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Abstract

Bounded-collusion identity-based encryption (BC-IBE) is a variant of identity-based encryp-
tion, where an adversary obtains user secrete keys corresponding to at most d identities. From
results of existing work, it is proven that BC-IBE can be constructed from public key encryption
(PKE) with several properties. In particular, we focus on post-quantum PKE schemes submit-
ted to the NIST PQC competition, as the underlying PKE of BC-IBE schemes. This is because
post-quantum cryptography is one of active research areas, due to recent advancement of de-
veloping quantum computers. Hence, it is reasonable to consider converting such PKE schemes
into encryption schemes with additional functionalities. By using existing generic constructions
of BC-IBE, those post-quantum PKE schemes are transformed into BC-IBE with non-compact
public parameter.

In this paper, we propose generic constructions of BC-IBE whose public parameter-size is
more compact, and it is possible to apply many post-quantum PKE schemes secure against
chosen plaintext attacks, into our generic constructions. To this end, we construct BC-IBE
schemes from a group testing perspective, while existing ones are constructed by employing
error-correcting codes or cover-free families. As a result, we can obtain BC-IBE schemes with
more compact public parameter, which are constructed from the NIST PQC PKE schemes.

1 Introduction

1.1 Background

Identity-based encryption (IBE) is one of fundamental and important cryptosystems. A trusted key
generation center generates a public parameter and a master secret key. Anyone can encrypt a
message to any user by using the public parameter and the user’s identity. To decrypt a ciphertext,
a user must obtain the secrete key for the user’s identity from the key generation center. There
are many researches related to IBE such as pairing-based IBE (e.g., [3, 2, 23, 24]) and lattice-based
IBE (e.g., [12, 4, 1, 25, 26]).

As a variant of IBE, bounded-collusion IBE (BC-IBE) has been studied. BC-IBE just ensures
security in the (security) model where an adversary obtains secret keys associated with at most d
identities. This security model can capture a realistic assumption. Even though BC-IBE is a weak
variant of IBE, this cryptography is one of the most important research areas. This is because BC-
IBE schemes can be constructed from public key encryption (PKE) schemes with several properties
due to the results of [7, 13, 21, 6], while we cannot convert PKE into IBE, in general. Namely,
by elaborating a PKE construction, we can obtain the resulting BC-IBE with similar advantages
of the underlying PKE. In particular, we focus on transforming post-quantum PKE into BC-IBE.
Post-quantum cryptography (PQC) is one of the most important research areas, due to recent
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Table 1: Adaptively secure BC-IBE schemes constructed from PKE
Scheme Requirements for PKE CT-Size PP-Size StdM?

[7] IND-CPA security O(d log n)|ct| O(d2 log n)|pk| ✓
IND-CPA security

[13] Linear Hash Proof property |ct| O(d log n)|pk| ✓
Key Homomorphism
IND-CPA security

Key Homomorphism
[21] Weak Multi-Key Malleability |ct| O(d2 log n)|pk| ✓

IND-CPA security
Multi-Key Malleability

[6]

IND-CPA security

|ct| O(d)|pk| ROMKey Homomorphism
Weak Multi-Key Malleability
Power of Message-and-key

This work (Sec. 3.1) IND-CPA security O(log (n/d))|ct|

O(d log (n/d))|pk| ROM

IND-CPA security
This work (Sec. 3.2) Key Homomorphism

Weak Multi-Key Malleability |ct|

This work (Sec. 3.3) IND-CPA security
Multi-Key Malleability

“CT-Size” and “PP-Size” mean ciphertext-size and public parameter-size, respectively. d is the collusion parameter
(i.e., the number of queries issued to the key extraction oracle). n is the size of an identity space. |ct| and |pk| are
the bit-lengths of ciphertexts and public keys of the underlying PKE, respectively. “StdM” means the standard
model which is the model without idealized oracles such as random oracles. “ROM” means the random oracle model.

advancement of developing quantum computers. So, many researchers have paid much attention to
developing post-quantum cryptosystems such as PKE and key encapsulation mechanisms (KEMs).
In fact, there are many research on PKE/KEM constructions submitted to the NIST (National
Institute of Standards and Technology) PQC standardization process.
Related Work . There are the following existing BC-IBE schemes constructed from PKE with several
properties: Dodis et al. proposed the first BC-IBE scheme constructed from any PKE scheme with
indistinguishability against chosen plaintext attacks (denoted by IND-CPA security) [7]. Goldwasser,
Lewko, and Wilson presented a generic construction starting from PKE with linear hash proof
property and key homomorphism [13]. Tessaro and Wilson provided an adaptively secure BC-IBE
scheme constructed from a PKE scheme with key homomorphism and weak multi-key malleability,
and a scheme constructed from key multi-key malleability [21]. Choi et al. proposed a BC-IBE
scheme constructed from a PKE scheme with key homomorphism, weak multi-key malleability, and
power of message-and-key [6].

1.2 Contribution

Our goal is to convert many post-quantum PKE into adaptively secure BC-IBE with compact
public parameter. Table 1 shows generic constructions of adaptively secure BC-IBE. From this
table, we can see that there is no existing BC-IBE scheme with compact public parameter, which is
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constructed from a PKE scheme submitted to the NIST PQC competition. Although the BC-IBE
scheme of [7] can be constructed from any IND-CPA secure PKE (with |pk|-size public key and |ct|-
size ciphertext), its public parameter-size and ciphertext-size are O(d2 log n)|pk| and O(d log n)|ct|,
respectively, where d is the collusion parameter, and n is the size of the identity space. Although
the public parameter-size of the scheme of [13] is O(d log n), there is no post-quantum PKE scheme
which can be applied to this generic construction, because the linear hash proof property introduced
in [13] is required for the underlying PKE. Regarding the generic constructions of [21], only the
GPV cryptosystem [12] and a variant of NTRU [20] can be applied to these constructions, and the
public parameter-size of the resulting BC-IBE schemes grows with O(d2 log n). Although the public
parameter-size of the construction of [6] is O(d)|pk|, only the GPV cryptosystem can be applied to
this BC-IBE construction. From these results, when a BC-IBE scheme is constructed from a NIST
PQC PKE scheme, its public parameter-size is O(d2 log n)|pk| and is not compact. Hence, we aim
at converting such post-quantum PKE schemes into BC-IBE schemes with more compact public
parameter.

In order to achieve our goal, we utilize list disjunct matrices used in group testing methodology [9,
10], while existing schemes employ error-correcting codes or cover-free families. Then, we can
construct BC-IBE schemes with O(d log (n/d))|pk|-size public parameter, by using properties of a
list-disjunct matrix and a random oracle. Details on our contribution are as follows:

• First, we propose a generic construction (in Section 3.1) starting from any IND-CPA secure
PKE. Namely, it is possible to apply any post-quantum PKE schemes to this construction.
This scheme is similar to the BC-IBE scheme of [7]. However, we utilize a particular con-
struction of a (d, d)-list-disjunct matrix in order to construct a BC-IBE with more compact
public parameter and ciphertext, while the existing one employs d-disjunct matrices (see Def-
inition 12) whose notion is identical to those of error-correcting codes and cover-free families.
Concretely, the public parameter-size and ciphertext-size of ours are O(d log (n/d))|pk| and
O(log (n/d))|ct|, respectively. On the other hand, the public parameter-size and ciphertext-
size of the scheme of [7] are O(d2 log n)|pk| and O(d log (n))|ct|, respectively. Notice that the
security of our scheme is ensured in the random oracle model, while the [7] scheme is secure
in the standard model.

• Second, we present two generic constructions (in Sections 3.2 and 3.3) starting from IND-CPA
secure PKE with several properties. One requires the underlying PKE to satisfy key homo-
morphism and weak multi-key malleability. The other requires the PKE to satisfy multi-key
malleability. These properties were introduced in [21]. The ciphertext-size of these BC-IBE
schemes is better than that of our first scheme, because this size is the same as that of the
underlying PKE, due to the required properties. In addition, the public parameter-size of
these schemes also grows with O(d log (n/d)) due to (d, ℓ)-list-disjunct matrices.

In addition, if the underlying PKE satisfies disjoint simulatability instead of IND-CPA security, it
is possible to convert such PKE into the objective BC-IBE scheme (see Appendix A). Namely, it
is possible to apply deterministic post-quantum PKE schemes into BC-IBE with compact public
parameter. We should notice that the size of the identity space in our schemes all is exponential
in a security parameter, so that we can give security proofs for these schemes. However, we do not
have to store a list-disjunct matrix whose size is exponential, by using an explicit construction of a
list-disjunct matrix (e.g., [16, 5]).

From the results above, it is possible to apply any IND-CPA secure post-quantum PKE to the
first generic construction in Section 3.1, and thus we can convert post-quantum PKE into BC-IBE
with public parameter whose size is O(d log n)|pk|.
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2 Preliminaries

In this paper, we use the following notation: For a positive integer n, let [n] := {1, . . . , n}. For
values x1, . . . , xn and a subset S ⊆ [n], let {xi}i∈S (resp. (xi)i∈S) be the set (resp. sequence)
of values whose indexes are in S. For a positive integer n, let 0n be the n-bit zero-string. For a
function f : N → R, f is negligible in λ (denoted by f(λ) ≤ negl(λ)) if f(λ) = o(λ−c) for any
constant c > 0 and sufficiently large λ ∈ N. A probability is an overwhelming probability if it is
1 − negl(λ). “Probabilistic polynomial time” is abbreviated as PPT. For a positive integer λ, let
poly(λ) be a universal polynomial of λ.
Matrices and vectors. For consistency, we use capital bold letters for matrices, non-capital letters
for scalars, and bold letters for (column) vectors. For a (binary) matrix M ∈ {0, 1}u×n, we use
the standard notation M = (mi,j). For a n-dimensional vector v, vi is the i-th entry, namely
v = (v1, . . . , vn)

⊤. For a binary matrix x ∈ {0, 1}n, let supp(x) := {i ∈ [n] | xi = 1}. For
a binary matrix M = (mi,j) ∈ {0, 1}u×n and a binary vector x ∈ {0, 1}n, the binary vector
y = M ⊙ x ∈ {0, 1}u is defined as

∀i ∈ [u], yi =
∨

j∈[n] s.t. mi,j=1

xj ,

where
∨

is the bitwise-OR. For a binary matrix M = (mi,j) ∈ {0, 1}u×n and c ∈ [n], let ϕM (c) :=
{i ∈ [u] | mi,c = 1}.

Furthermore, we describe definitions of several (cryptographic) primitives, in the sections below.

2.1 Public Key Encryption (PKE)

Regarding PKE, we describe its syntax and security definitions required for constructing our BC-IBE
schemes.

Definition 1 (PKE). A PKE scheme consists of three polynomial-time algorithms (KGen,Enc,Dec):
For a security parameter λ, let M =M(λ) be the message space.

Key Generation. (pk, sk)← KGen(1λ): The randomized algorithm KGen takes as input a security
parameter 1λ and outputs a public key pk and a secret key sk.

Encryption. ct ← Enc(pk,m): The randomized or deterministic algorithm Enc takes as input a
public key pk and a message m, and it outputs a ciphertext ct.

Decryption. m← Dec(sk, ct): The deterministic algorithm Dec takes as input a secret key sk and
a ciphertext ct, and it outputs a message m ∈M.

We require a PKE scheme to be correct, as follows:

Definition 2 (Correctness). A PKE scheme (KGen,Enc,Dec) is correct if for every (pk, sk) ←
KGen(1λ) and every m ∈ M, it holds that Dec(sk, ct) = m with overwhelming probability, where
ct← Enc(pk,m).

Security of PKE. As security notions of PKE, we describe the definitions of indistinguishability
against chosen plaintext attacks (denoted by IND-CPA security) and disjoint simulatability.

Definition 3 (IND-CPA security). A PKE scheme PKE = (KGen,Enc,Dec) is IND-CPA secure, if for
any PPT adversary A against PKE, its advantage Advind-cpa

PKE,A (λ) := |Pr[A wins]− 1/2| is negligible
in λ, where [A wins] is the event that A wins in the following game:
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Setup. The challenger generates (pk, sk)← KGen(1λ) and gives pk to the adversary A.

Challenge. When A submits (m∗
0,m

∗
1) ∈ M2 such that |m∗

0| = |m∗
1|, the challenger chooses b

$←
{0, 1} and returns ct∗ ← Enc(pk,m∗

b).

Output. A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′.

Following [19, 14], we describe this definition, as follows:

Definition 4 (Disjoint Simulatability). A PKE scheme PKE = (KGen,Enc,Dec) is ϵds-disjoint
simulatable, if there exists a PPT algorithm Enc satisfying the following:

• For any PPT adversary A against PKE, its advantage Advds-ind
PKE,A(λ) is negligible in λ, where

Advds
PKE,A(λ) is defined as

Advds
PKE,A(λ) :=

∣∣∣∣∣Pr
[
1← A(pk, ct)

∣∣∣∣∣ (pk, sk)← KGen(1λ);

m
$←M; ct← Enc(pk,m)

]
−Pr[1← A(pk, ct) | (pk, sk)← KGen(1λ); ct← Enc(pk)]

∣∣∣ .
• For every pk ∈ supp(KGen), Pr[ct ∈ Enc(pk,M;R) | ct← Enc(pk)] ≤ ϵds, where supp(KGen) =
{pk | (pk, sk)← KGen(1λ)}, and R is the randomness space of Enc.

Special Properties of PKE. We describe the definitions of several properties required for con-
structing our BC-IBE schemes: key-homomorphism and (weak) multi-key malleability.

Definition 5 (Secret to Public Key Homomorphism [21]). Let PKE = (KGen,Enc,Dec) be a PKE
scheme with the secret key space Ksk = Ksk(λ) and the public key space Kpk = Kpk(λ) for a security
parameter λ. The PKE scheme PKE satisfies key-homomorphism if there exists a map µ : Ksk → Kpk

such that

• µ is a homomorphism (i.e., for all sk, sk′ ∈ Ksk, µ(sk+ sk′) = µ(sk) · µ(sk′));

• Every (pk, sk) generated by KGen satisfies pk = µ(sk).

Definition 6 (Weak Multi-Key Malleability [21]). A PKE scheme PKE = (KGen,Enc,Dec) is
weakly u-key malleable if there exists a polynomial-time algorithm Simulate such that for every m ∈
M, every I ⊆ [u], and every i∗ ∈ I, the probability distributions D0 and D1 are computationally
indistinguishable, where for {(pki, ski)← KGen(1λ)}i∈[u], Db consists of ((pki)i∈[u], (ski)i∈I\{i∗}, ctb)
such that

• ct0 ← Enc(
∏

i∈I pki,m);

• ct← Enc(pki∗ ,m), ct1 ← Simulate(i∗, I, ct, (pki)i∈[u], (ski)i∈I\{i∗}).

Definition 7 (Multi-Key Malleability [21]). A PKE scheme PKE = (KGen,Enc,Dec) is u-key malleable,
if there exists the two polynomial-time algorithms Modify and Combine such that the following con-
ditions hold:

1. For every m ∈M, every I ⊆ [u] and every i∗ ∈ I, the probability

Pr

Dec(Combine(I, (ski)i∈[u]), ct
∗) ̸= m

∣∣∣∣∣∣
∀i ∈ [u], (pki, ski)← KGen(1λ);
ct← Enc(pki∗ ,m);
ct∗ ← Modify(i∗, I, (pki)i∈[u], ct)


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is negligible in λ1.

2. For every I ⊆ [u], Combine(I, (ski)i∈[u]) does not depend on ski for i /∈ I.

3. For every I ⊆ [u] and every (pki, ski)i∈[u], for all i∗, j∗ ∈ I such that i∗ ̸= j∗, the values
Modify(i∗, I, (pki)i∈[u], ct) and Modify(j∗, I, (pki)i∈[u], ct) are identically distributed.

2.2 Bounded-Collusion Identity-based Encryption (BC-IBE)

Following [21], we describe the syntax and a security definition of BC-IBE.

Definition 8 (BC-IBE). A BC-IBE scheme consists of four polynomial-time algorithms (Setup,
Extract,Enc,Dec): For a security parameter λ, let ID = ID(λ) be the identity space and let M =
M(λ) be the message space.

Setup. (pp,msk)← Setup(1λ): The randomized algorithm Setup takes as input a security parameter
1λ and outputs a public parameter pp and a master secret key msk.

Key Extraction. skid ← Extract(msk, id): The randomized or deterministic algorithm Extract
takes as input a master secret key msk and an identity id ∈ ID, and it outputs a secret
key skid.

Encryption. ct← Enc(pp, id,m): The randomized or deterministic algorithm Enc takes as input a
public parameter pp, an identity id ∈ ID, and a message m ∈ M, and it outputs a ciphertext
ct.

Decryption. m ← Dec(skid, ct): The deterministic algorithm Dec takes as input a secret key skid
and a ciphertext ct, and it outputs a message m.

A BC-IBE scheme is required to be correct, as follows:

Definition 9 (Correctness). A BC-IBE scheme (Setup,Extract,Enc,Dec) is correct if for every
pp ← Setup(1λ), every id ∈ ID, every skid ← Extract(msk, id), and every m ∈ M, it holds that
Dec(skid, ct) = m with overwhelming probability, where ct← Enc(pp, id,m).

As a security notion of BC-IBE, we describe the definition of adaptive security against chosen
plaintext attacks (denoted by d-adaptive CPA security), as follows:

Definition 10 (d-adaptive CPA security). A BC-IBE scheme BC-IBE = (Setup,Extract,Enc,Dec) is
d-adaptive CPA secure, if for any PPT adversary A against BC-IBE, its advantage Advadaptive

BC-IBE,A(λ) :=
|Pr[A wins]− 1/2| is negligible in λ, where [A wins] is the event that A wins in the following security
game:

Setup. The challenger generates (pp,msk)← Setup(1λ) and gives pp to A.

Phase 1. A is allowed to issue the key extraction oracle OEXT which, on input a key extraction
query id ∈ ID, returns skid ← KGen(msk, id).

Challenge. A submits (id∗,m∗
0,m

∗
1) ∈ ID ×M2 such that id∗ has never been issued to OEXT and

|m∗
0| = |m∗

1|. The challenger chooses b
$← {0, 1} and returns ct∗ ← Enc(pp, id∗,m∗

b).

1The chosen ciphertext ct can be regarded as a ciphertext generated by Enc or Enc, since ct is a valid ciphertext
drawn from C.
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Phase 2. A can issue queries to OEXT. Notice that A is forbidden to issue id∗ to this oracle.

Output. A outputs b′ ∈ {0, 1}. A wins if b = b′.

Here, A is allowed to issue at most d queries to the OEXT oracle.

2.3 All-or-Nothing Transform (AONT)

We describe the definition of AONTs because our BC-IBE scheme uses this cryptographic primitive.
An AONT splits a message X into v secret shares x1, . . . , xv and a public share z, and can recover
X from the shares (x1, . . . , xv, z).

Following [7], we describe the definition of AONTs, as follows:

Definition 11 (AONT). An efficient randomized transformation Trans is (µ, µ̄, v)-AONT if all the
following conditions hold:

1. Given X ∈ {0, 1}µ, Trans outputs v+1 blocks (x1, . . . , xv, z), where for i ∈ [v], xi ∈ {0, 1}µ̄ is
a secret share, and z ∈ Z is a public share.

2. There exists an efficient inverse function Inverse which, on input (x1, . . . , xv, z) ∈ ({0, 1}µ̄)v×
Z, outputs X ∈ {0, 1}µ.

3. For any PPT algorithm A against Trans, its advantage

Advind
Trans,A(λ) :=

∣∣∣∣Pr[b = b′ | b $← {0, 1}; b′ ← AOLR(1λ)]− 1

2

∣∣∣∣
is negligible in λ, where OLR is the left-or-right oracle which, on input (j,X0, X1) ∈ [v] ×
({0, 1}µ)2, returns (x1, . . . , xj−1, xj+1, . . . , xv, z).

2.4 Group Testing

Dorfman introduced the notion of group testing [9] in order to efficiently detect blood samples
contaminated by syphilis during the World War II. Group testing (e.g., [10]) is a method to de-
tect positive items called defectives among many whole items with a small number of tests than
individually testing each item in the trivial way.

The group testing techniques are classified into two types: non-adaptive setting (e.g., [22, 18, 11])
and adaptive setting (e.g., [9, 17, 15]). Suppose that there are totally n items of which there are
(at most) d defectives. In non-adaptive group testing, we need to know d beforehand and to select
all the subsets of n items to be tested without knowing the results of other tests. On the other
hand, in adaptive group testing, we do tests several times such that we can select a subset of items
to be tested after observing the result of the previous test. In this paper, we focus on non-adaptive
group testing. This is because non-adaptive group testing can run all tests simultaneously, and all
test-designs are determined in advance. On the other hand, adaptive group testing cannot execute
all tests at the same time, since each test-design depends on the result of the previous test. To sum
up, non-adaptive group testing is much better than adaptive one, in terms of time-complexity.

Non-adaptive group testing is typically designed by using a d-disjunct matrix, a cover-free family,
or an error-correcting code (e.g., see [10]). And, a non-adaptive group testing protocol with u tests
for n items is represented by a u× n binary matrix, and the (i, j)-th element of the matrix is equal
to 1 if and only if the i-th test is executed to the j-th item. Among such matrices for representing
non-adaptive group testing, a disjunct matrix (or cover-free family) is well studied in combinatorics
and bioinformatics, and it is defined as follows:
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Definition 12 (Disjunct Matrices). A binary matrix M = (mi,j) ∈ {0, 1}u×n is d-disjunct if for
every distinct s1, . . . , sd ∈ [n] and every j ∈ [n]\{s1, . . . , sd}, there exists a row q ∈ [u] such that
mq,j = 1 and ∀j′ ∈ {s1, . . . , sd}, mq,j′ = 0.

Furthermore, the notion of list-disjunct matrices was introduced in [16]. This matrix is often
used for designing a two-stage adaptive group testing protocol.

Definition 13 (List-disjunct Matrices). A binary matrix M = (mi,j) ∈ {0, 1}u×n is (d, ℓ)-list-
disjunct if for every two disjoint sets S, T ⊆ [n] with |S| = d and |T | = ℓ+1, there exists an element
j ∈ T and a row q ∈ [u] such that mq,j = 1 ∧ ∀j′ ∈ S,mq,j′ = 0.

Note that the notion of (d, 0)-list-disjunct matrices corresponds to that of d-disjunct matrices.
In addition, the following definition is also considered for list-disjunct matrices:

Definition 14 (Associated List for List-disjunct Matrices [5]). Assume that M ∈ {0, 1}u×n is
a (d, ℓ)-disjunct matrix and x ∈ {0, 1}n is a binary vector such that |supp(x)| ≤ k. Then, for
y = M ⊙x, L(y) is defined as the list of elements i ∈ [n] (called the associated list of x) satisfying
mq,i = 1 for every q ∈ [u] such that yq = 1.

Note that for y = M ⊙ x, the associated list L(y) corresponds to the indexes i ∈ [n] which
appear to be defective, and |L(y)| ≤ d+ ℓ.

The following proposition was proved as one of the results of [5]:

Proposition 1 ([5]). There exists a Monte-Carlo construction of a (d, d)-list-disjunct matrix M ∈
{0, 1}u×n with u = O(d log (n/d)) and |ϕM (j)| = log (n/d) for all j ∈ [n].

3 Our Proposed BC-IBE

3.1 The Basic BC-IBE from IND-CPA secure PKE

We propose a BC-IBE scheme with O(d log (n/d))|pk|-size public parameter from any IND-CPA
secure PKE with |pk|-size public key. Although this one is similar to the scheme of [7], we employ
a (d, ℓ)-list-disjunct matrix M ∈ {0, 1}u×n with |ϕM (j)| = log (n/d) for all j ∈ [n]. There exists
a concrete construction of such list-disjunct matrices, from results of [16, 5]. Due to the property
of |ϕM (j)| = log (n/d), the ciphertext-size of this BC-IBE scheme is O(log (n/d))|ct|, where |ct|
is the ciphertext-size of the underlying PKE. In addition, by requiring the underlying PKE to
satisfy additional properties, it is possible to construct BC-IBE schemes with |ct|-size ciphertext
(see Sections 3.2 and 3.3). That is, these schemes are based on the BC-IBE in this section, and we
present this basic BC-IBE scheme.

The base BC-IBE scheme BC-IBEbasic = (Setup,Extract,Enc,Dec) is constructed as follows: For
a security parameter λ, let n = n(λ), u = u(λ), µ = µ(λ), µ̄ = µ̄(λ), v = v(λ) be positive integers.
Let ID = ID(λ) be the identity space such that |ID| = n andM = {0, 1}µ be the message space.

As system parameters of BC-IBEbasic, let d be the collusion parameter of d-adaptive CPA security,
and let H : ID → [n] be a random oracle. We employ a PKE scheme PKE = (PKE.KGen,PKE.Enc,
PKE.Dec) with the message space MPKE = {0, 1}µ̄ and a (µ, µ̄, v)-AONT Trans with an efficient
inverse function Inverse. Let M ∈ {0, 1}u×n be a (d, ℓ)-list-disjunct matrix constructed in Propo-
sition 1. Notice that we can set ℓ = d and v = log (n/d) in order to construct BC-IBE with
O(d log (n/d))|pk|-size public parameter and O(log (n/d))|ct|-size ciphertext, due to Proposition 1.

• (pp,msk)← Setup(1λ):
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1. Generate (pki, ski)← PKE.KGen(1λ) for i ∈ [u].

2. Output pp = (pk1, . . . , pku) and msk = (sk1, . . . , sku).

• skid ← Extract(msk, id):

1. Parse msk = (sk1, . . . , sku).

2. Output skid = (ski)i∈ϕM (H(id)).

• ct← Enc(pp, id,m):

1. Parse pp = (pk1, . . . , pku).

2. Compute (x1, . . . , xv, z)← Trans(m).

3. Compute ci ← PKE.Enc(pkσi
, xi) for i ∈ [v], where ϕM (H(id)) = {σ1, . . . , σv}, and

σ1, . . . , σv ∈ [u] are all distinct.

4. Output ct = (c1, . . . , cv, z).

• m← Dec(skid, ct):

1. Parse skid = (ski)i∈ϕM (H(id)) and ct = (c1, . . . , cv, z).

2. Compute xi ← PKE.Dec(skσi , ci) for every i ∈ [v], where ϕM (H(id)) = {σ1, . . . , σv} for
all distinct σ1, . . . , σv.

3. Output m′ ← Inverse(x1, . . . , xv, z).

It is clear that the BC-IBE scheme BC-IBEbasic is correct if the underlying PKE and AONT Trans
are correct. The following theorem shows the security of BC-IBEbasic:

Theorem 1. If a PKE scheme PKE is IND-CPA secure, an efficient randomized transformation
Trans with an inverse function Inverse is a (µ, µ̄, v)-AONT, and a binary matrix M is (d, ℓ)-list-
disjunct, then the resulting BC-IBE scheme BC-IBEbasic is d-adaptive CPA secure in the random
oracle model.

Proof. Let A be a PPT adversary against the d-adaptive CPA security of BC-IBEbasic, qH be the
maximum number of queries issued to the random oracle H, and TH be the table of query-response
pairs to the H oracle. We define ct∗ = (c∗1, . . . , c

∗
v, ĉ

∗, z∗) as the challenge ciphertext.
In order to prove Theorem 1, we consider the security games Game0,Game1. For i ∈ {0, 1}, Wi

is defined as the event that A outputs b′ ∈ {0, 1} such that b = b′ in Gamei.

Game0. This is the ordinary d-adaptive CPA security game. Then, we have Advadaptive
BC-IBEbasic,A(λ) =

|Pr[W0]− 1/2|.

Game1. This game is the same as Game0 except that the procedure of the H oracle is modified
as follows: We assume that at the beginning of the security game, an index hid∗ ∈ [n] is chosen
uniformly at random. Given a query id ∈ ID, the H oracle checks whether TH [id] = ∅. If TH [id] =

hid ∈ [n], it returns hid. Otherwise, it chooses hid
$← [n]. Then the challenger aborts if hid ∈

L(ϕM (hid∗)). If hid /∈ L(ϕM (hid∗)), H returns hid and sets TH [id] ← hid. Here, let Abort be the
event that hid ∈ L(ϕM (hid∗)) holds when choosing hid

$← [n].
We estimate the upper bound of the probability that Abort occurs, because Game0 and Game1

are identical unless this event occurs. Due to the (d, ℓ)-list-disjunct property of M , ℓ + 1 is the
maximum number of |L(ϕM (hid∗))|. The probability that for the i-th query id to H, hid

$← [n] is
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included in the associated list L(ϕM (hid∗)) is at most (ℓ + 1)/(n − (i − 1)). In addition, the total
number of queries to H is at most qH + d, since OEXT calls H at most d times. Hence, we have

Pr[Abort] ≤
∑

i∈[qH+d]

ℓ+ 1

n− (i− 1)
≤

∑
i∈[qH+d]

ℓ+ 1

n− (qH + d)
≤ (qH + d)(ℓ+ 1)

n− (qH + d)
.

Hence, we have |Pr[W0]− Pr[W1]| ≤ (qH + d)(ℓ+ 1)/(n− (qH + d)).
Furthermore, in order to show that the winning probability in Game1 is negligible, we assume

that some random index i∗ ∈ ϕM (H(id∗)) is fixed, and the challenger computes (x∗1, . . . , x
∗
v, z

∗) ←
Trans(m∗

b), c
∗
j∗ ← PKE.Enc(pki∗ , 0

|m∗
0|), and c∗i ← PKE.Enc(pkσ∗

i
, x∗i ) for i ∈ [u]\{j∗} (where j∗ ∈ [v]

is the index such that i∗ = σ∗
j∗ and ϕM (H(id∗)) = {σ∗

1, . . . , σ
∗
v}), when generating the challenge

ciphertext ct∗ = (c∗1, . . . , c
∗
v, z

∗). We define Ĝame1 as Game1 under this assumption, and let Ŵ1 be
the event that A outputs b′ such that b = b′ in Ĝame1.

We show the indistinguishability between Game1 and Ĝame1 follows the IND-CPA security of
PKE. By using A, we construct a PPT algorithm D1 against the IND-CPA security of PKE, as
follows: D1 is given a public key pk∗ of PKE. At the beginning of the security game, D1 chooses
hid∗

$← [n], i∗ $← ϕM (hid∗), and sets pki∗ = pk∗. Then it generates (pki, ski) ← PKE.KGen(1λ) for
i ∈ [u]\{i∗}, initializes the table TH ← ∅, and gives pp = (pk1, . . . , pku) to A. The H and OEXT

oracles are simulated in the following way:

• H: Given id ∈ ID, return hid if TH(id) = hid ∈ [n]. If TH [id] = ∅, do the following:

1. Choose hid
$← [n].

2. If hid ∈ L(ϕM (hid∗)), abort and output a random bit.

3. If i∗ ∈ ϕM (hid), abort and output a random bit.

4. Return hid and set TH [id]← hid.

• OEXT: Given an extraction query id ∈ ID, obtain hid ∈ [n] by calling the H oracle and return
skid = (ski)i∈ϕM (hid).

When A submits (id∗,m∗
0,m

∗
1), D1 does the following:

1. Choose b
$← {0, 1}.

2. Let ϕM (hid∗) = {σ∗
1, . . . , σ

∗
v} for all distinct σ∗

1, . . . , σ
∗
v ∈ [u].

3. Compute (x∗1, . . . , x
∗
v, z

∗)← Trans(m∗
b).

4. Compute c∗i ← PKE.Enc(pkσ∗
i
, x∗i ) for i ∈ [v]\{j∗}, where σ∗

j∗ = i∗.

5. For i ∈ [v] such that σ∗
i = i∗, obtain the challenge ciphertext ct∗i by submitting (m∗

b , 0
|m∗

0|) to
the IND-CPA security game.

6. Return ct∗ = (c∗1, . . . , c
∗
v, z

∗) and set TH [id∗]← hid∗ .

Finally, when A outputs the guessing bit b′ ∈ {0, 1}, D1 outputs 1 if b = b′, and otherwise 0.
The H and OEXT oracles are simulated correctly. Regarding the challenge ciphertext ct∗, Game1

is simulated if c∗i ← PKE.Enc(pki∗ ,m
∗
b), and Ĝame1 is simulated otherwise. Furthermore, the

simulation of the environment of A succeeds unless the H oracle chooses a random hash value

10



hid ∈ [n] such that i∗ ∈ ϕM (hid). This event occurs with at least probability 1/u. Hence, we have∣∣∣Pr[W1]− Pr[Ŵ1]
∣∣∣ ≤ u · Advind-cpa

PKE,D1
(λ).

Finally, we show that the winning probability in Ĝame1 follows the security of (µ, µ̄, v)-AONT.
By using A, we construct a PPT algorithm D2 breaking the security of (µ, µ̄, v)-AONT, as follows:
D2 chooses hid∗

$← [n], i∗
$← ϕM (hid∗). At the beginning of the security game, D2 generates

(pki, ski) ← PKE.KGen(1λ) for i ∈ [u], sets TH ← ∅, and gives pp = (pk1, . . . , pku) to A. The H
and OEXT oracles are simulated in the same way as D1. When A submits (id∗,m∗

0,m
∗
1), D2 does the

following:

1. Let ϕM (hid∗) = {σ∗
1, . . . , σ

∗
v} for all distinct σ∗

1, . . . , σ
∗
v ∈ [u], and let j∗ ∈ [v] be an index such

that i∗ = σ∗
j∗ .

2. Obtain (x∗1, . . . , xj∗−1, xj∗+1, . . . , x
∗
v, z

∗) by issuing (j∗,m∗
0,m

∗
1) to the given OLR oracle.

3. Compute cj∗ ← PKE.Enc(pki∗ , 0
|m∗

0|), and for i ∈ [v]\{j∗}, compute c∗i ← PKE.Enc(pkσ∗
i
, x∗i ).

4. Return ct∗ = (c∗1, . . . , c
∗
v, z

∗) and set TH [id∗]← hid∗ .

Finally, when A outputs b′ ∈ {0, 1}, D2 also outputs b′.
The simulation of the OEXT and H oracles are simulated correctly, in the same way as D1. The

challenge ciphertext is correctly generated in Ĝame1, since the j∗-th ciphertext is an encryption
of 0|m

∗
0|, instead of c∗j∗ ← PKE.Enc(pki∗ , xj∗). Furthermore, D2 succeeds in simulating the view

of A unless the H oracle chooses hid such that i∗ ∈ ϕM (hid). Hence, we have
∣∣∣Pr[Ŵ1]− 1/2

∣∣∣ ≤
u · Advind

AONT,D2
(λ).

From the above discussion, we obtain

Advadaptive
BC-IBEbasic,A(λ) ≤ u · Advind-cpa

PKE,D1
(λ) + u · Advind

AONT,D2
(λ) +

(qH + d)(ℓ+ 1)

n− (qH + d)
,

and thus the objective inequality holds.

3.2 BC-IBE from Weak Multi-Key Malleable PKE with Key Homomorphism

In this section, we present a generic construction of BC-IBE whose ciphertext-size is the same as that
of the underlying PKE. As described beforehand, this scheme is based on the BC-IBEbasic scheme
presented in Section 3.1. However, unlike this scheme, the underlying (IND-CPA secure) PKE is
required to satisfy (secret to public) key homomorphism and weak multi-key malleability. Concretely,
key homomorphism is necessary to generate a single PKE ciphertext rather than multiple ciphertexts,
and weak multi-key malleability is required to achieve d-adaptive CPA security.

The proposed BC-IBE scheme BC-IBEkh = (Setup,Extract,Enc,Dec) is constructed as follows:
For a security parameter λ, let n = n(λ), u = u(λ) be positive integers. Let ID = ID(λ) be
the identity space such that |ID| = n, and let MBC-IBE =MBC-IBE(λ) be the message space. Let
PKE = (PKE.KGen,PKE.Enc,PKE.Dec) be a PKE scheme with the same message space asMBC-IBE.
Let H : ID → [n] be a random oracle and M ∈ {0, 1}u×n be a (d, ℓ)-list-disjunct matrix.

• (pp,msk)← Setup(1λ):

1. Generate (pki, ski)← PKE.KGen(1λ) for i ∈ [u].

2. Output pp = (pk1, . . . , pku) and msk = (sk1, . . . , sku).
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• skid ← Extract(msk, id):

1. Parse msk = (sk1, . . . , sku)

2. Output skid ←
∑

k∈ϕM (H(id)) skk.

• ct← Enc(pp, id,m):

1. Parse pp = (pk1, . . . , pku).

2. Compute pkid ←
∏

k∈ϕM (H(id)) pkk.

3. Output ct← PKE.Enc(pkid,m).

• m← Dec(skid, ct): Output m′ ← PKE.Dec(skid, ct).

It is clear that BC-IBEkh is correct if PKE is correct and satisfies key homomorphism. The following
theorem shows the security of this BC-IBE scheme:

Theorem 2. If a PKE scheme PKE is IND-CPA secure and weakly u-key malleable, and a binary
matrix M is (d, ℓ)-list-disjunct, then the resulting BC-IBE scheme BC-IBEkh is d-adaptive CPA
secure in the random oracle model.

Proof. Let A be a PPT adversary breaking the d-adaptive CPA security of BC-IBEkh. We define
qH as the maximum number of queries issued to the random oracle H, and TH as the table of
query-response pairs to H.

We define Ĝame as the security game which is the same as the ordinary d-adaptive CPA security
game except that the procedure of the H oracle is modified as follows: We assume that, at the
beginning of the security game, an index hid∗ ∈ [n] is chosen uniformly at random. Given a query
id ∈ ID, the H oracle checks whether TH [id] = ∅. If TH [id] = hid ∈ [n], it returns hid. Otherwise,
it chooses hid

$← [n]. Then the challenger aborts if hid ∈ L(ϕM (hid∗)). If hid /∈ L(ϕM (hid∗)), H
returns hid and sets TH [id]← hid.

In addition, W and Ŵ are defined as the events that A outputs b′ ∈ {0, 1} such that b = b′ in
the d-adaptive CPA game and Ĝame, respectively. Let Abort be the event that hid ∈ L(ϕM (hid∗))

holds in Ĝame when H chooses hid
$← [n].

We estimate the upper bound of the aborting probability, because Ĝame is identical to the d-
adaptive CPA security game unless Abort occurs. In the same way as the proof of Theorem 1, this
bound is obtained as follows:

Pr[Abort] ≤
∑

i∈[qH+d]

ℓ+ 1

n− (i− 1)
≤

∑
i∈[qH+d]

ℓ+ 1

n− (qH + d)
≤ (qH + d)(ℓ+ 1)

n− (qH + d)
.

Hence, we have
∣∣∣Pr[W ]− Pr[Ŵ ]

∣∣∣ ≤ (qH + d)(ℓ+ 1)/(n− (qH + d)).

We show that the indistinguishability in Ĝame follows the IND-CPA security of PKE. In order to
do this, by using A, we construct a PPT algorithm D against PKE, as follows: On input the public
key pk∗ of PKE, D chooses two indexes hid∗

$← [n], i∗ $← ϕM (hid∗), and sets pki∗ ← pk∗. At the
beginning of the security game of BC-IBE, D generates (pki, ski)← PKE.KGen(1λ) for i ∈ [u]\{i∗},
sets the table TH ← ∅, and gives pp = (pk1, . . . , pku) to A. The OEXT and H oracles are simulated
as follows:

• H: Given id ∈ ID, return hid if TH(id) = hid ∈ [n]. If TH [id] = ∅, do the following:
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1. Choose hid
$← [n].

2. If hid ∈ L(ϕM (hid∗)), abort and output a random bit.
3. If i∗ ∈ ϕM (hid), abort and output a random bit.
4. Return hid and set TH [id]← hid.

• OEXT: Given an extraction query id ∈ ID, obtain hid ∈ [n] by accessing H, and return
skid ←

∑
k∈ϕM (hid)

skk.

When A submits (id∗,m∗
0,m

∗
1), D obtains ci∗ by issuing (m∗

0,m
∗
1) to the IND-CPA security game, and

returns ct∗ ← Simulate(i∗, ϕM (H(id)), ci∗ , pp, (ski)i∈[u]\{i∗}). Finally, when A outputs b′ ∈ {0, 1}, D
also outputs b′.

The two oracles H and OEXT are correctly simulated in Ĝame. Furthermore, the challenge
ciphertext is also simulated because ct∗ ← Simulate(i∗, ϕM (H(id)), ci∗ , pp, (ski)i∈[u]\{i∗}) is indistin-
guishable from the real challenge ciphertext, due to the weak multi-key malleability of PKE. Hence,
D correctly simulates the environment of A in Ĝame. It is shown that D breaks the IND-CPA
security unless hid ∈ [n] such that i∗ ∈ ϕM (hid) is chosen by the H oracle. Therefore, we have∣∣∣Pr[Ŵ ]− 1/2

∣∣∣ ≤ u · Advind-cpa
PKE,D (λ).

From the discussion above, we obtain

Advadaptive
BC-IBEkh,A(λ) ≤ u · Advind-cpa

PKE,D (λ) +
(qH + d)(ℓ+ 1)

n− (qH + d)
,

and the proof is completed.

3.3 BC-IBE from Multi-Key Malleable PKE

We describe a generic construction from PKE with multi-key malleability (Definition 7). Although the
public parameter-size and ciphertext-size of this scheme are the same as those of the BC-IBE scheme
BC-IBEkh in Section 3.2, the classes of the underlying PKE are different. Thus, it is meaningful to
present this scheme. Notice that multi-key malleability is necessary to reduce the ciphertext-size and
satisfy d-adaptive CPA security.

The proposed BC-IBE scheme BC-IBEmkm = (Setup,Extract,Enc,Dec) is constructed as follows:
For a security parameter λ, let n = n(λ), u = u(λ) be positive integers, let ID = ID(λ) be the
identity space such that |ID| = n, and let MBC-IBE =MBC-IBE(λ) be the message space. We use
a PKE scheme PKE = (PKE.KGen,PKE.Enc,PKE.Dec). Let H : ID → [n] be a random oracle and
M ∈ {0, 1}u×n be a (d, ℓ)-list-disjunct matrix.

• (pp,msk)← Setup(1λ):

1. Generate (pki, ski)← PKE.KGen(1λ) for i ∈ [u].
2. Output pp = (pk1, . . . , pku) and msk = (sk1, . . . , sku).

• skid ← Extract(msk, id):

1. Parse msk = (sk1, . . . , sku).
2. Output skid ← Combine(ϕM (H(id)), (ski)i∈[u]).

• ct← Enc(pp, id,m):

1. Compute i← min (ϕM (H(id))).
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2. Compute c′ ← PKE.Enc(pki,m).

3. Output ct← Modify(i, ϕM (H(id)), pp, c′).

• m← Dec(skid, ct): Output m′ ← PKE.Dec(skid, ct).

It is clear that the BC-IBEmkm is correct if PKE is correct and u-key malleable. The following
theorem shows the security of this BC-IBE scheme:

Theorem 3. If a PKE scheme PKE is IND-CPA secure and u-key malleable, and a binary matrix
M is (d, ℓ)-list-disjunct, then the resulting BC-IBE scheme BC-IBEmkm is d-adaptive CPA secure in
the random oracle model.

Proof. Let A be a PPT adversary against the d-adaptive CPA security of BC-IBEkh. We define qH
as the maximum number of queries issued to the random oracle H, and TH as the table-list of
query-response pairs to H.

We define Ĝame as the security game which is the same as the ordinary d-adaptive CPA security
game except that the procedure of the H oracle is modified as follows: At the beginning of the secu-
rity game, an index hid∗ ∈ [n] for the challenge identity id∗ is chosen uniformly at random. Given a
query id ∈ ID, the H oracle checks whether T[id] = ∅. If T[id] = hid ∈ [n], it returns hid. Otherwise,
it chooses hid

$← [n]. Then the challenger aborts if hid ∈ L(ϕM (hid∗)). If hid /∈ L(ϕM (hid∗)), H
returns hid and sets TH [id]← hid. Here, let Abort be the event that hid ∈ L(ϕM (hid∗)) occurs when
choosing hid

$← [n].
In addition, W and Ŵ are defined as the events that A outputs b′ such that b = b′ in the

d-adaptive CPA game and Ĝame, respectively. Let Abort be the event that hid is included in
L(ϕM (hid∗)) in Ĝame if H chooses hid uniformly at random.

In the same way as the proof of Theorem 2, we have the following upper bound of Pr[Abort]:

Pr[Abort] ≤
∑

i∈[qH+d]

ℓ+ 1

n− (i− 1)
≤

∑
i∈[qH+d]

ℓ+ 1

n− (qH + d)
≤ (qH + d)(ℓ+ 1)

n− (qH + d)
.

In addition, Ĝame is identical to the ordinary adaptive CPA security game, unless Abort occurs.
Hence, we have |Pr[W ]− Pr[Ŵ ]| ≤ (qH + d)(ℓ+ 1)/(n− (qH + d)).

We show that the winning probability in Ĝame is negligible assuming the IND-CPA security of
PKE. By using A, a PPT algorithm D against PKE, as follows: D is given the public key pk∗ of PKE.
In the Setup phase of the d-adaptive CPA security game, D chooses hid∗

$← [n], i∗ $← ϕM (hid∗) and
sets pki∗ = pk∗. For every i ∈ [u]\{i∗}, it generates (pki, ski) ← KGen(1λ), sets TH ← ∅, and gives
pp = (pk1, . . . , pku) to A. The OEXT and H oracles are simulated as follows:

• H: Given id ∈ ID, return hid if TH(id) = hid ∈ [n]. If TH [id] = ∅, do the following:

1. Choose hid
$← [n].

2. If hid ∈ L(ϕM (hid∗)), abort and output a random bit.

3. If i∗ ∈ ϕM (hid), abort and output a random bit.

4. Return hid and set TH [id]← hid.

• OEXT: Given an extraction query id ∈ ID, obtain hid ∈ [n] by accessing H, and return
skid ← Combine(ϕM (H(id)), (ski)i∈[u]).
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When A submits (id∗,m∗
0,m

∗
1), D obtains ci∗ by issuing (m∗

0,m
∗
1) to the IND-CPA security game,

and then returns ct∗ ← Modify(i∗, ϕM (hid∗), pp, ci∗). Finally, D outputs b′ ∈ {0, 1} if A outputs b′.
In the same way as the proofs of Theorems 1 and 2, it is shown that the simulation of the H and

OEXT are correct. Furthermore, the challenge ciphertext generated by D is indistinguishable from
the real challenge ciphertext, due to the u-key malleability of PKE. In addition, it is clear that the
winning condition of D is identical to that of A. Hence, we have |Pr[Ŵ ]− 1/2| ≤ u · Advind-cpa

PKE,D (λ).
From the above, we obtain

Advadaptive
BC-IBE,A(λ) ≤ u · Advind-cpa

PKE,D (λ) +
(qH + d)(ℓ+ 1)

n− (qH + d)
,

and complete the proof.
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A BC-IBE from Disjoint Simulatable PKE

We present a BC-IBE scheme constructed from disjoint simulatable PKE, in order to extend the class
of the underlying PKE. To do this, we employ an additional primitive: a universal hash function.
Notice that, by additionally assuming multi-key malleability or the two properties key homomorphism
and weak multi-key malleability, it is possible to show the d-adaptive CPA security of the resulting
BC-IBE, in the same way as the security proof for the scheme in this section.

Since we employ a universal hash function to construct the BC-IBE scheme, we describe this
definition.

Definition 15. A function family Hλ = {h : {0, 1}µ → {0, 1}ν} is a universal hash family (where
µ = µ(λ) and ν = ν(λ)) if the following holds:

• For every λ, ν < µ.

• For any PPT algorithm A, the probability

Pr
[
x ̸= x′ ∧ h(x) = h(x′) | h $← Hλ; (x, x

′)← A(h)
]
.

is negligible in λ.

Our proposed BC-IBE scheme BC-IBEds = (Setup,Extract,Enc,Dec) is constructed as follows:
For a security parameter λ, let n = n(λ), u = u(λ), µ = µ(λ), µ̄ = µ̄(λ), ν = ν(λ) be positive
integers, let ID = ID(λ) be the identity space such that |ID| = n, and let M = {0, 1}ν be the
message space. We use a PKE scheme PKE = (PKE.KGen,PKE.Enc,PKE.Dec) with the message
space {0, 1}µ̄ and a (µ, µ̄, v)-AONT Trans with an efficient inverse function Inverse. H : ID → [n] is
a random oracle, M ∈ {0, 1}u×n is a (d, ℓ)-list-disjunct matrix, and Hλ = {h : {0, 1}µ → {0, 1}ν}
is a family of universal hash functions.

• (pp,msk)← Setup(1λ):

1. Generate (pki, ski)← PKE.KGen(1λ) for i ∈ [u].

2. Choose h
$← Hλ.

3. Output pp = (pk1, . . . , pku, h) and msk = (sk1, . . . , sku).

• skid ← Extract(msk, id):

1. Parse msk = (sk1, . . . , sku).

2. Output skid = (ski)i∈ϕM (H(id)).

• ct← Enc(pp, id,m):

1. Parse pp = (pk1, . . . , pku, h).

2. Choose x
$← {0, 1}µ.

3. Compute ĉ← h(x)⊕m.

4. Compute (x1, . . . , xv, z)← Trans(x).

5. Compute ci ← PKE.Enc(pkσi
, xi) for i ∈ [v], where ϕM (H(id)) = {σ1, . . . , σv} for all

distinct σ1, . . . , σv.

6. Output ct = (c1, . . . , cv, ĉ, z).
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• m← Dec(skid, ct):

1. Parse skid = (ski)i∈ϕM (H(id)) and ct = (c1, . . . , cv, ĉ, z).
2. Compute xi ← PKE.Dec(skσi , ci) for every i ∈ [v].
3. Compute x′ ← Inverse(x1, . . . , xv, z)

4. Output m′ ← h(x′)⊕ ĉ.

It is clear that the correctness of BC-IBEds follows the correctness of PKE. We prove the security
of this BC-IBE scheme, as follows:

Theorem 4. If a PKE scheme PKE is ϵds-disjoint simulatable, an efficient randomized transforma-
tion Trans with an inverse function Inverse is a (µ, µ̄, v)-AONT, and a binary matrix M is (d, ℓ)-
list-disjunct, then the resulting BC-IBE scheme BC-IBEds is d-adaptive CPA secure in the random
oracle model.

Proof. Let A be a PPT adversary against the d-adaptive CPA security of BC-IBEds. We define
qH as the maximum number of queries issued to the random oracle H, and TH as the table of
query-response pairs to H. We define ct∗ = (c1, . . . , c

∗
v, ĉ

∗, z∗) as the challenge ciphertext.
In order to prove Theorem 4, we consider several security games. For an integer i ≥ 0, let Wi

be the event that A wins in a security game Gamei.
Game0: This is the same game as the standard adaptive security game. Thus, we have Advadaptive

BC-IBE,A(λ) =
|Pr[W0]− 1/2|.
Game1. This game is the same as Game0 except that the procedure of the H oracle is modified as
follows: Suppose that at the beginning of the security game, an index hid∗ ∈ [n] for the challenge
identity id∗ is chosen uniformly at random. Given a query id ∈ ID, the H oracle checks whether
T[id] = ∅. If T[id] = hid ∈ [n], it returns hid. Otherwise, it chooses hid

$← [n]. Then the challenger
aborts if hid ∈ L(ϕM (hid∗)). Otherwise H returns hid and sets TH [id]← hid.

Let Abort be the event that hid ∈ L(ϕM (hid∗)) holds when H chooses hid
$← [n]. We estimate

the upper bound of the probability Pr[Abort], because Game0 and Game1 are identical unless Abort
occurs. In the same way as the proof of Theorem 1, this upper bound is obtained as follows:

Pr[Abort] ≤
∑

i∈[qH+d]

ℓ+ 1

n− (i− 1)
≤

∑
i∈[qH+d]

ℓ+ 1

n− (qH + d)
≤ (qH + d)(ℓ+ 1)

n− (qH + d)
.

Hence, we have |Pr[W0]− Pr[W1]| ≤ (qH + d)(ℓ+ 1)/(n− (qH + d)).

In order to show that the winning probability in Game1 is negligible, we consider additional
security games Ĝame1, Ĝame2, Ĝame3. Let Ŵi be the event that A wins Ĝamei for i ∈ {1, 2, 3}.
Ĝame1. This game is the same as Game1 except that some random index i∗ ∈ ϕM (H(id∗)) is
fixed, and the challenger computes (x∗1, . . . , x

∗
v, z

∗) ← Trans(m∗
b), c

∗
j∗ ← PKE.Enc(pki∗ , 0

|m∗
0|), and

c∗i ← PKE.Enc(pkσ∗
i
, x∗i ) for i ∈ [u]\{j∗} (where j∗ ∈ [v] is the index such that i∗ = σ∗

j∗ and
ϕM (H(id∗)) = {σ∗

1, . . . , σ
∗
v}), when generating the challenge ciphertext ct∗ = (c∗1, . . . , c

∗
v, z

∗).

We show that the indistinguishability between Game1 and Ĝame1 follows the disjoint simulatability
of PKE. By using A, we construct a PPT algorithm D1 breaking the disjoint simulatability of PKE,
as follows: D1 is given a public key pk∗ of PKE. At the beginning of the security game, D1 chooses
hid∗

$← [n], i∗ $← ϕM (hid∗), and sets pki∗ = pk∗. Then it generates (pki, ski) ← PKE.KGen(1λ) for
i ∈ [u]\{i∗} and chooses h

$← Hλ. It gives pp = (pk1, . . . , pku, h) to A and initializes the table
TH ← ∅. The H and OEXT oracles are simulated in the following way:
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• H: Given id ∈ ID, return hid if TH(id) = hid ∈ [n]. If TH [id] = ∅, do the following:

1. Choose hid
$← [n].

2. If hid ∈ L(ϕM (hid∗)), abort and output a random bit.

3. If i∗ ∈ ϕM (hid), abort and output a random bit.

4. Return hid and set TH [id]← hid.

• OEXT: Given an extraction query id ∈ ID, obtain hid ∈ [n] by calling the H oracle and return
skid = (ski)i∈ϕM (hid).

When A submits (id∗,m∗
0,m

∗
1), D1 does the following:

1. Choose b
$← {0, 1}.

2. Choose x∗
$← {0, 1}µ.

3. Compute ĉ∗ ← h(x∗)⊕m∗
b .

4. Compute (x∗1, . . . , x
∗
v, z

∗)← Trans(x∗).

5. Compute c∗i ← PKE.Enc(pkσ∗
i
, x∗i ) for i ∈ [v]\{j∗} where σ∗

j∗ = i∗.

6. Obtain the j∗-th PKE ciphertext c∗j∗ by requesting the challenge ciphertext in the disjoint
simulatability game.

7. Return ct∗ = (c∗1, . . . , c
∗
v, ĉ

∗, z∗) and set TH [id∗]← hid∗ .

Finally, when A outputs the guessing bit b′ ∈ {0, 1}, D1 outputs 1 if b = b′, and otherwise 0.
The simulation of the H oracle is correct, since for a query id, H(id) /∈ L(ϕM (hid∗)) holds in

Ĝame1, and H chooses a random hid = H(id) satisfying this condition. Regarding the challenge
ciphertext ct∗, Game1 is simulated if c∗i ← PKE.Enc(pki∗ ,m

∗
b), and Game2 is simulated otherwise. In

addition, it is clear that D1 wins the IND-CPA security game unless the H oracle chooses hid ∈ [n]

such that i∗ ∈ ϕM (hid). Hence, we have
∣∣∣Pr[W1]− Pr[Ŵ1]

∣∣∣ ≤ u · Advds
PKE,D1

(λ).

Ĝame2. This game is the same as Ĝame1 except that the challenger computes (x∗1, . . . , x
∗
v, z

∗) ←
AONT(0|x

∗|) instead of (x∗1, . . . , x
∗
v, z

∗) ← AONT(x∗), when generating the challenge ciphertext
ct∗ = (c∗1, . . . , c

∗
v, ĉ

∗, z∗).
We show that the indistinguishability between Game2 and Game3 follows the security of AONT.

To do this, we construct a PPT algorithm D2 against (µ, µ̄, v)-AONT, as follows: D2 is given the
OLR oracle and chooses hid∗

$← [n] and i∗
$← ϕM (hid∗). At the beginning of the d-adaptive CPA

security game, it generates (pki, ski)← KGen(1λ) for i ∈ [u] and chooses h $← Hλ. When A accesses
the H and OEXT oracles, D2 simulates these oracles, as follows:

• H: Given id ∈ ID, return hid if TH(id) = hid ∈ [n]. If TH [id] = ∅, do the following:

1. Choose hid
$← [n].

2. If hid ∈ L(ϕM (hid∗)), abort and output a random bit.

3. If i∗ ∈ ϕM (hid∗), abort and output a random bit.

4. Return hid and set TH [id]← hid.

19



• OEXT: Given an extraction query id ∈ ID, obtain hid ∈ [n] by accessing H, and return
skid ← (ski)i∈ϕH(hid).

When A submits (id∗,m∗
0,m

∗
1), D2 does the following:

1. Let ϕM (hid∗) = {σ∗
1, . . . , σ

∗
v} for all distinct σ∗

1, . . . , σ
∗
v ∈ [u], and let j∗ ∈ [u] be an index such

that i∗ = σ∗
j∗ .

2. Choose x∗
$← {0, 1}µ.

3. Compute ĉ∗ ← h(x∗)⊕m.

4. Obtain (x∗1, . . . , xj∗−1, xj∗+1, . . . , x
∗
v, z

∗) by issuing (j∗, x∗, 0|x
∗|) to the given OLR oracle.

5. Compute cj∗ ← PKE.Enc(pki∗), and for i ∈ [v]\{j∗}, compute c∗i ← PKE.Enc(pkσ∗
i
, x∗i ).

6. Return ct∗ = (c∗1, . . . , c
∗
v, ĉ

∗, z∗).

Finally, when A outputs b′ ∈ {0, 1}, D2 outputs 1 if b = b′ and 0 otherwise.
The simulation of the H and OEXT oracles is correct since D2 generates all secret keys of the

underlying PKE. Regarding the challenge ciphertext, Ĝame1 is simulated if x∗ is transformed, and
Ĝame2 is simulated if Trans(0|x∗|) is given. Furthermore, D2 breaks the security of AONT unless
hid ∈ [n] such that i∗ ∈ ϕM (hid∗) is chosen by the H oracle. Hence, we have

∣∣∣Pr[Ŵ1]− Pr[Ŵ2]
∣∣∣ ≤

u · Advind
AONT,D2

(λ).

Ĝame3. This game is the same as Ĝame2 except that the challenger chooses r∗
$← {0, 1}ν and

computes ĉ∗
$← r∗ ⊕ m∗

b instead of ĉ∗ ← h(x∗) ⊕ m∗
b , when generating the challenge ciphertext

ct∗ = (c∗1, . . . , c
∗
v, ĉ

∗, z∗).
Since no information of m∗

b is contained in (c∗1, . . . , c
∗
v, z

∗), we have
∣∣∣Pr[Ŵ2]− Pr[Ŵ3]

∣∣∣ ≤ negl(λ),
due to [8, Lemma 2.1].

Let Bad be the event that ĉ∗ ∈ PKE.Enc(pk, {0, 1}µ̄), where PKE.Enc(pk, {0, 1}µ̄) is the set of all
ciphertexts which are generated by encrypting messages in {0, 1}µ̄. Then, we have Pr[Bad] ≤ ϵds.
In addition, we have Pr[Ŵ3 | ¬Bad] = 1/2 since A is not given any information of m∗

b . Hence, we
have ∣∣∣∣Pr[Ŵ3]−

1

2

∣∣∣∣ = ∣∣∣∣Pr[Ŵ3 ∧ Bad] + Pr[Ŵ3 ∧ ¬Bad]−
1

2
(Pr[Bad] + Pr[¬Bad])

∣∣∣∣
=

∣∣∣∣Pr[Bad] · (Pr[Ŵ3 | Bad]−
1

2

)
+ Pr[¬Bad] ·

(
Pr[Ŵ3 | ¬Bad]−

1

2

)∣∣∣∣
≤ Pr[Bad] +

∣∣∣∣Pr[Ŵ3 | ¬Bad]−
1

2

∣∣∣∣
≤ ϵds

From the discussion above, we obtain

Advadaptive
BC-IBE,A(λ) ≤ u · Advds

PKE,D(λ) + u · ϵds +
(qH + d)(ℓ+ 1)

n− (qH + d)
+ negl(λ),

and complete the proof.
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