Single Instance Self-Masking via Permutations*

(Preliminary Version)

Asaf Cohen, Pawet Cyprys, and Shlomi Dolev

Ben-Gurion University of the Negev
Beer Sheva, Israel

Abstract. Self-masking allows the masking of success criteria, part of
a problem instance (such as the sum in a subset-sum instance) that
restricts the number of solutions. Self-masking is used to prevent the
leakage of helpful information to attackers; while keeping the original
solution valid and, at the same time, not increasing the number of un-
planned solutions.

Self-masking can be achieved by xoring the sums of two (or more) inde-
pendent subset sum instances [DD20, CDM22|, and by doing so, elim-
inate all known attacks that use the value of the sum of the subset to
find the subset fast, namely, in a polynomial time; much faster than the
naive exponential exhaustive search.

We demonstrate that the concept of self-masking can be applied to a
single instance of the subset sum and a single instance of the permuted
secret-sharing polynomials.

We further introduce the benefit of permuting the bits of the success
criteria, avoiding leakage of information on the value of the i’th bit of
the success criteria, in the case of a single instance, or the parity of the
7’th bit of the success criteria in the case of several instances.

In the case of several instances, we permute the success criteria bits of
each instance prior to xoring them with each other. One basic permu-
tation and its nesting versions (e.g., TI'i) are used, keeping the solution
space small and at the same time, attempting to create an “all or nothing”
effect, where the result of a wrong 7 trials does not imply much.

1 Introduction

There is a need for an efficient candidate to serve as a one-way function (OWF).
Say, a function that is more efficient than SHA, that is, a function that is easy to
compute yet has no known attack for easily finding preimage and/or collisions,
is important, as such functions can influence the daily computation invested in
commitments and signatures. Commitments based on candidates for! one-way
functions are used in many scenarios, including in obtaining Zero Knowledge

* Partially supported by the Rita Altura Trust Chair in Computer Science and the
Israeli Science Foundation (Grant No. 465/22).
! Note that a provable one-way function implies P # N P.

2 Cohen, Cyprys, Dolev

Proofs (ZKP) [GMR&5, BM88|, whereas OWF is used as a commitment primi-
tive. For a signature example, consider signatures in the style of Lamport’s sig-
nature [Lam79]. Lamport’s signature is an example of using OWF to facilitate
a (one-time) digital signature.

There are known candidates for one-way functions for which an algorithm
that can be used in practice has successfully inverted them. See the example in
[Sha82] for instances of the subset-sum. Indeed, throughout history, one of the
main goals of crypto-analysts is to find such breaks, and in many cases, they
were successful, e.g., the recent result [PKC22].

Background. Permutations are often used in the design of one-way functions
as they provide a source for non-linearity, see, e.g., [SMKG22].

We suggest using the permutation of items in vectors, either the items to
choose the sub-set from or the y-values used in reconstructing (secret—sharing)
polynomials. Specifically, in the case of the polynomials, we construct a function
from the set of all permutations on n elements to a finite field element, the
free coefficient of a (secret—sharing) polynomial. Computing the free coefficient
requires only an inner product, yet when the permutation is unknown, it is harder
to inverse. One piece of evidence for such difficulty is shown in the sequel, proving
that random permutations result in an approximately uniform probability on the
output space.

To further enhance the challenge, we incorporate self-masking. Roughly speak-
ing, the goal of self-masking is similar to code obfuscation, where the instance is
given and defines the solution/functionality but adds a level of pseudo-randomness.
The practicality of the masking technique [CDM22, DD20] depends heavily on
the hardness of reconstructing the self-masked parts and the number of addi-
tional solutions the masking introduces. The success criteria for the reconstruc-
tion are encoded to prevent an easy reveal of the self-masked parts.

To make the presentation self-contained and still short, we present only def-
initions that are explicitly used in our analysis.

Self-masking is a technique to conceal part of a computation task instance(s),
for example, the required sum in the subset-sum instance(s), by using a function,
possibly bitwise xor, with another analogous part of an (independently chosen)
other instance(s). Self-masking may preserve correlation among the solutions,
possibly by having sums implied by the same indices of items of the participating
instances, and in this way (further) restrict the number of possible unplanned
solutions for the combined instances [CDM22, DD20].

Here we further extend the self-masking techniques to the case of a single
instance, using the representation of the original instance to conceal a part (e.g.,
the desired sum of the subset) by applying a function on the part, using the
randomness used to produce the instance, for example, the bits of the vector of
items (participating in the subset sum). For a more comprehensive background
on one-way functions self-masking and related applications, see, e.g., [CDM22,
DD20, IN96, HILL99].

In [DD20], it is suggested to produce a random sorted array by randomly
choosing n values, choosing the values by which each previous item in the array is

Single Instance Self-Masking 3

incremented (for simplicity, assume integers with no bounds) then randomly per-
mute the items. Both these operations can be performed in O(n) steps. However,
sorting the array (i.e., finding the reverse random permutation) in a comparison-
based sort requires 2(nlogn) steps. It is further suggested in [DD20], to allow
other orders beyond the sorted order to be the successful order and to define the
success using polynomial P, where P(i), 1 <14 < n is the value of a (randomly
selected) entry in an array. Then, P(0) and permuted values of the array entries
are given, requiring finding the reverse permutation. Here, we significantly ex-
tend the basic suggestion of [DD20], e.g., we suggest shuffling the bits of P(0)
(without increasing the number of undesired solutions) and proving the uniform
distribution of the solving permutations.

Note that using polynomials over items in a finite field and Lagrange inter-

polation is similar to the secret sharing technique suggested in [Sha79], where
ignoring even one item yields a uniform distribution of P(0).
Paper organization. The rest of the paper is organized as follows. Section 2
gives a very short presentation of self-masking ideas in the current literature and
exemplifies its use in the subset—sum problem. Section 3 gives the main results
for an OWF based on one instance of the secret—sharing polynomial problem.
Section 4 depicts an algorithm that incorporates the self-masking ideas with the
OWTF instance presented herein. Section 5 concludes the paper.

2 Subset Sum with Permutations

We start with a few definitions and settings to make the presentation as self—
contained as possible.

Subset Sum. Given a subset-sum instance A, ; = (a1, a2..a,) and b, such that
each a; and b are of ¢ bits. Find a subset of the elements summed up to b (mod
2[—&-1).

MsbLsb. Is the (long) sequence of nf bits, starting from the most significant
bit (M SB) of the first number/item, continuing to the first M SB of the second
number /item, until all n M SBs bits are used, then turning to use the next
to the MSB row collecting in a similar fashion, additional n bits, and so on,
until at last, the LSB bits join the created sequence to form a sequence of n¢
bits. We call the obtained sequence MsbLsb sequence. Note that other (more
sophisticated) constructions for harvesting many randomly chosen bits from the
randomly chosen items can be suggested.

Permutations. To harden the reconstruction of the critical parts, say the sum
b of the required subset, the self-masking technique presented in [CDM22] can
be extended by applying permutation defined by the MsbLsb sequence as a per-
mutation index and constructing the actual permutation by using the mapping
defined in e.g., [DLH13]. Given an (integer) ¢ index of a permutation in the lex-
icographical order of the permutations. Unique permutation hashing [DLH13|
output the ¢’th permutation, where 7 is the index of the permutation in the
lexicographic order of permutations, as follows, outputs the first index of the
permutation to be the index of the bucket (just as done in bucket sort where

4 Cohen, Cyprys, Dolev

buckets are indexes are 1 to n, and each bucket size is n!/n values) in which i is
mapped to, say this bucket is j. Next, the scope is the mapping to a bucket in
the j’th bucket, partitioned to n — 1 buckets each of size (n —1)!/(n — 1) values,
and eliminating the j index from consideration, continuing this way to define
the entire permutation explicitly.

We suggest the following particular masking (as an easy example from many
possible options). The first £ bits in MsbLsb are xored with b. Let mb (masked b)
denote the xor result, concatenate mb with the next m bits of MsbLsb to form
emb (extended masked b) a sequence of ¢ + m bits.

Use the rest of the bits in MsbLsb to choose (almost) uniformly a permutation
index in the range 1 to (¢ + m)! (use mod(¢ + m)! as needed) permute emb
accordingly. And randomly permute aq,as...a,. The function’s output is the
permuted emb and the (randomly) permuted ay,as, ...a,.

To reverse the function, one has to produce emb that fits the £ + m bits
of a permutation of ay,as...a, (essentially returning to the initial unimportant
order of the subset sum order), the main indicator for correct reverting is the m
extended bits. There are even more restrictions related to the existing sum in
the spirit of [CDM22].

Note that the m bits of MsbLsb that extend the mb to form emb, serve as
a success criteria combination, yielding exponentially smaller probability for a
collision as m grows. Namely, the longer m is, the smaller the probability of
finding more than one permutation that yields a fitting m value.

3 Permuting Secret Sharing Polynomials

In this section, we turn to the scope of polynomials (rather than subset-sum)
extending the idea sketched in [DD20], which uses (secret sharing) polynomials
over a finite field (introduced in [Sha79]) to create a function that is hard to
invert yet easy to verify. The construction is motivated by the following pictorial
“story”.

3.1 The Combination Lock

Consider an ordered number set Y = (y1, 2, ..., ¥n), that when permuted in a
particular combination(s), can open a safe, and yo as a challenge associated with
Y, which is publicly known and can serve to easily prove that a certain party
has the right combination, without opening the safe in practice.

If n is big enough, then a useful lock can be established, together with an
easy-to-implement proof of having a key to the safe. In the worst case, one needs
to try n! possibilities to open the safe while proving that one has the key that
can be linear in n.

The safe lock is opened when the order of the elements in the vector Y
corresponds to the particular number, yg, in the following way: yo is the free
coefficient in a polynomial of degree n — 1 defined over a finite field (just like
the safe locker is defined over a finite number of possible digits) by the sequence

Single Instance Self-Masking 5

of points (1,Y,(1)), (2,Y=(2)),...,(n,Yx(n)), where Y; is the permuted Y. Note
that the first index in each of the above points is regarded as the z coordinate
of the point. In the sequel, we prefer to choose the x values of these points to be
random rather than the simplest vector X = (1,2,...,n) of the x values (yet, we
make sure while randomly selecting X, that there are no repetitions of x values
in X). Note that these x values are exposed and known to all parties.

When we provide the opening criteria, a naive burglar will try all n! possi-
bilities by using Lagrange interpolation until a polynomial with identical yq is
found, which in turn may take too much time, for the limited time the burglar
may afford. However, it is possible that an ingenious burglar can use the free
coefficient yg to reconstruct the permutation of Y in a much more efficient way.
First, in a key part of this paper, we wish to show that while there are less
than n! permutations to test, choosing the values of X and Y vectors appro-
priately results in a system that is hard to invert, in a sense to be rigorously
defined later. Moreover, we may incorporate the two instances of self-masking
idea [CDM22, DD20|, where two combination lockers are installed, and their
free coefficients are not given as before, but, instead, the bitwise xor of the free
coeflicients is given. Now, the burglar can open the safe when she reconstructs
the given xor value of the free coefficients.

The safe can be designed to restrict the permutation of one of the lockers
to be the opposite permutation of the other. Thus, when the burglar tries one
combination in a locker, she has to set the reverse permutation in the second,
compute Lagrange for each permuted lock, and xor the ygs.

To make the challenge harder, we hide the value of each of the y’s, hopefully
restricting the burglar from finding them in a “blind” fashion? so the burglar is
caught before opening the safe. We may shuffle/permute the bits of yo of the
first polynomial, using the (secret) permutation for the numbers of the other
polynomial elements, and vice versa, before xoring their bits.

3.2 Presentation of the problem

In this paper, we introduce self-masking for one instance of a problem, i.e., where
we have one vector Y, and one instance of yy. The choice of n, yielding n! possible
permutations (though, as mentioned, the actual number may be smaller), should
be coordinated with the choice of a field F' so that the probability of guessing
a permutation that opens the safe among the permutations that yield the yq
in the single instance problem, or the xor of the shuffled free coefficients (the
two-instances problem; in our story, possibly permutations used by other bank
managers) is negligible. Thus, we would prefer values of n! coordinated with
the value of ¢ = lg|F|; this relation can be tuned according to the security
parameters (for restricting the number of collisions) required.

The polynomial permuting problem of dimensions n and /¢, to be denoted
PP(n,), is defined as follows. Let F' = GF(2%) be the finite field of 2° elements,

2 We try to enforce exhaustive search as much as we can; obviously, a success to do
so in a provable way is the long-standing problem of P # NP.

6 Cohen, Cyprys, Dolev

and assume some lexicographic order on the elements of F'. Let further X =
(z1,...,2,) be n distinct nonzero elements of F'.

Definition 1. For any X,Y, define by Pxy the unique polynomial of degree
n—1 over F, satisfying Px y(z;) =Y (i),i=1,...n.

Since Px,y above is unique, there is a unique yo in F such that Px y(0) = yo.
Define [n] = {1,2,...,n} and let IT denote the set of all possible permutations on
[n]. Further denote by Y;., m € II, the permuted Y according to the permutation
7. We can now define PP(n,¥).

Definition 2. An input to PP(n,{) is a tuple (X,Y,yo) of length 2n + 1 over
F = GF(2%. It is required to decide if there is a permutation © € II s.t.
the unique polynomial Pxy._(-) of degree n — 1 over F, satisfying Px y, (x;) =
Y (i),i =1,...n, also satisfies Px y,(0) = yo.

That is, PP(n,£) requires to determine if under some permutation , the poly-
nomial Px y, in Definition 1 has yy as its free coeflicient. Intuitively, we think
of X as fixed, and any permutation of Y has some yy that satisfies these condi-
tions. In other words, given Y and only yo which satisfies the conditions under
some permutation of Y, Y, but without giving 7 itself, implicitly encodes the
permutation 7. Our goal is to show that revealing this permutation explicitly
is hard.? Specifically, define a function ensemble, parameterized by X and Y as
follows.

Definition 3. Fiz X and Y, both in F'™". Denote by fxy : Il — F the function
fxy(m) = Pxy,(0).

We wish to show that under some choices of X and Y, and some relationships
between [and n, the function fx y () is hard to invert, in the sense that choosing
a random 7 € [results in a uniformly distributed yyq.

3.3 Results

Theorem 1. Assume X and Y are chosen independently at random, both as
uniform i.i.d. vectors of length n over F' = GF(2°). Fix a permutation o. Then
randomly choosing a permutation m € II to invert fx y(c), that is, to have
fxy(m) = fxy(0), has a success probability

Pr{fxir(m) = fr(0)) < (1= een) (g + gy) + e 0

with €p, = 0 as £ — oo for any fived n > 0.

Proof. We wish to evaluate Pr (fx,y(7) = fx,y(0)), for random i.i.d. X and Y,
a fixed ¢ and a random 7, uniform from I7.

3 We do not know if PP is solvable in polynomial time; however, the applicability of
the masking technique is independent of this question.

Single Instance Self-Masking 7

We remind the reader of the reconstruction of the free coefficient of the
reconstructed polynomial. That is,

fxy(o) = Pxy,(0) (2)

= Z Y, (i)Li(0), (3)

_ Ih<jcnjzilz — xj)
I <j<n,ji(Ti — x5)

: (4)

Denote £ = (L1(0),...,Ly(0)), and YV, = (Y,(1),...,Y5(n)). We have,

fxy (o) = (L, Vs).

We thus wish to compute Pr{(L,Y,) = (L, Yx)}. Note that since the elements
of Y are i.i.d. we can assume, without loss of generality, that o is the identity
permutation. Moreover, due to the linearity of the inner product, we can compute
Pr{(L,Y — Yx) = 0}. To this end, first denote the event D x y as the event that
both X and Y have distinct elements. Note that

Pr{(L,Y —Yr) =0} (5)
=Pr{{L, Y —Y:)=0Dxy} Pr{®xy} (6)

+ Pri{{L,Y = V) =0[D% v } Pr{D% vy} (7)
SPr{(£,Y—Vr) =0Dxy} Pr{Dxy} + Pr{D%y} (8)
=Pr{(L,Y = Vz) =0Dxy}(1—€n)+eem, (9)

where €, denotes the probability of X and Y not having distinct elements
(each), which goes to zero for fixed n yet large enough |F|, that is, large enough
2¢.

Thus, we focus on the distinct elements of X and Y. A critical step in the
computation is to consider the number of fixed points of the permutation 7
chosen by the adversary (compared to the original permutation o, but, as men-
tioned, compared to the identity permutation without loss of generality). Any
fixed point in 7 results in a zero element in) —). However, any entry which
does not correspond to a fixed point results in the difference between two uni-
formly random elements in the field, which is also a uniformly random element.
Denote by §,. the event that 7 has less than m fixed points (that is, at least

8 Cohen, Cyprys, Dolev

n — m elements change their place). We have

Pr{(£,Y = Vz) =0Dx vy} (10)
=Pr{(£,Y = Yr) =0Dxy,8m} Pr{Sm} (11)
+Pr{(L,Y = Vx) =0Dx v, 8} Pr{S,, (12)

(13)

<Pr{{L,Y = Vr) =0Dx,y,8m} + Pr{S.,} 13
< Pr{LY =) = 00y) + 3 (14)
< Pr{(£,Y = Ye) = 0Dy,) + (15)
< e + 25 ()

where (14) uses the bound for partial derangements, that is, the probability for
having m fixed points [Wik23]. The inequality in (16) is since for less than m
fixed points, we have more than n — m independent dimensions (not fixed to
zero), hence the probability of the random vector) — Y, being orthogonal to
an independent random L is the dimension of the null space of £, divided by
the dimension of the entire space. Note that £ is indeed a uniformly distributed
random vector over F', as each of its elements is a multiplication of i.i.d. uniformly
distributed elements in the field. (17) is by choosing m =n — 1.

Theorem 1 asserts that the probability of a particular secret appearing when
the y elements are uniformly chosen and then uniformly permuted is approxi-
mately uniform across all possible secrets for proper choices of n and [. Thus,
there is no a-priori benefit in preferring one secret over another or one permu-
tation over another. Moreover, given a certain instance with a vector Y, the
number of permutations that are mapped (collisions in terms of OWF) to any
particular secret is approximately uniform across all possible secrets too.

3.4 Numerical Results

We present visualized results of an experimental investigation, which sought to
examine the impact of the order of the finite field and the number of points n on
the distribution of the P(0) values of the polynomial in multiple experiments.
Figures 1 to 5 provide a visual representation of the distribution of the P(0)
values of the polynomial defined over a finite field with order 2¢ and n number
of points, respectively (averaged over several experiments).

As evident from the figures, the average distribution of the P(0) value of
the polynomial exhibits a negligible degree of variability for the finite field’s
order and the number of points used. It is indeed very close to uniform in all
experiments.

Single Instance Self-Masking 9

o 1 2 3 4 5 g 7 g g 10 i 12 3 14 15

o

Average

Value

Fig. 1. Averaged distribution of P(0) value over a Finite Field with order 16 and 4
points.

4
s
5
2
s
1
5
°Ton T T T TaT T Tt N7 e et S0 ;a2 1314 15 16 17 18 19 20 21 o2 23 26 25 26 27 28 2 30 31

Value

Average

Fig. 2. Averaged distribution of P(0) value over a Finite Field with order 32 and 5
points

s
4
2
o 2 7

3456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 25 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63
Value

Average

Fig. 3. Averaged distribution of P(0) value over a Finite Field with order 64 and 6
points

10 Cohen, Cyprys, Dolev

4

5

ol

ol

5

10)

5

o

Fig. 4. Averaged distribution of P(0) value over a Finite Field with order 128 and 7

points
§
E

Fig. 5. Averaged distribution of P(0) value over a Finite Field with order 256 and 8
points

To further understand the results, we include the table below. As mentioned,
a primary objective of the study was to examine the impact of selecting the
order of the finite field F' and the number of points n on the observed outcomes.
W = 1000 denotes the number of experiments conducted. We further explain
the table entries.

— F': the order of the finite field. F' is used in the proposed algorithm to perform
all the arithmetic operations.

— n: the number of points used in the algorithm, n is also related to the order
of the finite field in this specific example, |F| = 2".

— Wmin and e the minimal and maximal values of the average counts,
respectively. Counts are averaged over the W experiments, each count refers
to one permutation leading to the specific secret (a value in F'). The difference
between Lmin and fimaqe is denoted by A,,.

— o and o?: the standard deviation and variance, respectively, to provide in-
formation about the spread of the computed averages.

— P(A) = P(0): the probability that any element from the finite field is a
secret (assuming uniform distribution).

Single Instance Self-Masking 11

— P(ttmin), P(ttmaz): represents the success probability when the adversary
would choose a minimal average value or maximal average value, which is
defined as the ratio of pi,,,;,, to the order of the finite field or ti,,,4, respectively.

— P(ftmaz): the success probability when the adversary would choose a value
with a maximal average, which is defined as the ratio of i, to the order
of the finite field.

— Agqy: this parameter is defined as a percentage of the maximal potential
advantage that an adversary can get by exploiting knowledge of the distri-
bution of P(0), specifically by selecting the average value with the highest
number of repetitions. It is calculated as Azgy = (P(ttmaz) — P(ttmin)) - 100%

Table 1. Results of experiments with varying finite field F, and n defined as number
of used points

F n|pmin |bmaz |44 o o? P(A)=P(0)| P(ttmin)| P(rmaz)| Aqde

16 [4(1.447 |1.5460 [0.0990]0.0007]0.0272|0.0625 |0.0904 |0.0966 |0.6188
32 |5(3.643 [3.9440 |0.3010{0.0048/0.0693|0.0313 [0.1138 [0.1233 |0.9406
64 |6(11.009 [11.4870|0.4780(0.0115/0.1074|0.0156 [0.1720 [0.1795 |0.7469
128(7(38.955 |39.7780(0.8230(0.0344/0.0185|0.0078]0.3043 |0.3108 |0.6430
2568 1156.324(158.457|2.1330(0.1836|0.4285(0.0039 [0.6106 [0.6190 |0.8332

As evident from Table 1, the observed outcome of the experiment is similar
to the choice of finite field and the number of points used. Results of the pro-
posed algorithm were obtained using the SAGE software*. Implementation of
the interactive charts with the results of our experiments are available for the
reader online, along with the numerical values in [CCD23].

4 Algorithm — Techniques Integration Sample

In this section, we present an implementation based on the proposed ideas. The
algorithm demonstrates the use of permutations in the scope of self-masking
for two (secret sharing) polynomials. Thus, enhancing the single self-masking
effect on self-masking a single (secret sharing) polynomial, presented above.
The design uses a single secret permutation 7 that encodes (also in its nested
forms) the masking in several masking permutations. The permutations of the
elements of Y7 (according to) and the elements of Y (according to 7). Then,
the permutation of the bit of yo1, and g2 (according to different random bits
defined by more different nested versions of 7). Only then is the mutual xor
used. Thus, a single m serves as proof for the commitment but is used in many
forms, roughly speaking, similar to the use of a seed.

In order to provide a clear and concise representation of the implementation,
we present the pseudo-code below. Note, for the sake of simplicity we omit the

4 SageMath version 9.7, Release Date: 2022-09-19.

12 Cohen, Cyprys, Dolev

possibility of choosing random z values for the randomly chosen Y; and Y5
coordinates and present the restricted version in which z =1,2,...,n.

Algorithm 1: Polynomial based self masking algorithm

Input: Points Number = n, Field_Size = GF(2°)
Result: zor original, Y1,Y>

1 Function Generate_Points(Points_ Number, Field Size):

2 F = FiniteField(Field Size)

3 while z < len(Points_ Number) do

4 Y1 = sort(F.get _random __elements _without _repetitions())
5 L Y2 = sort(F.get _random __elements _without _repetitions())
6 return Y7, Y>

7

8 Function Generate_Input():

9 Y1, Ys = Generate_ Points(n, 2°)
10 m = Generate _permutation
11 yo1 = free_ coefficient (lagrange_interpolation(Y1, 7))
12 Yoz = free_coefficient (lagrange_ interpolation(Yz, 7~ 1))
13 yo1_shuffled = shuffle(yor, 72,7 %)
14 yo2 _shuffled = shuffle(yoa, 72, 73)
15 zor_original = yo1 _shuffled ® yo2 _shuffled
16 return zor_original, Y1, Y2

Function Generate_ Points (line 1), uses two arguments Points Number and
Field_ Size. At the beginning of this function, the F' object is created using the
FiniteField class (lines 4-5). The constructor of this class takes an integer value
as an argument, which determines the size of the field. Then, in the loop, list Y;
(and independently later list Y3) is created from Points Number distinct values
randomly selected from F' and then sorted. Lastly, the generated sorted lists are
returned.

The function Generate Inputstarts with the invocation of the Generate Points
function with the number of points n and the field 2¢. As a result, two sorted
lists of numbers Y7 and Y5 are returned, each consisting of n distinct numbers in
the field. Then, a permutation 7 is randomly selected (line 10) and applied to Y7.
The permuted numbers in Y7 are regarded as y coordinates of n points with the
n smallest distinct x coordinates. The y coordinates are paired to the z coordi-
nates according to the order of the y’s in the permuted Y; and the growing order
of the x coordinates. Then, Lagrange interpolation is applied to the n points,
finding the free coefficient of the polynomial of degree n — 1 that they uniquely
represent (line 11). The same is done for Y3, but this time the y coordinates are
ordered according to m~'. Note that we prefer to correlate the operation on the

Single Instance Self-Masking 13

two arrays based on knowing the solution (the permutation 7) and use different
correlations based on the solution, hence the choice of 7 and 7~ 1.

Using the sequence of the bits defined by (the permutation indexes of) 72
and 73 (possibly even ..., depending on the number of bits needed to encode
a permutation of ¢ bits), we shuffle (permute the bits) of the free coefficient yo1
(line 13) and similarly, using 7—2 and 7~2, we shuffle the bits of y2 (line 14), and
bitwise zor the resulting yo1 _shuffled with yoo shuffled to form zor original
(line 15). Lastly, we return the xor results and the two sorted vectors, each
consisting of n distinct numbers in the field.

We note that our schemes work when the numbers are not necessarily distinct,
and we choose to restrict the use of distinct numbers as an optimization, avoiding
equivalent permutations. Also, note that one can tune the field and number of
y's to support independent (rather than correlated) permutations for Y7 and Y5.

The basic self masking technique for PP is as follows: the input for a masked
function [f] is a triple (Y7, Y3, 7), where Y7,Ys are two independent n-subsets
of GF(2%) and 7 € SYM(n) is a permutation. Note that a symmetric group
consists of all possible permutations of a finite set of distinct elements. Let
yo1 = Py, »(0) and yo2 = Py, »(0). Then:

[fn,e] (Y1, Y2,) = (yo1 © yo2, Y1, Y2). (18)

That is, the values of yg1 and yoz, corresponding to inputs (Y7, 7) and (Y,),
mask each other by yo1 @ yoo.

Let N(Y,y) denote the number of “collisions” corresponding to yo € F when the
input set is Y. i.e.

N(Y,y) = {7 : Pv(0) = y}|. (19)

Ideally, we would like that N(Y,y) is almost the same for all y € F (i.e., it is
cither | 2] or [2]). Unfortunately, this is not the case for the PP case: for a
given set Y of n elements, the distribution of N(Y,y) is not uniform (and is
dependent on the set V).

4.1 Numerical Results

Our numerical results use small toy examples as the hardness of computation,
and the needed computation power grows exponentially fast with the size of the
example. Next, we present a table with the summary of our experiment and
relevant figures for combinations of fields from {GF(2%) : £ = 1,...,19}, and
of sequence lengths n = 4,...,8. Of particular interest are combinations for
which 0.1 < n!/2¢ < 1. The results showed that while the distribution does not
look totally random (e.g., the percentage of elements for which N(Y,y) = 0 was
larger than expected), the values of N(Y,y) for field GF(2¢) and n! < 2¢ are,
approximately, linear in ¢, indicating that self masking could be hard to invert
also on this case. The figures below depict distributions of collisions for a random
subset of n elements of GF(2) for various combinations of £ and n. The number
of collisions for a field element y, N(Y,y). is defined in Equation (19).

14 Cohen, Cyprys, Dolev

The basic self-masking [f] of f can be extended by permuting the bits of ygo
before masking it. First, we use the input permutation = € SY M (n) to define
a permutation ©° € SY M (¢). The latter permutation 7’ is used to shuffle the
output bits, e.g., by replacing yo1 € yo2 in Equation (18) by yo1 @ 7' (yo2). More
involved shuffles are also possible, e.g., 7 (y01) @ [7']*(y02)---

Algorithm 1 applies such shuffles. Simulation results depict that the number
of collisions is not increased by applying Algorithm 1 for self-masking as depicted
in Figure 6. Note that the depicted results are for the particular settings in which
the x values of the points are defined in ascending order 1,...,n.

Self masking results from tests

3500- W Tests results

3000 Il Theoretical values
HEm Standard deviation

2500
2 T(n)=2
£2000 (m) =3 . ! .
% n - number of points defining the polynomial
“1500-
1000-
500-

0 .. ; ; - | i i
4 bits 5 bits 6 bits 7 bits 8 bits 9 bits 10 bits

Fig. 6. Collisions as a function of n, when the Finite Field size is 2" (typically a field
different from the 2™ field is chosen. The chosen field should be in the order of n!,
implying a low number of collisions).

5 Concluding Remarks

Permuting an array in O(n) steps while providing success criteria for reversing
the permutation, a permutation selected from the n! possible permutations, is
advocated in [DD20]. We extend the xor only approach suggested in [CDM22]
to using permutation for a single (and multiple) instance case of the subset—sum
problem. We also presented an algorithm building on the concepts of the new
one-way function and its self-masking. In [CDM22], the parity of the i’th bit in
by and by has been exposed; here, the permutation usage masks the parity of the
corresponding bits.

We also analyze the feasibility of such permuting approach in the scope of
creating a one-way function from one instance of the permuted (secret—sharing)
polynomial problem. The idea can be extended to multiple instances and self—
masking. One can xor permuted success criteria of more than two instances
(possibly enlarging ¢ as needed) to enhance the effect of mutual permuted one-
time-pad.

Single Instance Self-Masking 15

Acknowledgment. We thank Shlomo Moran for his input throughout the re-
search.

References

[BM88| Laszl6 Babai and Shlomo Moran. Arthur-merlin games: A random-
ized proof system, and a hierarchy of complexity classes. J. Comput.
Syst. Sci., 36(2):254-276, 1988.

[CCD23] Asaf Cohen, Pawel Cyprys, and Shlomi Dolev. Repository with
the charts that represents results of the described experiments.
tinyurl.com/5wh2t6cf, 2023.

[CDM22| Pawel Cyprys, Shlomi Dolev, and Shlomo Moran. Self masking for
hardering inversions. TACR Cryptol. ePrint Arch., page 1274, 2022.

[DD20] Hagar Dolev and Shlomi Dolev. Toward provable one way functions.
IACR Cryptol. ePrint Arch., page 1358, 2020.

[DLH13] Shlomi Dolev, Limor Lahiani, and Yinnon Haviv. Unique permuta-
tion hashing. Theor. Comput. Sci., 475:59—65, mar 2013.

[GMRS85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract). In
Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing, May 6-8, 1985, Providence, Rhode
Island, USA, pages 291-304. ACM, 1985.

[HILL99] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function. STAM
Journal of Computing, 28:12—-24, 1999.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes
provably as secure as subset sum. Journal of cryptology, 9(4):199—
216, 1996.

[Lam79| Leslie Lamport. Constructing digital signatures from a one way func-
tion. Technical Report CSL-98, October 1979. This paper was pub-
lished by IEEE in the Proceedings of HICSS-43 in January, 2010.

[PKC22| Ray Perlner, John Kelsey, and David Cooper. Breaking category five
sphincs+ with sha-256. Cryptology ePrint Archive, Paper 2022/1061,
2022. https://eprint.iacr.org,/2022/1061.

[Sha79] Adi Shamir. How to share a secret. Communications of The ACM,
22(11):612-613, 1979.

[Sha82] Adi Shamir. A polynomial time algorithm for breaking the basic
merkle-hellman cryptosystem. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, CRYPTO, pages 279-288. Plenum
Press, New York, 1982.

[SMKG22] RK Sharma, PR Mishra, Yogesh Kumar, and Nupur Gupta. Differ-
ential d-uniformity and non-linearity of permutations over zn. The-
oretical Computer Science, 936:1-12, 2022.

[Wik23] Wikipedia. Rencontres numbers - Wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/Rencontres numbers, 2023. [Online;
accessed 17-February-2023].

