-642-32928-9_7 (Cited
on page 1.)

18. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly verifiable
secret sharing with thousands of parties. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 458–487. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4_16 (Cited on
page 6.)

19. Gentry, C., O’Neill, A., Reyzin, L.: A unified framework for trapdoor-permutation-
based sequential aggregate signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018,
Part II. LNCS, vol. 10770, pp. 34–57. Springer, Heidelberg (Mar 2018). https:
//doi.org/10.1007/978-3-319-76581-5_2 (Cited on page 1.)

20. Jeudy, C., Roux-Langlois, A., Sanders, O.: Phoenix: Hash-and-sign with aborts
from lattice gadgets. Cryptology ePrint Archive (2023) (Cited on page 2, 20.)

21. Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch arguments
and ram delegation. In: Proceedings of the 55th Annual ACM Symposium on
Theory of Computing. pp. 1545–1552 (2023) (Cited on page 3.)

22. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015) (Cited on page 5.)

23. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (May / Jun
2006). https://doi.org/10.1007/11761679_28 (Cited on page 1.)

24. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate sig-
natures from trapdoor permutations. In: Cachin, C., Camenisch, J. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (May 2004).
https://doi.org/10.1007/978-3-540-24676-3_5 (Cited on page 1.)

25. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_43 (Cited
on page 4, 5, 6, 13.)

26. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge proofs
and applications: Shorter, simpler, and more general. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 71–101. Springer, Heidelberg
(Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_3 (Cited on page 4.)

27. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting
cyclotomic rings and applications to lattice-based zero-knowledge proofs. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820,
pp. 204–224. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78381-9_8 (Cited on page 6.)

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 700–718. Springer, Heidelberg (Apr 2012). https://doi.org/10.
1007/978-3-642-29011-4_41 (Cited on page 5.)

29. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS. pp. 372–381. IEEE Computer Society Press (Oct 2004).
https://doi.org/10.1109/FOCS.2004.72 (Cited on page 4.)

30. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (Apr 2008).
https://doi.org/10.1007/978-3-540-78967-3_4 (Cited on page 1.)

23

https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1007/978-3-031-06944-4_16
https://doi.org/10.1007/978-3-031-06944-4_16
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-78967-3_4

31. Paneth, O., Pass, R.: Incrementally verifiable computation via rate-1 batch argu-
ments. In: 63rd FOCS. pp. 1045–1056. IEEE Computer Society Press (Oct / Nov
2022). https://doi.org/10.1109/FOCS54457.2022.00102 (Cited on page 3.)

32. Sato, S., Shikata, J.: Identity-based interactive aggregate signatures from lattices.
In: Seo, S.H., Seo, H. (eds.) Information Security and Cryptology – ICISC 2022. pp.
408–432. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/
978-3-031-29371-9_20 (Cited on page 2.)

33. Waters, B., Wu, D.J.: Batch arguments for sfNP and more from standard bilinear
group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II.
LNCS, vol. 13508, pp. 433–463. Springer, Heidelberg (Aug 2022). https://doi.
org/10.1007/978-3-031-15979-4_15 (Cited on page 8, 13, 19.)

24

https://doi.org/10.1109/FOCS54457.2022.00102
https://doi.org/10.1109/FOCS54457.2022.00102
https://doi.org/10.1007/978-3-031-29371-9_20
https://doi.org/10.1007/978-3-031-29371-9_20
https://doi.org/10.1007/978-3-031-29371-9_20
https://doi.org/10.1007/978-3-031-29371-9_20
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15

Table of Contents

1 Introduction . 1
1.1 Background . 1
1.2 Our Contributions . 2

2 Preliminaries . 3
2.1 Notation . 3
2.2 Lattices . 4
2.3 Succinct Non-Interactive Argument of Knowledge in the

Random Oracle Model . 6
2.4 Digital Signature . 7
2.5 Aggregate Signature . 8

3 Building Blocks . 9
3.1 Main Protocol for LaBRADOR . 9
3.2 CLMQ Signature Scheme . 13

4 Our Aggregate Signature Scheme . 13
4.1 Construction of Aggregate Signature . 13
4.2 Correctness . 16
4.3 Security: Unforgeability . 17
4.4 Parameter Selection and Efficiency . 19

5 Conclusion . 21

	 Compact Aggregate Signature from Module-Lattices
	Introduction
	Background
	Our Contributions

	Preliminaries
	Notation
	Lattices
	Succinct Non-Interactive Argument of Knowledge in the Random Oracle Model
	Digital Signature
	Aggregate Signature

	Building Blocks
	Main Protocol for LaBRADOR
	CLMQ Signature Scheme

	Our Aggregate Signature Scheme
	Construction of Aggregate Signature
	Correctness
	Security: Unforgeability
	Parameter Selection and Efficiency

	Conclusion

