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Abstract. We prove adaptive security of a simple three-round threshold
Schnorr signature scheme, which we call Sparkle+. The standard notion
of security for threshold signatures considers a static adversary – one who
must declare which parties are corrupt at the beginning of the protocol.
The stronger adaptive adversary can at any time corrupt parties and
learn their state. This notion is natural and practical, yet not proven to
be met by most schemes in the literature.
In this paper, we demonstrate that Sparkle+ achieves several levels of
security based on different corruption models and assumptions. To begin
with, Sparkle+ is statically secure under minimal assumptions: the discrete
logarithm assumption (DL) and the random oracle model (ROM). If an
adaptive adversary corrupts fewer than t/2 out of a threshold of t + 1
signers, then Sparkle+ is adaptively secure under a weaker variant of the
one-more discrete logarithm assumption (AOMDL) in the ROM. Finally,
we prove that Sparkle+ achieves full adaptive security, with a corruption
threshold of t, under AOMDL in the algebraic group model (AGM) with
random oracles. Importantly, we show adaptive security without requiring
secure erasures. Ours is the first proof achieving full adaptive security
without exponential tightness loss for any threshold Schnorr signature
scheme.
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1 Introduction

A threshold signature scheme allows a set of n possible signers to jointly produce
a signature on a message such that it verifies under a single public key, so long as
at least a threshold t+1 of signers participate. Importantly, a threshold signature
scheme should remain unforgeable even if t signers are under adversarial control.
A recent line of work has explored multi-party signatures whose output is a
standard (single-party) Schnorr signature [51, 3, 45, 27, 47, 7, 49, 55, 25]. Schnorr
signatures admit an efficient and compact representation even in the multi-party
setting, which makes them of particular interest for practical use [26, 18].

Static vs. Adaptive Security. Most threshold signature schemes in the litera-
ture are proven secure under static corruptions. In the static setting, an adversary
must declare which parties it wishes to corrupt in advance of any messages being
sent. This model places an artificial restriction on the adversary’s capabilities: in
reality, malicious actors may observe a system before targeting specific parties.
Thus, adaptive security is a strictly stronger notion, and indeed there are schemes
that are statically but not adaptively secure [21]. While there are generic methods
for transforming a statically secure scheme into an adaptively secure one [23],
such as guessing the corrupted parties and aborting if incorrect, these methods
incur undesirable performance overhead and a tightness loss of

(
n
t

)
. This grows

exponentially in the number of parties, and no adaptive guarantees can be made
for larger n. Adaptive security without exponential tightness loss is challenging
to achieve. A number of other techniques for proving adaptive security have
been proposed, but similarly require undesirable tradeoffs. Prior methods include
secure erasure of secret state [23], which is not easily enforced in practice, or
heavyweight tools, such as non-committing encryption [43].

In this work, we investigate the adaptive security of a simple three-round
threshold Schnorr signature scheme, which we call Sparkle+, under different
corruption models and security assumptions. Achieving adaptive security is not
just of theoretical interest: NIST recently published a call for multi-party threshold
schemes and included adaptive security as a main goal [18, 19], ideally supporting
up to n = 1024 or more parties. Our techniques are likely of independent interest,
as this paper introduces the first proof achieving full adaptive security without
exponential tightness loss for any threshold Schnorr signature scheme.

Concurrent Security. A concurrent adversary may open an arbitrary number
of signing sessions simultaneously. Unforgeability against a concurrent adversary
is also a difficult property to achieve, and indeed a host of threshold, blind, and
multi-signature schemes were demonstrated to be broken by concurrent (ROS)
attacks first observed by DEFKLNS [30] and exhibited in polynomial time by
BLLOR [15]. Our security reductions for Sparkle+ hold against a concurrent
and adaptive adversary. Moreover, Sparkle+ allows one round of signing to be
pre-processed, before the message and signing set are determined. This is optimal,
as further pre-processing would make the scheme susceptible to ROS attacks.
Combining concurrency and adaptivity in a multi-party, multi-round signing
protocol is the main technical achievement of this work.
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Scheme Offline Signing Online Signing Static Security Proof of
Rounds Rounds Assumptions Adaptive Security

FROST/2/3
1 1 AOMDL ✗

[45, 7, 55]

Lindell22 [47] - 3
Schnorr

✗
with aborts

Classic S. [49] - 3
Schnorr Exponential to

with aborts (n, t)

Zero S. [49] - 3
Schnorr Partial; cannot

with aborts reveal state

SS01 [58] - 5 Schnorr ✗

Sparkle+ 1 2 DL ✓

Fig. 1. Threshold Schnorr signature schemes that are concurrently secure in either the
standard model or the random oracle model (ROM). By partial adaptive security, we
mean that the reduction can only partially simulate adaptive security, by revealing the
signing keys, but not the signing session state maintained by an honest party.

Static Security of Sparkle+. Sparkle+ is a three-round threshold Schnorr
signature scheme that follows a commit-reveal paradigm. The protocol consists
of an offline phase, which may be executed before the message or signing set
are known, and an online phase consisting of two signing rounds. To begin with,
we prove the static security of Sparkle+ from minimal assumptions: that the
discrete logarithm assumption (DL) holds in the random oracle model (ROM).
This is the same assumption and model for which Schnorr signatures themselves
are proven secure [53]. We compare Sparkle+ with existing threshold Schnorr
signature schemes in Tables 1 and 3.

Adaptive Security of Sparkle+. We next consider an adaptive adversary who
may corrupt up to t/2 out of a threshold of t+ 1 parties over the course of the
protocol. We prove that Sparkle+ is adaptively secure in the random oracle model
under AOMDL, a weaker variant of the one-more discrete logarithm assumption
formalized in [51]. In the t+ 1-aomdl game, the adversary is given as input an
AOMDL challenge that is a vector of group elements of length t+ 1. It is also
given access to a discrete logarithm oracle, which returns the discrete logarithm
of a group element chosen by the adversary. To win the t+ 1-aomdl game, the
adversary must output all t+1 discrete logarithms of its challenge, having queried
its DL oracle a maximum of t times. The AOMDL assumption is stronger than
the discrete logarithm assumption because of the adversary’s ability to request for
up to t discrete logarithm solutions before returning the t+1 discrete logarithms
of its challenge. On the other hand, the AOMDL assumption is strictly weaker
than standard OMDL [9] because the adversary only queries for the discrete
logarithm of linear combinations of its challenge elements, which means the DL
oracle runs in polynomial time. This, in conjunction with the verification running
in polynomial time, makes AOMDL a falsifiable assumption [6, 41, 44].
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Fig. 2. Comparison of security models and assumptions for our threshold Schnorr
signature scheme Sparkle+. The signing threshold is t+ 1. DL is the discrete logarithm
assumption, and AOMDL is the algebraic one-more discrete logarithm assumption.
ROM is the random oracle model, and AGM is the algebraic group model.

In the case where the adversary can corrupt up to a full t parties, it is not clear
how to prove the adaptive security of Sparkle+ under AOMDL+ROM alone. The
reason is that in order to extract an AOMDL solution, the adversary is rewound
once, and there is no guarantee that the adversary will corrupt the same set of
parties after the fork as it did during the first iteration of the protocol. When
the adversary can corrupt only t/2 parties, this causes no issues, as the total
number of corruptions over both iterations does not exceed t. If the adversary
could corrupt more parties, the reduction would query its DL oracle more than t
times and would lose the t+ 1-aomdl game.

We thus look towards the algebraic group model (AGM) [34] for proving
our strongest adaptivity result. The AGM assumes that whenever an adversary
outputs a group element, it also outputs an algebraic representation specifying
how the group element depends on previously seen values. In the AGM, we
are able to prove full adaptive security of Sparkle+, with corruption threshold
t, under the AOMDL assumption and random oracles. Our security reduction
is straight-line, i.e., does not rewind the adversary, and so avoids counting the
number of corruptions over different forks of the adversary’s execution.

Our Contributions. The contributions of this work are as follows.

– We introduce Sparkle+, an efficient and practical threshold Schnorr signature
scheme with one round of pre-processing and two online signing rounds.

– We begin by proving that Sparkle+ is statically secure under the DL assump-
tion in the ROM.

– We then demonstrate the adaptive security of Sparkle+ against up to t/2
corruptions under the AOMDL assumption in the ROM.

– Finally, we prove our main result: that Sparkle+ is adaptively secure against
up to a full t corruptions under the AOMDL assumption in the AGM and
ROM.
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2 Related Work

Threshold Schnorr Signatures. Closest to the design of Sparkle+ is the MSDL
scheme presented by Boneh, Drijvers, and Neven [17], the three-round MuSig
scheme by Maxwell, Poelstra, Seurin, and Wuille [50], and the 2Schnorr scheme by
Nicolosi, Krohn, Dodis, and Mazières [52]. However, MSDL and MuSig consider
only the multi-signature setting (n-out-of-n), and 2Schnorr considers only the
2-out-of-2 setting. Note that when proving the security of multi-signatures, there
is only one honest signer.

Stinson and Strobl [58] propose a threshold Schnorr signature scheme secure in
the random oracle model under the discrete logarithm assumption. However, their
scheme requires performing a three-round distributed key generation protocol
(DKG) [39] to generate the nonce for each signature, which adds considerable
network overhead: at a minimum, it requires participants to perform four rounds
in total. Furthermore, the proof of security assumes only a static adversary.

Komlo and Goldberg [45] present a two-round threshold Schnorr signature
FROST. Unlike prior threshold Schnorr schemes in the literature [38], FROST is
secure against a concurrent adversary and is not susceptible to ROS attacks [15].
FROST2, proposed by Crites, Komlo, and Maller [27] and refined by Bellare,
Tessaro, and Zhu [14] and BCKMTZ [7], is an optimized version of FROST that
reduces the number of exponentiations required for signing from t+ 1 to one. A
further optimization of FROST2, called FROST3, is introduced by RRJSS [55]
and proven secure with a DKG by Chu, Gerhart, Ruffing, and Schröder [25]. (See
Table 3 for a comparison of efficiency.) However, all three of FROST, FROST2,
FROST3 are only proven statically secure, under the algebraic one-more discrete
logarithm assumption (AOMDL) [7]. While Sparkle+ adds an additional round of
communication, it requires only a single exponentiation per signer and is proven
statically secure under standard assumptions, which are also criteria of interest
in [18, 19].

Lindell presents a three-round threshold Schnorr signature [47] with the goal
of defining a scheme that is both secure against ROS attacks and secure in the
random oracle model under the discrete logarithm assumption only. Security is
modeled in the the universally composable framework (UC) [20] and therefore
captures a concurrent adversary. However, the security proof assumes the ad-
versary is static, and no claims are made regarding adaptive security. Sparkle+

similarly relies on only the ROM and DL assumption for static security, but does
not require the use of online-extractable zero-knowledge proofs [33], and hence is
both significantly more efficient and a simpler design.

Concurrent to this work, Makriyannis [49] defines a commit-reveal threshold
Schnorr signature scheme similar to Sparkle+, called Classic S., and proves security
with respect to an idealized notion of threshold signatures by CGGMP21 [22].
They consider adaptive security but employ the guessing argument that incurs
exponential tightness loss relative to the number of parties.

Adaptive Security of Threshold Signatures. While adaptive security for
threshold schemes is a well-known topic in the literature, no proof of adaptive
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Scheme Sign Combine

Performance Bandwidth Performance

rounds exp H G F exp H

FROST [45] 2 t+ 2 t+ 1 2 1 t t
FROST2 [7] 2 3 2 2 1 1 1
FROST3 [55] 2 3 2 1 1 1 1
Classic S. [49] 3 1 1 1 2 0 0
Lindell22 [47] 3 11t+ 1 18t+ 107 11 25 0 0

Sparkle+ 3 1 t+ 2 1 2 0 0

Fig. 3. Efficiency of Two- and Three-Round Threshold Schnorr Signature Schemes.
All output a standard Schnorr signature. We only compare schemes that are secure
against ROS attacks [30, 15]. The number of network rounds between participants is
given in the rounds column. exp stands for the number of group exponentiations. The
total number of group and field elements sent by each signer is denoted by G and F,
respectively. H denotes the total number of hashing operations performed. The cost of
signature verification is identical for each scheme, and is simply the cost of verifying a
single Schnorr signature. Estimates for Lindell22 are made with respect to a 128-bit
security level for Fischlin [33], where r = 8 is the number of commitments for a Fischlin
proof and the length of the zero vector is b = 16, such that b · r = 128.

security without exponential tightness loss exists for a threshold Schnorr signature
scheme that is secure against ROS attacks.

Generalized techniques for transforming statically secure threshold schemes
into adaptively secure schemes have been defined in the literature [23, 43, 48].
However, these techniques either require the reduction to guess the corrupted
parties ahead of time, require secure erasures, or introduce prohibitive perfor-
mance overhead by using a robust distributed key generation mechanism (DKG)
for nonce generation or heavyweight tools, such as Paillier encryption.

Almansa, Damg̊ard, and Nielsen [2] present a threshold RSA scheme with
proactive and adaptive security, but these results do not translate to the discrete
logarithm setting. Libert, Joye, and Yung [46] propose a variant of the threshold
BLS [16] scheme that is adaptively secure. However, it is incompatible with single-
party BLS verification, an often-critical goal for threshold schemes in practice.
Bacho and Loss [4] demonstrate the adaptive security of threshold BLS in Type
I bilinear groups directly in the AGM from the t + 1-omdl assumption. Their
reduction is tight. Interestingly, they demonstrate that the t+1-omdl assumption
is the minimum assumption under which threshold BLS can be proven adaptively
secure.

Subsequent Work. A recent result by Das and Ren [29] shows adaptive security
of threshold BLS in Type III bilinear groups under the co-computational Diffie-
Hellman assumption (co-CDH) and decisional Diffie-Hellman assumption (DDH)
in the ROM.
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Makriyannis [49] introduces a threshold Schnorr signature scheme, Zero S.,
which relies on Pedersen commitments, Fischlin proofs of knowledge [33], and an
interactive protocol to identify misbehaving parties. Zero S. is proven adaptively
secure in a straight-line manner with a reduction to DL but requires secure
erasure of secret state.

Twinkle, by BLTWZ [5], is a family of three-round threshold signature schemes.
The first, efficient construction is a distributed Chaum-Pedersen proof of equality
of discrete logarithms X = gx and H(m)x [24] (vs. a proof of knowledge of
the discrete logarithm of X = gx, as in Schnorr signatures). Thus, signatures
are Chaum-Pedersen outputs (H(m)x, c, z), where (c, z) is a Schnorr signature.
This scheme is proven fully adaptively secure under a one-more variant of the
computational Diffie-Hellman assumption (OMCDH) in the ROM. The second,
matrix construction is proven fully adaptively secure under the DDH assumption
in the ROM. The techniques used for simulation do not allow pre-processing: the
message and signing set must be given in the first round. Furthermore, neither
scheme is compatible with Schnorr signatures. To date, ours is the only proof of
adaptive security for any threshold Schnorr signature scheme.

Definitions. In this work, we employ a game-based approach to defining the
static and adaptive security of a threshold signature, formalizing prior notions
presented in the literature [46]. Alternative definitions of adaptive security in the
UC setting have been proposed by CGGMP21 [22]. They prove their threshold
ECDSA scheme adaptively secure assuming that ECDSA is secure, in addition
to other non-interactive and falsifiable assumptions. However, their construction
focuses on n-out-of-n multi-party signing, and their techniques critically do not
translate to the t-out-of-n setting unless

(
n
t

)
is small. Our fully adaptive t-out-of-n

construction requires the algebraic group model, and incorporating algebraic
adversaries into the UC setting is known to be a hard problem [1].

On the other hand, Lindell [47] shows that their protocol UC-realizes the
Schnorr functionality with aborts, in the presence of an adversary that non-
adaptively corrupts t parties. Secure evaluation of the Schnorr functionality is
stronger than unforgeability. As noted in [22], it is arguably overly strong in
the sense that it necessitates certain design decisions, such as incorporating
online-extractable zero-knowledge proofs. Indeed, [47] elected for Fischlin proofs
(see Table 3). The only method to bias the nonces in both Sparkle+ and [47] is to
abort; this is not the case in FROST [45]. However, all three works allow aborts,
and therefore the distribution of the secret randomness cannot be considered
uniform [31].

Differences to the Original Work. The authors of [5] identified one class
of adversarial behavior not captured by our original security analysis, namely
that honest parties may not have the same view of commitments generated
in the first signing round. We provide a simple fix, by having parties sign the
view of the commitments they receive from other parties, using any EUF-CMA
secure signature scheme. In particular, a Schnorr signature may be used, which
we assume in Fig. 2 and Tables 1 and 3 since it is itself secure under the DL
assumption in the ROM [53]. We see the same technique being used in other
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schemes for the same purpose, namely in the blind threshold signature scheme
Snowblind [28], and in [7] for “boosting” the security of FROST from TS-UF-3 to
TS-UF-4. Indeed, this allows us to prove a stronger result: that adaptive security
can be achieved with the message and signing set deferred to the second round.
We are able to prove adaptive security of Sparkle+, with pre-processing, using
our original simulation techniques.

3 Preliminaries

3.1 General Notation and Definitions

Let κ ∈ N denote the security parameter and 1κ its unary representation. A
function ν : N→ R is called negligible if for all c ∈ R, c > 0, there exists k0 ∈ N
such that |ν(k)| < 1

kc for all k ∈ N, k ≥ k0. For a non-empty set S, let x←$ S
denote sampling an element of S uniformly at random and assigning it to x. We
use [n] to represent the set {1, . . . , n} and [0..n] to represent the set {0, . . . , n}.
We represent vectors as a⃗ = (a1, . . . , an).

Let PPT denote probabilistic polynomial time. Algorithms are randomized
unless explicitly noted otherwise. Let y ← A(x; ρ) denote running algorithm A on
input x and randomness ρ and assigning its output to y. Let y←$ A(x) denote
y ← A(x; ρ) for a uniformly random ρ. The set of values that have non-zero
probability of being output by A on input x is denoted by [A(x)].

Group Generation. Let GrGen be a polynomial-time algorithm that takes as
input a security parameter 1κ and outputs a group description (G, p, g) consisting
of a group G of order p, where p is a κ-bit prime, and a generator g of G.

Random Oracle Model [12]. The random oracle model is an idealized model
that treats a hash function H as an oracle in the following way. When queried on
an input in the domain of H, the oracle first checks if it has an entry stored in
its table for this input. If so, it returns this value. If not, it samples an output
in the codomain of H uniformly at random, stores the input-output pair in its
table, and returns the output.

Algebraic Group Model [34]. The algebraic group model is an idealized model
that places the following restriction on the computation of the adversary. An
adversary is algebraic if for every group element Z ∈ G = ⟨g⟩ that it outputs, it is
required to output a representation a⃗ = (a0, a1, a2, . . . ) such that Z = ga0

∏
Yi

ai ,
where Y1, Y2, · · · ∈ G are group elements that the adversary has seen thus far.
Intuitively, this captures the notion that an algorithm should know how it
computes its outputs from the values it has received as input so far. The AGM
is reminiscent of the generic group model (GGM), but lies somewhere between it
and the standard model.

Polynomial Interpolation. A polynomial f(x) = a0 + a1x+ a2x
2 + . . .+ atx

t

of degree t over a field F can be interpolated by t+ 1 points. Let η ⊆ [n] be the
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list of t+ 1 distinct indices corresponding to the x-coordinates xi ∈ F, i ∈ η, of
these points. Then the Lagrange polynomial Li(x) has the form:

Li(x) =
∏

j∈η;j ̸=i

x− xj

xi − xj
(1)

Given a set of t+1 points (xi, f(xi))i∈[t+1], any point f(xℓ) on the polynomial
f can be determined by Lagrange interpolation as follows:

f(xℓ) =
∑
k∈η

f(xk) · Lk(xℓ)

Definition 1 (Shamir Secret Sharing [57]). Shamir secret sharing is an
(n, t+ 1)-threshold secret sharing scheme consisting of algorithms (IssueShares,
Recover), defined as follows:

– IssueShares(x, n, t+ 1)→ {(1, x1), . . . , (n, xn)}: On input a secret x, number
of participants n, and threshold t+ 1, perform the following. First, define a
polynomial f(Z) = x+ a1 + a2Z

2 + · · ·+ atZ
t by sampling t coefficients at

random: a1, . . . , at←$ Zp. Then, set each participant’s share xi, i ∈ [n], to be
the evaluation of f(i):

xi ← x+
∑
j∈[t]

aji
j

Output {(i, xi)}i∈[n].

– Recover(t + 1, {(i, xi)}i∈S) → ⊥/x: On input threshold t + 1 and a set of
shares {(i, xi)}i∈S , output ⊥ if S ̸⊆ [n] or if |S| < t+ 1. Otherwise, recover
x as follows:

x←
∑
i∈S

λixi

where the Lagrange coefficient for the set S is defined by

λi =
∏

j∈S,j ̸=i

j

i− j

3.2 Digital Signatures

Definition 2 (Digitial Signatures). A digitial signature scheme consists of
polynomial-time algorithms (Setup,KeyGen,Sign,Verify), defined as follows:

– Setup(1κ) → par: On input a security parameter 1κ, this algorithm out-
puts public parameters par (which are given implicitly as input to all other
algorithms).

– KeyGen()→ (pk, sk): This probabilistic algorithm outputs a public key pk and
secret key sk.

– Sign(sk,m)→ σ: On input a secret key sk and a message m, this algorithm
outputs a signature σ.

10



main GameEUF-CMA
A,DS (κ)

par← Setup(1κ)

Qm ← ∅
(pk, sk)←$ KeyGen()

(m∗, σ∗)←$AOSign

(pk)

return 0 if m∗ ∈ Qm

∨ Verify(pk,m∗, σ∗) ̸= 1

return 1

OSign(m)

Qm ← Qm ∪ {m}
σ ← Sign(sk,m)

return σ

Fig. 4. The EUF-CMA security game for a digital signature scheme DS. The public
parameters par are implicitly given as input to all algorithms.

– Verify(pk,m, σ) → 0/1: On input a public key pk, a message m, and a
purported signature σ, this deterministic algorithm outputs 1 (accept) if σ is
a valid signature on m under pk; else, it outputs 0 (reject).

A digital signature scheme must be correct. It is said to be secure if it is existen-
tially unforgeable under chosen-message attacks (EUF-CMA).

Definition 3 (Correctness). A digital signature scheme (Setup,KeyGen,Sign,
Verify) is correct if for all security parameters κ ∈ N, all key pairs (pk, sk) ∈
[KeyGen()], and all messages m, we have:

Pr[Verify(pk,m,Sign(sk,m)) = 1] = 1

Definition 4 (EUF-CMA [42]). Let the advantage of an adversary A playing
the EUF-CMA game, GameEUF-CMA, as defined in Figure 4, be as follows:

AdvEUF-CMA
A,DS (κ) =

∣∣Pr[GameEUF-CMA
A,DS (κ) = 1]

∣∣
A digital signature scheme (Setup,KeyGen,Sign,Verify) is existentially unforge-
able under chosen-message attacks if for all PPT adversaries A, AdvEUF-CMA

A,DS (κ)
is negligible.

Definition 5 (Schnorr Signatures [56]). The Schnorr signature scheme
consists of polynomial-time algorithms (Setup,KeyGen,Sign,Verify), defined as
follows:

– Setup(1κ)→ par: On input a security parameter 1κ, run (G, p, g)← GrGen(1κ)
and select a hash function H : {0, 1}∗ → Zp. Output public parameters
par ← ((G, p, g),H) (which are given implicitly as input to all other algo-
rithms).

– KeyGen() → (pk, sk): Sample a secret key x←$ Zp and compute the public
key as X ← gx. Output key pair (pk, sk)← (X,x).

11



– Sign(sk,m)→ σ: On input a secret key sk = x and a message m, sample a
nonce r←$ Zp. Then, compute a nonce commitment R← gr, the challenge
c← H(X,m,R), and the response z ← r+cx. Output a signature σ ← (R, z).

– Verify(pk,m, σ) → 0/1: On input a public key pk = X, a message m, and
a purported signature σ = (R, z), compute c ← H(X,m,R) and output 1
(accept) if R ·Xc = gz; else, output 0 (reject).

A Schnorr signature is a Sigma protocol zero-knowledge proof of knowledge of
the discrete logarithm of the public key X, made non-interactive and bound to
the message m by the Fiat-Shamir transform [32]. Schnorr signatures are secure
under the discrete logarithm assumption in the random oracle model [53].

3.3 Assumptions

Assumption 1 (Discrete Logarithm Assumption (DL)) Let the advantage
of an adversary A playing the discrete logarithm game, Gamedl, as defined in
Figure 5, be as follows:

AdvdlA(κ) =
∣∣Pr[GamedlA(κ) = 1]

∣∣
The discrete logarithm assumption holds if for all PPT adversaries A, AdvdlA(κ)
is negligible.

Assumption 2 (One-More Discrete Logarithm Assumption (OMDL))
[9] Let the advantage of an adversary A playing the t+ 1-one-more discrete loga-
rithm game, Gamet+1-omdl, as defined in Figure 5, be as follows:

Advt + 1-omdl
A (κ) =

∣∣Pr[Gamet+1-omdl
A (κ) = 1]

∣∣
The one-more discrete logarithm assumption holds if for all PPT adversaries A,
Advt + 1-omdl

A (κ) is negligible.

Algebraic One-More Discrete Logarithm Assumption (AOMDL). The
algebraic one-more discrete logarithm assumption (AOMDL) was introduced
formally by Jonas, Ruffing, and Seurin for proving the security of the two-round
Schnorr multi-signature scheme MuSig2 [51]. We use it as an assumption to prove
the adaptive security of Sparkle+, but it actually (implicitly) appears elsewhere
in the literature where OMDL is used [11, 52, 13, 35].

As in the standard OMDL game, the AOMDL adversary is given as input a
group description (G, p, g) and a set of challenge group elements (X0, X1, . . . , Xt)
and has access to a discrete logarithm solution oracle Odl that it may query up
to t times. The adversary wins the game if it computes the discrete logarithms
(x0, x1, . . . , xt) without exceeding t queries to Odl (i.e., the adversary is able to
compute “one more” discrete logarithm). The difference in the AOMDL game is
that, when the adversary queries the Odl oracle on a group element X, it must
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main GamedlA(κ)

(G, p, g)← GrGen(1κ)

x←$ Zp; X ← gx

x′←$A((G, p, g), X)

if x′ = x

return 1

return 0

main Game
t+1- a omdl

A (κ)

(G, p, g)← GrGen(1κ)

Q← ∅
q ← 0

for i ∈ [0..t] do

xi←$ Zp; Xi ← gxi

Q[Xi] = xi

x⃗← (x0, . . . , xt)

X⃗ ← (X0, X1, . . . , Xt)

x⃗′ ← AOdl

((G, p, g), X⃗)

if x⃗′ = x⃗

return 1

return 0

Odl(X, α, {βi}ti=0 )

// X = g
α

t∏
i=0

X
βi
i

return ⊥ if q = t

q ← q + 1

x← α+
∑t

i=0 xiβi

return x

x← dlog(X)

return x

Fig. 5. The Discrete Logarithm (DL), One-More Discrete Logarithm (OMDL), and
Algebraic One-More Discrete Logarithm (AOMDL) games. The differences between the
OMDL and AOMDL games are highlighted in gray. The key distinction is that in the
AOMDL game, the adversary can only query its discrete logarithm oracle on linear
combinations of its challenge group elements; in the OMDL game, the environment
must return the discrete logarithm of an arbitrary group element. dlog is an algorithm
that finds the discrete logarithm of an arbitrary group element X base g.

provide an algebraic representation (α, {βi}ti=0) of X relative to the generator g

and challenge group elements (X0, X1, . . . , Xt), so that X = gα
∏t

i=0 X
βi

i . The

Odl oracle may then use this representation to compute α+
∑t

i=0 βixi. This is
in contrast to standard OMDL, where the Odl oracle may be queried for discrete
logarithms of arbitrary group elements. Thus, AOMDL is a weaker assumption
than standard OMDL, because it is falsifiable. Indeed, not only does the algorithm
verifying the correctness of the AOMDL solutions run in polynomial time, but
the Odl algorithm does as well.

Assumption 3 (Algebraic One-More Discrete Logarithm Assumption)
[51] Let the advantage of an adversary A playing the t+ 1-algebraic one-more
discrete logarithm game, Gamet+1-aomdl, as defined in Figure 5, be as follows:

Advt + 1-aomdl
A (κ) =

∣∣Pr[Gamet+1-aomdl
A (κ) = 1]

∣∣
The algebraic one-more discrete logarithm assumption holds if for all PPT adver-
saries A, Advt + 1-aomdl

A (κ) is negligible.
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4 Threshold Signature Schemes

We begin with the definition of a threshold signature scheme. We build upon
prior definitions in the literature [37, 40, 36], but define an additional algorithm
for combining signatures that is separate from the signing rounds. It may be
performed by one of the signers or some external party. Our definition of threshold
signatures models a generic three-round signing protocol, where the message and
signing set are given in the first round. We then provide game-based definitions of
static and adaptive security for threshold signature schemes with pre-processing
(i.e., where the message and signing set are deferred to the second round), as
these are the notions of security achieved by Sparkle+.

Definition 6 (Threshold Signatures). A threshold signature scheme TS with
three signing rounds consists of polynomial-time algorithms TS = (Setup,KeyGen,
(Sign1,Sign2,Sign3),Combine,Verify), defined as follows:

– Setup(1κ)→ par: This algorithm takes as input a security parameter 1κ and
outputs public parameters par (which are given implicitly as input to all other
algorithms).

– KeyGen(n, t+ 1)→ (pk, {(pki, ski)}i∈[n]): A probabilistic algorithm that takes
as input the number of signers n and the threshold t + 1 and outputs the
public key pk representing the set of n signers, the set {pki}i∈[n] of public
keys for each signer, and the set {ski}i∈[n] of secret keys for each signer. It
is assumed that participant i is sent its secret key ski privately.

– (Sign1,Sign2,Sign3) : A set of algorithms where each subsequent algorithm
represents a single stage in an interactive three-round signing protocol, per-
formed by each signing party in a signing set S ⊆ [n], |S| = t+1, with respect
to a message m, defined as follows:

(pmk,1, stk,1)← Sign1(S,m, ski)

(pmk,2, stk,2)← Sign2(stk,1, {pmi,1}i∈S) (2)

pmk,3 ← Sign3(stk,2, {pmi,2}i∈S)

where pmk,1, pmk,2, pmk,3 are protocol messages sent by party k, and stk,1, stk,2,
stk,3 is the state of signing party k at the end of each round.

– Combine({(S,m, {pmi,1, pmi,2, pmi,3}i∈S) → σ: A deterministic algorithm
that takes as input a signing set S, a message m, and a set of protocol
messages {pmi,1, pmi,2, pmi,3}i∈S and outputs a signature σ.

– Verify(pk,m, σ) → 0/1: A deterministic algorithm that takes as input the
public key pk, a message m, and purported signature σ and outputs 1 (accept)
if σ is a valid signature on m under pk; else, it outputs 0 (reject).

Remark 1 (Distributed key generation). Our definition assumes a centralized
key generation algorithm KeyGen to generate the joint public key pk and key
pairs {(pki, ski)}i∈[n]. However, our scheme and proofs can be adapted to use a
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distributed key generation protocol (DKG). We refer to [4] for a discussion on
how to achieve adaptively secure DKGs.

Correctness. A threshold signature scheme is correct if for all security parameters
κ ∈ N, all 1 ≤ t+ 1 ≤ n, all S ⊆ [n] such that |S| = t+ 1, all messages m, and
all (pk, {(pki, ski)}i∈[n]) ∈ [KeyGen(n, t+ 1)], the experiment defined by Eq. (2)
returns σ such that Verify(pk,m, σ) = 1.

4.1 Definition of Static Security

Most threshold signature schemes in the literature are proven in the static security
model, which captures a limited adversary that can only corrupt parties at the
onset of the protocol. We provide a formal game-based definition in Fig. 6. The
static security game contains all but the dashed boxes.

In the static unforgeability game, the environment accepts a security parameter
κ and a corruption fraction frac. We consider a static adversary that can corrupt
a full t (i.e., frac = 1) signers out of t+ 1 signers in a session. The environment
generates public parameters par and initializes the adversary with par. The
adversary chooses a set of potential signers n, a threshold t + 1, and a set of
corrupted parties cor. The environment checks that the number of corrupted
parties does not exceed the maximum allowable amount frac · t and sets the
honest parties hon← [n] \ cor.

The environment then runs KeyGen to derive the joint public key pk repre-
senting all n signers, the individual public key shares {pki}i∈[n], and the secret
signing shares {ski}i∈[n]. It returns pk, {pki}i∈[n], and the set of corrupt signing
shares {skj}j∈cor to the adversary.

After key generation has concluded, the adversary can then query the various
signing oracles OSign1,Sign2,Sign3 for honest signers to engage in subsequent signing
rounds, across different sessions. The environment performs checks during the
signing rounds to ensure each participant being called is in fact uncorrupted
and in the correct signing round. Each check is carried out with respect to an
execution identifier, denoted by eid, which is a random string sampled by the
environment and bound to each new signing session for an honest party. Doing
so enables the environment to distinguish concurrent signing sessions and update
the correct session state for each subsequent signing round. Execution identifiers
are akin to session identifiers (typically denoted as sid), however, we do not
assume global consistency among signers for execution identifiers; each honest
party samples and locally maintains their own eid for each signing session.

The adversary wins if it can produce a valid forgery σ∗ = (R∗, z∗) with respect
to the joint public key pk on a message m∗ that has not been previously queried.

Note that our definition adds new state for each signing round. Specifically,
the private state of signer k in session eid is stored in st[k, eid, rnd], where rnd is
the round. The adaptive security of Sparkle+ does not rely on secure erasures:
the state in each round is carried to all subsequent rounds.

Note also that the adversary may be rushing, i.e., it may wait to produce its
outputs after having seen honest protocol messages in each round. Our model
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main Game
adp -TS-EUF-CMA

A,TS (κ, frac)

par← Setup(1κ)

Qst ← ∅,Qm ← ∅
(n, t+ 1, cor, stA)←$A(par)
return ⊥ if t+ 1 > n ∨ cor ̸⊂ [n]

∨ |cor| > frac · t
hon← [n] \ cor
(pk, {(pki, ski)}i∈[n])←$ KeyGen(n, t+ 1)

input← (pk, {pki}i∈[n], {skj}j∈cor, stA)

(m∗, sig∗)←$AO
Sign1,Sign2,Sign3,Corrupt

(input)

return 1 if m∗ /∈ Qm

∧ Verify(pk,m∗, sig∗) = 1

return 0

OCorrupt(k)

return ⊥ if k ̸∈ hon ∨ |cor| = frac · t
cor← cor ∪ {k}
hon← cor \ {k}
stk ← Qst[k, ·, ·] // all state for party k

return (skk, stk)

OSign1(k)

return ⊥ if k /∈ hon

eid←$ {0, 1}∗

(pmk,eid,1, stk,eid,1)← Sign1(k, skk)

Qst[k, eid, 1]← stk,eid,1

return (eid, pmk,eid,1)

OSign2(k, eid,S,m, {pmi,eidi,1}i∈S)

return ⊥ if k /∈ hon

return ⊥ if Qst[k, eid, 1] = ⊥
return ⊥ if Qst[k, eid, 2] ̸= ⊥
parse stk,eid,1 ← Qst[k, eid, 1]

Qm ← Qm ∪ {m}
return ⊥ if ⊥
← Sign2(k, stk,eid,1,S,m, {pmi,eidi,1

}i∈S)

(pmk,eid,2, stk,eid,2)

← Sign2(k, stk,eid,1,S,m, {pmi,eidi,1
}i∈S)

Qst[k, eid, 2]← stk,eid,2

return pmk,eid,2

OSign3(k, eid, {pmi,eidi,2}i∈S)

return ⊥ if k /∈ hon

return ⊥ if Qst[k, eid, 2] = ⊥
return ⊥ if Qst[k, eid, 3] ̸= ⊥
parse stk,eid,2 ← Qst[k, eid, 2]

return ⊥ if ⊥
← Sign3(k, stk,eid,2, {pmi,eidi,2

}i∈S)

pmk,eid,3

← Sign3(k, stk,eid,2, {pmi,eidi,2
}i∈S)

Qst[k, eid, 3]← pmk,eid,3

return pmk,eid,3

Fig. 6. Static and adaptive unforgeability games for a threshold signature scheme with
one preprocessing round followed by two online signing rounds. The public parameters
par are implicitly given as input to all algorithms, and pm1, pm2, pm3 represent protocol
messages defined within the construction. The static game contains all but the dashed
boxes, and the adaptive game adds the dashed boxes. frac specifies the fraction of t
signers that the adversary may corrupt. For example, frac = 1 means the adversary can
corrupt a full t signers, and frac = 1/2 means it can corrupt t/2 signers.
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additionally captures a concurrent adversary, who may open simultaneous signing
sessions at once or choose not to complete a signing session. We model concurrency
explicitly in our definition to ensure that our notion of security protects against
practical attacks which can occur under a concurrent adversary [30, 15].

Definition 7 (Static Security). Let the advantage of an adversary A playing
the static security game, GameTS-EUF-CMA, as defined in Figure 6, be as follows:

AdvTS-EUF-CMA
A,TS (κ, frac) =

∣∣Pr[GameTS-EUF-CMA
A,TS (κ, frac) = 1]

∣∣
A threshold signature scheme TS is statically secure if for all PPT adversaries
A, AdvTS-EUF-CMA

A,TS (κ, frac) is negligible.

4.2 Definition of Adaptive Security

We build upon the notion of adaptive security for threshold signature schemes by
Libert, Joye, and Yung [46]. We provide a formal game-based definition, which is
specified in Figure 6. The adaptive unforgeability game contains the same inputs
and algorithms as the static game, but additionally includes a corruption oracle
OCorrupt.

In the adaptive setting, the adversary is not restricted to choosing its set of
corrupt participants cor only at the beginning of the game. Instead, the adversary
can at any time choose to corrupt an honest party by querying OCorrupt, receiving
in return the honest party’s secret key and state across all signing sessions.

In addition to producing a valid forgery, the adversary must meet the winning
condition that the set of corrupted participants at the end of the experiment is
within the expected bound, i.e., less than frac · t, with respect to the corruption
ratio frac. An adaptive adversary may, for example, corrupt t/2 (i.e., frac = 1/2)
or a full t (i.e., frac = 1) signers out of at least t+ 1 signers in a session.

Definition 8 (Adaptive Security). Let the advantage of an adversary A
playing the adaptive security game Gameadp-TS-EUF-CMA, as defined in Figure 6,
be as follows:

Advadp-TS-EUF-CMA
A,TS (κ, frac) =

∣∣Pr[Gameadp-TS-EUF-CMA
A,TS (κ, frac) = 1]

∣∣
A threshold signature scheme TS is adaptively secure if for all PPT adversaries
A, Advadp-TS-EUF-CMA

A,TS (κ, frac) is negligible.

Definition 9 (Full Adaptive Security). We say that a threshold signature
scheme TS achieves full adaptive security if the value of the multiplier frac in
Gameadp-TS-EUF-CMA

A,TS (κ, frac) is frac = 1; i.e., the adversary is allowed to corrupt
up to t participants.

5 Threshold Schnorr Signature Scheme Sparkle+

Sparkle+ is a simple three-round threshold Schnorr signature scheme (Fig. 7). It
consists of an offline phase, which may be executed before the message or signing
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set are known, and an online phase consisting of two signing rounds. We assume
an external mechanism to choose the set of signers S ⊆ [n], where t+1 = |S| ≤ n
and S is ordered to ensure consistency. We employ a centralized key generation
algorithm; however, our scheme and proofs can be adapted to use a distributed
key generation protocol (DKG). We refer to [4] for a discussion on how to achieve
adaptively secure DKGs.

We assume that key generation operations are performed over a reliable,
authenticated, and private network communication channel. For communication
between participants at the time of signing, we assume a network model that
is reliable. However, we do not assume consistency or authenticity of messages
exchanged between participants. Thus, Sparkle+ additionally makes use of a
standard EUF-CMA-secure single-party signature scheme DS to authenticate
messages sent in the signing rounds.

Intuitively, Sparkle+ follows a commit-reveal paradigm for its three-round
signing protocol. In the first round, each participant in the signing set S commits
to their nonce Ri = gri by publishing cmi ← Hcm(i, Ri). In the second round,
each participant reveals Ri in the clear, along with a DS signature on their
protocol transcript. In the third round, each participant computes the aggregate
nonce R =

∏
i∈S Ri, the Schnorr challenge c← Hsig(pk,m,R) using R, and their

signature share zi. The signature shares are additively combined via the Combine
algorithm to produce the Schnorr signature σ = (R, z =

∑
i∈S zi).

This commit-reveal strategy ensures two security properties. First, requiring
each participant to publish a commitment in the first round, before revealing
their nonce Ri, prevents a rushing adversary from adaptively choosing their Rj

as a function of other participants’ Ri values, which is known to lead to ROS
attacks [30, 15]. Second, as we will see later in the proofs of adaptive security, it
allows the reduction to effectively handle corruptions at any point in the signing
process, without requiring the erasure of secret state.

Parameter Generation. On input the security parameter 1κ, the setup algo-
rithm runs (G, p, g)← GrGen(1κ) and selects two hash functions Hcm,Hsig :
{0, 1}∗ → Zp. It also runs the setup algorithm for a signature scheme
parsig ← DS.Setup(1κ) used for authentication in Signing Rounds 1 and
2. It outputs public parameters par← ((G, p, g),Hcm,Hsig, parsig), which are
provided as input to all other algorithms and protocols.

Key Generation. On input the number of signers n and the threshold t+ 1,
the key generation algorithm first generates the secret key x←$ Zp and
joint public key pk ← gx. It then performs a Shamir secret sharing of
x: {(i, xi)}i∈[n]←$ IssueShares(x, n, t + 1) (Def. 1). It computes the corre-
sponding public key for each participant as Xi ← gxi . It then runs the key
generation algorithm (X̂i, x̂i) ← DS.KeyGen(). It sets pki ← (Xi, X̂i) and
ski ← (xi, x̂i, pk, {pki}i∈[n]). Finally, it outputs (pk, {(pki, ski)}i∈[n]).

Signing Round 1 (Sign1). In the first round, a potential signer samples ri←$ Zp,
computes Ri ← gri and cmi ← Hcm(i, Ri), and outputs commitment cmi.
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Setup(1κ)

(G, p, g)← GrGen(1κ)

// select two hash functions

Hcm,Hsig : {0, 1}∗ → Zp

parDS ← DS.Setup(1κ)

par← ((G, p, g),Hcm,Hsig, parDS)

return par

KeyGen(n, t+ 1)

x←$ Zp; pk← gx

{(i, xi)}i∈[n]←$ IssueShares(x, n, t+ 1)

// Shamir secret sharing of x

for i ∈ [n] do

Xi ← gxi ; (X̂i, x̂i)←$ DS.KeyGen()

pki ← (Xi, X̂i)

ski ← (xi, x̂i, pk, {pki}i∈[n])

return (pk, {(pki, ski)}i∈[n])

Sign1(k, skk)

rk←$ Zp; Rk ← grk

cmk ← Hcm(k,Rk)

stk,1 ← (cmk, Rk, rk, skk)

return (cmk, stk,1)

Sign2(k, stk,1,S,m, {cmi}i∈S)

return ⊥ if S ̸⊆ [n] ∨ |S| ≤ t+ 1

∨ k /∈ S
parse (cm′

k, Rk, rk, skk)← stk,1

// checks inputs against records in state

return ⊥ if cm′
k ̸= cmk

msgk ← (k, cmk, Rk,S,m, {cmi}i∈S)

σ̂k ← DS.Sign(x̂k,msgk)

stk,2

← (Rk, rk, cmk, σ̂k,S,m, {cmi}i∈S , skk)

return ((Rk, σ̂k), stk,2)

Sign3(k, stk,2, {(Ri, σ̂i)}i∈S)

parse

(R′
k, rk, cmk, σ̂

′
k,S ′,m, {cmi}i∈S′ , skk)

← stk,2

return ⊥ if

(R′
k, σ̂

′
k,S ′) ̸= (Rk, σ̂k,S)

// checks inputs against records in state

for i ∈ S do

return ⊥ if cmi ̸= Hcm(i, Ri)

msgi ← (i, cmi, Ri,S,m, {cmj}j∈S)

if DS.Verify(X̂i,msgi, σ̂i) ̸= 1

return ⊥

R←
∏
i∈S

Ri

c← Hsig(pk,m,R)

zk ← rk + cλkxk

// λk is the Lagrange coefficient for k

return zk

Combine(S,m, {cmi, (Ri, σ̂i), zi}i∈S)

R←
∏
i∈S

Ri; z ←
∑
i∈S

zi

σ ← (R, z)

return σ

Verify(pk,m, σ)

parse (R, z)← σ

c← Hsig(pk,m,R)

return 1 if R · pkc = gz

return 0

Fig. 7. Sparkle+ threshold signature scheme with one round of preprocessing. Consis-
tency checks on the state, e.g., ensuring that stk,1 is only used once, are enforced in the
definition of unforgeability (Fig. 6) and implementers must additionally include these
checks. The public parameters par are implicitly given as input to all algorithms. We
assume an external mechanism to choose the set of signers S ⊆ [n], where |S| = t+ 1
and S is ordered to ensure consistency. DS is a EUF-CMA-secure digital signature
scheme (e.g., a Schnorr signature). Verification is identical to the Schnorr signature
scheme as in Definition 5.
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Signing Round 2 (Sign2). In the second round, each signer reveals their com-
mitted nonce Ri. On input a message m, a signing set S, and a set of
commitments {cmj}j∈S , each participant i ∈ S checks that the commit-
ment given as input on behalf of them, i.e., cmi ∈ {cmj}j∈S , is in fact
what is recorded in their state from Signing Round 1. They then form the
message msgi ← (i, cmi, Ri,S,m, {cmj}j∈S) and run the signing algorithm
σ̂i ← DS.Sign(x̂i,msgi), used to authenticate the messages sent in Signing
Rounds 1 and 2. Each signer then outputs their committed nonce Ri and
signature σ̂i.

Signing Round 3 (Sign3). In the third and final round, each signer outputs
their partial signature zi. On input a set of nonce-signature pairs {(Rj ,
cmj)}j∈S , each participant i ∈ S first checks that the signing set S and nonce-
signature pair given as input on behalf of them, i.e., (Ri, σ̂i) ∈ {(Rj , σ̂j)}j∈S ,
is in fact what is recorded in their state from Signing Round 2. Each par-
ticipant then checks that the commitments received in the first round are
valid, i.e., if for some j ∈ S, cmj ̸= Hcm(j, Rj), return ⊥. They also form
messages msgj ← (j, cmj , Rj ,S,m, {cmi}i∈S) for all j ∈ S and check that

all signatures σ̂j verify: DS.Verify(X̂j ,msgj , σ̂j) = 1 and return ⊥ if not. The
signatures ensures that the honest signing parties all agree on the shared view
of the message, signing set, and protocol messages sent in Signing Rounds
1 and 2. If all checks pass, each participant computes the aggregate nonce
R =

∏
j∈S Rj , c ← Hsig(pk,m,R), and partial signature zi ← ri + cλixi,

where λi is the Lagrange coefficient for participant i with respect to signing
set S. Finally, each signer outputs zi.

Combining Signatures. On input a signing set S, message m, commitments
{cmj}j∈S , nonces {Rj}j∈S , and partial signatures {zj}j∈S , the combiner
computes R←

∏
j∈S Rj and z ←

∑
j∈S zj , and outputs σ ← (R, z).

Verification. On input the joint public key pk, a message m, and a purported
signature σ = (R, z), the verifier computes c← Hsig(pk,m,R) and accepts if
R · pkc = gz.

Remark 2. Key generation outputs the set of public key shares {Xi}i∈[n], which
allows identification of misbehaving signers (i.e., identifiable abort) by verifying
each participant’s partial signature share zi with respect to Xi.

Correctness of Sparkle+ is straightforward to verify. Note that verification of
the signature σ is identical to verification of a standard (single-party) Schnorr
signature (Def. 5) with respect to the joint public key pk and aggregate nonce R.
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6 Our Results

6.1 Static Security Under Standard Assumptions

Our first result is that Sparkle+ is statically secure under the EUF-CMA security
of DS and under the discrete logarithm assumption (DL) in the random oracle
model (ROM). DS itself may, for example, be a Schnorr signature, which is secure
under DL in the ROM [53]. We allow a static adversary to control up to t parties,
but they must be declared at the beginning of the protocol (Fig. 6).

Theorem 1. Let GrGen be a group generator and DS be a digital signature
scheme. For any PPT adversary A for the game GameTS-EUF-CMA

A,Sparkle+ (κ, frac = 1)

(Fig. 6), there exists a PPT adversary B1 for the game GameEUF-CMA
B1,DS (κ) (Fig. 4)

making at most qS queries to OSign, and a PPT adversary B2 for the game
GamedlB2

(κ) (Fig. 5) such that

AdvTS-EUF-CMA
A,Sparkle+ (κ) ≤

√
q · AdvdlB2

(κ) +
q2 + 4q

p
+ 2n · AdvEUF-CMA

B1,DS (κ) (3)

where n is the number of signers, t is the maximum number of corrupted signers,
p is the group size, and q = qH + qS + 1, where qH is the number of queries A
can make to the random oracles, and qS is the number of queries A can make to
the signing oracles.

We formally prove Theorem 1 in Section A.

Proof Outline. Let A be a PPT adversary against the static unforgeability
of Sparkle+ (Fig. 6). We construct a PPT reduction B1 against the EUF-CMA
security of the signature scheme DS and a PPT reduction B2 against the DL
assumption (Fig. 5). We show that if A produces a forgery with non-negligible
probability, then either B1 breaks the EUF-CMA security of DS, or B2 breaks
the DL assumption with non-negligible probability.

The reduction B1 takes as input a challenge public key X̂† for DS and simply
passes it to A as one of the n honest parties’ public keys during key generation
for DS. B1 runs trusted key generation for Sparkle+ honestly. If A forges any
signature, then the probability that A forges a DS signature for this select party
in Round 2 is greater than 1/n.

The reduction B2 takes as input a DL challenge Ẋ and aims to output ẋ
such that Ẋ = gẋ. B2 sets the joint public key pk← Ẋ and performs a standard
simulation of Shamir secret sharing, resulting in public key shares Xi = gxi for
all i ∈ [n]. B2 runs key generation for DS honestly, resulting in public key shares
X̂i = gx̂i for all i ∈ [n]. B2 sets pki ← (Xi, X̂i) and ski ← (xi, x̂i) for all i ∈ [n]
and returns pk, {pki}i∈[n], and {skj}j∈cor to A.
B2 simulates Sparkle+ signing without knowing the secret keys {xk}k∈hon of the

honest parties as follows. B2 can simulate Rk for all k ∈ hon as Rk ← gzkX−cλk

k

for random zk←$ Zp so that the partial signature zk output in Round 3 verifies.
However, c must equal Hsig(pk,m,R) for aggregate R. Luckily, B2 can compute
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R =
∏

i∈S Ri, where S is the signing set, by extracting Rj for all j ∈ cor from
A’s Hcm(j, Rj) queries in Round 1. So, B2 samples a random value for c←$ Zp,
computes Rk for all k ∈ hon as above, and programs c ← Hsig(pk,m,R) – all
before A sees the honest Rk’s output at the end of Round 2. This leaves just one
problem: B2 needs to output cmk = Hcm(k,Rk) in Round 1 before being able to
carry out the above steps. But B2 can simply output a random value cmk←$ Zp

in Round 1 and program cmk ← Hcm(k,Rk) in Round 2.

B2 then rewinds A, using the general forking strategy of Bellare and Neven [10].
With non-negligible probability, A will output two forgeries across its two iter-
ations (m∗, (R∗, z∗)), (m′, (R′, z′)) that satisfy (R∗,m∗) = (R′,m′), but where

c∗ ̸= c′. Thus, B2 can compute ẋ = z∗−z′

c∗−c′ and win the DL game.

6.2 Adaptive Security up to t/2 Corruptions

Our second result is that Sparkle+ is adaptively secure against up to t/2 cor-
ruptions under the EUF-CMA security of DS and under the algebraic one-more
discrete logarithm assumption (AOMDL) (Fig. 5) in the random oracle model
(ROM). The reason the allowed corruption is t/2 is that, in order to extract an
AOMDL solution, the reduction needs to rewind the adversary once, and there is
no guarantee that the adversary will corrupt the same set of parties after the
fork as it did during the first iteration of the adversary. When the adversary can
corrupt only t/2 parties, this causes no issues, as the total number of corruptions
over both iterations does not exceed t. If the adversary could corrupt more parties,
then the reduction would query its discrete logarithm oracle more than t times
and would lose the t+ 1-aomdl game.

Theorem 2. Let GrGen be a group generator and DS be a digital signature
scheme. For any PPT adversary A for the adaptive unforgeability game

Gameadp-TS-EUF-CMA
A,Sparkle+ (κ, frac = 1/2) (Fig. 6), there exists a PPT adversary B′1 for

the game GameEUF-CMA
B′

1,DS (κ) (Fig. 4) making at most qS queries to OSign, and a

PPT adversary B′2 for the game Gamet+1-aomdl
B′

2
(κ) (Fig. 5) such that

Advadp-TS-EUF-CMA

A,Sparkle+ (κ, 1/2) ≤

√
qAdvt + 1-aomdl

B′
2

(κ) +
q2 + 6q

p
+

n2

(n− t/2)
AdvEUF-CMA

B′
1,DS (κ)

(4)

where n is the number of signers, t/2 is the maximum number of corrupted
signers, p is the group size, and q = qH + qS + 1, where qH is the number of
queries A can make to the random oracles, and qS is the number of queries A
can make to the signing oracles.

We formally prove Theorem 2 in Section B.

Proof Outline. LetA be a PPT adversary against the t/2 adaptive unforgeability
of Sparkle+ (Fig. 6). We construct a PPT reduction B′1 against the EUF-CMA
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security of the signature scheme DS and a PPT reduction B′2 against the t+ 1-
aomdl assumption (Fig. 5). We show that if A produces a forgery with non-
negligible probability, then either B′1 breaks the EUF-CMA security of DS, or B′2
breaks the t+1-aomdl assumption with non-negligible probability. The reduction
B′1 is the same as in the static security proof.

The reduction B′2 takes as input a t+ 1-aomdl challenge (Y0, Y1, . . . , Yt) and
aims to output yi such that Yi = gyi for all i ∈ [0..t] without querying its DL
oracle more than t times. For all i ∈ [n], B′2 sets each Sparkle+ public key share

as Xi ← Y0Y
i
1 · · ·Y it

t . The joint public key is pk← Y0. B′2 runs key generation
for DS honestly, resulting in public key shares X̂i = gx̂i for all i ∈ [n]. B′2 sets
pki ← (Xi, X̂i) and ski ← (xi, x̂i) for all i ∈ [n]. B′2 queries its DL oracle on Xj

(with representation (1, j, . . . , jt)) to get xj for the initial corrupted set cor. B′2
then returns (pk, {pki}i∈[n], {skj}j∈cor) to A.
B′2’s simulation of signing is similar to the proof of static security. In particular,

B′2 again simulates Rk for honest k ∈ hon as Rk ← gzkX−cλk

k in Round 2. If A
corrupts an honest party k after Round 2 has begun, then B′2 queries its DL
oracle on Xk (with rep. (1, k, . . . , kt)) to get xk, computes rk ← zk − cλkxk, and
returns xk, x̂k, and the honest party’s state, including nonces, commitments, etc.
across all signing sessions to A. However, A may choose to corrupt some honest k
before Round 2, or even before it outputs its own cmj ’s in Round 1. In this case,
B′2 samples a random rk←$ Zp, sets Rk ← grk , and programs cmk ← Hcm(k,Rk)
for the random cmk it output in Round 1. It then queries its DL oracle on Xk

(with rep. (1, k, . . . , kt)) to get xk and returns it, x̂k, and state across all signing
sessions to A. As in the proof of static security, B′2 rewinds A in order to extract
x = y0 from A’s two forgeries. Assume w.l.o.g. that A corrupts t parties over
the two iterations. (A can corrupt up to t/2 parties in each iteration, and B′2
can corrupt the remaining itself.) For simplicity, say the corrupt indices are

cor = {1, . . . , t}. Then B′2 has made t DL queries on gxk = Y0Y
k
1 · · ·Y kt

t . This
forms a system of linear equations:

x
x1

...
xt

 =


1 0 · · · 0
1 1 · · · 1t
...
...
. . .

...
1 t · · · tt



y0
y1
...
yt


This is a Vandermonde matrix and is therefore invertible. B′2 knows (x, x1, . . . , xt),
and so can solve for (y0, y1, . . . , yt) to win the t+ 1-aomdl game.

6.3 Adaptive Security up to t Corruptions

We now present our main result: Sparkle+ is secure against a full t adaptive
corruptions. In particular, if exactly t+ 1 parties engage in signing, all but one
of them could be malicious and the unforgeability of Sparkle+ would still hold.
We prove this result under the EUF-CMA security of DS and under the AOMDL
assumption (Fig. 5) in the AGM with random oracles.

23



Theorem 3. Let GrGen be a group generator and DS be a digital signature
scheme. For any algebraic adversary A for the adaptive unforgeability game
Gameadp-TS-EUF-CMA

A,Sparkle+ (κ, frac = 1) (Fig. 6), there exists a PPT adversary B′1 for

the game GameEUF-CMA
B′

1,DS (κ) (Fig. 4) making at most qS queries to OSign, and a

PPT adversary B′′2 for the game Gamet+1-aomdl
B′′

2
(κ) (Fig. 5) such that

Advadp-TS-EUF-CMA
A,Sparkle+ (κ, 1) ≤ Advt + 1-aomdl

B′′
2

(κ)+
q2

2p
+
3q

p
+

n2

(n− t)
AdvEUF-CMA

B′′
1 ,DS (κ) (5)

where n is the number of signers, t is the maximum number of corrupted signers,
p is the group size, and q = qH + qS + 1, where qH is the number of queries A
can make to the random oracles, and qS is the number of queries A can make to
the signing oracles.

We formally prove Theorem 3 in Section C.

Proof Outline. LetA be a PPT adversary against the full adaptive unforgeability
of Sparkle+ (Fig. 6). We construct a PPT reduction B′′1 against the EUF-CMA
security of the signature scheme DS and a PPT reduction B′′2 against the t+ 1-
aomdl assumption (Fig. 5). We show that if A produces a forgery with non-
negligible probability, then either B′′1 breaks the EUF-CMA security of DS, or B′′2
breaks the t+1-aomdl assumption with non-negligible probability. The reduction
B′′1 is the same as in the static security proof.

The reduction B′′2 takes as input a t+ 1-aomdl challenge (Y0, Y1, . . . , Yt) and
aims to output yi such that Yi = gyi for all i ∈ [0..t] without querying its DL
oracle more than t times. B′′2 simulates key generation, signing, and corruption
as in the t/2-adaptive proof, but does not rewind A, so A may corrupt a full t
parties.
A’s forgery (m∗, (R∗, z∗)) verifies as R∗ = gz

∗
pk−c∗ , where A provided a

representation of R∗ when querying c∗ = Hsig(pk,m
∗, R∗):

R∗ = gγ
∗
pkξ

∗
X

ξ∗1
1 · · ·X

ξ∗n
n

qS∏
i=1

R
ρ∗
i,1

i,1 · · ·R
ρ∗
i,n

i,n

where {Ri,k}i∈[qS ] are the honest nonces returned by the OSign2 oracle over qS sign-

ing queries. Each Ri,k verifies as Ri,k = gzi,kX
−ciλi,k

k , where ci = Hsig(pk,mi, Ri).
Equating the two expressions for R∗ and rearranging, we have:

gz
∗
g−γ∗

qS∏
i=1

g−zi,1ρ
∗
i,1 · · · g−zi,nρ

∗
i,n

= pkc
∗
pkξ

∗
X

ξ∗1
1 · · ·X

ξ∗n
n

qS∏
i=1

(X
−ciλi,1

1 )ρ
∗
i,1 · · · (X−ciλi,n

n )ρ
∗
i,n

B′′2 queries its DL oracle on Xj (with rep. (1, j, . . . , jt)) to obtain {xj}j∈cor

for the t corrupt parties. For all k ∈ [n], Xk = pkY k
1 Y k2

2 · · ·Y kt

t , and for all
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i ∈ [t], Yi = pkL
′
0,i

∏
j∈cor g

xjL
′
j,i , where L′

j,i is the ith coefficient of the Lagrange
polynomial L′

j(Z) for the set 0∪ cor. Plugging these in and rearranging, we have:

gη
∗
= pkc

∗+ξ∗
n∏

k=1

Xµ∗
kgν

∗
k

where η∗ = z∗ − γ∗ −
∑qS

i=1(zi,1ρ
∗
i,1 + · · ·+ zi,nρ

∗
i,n), µ

∗
k = 1 +

∑t
i=1 L

′
0,ik

i, and

ν∗k =
∑t

i=1

(∑
j∈cor xjL

′
j,i

)
ki. Then:

x =
η∗ −

∑n
k=1 ν

∗
k

c∗ + ξ∗ +
∑n

k=1 µ
∗
k

A fixed R∗ and thus η∗, {ν∗i }i∈[n], ξ
∗, {µ∗

i }i∈[n] as it queried Hsig(pk,m
∗, R∗)

to receive random c∗. Thus, the denominator is nonzero with overwhelming
probability and B′′2 can solve for x. B′′2 can then compute (y0, y1, . . . , yt) as in
the t/2-adaptive proof to win the t+ 1-aomdl game.

7 Conclusion

In this work, we present Sparkle+, an efficient and practical threshold Schnorr
signature scheme with one round of pre-processing and two online signing rounds.
We show that Sparkle+ achieves several levels of security based on different corrup-
tion models and assumptions. For static security, we show that Sparkle+ can be
proven secure under the DL assumption in the ROM. We then show that Sparkle+

can be proven adaptively secure under t/2 corruptions, assuming AOMDL in
the ROM. Finally, we show that Sparkle+ can be proven fully adaptively secure
(with up to t corruptions), assuming AOMDL in the ROM and AGM.

Our work leaves open the intriguing question of under what conditions
threshold signatures can be proven adaptively secure, and the extent to which
threshold Schnorr signatures can achieve adaptive security under weaker security
assumptions.
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Algorithm ForkC(X)

Pick random coins ρ for C.
h1, . . . , hq←$ H

(I, out)← C
(
X, (h1, . . . , hq); ρ

)
return ⊥ if I = 0

h′
I , . . . , h

′
q←$ H

(I ′, out′)← C
(
X, (h1, . . . , hI−1, h

′
I , . . . , h

′
q); ρ

)
return ⊥ if I ̸= I ′

return (I, out, out′)

Fig. 8. The forking algorithm ForkC(x) associated to an algorithm C and input x.

A Proof of Static Security

We now formally prove Theorem 1. Since our security reduction makes use of
rewinding, we review the general forking lemma by Bellare and Neven [10], which
is a formalization of the forking lemma introduced by Pointcheval and Stern [54].

Lemma 1 (General Forking Lemma [10]). Let q ∈ N and H be a finite,
non-empty set. Let IG be a randomized algorithm that generates an input X. Let C
be a randomized algorithm that takes as input X and h1, . . . , hq ∈ H and random
coins ρ and outputs an index I ∈ [0..q] and side output out. Let accept(C) be the
probability that C outputs an index I ≥ 1 in the following experiment:

accept(C) := Pr[x←$ IG; h1, . . . , hq←$ H; (I, out)← C
(
X, (h1, . . . , hq); ρ

)
: I ̸= 0]

Let the forking algorithm ForkC(X) associated to C be the randomized algorithm
that takes input X and proceeds as in Figure 8. Let

accept(ForkC) := Pr[x←$ IG; output←$ ForkC(x) : output ̸= ⊥]

Then, accept(ForkC) is bounded by

accept(ForkC) ≥ accept(C) ·
(
accept(C)

q
− 1

|H|

)
. (6)

or, alternatively,

accept(C) ≤ q

|H|
+

√
q · accept(ForkC) (7)

Proof. (of Theorem 1.) We prove the theorem by a sequence of games.
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Game 0. This is the static unforgeability game as defined in Figure 6, instantiated
with Sparkle+.

Let A be a PPT adversary attempting to break the static unforgeability of
Sparkle+ (Fig. 6) that makes up to qH queries to Hcm and Hsig, and qS queries
to its signing oracles. A is allowed to make t static corruptions. Without loss
of generality, we assume A queries Hsig on its forgery (pk,m∗, R∗). Then, let
q = qH + qS + 1.

Let W0 be the event that A wins Game 0. Then, the advantage of A is simply

AdvTS-EUF-CMA
A,Sparkle+ (κ, frac = 1) = |Pr[W0]| (8)

Here, frac = 1 to allow A to corrupt a full frac · t = t parties, which must be
declared by A at the beginning of its execution.

Game 1. The only difference between Game 0 and Game 1 is the following abort
event.

In Game 1, the environment initializes a table QDS ← ∅. When A queries
OSign2 on inputs (k, eid,S,m, {cmi}i∈S), the environment first performs the checks
in OSign2 (Fig. 6) and Sign2 (Fig. 7). If they pass, then, in particular, stk,eid,1 =
(cmk, Rk, rk, skk), where cmk ∈ {cmi}i∈S . The environment can then form the
message msgk = (k, cmk, Rk,S,m, {cmi}i∈S) and complete Round 2 honestly.
Finally, the environment adds msgk to QDS. Note that with high probability, each
cmk will only be added to QDS once.

When A queries OSign3 on inputs (k, eid, {(Ri, σ̂i)}i∈S), the environment
first performs the checks in OSign3 and Sign3. If they pass, then, in particular,
stk,eid,2 = (Rk, σ̂k,S,m, {cmi}i∈S , cmk, rk, skk), where (Rk, σ̂k) ∈ {(Ri, σ̂i)}i∈S .
The environment forms, for all i ∈ S, the messages msgi = (i, cmi, Ri,S,m,
{cmj}j∈S). If Equation 9 holds, the environment aborts. We refer to this abort
event as Event1.

∀i ∈ hon ∩ S,DS.Verify(X̂i,msgi, σ̂i) = 1,but ∃i s.t. msgi /∈ QDS (9)

Reduction to EUF-CMA of DS. We now define a reduction B1 against the EUF-
CMA security of DS (Fig. 4) that uses A as a subroutine. We show that when A
wins Game 1, then B1 wins the EUF-CMA game with non-negligible probability.

The reduction BOSign

1 (parDS, X̂
†) accepts as input public parameters parDS and

a challenge public key X̂†; its goal is to output a valid forgery (msg∗, σ̂∗) under
X̂†, such that B1 has not queried msg∗ to its signing oracle OSign.

Setup. B1 first runs (G, p, g) ← GrGen(1κ) and sets par ← ((G, p, g), parDS). It
then initializes the tables Q,Qm,QDS ← ∅. It runs (n, t+ 1, cor, stA)← A(par).
B1 runs key generation for Sparkle+ honestly: (pk, {(pki, ski)}i∈[n])←$ KeyGen(n,

t+1). B1 samples τ ←$ hon and parses (Xτ , X̂τ )← pkτ and (xτ , x̂τ , pk, {pki}i∈[n])←
skτ . It then replaces X̂τ with its challenge: pkτ ← (Xτ , X̂

†) and skτ ← (xτ ,⊥, pk,
{pki}i∈[n]).

B1 then runs AOSign1,Sign2,Sign3
(pk, {pki}i∈[n], {skj}j∈cor, stA).
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Simulating Random Oracle Queries. When A queries Hcm or Hsig, B1 follows
the protocol honestly.

Simulating Signing Oracle Queries. When A queries its signing oracles, B1
does as follows:

– OSign1 : When A queries on k ∈ hon, B1 follows the protocol honestly.
– OSign2 : When A queries on (k, eid,S,m, {cmi}i∈S), B1 carries out the appro-

priate checks, updates Qm ← Qm ∪ {m}, and computes msgk = (k, cmk, Rk,
S,m, {cmi}i∈S). It then does the following:
1. If k ̸= τ , then B1 responds honestly as per Game 0.
2. If k = τ , then B1 queries its own signing oracle OSign(msgτ ) to obtain σ̂τ .

It otherwise follows the protocol honestly.
Finally, B1 updates QDS ← QDS ∪ {msgk}.

– OSign3 : When A queries on (k, eid, {(Ri, σ̂i)}i∈S), B1 carries out the appro-
priate checks. It then checks if Equation 9 holds. If not, B1 simply follows
the protocol honestly.
Otherwise, if Equation 9 holds, then Event1 has occurred. If τ ∈ hon ∩ S and
msgτ /∈ QDS (i.e., A has output a forgery for the simulated player τ), then
B1 terminates the execution of A and returns (msgτ , σ̂τ ) as its forgery for
the EUF-CMA game. Otherwise, B1 aborts.

If A terminates and Event1 does not occur, then B1 outputs ⊥ as its output
for the EUF-CMA game.

Analysis of B1’s Simulation. B1 simulates Hcm and Hsig perfectly because it
follows the protocol honestly.
B1 responds to OSign1 honestly, and so its simulation is perfect. It responds to

OSign2 and OSign3 honestly, with the exception of participant τ . However, because
it queries its own EUF-CMA signing oracle OSign on msgτ to obtain σ̂τ , and
X̂i = X̂†, then A’s ability to distinguish the simulation for participant τ is the
same as B1’s ability to distinguish the EUF-CMA simulation of DS.

Difference between Game 0 and Game 1. If Event1 does not occur, then Game 0
and Game 1 are identical. If Event1 occurs, then the probability that A forges for
participant τ is at least 1

n . The additional advantage to A in Game 1, assuming
that Event1 occurs for participant τ , is upper-bounded by the advantage that B1
wins its EUF-CMA game for DS.

Let W1 be the event that A wins Game 1. Then,

|Pr[W1]− Pr[W0]| ≤ nAdvEUF-CMA
B1,DS (κ) (10)

Game 2. We next define a simulating algorithm SIM, which simulates the static
unforgeability game GameTS-EUF-CMA

A,SIM (κ, frac = 1), as follows.

Setup. SIM accepts as input an instance X, which is a tuple consisting of the
group description G = (G, p, g) and a discrete logarithm (DL) challenge Ẋ ∈ G.
In addition, SIM accepts as input a set of q = qH + qS + 1 values {h1, . . . , hq},
which it will use to program its random oracles responses.
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Next, SIM checks for collisions hi = hj for i, j ∈ [q], i ̸= j. If so, SIM aborts.
We refer to this bad event as BadEvent1.

Otherwise, SIM initializes the following values:

– Parameters for DS by performing parDS ← DS.Setup(1κ), and then sets
par← ((G, p, g),Hcm,Hsig, parDS).

– The sets Qcm ← ∅,Qsig ← ∅ of Hcm,Hsig queries and their responses, respec-
tively.

– The set QDS ← ∅ of messages msgk signed by honest parties during OSign2 .
– The set Qm ← ∅ of messages queried by A to OSign2 .
– The set Qst ← ∅ to be the participant state for all signing sessions initiated

by A.
– The counter ctrh ← 1.

SIM may program the random oracles Hcm,Hsig.

Static Corruption. SIM then runs A(par). A chooses the total number of
potential signers n, the threshold t + 1 ≤ n, and the set of corrupt parties
cor← {j}, |cor| ≤ t, which are fixed for the rest of the protocol. If t+ 1 > n or
cor ̸⊂ [n] or |cor| > t, SIM outputs ⊥. Otherwise, SIM sets hon← [n] \ cor and
must reveal the secret keys of the corrupt parties to A, which SIM does in the
next step.

Simulating KeyGen. SIM simulates the key generation algorithm (Fig. 7) using
the DL challenge Ẋ as follows.

1. SIM generates public and private DS keys honestly (X̂i, x̂i)←$ DS.KeyGen(),
for all i ∈ [n].

2. SIM sets the threshold public key pk← Ẋ.
3. SIM simulates a Shamir secret sharing of the discrete logarithm of pk by

performing the following steps. (See Section 3 for notation.) Assume without
loss of generality that |cor| = t.
(a) SIM samples t random values xj ←$ Zp for j ∈ cor.
(b) Let f be the polynomial whose constant term is the challenge f(0) = ẋ

and for which f(j) = xj for all j ∈ cor. SIM computes the t+1 Lagrange
polynomials {L′

0(Z), {L′
j(Z)}j∈cor} relating to the set (of x-coordinates)

0 ∪ cor.
(c) For all 1 ≤ i ≤ t, SIM computes

Yi = pkL
′
0,i

∏
j∈cor

gxjL
′
j,i

where L′
j,i is the ith coefficient of L′

j(Z) = L′
j,0 + L′

j,1Z + · · ·+ L′
j,tZ

t.
(d) For all 1 ≤ i ≤ n, SIM computes

Xi = pkY i
1Y

i2

2 · · ·Y it

t

which is implicitly equal to gf(i).
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4. Set pki ← (Xi, X̂i) and ski ← (xi, x̂i) for all i ∈ [n].

The threshold public key is pk = gf(0) = Ẋ with corresponding secret key sk = ẋ.

SIM then runs AOSign1,Sign2,Sign3
(pk, {pki}i∈[n], {skj}j∈cor, stA).

Simulating Random Oracle Queries. When A queries Hcm or Hsig, SIM
simulates the response as follows.

Hcm : When A queries Hcm on (i, Ri), SIM checks whether Qcm contains an entry
(i, Ri, cm, ·) ∈ Qcm, and if so, it returns cm.

Else, SIM sets cm← hctrh , and updates Qcm ← Qcm ∪ {(i, Ri, cm, ·)}. It then
increments ctrh ← ctrh + 1. Finally, SIM returns cm.

Hsig : When A queries Hsig on (X,m,R), SIM checks whether (X,m,R, c, ·) ∈ Qsig

and, if so, returns c.
Else, SIM sets c← hctrh , and sets ∆ = ctrh. It appends (X,m,R, c,∆) to Qsig.

It then increments ctrh ← ctrh + 1. Finally, SIM returns c.

Simulating Sparkle+ Signing. SIM handles A’s signing queries as follows.

Round 1 (OSign1(k)): In the first round of signing, parties form commitments
cmi. When A queries OSign for k ∈ hon, SIM first performs the checks in OSign1

(Fig. 6) and Sign1 (Fig. 7). If they pass, then SIM does the following:

1. Samples eid←$ {0, 1}∗.
2. It sets cmk ← hctrh , and increments ctrh ← ctrh + 1.

3. It sets stk,eid,1 ← (cmk,⊥,⊥, ŝkk), where ŝkk := (⊥, x̂k, pk, {pki}i∈[n]).
4. Updates Qst ← Qst[k, eid, 1]← stk,eid,1.
5. Finally, SIM returns cmk to A.

Round 2 (OSign2(k, eid,S,m, {cmi}i∈S)): In the second round of signing,
each party i in the signing set S takes as input a set of commitments {cmj}j∈S
and reveals its nonce Ri such that cmi = Hcm(i, Ri). Each party also signs
msgi = (k, eid, Ri,S,m, {cmi}i∈S) using DS.

When A queries OSign2 on (k, eid,S,m, {cmi}i∈S) for k ∈ hon, SIM first
performs the checks in OSign2 (Fig. 6) and Sign2 (Fig. 7). If they pass, then, in

particular stk,eid,1 = (cmk,⊥,⊥, ŝkk). SIM then does the following:

1. Updates Qm ← Qm ∪ {m}.
2. Next, it checks if (k, ·, cmk, ·) ∈ Qcm. If the check holds, SIM retrieves

(k,Rk, cmk, zk) ∈ Qcm, and sets Rk accordingly. Then SIM: adds msgk =
(k, cmk, Rk,S,m, {cmi}i∈S) to QDS; signs msgk as σ̂k ← Sign(x̂k,msgk); up-

dates stk,eid,2 ← (Rk,⊥, cmk, σ̂k,S,m, {cmi}i∈S , ŝkk); and returns (Rk, σ̂k).
3. Else if not, then, for each commitment cmi, SIM checks if it has a defined

entry (i, Ri, cmi, ·) ∈ Qcm.
(a) If there exists some cmi ∈ PM1 such that i ∈ S ∩ hon and cmi has a

corresponding Ri defined in Qcm, then SIM goes to Case 1.
(b) If there exists some cmi ∈ PM1 such that i ∈ S ∩ cor and cmi does not

have a corresponding Ri defined in Qcm, then SIM goes to Case 1.
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(c) Otherwise, SIM goes to Case 2.

Case 1 (Invalid Query). In this case, SIM does the following:

1. Sample Rk←$ G.
2. Program Qcm ← Qcm ∪ {(k,Rk, cmk,⊥)}.
3. Follow the protocol honestly to produce a signature σ̂k on msgk.
4. Add QDS ← QDS ∪{msgk}, indicating that honest party k output a signature

on msgk.

5. Set stk,eid,2 ← (Rk,⊥, cmk, σ̂k,S,m, {cmi}i∈S , ŝkk).
6. Update Qst[k, eid, 2]← stk,eid,2.
7. Return (Rk, σ̂k).

Case 2 (Valid Query). In this case, SIM does the following:

1. Sets c← hctrh , and ∆ = ctrh. It then increments ctrh ← ctrh + 1.
2. Then, for all j ∈ S ∩ hon, SIM samples zj ←$ Zp.

3. For all j ∈ S ∩ hon, it computes Rj ← gzjX
−cλj

j , where λj is the Lagrange
coefficient for party j in the set S.

4. Otherwise, SIM programs cmj ← Hcm(j, Rj). Specifically SIM adds the entry
Qcm ← Qcm ∪ {(j, Rj , cmj , zj)} for all j ∈ S ∩ hon.

5. Next, SIM obtains each corrupted party’s commitment by parsing (j, Rj , cmj ,⊥)
← Qcm, for each j ∈ S ∩ cor.

6. SIM then computes R =
∏

i∈S Ri.
7. If (pk,m,R, ·, ·) ∈ Qsig, then SIM aborts. We refer to this bad event as

BadEvent2.
8. Otherwise, SIM programs c← Hsig(pk,m,R). Specifically, SIM adds Qsig ←

Qsig ∪ {(pk,m,R,∆)}.
9. SIM follows the protocol honestly to produce a signature σ̂k on msgk.
10. It adds QDS ← QDS ∪ {msgk}, indicating that honest party k output a

signature on msgk.

11. Set stk,eid,2 ← (Rk,⊥, cmk, σ̂k,S,m, {cmi}i∈S , ŝkk).
12. Updates Qst[k, eid, 2]← stk,eid,2
13. It then returns (Rk, σ̂k).

Round 3 (OSign3(k, eid, {(Ri, σ̂i)}i∈S)): In the third round of signing, each
party i in the signing set S produces a partial signature on the message m. When
A queries OSign3 on (k, eid, {(Ri, σ̂i)}i∈S) for k ∈ hon, SIM first performs the
checks in OSign3 (Fig. 6) and Sign3 (Fig. 7). If they pass, then, in particular

stk,eid,2 ← (Rk,⊥, cmk, σ̂k,S,m, {cmi}i∈S , ŝkk). SIM then does the following:

1. Checks that Verify(X̂i,msgi, σ̂i) = 1 for all i ∈ S where msgi = (i, cmi, Ri,S,
m, {cmj}j∈S) and returns ⊥ if not.

2. Checks whether cmi = Hcm(i, Ri) for all i ∈ S and returns ⊥ if not.
3. Looks up msgk = (k, cmk, Rk,S,m, {cmi}i∈S) ∈ QDS and aborts if no such

query exists. We refer to this bad event as BadEvent3.
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4. Check that there exists cmi such that msgi = (i, cmi, Ri,S,m, {cmj}j∈S) ∈
QDS for all i ∈ S ∩ hon and abort if not. We refer to this bad event as
BadEvent4.

5. Else, SIM retrieves (k,Rk, cmk, zk)← Qcm and aborts if zk = ⊥. We refer to
this bad event as BadEvent5.

6. Updates Qst[k, eid, 3]← (zk)
7. SIM returns zk.

Analysis of SIM’s Simulation. SIM’s simulation of key generation and OSign1

is perfect and no abort conditions occur.
SIM’s simulation ofOSign2 is perfect. Before revealing Rk, SIM always programs

Hcm such that cmk = Hcm(k,Rk) as would be the case in Game 2. The Rk are
randomized by zk. SIM responds if and only if stk,eid,1 exists as in Game 2. The
signatures σ̂k verify on msgk.

BadEvent2 occurs with maximum probability q
p . Indeed, SIM checks to see

if (pk,m,R, ·) ∈ Qsig. The probability that A guesses R in some hash query is
bounded by q

p because R is randomized by c.

SIM’s simulation of OSign3 is perfect. If (k,Rk, cmk, zk) ← Qcm, then Rk =
gzkX−cλk

k where c = Hsig(pk,m,R). Note that the aggregate R is computed
consistently if all honest Rj ’s are computed in the same OSign2 query during
Case 2 (Valid Query), guaranteed by BadEvent4, and all corrupt Rj ’s hash to a
unique cmj . If two (j, Rj) and (j′, R′

j)’s hash to the same cm, then BadEvent1
has occurred.

BadEvent3 and BadEvent4 cannot occur unless Game 1 also would abort.
BadEvent5 occurs if some honest Rj is computed in a OSign2 query during

Case 1 (Invalid Query). If there exists some cmi ∈ PM1 such that i ∈ S ∩ hon
and cmi has a corresponding Ri defined in Qcm, then BadEvent3 or BadEvent4
will occur because cmk ∈ PM1 is not yet programmed but some other honest
cmj ∈ PM1 has been programmed. Thus, cmj must have been programmed
during a query involving a different set PM′

1 ≠ PM1 with cmk ̸∈ PM′
1. The

probability that there exists some cmi ∈ PM1 such that i ∈ S ∩ cor and cmi

does not have a corresponding Ri defined in Qcm, but an adversary later finds
Ri such that Hcm(i, Ri) = cmi is bounded by q

p .
In summary, SIM aborts with negligible probability on the following cases:

1. BadEvent1: SIM aborts due to BadEvent1 with probability q2

2p , which occurs

when it receives any random oracle outputs {h1, . . . , hq} that collide.
2. BadEvent2: SIM aborts due to BadEvent2 with probability q/p.
3. BadEvent3: When SIM aborts due to BadEvent3, then Game 1 also aborts.
4. BadEvent4: When SIM aborts due to BadEvent4, then Game 1 also aborts.
5. BadEvent5: SIM aborts due to BadEvent5 with probability q/p.

Output. When A terminates with output (m∗, σ∗), SIM first checks that it is
a valid forgery, by checking that m∗ ̸∈ Qm and Verify(pk,m∗, σ∗) = 1. If either
check fails, SIM outputs ⊥.

Otherwise, SIM looks up the entry (pk,m∗, R∗, c∗, I) ∈ Qsig corresponding to
A’s forgery. It sets out← σ∗. SIM then outputs (I, out).
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Difference between Game 2 and Game 1. Let W2 be the event that A wins
Game 2. The only additional advantage in the simulation by SIM over Game 1 is
given by bad events BadEvent1, BadEvent2, and BadEvent5. As such,

|Pr[W2]− Pr[W1]| = Pr[BadEvent1] + Pr[BadEvent2] + Pr[BadEvent5]

=
q2

2p
+

2q

p

(11)

The Reduction B2. We now construct a PPT reduction B2 against the DL as-
sumption (Fig. 5). Specifically, we show how B2 uses the static unforgeability
adversary A playing against SIM as defined in Game 2 as a subroutine such that

AdvdlB2
(κ) ≥ accept(ForkSIM(X))− 2Pr[BadEvent1]− . . . ,−2Pr[BadEvent5]

(12)

where X is the instance given by the challenger in the DL game.

Initialization. B2 is initialized by the DL challenger with input the group
description G = (G, p, g) and a DL challenge Ẋ ∈ G. The goal of B2 is to output
ẋ such that Ẋ = gẋ.

Execution. B2 then runs the general forking algorithm ForkSIM(X) as described
in Figure 8, on the simulating algorithm SIM and its instance X. With non-
negligible probability lower-bounded by Equation 6, ForkSIM(X) will output the
accepting answer (I, out, out′), such that:

hI = c∗, h′
I = c∗∗,

σ∗ ← out, σ∗∗ ← out′

(R∗, z∗)← σ∗, (R∗, z∗∗)← σ∗∗

B2 then solves for sk = z∗−z∗∗

c∗−c∗∗ , where sk = ẋ and where the DL challenge is

Ẋ = gẋ. B2 then returns ẋ as its output to the DL challenger.

Finishing the Proof. Equation 6 lower bounds accept(ForkSIM(X)). The proba-
bility that B2 succeeds is therefore defined by combining Equations 6, 8, 10, 11,
and 12, which gives Equation 3. This completes the proof. ⊓⊔

B Proof of Adaptive Security up to t/2 Corruptions

In this section, we prove the adaptive security of Sparkle+ against up to t/2 cor-
ruptions under the algebraic one-more discrete logarithm assumption (AOMDL)
(Fig. 5) in the random oracle model (ROM). The reason the allowed corruption
is t/2 is that, in order to extract an AOMDL solution, the reduction needs to
rewind the adversary once, and there is no guarantee that the adversary will
corrupt the same set of parties after the fork as it did during the first iteration of
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the adversary. When the adversary can corrupt only t/2 parties, this causes no
issues, as the total number of corruptions over both iterations does not exceed t.
If the adversary could corrupt more parties, then the reduction would query its
discrete logarithm oracle more than t times and would lose the t+ 1-aomdl game.

Proof. (of Theorem 2.) We prove the theorem by a sequence of games.

Game 0. This is the adaptive unforgeability game as defined in Figure 6, instan-
tiated with Sparkle+, with input frac = 1/2.

Let A be a PPT adversary attempting to break the adaptive unforgeability
of Sparkle+ (Fig. 6) that makes up to qH queries to Hcm and Hsig, and qS queries
to its signing oracles. A is allowed to make t/2 adaptive corruptions. Without
loss of generality, we assume A queries Hsig on its forgery (pk,m∗, R∗). Then, let
q = qH + qS + 1.

Let W0 be the event that A wins Game 0. Then, the advantage of A is simply

Advadp-TS-EUF-CMA
A,Sparkle+ (κ, frac = 1/2) = |Pr[W0]| (13)

Game 1. Game 1 is identical to Game 1 in the proof for Theorem 1.

Reduction to EUF-CMA of DS. We now define a reduction B′1 against the EUF-
CMA security of DS that uses A as a subroutine. We show that when A wins
Game 1, then B′1 wins the EUF-CMA game with non-negligible probability.

The only difference in B′1’s simulation to the reduction in Game 1 for Theorem 1
is that B′1 must additionally respond to corruption queries OCorrupt.

Simulating Corruption Oracle Queries. When A queries its corruption
oracle on k ∈ hon, B′1 does as follows:

1. If k ̸= τ , then B′1 responds honestly as per Game 0.

2. If k = τ , then B′1 aborts. We refer to this abort event as Event2.

Analysis of B′1’s Simulation. The only difference between the simulation of B1
given in Game 1 for Theorem 1 and B′1 is the occurrence of Event2. We bound
the probability of this event occurring as follows.

We calculate the probability of not choosing party τ when selecting t/2 values
without replacement from a set of size n as follows. The total number of ways

to choose t/2 values from a set of size n is

(
n
t/2

)
. To calculate the number of

ways to choose t/2 values without selecting τ , we consider the set to be of size
n− 1 because we are excluding the value τ . The total number of ways to choose

t/2 values from a set of size n− 1 is

(
n− 1
t/2

)
. The probability of not choosing τ
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(i.e., of not aborting) is thus(
n− 1
t/2

)
(

n
t/2

) =
(n− 1)!

(t/2)!(n− 1− t/2)!

(t/2)!(n− t/2)!

n!
=

(n− t/2)

n

Difference between Game 0 and Game 1. If Event2 does not occur, then Game 0
and Game 1 are identical. If Event2 occurs, then the probability that k = τ is at
least 1

n . The probability that Event2 does not occur, i.e., τ is not corrupted, is

greater than (n−t/2)
n .

The additional advantage to A in Game 1 assuming that Event1 occurs for
participant τ is upper-bounded by the advantage that B′1 wins its EUF-CMA
game against DS, and the probability that Event2 does not occur.

Let W1 be the event that A wins Game 1. Then,

|Pr[W0]− Pr[W1]| ≤
n2

(n− t/2)
AdvEUF-CMA

B′
1,DS (κ) (14)

Game 2. We next define a simulating algorithm SIM′, which simulates the
adaptive unforgeability game Gameadp-TS-EUF-CMA

SIM′,Sparkle+ (κ, frac = 1/2). The simulation

by SIM′ is similar to that of SIM in Game 2 for Theorem 1, with the exception of
the instance that SIM′ accepts as input, how key generation is performed, what
information SIM′ stores in Qcm, and how SIM′ additionally simulates OCorrupt.

Additionally, SIM′ is given an oracle Osdl, which it can query on elements
X ∈ G together with an algebraic representation, and receive discrete logarithm
solutions x ∈ Zp. SIM

′ can query this oracle up to t times.

Setup. SIM′ accepts as input an instance X, which is a tuple consisting of the
group description G = (G, p, g) and t+1 AOMDL challenges (Y0, . . . , Yt) ∈ Gt+1.
In addition, SIM′ accepts as input a set of q = qH + qS + 1 values {h1, . . . , hq},
which it will use to program its random oracles responses.

Next, SIM′ checks for collisions hi = hj for i, j ∈ [q], i ≠ j. If so, SIM′ aborts.
We refer to this bad event as BadEvent1.

Otherwise, SIM′ initializes the following values:

– Parameters for DS by performing parDS ← DS.Setup(1κ), and then sets
par← ((G, p, g),Hcm,Hsig, parDS).

– The sets Qcm ← ∅,Qsig ← ∅ of Hcm,Hsig queries and their responses, respec-
tively.

– The set QDS ← ∅ of messages msgk signed by honest parties during OSign2 .

– The set Qm ← ∅ of messages queried by A to OSign2 .

– The set Qst ← ∅ to be the participant state for all signing sessions initiated
by A.

– The counter ctrh ← 1.
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SIM′ likewise may program the random oracles Hcm,Hsig.

Static Corruption. SIM′ then runs A(par). A chooses the total number of
potential signers n, and the threshold t+ 1 ≤ n. Additionally, A may choose a
set of parties to initially corrupt cor← {j}, |cor| ≤ t/2 (although it may corrupt
additional parties of its choosing later). If t+ 1 > n or cor ̸⊂ [n] or |cor| > t/2,
SIM′ outputs ⊥. Otherwise, SIM′ sets hon← [n] \ cor and must reveal the secret
keys of the corrupt parties to A, which SIM′ does in the next step.

Simulating KeyGen. SIM′ simulates the key generation algorithm (Fig. 7)
using its AOMDL challenge (Y0, . . . , Yt) as follows.

1. SIM′ generates public and private DS keys honestly (X̂i, x̂i)←$ DS.KeyGen(),
for all i ∈ [n].

2. For all 1 ≤ i ≤ n, SIM′ sets the signing public key share as

Xi = Y0Y
i
1 · · ·Y it

t

which is implicitly equal to gf(i).
3. The threshold public key is pk = gf(0) = Y0 with corresponding secret key

sk = y0.
4. SIM′ obtains the initial corrupt secret key shares by querying xj = f(j)←
Osdl(Xj) (with representation (1, j, . . . , jt)) for all j ∈ cor.

5. Set pki ← (Xi, X̂i) and ski ← (xi, x̂i) for all i ∈ [n].

SIM′ then runs AOSign1,Sign2,Sign3,Corrupt

(pk, {pki}i∈[n], {skj}j∈cor, stA).

Simulating Random Oracle Queries. When A queries Hcm or Hsig, SIM
′

simulates the response as follows.

Hcm : When A queries Hcm on (i, Ri), SIM
′ checks whether Qcm contains an entry

(i, Ri, ·, cm, ·, ·) ∈ Qcm, and if so, it returns cm.
Else, SIM′ sets cm← hctrh , and updates Qcm ← Qcm ∪ {(i, Ri,⊥, cm,⊥,⊥)}.

It then increments ctrh ← ctrh + 1. Finally, SIM returns cm.

Hsig : SIM
′ simulates A’s queries to Hsig identically to SIM for Theorem 1.

Simulating Sparkle+ Signing. SIM′ handles A’s signing queries as follows.

Round 1 (OSign1(k)): SIM′ simulates A’s queries to OSign1 identically to SIM
for Theorem 1, setting additional empty entries in Qcm as required.

Round 2 (OSign2(k, eid,S,m, {cmi}i∈S)):WhenA queriesOSign2 on (k, eid,S,
m, {cmi}i∈S) for k ∈ hon, SIM′ performs the same steps as SIM for Theorem 1,
with the following exceptions:

1. Updates Qm ← Qm ∪ {m}.
2. Next, it checks if (k, ·, ·, cmk, ·, ·) ∈ Qcm. If the check holds, SIM′ retrieves

(k,Rk, ·, cmk, ck, zk) ∈ Qcm, and sets Rk accordingly. Then SIM: adds msgk =
(k, cmk, Rk,S,m, {cmi}i∈S) to QDS; signs msgk as σ̂k ← Sign(x̂k,msgk); up-

dates stk,eid,2 ← (Rk,⊥, cmk, σ̂k,S,m, {cmi}i∈S , ŝkk); and returns (Rk, σ̂k).
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3. Else if not, then, for each commitment cmi, SIM
′ checks if it has a defined

entry (i, Ri, ·, cmi, ·, ·) ∈ Qcm.
(a) If there exists some cmi ∈ PM1 such that i ∈ S ∩ hon and cmi has a

corresponding Ri defined in Qcm, then SIM goes to Case 1.
(b) If there exists some cmi ∈ PM1 such that i ∈ S ∩ cor and cmi does not

have a corresponding Ri defined in Qcm, then SIM goes to Case 1.
(c) Otherwise, SIM goes to Case 2.

Case 1 (Invalid Query). In this case, SIM′ does the following:

1. Sample random rk←$ Zp and set Rk ← grk .
2. Program Qcm ← Qcm ∪ {(k,Rk, rk, cmk,⊥,⊥)}.
3. Follow the protocol honestly to produce a signature σ̂k on msgk.
4. Add QDS ← QDS ∪{msgk}, indicating that honest party k output a signature

on msgk.
5. Set stk,eid,2 ← (Rk, rk, cmk, σ̂k,S,m, {cmi}i∈S , ŝkk).
6. Update Qst[k, eid, 2]← stk,eid,2.
7. Return (Rk, σ̂k).

Case 2 (Valid Query). In this case, SIM′ does the following:

1. Sets c← hctrh , and ∆ = ctrh. It then increments ctrh ← ctrh + 1.
2. Then, for all j ∈ S ∩ hon, SIM′ samples zj ←$ Zp.

3. For all j ∈ S ∩ hon, it computes Rj ← gzjX
−cλj

j , where λj is the Lagrange
coefficient for party j in the set S.

4. SIM′ programs cmj ← Hcm(j, Rj). Specifically SIM′ adds the entry Qcm ←
Qcm ∪ {(j, Rj ,⊥, cmj , cλj , zj)} for all j ∈ S ∩ hon.

5. Next, SIM′ obtains each corrupted party’s commitment by parsing (j, Rj ,⊥,
cmj ,⊥,⊥)← Qcm, for each j ∈ S ∩ cor.

6. SIM′ then computes R =
∏

i∈S Ri.
7. If (pk,m,R, ·, ·) ∈ Qsig, then SIM′ aborts. We refer to this bad event as

BadEvent2.
8. Otherwise, SIM′ programs c← Hsig(pk,m,R). Specifically, SIM′ adds Qsig ←

Qsig ∪ {(pk,m,R,∆)}.
9. SIM′ follows the protocol honestly to produce a signature σ̂k on msgk.
10. It adds QDS ← QDS ∪ {msgk}, indicating that honest party k output a

signature on msgk.
11. Updates stk,eid,2 ← (Rk, rk, cmk, σ̂k,S,m, {cmi}i∈S , ŝkk).
12. Updates Qst[k, eid, 2]← stk,eid,2.
13. It then returns (Rk, σ̂k).

Round 3 (OSign3(k, eid, {(Ri, σ̂i)}i∈S)): SIM
′ simulates A’s queries to OSign3

identically to SIM as in the proof for Theorem 1, with exception that SIM′

retrieves (k,Rk, ·, cmk, ck, zk)← Qcm (instead of (k,Rk, cmk, zk)).

Simulating Corruption Oracle Queries. A may at any time corrupt an
honest party k by querying OCorrupt(k). Upon receiving a corruption query, SIM′

first checks that k ∈ hon, returning ⊥ if not. Otherwise, SIM′ queries its DL
oracle Osdl on Xk = gf(k) (with representation (1, k, . . . , kt)) to obtain the secret
key xk = f(k). Then, for each stk,eid,·, SIM

′ chooses Rk and rk as follows:
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– If there exists Rk, rk such that (k,Rk, rk, cmk, ·, ·) ∈ Qcm then SIM′ sets Rk

and rk accordingly. Update ŝkk to skk and set stk,eid,2 ← (Rk, rk, cmk, σ̂k,S,m,
{cmi}i∈S , skk) and stk,eid,1 ← (cmk, Rk, rk, skk).

– If there exists Rk, ck, zk such that (k,Rk,⊥, cmk, ck, zk) ∈ Qcm then SIM′ sets
Rk accordingly and rk as

rk = zk − ckxk

Update ŝkk to skk and set stk,eid,2 ← (Rk, rk, cmk, σ̂k,S,m, {cmi}i∈S , skk)
and stk,eid,1 ← (cmk, Rk, rk, skk).

– If there does not exist Rk such that (k,Rk, ·, cmk, ·, ·) ∈ Qcm then SIM′

samples rk←$ Zp, sets Rk ← grk , and programs cmk ← Hcm(k,Rk) by

adding (k,Rk, rk, cmk, ck, zk) to Qcm. Update ŝkk to skk and set stk,eid,1 ←
(cmk, Rk, rk, skk).

– Else, if there exists Rk such that (k,Rk,⊥, cmk,⊥,⊥) ∈ Qcm, then SIM′

aborts. We refer to this bad event as BadEvent6.

Finally, SIM′ sets stk ← Qst[k, ·, ·], and outputs (xk, x̂k, stk).

Analysis of SIM′’s Simulation. SIM′’s simulation of OCorrupt is perfect.

– If there exists Rk, rk such that (k,Rk, rk, cmk, ·, ·) ∈ Qcm, then Rk and rk
were chosen during Case 1. This means that rk is randomly distributed and
Rk = grk .

– If there exists Rk, ck, zk such that (k,Rk,⊥, cmk, ck, zk) ∈ Qcm, then Rk, ck
and zk were chosen during Case 2. This means that Rk ← gzkX−cλk

k , ck = cλk

and thus
Rk = gzk−xkck = grk

Further, rk is randomly distributed because zk is randomly chosen.
– If there does not exist Rk such that (k,Rk, ·, cmk, ·, ·) ∈ Qcm, then by design

Rk = grk for random rk, and cmk = Hcm(k,Rk).

SIM′’s simulation of key generation and OSign1 ,OSign2 ,OSign3 is the same as
SIM’s simulation for Theorem 1 so is perfect. The abort conditions are the same,
with the addition of BadEvent6.

BadEvent6 occurs with maximum probability q
p . Indeed, the only way in which

(k,Rk,⊥, cmk,⊥,⊥) ∈ Qcm is if the adversary queries Hcm on (k,Rk) and gets
response cmk. This happens if and only if there is a collision with some honest
cmk, which happens with maximum probability q

p .

Output. When A terminates with output (m∗, σ∗), SIM′ first checks that it is a
valid forgery, by checking if m∗ /∈ Qm and Verify(pk,m∗, σ∗) = 1. If either check
fails, SIM′ outputs ⊥.

Otherwise, SIM′ looks up the entry (pk,m∗, R∗, c∗, I) ∈ Qsig corresponding to
A’s forgery. It sets out← σ∗. SIM′ then outputs (I, out).

Difference between Game 2 and Game 1. Let W2 be the event that A wins
Game 2. The only additional advantage in the simulation by SIM′ over Game 1
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is given by bad events BadEvent1, BadEvent2, BadEvent5, BadEvent6. As such,

|Pr[W2]− Pr[W1]| = Pr[BadEvent1] + Pr[BadEvent2] + Pr[BadEvent5]

+ Pr[BadEvent6]

=
q2

2p
+

3q

p

(15)

The Reduction B′2. We now construct a PPT reduction B′2 against the AOMDL
assumption (Fig. 5). Specifically, we show how B′2 uses the adaptive unforgeability
adversary A playing against SIM′ as defined in Game 2 as a subroutine such that

Advt+1-aomdl
B′

2
(κ) ≥ accept(ForkSIM

′
(X))− 2Pr[BadEvent1]− · · · − 2Pr[BadEvent6]

(16)

where X is the instance given by the AOMDL challenger.

Initialization. B′2 is initialized by the AOMDL challenger with input the group
description G = (G, p, g) and t+ 1 AOMDL challenges (Y0, . . . , Yt) ∈ Gt+1.
B′2 has access to a discrete logarithm oracle Odl, which it may query up to t

times. B′2 aims to output (y0, . . . , yt) such that Yi = gyi for all 0 ≤ i ≤ t, with
only t queries to its AOMDL solution oracle.

To simulate Osdl queries by SIM′, B′2 initializes a table Qdl, which it uses to
cache Osdl queries made by SIM′, and responses from Odl.

Execution. B′2 then runs the general forking algorithm ForkSIM
′
(X) as described

in Figure 8, on the simulating algorithm SIM′ and its instance X.
When SIM′ queries Osdl, B′2 queries its own oracle Odl. B′2 caches the request

and response in Qdl, and then returns the response to SIM′.

With non-negligible probability lower-bounded by Equation 6, ForkSIM
′
(X)

will output the accepting answer (I, out, out′), such that:

hI = c∗, h′
I = c∗∗,

σ∗ ← out, σ∗∗ ← out′

(R∗, z∗)← σ∗, (R∗, z∗∗)← σ∗∗

Extracting the Discrete Logarithm of Y0. We show that B′2 can extract
the discrete logarithm of Y0 from A’s two valid forgeries. We assume without
loss of generality that A queries Hsig on (pk, R∗,m∗) on its forgery for each of its
executions.

With overwhelming probability, c∗ ≠ c∗∗, and B′2 can solve for y0 = z∗−z∗∗

c∗−c∗∗ .
If B′2 extracts y0, then we use this to extract a full AOMDL solution as follows.

Extracting an AOMDL Solution. The reduction B′2 must now extract the
remaining y1, . . . , yt such that Yi = gyi . Assume without loss of generality that
A makes t corruptions over the two iterations. (If not, SIM′ can corrupt the
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remaining number at the end, by querying its DL oracle until it reaches t
secret keys.) Recall that SIM′ sets Xi = Y0Y

i
1 · · ·Y it

t , and made t Osdl queries
gxi1 , . . . , gxit :

gxi1 = Y0Y
i1
1 · · ·Y

i1
t

t

...

gxit = Y0Y
it
1 · · ·Y

it
t

t

Recall also that pk = Y0. This forms the following system of linear equations:

x = y0

xi1 = y0 + i1y1 · · ·+ i1
tyt

...

xit = y0 + ity1 · · ·+ it
tyt

Equivalently, 
x
xi1
...
xit

 =


1 0 · · · 0
1 i1 · · · i1t
...
...
. . .

...
1 it · · · itt



y0
y1
...
yt


B′2 knows all of the values on the left-hand side. The matrix

V =


1 0 · · · 0
1 i1 · · · i1t
...
...
. . .

...
1 it · · · itt


is a Vandermonde matrix and is therefore invertible. Thus, B′2 can solve for
(y0, y1, . . . , yt) and win the t+ 1-aomdl game.

Finishing the Proof. Combining Equations 6, 13, 14, 15, and 16 gives Equation 4.
This completes the proof. ⊓⊔

C Proof of Adaptive Security up to t Corruptions

We now prove our strongest result: that Sparkle+ is secure against t adaptive
corruptions. In particular, if exactly t+ 1 parties engage in signing, all but one
of them could be malicious and the unforgeability of Sparkle+ would still hold.
We prove this result under the EUF-CMA security of DS and under AOMDL
assumption (Fig. 5) in the AGM with random oracles. For simplicity, we assume
that the signature scheme used, if it is group based, is implemented over a
different group than the threshold signature.
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Proof. (of Theorem 3.) We prove the theorem by a sequence of games.

Game 0. This is the adaptive unforgeability game as defined in Figure 6, instan-
tiated with Sparkle+, with input frac = 1.

Let A be an algebraic adversary attempting to break the adaptive unforge-
ability of Sparkle+ (Fig. 6). Because A is algebraic, when it queries its oracles on
a group element X ∈ G, it additionally supplies a representation of that element
with respect to all other group elements it has seen previously. A is allowed to
make up to qH queries to Hcm and Hsig, and qS queries to its signing oracles. A
is allowed to make t adaptive corruptions. Without loss of generality, we assume
A queries Hsig on its forgery (pk,m∗, R∗). Then, let q = qH + qS + 1.

Let W0 be the event that A wins Game 0. Then, the advantage of A is simply

Advadp-TS-EUF-CMA
A,Sparkle+ (κ, frac = 1) = |Pr[W0]| (17)

Game 1. Game 1 is identical to Game 1 in the proof for Theorem 1.

Reduction to EUF-CMA of DS. We now define a reduction B′′1 against the EUF-
CMA security of DS that uses A as a subroutine. B′′1 is identical to B′1 in the
proof for Theorem 2. The only difference is the probability of Event2 occurring.
The probability of not choosing a specific value τ when selecting t values without

replacement from a set of size n is (n−t)
n . (Set t := t/2 in the combinatorial

argument in Appendix B.)

Difference between Game 0 and Game 1. If Event1 does not occur, then Game 0
and Game 1 are identical. If Event1 occurs, then the probability that k = τ is at
least 1

n . The probability that Event2 does not occur, i.e., τ is not corrupted, is

greater than (n−t)
n .

The additional advantage to A in Game 1 assuming that Event1 occurs for
participant τ is upper-bounded by the advantage that B′1 wins its EUF-CMA
game against DS.

Let W1 be the event that A wins Game 1. Then,

|Pr[W0]− Pr[W1]| ≤
n2

(n− t)
AdvEUF-CMA

B′′
1 ,DS (κ) (18)

The Reduction B′′2 . We now construct a PPT reduction B′′2 against the AOMDL
assumption (Fig. 5). Specifically, we show how B′′2 uses the algebraic adaptive
unforgeability adversary A as a subroutine such that

Advt+1-aomdl
B′′

2
(κ) ≥ Advadp-TS-EUF-CMA

A,Sparkle+ (κ, 1)− Pr[BadEvent1]− · · · − Pr[BadEvent6]

(19)

where X is the instance given by the AOMDL challenger.
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Initialization. B′′2 takes as input the group description G = (G, p, g) and an
AOMDL challenge of t + 1 values (Y0, . . . , Yt). As in Gamet+1-aomdl

B′′
2

(κ), B′′2 has

access to a discrete logarithm oracle Odl, which it may query up to t times. B′′2
aims to output (y0, . . . , yt) such that Yi = gyi for all 0 ≤ i ≤ t, with only t queries
to its AOMDL solution oracle.

Simulation. The simulation by B′′2 is identical to that of SIM′ as in Game 2 for
Theorem 2. As such, the difference between the simulation by B′′2 and Game 1 is
likewise upper-bounded by Equation 15.

When A terminates with output (m∗, σ∗), B′′2 first checks that it is a valid
forgery, by checking if m∗ /∈ Qm and Verify(pk,m∗, σ∗) = 1. If either check
fails, B′′2 outputs ⊥. Otherwise, B′′2 looks up the entry (pk,m∗, R∗, c∗) ∈ Qsig

corresponding to A’s forgery.
The probability that A is successful and outputs a valid forgery but B′′2

aborts is upper bounded by the difference between Game 0, Game 1, and the
probability of additional bad events Pr[BadEvent1], . . . ,Pr[BadEvent6], as given
in Equation 18 and Equation 19.

Extracting an AOMDL solution given a discrete logarithm of Y0. Assume
without loss of generality that A makes t corruptions over the course of the
protocol. (If not, B′′2 can corrupt the remaining number at the end, by querying

its DL oracle until it reaches t secret keys.) Recall that B′′2 set Xi = Y0Y
i
1 · · ·Y it

t

and made t DL queries gxi1 , . . . , gxit :

gxi1 = Y0Y
i1
1 · · ·Y

i1
t

t

...

gxit = Y0Y
it
1 · · ·Y

it
t

t

Recall also that pk = Y0. This forms the following system of linear equations:

x = y0

xi1 = y0 + i1y1 · · ·+ i1
tyt

...

xit = y0 + ity1 · · ·+ it
tyt

Equivalently, 
x
xi1
...
xit

 =


1 0 · · · 0
1 i1 · · · i1t
...
...
. . .

...
1 it · · · itt



y0
y1
...
yt

 (20)

B′′2 knows all of the values {xj}j∈cor = {xi1 , . . . , xit} on the left-hand side, but
not x. However, B′′2 can compute x as follows.
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Extracting the Discrete Logarithm of Y0. A’s forgery verifies as:

R∗ = gz
∗
pk−c∗ (21)

where c∗ = Hsig(pk,m
∗, R∗). On the other hand, when A made its query

Hsig(pk,m
∗, R∗), it provided a representation of R∗ in terms of all of the group ele-

ments it had seen so far, namely (g, pk, X1, . . . , Xn, {Ri,1, . . . , Ri,n}i∈[qS ]), where

{Ri,k}i∈[qS ] are the honest nonces returned by OSign1 over the qS signing queries
that A makes. We assume without loss of generality that A completes every
signing session. (Otherwise, B′′2 can perform any unmet OSign2 and OSign3 queries
itself.) Thus, A provided (γ∗, ξ∗, ξ∗1 , . . . , ξ

∗
n, {ρ∗i,1, . . . , ρ∗i,n}i∈[qS ]) such that:

R∗ = gγ
∗
pkξ

∗
X

ξ∗1
1 · · ·X

ξ∗n
n

qS∏
i=1

R
ρ∗
i,1

i,1 · · ·R
ρ∗
i,n

i,n

Each Ri,k verifies as Ri,k = gzi,kX
−ciλi,k

k , where ci = Hsig(pk,mi, Ri). Thus,

R∗ = gγ
∗
pkξ

∗
X

ξ∗1
1 · · ·X

ξ∗n
n

qS∏
i=1

(gzi,1X
−ciλi,1

1 )ρ
∗
i,1 · · · (gzi,nX−ciλi,n

n )ρ
∗
i,n

Equating this with Eq. (21), we have:

gz
∗
pk−c∗ = gγ

∗
pkξ

∗
X

ξ∗1
1 · · ·X

ξ∗n
n

qS∏
i=1

(gzi,1X
−ciλi,1

1 )ρ
∗
i,1 · · · (gzi,nX−ciλi,n

n )ρ
∗
i,n

Rearranging, we have:

gz
∗
g−γ∗

qS∏
i=1

g−zi,1ρ
∗
i,1 · · · g−zi,nρ

∗
i,n

= pkc
∗
pkξ

∗
X

ξ∗1
1 · · ·X

ξ∗n
n

qS∏
i=1

(X
−ciλi,1

1 )ρ
∗
i,1 · · · (X−ciλi,n

n )ρ
∗
i,n (22)

Let η∗ = z∗ − γ∗ −
∑qS

i=1(zi,1ρ
∗
i,1 + · · ·+ zi,nρ

∗
i,n) and ζ∗k = ξ∗k −

∑qS
i=1 ciλi,kρ

∗
i,k

for all k ∈ [n]. Then Eq. (22) can be rewritten as:

gη
∗
= pkc

∗+ξ∗X
ζ∗
1

1 · · ·X
ζ∗
n

n (23)

Recall that Xi = pkY i
1Y

i2

2 · · ·Y it

t for all i ∈ [n] and that Yi = pkL
′
0,i

∏
j∈cor g

xjL
′
j,i

for all i ∈ [t]. Thus,

Xk = pk
t∏

i=1

(
pkL

′
0,i

∏
j∈cor

gxjL
′
j,i

)ki
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Let µ∗
k = 1 +

∑t
i=1 L

′
0,ik

i and ν∗k =
∑t

i=1

(∑
j∈cor xjL

′
j,i

)
ki. Then Xk can be

rewritten as:

Xk = pkµ
∗
kgν

∗
k

and Eq. (23) can be rewritten as:

gη
∗
= pkc

∗+ξ∗
n∏

k=1

Xµ∗
kgν

∗
k

Rearranging, we have:

gη
∗−

∑n
k=1 ν∗

k = pkc
∗+ξ∗+

∑n
k=1 µ∗

k

and

x =
η∗ −

∑n
k=1 ν

∗
k

c∗ + ξ∗ +
∑n

k=1 µ
∗
k

A fixed R∗ and thus η∗, {ν∗i }i∈[n], ξ
∗, {µ∗

i }i∈[n] as it queried Hsig(pk,m
∗, R∗)

to receive random c∗. Thus, the denominator is nonzero with overwhelming
probability and B′′2 can solve for x.

The matrix

V =


1 0 · · · 0
1 i1 · · · i1t
...
...
. . .

...
1 it · · · itt


in Equation 20 is a Vandermonde matrix and is therefore invertible. Thus, B′′2
can solve for (y0, y1, . . . , yt) and win the t+ 1-aomdl game.

Finishing the Proof. Combining Equations 17, 18, and 19 gives Equation 5. This
completes the proof. ⊓⊔
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