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Abstract

We describe robust high-throughput threshold protocols for generating Schnorr signatures
in an asynchronous setting with potentially hundreds of parties. The protocols run a single
message-independent interactive ephemeral randomness generation procedure (i.e., DKG) fol-
lowed by non-interactive signature generation for multiple messages, at a communication cost
similar to one execution of a synchronous non-robust protocol in prior work (e.g., Gennaro et
al.) and with a large number of parties (ranging from few tens to hundreds and more). Our
protocols extend seamlessly to the dynamic/proactive setting where each run of the protocol
uses a new committee with refreshed shares of the secret key; in particular, they support large
committees periodically sampled from among the overall population of parties and the required
secret state is transferred to the selected parties. The protocols work over a broadcast channel
and are robust (provide guaranteed output delivery) even over asynchronous networks.

The combination of these features makes our protocols a good match for implementing
a signature service over a public blockchain with many validators, where guaranteed output
delivery is an absolute must. In that setting, there is a system-wide public key, where the
corresponding secret signature key is distributed among the validators. Clients can submit
messages (under suitable controls, e.g., smart contracts), and authorized messages are signed
relative to the global public key.

Asymptotically, when running with committees of n parties, our protocols can generate Ω(n2)
signatures per run, while providing resilience against Ω(n) corrupted nodes and broadcasting
only O(n2) group elements and scalars (hence O(1) elements per signature).

We prove the security of our protocols via a reduction to the hardness of the discrete loga-
rithm problem in the random oracle model.

∗Work done prior to joining Amazon, partially while at the Algorand Foundation.
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1 Introduction

In this work, we describe a suite of protocols that we call SPRINT1, aimed at generating many
Schnorr signatures at a low amortized cost. SPRINT consists of a single interactive distributed key
generation (DKG) for generating message-independent ephemeral randomness, followed by a non-
interactive and robust signature generation for many messages. Here, robustness means that with a
sufficient number of honest parties, the protocol is guaranteed to output the requested signatures.

Threshold Schnorr signature schemes have seen a revival due to applications in the blockchain
space. However, the bulk of existing work focuses on the case of a small number of signers, targeting
applications such as key custody and multi-signatures. For those cases, one can afford a non-robust
scheme where a single misbehaving party can cause the protocol to abort: If the misbehaving party
can be identified, then it can be removed before re-running the protocol. This is indeed the approach
most recent schemes embrace (e.g., [29, 9, 16, 30]). However, the remove-and-restart approach does
not scale well with the number of signers, since the protocol may need to be restarted as many times
as the number of misbehaving parties. Also, this approach cannot be used in a fully asynchronous
setting, where there is no distinction between a malicious party that refuses to participate and an
honest party that is just slow. Here, we study robust threshold Schnorr signatures in scenarios with
many messages and many signers (possibly hundreds of them), in an asynchronous setting.

One of the motivating scenarios for considering a large set of signers signing many messages is
provided by blockchain settings, where the validator nodes should generate signatures on behalf of
the blockchain (see more below). That use case precludes non-robust protocols, as it requires an
asynchronous protocol that remains feasible for many signers. At the same time, public blockchains
provide tools such as a broadcast channel and PKI, which can simplify the design of the signature
protocol. Moreover, the large number of parties makes it reasonable to assume a large honest
majority, a significant advantage when building robust protocols.

Let us recall Schnorr-type signatures. They work over a group of prime order p with a generator
G; a signature on a message M relative to secret key s ∈ Zp and public key S = s ·G, has the form
(R, r+ e · s), where r ∈ Zp is an ephemeral random secret, R = r ·G is ephemeral randomness, and
e = Hash(S,R,M) ∈ Zp. A standard way to compute robust threshold Schnorr signatures among
n parties who secret-share a long-term secret key s is to run a distributed key generation (DKG)2

procedure [17] that produces a message-independent ephemeral randomness R = r ·G where r is a
fresh random value secret-shared among the parties. This phase is often called preprocessing or just
DKG, and the message-independent ephemeral randomness is often called presignatures. Then, the
parties use their shares of s and r to produce signature shares that can be combined into a single
standard Schnorr signature. The bulk of the cost for signature generation is the DKG procedure
that has O(n2) cost both in terms of bandwidth and computation.

Robust threshold Schnorr schemes have been known for over 20 years [40, 17], but they are less
efficient than their non-robust counterparts. These robust protocols include at least 2–3 rounds to
generate message-independent ephemeral randomness, and at least one additional round for signa-
ture generation. Moreover, the randomness-generation rounds are expensive, using a bandwidth of
at least Ω(n2) broadcasted group elements. Non-robust schemes can reduce the randomness gen-
eration part to a single round, performed before knowing the message to be signed, and a single

1SPRINT is a permuted acronym for “Robust Threshold Schnorr with Super-INvertible Packing”.
2Throughout the paper, we use a DKG protocol for different purposes, including ephemeral Schnorr randomness

generation, long-term key generation, and proactive refreshment.
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non-interactive message-dependent round (where parties just output signature shares).
Our robust signature protocol features a two-round message-independent distributed ephemeral

randomness generation, followed by a single non-interactive signature generation round. However,
the latter non-interactive round can produce signatures for many messages, hence amortizing the
cost of the randomness generation protocol over many signatures. The protocols we present can
produce thousands of signatures in each run, at a communication cost similar to one execution of a
synchronous non-robust protocol in prior work [17].

Our protocols are flexible: they are useful in the fixed-committee setting where the same set
of parties is used repeatedly, but extends seamlessly to the dynamic/proactive setting where each
run of the protocol is done by a different committee with refreshed shares of the secret key. They
naturally support large systems, where committees are periodically sub-sampled from among the
overall population of parties and the required shared secret state is transferred to the selected parties.
The protocols are also modular : we present a high-level protocol based on a generic agreement
protocol (for the parties to agree on a set of correctly dealt shares) instantiated on an asynchronous
broadcast channel. Without tying the high-level signature protocol to the details of the agreement
or the communication model, we are able to take advantage of systems (such as blockchain) that
natively provide agreement and communication primitives.

This agreement protocol is instrumental in achieving one of our significant design goals, namely,
to perform well in the optimistic case of normal network conditions, but also to avoid degrading
performance unnecessarily when network delays (possibly adversarially induced) are significant.
Crucial for ensuring this property is to achieve agreement as soon as possible among a sufficient
number of parties. This calls for forgoing techniques such as complete secret sharing [34] where all
honest parties must receive shares of the secret, hence adding longer delays (and latency) to the
protocol completion.

We next describe techniques used to achieve the above functional and performance properties
of our solution, starting with two main components: (a) an early agreement protocol allowing
non-complete sharing and (b) “extreme packing” that combines packed secret sharing [14] with
super-invertible matrices [26] to extend the number of signatures we get from a single ephemeral-
randomness creation stage.

A simple early-agreement protocol. Many threshold systems require complete secret sharing,
i.e., all honest parties must receive shares of the secret. This means that honest parties cannot
terminate until they ensure that all other honest parties will eventually learn their shares. The
completeness requirement often adds significant complexity to the protocol and an opportunity for
the adversary to create high-latency executions in the asynchronous setting. In our protocols we
forgo completeness and its adverse effects by only requiring that a sufficiently large subset of honest
parties learn their shares so that they can generate signatures; there is no need to ensure that all
honest parties get shares.

Weakening the completeness requirement of secret sharing allows us to use a very simple agree-
ment protocol over the underlying asynchronous broadcast channel. Furthermore, the use of a
broadcast channel enables verifiable complaints by shareholders, namely proofs that a dealer sent
bad shares. Our use of these complaints is markedly different than in prior works. In protocols
that aim at complete sharing (such as [20]), a party uses the complaints to inform other parties
that it is missing its share, triggering a complex protocol by which the other honest shareholders
help them get their missing shares. In contrast, we use the complaint to disqualify the bad dealer,
there is no need to help the complaining shareholder get any more shares. This technique simplifies
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the agreement protocol and saves rounds of broadcast3 (see Sections 2.2 and 4 and Appendix E for
details). We believe that this simple agreement protocol could find other uses beyond DKG and
threshold signatures.

Extreme packing. To maximize efficiency, we introduce an efficiency parameter a, such that each
run of the protocol produces a(n−2t) signatures where t is the maximal number of corrupted parties
supported by the protocol. In more detail, we use super-invertible matrices [26] to get a sharing
of at least n − 2t random polynomials for every run of the ephemeral randomness generation, and
use packed secret sharing [14] to put a random values in each of these polynomials (see Sections 2.4
and 2.5).4

We pay for this extreme packing with a slight reduction in resilience: To withstand t corrupted
parties, the number of nodes that we need is n ≥ 3t + 2a − 1, compared to n ≥ 3t + 1 for a naive
protocol that generates a single signature.5 The result is a bandwidth-optimal protocol, up to some
not-too-large constants: With n parties, it provides resilience against Ω(n) corrupted parties, using
broadcast bandwidth of only O(1) group-elements/scalars per signature, in both the optimistic and
the pessimistic cases (where the number of faulty parties is small or large, respectively). We stress
that the odds of everybody participating honestly diminishes as the number of parties grows, so
in the large-committee setting it becomes more important to have an efficient pessimistic path. In
our protocol, the pessimistic case features additional complaints, but those add at most O(t/a)
group-elements/scalars per signature.

For a few examples in the static-committee setting (and assuming no complaints), setting the
efficiency parameter at a = n/5, they withstand t = n/5 corrupted parties and consume broadcast
bandwidth of roughly 17.33 scalars/group-elements per signature. To support t = n/4 we must
reduce the efficiency parameter to a = n/8, resulting in a per-signature bandwidth of about 34
scalars/group-elements. This O(1) complexity is to be contrasted with the O(n2) complexity of the
standard threshold Schnorr scheme [17]. See Appendix C.1.

1.1 Other Techniques

Achieving high efficiency requires the use of many ideas and techniques, beyond the two main ones
that we described above. Below is a list of these techniques, in no particular order. See Section 2
for a detailed overview of the entire protocol and the roles that these techniques play.

Local SIMD computation. Working with packed secret sharing increases the number of secrets
shared, but current MPC solutions for using packed secret sharing entail non-trivial protocols, even
for simple functions [19]. For Schnorr signatures we need to compute s · (e1, . . . , ea) + (r1, . . . , ra)
where s and the rv’s are secret and the ev’s are public. While simple, an MPC protocol for computing
that function still seems to require interaction, since it includes a product. Furthermore, when using
simple Shamir sharing for s, some joint processing is needed to create multiple signatures.

To enable a more efficient protocol with full advantage of packing and to avoid interaction, we
introduce the following technique. We share the long-term secret key in a packed vector (s, . . . , s)
instead of just the single scalar s. This enables SIMD generation of the partial signature, with each

3Our use of an underlying broadcast channel also obviates the need to find a biclique of dealers and shareholders,
which is sometimes needed when giving up completeness, and which can be computationally hard (cf. [4]).

4We also describe some optimizations related to faster multiplication by super-invertible matrices in Section 2.4
and Appendix B.

5Since our techniques apply in the asynchronous setting, they inherently require n ≥ 3t+ 1; see Appendix H.
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party using only a local multiplication (without degree reduction), with randomization done locally
as well. Using this technique, signature generation becomes non-interactive: The only communica-
tion required is for the party to broadcast their partial signature, after which anyone can assemble
the signatures themselves. The cost is a reduction in the resilience to t < (n − 2a + 2)/3. See
Section 2.6 for details.

Refreshing packed secrets. In the dynamic/proactive setting, we need to refresh the sharing of
the packed vector (s, . . . , s). This requires a generalization to the GRR protocol [18], see Section 2.7
and Appendix I.We remark that in the current version of the writeup we only prove security of the
static protocol. The proof for the dynamic/proactive protocol should be a fairly straightforward
extension, using the same techniques. See a brief discussion in Appendix G.7.

Security of distributed parallel Schnorr signatures. The starting point for our protocol is
similar (though not quite identical) to the GJKR distributed Schnorr signature protocol from [17],
which we extend and optimize to sign many messages. However, GJKR-like protocols [17] are
known to fail in the concurrent setting where the protocol is run in parallel for multiple messages;
specifically, such protocols are open to ROS-type attacks [12, 6]. Our work focuses on signing
a given set of messages (a batch) in parallel. To enable this parallelism and avoid ROS-type
attacks, we use a mitigation technique similar to prior work (e.g., [29, 21]). As far as we know,
prior to our work this specific technique was only analyzed in the generic group model for ECDSA
signatures [21]. In our case, we show it is sufficient for proving the security of our protocols (for
signing a single batch of messages) via reduction to the hardness of the discrete logarithm problem
in the programmable random-oracle model. See Section 2.3 and Appendix G. These techniques
do not guarantee concurrent security for signing multiple batches in parallel. For this, Shoup [39]
shows that technique from FROST can be combined with our protocols to obtain full concurrent
security (see detailed discussion on this in Section 1.3).

Robust threshold signatures. Our protocols provide robustness in a strong sense. They termi-
nate with signatures for all a(n − 2t) input messages as soon as t + 2a − 2 honest parties output
their shares. Invalid shares can be identified based on public information and discarded. This holds
in both synchronous and asynchronous networks. In the former case, after two rounds of broadcast
for generating ephemeral randomness, parties generate non-interactively the shares from which all
signatures are recovered.

Smaller sub-sampled committees using a beacon. To use our protocols in massive systems
with a huge number of nodes, one needs some mechanism to sub-sample the committees from
among all the nodes in the system. One natural approach is to use self-selection via verifiable
random functions (VRFs), as done, e.g., in [8]. However, this results in somewhat loose tail bounds
and thus somewhat-too-big committees.

Instead, we note that we can get smaller committees by using a randomness beacon to implement
the sub-sampling, resulting in better bounds and smaller committees. Thus, when acting in this
large dynamic committee settings, we augment the signature protocol to implement this beacon,
which turns out to be almost for free in our case. See Section 2.8 for more details. See also
Appendix A for an additional optimization in this setting: using smaller optimistic parameters by
default with a safe fallback mechanism to pessimistic parameters.
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1.2 Prior Work

Recent years saw a lot of activity trying to improve the efficiency of threshold signature schemes,
including underlying techniques such as verifiable secret sharing (VSS) and distributed key gener-
ation (DKG), much of which focused on asynchronous protocols and some emphasizing robustness
(guaranteed output delivery). Below we focus on some of the more recent works on these subjects.

Threshold Signatures. Komlo and Goldberg described FROST [29], a non-robust threshold
Schnorr signature protocol that requires a single-round signing protocol after a single-round pre-
processing phase. The improved round complexity comes at the expense of robustness, as it uses
additive sharings and requires correct participation of all prescribed signers. In our case, we use
two rounds of interaction in a message-independent phase but can then generate multiple signa-
tures non-interactively and with guaranteed output delivery. Our schemes are designed to work in an
asynchronous regime hence requiring a super-majority of honest parties (see details in Appendix H).

ROAST [38] presents a wrapper technique that can transform concurrently secure non-robust
threshold signature schemes with a single signing round and identifiable abort into a protocol with
the same properties but also robust in the asynchronous model. In particular, this applies to the
FROST protocol resulting in a scheme with concurrent security for any threshold t < n and optimal
robustness for up to n− t parties. The price for this strengthening is significant: it involves O(tn2+
tnλ) per-signature transmitted bits (λ is a security parameter) assuming a trusted coordinator and
O(tn3 + tn2λ) without the coordinator; whereas we only require O(λ) broadcasted bits (strictly
better even when considering a quadratic overhead of the underlying broadcast).

Garillot et al. [16] implement a threshold Schnorr signature based on deterministic signing, e.g.,
EdDSA, in order to avoid the potential risks of randomness reuse. They present a dishonest-majority
non-robust scheme using zero-knowledge proof and garbling techniques that, while optimized for
this specific application, is much more expensive than protocols that do not offer deterministic
signing (like FROST and our SPRINT protocols).

Lindell [30] presents a threshold Schnorr signature scheme proven under standard assumptions
in the UC model. The focus of that work was conceptual simplicity and UC security rather than
optimal efficiency. As in FROST, it utilizes additive sharing, hence necessitating the choice of a
new set of signers when a chosen set fails to generate a signature.

For ECDSA signatures, Groth and Shoup [20] recently described a rather efficient ECDSA
signing protocol, with emphasis on guaranteed output delivery over asynchronous channels. (The
underlying VSS in their work achieves completeness, which is not needed in our case.) They use
verifiable complaints in order to notify other parties that they do not have a share. These complaints
trigger a complex protocol, by which honest shareholders help each other to get all their missing
shares.

Joshi et al. [27] address the lack of concurrent security in the basic threshold Schnorr scheme
from [17] by running two DKG executions per signature and using a mitigation technique similar to
the one we use here to bind a batch of messages to be signed. However, while our solution generates
multiple signatures with a single DKG run, theirs requires two such runs per single signed message.

Distributed Randomness Generation (DKG).6 As we said, a key distinction between our work
and previous DKG protocols in the signature setting [32, 42, 1], is that we do not require complete
sharing (where all honest parties must receive their shares). While completeness may be desired

6Recall we use DKG to refer to distributed key generation for long-term keys, for generating ephemeral randomness
as needed in Schnorr signatures, and also for proactive refreshment.
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in traditional MPC applications, eschewing this requirement is not a weakness but a feature in our
case, as it enables more efficient signature protocols.

Neji et al. [32] design a DKG intended to avoid the need to reveal the shares of inactive (or
slow) shareholders for disqualification as required in the GJKR [17] solution. However, they do
so by requiring additional rounds of interaction and significant extra computational cost, namely
the party who gets complained does O(n) group additions and each other party does O(t) scalar
multiplications where t is the corruption threshold (these costs are merely for handling complaints
beyond the verification). We achieve higher performance by using publicly verifiable complaints: in
our protocols, each party can verify that a complaint is valid by doing a constant number of group
operations and without any additional interaction.

Yurek et al. [42] described a randomness generation protocol over asynchronous communication
channels, in the context of the offline phase of generic secure MPC. They provide completeness for
secret sharing needed for their MPC applications. As in a recent work by Groth and Shoup [20],
they use verifiable complaints, yet unlike our work, they do not disqualify dealers upon a verifiable
complaint—they instead complete the set of shares. Their asynchronous VSS has an amortized
network bandwidth O(n log n) in the optimistic case and O(n2 log n) in the pessimistic case.

Abraham et al. describe Bingo [1], a packed method for asynchronous secret sharing that allows
a dealer to generate many sharings at an amortized communication cost of O(λn) per secret. This
solution requires KZG-style polynomial commitments [28] to get completeness (and thus relies on
pairing-friendly groups). Specifically, the dealer performs a KZG commitment to a polynomial of
degree 2t (where n = 3t+ 1), which concretely is slightly more expensive than our protocol. Also,
our agreement sub-protocol makes a more direct usage of the underlying broadcast channel than
the agreement in Bingo, and is more efficient.

Various other papers (e.g., [10, 11]) deal with the question of asynchronous DKG. However, they
do not directly relate to our paper as the main thrust of their work is reaching an agreement in
the asynchronous setting. In contrast, we assume an underlying broadcast channel, simplifying the
agreement significantly.

1.3 Subsequent Work

There have been several papers published after our paper was first made public.

Shoup’s Many Faces of Schnorr. In [39], Shoup presents a unifying framework for obtaining
robust concurrently-secure threshold Schnorr signatures combining techniques from our work and
FROST [29]. This framework applies to two-phase protocols, like ours, consisting of an offline
phase for generating “presignatures” (a.k.a., ephemeral randomness), and then an online phase for
generating signatures from those presignatures. The concurrent-security aspect of these protocols
means that many copies of the online phase can be run concurrently, as long as sufficiently many
unused presignatures are available. Shoup shows that concurrent security can be added to any
protocol within this framework (including ours) in one of two ways: either using two fresh DKG-
generated secret sharing of ephemeral randomness à-la-FROST (thus doubling the cost), or using a
randomness beacon (which adds rounds of communication).

Groth-Shoup Asynchronous Robust DKG. In [22], Groth and Shoup present an asynchronous
robust DKG protocol which can be used as a basis for a threshold signature protocol, that require a
total of O(nλ) bits of point-to-point communication per signature over the optimistic path (roughly
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when all parties behave honestly), amortized over O(n2) signatures. The optimistic path communi-
cation complexity matches (asymptotically) our communication complexity of O(λ) bits broadcast
per signature.7

However, the Groth-Shoup protocol is a lot less efficient on the pessimistic path, when parties
misbehave: Its communication complexity increases by a factor O(t′) where t′ is the number of
actual misbehaving parties. In contrast, the communication complexity of our protocol increases
by at most a small constant factor, no matter how many parties misbehave (as long as there are
at most t of them). On the other hand, the Groth-Shoup protocol can withstand up to (n − 1)/3
misbehaving parties, compared to our t ≤ (n−2a+1)/3. Our protocol is therefore a better choice in
the large-committee setting, where consistent performance also on the pessimistic path is important,
and where it is reasonable to assume a larger honest majority. The Groth-Shoup protocol may be
better in the small-committee setting, where higher resilience is more important and assuming the
optimistic path makes more sense.

The main difference between our protocol and Groth-Shoup stems from the fact that the latter
requires complete secret sharing, where all the honest parties get their shares. In particular, if a
dealer misbehaves and does not appropriately distribute shares to some honest parties, these honest
parties need other honest parties to help them reconstruct their shares, whereas our protocol just
disqualifies that dealer. On the other hand, the Groth-Shoup protocol uses complete secret sharing
to eliminate the need for polynomial commitments in the sharing phase. Instead, they use error
correction to reconstruct signature shares at the end of the protocol without having to check validity
against some public commitment.

Another difference is that [22] uses a construction based on Pascal triangle for super-invertible
matrices, which is better than the small Vandermonde construction we use in Appendix B. This
way, they reduce the cost of evaluating the product by the super-invertible matrix from ≈ (b −
1)n log n/ log p scalar-element products in that solution to ≈ b(n − (b + 1)/2) + 1 group additions
(which correspond to about (b(n−(b+1)/2)+1)/(1.5 log p) scalar-element products). Our proposal
to use the ECFFT-EXTEND algorithm (see Section 2.4) is more efficient asymptotically (O(k log k)
scalar-element products, for k = max(b, n − b)) but the Pascal solution would most likely perform
better up to n ≈ 8000.

1.4 Organization

The rest of this manuscript is organized as follows: In Section 2, we provide a high-level step-by-
step overview of our protocols and the various components that are used in them. In Section 3,
we describe in more detail our high-level protocol for the static (fixed-committee) and dynamic
settings. In Section 4, we describe the basic agreement protocol that we use in the static-committee
setting, the agreement in the dynamic setting can be found in Appendix E. Security proofs and
additional details are deferred to appendices. In particular, in Appendix D, we discuss how to use
SPRINT in one of our motivating applications to implement a large-scale signature service over a
public blockchain.

7Broadcasting messages of size ℓ ≥ nλ bits, as done in our protocol, can be achieved using a total point-to-point
communication of O(ℓn) bits [15, 31].
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2 Technical Overview

We consider a static setting where the set of parties (a shareholder committee) is fixed and a
dynamic one where shareholder committees change over time while keeping the system’s signing
key (in particular, its public verification key) unchanged. In the latter case, shares are refreshed
and proactivized between committees. We begin by describing our protocols in the static committee
setting, and discuss only towards the end the extra components for the dynamic/proactive settings.
The basic protocols for these two settings are shown in Figs. 1 and 2.

In the static case, we have a committee that holds shares of the long-term secret key s, shared
via a degree-d polynomial F(X) with party i holding σi = F(i) (for some degree d that we determine
later) and where s = F(0). They first run a distributed key-generation (DKG) protocol to generate
a sharing of ephemeral randomness, then use their shares of the long-term secret and ephemeral
randomness to generate Schnorr-type signatures on messages. The DKG and signature protocols
can be pipelined, where the committee uses the randomness that was received in the previous run
to sign messages, and at the same time prepares the randomness for the next run.

While the static setting features just a single committee, we still often refer to parties as dealers
when they share secrets to others, and as shareholders when they receive those shares. In the
dynamic setting, these will indeed be different parties, but in the static case, they may be the same.

Notations. We use Greek letters (e.g., σ, ρ, π, ϕ) and lowercase English letters (e.g., e, r, s) to
denote scalars in Zp, and also use some English lowercase letters to denote indexes (i, j, k, ℓ, u, v)
and parameters (a, b, n, t). We denote the set of integers from x to y (inclusive) by [x, y], and also
denote [x] = [1, x]. We rely on a group of prime order p generated by G. We use the additive
notation for this group. Group elements are denoted by uppercase English letters (G,S,R, etc.).
Polynomials are denoted by bold Uppercase English letters (F,H, I,Y,Z), and commitments to
them are sometimes denoted with a hat (F̂, Ĥ).

2.1 Starting Point: The GJKR Protocol

Our starting point is the protocol of Gennaro et al. [17] for distributed key generation (DKG), and
a variation on their use of that protocol for Schnorr signatures. In their DKG protocol, each dealer
uses Verifiable Secret Sharing (VSS) to share a random value; parties then add all the shares from
dealers that shared their values correctly (thus requiring an agreement protocol on which dealers fall
in this set, denoted QUAL). Specifically, each dealer Di shares a random ephemeral secret (which is
later used to compute ephemeral randomness and partial signatures) using a degree-d′ polynomial Hi

(for some degree d′ that we define later), and commits publicly to this polynomial. Concretely, Di

shares the random ephemeral secret Hi(0) by sending shares Hi(j) to each shareholder Pj .
The shareholders then agree on a set QUAL of “qualified dealers” whose values will be used,

and a corresponding shareholder set HOLD that were able to receive valid shares. Shareholders in
HOLD can compute shares for the ephemeral secrets from the shares that they received from these
qualified dealers. Namely, each shareholder can add the shares (i.e., the Shamir shares of ephemeral
secrets of dealers) that they received from dealers in QUAL, and the resulting ephemeral secret is
shared via the polynomial H =

∑
i∈QUALHi.

In our protocol, shareholders use their shares on polynomials H (the ephemeral secret) and F (the
long-term secret) to compute Shamir shares of the signatures, and then reconstruct the signatures
themselves. We note that this is somewhat different from the signature protocol in [17]: there, it is
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the dealers in QUAL that generate the signature (and HOLD is only used as a backup to reconstruct
the input of misbehaving dealers), whereas we let the shareholders in HOLD generate the signature
directly. Our variant could be more round-efficient in some cases, and is easier to deploy in a
proactive setting where the long-term key is shared using Shamir sharing (as opposed to additive
sharing as used in the GJKR protocol). But otherwise these protocols are very similar.

Pedersen vs. Feldman Commitments. It was pointed out by Gennaro et al. [17] that sharing
randomness usually requires the dealers to commit to their sharing polynomials using statistically-
hiding commitments such as Pedersen’s [35]. Using the less expensive Feldman secret sharing, where
dealers commit to coefficients hij of their polynomials by broadcasting the group elements hij ·G,
are susceptible to rushing attacks in the DKG setting. Luckily, Gennaro et al. prove in [17, Sec 5]
that for the purpose of generating the ephemeral randomness for Schnorr signatures, it is safe to
use Feldman secret-sharing, and their proof techniques extend to our signature protocol as well.

We note that for efficiency reasons, in our protocols we use commitments to the value of the
polynomials at certain evaluation points rather than to the coefficients as done in [17] (see Ap-
pendix A).

2.2 The Agreement Protocol

We utilize the QUAL-agreement protocol in two different settings: for generation of ephemeral
randomness (in both the static and dynamic setting), and for re-sharing of the long-term key
(in the dynamic setting only). We observe that randomness generation is less demanding of the
agreement protocol than key-refresh: For key-refresh we need the shareholders to have shares from
at least d+ 1 dealers (d is the degree of the sharing polynomials), whereas randomness generation
can work even with a single honest dealer. Therefore, in the static setting we use a weaker (and
more efficient) agreement protocol than in the dynamic setting. Both protocols use PKI, and both
operate over a total-order (aka atomic) broadcast channel, providing eventual delivery of messages
from honest parties, sender authentication, and prefix consistency (i.e., the views of any two honest
parties are such that one is a prefix of the other).

We start with the more efficient (but weaker) protocol for the static setting. The protocol begins
with the dealers distributing their shares, and then the shareholders engage in a protocol to agree
on sets of “qualified” and “bad” dealers QUAL,BAD, and a set of shareholders HOLD. We want
the following properties: (i) every shareholder in HOLD received valid shares from every dealer in
QUAL, and (ii) BAD consists entirely of dishonest dealers. This protocol is parameterized by d0, d1
(to be defined later as a function of the number of corrupt parties and some additional parameters),
and it ensures that |HOLD| ≥ d0 and |QUAL|+ |BAD| ≥ d1.

In more detail, each dealer Di broadcasts all the shares that it deals, encrypted under the
keys of their intended recipients, together with commitments to the sharing polynomial Hi. As
this information is visible to all, shareholders that receive shares that are inconsistent with the
commitments can broadcast a verifiable complaint against a dealer, consisting of a proof that the
dealer has sent them a bad share.

The shareholders initially set QUAL to the first d1 dealers whose messages appeared on the
broadcast channel. Then each shareholder broadcasts verifiable complaints if they have any, and
otherwise they broadcast the empty set (signifying that they have all the shares from dealers in
QUAL). Now, QUAL contracts by eliminating all the dealers who have a valid verifiable complaint
against them on the broadcast channel, moving them to the set BAD. The set HOLD is fixed to the
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first d0 shareholders who broadcast verifiable complaints (or the empty set) that were verified as
valid complaints. By construction, we have |HOLD| ≥ d0 and |QUAL|+|BAD| ≥ d1, and the set BAD
contains only (verifiably) dishonest dealers. Also, since QUAL,BAD, and HOLD are determined by
what is visible on the broadcast channel, then all honest shareholders that read up to some point
in the channel will agree on these sets. This protocol’s specification can be found in Fig. 3, and the
proof is provided in Theorem 1.

In the dynamic setting (that includes also key-refresh), we need to ensure |QUAL| ≥ d1 (as
opposed to just |QUAL|+ |BAD| ≥ d1). To that end, we run iterations of the basic protocol above.
At the beginning of the i + 1’st iteration, we add to QUAL as many new dealers as the number of
dealers that were added to BAD in the i’th iteration. Once no more dealers are added to BAD, we
have |QUAL| ≥ d1, and we are done. A full specification is found in Fig. 5 in Appendix E, with a
proof in Theorem 2.

2.3 Signing Many Messages in Parallel

Our large-scale signature service needs to handle signing many messages in parallel, which brings
up a security problem: The proof of security from [17, Sec 5] when using Feldman commitments for
Schnorr signatures, requires that the reduction algorithm makes a guess about which random oracle
query the adversary intends to use for the signature. When signing many messages in parallel, the
reduction will need to guess one random-oracle query per message, leading to exponential security
loss. Moreover, Benhamouda et al. demonstrated in [6] that this is not just a problem with the
reduction, indeed this protocol is vulnerable to an actual forgery attack when many messages are
signed in parallel. To fix this problem, we use a mitigation technique somewhat similar to [29, 21],
where the ephemeral secrets are all “shifted” by a public random value δ, which is only determined
after all the messages and commitments are known.

As recalled in the introduction, a Schnorr signature on a message Mv relative to secret key s and
public key S = s·G, has the form (Rv, rv+ev ·s), where rv is an ephemeral random secret, Rv = rv ·G,
and ev = Hash(S,Rv,Mv), where Hash maps arbitrary strings into Zp. (We are using a superscript v
to indicate a plurality of messages and their respective signatures.) In our context, we first run DKG
to generate all the required rv’s and corresponding Rv’s, and get from the calling application all the
messages Mv’s to be signed. Then we compute δ = Hash(S, (R1,M1), (R2,M2), . . .) and ∆ = δ ·G.
The signature on Mv is then set as (Rv +∆, rv + δ + ev · s), where ev = Hash(S,Rv +∆,Mv).

With this mitigation technique, the reduction only needs to guess the random-oracle query in
which δ is computed, recovering the argument from [17, Sec 5] and reducing security to the hardness
of computing discrete logarithms in the random-oracle model. See Appendix G.3. We note that
our specific mitigation techniques provide security for a single run of the protocol on input a set of
multiple messages to be signed, but it does not imply concurrent security for multiple parallel runs
of the protocol on different sets of messages. Following [39], we can obtain concurrent security by
either adopting the FROST mitigation (that requires doubling the DKG cost) or by relying on a
beacon (which would add one broadcast round).

2.4 Using Super-Invertible Matrices

As described so far, we would need to run a separate copy of the DKG protocol to generate each
ephemeral secret rv, but we can do much better. For starters, assume that we can ensure many
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honest dealers in the set QUAL (say at least b of them). Then we can use a (public) super-invertible
matrix [26] to generate b random ephemeral values in each run of the protocol.

Recall that the DKG protocol has each dealer Di share a random polynomial Hi, then the
shareholders compute a single random polynomial H′ =

∑
i∈QUALHi and the ephemeral random

secret is H′(0). Intuitively, the polynomial H′ is random if even a single Hi is random, so a single
honest dealer in QUAL is enough to get a random ephemeral value. But if we have many honest
dealers in QUAL, then we can get many random polynomials. Specifically, suppose we have b honest
dealers in QUAL and let Ψ = [ψu

i ] be a b-by-n super-invertible matrix, i.e., each b-by-b sub-matrix
of Ψ is invertible. Then we still have each dealer Di share just a single polynomial Hi, but now
the shareholders can construct b random polynomials H1, . . . ,Hb, by setting Hu =

∑
i∈QUAL ψ

u
i Hi

for all u ∈ [b]. By the same reasoning as before, if we have b honest dealers in QUAL with random
input polynomials Hi, then the b output polynomials will also be random and independent since
the b-by-b matrix corresponding to the rows of these b honest dealers is invertible.

The actual proof is more involved since we still use Feldman commitments in the protocol,
which means that a rushing adversary can bias the output polynomials somewhat. But using
essentially the same reduction as before, we can still reduce the security of the Schnorr signa-
ture protocol to the hardness of computing discrete logarithms in the random oracle model. One
technical point is that the security proof in the asynchronous communication model requires that
the set QUAL is included in the hash function query that determines δ. That is, we compute
δ = Hash(S,QUAL, (R1,M1), (R2,M2), . . .). The reason is that in the asynchronous case, we can-
not guarantee that all honest dealers will be included in QUAL. If we didn’t include it in the hash
query, then the simulator would have to guess the set QUAL, incurring at least an

(
n
b

)
loss factor in

security.
We note that to ensure b honest dealers in QUAL, it is enough to run the “weaker” agreement

protocol (Fig. 3) with d1 = b + t, where t is an upper bound on the number of dishonest dealers.
Indeed, that protocol ensures that |QUAL|+ |BAD| ≥ d1 = b+ t, and BAD contains only dishonest
dealers. Therefore, the number of dishonest dealers in QUAL is at most t− |BAD|, and the number
of honest dealers is at least |QUAL| − (t− |BAD|) = |QUAL|+ |BAD| − t = d1 − t = b.

Faster Multiplication by a Super-Invertible Matrix. While the use of super-invertible ma-
trices enables us to produce many more random shared secrets without increasing bandwidth, com-
puting all these sharings requires that each shareholder multiply their sub-shares by that super-
invertible matrix “in the exponent”.8 The super-invertible matrix multiplication is the most com-
putationally intensive operation in the protocol. We thus should carefully implement the matrix
multiplication to have good computational efficiency in practice.

We propose two solutions to make these operations more efficient. The first solution, pointed
out to us by Victor Shoup, is to use a Vandermonde matrix Ψ corresponding to the powers of
small scalars. We show in Appendix B.1, that a variant of the Horner’s rule allows to evaluate the
multiply-by-Ψ operation using (b − 1)n scalar-by-element products with log n-bit scalars (instead
of full-length scalars, that is log p-bit scalars). This is equivalent to about (b − 1)n log n/ log p full
scalar-by-element product, that is a log n/ log p speed-up over the naive solution. In practice, p has
at least 256 bits, while n = b + t varies but is unlikely to be higher than 10 bits, so this is a more
than 25× speed-up.

Our second solution is new and consists of selecting Ψ so that it corresponds to FFT-related
operations. However, when implementing Schnorr signatures over the elliptic curve ED25519, the

8We use additive notation for group operations, but sometimes use the traditional exponentiation terminology.

11



scalar field Zp does not even have a 23-th root of unity.9 Instead, we show that we can use the
ECFFT-EXTEND algorithm from Ben-Sasson et al. [5], resulting in O(k log k) scalar-by-element
products, where k = max(b, t) and n = b+ t. This is asymptotically better than the first solution.
Details are provided in Appendix B.2.

We implemented both solutions, benchmarked them, and report results in Appendix B.3. In
short, for ED25519, when b = t is a power of 2, the small Vandermonde matrix solution is better
in practice for up to b = t = 28 = 256, after which the ECFFT solution is more efficient.10 The
benchmarking code is available from https://github.com/fabrice102/ecfft-group, under the
MIT license. This code is based on the code [7] and adapts it to work with polynomials with
coefficients in a group, instead of in the base field.

2.5 Using Packed Secret Sharing

Similarly to above, we can also assume many honest parties among the set HOLD of shareholders,
and use packed secret sharing [14] to get even more ephemeral shared values: If HOLD contains at
least 2t + a shareholders (for some a ≥ 1), then we can let each shared polynomial pack a values
rather than just one: Each shared polynomial Hu will have degree d′ ≥ t+a−1 (rather than d′ = t)
and will encode the a values Hu(0),Hu(−1), . . . ,Hu(−a+1). (Below we denote these scalar values
by ru,v = Hu(1− v), with the corresponding group elements Ru,v = ru,v ·G.)

Importantly, this amplifies the effect of using super-invertible matrices: We have each dealer
Di sharing a single random polynomial Hi of degree d′, packing a values, and we derive b random
degree-d′ polynomials Hu from these sharings, which gives us a · b shared random scalars.

2.6 More Efficient Signing

Once the ephemeral secrets are shared, we use them—together with the shared long-term secret
key—to generate many signatures. Computing on the packed ephemeral secrets would generically
require a full-blown secure-MPC protocol among the shareholders, but we observe that we can gener-
ate all the a signatures from each packed random polynomial with only a single share-reconstruction
operation.

To see how, recall again that a Schnorr-type signature has the form (Rv, rv + ev · s).11 Our
shareholders hold Shamir sharings of the secret key s and the vector (r1, r2, . . . , ra) of ephemeral
secrets (where rv = H(1−v) for v ∈ [a]). Also, the public key S, the messages Mv’s, and the group
elements Rv’s are publicly known, so everyone can compute all the scalars ev = Hash(S,Rv,Mv).
To improve efficiency, we also share the long-term key s in a packed form, namely the shareholders
hold a Shamir sharing of the vector (s, s, . . . , s), via a polynomial F of degree d = t + a − 1 (i.e.,
F(1 − v) = s for v ∈ [a]). All they need to do, therefore, is compute the pointwise linear function
(r1, r2, . . . , ra) + (e1, e2, . . . , ea)⊙ (s, s, . . . , s).

While pointwise addition can be computed locally, computing the pointwise product (e1, e2, . . . , ea)
⊙ (s, s, . . . , s) seems like still requiring a nontrivial interactive protocol, even for a known vector of
ev’s. But we can eliminate even this little interaction, by assuming a larger honest majority and

9p = 2252 + 27742317777372353535851937790883648493 and the factorization of p − 1 is 22 × 3 × 11 ×
198211423230930754013084525763697× 276602624281642239937218680557139826668747.

10The ECFFT solution performs better for b = t is a power of two. But we show in Appendix B.2 that it also
works for general b and t, with a cost depending on the smallest power of 2 larger or equal to max(b, t).

11We suppress here the index u, which is irrelevant for this discussion.
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using higher-degree polynomials for the ephemeral randomness. Specifically, we assume that HOLD
contains at least 2t+2a− 1 shareholders (so at least t+2a− 1 honest ones), and modify the DKG
protocol so that the sharing of the ephemeral secrets is done with random polynomials of degree
d′ = d+ a− 1 = t+ 2a− 2 (rather than degree t+ a− 1).

Since the ev’s are known, each shareholder can interpolate the unique degree-(a− 1) polynomial
that packs the vector (e1, . . . , ea). Denote this polynomial as Z (we have Z(1− v) = ev for v ∈ [a]).
Then each shareholder j with a share σj = F(j) for the long-term secret, can locally compute
σ′j = Z(j) · σj . Note now that the σ′j ’s lie on the polynomial Z · F of degree d + a − 1 that packs
the vector (e1 · s, . . . , ea · s), since (Z · F)(1− v) = ev · s for v ∈ [a].

Each shareholder j, with share ρj on an ephemeral-randomness polynomial, computes and broad-
casts πj = σ′j + ρj , and we note that these πj ’s lie on a polynomial of degree d′ that packs all the
values (r1+e1s, . . . , ra+eas). Moreover, if the ephemeral secrets were shared via a random degree-d′

polynomial, then the πj ’s constitute a random sharing of that vector. After seeing d′+1 = t+2a−1
valid shares of these broadcast values, everyone can reconstruct the polynomial and read out all the
scalars ϕv = rv + ev · s that are needed for these a signatures.

2.7 The Dynamic Setting

So far, we have described our protocols for the static (fixed committee) setting. Here we present
the additional components that we need in the dynamic case, where we have different committees
for the dealers and shareholders. Importantly, in all the protocols above we never assumed that the
dealers and shareholders are the same committee, so they all still work as-is also in the dynamic
setting. What is missing is a share-refresh protocol where the dealers can pass to the shareholders
a sharing of the long-term secret s. Here we essentially just use the GRR protocols of Gennaro et
al. from [18], with a minor adaptation since we need to share it in a packed manner.12

Each dealer Di begins with a share σi of the long-term secret key s, shared using a “packed”
polynomial F(X) of degree d = t+a−1. Namely, σi = F(i), and F(0) = F(−1) = · · · = F(1−a) = s.
In addition, everyone knows a commitment to F. Di reshares its share using a fresh random degree-d
polynomial Fi with Fi(0) = Fi(−1) = · · · = Fi(1− a) = σi, and also commits publicly to Fi.

This is done in parallel to the sharing of the random, degree-d′, polynomial Hi. The sharehold-
ers then engage in an agreement protocol (cf. Fig. 5) to determine the sets HOLD of sharehold-
ers, QUAL1,BAD1 for the H dealers, and QUAL2,BAD2 for the F dealers, with |HOLD| ≥ n − t,
|QUAL1| ≥ n−t, and |QUAL2| ≥ d+1.13 Having received σij = Fi(j) from each dealer Di ∈ QUAL2,
Pj then computes their share of the long-term secret as σ′j =

∑
i∈QUAL2

λiσij . The λi’s are the La-
grange coefficients for recovering Q(0) from {Q(i) : i ∈ QUAL2} for degree-d polynomials Q. As
usual, denoting F′ =

∑
i∈QUAL2

λiFi, the shares of shareholders in HOLD satisfy σ′j = F′(j), and
also

F′(0) =
∑

i∈QUAL2

λiFi(0) =
∑

i∈QUAL2

λiF(i) = F(0).

Moreover, since all the Fi’s satisfy Fi(0) = Fi(−1) = · · · = Fi(1− a), then so does F′.
12As described here, the protocol only works for resharing a packed vector of the form (s, s, . . . , s). But it is not very

hard to extend it to reshare arbitrary packed vectors (using somewhat higher-degree polynomials), see Appendix I.
13Recall that in the dynamic setting we use an agreement protocol that provides stronger guarantees about the

size of QUAL, than in the static setting. Namely |QUAL| ≥ d1 instead of just |QUAL|+ |BAD| ≥ d1. See Section 2.2.
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2.8 Sub-sampling the Committees

One of the main use cases for our protocol is an open system (such as a public blockchain), which
could be very large. In this use case, the committees in each epoch must be sub-sampled from
the entire population, and be large enough to ensure a sufficiently large honest majority with
overwhelming probability.

One way of implementing this sub-sampling would be to use verifiable random functions (VRFs),
but this would result in rather loose tail bounds and large committees. We can get smaller commit-
tees by having the committees implement also a randomness beacon, outputting a (pseudo)random
value that the adversary cannot influence at the end of each run of the protocol. At the beginning
of the T +1’st protocol, everyone therefore knows the value UT that was produced by the beacon in
the T ’th run. Members of the T +1’st committee determine the members of the T +2’nd committee
by applying a PRG on UT .

To see why this helps, note that when the total population is very large, the number of honest
parties in a committee chosen by VRFs is approximated by a Poisson random variable with param-
eter λ = (1 − f)n, where f is the fraction of faulty parties in the overall population (and n is the
expected committee size). On the other hand, the number of honest parties in a committee when
using the randomness beacon follows a Binomial distribution with parameters n, p = 1 − f . The
Binomial turns out to be much more concentrated than the Poisson, hence the number of honest
parties is much closer to (1− f)n with the beacon than with the VRF.

Implementing the randomness beacon for our protocol turns out to be very easy. Since the T ’th
committee held a sharing of the long-term secret scalar s, they could locally compute a “sharing in
the exponent” of s · Hash′(T ) (with Hash′ hashing into the group). Namely, everyone computes the
group element E = Hash′(T ), then each dealer Di in the T ’th committee with share σi can compute
and broadcast UT,i = σi ·E, together with a Fiat-Shamir zero-knowledge proof that UT,i is consistent
with the (public) Feldman commitment of σi (which is a proof of equality of discrete logarithms).14

Once the qualified set QUAL2 is determined, everyone can interpolate “in the exponent” and compute
UT =

∑
i∈QUAL′ λi · UT,i = s · E, where the λi’s are the Lagrange interpolation coefficients. The

group element UT is the next output of the beacon. Note that the adversary has no influence over
the UT ’s, they are always set as UT = s · Hash′(T ). On the other hand, before the shares UT,i are
broadcast, the value UT is unpredictable (indeed pseudorandom) from the adversary’s point of view.

2.9 More Optimizations

While quite efficient as-is, in many settings there are additional optimizations that can signifi-
cantly improve the performance of our protocols, such as committing to evaluation points (rather
than coefficients) and using optimistic parameters with safe fallback when sub-sampling commit-
tees (See Appendix A). Also, in Appendix H we discuss the dishonest majority case for a mixed
malicious/semi-honest adversary model.

2.10 Parameters and Performance

Various parameters and performance analysis are provided in Appendix C, here we give a very brief
overview.

14More precisely, there is a public commitment F̂ of F from which anyone can derive a Feldman commitment σi ·G
of σi. See Section 2.1.
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To get enough honest parties in HOLD, we need to have n ≥ 3t+ 2a− 1, and we often assume
that this holds with equality. Then we set d1 = |QUAL| = n − t and get b = n − 2t, hence we can
get as many as ab = a(n− 2t) signatures for each run of the protocol. Some example numbers are
n = 10, t = 2, a = 2, b = 6 (12 signatures per run), or n = 64, t = 15, a = 10, b = 34 (340 signatures
per run). In the setting of a large open system where committees are sub-sampled, we can even sign
more messages in each run without reducing resiliency: for example, assuming 80% honest parties,
we can sub-sample a committee of size n = 992 with t = 336, a = 40, b = 320, and sign 12880
messages in each run.15

If we set t = a = n/5, we can sign 3n2/25 messages per run, with an amortized bandwidth of
fewer than 35 scalars/group elements broadcasted per signature. For the sub-sampling parameters
above with n = 992 (with a group of size ≈ 2256), the total broadcast bandwidth is only under
100MB.

Given parameters n, t, a, the parties broadcast less than 4n2 scalars and group elements (in
total). If we set t = a = n/5, we can sign 3n2/25 messages per run, with an amortized bandwidth
of fewer than 35 scalars/group elements broadcasted per signature. For the sub-sampling parameters
above with n = 992 (with a group of size ≈ 2256), the total broadcast bandwidth is only under
100MB.

In terms of computation, the most expensive part is multiplying the super-invertible matrix in
the exponent (which is needed to compute the public R’s). This part takes at most at(n − 2t)
products (using a naive algorithm), which is t scalar-elements multiplications per signature. But
as we explain in Section 2.4, we can use much more efficient matrix-multiplication to reduce it, or
just use small scalars. Even without these optimizations, for the example with n = 992 every party
needs to compute about five million such scalar-element multiplications, which can be done within
5 minutes with a single thread. With the small-scalar Vandermonde optimization from above, this
goes down to about 1 minute.

Since the super-invertible matrix multiplication is the most expensive part of the protocol, we
wrote code to benchmark actual performances for both our possible optimizations from Section 2.4.
Table 1 in Appendix B.3 on Page 32 shows the results for various values of b, when b = t is a power
of two. For b = t = 256, our first solution provides a 29× speed up compared to the naive solution
and only takes 682ms when a = 1 (on a single core of a 2.20GHZ AMD EPIC 7601 CPU). Even
with a = 64, the total super-invertible matrix multiplication would take less than 1 minute on a
single-core. In addition, this operation is trivially parallelizable, computations for each of the a
packed values are completely independent of each other and can be run on different threads.

For b = t = 512, our second solution becomes faster and provides a 28× speed up compared to
the naive solution. It only takes 2.80s to compute the super-invertible matrix multiplication in that
setting for a = 1, on a single core.
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Parameters: Integers n, t, a ≥ 1, d = t+ a− 1, d′ = t+ 2a− 2.
Setup: (Parties: P1, . . . , Pn)

• Each Pi holds a share σi = F(i), where F is a random degree-d polynomial subject to
F(0) = F(−1) = . . . = F(−a+ 1). Denote s = F(0).

• Public keys S = s ·G and Si = σi ·G are publicly known.

Ephemeral randomness generation

1. Each Pi, i ∈ [n], chooses a random degree-d′ polynomial Hi; it broadcasts Feldman
commitments to Hi of the form Ĥi(v) = Hi(v) · G for v ∈ [−a + 1, t + a − 1]. Encrypt
the share ρij = Hi(j) under the public key of Pj for all j ∈ [n], and boardcast all the
resulting ciphertexts.

2. P1, . . . , Pn run the protocol from Fig. 3 to agree on QUAL,BAD,HOLD ⊆ {P1, . . . , Pn}
with d0 = |HOLD| = n − t, d1 = |QUAL| + |BAD| = n − t, and every Pj ∈ HOLD holds
valid shares from all the dealers in QUAL.

3. Set b = |QUAL| − (t− |BAD|); Ψ = [ψu
i ] ∈ Zb×|QUAL|

p a super-invertible matrix.

For u ∈ [b], v ∈ [a], define Hu(·) =
∑

i∈QUAL ψ
u
i Hi(·), ru,v = Hu(1− v), Ru,v = ru,v ·G.a

Each Pj ∈ HOLD sets ρuj = Hu(j) =
∑

i∈QUAL ψ
u
i ρij for all u ∈ [b].

Signature share generation On input messages Mu,v, u ∈ [b], v ∈ [a]:

Each Pj ∈ HOLD sets δ = Hash
(
S,QUAL, {(Ru,v,Mu,v) : u ∈ [b], v ∈ [a]}

)
and ∆ = δ ·G.

Then, it runs the following procedure, in parallel, for each u ∈ [b]:

1. Computes eu,v = Hash(S,∆+Ru,v,Mu,v) for v ∈ [a];

2. Computes the degree-(a− 1) polynomial Zu, with Zu(1− v) = eu,v for v ∈ [a].

3. Outputs signature share: πuj = Zu(j) · σj + ρuj .

Note: πuj = Yu(j) for the degree-d′ polynomial Yu = Zu · F+Hu

Schnorr signature assembly (from signature shares)
For each issued signature share πuj verify, using commitments to Hi, i ∈ QUAL, and public key
Sj = F(j) ·G, that πuj ·G = Zu(j) · Sj +Hu(j) ·G.
When collecting d′+1 verified shares πuj , reconstruct the polynomial Yu and for all v ∈ [a] set
ϕu,v = Yu(1− v). (Note: ϕu,v = Yu(1− v) = Zu(1− v) · F(1− v) +Hu(v) = eu,v · s+ ru,v.)
For v ∈ [a], u ∈ [b], output the Schnorr signatures (∆ +Ru,v, δ + ϕu,v) on message Mu,v.

aThe values Ru,v can be computed from commitments to the polynomials Hi, hence public information.

Figure 1: SPRINT Scheme in the Static-Committee Setting
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3 The SPRINT Protocols

3.1 Static-Committee Setting

We begin with our base protocol shown in Fig. 1, namely, a robust threshold Schnorr signature
scheme for the static-committee case where the set of parties is fixed. It follows the design and
rationale presented in Section 2 (particularly, till Section 2.6), resulting in a two-round ephemeral
randomness generation phase (dependent on the number of messages to be signed but not on the
messages themselves) followed by a non-interactive signing procedure. It considers n parties of
which at most t are corrupted, and is given a packing parameter a and an amplification (via a
super-invertible matrix) parameter b. It assumes an asynchronous broadcast channel. The protocol
consists of three parts. An initial setup stage where parties obtain shares σi of a long-term secret
key s, and corresponding public key S = s · G, and Si = σi · G are made public. We assume that
sharing the secret key uses packed secret sharing, namely, the parties’ shares σi lie on a polynomial
F of degree d = t + a − 1, such that F(0) = F(−1) = . . . = F(−a + 1) = s. This initial setup can
be done via a distributed key generation (DKG) protocol or another secure procedure.

The second part is the generation of ephemeral randomness for Schnorr signatures. Following
the DKG blueprint of [36, 17], each party Pi shares a random polynomial Hi by transmitting the
value Hi(j) to each other party Pj and committing to Hi(·) over a public broadcast channel. Our
application allows for the use of the more efficient Feldman secret sharing [13]. In our case, parties
commit to their polynomials H by broadcasting values H(v) · G for d′ + 1 different evaluation
points v where d′ is the degree of H (specifically, in our case, this set is defined as the interval
[−a+ 1, t+ a− 1]).

A central part of such a protocol is for the parties to agree on sets of dealers (denoted QUAL,BAD)
that shared their polynomials correctly/badly, and a large enough set of parties (denoted HOLD)
that received correct sharings from all parties in QUAL. In Section 4.1 we describe an implementa-
tion of such a protocol over an asynchronous atomic broadcast channel.

The source of efficiency for SPRINT is the use of packing to share a secrets at a little more cost
than sharing just one and attaining further amplification, by a factor of b, using super-invertible
matrices [26] (see Section 2.4). Here, b is the number of rows in the super-invertible matrix Ψ, e.g.,
a Vandermonde matrix, and is set to its largest possible value (as analysis shows), b = |QUAL| −
(t − |BAD|). (Smaller values of b can be used too, if fewer messages need to be signed.) Once the
randomness generation procedure is completed, each party in HOLD generates (non-interactively)
signature shares consisting of a point on a polynomial Y that when reconstructed (via interpolation
of d′ + 1 signature shares) can be evaluated on a points to achieve a signatures. Remarkably,
using super-invertible matrices one can generate b different polynomials Y, hence resulting in a · b
signatures at the cost of a single execution of the (interactive) randomness generation procedure.

In all, we have that after the randomness generation procedure, parties generate their shares
of the signatures without any further interaction. Each party Pj computes locally their signature
shares πuj , u ∈ [b] and publishes them. Reconstructing the signature for each batch of a messages
Mu1, . . .Mua can be done by interpolation from any d′ + 1 correct signature shares πuj . Moreover,
signature shares can be verified individually by a Schnorr-like validation πuj ·G = Zu(j) ·Sj +ρuj ·G,

15We need n ≥ 657 to get (statistical) safety failure < 2−80 (and liveness failure < 2−11), without packing (i.e.,
a = 1). Setting a = 40 only requires n ≥ 992 while multiplying the number of messages that can be signed by 40 and
while providing the same safety guarantees. This is because we have less than (n− 1)/3 corrupted parties selected in
each committee with overwhelming probability. See details in Appendix D.1.
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where all the required information is public. Thus, invalid signature shares can be discarded.
An additional ingredient in the protocol is the use of the “mitigation value" δ = Hash(S,QUAL,

{(Ru,v,Mu,v) : u ∈ [b], v ∈ [a]}) needed to achieve security when running the a · b signatures in
parallel, as explained in Section 2.3.

Security of the SPRINT protocol from Fig. 1 is proven in Theorem 5.

3.2 The Dynamic/Proactive Setting

The adaptation of SPRINT to the dynamic setting is shown in Fig. 2. See also Section 2.7. It
requires two types of sharings. One is ephemeral randomness generation as in the static setting,
where dealers have no input, and they just share random polynomials. The other is a share refresh
(i.e., proactive resharing), in which the dealers have shares of the long-term secret, and they refresh
the sharing of that secret to the shareholders. These two sharings are enabled by (almost) the same
DKG-like protocol, both using the agreement protocol from Fig. 5 with the same set HOLD and
two QUAL sets for the two sharings. Note that the use of the same set HOLD for both sharings is
crucial to guarantee that enough parties (those in HOLD) have both shares of the secret s and of
the ephemeral randomness as needed for generating signatures. Proving security of this protocol is
very similar to the static case; see more details in Appendix G.7.

A note on the “traditional” proactive setting. The proactive setting [33, 24, 23] was originally
envisioned as a periodic operation, say every week, in order to heal the system from active and
passive corruptions. When running SPRINT in such a scenario, one would not want to perform a
share refresh with each run of the signature generation protocol (Fig. 1) but only at the end of a full
proactive period. However, by decoupling the two sharings (refresh and randomness generation),
we lose the ability to use the same set HOLD for both cases. This raises a liveness issue: If the
share refresh ends with a set HOLD of size n− t and a subsequent execution of SPRINT ends with
a different set HOLD′ of the same size, then it may be the case that the intersection of these two
sets will have less than t+ 1 uncorrupted parties, hence unable to create signatures.

However, the traditional proactive setting already assumes the share refresh to happen within
a more controlled environment.16 Thus, it makes sense to consider a more synchronous setting
(with monitored and resolved delays) during refresh in which case the share refresh operation can
be assumed to be completed after a defined amount of time for non-adversarial servers. In this
case, parties that did not make it to HOLD by that time will be disqualified from participating
in signature generation until the next proactive execution and be counted towards the bound t on
corrupted parties. This guarantees that all honest parties in sets HOLD created by runs of SPRINT
until the next refresh period will have valid shares of the secret s.

4 The Agreement Protocol

For agreement, we observe that in the static setting we can have a more efficient agreement protocol
than in the proactive/dynamic setting. As a result, we present two protocols of a very similar flavor
for the task of reaching agreement. In this section we describe in detail the base agreement protocol,
which achieves the best results for the static setting. Then we sketch the enhancements that we

16E.g., it assumes human intervention to replace or reboot servers, to export public keys from new servers or servers
that choose new (encryption) keys, etc. (see [24]).
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Parameters: Integers n, t, a ≥ 1, d = t+ a− 1, d′ = t+ 2a− 2.
Parties: Dealers D1, . . . , Dn, shareholders P1, . . . , Pn

Setup: (Di’s)

• Each Di holds a share σi = F(i), where F is a random degree-d polynomial subject to
F(0) = F(−1) = . . . = F(−a+ 1). Denote s = F(0).

• Public keys S and Si = σi ·G are publicly known.

Ephemeral randomness generation and Re-sharing (The Di’s and Pj ’s)

1. Each Di, i ∈ [n], with share σi = F(i) chooses:

• A random degree-d′ polynomial Hi;

• A degree-d polynomial Fi, random subject to Fi(0) = · · · = Fi(1− a) = σi.

Di broadcasts Feldman commitments to Fi,Hi;

Di encrypts ρij = Hi(j) and σij = Fi(j) under Pj ’s key ∀j ∈ [n], and broadcasts all these
ciphertexts.

2. P1, . . . , Pn run the protocol from Fig. 5 to agree on HOLD ⊆ {P1, . . . , Pn}, QUAL1,QUAL2
⊆ {D1, . . . , Dn} with d0 = |HOLD| = n − t, d1 = |QUAL1| = n − t, d2 = |QUAL2| = t + a,
where every Pj ∈ HOLD received valid shares ρij from all the dealers in QUAL1 and valid
shares σij from all the dealers in QUAL2.a

3. Set b = |QUAL1| − t; Ψ = [ψu
i ] ∈ Zb×|QUAL1|

p a super-invertible matrix.

For u ∈ [b], v ∈ [a], define Hu(·) =
∑

i∈QUAL1
ψu
i Hi(·), ru,v = Hu(1− v), Ru,v = ru,v ·G.

Each Pj ∈ HOLD sets ρuj =
∑

i∈QUAL1
ψu
i ρij for all u ∈ [b].

4. Each Pj ∈ HOLD sets σ′j =
∑

i∈QUAL2
λiFi(j), the λi’s are the Lagrange coefficients for

QUAL2.

Let F′ =
∑

i∈QUAL2
λiFi; a commitment to F′ is obtained from those of the F′

i’s.

Signature generation and assembly Same as in the static case in Fig. 1 but using polynomial
F′ instead of F in that figure.

aValid σij mean in particular that F′
i indeed has the required format, with Fi(0) = · · · = Fi(1− a) = σi = F (i).

Figure 2: SPRINT Scheme in the Dynamic-Committee Setting

19



need for the dynamic/proactive setting in what we refer to as the full protocol, which is described
in Appendix E.

This protocol is designed to work over an asynchronous total-order (aka atomic) broadcast
channel. Recall that a total-order broadcast channel provides the following guarantees:

• Eventual delivery. A message broadcasted by an honest party will eventually be seen (unmod-
ified) by all honest parties. However, the adversary can change the order in which messages
are delivered to the broadcast channel.

• Prefix consistency. Considering the views of the broadcast channel at a given time by two
different honest parties, the view of one is a prefix of the other.

• Authenticity. Messages that are received on behalf of honest parties were indeed sent by those
honest parties.

We also assume a PKI, i.e., each party has an encryption public key that is known to all other
parties. The protocol below uses only the broadcast channel for communication, private messages
are sent by encrypting them and broadcasting the ciphertext.

Time and Steps. While a total-order broadcast channel is not synchronous, and thus it has no
absolute notion of time, we are still ensured that the parties all see the same messages in the same
order. We can therefore define a “step T ” as the time when the T ’th message is delivered. Even
though different parties may see it at different times, they will all agree on the message that was
delivered at step T . If we have a protocol action that is based only on the messages that appeared
on the broadcast channel up to (and including) the T ’th message, we are ensured that all the honest
parties will take the same action, and they will all know that they did it at “step T ”.

In the description below we distinguish between dealers and shareholders. The protocol begins
with the dealers broadcasting messages, then the shareholders engage in a protocol among them-
selves based on the dealer messages that they see on the channel. For every dealer message and
every shareholder, the shareholder either accepts this message or complains about it.

An important technique in our protocol is the use of “verifiable complaints”: This is a complaint
by a shareholder about a dealer, that will be accepted by all other honest shareholders. (In our
context, it will be implemented by proving that the message sent by that dealer is invalid.) We say
that a dealer message is “locally bad” for shareholder Pj , if that shareholder is able to generate a
verifiable complaint against it. Importantly, we assume that it is impossible to produce a verifiable
complaint against messages sent by honest dealers.

We denote the number of dealers as n1, at least d1 of them are assumed to be honest. The
protocol is run among a set of n0 shareholders, at least d0 of which are assumed to be honest.
We require that this base protocol terminates, and that all honest shareholders output the same
sets HOLD, QUAL,BAD, where HOLD is a subset of the shareholder set with |HOLD| ≥ d0, and
QUAL,BAD are disjoint subsets of the dealer set with |QUAL|+ |BAD| ≥ d1.

The base protocol is described in Fig. 3 and proven in Theorem 1. Here each shareholder initially
sets QUAL to the first d1 dealers whose broadcast message they receive. Then each shareholder
broadcasts a message specifying which of these d1 dealers sent correct shares and complaining about
the ones that did not. Thereafter, each shareholder continuously adds to HOLD the shareholders
whose message appeared on the channel, and moves dealers from QUAL to BAD when they see a
verifiable complaint against them on the channel. The protocol terminates once HOLD reaches size
d0.

Theorem 1. Consider an execution of the base agreement protocol from Fig. 3 over a total-order
broadcast channel, among a set of n0 shareholders of which at least d0 are honest. Assume that
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Parameters: n0, d0, n1, d1 (should agree on |HOLD| ≥ d0, |QUAL|+ |BAD| ≥ d1).
Precondition: We have up to n1 dealers, at least d1 of which are honest. We also have n0
shareholders, at least d0 of them are honest.
Shareholder Pj:
Initialize HOLD = QUAL = BAD = ∅
1. Enlarge QUAL. While |QUAL| < d1, when receiving the (first) broadcast message of the

right formata from dealer Di, set QUAL := QUAL ∪ {Di}.

2. Broadcast Complaints. Once |QUAL| ≥ d1, broadcast all the verifiable complaints
against dealers in QUAL whose message was locally bad, in a single broadcast message.
If this set is empty, broadcast the empty set.

3. Contract and fix QUAL,BAD. Collect all the valid complaint-sets (i.e., the ones whose
complaints can be verified, or the empty set). Once there are d0 valid complaint-sets, set
QUAL := QUAL \ {Di} and BAD := BAD ∪ {Di} for each verifiable complaint against
dealer Di;

4. Fix HOLD. To the first d0 shareholders who broadcasted a valid complaint-set.
aIn our context, a message has the right format if it contains all the commitments and ciphertexts that it

was supposed to have.

Figure 3: Base protocol for agreeing on QUAL,BAD,HOLD

at most n1 dealers broadcast messages, at least d1 of these dealers are honest, and no verifiable
complaint can be constructed against any honest dealer. Then all honest shareholders will eventually
terminate, all outputting the same sets with |HOLD| ≥ d0 and |QUAL|+ |BAD| ≥ d1. Moreover:

• No shareholder in HOLD complained against any dealer in QUAL; and
• Every dealer in BAD has at least one shareholder in HOLD that lodged a verifiable complaint

against them.

The proof is in Appendix F.

4.1 Agreement in SPRINT, the Static Case

To instantiate the base agreement protocol in SPRINT, we need to set the parameters n0, d0, n1, d1
and specify how the dealer’s messages and verifiable complaints are generated and verified.

In our protocols, a dealer’s message is just a Shamir sharing of secrets via polynomials. In the
static case, we have one pair of QUAL,BAD for the DKG polynomials. We assume a PKI, and the
dealers encrypt and broadcast all the shares under the public keys of their intended recipient, and
also broadcast Feldman commitments to the polynomials themselves.

There are checks that all shareholders can perform on public information that the dealers broad-
cast, i.e. verifying that the committed polynomials are of the right degree, and that the dealer’s
message includes all the ciphertexts that it is supposed to. However, each shareholder is the only
one who can check if the share encrypted under their public key is consistent with the committed
polynomial.
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Dealer Di (sharing a degreed-d polynomial, Fi(X)):

1. Compute F̂i = {Fi(k) ·G : k ∈ [−a+ 1, . . . , d− a]};

2. Let σij = Fi(j) and Eij = ENCPKj (σij) for all j ∈ [n];

3. Broadcast
(
{Ei1, . . . , Ein}, F̂i

)
.

Shareholder Pj:

1. Decrypt σij = DECSKj (Eij) and verify σij · G
?
=

∑d−a
k=1−a λi,j,k · (Fi(k) · G), with λi,j,k

the relevant Lagrange coefficients;

2. If verification failed, create a verifiable complaint against Eij , consisting of the decrypted
value σij and a proof-of-correct-decryption of Eij relative to PKj .

Figure 4: Dealer messages and shareholder complaints

If the encrypted share is not consistent with the committed polynomial, the shareholder will
create a verifiable complaint, using the fact that the dealer’s message is visible to all. A verifiable
complaint from shareholder Pj , denoted πji, consists of the decrypted value from the ciphertext
that Di sent to Pj , and a proof-of-correct-decryption relative to Pj ’s public key.17 Once other
parties see the decrypted value they can all verify that the share indeed is not consistent with the
committed polynomial.

The dealer messages and shareholder complaints are described in Fig. 4.

Parameters in the static-committee setting. In the static-committee setting, each dealer
shares a single random polynomial Hi of degree d′ = t+2a−2. To ensure that the resulting random
polynomials can be recovered we need at least d′ + 1 honest parties in HOLD, so we have to set
d0 ≥ t+d′+1 = 2t+2a−1. But we can set it even bigger, it can be as large as n− t since we know
that there are at least as many honest shareholders. (This implies that we need n− t ≥ 2t+2s− 1,
namely n ≥ 3t+ 2a− 1.)

We note that for the DKG protocol, the size of QUAL is unrelated to the degree of the poly-
nomials Hi. The only constraint on it is that to get b output random polynomials we need
|QUAL| + |BAD| = d1 ≥ b + t. To get the best amortized cost, we want to make b as large as
possible, which means using as large an initial set QUAL ∪ BAD as we can get. Every party can
serve as a dealer for the DKG protocol, so we have at least n−t honest dealers and can set d1 = n−t
(and therefore b = n− 2t).

Hence, we run the agreement protocol with parameters d0 = d1 = n − t. (If we have fewer
messages to sign, we can do with a smaller b, which means smaller d1, any value d1 > t would
work.)

4.2 Agreement in the Dynamic/Proactive setting

In this setting, dealers share two types of polynomials, random polynomials Hi of degree d′ =
t+ 2a− 2 for the DKG, and packed re-sharing polynomials Fi of degree d = t+ a− 1.

17The proof-of-decryption can be very simple: a proof of equality of discrete logs if using ElGamal encryption for
the shares, or showing an inverted RSA ciphertext if using RSA-based encryption.
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Here we must rely on stronger agreement guarantees. For the static case, it was enough to ensure
that in a setting with d1 honest dealers, we will end up with |QUAL|+ |BAD| ≥ d1, this was enough
to ensure d1− t honest dealers in QUAL (which is the best we can so in the worst case, and is what’s
needed for the DKG). Now, however, we need to ensure the stronger condition |QUAL| ≥ d1, since
this is what’s needed for re-sharing the secret.

We therefore augment the agreement by running multiple iterations of the base protocol. In
every iteration, we enlarge QUAL until it reaches side d1, then have one round of complaints and
potentially move some more dealers from QUAL to BAD. This is repeated until no more dealers are
added to BAD, at which point we have |QUAL| ≥ d1. (Note that at the beginning of each iteration,
we always have enough honest dealers whose messages were not yet incorporated in the protocol to
reach QUAL of size-d1 in this iteration.)

Another enhancement to the protocol is that we now have two separate QUAL’s (and corre-
sponding two BAD’s): one pair QUAL1,BAD1 for the Hi’s, and another pair QUAL2,BAD2 for the
Fi’s. We however only have one shareholder set HOLD (since we need the same shareholders to get
both a share of the key and a share of the ephemeral secrets). The protocol is in Appendix E.

Parameters in the dynamic-committee setting. Here we have parameters n0, d0 for HOLD
and n1, d1 for QUAL,BAD as before (for the Hi’s), but in addition also n2, d2 for QUAL′,BAD′. For
the Hi’s we have the same parameters as above, n0 = n1 = n and d0 = d1 = n− t. For the Fi’s, we
need d+ 1 = t+ a dealers in QUAL′ in order for shareholders in HOLD to be able to recover their
shares, so we set d2 = t+ a.

All the dealers in QUAL′ must have shares of the long-term secret, so they had to be in HOLD
in the previous epoch. Hence, the pool of dealers could be as small as n2 = d0 = n − t, and t of
them could be corrupted, so we cannot set d2 any larger than n − 2t. This implies the constraint
d2 = n − 2t ≥ t + a or n ≥ 3t + a. This constraint is weaker than the constraint n ≥ 3t + 2a − 1
from above.

Acknowledgements. We thank Victor Shoup for mentioning to us the solution using a Vander-
monde matrix for fast multiplication by a super-invertible matrix.

References

[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. Bingo:
Adaptivity and asynchrony in verifiable secret sharing and distributed key generation. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO, 2023.

[2] arkworks contributors. arkworks zksnark ecosystem. https://github.com/arkworks-rs/.

[3] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear communica-
tion complexity. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 213–230.
Springer, Heidelberg, March 2008.

[4] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In 25th
ACM STOC, pages 52–61. ACM Press, May 1993.

[5] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve fast fourier
transform (ECFFT) part I: low-degree extension in time O(n log n) over all finite fields. In

23

https://github.com/arkworks-rs/


Nikhil Bansal and Viswanath Nagarajan, editors, SODA 2023, Florence, Italy, January 22-25,
2023, pages 700–737. SIAM, 2023.

[6] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On
the (in)security of ROS. J. Cryptol., 35(4):25, 2022.

[7] William Borgeaud. ECFFT algorithms on the BN254 base field, 2023.

[8] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 2019.

[9] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. How to prove Schnorr assuming Schnorr:
Security of multi- and threshold signatures. Cryptology ePrint Archive, 2021. https://eprint.
iacr.org/2021/1375.

[10] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. Practical asynchronous
high-threshold distributed key generation and distributed polynomial sampling. Cryptology
ePrint Archive, Report 2022/1389, 2022. https://eprint.iacr.org/2022/1389.

[11] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-Kogias, and
Ling Ren. Practical asynchronous distributed key generation. In 2022 IEEE Symposium on
Security and Privacy, pages 2518–2534. IEEE Computer Society Press, May 2022.

[12] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. 2019 IEEE Symposium on
Security and Privacy (SP), pages 1084–1101, 2019.

[13] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th FOCS,
pages 427–437. IEEE Computer Society Press, October 1987.

[14] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (ex-
tended abstract). In 24th ACM STOC, pages 699–710. ACM Press, May 1992.

[15] Chaya Ganesh and Arpita Patra. Optimal extension protocols for byzantine broadcast and
agreement. Distributed Comput., 34(1):59–77, 2021.

[16] François Garillot, Yashvanth Kondi, Payman Mohassel, and Valeria Nikolaenko. Threshold
Schnorr with stateless deterministic signing from standard assumptions. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 127–156, Virtual
Event, August 2021. Springer, Heidelberg.

[17] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January
2007.

[18] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In Brian A. Coan and Yehuda Afek,
editors, 17th ACM PODC, pages 101–111. ACM, June / July 1998.

24

https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2022/1389


[19] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest
majority MPC with packed secret sharing. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO, 2022.

[20] Jens Groth and Victor Shoup. Design and analysis of a distributed ECDSA signing service.
Cryptology ePrint Archive, Report 2022/506, 2022. https://eprint.iacr.org/2022/506.

[21] Jens Groth and Victor Shoup. On the security of ECDSA with additive key derivation and
presignatures. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I,
volume 13275 of LNCS, pages 365–396. Springer, Heidelberg, May / June 2022.

[22] Jens Groth and Victor Shoup. Fast batched asynchronous distributed key generation. Cryp-
tology ePrint Archive, 2023. https://eprint.iacr.org/2023/1175.

[23] Amir Herzberg, Markus Jakobsson, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive public key and signature systems. In Richard Graveman, Philippe A. Janson, Clifford
Neuman, and Li Gong, editors, ACM CCS 97, pages 100–110. ACM Press, April 1997.

[24] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In Don Coppersmith, editor, CRYPTO’95, volume
963 of LNCS, pages 339–352. Springer, Heidelberg, August 1995.

[25] Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff between active and passive
corruptions in secure multi-party computation. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 203–219. Springer, Heidelberg, August
2013.

[26] Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with linear communi-
cation complexity. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
463–482. Springer, Heidelberg, August 2006.

[27] Snehil Joshi, Durgesh Pandey, and Kannan Srinathan. Atssia: Asynchronous truly-threshold
schnorr signing for inconsistent availability. In Jong Hwan Park and Seung-Hyun Seo, edi-
tors, Information Security and Cryptology – ICISC 2021, pages 71–91, Cham, 2022. Springer
International Publishing.

[28] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to poly-
nomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 177–194. Springer, Heidelberg, December 2010.

[29] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold sig-
natures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020,
volume 12804 of LNCS, pages 34–65. Springer, Heidelberg, October 2020.

[30] Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability. Cryp-
tology ePrint Archive, Report 2022/374, 2022. https://eprint.iacr.org/2022/374.

[31] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference,

25

https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2023/1175
https://eprint.iacr.org/2022/374


volume 179 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[32] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb. Distributed key generation protocol with
a new complaint management strategy. Security and Communication Networks, 9(17):4585–
4595, 2016.

[33] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract).
In Luigi Logrippo, editor, 10th ACM PODC, pages 51–59. ACM, August 1991.

[34] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient statistical asynchronous
verifiable secret sharing with optimal resilience. In Kaoru Kurosawa, editor, ICITS 09, volume
5973 of LNCS, pages 74–92. Springer, Heidelberg, December 2010.

[35] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract)
(rump session). In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages
522–526. Springer, Heidelberg, April 1991.

[36] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992.

[37] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In Kwangjo
Kim and Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 252–265.
Springer, Heidelberg, November 1996.

[38] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder.
ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2551–2564. ACM Press, November
2022.

[39] Victor Shoup. The many faces of Schnorr. Cryptology ePrint Archive, 2023. https://eprint.
iacr.org/2023/1019.

[40] Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures and a
(t, n) threshold scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors,
ACISP 01, volume 2119 of LNCS, pages 417–434. Springer, Heidelberg, July 2001.

[41] Pieter Wuille. BIP 0032, Bitcoin improvement proposal. https://github.com/bitcoin/bips/
blob/master/bip-0032.mediawiki, 2012.

[42] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew K. Miller. hbACSS:
How to robustly share many secrets. In 29th Annual Network and Distributed System Security
Symposium, NDSS 2022, San Diego, California, USA, April 24-28, 2022, 2022.

A More Optimizations

While quite efficient as-is, in many setting there are additional optimizations that can significantly
improve the performance. A few are described below.
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Committing to evaluation points. Clearly, from a security perspective, there is no difference if
the commitment to the polynomials Hi,Fi is done by committing to their coefficients or to
their values at some points (or any mix therefore). But different choices have an effect on the
computational complexity of the protocols. In particular, our protocol embeds the various
secrets at evaluation points 0,−1,−2, . . . ,−a+1, so it makes sense to commit to these values
instead of the coefficients, this will allow everyone to verify these values without having to
compute them every time.

We use the convention that a commitment to a degree-(d + a) polynomial F consists of the
d+ a+ 1 group elements F (v) ·G for all v ∈ [−a+ 1, d+ 1]. This way, we directly get sv ·G
for all the a embedded secrets sv, and also σi · G for the shares σi of the first d + 1 parties.
For the shares of the other n − d − 1 parties, i > d + 1, obtaining σi · G requires computing
“linear combinations in the exponent” using the appropriate Lagrange coefficients.

Also, in some cases, we know that some embedded secrets are equal, so we only need to
commit to them once. In particular, our share-refresh protocol uses polynomials Fi such that
Fi(−a+ 1) = · · · = Fi(0) = σi = F (i). Since σi ·G is known ahead of time, there is no need
for Di to send that group element again. Hence, even though Fi is a polynomial of degree
t+ a− 1, the dealer Di only needs to send t group elements to commit to it.

Optimistic parameters with safe fallbacks. When sub-sampling the committees from a large
population, we need them to be large enough to ensure both safety and liveness with high
probability. However, we may set different confidence levels for safety and liveness. In partic-
ular, we require that safety holds except with a negligible probability (statistical security of
1−2−80), but allow liveness to be violated with small but not quite non-negligible probability
(99.95% of progress), and re-run the protocol with a new committee in the very rare cases that
it failed to make progress. Moreover, it may make sense to start from a relatively weak liveness
guarantee, in the hope that the protocol is completed, and only switch to larger committees
and stronger liveness guarantee if the initial optimistic attempt fails to produce signatures.

For example, our “main parameters” (see Appendices C.5 and J.1) are chosen to ensure (sta-
tistical) 2−80 assurance for safety and 2−11 assurance for liveness when 80% of the population
are honest. But we can start from a smaller-sized committee that still gives 2−80 assurance for
safety at 80% honest, but only (say) 2−8 liveness assurance at 95% honest. Namely, it gives
the same assurance as before against the adversary learning the secret, but even an adversary
controlling only 5% of the parties already has about 1/300 chance of preventing the generation
of signatures. The parties can run the protocol with these parameters for a while, and if the
signatures are not generated for a while, then timeout and fall back on the more conservative
parameters above.

Importantly, in the proactive case, this optimistic approach still ensures the following weak
liveness guarantee: the adversary cannot push the system into an unrecoverable state where
honest parties do not have enough shares to reconstruct the long-term secret key. Concretely,
if the protocol executed with the optimistic parameters succeeds, then at least d + 1 honest
shareholders managed to reconstruct the new shares of the long-term secret key.

Signing more messages. Our QUAL-agreement protocol for DKG ensures at least n− t qualified
dealers, but in “normal operation” we can expect more dealers to behave honestly, perhaps even
all of them. In practical deployments we can modify our QUAL-agreement protocol, letting
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shareholders wait a little for more dealers to send shares, before broadcasting their support
messages. (For example, wait a few more blocks if we use a blockchain as our broadcast
channel.) This way, if many more dealers are honest and synchronized, we can end up with a
larger QUAL set. This in turn will let us sign a · (|QUAL| − t) > a · b messages in this run. In
the best case, we could have as many as |QUAL| = n, letting us sign a(n− t) messages.

User aggregation. In settings such as proof-of-stake blockchains, we may view each token as a
party for the purpose of our protocols, and therefore a node holding many tokens will have to
play the role of many parties. In that case, we can generate, verify, and use the shares of all
these parties together. In particular, a party controlling multiple evaluation points can save
on the following actions:

• When playing a dealer and sending the encrypted shares, it is possible to use hybrid
encryption, establishing just a single shared key (per recipient) and using that key to
send the shares corresponding to all the evaluation points.

• When playing a shareholder and verifying the shares corresponding to multiple evaluation
points (say ℓ points), the shareholder needs to check equality of the form u⃗ ·G = Γ · V⃗ ,
where u⃗,Γ are vector/matrix over Zp and V⃗ is a vector of group elements. Namely,
V⃗ ∈ Gd′+1 consists of the dealer’s commitment to their polynomial, Γ ∈ Zℓ×(d′+1)

p consists
of the Lagrange coefficients for the shareholder evaluation points vs. the commitment,
and u⃗ ∈ Zℓ

p are the shares received by that shareholder.
Instead of checking that equality in full, the verifier can choose a random vector r⃗ ∈ Zℓ

p

and verify that ⟨r⃗, u⃗⟩·G = ⟨r⃗ · Γ, V⃗ ⟩. The dealer is disqualified (via a verifiable complaint)
if that equality does not hold.
If the dealer too holds multiple evaluation points (saym points), then it will send multiple
vectors V⃗ and multiple vectors u⃗, which we can think of as matrices V ∈ G(d+1)×m

and Ψ ∈ Zℓ×m
p , respectively. The shareholder needs to verify the equality Ψ ·G = Γ · V .

To do it efficiently, they can choose two random scalar vectors r⃗ ∈ Zℓ
p, r⃗

′ ∈ Zm
p and verify

r⃗Ψr⃗′ ·G = ⟨r⃗ · Γ, V · r⃗′⟩. This way, a shareholder controlling ℓ evaluation point can verify
the messages of a dealer with m points using only (d′ + 1)(m + 1) + 1 scalar-element
products.
Moreover, the vectors r⃗, r⃗′ above need not be uniform in Zp, to get statistical security of
k bits it is enough to choose them as random k-bit numbers. When m is large, the vast
majority of the scalar-element products use small scalars, reducing the complexity even
further.

• Perhaps most importantly, the public group elements Ru,v (that go into the hash for
computing δ and the eu,v’s) only need to be computed once for each shareholder, no
matter how many evaluation points a party holds. As we explain in Section 2.10, this
computation is asymptotically the most expensive part of the protocol, so it is important
that no party needs to run it more than once.

A decryption service. In the blockchain setting, it is not hard to configure the parties running
our protocols to also provide a decryption service, not just signatures. For safety, a decryption
service should use a different secret key for decryption than for signatures. This can be done
with a polynomial of degree one larger, using the techniques from Appendix I.
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Once the committee has a Shamir sharing of the secret decryption key, they can directly use
it to decrypt ElGamal-type ciphertexts: These ciphertexts include an element R ∈ G, and
to decrypt it is sufficient to recover s · R where s if the decryption key. The parties holding
Shamir shares σi of s can just broadcast partial decryption shares σi ·R (possibly with some
proof of correctness), enabling anyone to compute s ·R by “interpolating in the exponent.”

B Faster Multiplication by a Super-Invertible Matrix

Recall that to compute the group elements Ru,v = ru,v ·G (which is needed in order to compute the
Schnorr challenges eu,v = Hash(S,Ru,v,Mu,v)), the signers must perform a matrix-multiplication “in
the exponent”, [

Ru,v

]
u∈[b],v∈[a] = Ψ×

[
Hi(1− v) ·G

]
i∈QUAL,v∈[a]. (1)

We recall that Ψ needs to be super-invertible. Namely, any b × b sub-matrix of Ψ must be
invertible.

We write n = b+ t in this section. We also assume a = 1 and ignore v and a indices everywhere:
for a > 1, we just need to repeat the algorithm a times in parallel.

As explained in Section 2.4, we propose two solutions.

B.1 First Solution: Small-Scalar Vandermonde

Any Vandermonde matrix
Ψ = (ψi−1

j )i∈[b],j∈[n]

is super-invertible when the ψj ’s are distinct scalars, as shown in [26]. This is because a b × b
submatrix of Ψ is itself a Vandermonde matrix which is invertible.

For faster multiplication, we can choose:

ψ1, . . . , ψn = −⌈n/2⌉+ 1, . . . , ⌊n/2⌋

and then we can use a variant of the Horner’s rule. Concretely, to evaluate Eq. (1), for each j ∈ [n],
we set ϕ1,j = Hj(1− v) ·G, and compute ϕi+1,j = ψj ·ϕi,j recursively for i ∈ [b− 1]. Then, we have

Ru =
n∑

j=1

ϕu,j .

Computing the opposite of a group element (from an elliptic curve), just consists in negating
the y-coordinate which is extremely cheap. Therefore, the above algorithm essentially costs (b−1)n
scalar-by-element products with log n-bit scalars. This is about (b − 1)n log n/ log p full scalar-by-
element products. That is a log n/ log p speed-up compared to the naive solution.

B.2 Second Solution: ECFFT-EXTEND

We now present our second solution which is asymptotically faster than the first, and also faster in
practice for larger n.
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B.2.1 From Super-Invertible to Smaller Hyper-Invertible

We first remark that it is beneficial to make the matrix Ψ ∈ Zb×(b+t)
p as sparse as we can, while

ensuring that it remains super-invertible. To that end, we use the construction

Ψ = (I|H),

where I is the b × b identity matrix and H is a b × t hyper-invertible matrix [3]. Recall that H is
hyper-invertible if every square sub-matrix of it is invertible (not just any b× b sub-matrix).

Lemma 1.1. If H is a hyper-invertible b × t matrix and Ib is the b × b identity matrix, then
Ψ = (Ib|H) is super-invertible.

Proof. Consider any b × b sub-matrix Ψ′ = (I ′|H ′) of Ψ, it consists of some number k of columns
from I and b− k columns from H. By swapping rows we can move all the single 1’s from I ′ to the
top k rows, and then by column reduction, we can zero out all the other entries in these k top rows
without affecting any of the b − k bottom rows. This does not change the rank, but results in a
matrix of the form

Ψ′′ =

[
Ik 0

0 H ′′

]
,

where Ik is the k× k identity matrix and H ′′ is some (b− k)× (b− k) sub-matrix of H. Since H is
hyper-invertible then H ′′ is invertible, and therefore so is Ψ′′ and therefore Ψ′.

We remark that this matrix Ψ is “as sparse as possible”, in that no row of a super-invertible
matrix can have more than b− 1 zeros.

Using this construction, we can already reduce the number of scalar-by-element products when
computing Eq. (1) to only b ·t rather than b ·(t+b), even when using the naive matrix-multiplication
algorithm. (Recall we assume a = 1 here.) However, for most parameter regimes, the Vandermonde
solution from Appendix B.1, would be faster than just using Ψ = (I|H) with an arbitrary hyper-
invertible matrix.18

B.2.2 Hyper-Invertible Matrix from ECFFT EXTEND

The previous subsection showed that we just need to find a hyper-invertible matrix H, for which
multiplication by a vector (on the right) is faster than naive matrix-vector multiplication.19 We
remark that any submatrix of a hyper-invertible matrix is hyper-invertible. So we can focus on the
case of square hyper-invertible matrices H ∈ Zk×k

p . (We will take k = max(b, t).)
Let us now recall the hyper-invertible matrix construction from [3]. Let α1, . . . , αk, β1, . . . , βk ∈

Zp be 2k distinct scalars. We define the hyper-invertible matrix H as follows: y⃗ = H · x⃗ is defined
as follows. Let f be the unique degree-(k − 1) polynomial such that f(αi) = xi for i ∈ [k]. Then
yi = f(βi) for i ∈ [k].

18Exception would be for very low number of dishonest parties, e.g., t = 1 and b ≫ 1.
19Note that Vandermonde matrices are not hyper-invertible in general. For example, the 3× 3 Vandermonde (for

the scalars −1, 0, 1) is 1 1 1
1 0 −1
1 0 1


and it contains the 2× 2 square matrix with only 1, which is not invertible.
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Now, we remark that the ECFFT EXTEND algorithm from [5] is actually doing the exact above
computation for (α1, . . . , αk) and (β1, . . . , βk) two “i-basic sets” (as defined in [5], for the appropriate
i), when k is a power of 2.

We also remark that the ECFFT EXTEND algorithm is linear in its inputs (x⃗ with the notation
above), which means we can use it to evaluate the matrix multiplication “in the exponent” as
required for Eq. (1). The fact that the inputs are group elements is actually helpful in our case:
scalar-by-element products are much slower than scalar-by-scalar products and hence the overhead
of the ECFFT algorithm does not impact our application as much as it impacts uses over a field.
We show that ECFFT EXTEND is actually competitive in Appendix B.3

ECFFT EXTEND only works for k, a power of two. If k is not a power of 2, we can just consider
the next power of 2, padding the input with zeroes and removing rows of the output.

Note that if Zp is an FFT-friendly field with a large-power-of-2 root of unity, then it would be
faster to use FFT-base algorithms than ECFFT EXTEND. FFT can indeed be adapted to compute
the above EXTEND algorithm. However, in many practical settings, we do not have the choice of
the elliptic curve, and the associated scalar field Zp is not FFT-friendly. In particular, the scalar
field of ED25519 is not FFT-friendly.

B.3 Benchmarking

For the benchmark, we consider the case where b = t = k = 2ℓ for some ℓ. In particular, the matrix
H for the second solution is square and of size, a power of two. If this was not the case, we would
need to execute the ECFFT EXTEND algorithm for k being the next power of 2 that is larger or
equal to max(b, t). The input would be padded with zeroes and the extra output values would be
ignored.

We focused on the ED25519 curve. The order of Zp is p = 2252+2774231777737235353585193779
0883648493. To apply the ECFFT EXTEND algorithm for k = 2ℓ, we need to find an elliptic curve
over Zp with order divisible by 2ℓ+1.20 We found an elliptic curve suitable for k ≤ 214 in a few hours
with a naive Sage code on a laptop. The elliptic curve found is:

y2 = x3 + ax+ b

with a = 4392976802491101277119858233748628886670447097743165573553979461609125550624
and b = 2641390116504058046593982364855935054624196913202961355189967522292222358134.

We implemented both the ECFFT EXTEND solution and the small-scalar Vandermonde so-
lution. The code is written in Rust and based on the Rust crate/library ecfft-bn254 [7] and Ark-
works [2]. It is not fully optimized but already shows that the algorithms are practical. In particular,
the use of more optimized ED25519 libraries and faster double-scalar-multiplication algorithms are
expected to provide additional speed-up. The code is single-threaded. In the full protocol, the ma-
trix multiplication is executed a independent times, which is trivial to parallelize, improving even
more overall efficiency.

The benchmarking code is available from https://github.com/fabrice102/ecfft-group, un-
der the MIT license. This code is based on the code [7] and adapts it to work with polynomials
with coefficients in a group, instead of in the base field.

20Note that this elliptic curve is completely unrelated to ED25519. It is not even on the same base field. Further-
more, because of the way the ecfft-bn254 library [7] was written, we actually need the created elliptic curve to have
a cyclic subgroup of order 2ℓ, instead of just having a subgroup of order divisible by 2ℓ.
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Benchmarks results are provided in Table 1 and were run on a VM with 2 CPU Cores (AMD
EPYC 7601, 2.2GHz) and 4GB RAM (OS: Ubuntu 20.04.3 LTS, rust version 1.69.0, 2023-04-
16). The Vandermonde solution timings are extrapolated from the benchmark code that computes
Horner’s evaluation on small scalars: the time of evaluating the matrix multiplication with Horner’s
rule variant is the same as evaluating a polynomial of degree 2b−1 in 2b small points (with Horner’s
rule), multiplied by b − 1/(2b − 1) (since our degree is b − 1). We compare to the naive solution
(i.e., naive matrix multiplication by an arbitrary super-invertible matrix without any optimization)
and to the “multi-scalar multiplication” naive solution where each element of the resulting vector is
computed using the multi-scalar multiplication algorithm implemented in Arkworks [2] (Pippenger
algorithm), which yields a log n improvement asymptotically. The naive solution timings are ex-
trapolated from the timing of a single scalar multiplication, multiplied by b · n = 2k2, while the
multi-scalar multiplication solution timings are extrapolated from a single multi-scalar multiplica-
tion in dimension n = 2k, multiplied by k = b. We remark that both our solutions outperform
the naive and the multi-scalar multiplication solutions with Pippenger for all the parameters b
considered.

Table 1: Benchmark of Super-Invertible Matrix Multiplication
(see text in Appendix B.3 for notes on how the timings were computed)
b = t Naive Multi-scalar multiplication Small Vandermonde ECFFT EXTEND
21 1.26 ms 1.83 ms 4.22 us 978 us
22 5.04 ms 4.34 ms 35.7 us 4.66 ms
23 20.1 ms 11.2 ms 222 us 14.0 ms
24 80.6 ms 39.0 ms 1.23 ms 39.0 ms
25 322 ms 132 ms 6.08 ms 98.9 ms
26 1.29 s 348 ms 30.0 ms 238 ms
27 5.16 s 1.20 s 140 ms 563 ms
28 20.6 s 4.19 s 630 ms 1.27 s
29 82.5 s 12.8 s 2.87 s 2.85 s
210 330 s 46.2 s 12.7 s 6.37 s
211 1,320 s 168 s 56.7 s 14.0 s
212 5,282 s 572 s 249 s 30.7 s
213 21,126 s 2,021 s 1,083 s 68.3 s
214 84,506 s 7,617 s 4,702 s 146 s

C Parameters and Performance

C.1 The parameters n, t, a and b

For given parameters t and a, the ephemeral secrets ru,v are shared via polynomials of degree
t+2a− 2, so we need at least t+2a− 1 honest shareholders to obtain shares in order to be able to
use them. All these shareholders must be in HOLD, and there could be up to t corrupted shareholders
there, so the agreement protocol must ensure that HOLD is of size at least 2t+2a−1. As there could
be t corrupted parties during the run of the agreement protocol, then to ensure |HOLD| ≥ 2t+2a−1
the number of shareholders must be n ≥ 3t+ 2a− 1 (for both the static-committee setting and the
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dynamic setting). Below we mostly assume n = 3t+ 2a− 1.
For the parameter b, recall that we need b honest dealers in QUAL for the DKG protocol. We

can ensure QUAL as large as n − t (but of course not any larger), so the largest value that we
can ensure for b is b = n − 2t. The number of signatures in each run of the protocol is therefore
a · b = a(n−2t). We note, however, that at the end of each run of the agreement protocol, everyone
knows the size of QUAL, and can set the parameter b accordingly. If QUAL happens to be larger
than n − t in a particular run, then b can be larger than n − 2t, so we can sign more messages in
that run. In the best case, we have |QUAL| = n, so we can sign a(n− t) messages.

C.2 Bandwidth in the static-committee setting

In the static setting we do not need to re-share the long-term secret key, so each dealer only shares
a single random polynomial Hi of degree d′ = t + 2a − 2. This means broadcasting t + 2a − 1
group elements for the commitments, and n ciphertexts encrypting the shares. Assuming ElGamal
encryption (with randomness re-use), encryption takes n + 1 more group elements. The total per
dealer is therefore n+ t+ 2a, for a grand total of n(n+ t+ 2a) group elements.

In the optimistic case where (almost) everyone is synchronized, the agreement protocol requires
a single broadcast from each shareholder (after the dealers sent their messages). If all the dealers
are good then these messages are short, otherwise, each message can include up to t complaints,
each with just a few group elements, for an additional bandwidth of O(nt).

For the signature generation part, we have |HOLD| = n− t = 2a+ 2a− 1 and each shareholder
in HOLD broadcasts b = n − 2t shares, for a total broadcast bandwidth of (2t + 2a − 1)(n − 2t)
scalars, enabling the generation of up to a(n− 2t) signatures.

The total bandwidth (both group elements and scalars) is therefore n(n+ t+ 2a) + (2t+ 2a−
1)(n − 2t) = O(n2), plus at most O(t2) for all the complaints. The amortized bandwidth per
signature (not counting complaints) is about

n · (n+ t+ 2a) + (2t+ 2a− 1) · (n− 2t)

a · (n− 2t)
=

n2 + nt

a(n− 2t)
+

2n

n− 2t
+

2t− 1

a
+ 2.

Asymptotically, setting t = a = Ω(n) we get O(1) group-elements/scalars per signature.
For a few examples, setting t = a = n/5 we get about 17.33 scalars/group-elements per signature.

To get resilience of t = n/4 we can only get a = n/8, yielding about 34 scalars/group-elements per
signature. In the other direction, reducing the resilience to t = n/10 we can set a = 7n/20, getting
an amortized 9 scalars/group-elements per signature. (That is 4.5 times the bandwidth needed to
communicate just the signatures themselves.)

C.3 Computation in the static-committee setting

In terms of computation (and counting only scalar-by-element products), each dealer needs to
compute d′ = t+2a−2 products to commit to their polynomial and n+1 more for the encryptions.

Each shareholder must verify all the shares that they received, each costing about d′+1 products,
so n · (d′ + 1) products for each shareholder. For complaints, each shareholder needs to generate at
most t of them, and verify at most 2t of them, since at most t dealers and t shareholders can be
bad. (In the static committee case, only t complaints need to be verified.) Verifying each complaint
can take another d′ + O(1) products (d′ to compute the commitment and O(1) for the proof of
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decryption.) Hence, the agreement can take up to (about) (n+ t)(d′ + 1) products for each party,
regardless of how many messages will be signed.

For generating the signatures, the shareholders must first compute all the Ru,v’s to be hashed,
then compute their own shares. By our convention, commitments to the Hi’s include in particular
the elements Hi(1−v)·G for v ∈ [a]. Hence, for any v ∈ [a], computing the elementsRu,v = Hu(1−v)
for all u ∈ [b] requires multiplying the vector (Hi(1− v) : i ∈ QUAL) by the super invertible matrix
Ψ of dimension b× (b+ t). Doing it for all v ∈ [a] means computing the matrix product[

Ru,v
]
u∈[b],v∈[a] = Ψ×

[
Hi(1− v) ·G

]
i∈QUAL,v∈[a].

Using the Vandermonde solution from Section 2.4, this would take about a ·b ·t log n/ log p products.
Using the ECFFT EXTEND solution, this would take O(a · max(b, t) log(max(b, t))), which in
practice is as fast as the first solution when b = t = 512, and becomes faster afterwards.

Once, everyone broadcasts their shares, verifying the shares and assembling the signature can
be done by anyone who sees the broadcast channel, not necessarily the parties themselves, and
certainly not all parties need to carry out that verification. 21 Verifying each share takes d′ + 1
products, and at most d′ + t + 1 of them need to be verified before we have d′ + 1 valid ones, for
a total of (d′ + 1)(d′ + t + 1) products, but since not every party needs to carry it out we do not
include these products in the tally below.

Substituting d′ = t + 2a − 2 and b = n − 2t, the overall number of scalar-by-element products
for each party is therefore (n + t + 2a − 1) + (n + t)(t + 2a − 1) + a(n − 2t)t log n/ log p products
(with the small Vandermonde solution from Section 2.4), and the per-signature number is

(n+ t+ 2a− 1) + (n+ t)(t+ 2a− 1) + a(n− 2t)t log n/ log p

a(n− 2t)

= t log n/ log p+
(n+ t)(t+ 2a)

a(n− 2t)
+

2− 1
a

n− 2t
.

With a = Ω(n) and n−2t = Ω(n), and when the Vandermonde solution from Section 2.4, this yields
complexity of t log n/ log p + O(1) products per signature. (In the example of t = a = n/5, we get
about t+6 products for each signature.) With a = Ω(n) and n− 2t = Ω(n), and when the ECFFT
EXTEND solution from Section 2.4, this yields complexity of O(log n) products per signature.

C.4 Performance in the dynamic/proactive setting

In this setting, we also need to refresh the long-term secret. This means that each dealer broadcasts
n + t additional group elements, and shareholders may need to broadcast more complaints, but
the bandwidth for signature generation remains unchanged. Therefore, the overall bandwidth in
this case (not counting complaints) becomes 2n(n + t + a) + (2t + 2a − 1)(n − 2t), increasing the
per-signature bandwidth by n(n+t)

a(n−2t) . (For example, when t = a = n/5, the bandwidth increases
from 17.33 to 27.33 scalars/group-elements per signature.)

Computation likewise increases much less than 2×. Each dealer performs only t additional
products for the commitments.22 Verifying the sub-shares takes only n(t + 1) more products by
each shareholder, and checking each complaint is only t+O(1) more products.

21Verification can even be avoided in the optimistic case, by just trying to reconstruct a polynomial and see that
(almost) all the shares agree with it.

22Using hybrid encryption does not take any more products to encrypt longer messages.
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C.5 Some numerical examples

The techniques in this paper are useful even for fairly small committees. For example:

• With n = 10, we need t ≤ 3 even to sign just a single message, but setting for t = 2 allows
us to set a = 2, b = 6 and sign a · b = 12 messages for the price of a single message. That’s a
12× performance improvement for a small drop in resilience.

• For n = 16 and t = 3 we can set a = 4, b = 10 and generate 40 signatures.

• For n = 64 and t = 15 we can set a = 10, b = 34 and generate 340 signatures.

• In Appendix D.1 we analyze the committee sizes that we need when sub-sampling the com-
mittees in a few settings. For example, when assuming 80% honest majority in the overall
population and shooting for a 2−80 probability of safety failure and 2−11 probability of liveness
error due to sub-sampling, we can use committees of size n = 992 with t = 336 and a = 40
(and b = 320). We note that here we have n < 3t + 1, since we use different thresholds for
liveness and safety errors.

In this setting, we can sign 40·320 = 12800 messages per run, and each run consumes broadcast
bandwidth of 2n(n+ t+ a) + (2t+ 2a− 1)(n− 2t) = 2, 954, 432 scalars and group elements,
or about 95 megabytes. In terms of computation, each party (playing first a shareholder and
then the dealer in the next epoch) needs to perform about (n+2t+2a− 1)+ (n+ t)(t+2a−
1) + n(t + 1) + a(n − 2t)t log n/ log p = 1, 055, 167 scalar-element products (for log p = 256.
Moreover, most of the products are actually dot product between a vector of scalars and a
vector of group elements, which can be done perhaps 3× faster than performing each product
separately. On contemporary servers, even a single-threaded implementation can perform
this number of products in under three minutes, yielding an amortized rate better than 4000
signatures per minute.

• Running the protocol with optimistic parameters, we may try for a setting that still provides
2−80 safety error with 80% honest but liveness-failure probability of 2−8 with 95% honest.
To get roughly the same number of signatures per run we set a = 64, thus getting n = 676,
t = 250, and b = 176. This yields more or less a 2× lower complexity, with a bandwidth
of 1,448,832 scalars/group-elements and 630,081 scalar-by-element products, while producing
11264 signatures. Moreover, in the even-more-optimistic case where all the dealers happen
to be honest, we can sign as many as a(n − t) = 27264 messages with the same parameters,
another 2× improvement (and a rate of more than 10,000 signatures per minute).

D Deploying in a Blockchain Environment

Next we describe how the protocols from above can be used to implement a large-scale Schnorr-
signature service over a public blockchain. Such implementation would use all the techniques from
Section 2 and Appendix A. Specifically,

• It would use the QUAL-agreement protocol from Appendix E, where the blockchain serves as
the underlying total-order broadcast channel;

• It includes the proactive share refresh from Section 3.2, which is run periodically every few
blockchain rounds (called an epoch);
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• The committees in each epoch are sub-sampled from among the validators using the random-
ness beacon as discussed in Section 2.8;

• It would include all the optimizations from Appendix A, such as optimistic runs and user
aggregation.

Below we discuss a few other aspects of such implementation, such as the required committee sizes,
how to use the single blockchain key s to sign on behalf of multiple smart contracts, and plausible
mechanisms for recovering from catastrophic failures.

D.1 Committee Sizes

We assume a huge network, consisting of many millions of parties, from which we sub-sample the
committees. We note that this model is sometimes applicable even for a blockchain with only a
handful of validators. Specifically, in a proof-of-stake blockchain we may want to give high-stake
nodes more power in the computation than low-stake ones, to align the trust model of the signature
service with that of the underlying consensus protocol. (E.g., both the consensus protocol and the
higher-level signature scheme remain secure as long as at least 80% of the stake is controlled by
honest parties.)

In that case, we may want to view each token as a party, where a physical node is running the
protocol on behalf of all the tokens that it controls. Even if the network only has a few dozen physical
nodes, this view may require that we use our protocols with many millions of virtual parties.23

Below we denote the overall number of parties by N , and we assume a PKI where we have a
list of all N parties, each with their public encryption key. Also set f be (an upper bound on) the
fraction of corrupted parties, namely we assume that we have at most fN corrupted parties and at
least (1− f)N honest ones.

Recall that we sub-sample each committee based on a (pseudo)random value from the random-
ness beacon, expanded using a PRG. In more detail, for some parameter n (to be determined below),
we expand the latest randomness beacon value U into a (pseudo)random vector of n indexes in [N ]
(with repetitions), PRG(U) = (i1, i2, . . . , in) ∈ [N ]n. The next committee then consists of the n
parties that are indexed by i1, . . . , in in the PKI.24

Chosen this way, the committee size will be exactly n, and the number of corrupted parties in
the committee will be upper-bounded by XC ∼ Binn,f , a Binomial random variable with parameters
n, f . Similarly, the number of honest parties in the committee is lower-bounded by XH ∼ Binn,1−f .
Conveniently, these two random variables do not depend on N , the total number of parties in the
system.

The parameters n, t will be chosen based on a and f (and the required safety and liveness
guarantees εsafety, εliveness), to ensure the following conditions:

Safety. To prevent the corrupted parties from learning the secret key, we need Pr[XC > t] ≤ εsafety.

Liveness. We need Pr[XH < 2t+ 2a− 1] ≤ εliveness to ensure that honest parties can reconstruct
the signatures.

23This is also the setting where the user-aggregation ideas from Appendix A will have the most impact.
24If an index i ∈ [N ] appears more than once in the vector, then the corresponding party will have more than one

seat on the committee and will get more than one share of the relevant secrets.
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To find suitable parameters, we therefore wrote a simple program that takes as input f, a, εsafety,
εliveness, and searches for the smallest values for n, t that satisfy these two conditions. Once those
parameters are set, we instantiate the system with a QUAL-agreement protocol from Fig. 3 with
parameters d0 = d1 = n − t and d2 = t + a. This implies a parameter b (the dimension of the
super-invertible matrix) which is b = |QUAL1| − t = n− 2t.

D.1.1 Optimistic Parameters

As mentioned in Appendix A, we can also attempt to run with optimistic parameters, i.e., smaller
committee, as long as it is only liveness that we sacrifice, not safety. For that purpose, we modified
the parameter-searching program to take another set of parameters f ′, ε′liveness, then define X ′

H ∼
Binn,1−f ′ and search also for parameters that satisfy Pr[XC > t] ≤ εsafety and Pr[X ′

H < 2t+2a−1] ≤
ε′liveness.

D.2 Uses of Additive Key Derivation

Additive key derivation (cf. [21]) allow a single secret key to be used to sign on behalf of multiple
public keys. Let s be a “master secret key” with corresponding public key S = s ·G. Then a derived
key-pair can be specified by a public “tweak” u ∈ Zp, which defines the secret key s′ = s + u and
the public key S′ = S + u · G. This is a well known technique, which is used in many blockchains
(including Bitcoin [41]). To generate a Schnorr signature on message M relative to the derived key
S′, one can use the master secret key in conjunction with the public tweak.

In the context of a blockchain signature service, we consider a blockchain master key whose
secret key is shared among the validators as described in this work. We can then give each smart
contract its own derived key, by setting the tweak value u to be (say) a hash of the smart contract
identity I (or code): u = Hash(I). This way, each smart contract “owns” its own key, and can ask
the blockchain to sign messages relative to that key. When a smart contract with identity I asks
to sign a message M , the validators will execute the Schnorr signature protocol exactly as specified
in this work, except that they use the public scalar e = Hash(S′, R,M) for that message (instead
of e = Hash(S,R,M)). This will result in a pair (R, es + r), that can be converted to standard
Ed25519 signature by adding e · Hash(I) to the second entry in the pair.

D.3 Recovery from Catastrophic Failures

In the proactive setting that we consider, the system relies on adequate connectivity to make progress
and refresh the secret key from one committee to the next. A plausible attack vector is mounting
a network partition attack. This will stall progress and deprive the parties of the ability to refresh
the sharing and erase their old shares. If the outage lasts for a long time, it may become necessary
for nodes to delete their old shares without refreshing them, for fear that a long-held secret may
become an easy target for an attack. If that happens, how can the system recover and return to
normal operation once the outage is over?

One recovery approach is to fall back on centralized trust: the master key can be kept in (very)
cold storage, perhaps shared among a handful of highly trusted parties, and recovered from them in
the event of such a devastating attack. This solution, however, has the drawback that these “highly
trusted” parties may not be trustworthy after all: They can recover the key even with no attack,
and there would not even be any way of knowing if they did it.
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A somewhat better approach would be to equip those highly trusted parties with an independent
recovery decryption key, with the corresponding public key embedded in the blockchain code. This
key is never used, except when a shareholder needs to delete their share without being able to pass
it forward. In that situation, the shareholder will encrypt their share under the recovery public key
before deleting it from memory. Once the outage is over, they will run a special recovery protocol,
in which the highly trusted parties help them to recover the share and continue where they left of.
It is even possible to implement a hybrid approach, where some small number of shares are always
encrypted under the public key, but most other shares are only encrypted when an attack happens.
This way the highly trusted parties can fill in for some shareholders that lost interest after the
attack and did not participate in the recovery process.

Yet another approach, which relies on anonymous public-key encryption, is as follows: When a
shareholder needs to delete their share without being able to pass it forward, it chooses a random
committee and secret-share its share to them, broadcasting an encryption of the sub-shares under
their anonymous-PKE keys. This way, the adversary does not know who is holding what shares,
but the parties can still recover those shares when the system resumes.

E The Full Agreement Protocol

Here we describe the full agreement protocol, the one that we need to use for the dynamic/proactive
setting. Recall that the main difference between this and the base protocol from Section 4 is that the
latter only ensures |QUAL|+ |BAD| ≥ d1, whereas here we need to ensure |QUAL| ≥ d1. Also, here
we need to output a single shareholder subset HOLD but two pairs of dealer subsets (QUAL1,BAD1)
and (QUAL2,BAD2). The full protocol consists of multiple iterations, each time running the base
protocol from Fig. 3. Each iterations adds to the dealer-subsets from the previous iteration, and
re-defines the set HOLD “from scratch”.

This protocol has two sets of dealers (not necessarily disjoint), one sends messages related to H
and the other messages related to F. Below we refer to them as “type-1” and “type-2” messages. The
protocol is described in Fig. 5, and its correctness is stated in Theorem 2 and proved in Appendix F.

Theorem 2. Consider an execution of the base agreement protocol from Fig. 5 over a total-order
broadcast channel, among a set of n0 shareholders of which at least d0 are honest. Assume that at
most n1, n2 dealers broadcast type-1,type-2 messages, respectively, at least d1, d2 of these dealers
are honest, and no verifiable complaint can be constructed against any honest dealer. Then all
honest shareholders will eventually terminate, all outputting the same sets with |HOLD| ≥ d0 and
|QUALk| ≥ dk for k = 1, 2. Moreover:

• No shareholder in HOLD complained against any dealer in any QUALk; and

• Every dealer in BADk has at least one shareholder (not necessarily in HOLD) that lodged a
verifiable complaint against them.

E.1 Optimizations and Variants

One obvious optimizations of this protocol is that parties can remember messages that were seen
on the broadcast channel in previous iterations rather that re-sending them again.

We note that the main drawback of this protocol as compared to the one from Fig. 3 is that
shareholders need to broadcast multiple complaint rounds (at most t of them if there are t dishonest
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Parameters: n0, d0, n1, d1, n2, d2.
Precondition: We have two sets of dealers for type-1 (resp. type-2) messages, of sizes at most
n1 (resp. n2), at least d1 (resp. d2) of which are honest. We also have n0 shareholders, at least
d0 of them are honest.
Shareholder Pj:
Initialize HOLD = QUAL1 = BAD1 = QUAL2 = BAD2 = ∅. Then repeat:
1. Enlarge QUAL’s until |QUALk| ≥ dk for k = 1, 2. When receiving the (first) broadcast

message of type-k from dealer Di, set QUALk := QUALk ∪{Di}. Keep adding until both
QUALk sets reach the required size.

2. Broadcast Complaint. Wait until |QUALk| ≥ dk for k = 1, 2. Then broadcast all the
verifiable complaints against dealers in QUAL1,QUAL2 whose messages were locally bad,
in a single broadcast message. If this set is empty, broadcast the empty set.

3. Contract QUAL’s. Collect all the valid complaint-sets (i.e., the ones whose complaints
can be verified). Once there are d0 valid complaint-sets, set QUALk := QUALk \ {Di}
and BADk := BADk ∪ {Di} for each verifiable complaint against a type-k message from
dealer Di;

4. Set HOLD. To the first d0 shareholders who broadcasted a valid complaint-set in this
iteration.

If |QUALk| ≥ dk for k = 1, 2, output HOLD,QUAL1,BAD1,QUAL2,BAD2 and halt.
Otherwise go back to step 1 (and use any new dealer messages that were received since last
time).

Figure 5: The full agreement protocol
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dealers). We also note that we can have protocols in between the ones from Fig. 3 and Fig. 5: For
a parameter τ ∈ [1, t], we can limit the number of complaint rounds to t/τ by changing the halting
condition, checking that If |QUALk| ≥ dk − τ (rather than |QUALk| ≥ dk). This way, the sets BAD
must grow by at least τ in each iteration (except the last one), so the number of iterations cannot
be more than 1 + t/τ .

F Proofs of Theorems 1 and 2

Theorem 1. Consider an execution of the base agreement protocol from Fig. 3 over a total-order
broadcast channel, among a set of n0 shareholders of which at least d0 are honest. Assume that
at most n1 dealers broadcast messages, at least d1 of these dealers are honest, and no verifiable
complaint can be constructed against any honest dealer. Then all honest shareholders will eventually
terminate, all outputting the same sets with |HOLD| ≥ d0 and |QUAL|+ |BAD| ≥ d1. Moreover:

• No shareholder in HOLD complained against any dealer in QUAL; and
• Every dealer in BAD has at least one shareholder in HOLD that lodged a verifiable complaint

against them.

Proof. Recall that we refer to shareholders that read τ messages from the channel as being “in
step τ ”.

Agreement is easy to verify: The sets QUAL,BAD,HOLD that a shareholder maintains through-
out the protocol are just deterministic functions of the messages on the broadcast channel. Hence,
at any given step, all shareholders at a given step will have the same sets. Since the halting con-
dition is also a deterministic function of the broadcast channel then they will all halt at the same
step and therefore all output the same sets QUAL,BAD,HOLD.

It can be verified by inspection that when that happens, we have |HOLD| = d0 and |QUALk|+
|BAD| ≥ d1. Also it is clear by inspection that shareholders in HOLD never complain about dealers
in QUAL, and that every dealer in BAD was moved there as a result of some verifiable complaint.

The only thing left to show is termination. Since there are at least d1 honest dealers, then by
eventual delivery we know that all the honest shareholders will eventually receive d1 dealer messages
and thus they will all complete Step 1 of the protocol (enlarge QUAL), and then broadcast a message
in Step 2 (broadcast complains).

Similarly, since there are at least d0 honest shareholders and all of them will eventually broadcast
a message in Step 2, then all honest shareholders will eventually receive at least d0 valid complaint-
step, and therefore fix HOLD and halt.

Theorem 2. Consider an execution of the base agreement protocol from Fig. 5 over a total-order
broadcast channel, among a set of n0 shareholders of which at least d0 are honest. Assume that
at most n1, n2 dealers broadcast type-1,type-2 messages, respectively, at least d1, d2 of these dealers
are honest, and no verifiable complaint can be constructed against any honest dealer. Then all
honest shareholders will eventually terminate, all outputting the same sets with |HOLD| ≥ d0 and
|QUALk| ≥ dk for k = 1, 2. Moreover:

• No shareholder in HOLD complained against any dealer in any QUALk; and

• Every dealer in BADk has at least one shareholder (not necessarily in HOLD) that lodged a
verifiable complaint against them.
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Proof. Agreement is argued exactly as for Theorem 1, since all the sets and the halting condition
are deterministic functions of the broadcast channel then all honest parties will agree on them.

It is also easy to verify by inspection that honest parties halt only when |QUAL1| ≥ d1 and
|QUAL2| ≥ d2. Similarly it is clear that no shareholder in the final HOLD complain about any
dealer in QUAL1,QUAL2 (or else these dealers will be removed from their QUAL), and that some
shareholder must have lodged a verifiable complaint against every dealer in BAD1,BAD2 (since
that’s the only way that dealers are added to the BAD’s.).

For termination, we prove by induction over the iterations that all honest parties will complete
Step 1 in each iteration (until the protocol terminates). Consider iteration i − 1, that ended with
some sets BAD1,BAD2 of sizes b1, b2, respectively. Since there are at least d1, d2 honest dealers in
the two dealer sets (and they cannot be in the BAD sets), then we know that all honest shareholders
must eventually receive at least that many broadcast messages from dealers outside of these BAD
sets. When that happens for the first time, those dealers will be included in shareholder will in
QUAL1,QUAL2 as maintained by the honest shareholders, and therefore those shareholders will
terminate Step 1 of the next iteration and broadcast their Step 2 message for this iteration. Then,
all the honest shareholders will eventually get these messages and complete Step 3 and 4 of that
iteration. This completes the proof that each iteration will eventually terminate.

Next we prove that the number of iterations is at most (n1−d1)+(n2−d2)+1. To see that, note
that for each iteration, the sizes of QUAL1,QUAL2 after Step 1 are at least d1, d2, respectively. So
if no more dealers are added to the BAD sets then the protocol will terminate after that iteration.
It follows that in all but the last iteration, at least one of BAD1,BAD2 must grow. Moreover, only
dishonest dealers can ever be added to these BAD sets. As there are at most (n1 − d1) dishonest
dealers in the first set and at most (n2 − d2) dishonest dealers in the second set, the total number
of iterations cannot be larger than (n1 − d1) + (n2 − d2) + 1.

G Security Proof of the Threshold Signature Protocol

We now turn to proving the security of our base threshold signature protocol for the static-committee
setting from Fig. 1. We build the proof step by step, starting from the proof for the (centralized)
Schnorr signature scheme [37] and a simple threshold Schnorr signature protocol a-la-GJKR, adapt-
ing their proof techniques and adding components as needed for our protocols. Specifically, we
define a list of variants of the protocol, and explain how the proof is modified from one variant to
the next:

1. Centralized Schnorr (Appendix G.1): Pointcheval and Stern [37] proved that, under the dis-
crete log assumption, Schnorr signature scheme is secure in the random oracle model. The
key component of their proof is the forking lemma [37, Theorem 10], which we will also use
for our proof in the following variants.

2. Threshold Schnorr for a single message (Appendix G.2): This is similar to (but not exactly
the same as) the GJKR protocol from [17, Fig.4], using Feldman commitments. While using
Feldman allows a rushing adversary to bias the distribution of the ephemeral randomness,
Gennaro et al. proved in [17] that their threshold signature protocol with Feldman commit-
ments is still secure. We prove the same for our protocol by adapting their techniques to our
needs, see Appendix G.2.
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3. Parallel Threshold Schnorr signatures (Appendix G.3): It is known that the GJKR proof for
the single-signature threshold scheme does not extend to signing multiple messages in parallel,
in fact the resulting scheme is insecure. We therefore add a mitigation technique that allows
us to recover the security argument when signing a set of messages in parallel as our protocol
does.

4. Non-Packed threshold Schnorr with a super-invertible matrix (Appendix G.4): Our use of a
super-invertible matrix allows each dealer to shares only a single polynomial, but we can still
derive multiple signatures. The security proof for this variant requires a generalization of the
simulation technique, as well as a small change to the protocol itself.

5. Threshold Schnorr with super-invertible matrix and packing (Appendix G.5): This part re-
quires another generalization of the simulation technique.

Combining all these techniques, we describe the final reduction in Appendix G.6. Finally, in Ap-
pendix G.7 we then discussed the small changes for the dynamic/proactive setting. We begin with
some preliminaries.

Assumption 1 (The Discrete-Logarithm Assumption). Let G be a group of prime order p ∈
PRIME(λ) where the generator is G, and λ is the security parameter. Define the following attack
game for a discrete log adversary A:

• The challenger and the adversary A take in a description of G, which includes the group order
p and the generator G.

• The challenger chooses s $←− Zp, and gives A the group element s ·G.

• A outputs s̄.

We say that A wins the game if s̄ = s and we denote the probability of A winning the game as
EDL[A,G]. The discrete logarithm assumption holds if EDL[A,G] negligible in λ, i.e., EDL[A,G] ≤
1/P (λ) for any polynomial P (·).

Definition 1 (Security of signature scheme). For a signature scheme Σ = (Gen, Sign,Verify), define
a following game for an adversary A:

• The challenger runs Gen(1λ)→ (SK,PK) and sends PK to A.

• A asks the challenger for signatures on M1, . . . ,Mq; and the challenger computes µi ←
Sign(SK,Mi) for i = 1, . . . , q, and sends the corresponding signatures µ1, . . . , µq to A.

• A outputs a pair (M,µ).

We say that A wins the game if M ̸∈ {M1, . . . ,Mq} and yet Verify(PK,M, µ) = 1. The advantage
of A is the probability that A wins the game, denoted Eforge[A,Σ]. We say that the signature scheme
Σ is secure if, for any polynomial-time A, Eforge[A,Σ] is negligible in λ.
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G.1 Centralized Schnorr

Definition 2 (Schnorr signature scheme). Let Hash be a hash function {0, 1}∗ → Zp. Let G be
a group of order p in which discrete log is hard. The Schnorr signature scheme consists of the
following algorithms:

• Gen(1λ) → (SK,PK): a randomized algorithm run by the signer that takes in a security
parameter λ, outputs SK = s

$←− Zp and PK = S = s ·G.

• Sign(s,M) :→ µ: a randomized algorithm run by the signer that on input a message M , a
secret key SK = s, samples r $←− Zp, computes R = r ·G, e = Hash(S,R,M), and ϕ = r+ es.
Output a signature µ := (R,ϕ).

• Verify(S,M, µ)→ v: a deterministic algorithm run by the verifier that on input a public key
PK = S, a message M , and a signature µ = (R,ϕ), computes e = Hash(S,R,M) and checks
if ϕ ·G = R+ e · PK. If so, it outputs v = 1 (indicating the signature is valid). Otherwise, it
outputs v = 0 (invalid signature).

Below we briefly recall the security proof of Schnorr signature scheme, because it helps in
understanding the security proof of the threshold signing.

Theorem 3 ([37]). The Schnorr signature scheme is secure in the random-oracle model under the
discrete logarithm assumption.

Proof. Assume that there exists an attacker A that can forge the signature, then we can build an
attacker Sim that solves discrete log. The task of the attacker Sim is to simulate the view of A as
in the real-world protocol execution (so that A can output a forgery), and then Sim transforms A’s
forgery into the ability to compute discrete log. We provide details below.

The discrete log challenger first samples a random s and sends S = s · G to Sim. The task for
Sim is to utilize A to find s. In the first step of the simulation, A sends q messages M1, . . . ,Mq

to Sim, and Sim needs to create signatures on these messages to send to A. However, Sim cannot
create such signatures “without any help” because it does not have the secret key s. To this end,
we assume the hash is a programmable random oracle and Sim programs the random oracle Hash
as follows: for each query (S,R,M) to Hash, it samples e, ϕ from Zp at random, and then computes
R := ϕ ·G− e · S and set Hash(S,R,M) to e; and Sim will give A the tuple (R,ϕ) as the signature
to m. When A verifies the signature, it computes ϕ · G − R, which equals e · S as random oracle
Hash was programmed this way.

Now we show how A can create a forgery (R∗, ϕ∗) on a message M∗, where M∗ ̸∈ {M1, . . . ,Mq}.
In the random oracle model, we assume that A must have queried Hash on (S,R∗,M∗). Then Sim
rewinds A, and answers all the oracle queries before (S,R∗,M∗) with the same value used in the
first run, but on the oracle query (S,R∗,M∗), Sim answers with a new e′, randomly chosen from
Zp (note that R∗ is the same as in the first run). In the second run, A outputs a forgery and if it
happens to be M∗ again, then Sim can compute the secret key s. Here Sim during rewinding can
guess which message A will forge with uniform probability (choose where to rewind) so that the
probability of success will be at least 1/Q, where Q is the total number of oracle queries made by
A.
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G.2 Threshold Schnorr for a single message

Recall the distributed key generation protocol (called JF-DKG as in GJKR [17]):

1. Each party i (acts as a dealer) chooses a random degree-t polynomial Hi(·), where ri = Hi(0)
is the random value that party i wants to (additively) contribute, and Ri = Hi(0) · G is the
corresponding public value. Each party broadcasts 1) ENCPKj (Hi(j)), i.e., the encryption of
share for party j under party j’s public key; and 2) the Feldman commitments Ĥi to Hi.

(Below we elide the distinction between committing to coefficients of H or to its values at
sufficiently many points, since these are equivalent from a security perspective. We just use
the fact that given Ĥi, it is possible to compute Hi(z) ·G for every z ∈ Zp. In particular, Ri

is publicly known.)

2. The parties engage in an agreement protocol to agree on sets HOLD and QUAL such that
|HOLD|, |QUAL| ≥ t+ 1 and every party in HOLD received from every party in QUAL shares
that are consistent with the committed polynomials.

3. Let H =
∑

i∈QUALHi, each party j ∈ HOLD compute their share as ρj = H(j) =
∑

i∈QUALHi(j).
The parties also compute a Feldman commitment to H, Ĥ =

∑
i∈QUAL Ĥi. The secret that

is shared among them is r = H(0) =
∑

i∈QUALHi(0) ∈ Zp. The corresponding public value is
R = H(0) ·G =

∑
i∈QUALRi ∈ G, which can be computed from Ĥ.

We use JF-DKG as a main component in our distributed Schnorr signature protocol, specifically,
it is run to generate the ephemeral randomness that is needed for these signatures. Our protocol,
described below, is similar (but not exactly the same as) the protocol from [17].

Protocol inputs. A message M to be signed, a degree-t sharing of a secret key s. Each party i
holds a Shamir share of s, denoted as σi = F(i), with F a degree-t polynomial and F(0) = s. Also,
F̂ if publicly known, from which it is possible to compute S = s ·G and Si = σi ·G for all i

Protocol outputs. A Schnorr signature of the form (R,ϕ) on the message M .

Protocol steps. The threshold signing mainly consists of three parts: first, generate ephemeral
randomness for signing using JF-DKG; second, every party locally computes the hash and its Shamir
share of the signature; finally, the parties combine the shares to reconstruct the signature.

1. The parties run the JF-DKG protocol above. After this, a set HOLD of parties is determined,
where each party j ∈ HOLD holds a degree-t Shamir share ρj = H(j) of the ephemeral
randomness r = H(0), where H is a degree-t polynomial, and everyone knows a Feldman
commitment Ĥ to H.

Let R = H(0) ·G and R̃j = H(j) ·G for all j ∈ HOLD. These can all be computed from the
Feldman commitment Ĥ.

2. The parties locally compute e = Hash(S,R,M).

3. Each party j ∈ HOLD broadcasts its share of signature, πj = H(j) + e · σj . Each share is
verified by checking if πj ·G = R̃j + e · Sj .
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4. If at least t + 1 parties in HOLD broadcast valid shares, use these shares to reconstruct
ϕ = r + e · s. Output a signature on M as (R,ϕ).

The difference between this protocol and the one from [17] is that in our protocol, the parties in
HOLD (that hold Shamir sharing of r, s) generate the signature, whereas in [17] it is the parties in
QUAL that do it (using additive sharing of r, s). However, the same security challenge resides here
as in our protocol, the adversary can play with QUAL for the ephemeral randomness (e.g., kick out
a contributed polynomial of an honest party). The security proof is similar to that in [17], but not
identical since the protocols are somewhat different.

G.2.1 Proof of Security

Definition 3 (Security of threshold signature). Define the following game for a threshold signature
protocol Π and an adversary A against a distributed signature protocol Π:

• A while interacting with Π, comes up withM1, . . . ,Mq, and gets the corresponding q signatures
(µ1, . . . , µq).

• After interacting with Π, A outputs a pair (M,µ).

We say that A wins the game if M ̸∈ {M1, . . . ,Mq} and yet Verify(PK,M, µ) = 1. The advantage
of A is the probability that A wins the game, denoted as Eforge[A,Π]. We say that a threshold
signature protocol Π is secure if for any polynomial-time A, Eforge[A,Π] is negligible.

Theorem 4. The threshold signature protocol from above is secure against a static adversary
corrupting up to t parties, in the random-oracle model under the discrete logarithm assumption.

Proof. We describe a reduction, in which an adversary A against the threshold scheme can be used
to solve the discrete logarithm problem. The main difference from the proof for centralized Schnorr
is that the simulator must also simulate the adversary view of the protocol, not just of the signatures
themselves. The main challenge in this proof is that the adversary can be rushing, which enables it
to bias the distribution of the ephemeral randomness, so the simulator cannot just select the R at
random.

Let Honest be the set of honest parties, let Corrupt = [n] \Honest be the corrupted parties, and
let q be a bound on the number of random-oracle queries of the form (S,R,M) that A makes. The
simulator needs to simulate for A the following aspects:

• The Feldman commitment F̂ to the degree-t polynomial F used to share the long-term key;

• The shares σi = H(i) of the long-term secret key for all i ∈ Corrupt;

• The (encryption of) shares of ephemeral randomness that the honest parties send to the
corrupted parties;

• The Feldman commitments Ĥi to the honest parties’ ephemeral randomness polynomials Hi;

• The view of the agreement protocol, including the verifiable complaints and support messages;

• The full degree-t signature polynomial Y such that ϕ = Y(0) is part of the signature (and Y
is consistent with F̂ and the Ĥi’s);

• In addition to all the above, the simulator also needs to answer random-oracle queries (S,R,M)
that A makes.
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The reduction. The discrete log challenger randomly samples s from Zp as the secret key and
gives Sim the corresponding public key PK = S = s · G ∈ G. The public key is given to A. Now
Sim’s task is to find s, by utilizing A.

The simulator begins by choosing t random and independent scalars for the secret-key shares σi
for all i ∈ Corrupt and giving them to A. It also “interpolates in the exponent” a commitment to a
degree-t polynomial which is consistent with the public key S and σi ·G for all i ∈ Corrupt.

In more detail, for each z ∈ Corrupt ∪ {0} let Iz be the degree-t polynomial satisfying Iz(z) = 1
and Iz(y) = 0 for all y ∈ Corrupt∪{0}, y ̸= z. Then the polynomial F is F = s·I0+

∑
z∈Corrupt σz ·Iz.

Denoting FCorrupt =
∑

z∈Corrupt σz · Iz, we can write F = FCorrupt + s · I0, where the simulator knows
FCorrupt in the clear.

Next, the simulator chooses at random an honest party i
∗ ∈ Honest, which will be simulated

differently than the other honest parties. Sim also chooses a random-oracle query index ℓ ∈ [q],
hoping that the random-oracle query where A asks about (S,R,M) that are used in the signature
is the ℓ’th query.

Throughout the simulation, the simulator answers random-oracle queries with independent ran-
dom scalars e1, . . . , eq, but eℓ will play a special role. Specifically, Sim chooses eℓ at the outset,
together with another scalar ϕ̃, and sets Ri∗ = ϕ̃ · G − eℓ · S. For the rest of the honest parties
(i ∈ Honest, i ̸= i

∗), Sim chooses ri’s at random and sets Ri = ri ·G.
To simulate the Feldman commitments in Step 1 in JF-DKG, Sim simply follows DKG the

protocol as prescribed for honest parties other than i∗. For party i∗, Sim needs to generate the com-
mitment Ĥi∗ and the shares ρi∗j = Hi∗(j) for j ∈ Corrupt, without knowing the discrete lorarithm
of Ri∗. These have to remain consistent, namely for all j ∈ Corrupt we need

ρi∗j ·G = Ri∗ +
d∑

k=1

jk · (hi∗,j ·G).

While Sim does not know the polynomial Hi∗ in the clear (since its free term was chosen based on
the unknown secret key), it can still create commitment Ĥi∗ that satisfies the relation above. Sim
chooses at random ρi∗j ← Zp for all j ∈ Corrupt, and uses them as the shares of all the corrupted
parties. Note that {ρi∗j · G : j ∈ Corrupt}, together with Ri∗, uniquely define the polynomial Hi∗,
which satisfies Hi∗(0) = ϕ̃− eℓ · s and Hi∗(j) = ρi∗j for all j ∈ Corrupt. Moreover, Sim can generate
the commitment Ĥi∗ by “interpolating in the exponent”, without needing to know Hi∗ in the clear.
Using similar notations to the above we can write

Hi∗ =
∑

j∈Corrupt
ρi∗j · Ij + (ϕ̃− eℓ · s) · I0 =

=HCorrupt︷ ︸︸ ︷∑
j∈Corrupt

ρi∗j · Ij + ϕ̃ · I0 − eℓ · s · I0, (2)

where the simulator knows HCorrupt in the clear.
This completes the simulation of Step 1 of the DKG, the simulator sends all the shares and

commitments of honest parties to the adversary. Then A sends back to Sim the polynomial Hi for
parties i ∈ Corrupt. (Sim gets the shares ρij for j ∈ Honest, and since it controls t + 1 or more
parties it can recover Hi in full).

Next, the simulator runs the prescribed agreement protocol on behalf of the honest parties, but
treats i∗ as an honest dealer, even though the ciphertexts that it broadcasts to the honest parties
encrypt garbage. At the end of the agreement protocol, QUAL and HOLD are detemined, which in
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turn defines also H =
∑

i∈QUALHi and R = H(0) ·G =
∑

i∈QUALRi. While the simulator does not
know H in the clear, it does know the commitment to it Ĥ.

Sim aborts if either i∗ /∈ QUAL,25 or if A already made the random-oracle query (S,R,M) and it
was not the ℓ’th query. (If A still did not make the query (S,R,M) by the time that R is defined,
then the simulator will answer that query when it arrives with eℓ, regardless of the index of that
query.)

Since there is at least one honest party in QUAL, then the first abort event happens with
probability at most (n− 1)/n. The second abort event happens with probability at most (q− 1)/q,
since there are at most q random-oracle queries. Hence, the simulator will proceed with probability
at least 1/qn. If the simulator did not abort, then we have

H =
∑

i∈QUAL\{i∗}

Hi +Hi∗ =

=HCLR︷ ︸︸ ︷∑
i∈QUAL\{i∗}

Hi +HCorrupt−eℓ · s · I0,

where the simulator knows HCLR in the clear.
Now the simulator proceeds to Step 4 of the signature protocol, where the honest parties broad-

cast their signature shares. Note that if the simulator did not abort, then we are ensured that
Hash(S,R,M) = eℓ. The required signature is therefore (R, r + eℓ · s), where r = H(0) is the
discrete logarithm of R and s = F(0) is the discrete logarithm of S.

But the simulator needs to produce more than just the signature, it needs to come up with the
full degree-t polynomial Y = H + eℓ · F (where the commitments F̂, Ĥ to F and H are already
fixed). Luckily, this is easy to do: Recall that F = FCorrupt + s · I0 and H = HCLR − eℓ · s · I0, and
the simulator knows FCorrupt, HCLR in the clear. Hence,

Y = H+ eℓ · F = HCLR − eℓ · s · I0 + eℓ · (FCorrupt + s · I0)
= HCLR + eℓ · FCorrupt

which the simulator can output in the clear.
This concludes the simulation portion, and all that is left is to apply the forking lemma exactly

as in the proof of the centralized Schnorr signature. Suppose A creates a forgery on M∗ which is
(R∗, ϕ∗). In the random oracle model, we assume that in order for A to generate such forgery it
must have queried the oracle on (S,R∗,M∗). Let Sim rewind A, changing the answer to the query
(S,R∗,M∗). If A is still able to forge a signature on M∗ with randomness R∗, then the simulator
can extract s from those two signatures.

G.3 Threshold Schnorr for multiple messages

Suppose we wanted to use the protocol from Appendix G.2 to sign multiple messages in parallel. A
natural way of doing this would be to let each dealer Di generate multiple polynomials Hu,i, u ∈ [b],
in b copies of the single-message protocol. However, the security of the parallel threshold Schnorr
cannot be directly derived from the simulation proof for single-message protocol. Recall that in the
proof in Appendix G.2.1, in order to generate valid signatures on the b messages M1, . . . ,M b, the
simulator needs to guess the R’s for the b messages, which brings down the succeeding probability

25While no shareholder will broadcast a complaint against party i
∗
, we cannot ensure that it is in QUAL since this

is an asynchronous network and the adversary can delay the messages from party i
∗

until after QUAL is determined.
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(for guessing the correct oracle queries) from 1/q to 1/qb. Below we only give a brief overview of
how the proof changes; more details are found in Appendix G.6.

Mitigation and proof technique. To mitigate the security downgrade, we add a shift value δ to
the ephemeral randomness where δ is determined after all the R’s for the b messages are published.
Specifically, let Ru

i be the randomness contributed by party i ∈ [n] in the u-th copy where u ∈ [b].
After QUAL is determined26, the randomness for the u-th messages is Ru :=

∑
i∈QUALR

u
i . Then

each party computes locally

δ = Hash
(
S, {(Ru,Mu) : u ∈ [b]}

)
and ∆ = δ ·G,

and the parties use Ru +∆ and ϕu + δ for the signatures.
The intuition here is that A has very low probability of making a random-oracle query (S,R′,M)

with R′ = Ru +∆ before δ is computed. The simulator, instead of guessing the queries of the form
(S,R,M) for e, now guesses queries for δ of the form (S, {(Ru,Mu) : u ∈ [b]}).

The simulator aborts if the guess was wrong, or if A made a query (S,Ru′,Mu) with the correct
Ru′ = Ru + δ · G before step 2. (For each u ∈ [b] the last event happens with probability at most
1/q, and the total probability for the b messages can be upper bounded by the union bound.) If it
did not abort, then the simulator knows all the Ru′’s, so it is free to program the random-oracle
answers to all these queries (S,Ru′,Mu).

G.4 Threshold Schnorr with a Super-Invertible Matrix

When using the super-invertible optimization, we still have each dealer Di sharing a single polyno-
mial Hi, but we can derive b ephemeral randomness polynomials since we have at least b honest
parties in QUAL.

However, having b honest parties in QUAL also means that we cannot use the same simulation
strategy as above: Recall that in Appendix G.2.1, the simulator picks an honest party i∗ at random,
hoping that it will end up in QUAL. Sim simulates the actions of i∗ differently from all the other
honest parties, embedding a component that depends on S in the randomness Ri∗. Trying to do
the same here, the simulator would have to guess not one but b honest parties from QUAL. Since
in the asynchronous setting, we cannot ensure that honest parties end up in QUAL, the probability
of guessing correctly is 1/

(
n
b

)
.

Even worse, the simulator cannot know the linear combination to use for various quantities that
the adversary expects to see until QUAL is determined: without the super-invertible optimization,
the linear combination of the contributions from parties in QUAL was always a sum. But with this
optimization, the linear combination is determined by a sub-matrix of the super-invertible Ψ, where
the column corresponding to each party depends on QUAL.

To overcome these issues, we let the simulator embed S in the randomness Hi of all the honest
parties, so it no longer needs to guess which honest parties will end up in QUAL. Moreover, we
modify the protocol to include QUAL in the hash query for δ. This way, once the simulator sees
the random-oracle query, it knows QUAL and can determine which party will correspond to what
column of Ψ.

26Even though multiple polynomials are shared, we assume that the agreement protocol (Fig. 1, Step 2) guarantees
the same QUAL for all of them.

48



G.5 Threshold Schnorr with Packing

The main difference induced by the packed variant is that the degrees of F and H are no longer
the same. When describing the simulator, and in particular the way it sets up the randomness
polynomials Hi of the honest parties, we can no longer just describe the relevant randomness
scalars r and deduce the unique polynomial which is consistent with them. Instead, we construct
the polynomials Hi in a form that would let the simulator cancel out the terms that depend on the
secret key (that it doesn’t know), and deduce the r’s from them.

G.6 Putting it All Together

Combining all the modifications above, we next describe the threshold signature protocol with the
super-invertible matrix optimization and packing.

Protocol inputs. M1,1, . . . ,M b,a messages to be signed. Each party i holds a Shamir share of
s, denoted as σi = F(i) where F has degree-d = t + a − 1 polynomial and F(0) = F(−1) = · · · =
F(1− a) = s. Also, S = s ·G, Si = σi ·G as well as the Feldman commitment to F are public.

Protocol outputs. Schnorr signatures (Ru,v, ϕu,v) for messages Mu,v for all u ∈ [b], v ∈ [a].

Protocol steps.

1. The parties run step 1 and step 2 of JF-DKG protocol, sharing polynomials Hi of degree
d′ = t + 2a − 2, and the agreement in step 2 ensures |QUAL| + |BAD| = t + b and HOLD =
t + d′ + 1 = 2t + 2a − 1. The polynomials {Hi : i ∈ QUAL} will be used for generating b
ephemeral-randomness polynomials, and we denote ri,v := Hi(1− v) and Ri,v := ri,v ·G.

2. Let Ψ = [ψu
i ]

u∈[b]
i∈QUAL ∈ Zb×(t+b)

p be super-invertible.

For all u ∈ [b], let Hu =
∑

i∈QUAL ψ
u
i Hi.

Each party j ∈ HOLD locally computes ρuj = Hu(j) =
∑

i∈QUAL ψ
u
i Hi(j).

From the Feldman commitments Ĥi to Hi for i ∈ QUAL, everyone can compute Feldman
commitments Ĥu to the Hu’s. For those, anyone can compute the values Hu(j) · G for all
u, j, including Ru,v = Hu(1− v) ·G =

∑
i∈QUAL ψ

u
i ·Ri,v.

3. The parties locally compute δ := Hash(S,QUAL, {(Ru,v,Mu,v) : u ∈ [b].v ∈ [a]}) and ∆ = δ·G.
(Note the inclusion of QUAL in this hash query.)

4. For u ∈ [b], run the packed signature protocol with randomness Hu and shift scalar δ: Everyone
computes eu,v = Hash(S,Ru,v + ∆,Mu,v) for all v ∈ [a]. Let Zu be the unique degree-a − 1
polynomials with Zu(1 − v) = eu,v for all v ∈ [a]. Each party j ∈ HOLD sets πu,vj =
Hu(j) + Zu(j) · F(j). Each signature share is verified as πu,vj ·G = Ru,v

j + Z(j) · Sj .

5. Reconstruct Yu = Hu + Zu · F from πuj = Yu(j) for j ∈ HOLD. For each v ∈ [a] let
ϕu,v = Y(1− v), and output the signature

(Ru,v +∆, ϕu,v + δ).
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Theorem 5. Under the discrete log assumption (Assumption 1), Πsuper, pack (Figure 1) is a secure
threshold signature protocol for generating ab signatures in the random oracle model, assuming a
malicious adversary corrupting t parties.

Proof. The discrete log challenger randomly samples s← Zp as the signing secret key and gives the
simulator the corresponding public key S = s ·G. The simulator’s task is to find s, by utilizing A.
To use A the simulators needs to simulate for it the following aspects of the protocol:

• The Feldman commitment F̂ to the polynomial F of degree d = t + a − 1 that hides the
long-term secret key;

• The shares σi = F(i) of the long-term secret key for i ∈ Corrupt;

• The Feldman commitments Ĥi to the polynomial Hi of degree d′ = t+2a−2 from each party
i ∈ Honest;

• The (encryption of the) shares ρi,j = Hi(j) for every i ∈ Honest and j ∈ Corrupt;

• The messages in the agreement protocol that decides QUAL,BAD and HOLD, including the
verifiable complaints and the support message;

• The b degree-d′ polynomials Yu, u ∈ [b], that must be consistent with the shares and with
the Feldman commitments F̂ and the Ĥi’s;

• Sim also must answer all the oracle queries of A, of the forms (S,QUAL, {(R1,1,M1,1), . . . ,
(Rb,a,M b,a)}) and (S,R,M).

The simulator needs to first simulate the shares of F and the Feldman commitments to F, which
is done similarly to Appendix G.2.1.

It chooses t random and independent scalars for the shares of the secret key, i.e., σi = F(i) for
i ∈ Corrupt, and gives them to A. Now the simulator needs to create the Feldman commitments
to F such that the share verification performed by A will pass. To do this, the simulator uses the
public key S = F(0) · G = · · · = F(1 − a) · G, in conjunction with the t group elements σi · G
for i ∈ Corrupt: For each z ∈ [1 − a, 0] ∪ Corrupt, denote by Iz the degree-d polynomial satisfying
Iz(z) = 1 and Iz(y) = 0 for y ∈ [1− a, 0] ∪ Corrupt and y ̸= z. Denoting I∗ = I0 + I−1 + . . .+ I1−a

and FCorrupt =
∑

z∈Corrupt σzIz, the simulator defines the polynomial F = s · I∗ + FCorrupt, where it
knows FCorrupt in the clear.

Next, for each party i ∈ Honest, the simulator picks two random polynomials, Ai of degree d′

and Bi of degree a− 1, and computes the commitment to Hi as

Ĥi := Ai ·G−Bi · I∗ · S.

This corresponds to the polynomial Hi = Ai + s ·Bi · I∗ (that the simulator does not know in the
clear), and to public random elements

Ri,v = Hi(1− v) ·G = Ai(1− v) ·G−Bi(1− v) · I∗(1− v) · S

that everyone can compute from Ĥi.
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Importantly, even though the simulator does not know Hi in the clear, it can compute Hi(j)
in the clear for all j ∈ Corrupt, since I∗(j) = 0 and therefore Hi(j) = Ai(j). This completes the
simulation of step 1 in JF-DKG, and Sim sends to A the corresponding shares and the commitments.

Let q be the upper bound on the number of random-oracle queries for δ; the simulator chooses a
random index ℓ ∈ [q], hoping that this will be the query where A asked on (S,QUAL, {(Ru,v,Mu,v) :
u ∈ [b], v ∈ [a]}) that are used for the signatures. All random oracle queries upto and including
the ℓ’th query of that form are answered with fresh random scalars from Zp. Let QUAL∗ be the
value specified for QUAL in that ℓ’th query, and R∗,u,v the groups elements in it. The simulator
answers that query with a random δ ∈ Zp, and denotes ∆ = δ ·G. The simulator aborts if QUAL∗

contains less than b honest parties, or if A made am earlier query (S,R∗,u,v + ∆,Mu,v) for any
u ∈ [b], v ∈ [a]. (The latter event can be upper bounded by the union bound, in Lemma 5.1 we
show that it happens with probability at most abq/p. For the former event, we show bellow that it
happens with probability at most 1− 1/q.)

The set QUAL∗ implies the matrix Ψ = [ψu
i ]

u∈[b]
i∈QUAL∗ . After Ψ and ∆ and the R∗,u,v’s are defined,

the Simulator defines the degree-(a− 1) polynomial

Zu =
∑

i∈QUAL∗∩Honest

ψu
i Bi. (3)

Random-oracle queries of the form (S,R∗,u,v +∆,Mu,v) are answered with eu,v = Zu(1− v). Note
that the polynomials Z1, . . . ,Zb are just random and independent polynomials of degree a− 1: The
Bi’s are random and independent, and also independent of the view of A (due to the Ai’s that
hide them). Moreover, there are at least b of them in QUAL∗ ∩ Honest, and the matrix Ψ is super-
invertible. Hence, the eu,v’s are random and independent, and so they are legitimate programming
of the random oracle. All other queries are still answered with fresh random Zp elements.

Next, the simulator runs the agreement protocol on behalf of honest parties; but treats them as
honest dealers even if they broadcast garbage ciphertexts for each other. At the end of the agreement
protocol, QUAL,BAD and HOLD are determined such that |QUAL| + |BAD| ≥ t + b, |BAD ≤ t|,
and |HOLD| ≥ 2t+ 2a− 1. This in turn defines the ephemeral randomness Ru,v =

∑
i∈QUAL ψ

u
i Ri,v

for each u ∈ [b], v ∈ [a]. If QUAL ̸= QUAL∗ or Ru,v ̸= R∗,u,v for some u, v, then the simulator
aborts. Since A makes at most q oracle queries (and we can assume w.l.o.g. that one of them
is (S,QUAL, (R1,1,M1,1), . . . , (Rb,a,M b,a))), then there is at least a 1/q chance that it does not
abort. Note that since |QUAL|+ |BAD| ≥ t+ b the QUAL includes at least b honest parties, hence
QUAL = QUAL∗ implies that the first abort event from above did not happen either. Hence, Sim
will proceed to the next steps with probability at least 1

q (1−
abq
p ) = 1

q −
ab
p .

If the simulator did not abort, we denote Hu =
∑

i∈QUAL ψ
u
i Hi for every u ∈ [b]. The simulator

does not know the Hu’s in the clear (since they depend on the secret key s). But since Hi =
Ai + s ·Bi · I∗ for i ∈ Honest, we can write Hu as

Hu
∑

i∈QUAL

ψu
i Hi =

∑
i∈QUAL∩Corrupt

ψu
i Hi +

∑
i∈QUAL∩Honest

ψu
i Hi

=
∑

i∈QUAL∩Corrupt
ψu
i Hi +

∑
i∈QUAL∩Honest

ψu
i Ai︸ ︷︷ ︸

=Hu
CLR

−s

 ∑
i∈QUAL∩Honest

ψu
i Bi

 · I∗,

and Sim knows the full Hu
CLR in the clear.
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To simulate step 4 and 5 of Πsuper, pack, Sim needs to create in full the signature polynomials
Y1, . . . ,Yb of degree d′. For each u ∈ [b], the u-th signature polynomial can be written as

Yu = Hu + Zu · F

= Hu
CLR − s

 ∑
i∈QUAL∩Honest

ψu
i Bi

 · I∗ + Zu · (FCorrupt + s · I∗)

= Hu
CLR + Zu · FCorrupt + s

Zu −
∑

i∈QUAL∩Honest
ψu
i Bi


︸ ︷︷ ︸

=0

·I∗

= Hu
CLR + Zu · FCorrupt,

which Sim known in the clear.
This completes the simulation, finally we apply the forking lemma as in Appendix G.2.

Lemma 5.1 (Union bound for random oracle queries). Suppose the random oracle outputs elements
in a group G of order p. Let q be the number of queries of the form (S,R,M) that A made to the
random oracle before δ is computed. Let ab be the number of messages to be signed, and denote
by Ru,v, u ∈ [b], v ∈ [a], the group elements that are included in the query where δ is computed.
Then the probability that Ru,v + δ ·G is included in any A’s queries before δ is computed is at most
abq/p.

Proof. Let R := {R ∈ F : R was included in one of the q queries}. By definition, we know that
|R| ≤ q. For any element X ∈ G, let R−X = {R −X : R ∈ R}. Then we have |R −X| ≤ q for
every X ∈ G, and therefore:

Pr[∃u ∈ [b], v ∈ [a] such that Ru,v + δG ∈ R]
= Pr[∃u ∈ [b], v ∈ [a] such that δG ∈ R−Ru,v]

≤
∑

u∈[b],v∈[a]

Pr[δG ∈ R−Ru,v] ≤ ab · (q/p).

G.7 Security for the Dynamic Setting

The main difference between the dynamic and the static cases is that in the dynamic case, it is the
shareholders that need to generate the signatures at the end, while the dealers hold the shares of
the long-term secret key at the beginning. The sets of dealers and shareholders are arbitrary, they
can be the same set, disjoint sets, or anywhere in between. Hence, the dynamic setting requires a
re-share protocol in order for the dealers to pass the shared secret key to the shareholders. (In the
static case the dealers and shareholders are the same set, hence no re-sharing is needed.)

Note that even in the dynamic case we assume that the secret key is uniformly random and
cannot be biased by the adversary. This can be implemented by having a trusted party share
it in the first place, or using a non-biased DKG protocol (e.g., the protocol from [17] that uses
statistically-hiding commitments). The Shamir sharing of that unbiased key is an input to the
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protocol. While the adversary may bias the new shares if we use Feldman commitments, it cannot
bias the key itself.

The simulation proof for the dynamic case is mostly the same as the static case, so we only
describe briefly the added components. Specifically, the simulator needs to simulate also the degree-
d re-sharing polynomials Fi’s from the honest parties. Recall that the simulator in Appendix G.6
generates a Feldman commitment F̂ for F, this allows it to compute SiF(i) · G for every i. Then
it can write Fi just like it did F, namely Fi = Fi,Corrupt + F(i) · I∗, where it knows Fi,Corrupt in the
clear. The rest of the proof follows, with the simulator setting the re-shared polynomial F′ just like
it did the Hu’s (except using the Lagrange coefficients λi rather than the matrix entries ψu

i ).

H Mixed Adversary Model and Dishonest Majority

Focusing on the honest super-majority case (i.e., n > 3t) in our analysis is necessary to preserve
the security of SPRINT in the asynchronous setting, including the robustness of signatures and the
safety of the global secret across refreshes. Here, we remark on the security of the SPRINT protocol
from Figs. 1 and 2 in some cases where n ≤ 3t or even with dishonest majority n < 2t. Specifically,
we consider the mixed adversary model of Hirt et al. [25] that distinguishes between malicious
parties (that can deviate from the protocol in arbitrary ways) and honest-but-curious ones (that
run the protocol as specified but whose internal secrets are available to the attacker). In this model,
one can get more relaxed bounds on the number of dishonest parties, including security against
a dishonest majority (involving both malicious and honest-but-curious parties), while preserving
robustness.

Denote by h (a lower bound on) the number of honest parties, and m, c (upper bounds on) the
number of malicious and honest-but-curious parties, respectively (here t = m + c). We focus on
the static case, Fig. 1, as the bounds apply to the dynamic case too. Given these parameters (with
n = h+ c+m) and the packing parameter a, we run the protocol from Fig. 1 using polynomials of
degrees d = m + c + a − 1 (for the long-term secret) and d′ = m + c + 2a − 2 (for the ephemeral
randomness), and with d1 = |QUAL| = d0 = |HOLD| = n−m for the agreement-protocol parameters.
To be able to sign, we must ensure that |HOLD|−m = d0−m ≥ d′+1. Substituting d′ = m+c+2a−2
and d0 = n −m we get n − 2m ≥ m + c + 2a − 1, which means a ≤ (n − c − 3m + 1)/2. For the
parameter b, we need b honest parties in QUAL so b = |QUAL| −m− c = n− 2m− c.

Consider the dishonest-majority example n = 100, h = 49,m = 20, c = 31, then we can set
a = 5, b = 29 and we can produce 145 signatures in one run of the protocol with 49% of honest
parties. In another example: n = 16, h = 9,m = 3, c = 4, we get a = 2, b = 6 so 12 signatures. This
is just over one quarter of what can be achieved with n = 16,m = 3 but security here withstands 4
additional honest-but-curious participants.

I Refreshing Packed Secrets

When describing SPRINT, we focused on how to refresh packed secrets in which all the scalars are
equal, i.e., a vector of secrets of the form (s, . . . , s). For our application to high-throughput Schnorr
signatures that was enough, since we needed to put the same secret key in all these slots. But other
applications may want to maintain shares of more general vectors, of the form (s1, s2, . . . , sa), where
the sv’s can be different from one another. For the sake of completeness, we describe here a simple
method for refreshing sharing of these more general packed secrets.
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Below, let Iu for u = 1, 2, . . . , a the unique polynomial of degree a− 1 satisfying Iu(1− u) = 1
and Iu(1−v) = 0 for all v ∈ {1, . . . , a}, v ̸= u. Refreshing a packed sharing of (s1, s2, . . . , sa) roughly
consists of sharing a different polynomials, each containing just one of the sv’s, then using the Iu’s
to combine them into a single packed polynomial. We describe below two variants of this approach:
One having each dealer share only a single polynomial, and results in a packed polynomial of the
slightly larger degree of t + 2a− 1. The other has each dealer share a different polynomials which
results in a packed polynomial of degree t+ a (which is the smallest possible).

I.1 Method One: Sharing One Polynomial

In this method, we maintain the invariant that the vector of secrets (s1, . . . , sa) is shared using a
packed degree-(t+2a− 2) polynomial F with F (1− v) = sv for all v = 1, 2, . . . , a. (Note that even
though we offer robustness against t corrupted parties and only pack a values, the polynomial that
we keep has degree t+ 2a− 2 and not just t+ a− 1.)

To refresh, each party re-shares its share via a packed polynomial of degree t+ a− 1. Namely,
Fi of degree t+ a− 1 such that Fi(0) = Fi(−1) = · · · = Fi(1− a) = σi. Each shareholder j gets the
sub-share σij = Fi(j) from each dealer i.

The shareholders then proceed with the usual agreement protocol, agreeing on a set QUAL of
qualified dealers with cardinality |QUAL| = t+ a, and a set HOLD of shareholders with cardinality
|HOLD| ≥ 2t+ a, such that all the shareholders in HOLD have valid sub-shares from all the dealers
in QUAL.

Next, a shareholder j ∈ HOLD first computes a different temporary shares corresponding to a
polynomials that hold the a different values. Specifically, for v = 1, 2, . . . , a consider the Lagrange
coefficients {λiv : i ∈ QUAL, v = 1, . . . , a}, such that for every degree-(t+a−1) polynomial P (X) it
holds for all v = 1, . . . , a that P (1−v) =

∑
i∈QUAL λi,vP (i). Party j computes for all v = 1, 2, . . . , a

ρj,v =
∑

i∈QUAL

λi,vσij .

Let us denote F ′
v =

∑
i∈QUAL λi,vFi, then clearly all the F ′

v’s are degree-(t + a − 1) polynomials
with ρj,v = F ′

v(j), and

F ′
v(1− v) =

∑
i∈QUAL

λi,vFi(1− v) =
∑

i∈QUAL

λi,vF (i) = F (1− v) = sv.

Party Pj computes its final share as σ′j =
∑a

v=1 ρj,v · Iv(j). Clearly, this is indeed a share on the
polynomial F ′ =

∑a
v=1 Iv · F ′

v of degree t+ 2a− 2, and for all v = 1, 2, . . . , a we have

F ′(1− v) =
a∑

v′=1

Iv′(1− v) · F ′
v′(1− v) = F ′

v(1− v) = sv,

as needed.
We remark that by construction, the polynomial F ′ cannot reveal more that what’s implied by

the polynomials F ′
1, . . . , F

′
a, which in turn only reveal the sv’s.
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I.2 Method Two: Sharing a Polynomials

In this method, we maintain the invariant that the vector of secrets (s1, . . . , sa) is shared using a
packed degree-(t+ a− 1) polynomial F with F (1− v) = sv for all v = 1, 2, . . . , a.

Each dealer Di has a share σi = F (i), and they prepare a degree-t polynomials Fi,1, . . . , Fi,a,
random subject to the condition that Fi,v(1− v) = σi for all v ∈ [a]. Di shares these polynomials,
with shareholder Pj receiving σi,j,v = Fi,v(j) for all v ∈ [a].

The shareholders agree on sets HOLD, QUAL1, . . . ,QUALv such that for all v ∈ [a], all the
shareholders in HOLD have valid shares of Fi,v from all the dealers in QUALv, and in addition
|HOLD| ≥ t+ a and |QUALv| ≥ t+ 1 for all v ∈ [a].

For all v ∈ [a], let {λi,v : i ∈ QUALv} be the Lagrange coefficients for recovering F (1− v) from
{F (i) : i ∈ QUALv}. Each shareholder Pj ∈ HOLD computes a share σ′j,v =

∑
i∈QUALv

λi,vσi,j,v.
This share is σ′j,v = F ′

v(j), where F ′
v is the degree-t polynomial F ′

v =
∑

i∈QUALv
λi,vFi,v. As usual,

it is easy to see that we have F ′
v(1− v) = F (1− v) = sv for all v ∈ [a].

Finally, each shareholder Pj sets σ′j =
∑a

v=1 Iv(j) · σ′j,v. Clearly, we have σ′j = F ′(j) for the
polynomial F ′ =

∑a
v=1 Iv · F ′

v of degree t+ a− 1, and F ′(1− v) = sv for all v ∈ [a].

J The Parameter-Finding Utility

See https://shaih.github.io/pubs/committee_sizes.py.txt for the parameter finding utility.
It computes the required committee sizes, when sub-sampling committees, e.g., in a blockchain
environment. See Appendix D.

J.1 Example Parameters
$ python math/committee_sizes.py
Optimistic Setting:
number of parties: n = 676
threshold for safety: t = 250
packing parameter: a = 64
corrupt fraction liveness: alpha = 5.0 %
corrupt fraction safety: alpha = 20.0 %
liveness error: 4.35e-03 = 2^-7.85
safety error: 5.89e-25 = 2^-80.49
safety errors for higher alpha:

for alpha = 21.43 %: 1.00e-20 = 2^-66.4
for alpha = 22.86 %: 4.88e-17 = 2^-54.2
for alpha = 24.29 %: 7.71e-14 = 2^-43.6
for alpha = 25.72 %: 4.42e-11 = 2^-34.4
for alpha = 27.16 %: 1.01e-08 = 2^-26.6
for alpha = 28.59 %: 9.86e-07 = 2^-20.0
for alpha = 30.02 %: 4.43e-05 = 2^-14.5
for alpha = 31.45 %: 9.71e-04 = 2^-10.0

=========================================================

Pessimistic Setting:
number of parties: n = 992
threshold for safety: t = 336
packing parameter: a = 40
corrupt fraction liveness: alpha = 20.0 %
corrupt fraction safety: alpha = 20.0 %
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liveness error: 4.12e-04 = 2^-11.24
safety error: 5.95e-25 = 2^-80.48
safety errors for higher alpha:

for alpha = 21.17 %: 8.78e-21 = 2^-66.6
for alpha = 22.35 %: 4.01e-17 = 2^-54.5
for alpha = 23.52 %: 6.29e-14 = 2^-43.9
for alpha = 24.69 %: 3.70e-11 = 2^-34.7
for alpha = 25.86 %: 8.79e-09 = 2^-26.8
for alpha = 27.03 %: 9.01e-07 = 2^-20.1
for alpha = 28.21 %: 4.24e-05 = 2^-14.5
for alpha = 29.38 %: 9.63e-04 = 2^-10.0

=========================================================
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