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Abstract

Can an adversary hack into our computer and steal sensitive data such as cryptographic
keys? This question is almost as old as the Internet and significant effort has been spent on
designing mechanisms to prevent and detect hacking attacks. Once quantum computers arrive,
will the situation remain the same or can we hope to live in a better world?

We first consider ubiquitous side-channel attacks, which aim to leak side information on
secret system components, studied in the leakage-resilient cryptography literature. Classical
leakage-resilient cryptography must necessarily impose restrictions on the type of leakage one
aims to protect against. As a notable example, the most well-studied leakage model is that
of bounded leakage, where it is assumed that an adversary learns at most ℓ bits of leakage on
secret components, for some leakage bound ℓ. Although this leakage bound is necessary, many
real-world side-channel attacks cannot be captured by bounded leakage. In this work, we design
cryptographic schemes that provide guarantees against arbitrary side-channel attacks:

• Using techniques from unclonable quantum cryptography, we design several basic leakage-
resilient primitives, such as public- and private-key encryption, (weak) pseudorandom
functions, and digital signatures which remain secure under (polynomially) unbounded
classical leakage. In particular, this leakage can be much longer than the (quantum) secret
being leaked upon. In our view, leakage is the result of observations of quantities such as
power consumption and hence is most naturally viewed as classical information. Notably,
the leakage-resilience of our schemes holds even in the stronger adaptive “LOCC leakage”
model where the main adversary and the leakage adversary can cooperate via arbitrary
local quantum operations and two-way classical communication in multiple rounds.

• What if the adversary simply breaks in and obtains unbounded quantum leakage (thus
making leakage-resilience impossible)? Going beyond leakage, what if the adversary can
even tamper with the data arbitrarily? We initiate the study of intrusion-detection in the
quantum setting, where one would like to detect if security has been compromised even
in the face of an arbitrary intruder attack which can leak and tamper with classical as
well as quantum data. We design cryptographic schemes supporting intrusion detection
for a host of primitives such as public- and private-key encryption, digital signature, func-
tional encryption, program obfuscation and software protection. Our schemes are based
on techniques from cryptography with secure key leasing and certified deletion.

∗Carnegie Mellon University. acakan@andrew.cmu.edu.
†NTT Research & Carnegie Mellon University. vipul@cmu.edu
‡Luzern University of Applied Sciences and Arts & Web3 Foundation. chen-da.liuzhang@hslu.ch. Part of the

work was done while at NTT Research.
§NOVA LINCS & NOVA School of Science and Technology. joao.ribeiro@fct.unl.pt. Part of the work was

done while at Carnegie Mellon University.

1



Contents

1 Introduction 4
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Unbounded Leakage-Resilience Against LOCC Protocols . . . . . . . . . . . . 6
1.1.2 Intrusion-Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Technical Overview 9
2.1 LOCC Leakage-Resilience Property for Coset States . . . . . . . . . . . . . . . . . . 10
2.2 LOCC Leakage-Resilient PKE Using Coset States . . . . . . . . . . . . . . . . . . . . 11
2.3 LOCC Leakage-Resilient Digital Signatures and PRFs Using Coset States . . . . . . 12
2.4 Establishing the Relationship Between Leakage-Resilience and Unclonability . . . . . 13
2.5 Intrusion-Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Notation and Preliminaries 17
3.1 Notation and Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Concepts from Quantum Information Theory . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Indistinguishability Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Subspace Hiding Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Compute-and-Compare Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Quantum Goldreich-Levin with Quantum Auxiliary Input . . . . . . . . . . . . . . . 22
3.10 Almost As Good As New Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 Quantum Lightning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Infinitely Often Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Coset States 24

5 Public-Key Encryption with Key Protection 31
5.1 Relationship Between CPA-style and Random Challenge Message Leakage-Resilience 36
5.2 Relationship Between Anti-Piracy Security and Leakage-Resilience . . . . . . . . . . 38
5.3 Coset State-Based Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Digital Signatures Schemes with Key Protection 48
6.1 Relationship Between Anti-Piracy Security and Leakage-Resilience . . . . . . . . . . 50
6.2 Coset State-Based Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Pseudorandom Function Families with Key Protection 57
7.1 Relationship Between Indistinguishability and Unpredictability Leakage-Resilience . 60
7.2 Relationship Between Anti-Piracy Security and Leakage-Resilience . . . . . . . . . . 61
7.3 Coset State-Based Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Cryptographic Schemes with Intrusion-Detection 63
8.1 Public-key Encryption with Intrusion-Detection . . . . . . . . . . . . . . . . . . . . . 64
8.2 Digital Signature Schemes with Intrusion-Detection . . . . . . . . . . . . . . . . . . . 69
8.3 Functional Encryption with Intrusion-Detection . . . . . . . . . . . . . . . . . . . . . 73

2



8.4 Indistinguishability Obfuscation with Intrusion-Detection . . . . . . . . . . . . . . . 76
8.5 Intrusion-Detection for Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Acknowledgements 82

A Quantum Information Preliminaries 88
A.1 Min-Entropy and Randomness Extractors . . . . . . . . . . . . . . . . . . . . . . . . 90

B BB84-based Cryptographic Schemes Resilient to Unbounded Classical Leakage 91
B.1 Monogamy-of-Entanglement Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.2 Private-Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.3 Secret Sharing Schemes Resilient to Unbounded Classical Leakage based on BB84

States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.1 Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.3.2 Leakage-Resilient Secret Sharing for General Access Structures . . . . . . . . 96
B.3.3 An impossibility result for leakage-resilient secret sharing . . . . . . . . . . . 100

3



1 Introduction

A central problem in the area of computer security is to store sensitive data securely. This could
mean we would like to make any intrusion into the system harder to realize, as well as detect
if an intrusion did occur. This is a notoriously hard problem with significant resources spent
on preventing and mitigating such attacks. Indeed, in the classical setting all information can
theoretically be copied, and so we can only rely on heuristic countermeasures for such attacks. We
study this question in the quantum setting and show that the quantum world might offer certain
advantages - at least as far as protecting cryptographic secrets such as decryption or signing keys
is concerned. Indeed, securely storing cryptographic keys has proven to be a notoriously hard
problem.

We first consider side-channel (also known as leakage) attacks. Real-world implementations of
cryptographic schemes are often vulnerable to side-channel attacks, which allow an adversary to
obtain side information from secret components such as a secret key. This can be achieved, for
example, by measuring the time elapsed or the electromagnetic radiation emitted during computa-
tions – such simple practical attacks stretch back some decades [Koc96, QS01, AARR03] and have
proven catastrophic for textbook versions of several well known schemes. As a response to this,
leakage-resilient cryptography, the study of cryptographic schemes resilient against many types of
side-channel attacks, has received significant interest. The survey of Kalai and Reyzin [KR19] is
an excellent source for many of the developments in this area.

Arguably the most well studied leakage model is that of bounded leakage. In this model, it is
assumed that the adversary may not leak more than ℓ bits of leakage from a secret component,
where ℓ is some leakage bound that is smaller than the secret length k. For example, in the setting
of secret-key encryption with a secret key sk ∈ {0, 1}k, the adversary chooses an arbitrary function
f : {0, 1}k → {0, 1}ℓ, where ℓ < k represents the leakage bound, and learns the bounded leakage
f(sk).

Is a Leakage Bound Justified? Generally, the justification for a leakage bound is that in the
absence of one, the adversary can just leak the whole secret and no security guarantees are possible.
However, it is quite often the case that real world side channels attacks do not adhere to any a
priori bounded leakage limit [BFO+21]. Moreover, even choosing a leakage bound entails predicting
adversarial capabilities, and these predictions may be wildly incorrect. Nonetheless, the study of
bounded leakage-resilient cryptography has given rise to a beautiful and highly successful area of
research. It has been impactful not just in leakage-resilience but even in other seemingly unrelated
areas in cryptography.

Leakage-Resilience in a Quantum World. What if the secret being leaked on is quantum?
Quantum information behaves in a fundamentally different way compared to its classical counter-
part. While classical schemes can only tolerate a bounded amount of leakage, the same may not
be true for quantum schemes. This raises the following tantalizing question:

Is it possible to design cryptographic schemes based on the laws of quantum
mechanics which can tolerate any arbitrary unbounded leakage?

We answer the above question in the affirmative by proposing a host of cryptographic schemes
resilient to arbitrary classical leakage. In our view, leakage is the result of observations of quantities
such as power consumption, time elapsed, and temperature fluctuations. Hence, most types of
leakage are naturally viewed as classical information. Therefore, our schemes can even be seen

4



as leakage-proof rather than just leakage-resilient. The leakage could even be a result of possibly
adaptive measurements informed by various rounds of feedback between adversaries. This motivates
our LOCC (local operations and classical communication) leakage model as we will explain later.

We design a host of cryptographic schemes such as public- and private-key encryption schemes,
digital signatures, and (weak) pseudorandom functions which are resilient to unbounded (poly-
nomial) classical leakage. All our schemes are secure in the general LOCC leakage model. For
example, in the public-key encryption setting, we can envision a “main” adversary who tries to
win the ciphertext indistinguishability game, and a leakage adversary who has access to the secret
key. We wish to construct public-key encryption schemes with quantum secret keys that remain
secure even when the main adversary can communicate with the leakage adversary via any LOCC
protocol. In particular, such a scheme would tolerate any (polynomially) unbounded and even
adaptive classical leakage.

Remarkably, for the specific case of secret sharing schemes, the above question is equivalent
to the problem of quantum data hiding [TDL01, DLT02]. Even though it was studied with a
different motivation and used a different terminology, quantum data hiding schemes have been con-
structed unconditionally and lead to leakage-resilient secret sharing schemes (albeit with imperfect
reconstruction). Please see Section 1.2 for more details.

Intrusion-Detection in a Quantum World. What if an adversary simply breaks in and can
get unbounded quantum leakage after all? In this case, the adversary can just leak the whole
secret state and, analogously to the classical setting, all bets are now off. Even worse, what if the
adversary can even tamper with the stored data in an arbitrary manner? Indeed, in the quantum
setting the boundary between leakage and tampering is somewhat blurred. This raises the following
question:

Can we still achieve meaningful security guarantees in the face of arbitrary (QPT)
operations including unbounded quantum leakage as well as unbounded tampering

with quantum as well as classical data?

We refer to the above setting as intrusion-detection in the quantum world. While intrusion-
detection is fundamentally impossible in the classical setting (since an adversary may just clone
secret system components without causing any changes to the system’s state), it has nonetheless
been widely studied in practice and is considered a highly desirable security goal. For example,
tamper-proof audit logs have been extensively studied which, under certain assumptions, can detect
if a machine has been broken into [SYC04, SJEL14, ALP22].

Based on principles of quantum mechanics, we are able to design many primitives, including
public-key encryption and digital signature schemes supporting intrusion-detection. More precisely,
our schemes provide the following guarantee. Suppose that an adversary was able to arbitrarily act
on the quantum secret, tampering it and leaking sufficient information to break the security of the
primitive (e.g., break indistinguishability in the case of public-key encryption). Then, a procedure
called TestIntrusion outputs INTRUSION with overwhelming probability, indicating that an attack
occurred and security has been compromised. TestIntrusion takes as input the residual secret (e.g.,
the residual secret key in the case of public-key encryption), and a classical public verification key.
A copy of this public verification key could be stored offline or anywhere outside the machine under
attack. Note that the notion of intrusion-detection is meaningless in the absence of such a public
verification key since in that case what constitutes an attack and what is a valid modification to
the quantum secret is not well-defined.

We require that if the procedure TestIntrusion outputs NO INTRUSION, then, with overwhelming
probability, either there has been no attack, or any possible attack was not successful in breaking the
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scheme’s security! All of our results in this direction are obtained via a connection to cryptography
with secure key leasing [AL21, BGG+23] and cryptography with certified deletion [BK23, BGG+23].

1.1 Our Results

1.1.1 Unbounded Leakage-Resilience Against LOCC Protocols

We design schemes for public-key encryption (PKE), signature schemes, and pseudorandom func-
tions (PRFs) that tolerate LOCC leakage against polynomial adversaries. For all tasks mentioned
here, we consider a main adversary and a leakage adversary, the latter holding the quantum secret
key. The adversaries are allowed to interact via an LOCC protocol, i.e., to communicate classically
and also act on their local quantum states. After their LOCC protocol is over, the main adversary
participates in the respective security game (e.g., in case of PKE, receives a challenge ciphertext
and guesses the plaintext).

We present an informal description of our results below. More details can be found in Section 2.

Theorem (informal). Assuming the existence of post-quantum sub-exponentially secure iO, one-
way functions and the quantum hardness of LWE, there exist LOCC-leakage-resilient schemes for
public-key encryption, digital signatures, and weak PRFs.

Unclonability Implies Non-Adaptive Unbounded Classical Leakage-Resilience. While
we are able to construct LOCC leakage-resilient schemes for various primitives using techniques from
unclonable cryptography, it is still an interesting question to investigate the relationship between
unclonability (i.e., anti-piracy security) and LOCC leakage-resilience in general. We show that in
many cryptographic settings unclonability implies leakage-resilience against LOCC protocols with
1 or 2 rounds.

Theorem (informal). Let X be a {public-key encryption, digital signature, PRF} scheme that
satisfies anti-piracy (i.e., unclonable) security. Then, X also satisfies non-adaptive unbounded
classical (i.e., 1-round LOCC) leakage-resilience.

Moreover, let X be a {public-key encryption, digital signature, PRF} scheme that satisfies anti-
piracy security against adversaries with non-uniform quantum advice. Then, X also satisfies 2-
round LOCC leakage-resilience.

Theorem (Theorem 18, informal). Let PKE be a public-key encryption scheme with key protection
that satisfies CPA-style anti-piracy security. Then, either PKE is CPA-style 1-round LOCC leakage-
resilient, or PKE can be used to build weak quantum lightning.

While this might lead one to think that LOCC leakage-resilience in general is weaker than
and implied by anti-piracy (i.e. unclonability), we show a justification that this is not the case.
If quantum lightning [LAF+10, Zha19] and virtual black-box obfuscation for quantum circuits
exist, then we show that unclonability does not imply even 2-round1 LOCC leakage-resilience.
While virtual black-box obfuscation for general circuits has been shown to be impossible, still
our construction serves as a heuristic justification for a separation between anti-piracy and LOCC
leakage-resilience.

Theorem (informal). Suppose quantum lightning and virtual black-box obfuscation for quantum
circuits exist. Then, there exists a PKE scheme that satisfies anti-piracy security (against adver-
saries without non-uniform quantum advice) but does not satisfy 2-round LOCC leakage-resilience.

1Or, 3-round depending on the underlying advice model for adversaries

6



Similarly, there exists a public-key encryption scheme that satisfies anti-piracy security (against ad-
versaries with non-uniform quantum advice) but does not satisfy 3-round LOCC leakage-resilience.

1.1.2 Intrusion-Detection

As pointed out in the introduction, tolerating unbounded quantum leakage is impossible, since
the adversary can leak the whole secret. Therefore, we aim to achieve intrusion-detection instead.
More specifically, we design cryptographic primitives with an intrusion-detection algorithm which
can detect whether useful leakage has been obtained on the secret key. These results are obtained by
establishing a connection to cryptographic schemes with publicly verifiable secure leasing [BGG+23].

Theorem (informal). Suppose that there exists a [public-key encryption, digital signature, func-
tional encryption, obfuscation, software protection] scheme with publicly verifiable secure leasing.
Then, there exists a [public-key encryption, digital signature, functional encryption, obfuscation,
software protection] scheme with intrusion-detection.

We show that the other direction is also true: intrusion-detection implies secure key-leasing with
quantum certificates for the primitives listed above. We refer the reader to Section 8 for details.

[BGG+23] constructs schemes with secure leasing based on indistinguishability obfuscation and
[LLQZ22] constructs a digital signature scheme with unclonable signing key (which implies secure
key leasing). Hence, we get the following corollaries.

Corollary. Assuming post-quantum indistinguishability obfuscation and injective one-way func-
tions, there exists a public-key encryption and functional encryption scheme with intrusion-detection.

Corollary. Assuming post-quantum subexponentially secure indistinguishability obfuscation, one-
way functions, and quantum hardness of LWE, there exists a digital signature scheme with intrusion-
detection.

Corollary. Assuming post-quantum indistinguishability obfuscation and one-way functions, there
exists a differing-inputs obfuscation and software protection scheme with intrusion-detection.

While post-quantum indistinguishability obfuscation is a strong assumption, we show that
public-key quantum money is implied by intrusion-detection. Since the only known construc-
tion of public-key quantum money in the plain model [Zha19] is based on post-quantum iO, our
assumption can be considered unavoidable until a breakthrough is achieved in the construction of
public-key quantum money.

Theorem (informal). Suppose there exists a {public-key encryption, digital signature, functional
encryption, obfuscation} scheme with intrusion-detection. Then, public-key quantum money exists.

Through our result showing that key leasing with public verification implies intrusion detection,
we also prove that key leasing with public verification implies public-key quantum money.

1.2 Related Work

Classical Leakage-Resilience. The topic of leakage-resilience has witnessed significant interest
over the past few decades in the classical setting. We highlight some of these developments here
and place our work in context.

As mentioned before, the most commonly studied leakage model is bounded leakage, which
corresponds to the adversary learning a bounded-output function of secret data. This notion
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has been realized in various related ways throughout the literature. The setting of cryptography
resilient to memory attacks, introduced by Akavia, Goldwasser, and Vaikuntanathan [AGV09],
corresponds to the scenario where the leakage function is efficiently computable and the leakage
bound grows with the size of the secret data. Akavia, Goldwasser, and Vaikuntanathan [AGV09]
constructed leakage-resilient public-key cryptography based on LWE. Later works in this direction
constructed leakage-resilient versions of many basic cryptographic primitives in the computational
setting, such as weak pseudorandom functions, symmetric-key encryption, signatures, and mes-
sage authentication codes from general and minimal assumptions (e.g., see [KV09, NS09, FKPR10,
BSW11, FNV15, HLAWW16]), and also designed schemes secure against continual memory at-
tacks (e.g., see [DHLW10, BKKV10]). Another related notion is the bounded retrieval model,
introduced in [DLW06, Dzi06]. The difference with respect to the memory attacks setting is that
here the leakage bound is an absolute quantity. Bounded leakage-resilience has also been studied
in depth for information-theoretic primitives, assuming that the bounded leakage functions can be
computationally-unbounded. Most relevant to our work, a long line of research has studied sev-
eral notions of classical bounded leakage-resilient secret sharing [DP07, BDIR18, GK18, ADN+19,
SV19, CGG+20, CKOS22].

Other lines of research have studied the question of whether the bounded leakage assump-
tion can be weakened or replaced by other reasonable assumptions. This has led to the develop-
ment of cryptography with auxiliary input (e.g., see [DKL09, DGT+10]), where the adversary can
learn unbounded leakage from secret data provided that it is computationally infeasible to gain
information about the secret data from the leakage and any public information (in other words,
the leakage is in some sense “one-way”). In parallel, other works have studied noisy leakage-
resilience [NS09, PR13, DFS15, HLAWW16, DDF19, PGMP19, BFO+21], where the adversary
learns unbounded but highly noisy leakage from secret data.

The works discussed above consider leakage from memory or encoded storage. A parallel and
closely related line of research has studied leakage-resilience in settings where the adversary has
some access to computational processes. For example, the adversary may adaptively probe circuit
wires while computation is taking place [CJRR99, ISW03], or may have access to the entire state
of computation save for some leak-free hardware component [MR04].

It is clear that classical leakage-resilient cryptographic schemes can exist only if we impose
restrictions on the type of allowed leakage, such as the ones above (boundedness, one-way-ness, or
noisiness), or if we allow regular refreshing of secret data (as in the setting of continual memory
attacks). In contrast, we show that there exist quantum cryptographic schemes for several basic
tasks which are resilient to arbitrary classical leakage. Moreover, even if the leakage is quantum
instead of classical, in which case leakage-resilience becomes impossible, then we can still detect
harmful quantum leakage attacks, a property that is also not achievable in the classical setting.

Quantum Data Hiding. The problem of quantum data hiding, which corresponds to LOCC-
leakage-resilient secret sharing, was introduced by Terhal, DiVincenzo, and Leung [TDL01]. An-
other motivation for this problem was to understand the power of LOCC versus unconstrained
protocols for distinguishing quantum states [DLT02]. Initial works [TDL01, DLT02] provided con-
structions in the 2-party setting. This was then extended to more than 2 parties and to general
access structures by Eggeling and Werner [EW02], although the secret sharing schemes provided
there have a small probability of reconstruction error. Improved parameters were achieved in later
work [HLSW04, HLS05], albeit via non-explicit schemes. Other works exploring quantum data
hiding and distinguishability of quantum states include [MWW09, LPW18]. In Appendix B.3,
we showcase a different approach based on BB84 states towards designing explicit secret sharing
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schemes for general access structures resilient against unbounded non-adaptive classical leakage.

2 Technical Overview

A common theme across several of our results is that they are based on techniques from quan-
tum copy-protection/unclonability and secure key leasing (i.e., keys with certified deletion). The
connection between leakage resilience and copy-protection is as follows. Suppose one can obtain
classical leakage on a quantum secret satisfying copy-protection security, which is “functionally
equivalent” to the secret itself (e.g., this leakage allows one to decrypt in case the quantum secret is
a secret key of an encryption scheme). Since any classical information can be cloned, this gives us a
way of essentially obtaining multiple states having the same functionality as the original quantum
secret. Since we assumed the quantum secret was “unclonable”, we arrive at a contradiction, which
should yield leakage-resilience security. While this basic observation is indeed our starting point,
this is not enough due to new challenges in the setting of leakage-resilience. We highlight some
challenges, taking public-key encryption as our running example.

Challenge 1: Main Adversary’s State Cannot be Cloned. In the context of public-key
encryption, the leakage game consists of an interaction between the main adversary AMain (which
will attempt to decrypt the challenge ciphertext) and the leakage adversary ALeak (which has the
quantum secret key). The implicit assumption in the observation from the previous paragraph
is that there is a single classical message from ALeak which is sufficient to decrypt the challenge
ciphertext. However, note that, in general, the leakage game will have multiple rounds of interaction
between ALeak and AMain, and the decryption of the challenge ciphertext will utilize the final
(quantum) internal state of AMain. In general, this state cannot be cloned even if the messages
sent by ALeak are classical, and this holds true even if one started with multiple copies of AMain as
non-uniform advice. This is because each copy of AMain could produce a different message to be
sent to ALeak (e.g., because of a measurement). However, only a single copy of ALeak can be run
(because we only have a single copy of the secret key), resulting in the inability to answer multiple
different messages from multiple copies of AMain. This challenge becomes particularly interesting
in the computational setting.

Challenge 2: One Adversary vs Two Adversaries. In PKE with unclonable secret keys
[CLLZ21], an adversary in possession of the decryption key Rdec splits it across two adversaries in
an arbitrary manner, and two challenge ciphertexts are then sent to these adversaries. Afterwards,
we require that the probability that both adversaries can simultaneously correctly decrypt their
ciphertexts is negligibly close to 1/2. This means that the adversaries’ baseline success probability
in the unclonable decryption game is 1/2 (since one of the adversaries can simply keep the original
decryption key Rdec and correctly distinguish its encoded message with probability 1 and the other
one can randomly guess with probability 1/2). On the other hand, the guarantee in leakage-
resilient PKE requires that the probability of correctly decrypting one ciphertext given the leakage
is negligibly close to 1/2. This means that the probability of correctly decrypting two ciphertexts,
as in the unclonable decryption game, should be close to 1/4, instead of close to 1/2. This means
that a direct reduction to the unclonable decryption game cannot be obtained. We run into a
similar issue while considering unclonable PRFs as well.

Connection to Quantum Lightning. Despite the above differences, the notion of leakage-
resilience and unclonability are intimately connected. A natural question is to study a formal
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relationship between these notions. We show that for non-adaptive leakage (i.e., the leakage consists
of only a single message from ALeak to AMain), unclonability implies leakage-resilience. However
for adaptive leakage (where ALeak and AMain can interact in multiple rounds), such an implication
is unlikely to hold. In particular, somewhat surprisingly, we show that this question is intimately
connected to the existence of quantum lightning. We show that if quantum lightning and quantum
VBB obfuscation exist, then there exists a PKE with unclonable decryption keys which is provably
not LOCC leakage resilient.

2.1 LOCC Leakage-Resilience Property for Coset States

We first start by discussing coset states, previously studied by Coladangelo, Liu, Liu, and Zhandry
[CLLZ21] and Vidick and Zhang [VZ21]. We show a LOCC leakage-resilience property for such
states and using this property, we are able to prove that various existing anti-piracy secure primitives
based on coset states are also LOCC leakage-resilient.

A coset state is a state of the form
∑

a∈A(−1)⟨a,s
′⟩|a+ s⟩ where A ⊆ Fλ

2 is a subspace of
dimension dim(A) = λ/2 and s, s′ ∈ Fλ

2 . Coset states, when A, s, s
′ as above are randomly sampled,

satisfy an important security notion called monogamy-of-entanglement (MoE) [CLLZ21, VZ21].

Monogamy-of-Entanglement Property of Coset States. In a monogamy-of-entanglement
game, the adversary is presented with a randomly sampled coset state, and it is required to output
two (possibly entangled) adversaries. Then, these adversaries are given the description of A, and
they are required to simultaneously output vectors v, w such that v ∈ A+ s and w ∈ A⊥+ s′. Note
that the initial adversary can simply measure the state in either computational or Hadamard basis
to obtain such v or w, but not both of them at the same time since such a measurement irreversibly
destroys the information in the other basis. More generally, Vidick and Zhang [VZ21] show that
no (unbounded) adversary can win the game above except with subexponentially small probability.
Further, [CLLZ21] also show a so-called computational MoE property: based on computational
assumptions, the winning probability of any (polynomial time) adversary in the game above is
still negligible even when it is presented at the beginning of the game with an obfuscated program
that allows it to query for membership in A + s and A⊥ + s′. A variation implicitly used in
[CLLZ21, LLQZ22], which we formally prove secure in our paper, presents the initial adversary
with a tuple of coset states (along with the membership checking programs) and requires the
created two adversaries to output vectors in either Ai + si or A

⊥
i + s′i depending on the bits of the

random challenge strings r1 and r2 presented to them.

LOCC Leakage-Resilience Property for Coset States. We raise the question of whether
coset states also satisfy some form of leakage-resilience, and if such a property can be used to
construct leakage-resilient schemes for various cryptographic functionalities. Our first technical
contribution is to answer these questions affirmatively. We show a leakage-resilience property for
coset states and, using this result, we show that the coset state based copy-protection schemes of
[CLLZ21] and [LLQZ22] for public-key encryption, pseudorandom functions, and digital signatures
also satisfy LOCC leakage-resilience. We discuss the former here and the latter will be discussed
in the upcoming sections.

We define a leakage-resilience game for coset states as follows. Consider a leakage adversary
ALeak, in possession of a tuple of coset states, and a main adversary AMain, and assume that these
adversaries do not share entanglement. The two adversaries execute their LOCC protocol. That
is, they are allowed to communicate classically and apply local quantum operations to their states.
After their protocol is over, AMain is also given the descriptions of the subspaces Ai. Then, AMain is
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presented with a random challenge string r, and is required to output vectors in Ai + si or A
⊥
i + s′i

depending on the i-th challenge bit, (r)i. We show that any unbounded LOCC adversary wins this
game with subexponentially small probability.

Connections to the Monogamy-of-Entanglement Property. While LOCC leakage-resilience
property might seem to be implied by the monogamy-of-entanglement property in a straightforward
manner, in reality this does not immediately follow. Consider the following natural proposal for a
reduction: in the MoE game, the initial adversary simulates the leakage adversary ALeak and the
main adversary AMain. However, observe that in the MoE game we need to output two adversaries
that will need to answer the vector outputting challenges, while in LOCC leakage-resilience there
is only one such adversary. Therefore, we would need to create two copies of the final local state of
AMain to succeed in the MoE game. Indeed, our proof precisely manages to do this. Observe that
during each round AMain takes as input its previous internal state and the latest leakage messages
from ALeak and it produces a state for the next round and a classical message to ALeak. If we have
sufficiently many (i.e., exponential) copies of its previous state, then by repeatedly running AMain

on these copies we can obtain another copy of its next state conditioned on it producing the same
message to ALeak. Note that we want to obtain a copy conditioned on producing the same message,
since ALeak starts with a single copy of the coset state tuple and so we can run ALeak only once
each round. Then, we show that the multi-copy generation procedure described above succeeds in
some finite amount of time, and so, since we are working with unbounded adversaries, the reduction
succeeds. See Section 4 for further details.

Moving to the Computational Setting. While the above result is a step forward, as we
will later discuss all coset state-based constructions of [CLLZ21] and [LLQZ22] crucially rely on
the membership checking programs for Ai + si and A

⊥
i + s′i for their correctness, and hence they

also rely on the computational MoE property for their security. Therefore, analogous to MoE,
we define a computational LOCC leakage-resilience game where the now computationally-bounded
adversary ALeak is also presented with obfuscated programs that allow it to query for membership
in Ai + si and A⊥i + s′i. Note that our reduction above from LOCC leakage-resilience to MoE
might take exponentially long in general. Therefore, we are not able to utilize the same idea
here to reduce the computational LOCC leakage-resilience to computational MoE. However, we
show that the reduction of [CLLZ21] from computational MoE to (information-theoretic) MoE
that utilizes subspace hiding obfuscation shO [Zha19] generalizes to the leakage-resilience setting.
The argument mainly relies on using subspace hiding obfuscation to implement the membership
checking programs, which can then be replaced with such programs for random superspaces of Ai

by the security guarantee of shO. This eventually allows us to remove the membership checking
programs, and hence the security reduces to the regular LOCC leakage-resilience game. Therefore,
we are able to obtain a computational LOCC leakage-resilience property for coset states.

2.2 LOCC Leakage-Resilient PKE Using Coset States

We introduce the model of LOCC leakage-resilience for public-key encryption. In this model, we
consider two adversaries ALeak and AMain that do no share entanglement. At the beginning of
the game ALeak is in the possession of the public key and the quantum/protected secret key of
the scheme. Then, the two adversaries are allowed to communicate classically and apply quantum
operations to their local states, for any polynomial number of rounds. After the protocol is over, the
main adversary AMain is presented with a challenge ciphertext that it needs to decrypt. Here, we
can define two variations: random challenge message and CPA-style. In the former, the challenge
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ciphertext is the encryption of a randomly sampled (long) message, and the adversary needs to
output the full message to win the game. We require that any adversary wins with at most
negligible probability. In the latter, the adversary outputs two messages m0,m1 and the challenge
ciphertext is the encryption of mb where b ← {0, 1}. The adversary wins if it can correctly guess
the bit b, and we require that any adversary wins with probability at most 1/2 + negl(λ), where λ
is the security parameter.

Construction. Now, we move onto our construction. We show (via a new proof) that the coset
state-based construction of [CLLZ21] of a public-key encryption with copy-protection also satisfies
LOCC leakage-resilience. Let us first informally discuss this construction. We sample a tuple of
coset states, and let this be the protected secret key. We also sample obfuscated programs that
allow one to query if v ∈ Ai+ si and v ∈ A⊥i + s′i, as in the computational LOCC leakage-resilience
game. We set the public-key to be the tuple of these programs. To encrypt a message m, we sample
a random string r and let the ciphertext be (iO(P ), r) where P is the following program: It takes
as input some vectors, and it checks if these vectors are in Ai + si or A

⊥
i + s′i according to the bit

(r)i. If all vectors are in the correct cosets, then it outputs m; otherwise, it outputs ⊥. It is easy
to see that we can indeed construct this program using the public-key defined above.

Proving Security. To argue security, first imagine that iO was instead a virtual black-box
obfuscation scheme. If an LOCC leakage adversary pair (ALeak,AMain) is able to correctly decrypt
the challenge ciphertext, then AMain must be taking r as input and querying the program P at
a tuple of vectors that pass the checks corresponding to r as described above. Hence, using this
LOCC adversary, we can obtain vectors that are in correct cosets with respect to r. Observe that
the checks above correspond exactly to winning condition of the computational LOCC leakage-
resilience game for coset states, and therefore we can win that game, which is a contradiction.
Therefore, we conclude that the adversary cannot decrypt the challenge ciphertext.

Now we go back to the actual scheme, where iO is only an indistinguishability obfuscator. In
this case, we first replace the ciphertext program with another one that computes the canonical
versions of the input vectors and compares them to the canonical vectors of the correct vectors
Ai + si or A

⊥
i + s′i according to (r)i. Since this is a compute-and-compare (CC) program, we can

further replace it with its (distributionally) virtual black-box obfuscated version (Definition 10).
Finally, by using the CC obfuscation security guarantee, we are able to extract vectors in the
correct cosets if the adversary is successfully decrypting the ciphertext. This allows us to win the
computational LOCC leakage-resilience game for the coset states, a contradiction. We have thus
established the LOCC leakage-resilience of the public-key encryption scheme.

2.3 LOCC Leakage-Resilient Digital Signatures and PRFs Using Coset States

In a similar vein to our results above, we are able to show that the coset state-based digital
signatures and PRF family constructions of [LLQZ22] and [CLLZ21] satisfying copy-protection
also satisfy LOCC leakage-resilience. We only sketch the approach towards LOCC leakage-resilient
digital signatures, since in this construction the signature of a message m will be the evaluation of
a PRF on (part of) m. Then, the PRF family with key protection will have the same construction,
except that it will not feature a verification key, and so its security is implied2 by the security of
the digital signature scheme.

2Almost. There are still some subtleties since the PRF security can be defined based on indistinguishability
whereas security for signature scheme is based on unpredictability of the signature. See Section 7.3 for details.
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Construction. The construction from [LLQZ22] relies on a complex punctured programming
approach. Our quantum signing key is a coset state with its membership checking programs and
also an obfuscated signing program. The verification key is again an obfuscated program. The
signature of a message m will be F1(K1,m0) where F1 is a puncturable PRF with some extra
properties and m0 is some part of the message. We will also have two extra PRFs that will only
be used in the puncturing argument. Our signing program, on some input m and some vectors,
first checks if m satisfies a hidden trigger condition. If not, it verifies if the given vectors are in the
correct cosets according to m0. It outputs the signature F1(K1,m0) if the vectors pass the checks.
The verification program similarly first checks if the input x satisfies the hidden trigger condition.
If not, it simply verifies the claimed signature. In the hidden trigger mode, both programs interpret
their input x as a program of some special form, and run this program.

Proving Security. In the security argument, we first rely on the result of [LLQZ22] that shows
that we can replace a uniformly random challenge input x with a hidden trigger input that is
specially programmed to also perform coset membership checks, but it instead releases a uniformly
random output when the checks pass. Recall that the ciphertexts in our public-key encryption
scheme were also obfuscated programs that performed membership checks with respect to a random
challenge and released the hidden message when the checks pass. Therefore, after this point, through
a similar argument to the proof of LOCC leakage-resilience for PKE, we complete the security proof.
See Section 6.2 for details.

2.4 Establishing the Relationship Between Leakage-Resilience and Unclonabil-
ity

Our discussion will center around public-key encryption, but other primitives also use similar ideas.
Let us first recall the definition of unclonability/anti-piracy security for public-key encryption. In
an anti-piracy game, the adversary A is presented with the public key and the protected/quantum
secret key. Then, it is required to produce two (possibly entangled) adversaries A1,A2. We present
each adversary with independent challenge ciphertexts, and A wins if both adversaries correctly
decrypt simultaneously. Similar to leakage-resilience, we have two variants: CPA-style and random
challenge message. However, note that for the CPA-style security game, even though there are
two adversaries that need to predict their challenge bit, we still require that the adversaries simul-
taneously correctly predict their independent challenges b1, b2 ← {0, 1} with probability at most
1/2 + negl(λ).

Naive Reduction. Now, consider the naive reduction idea from leakage-resilience to unclonabil-
ity: A, which has the quantum secret key, simulates ALeak and AMain. However, similarly to the
problem of reducing LOCC leakage-resilience for coset states to monogamy-of-entanglement, we
run into the following problem: LOCC leakage-resilience has one adversary that needs to decrypt
the challenge ciphertext where the unclonability adversary A needs to output two adversaries that
are capable of decrypting the challenge ciphertext. Since we are also making computational as-
sumptions, we cannot use the repeated sampling idea we used before to create two copies of the
internal state of AMain, since it takes exponentially long. Therefore, this particular reduction does
not work in general.

When the Naive Reduction Does Work. However, it turns out that the idea above does work
in the simpler case of 1-round LOCC leakage-resilience (in the case of a random challenge message).
In this model, there is a single classical message in the leakage game, from ALeak to AMain. Since we
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can easily clone this classical message, the adversary A for the anti-piracy game can simply create
this leakage ℓ on the quantum secret key, then output (AMain, ℓ), (AMain, ℓ) as its two adversaries.
When (ALeak,AMain) is capable of winning the leakage-resilience game with probability 1/poly(λ),
then A can win the anti-piracy game with probability (1/poly(λ))2, by a simple argument based
on Jensen’s inequality. Thus, we get the following result.

Theorem (Theorem 16). Let PKE be a public-key encryption scheme with key protection that sat-
isfies anti-piracy security with random challenge messages. Then, it also satisfies 1-round random
challenge message LOCC leakage-resilience.

Note that this argument only works in the case of random challenge messages. In the CPA-
style security case, if (ALeakAMain) wins with probability 1/2 + 1/poly(λ), then A will win with
probability (1/2 + 1/poly(λ))2 ≈ 1/4, while we needed 1/2 + poly(λ) to break anti-piracy security.

Reductions Using Non-Uniform Quantum Advice We also consider the case of 2-round
LOCC leakage-resilience. In this model, first there is a classical message from AMain to ALeak, and
then a classical message from ALeak to AMain. When we try to use the same reduction as above, we
run into the problem that we only have a single copy of the state that AMain maintains. However, if
we assume that the PKE scheme is anti-piracy secure against adversaries with nonuniform quantum
advice, we can indeed make the reduction go through as follows. Since AMain outputs a classical
message to ALeak and a state at the beginning, we can write∑

x∈{0,1}k(λ)
qx,λ|x⟩⟨x| ⊗ ξx,λ = AMain(1

λ, σλ),

where k(λ) is the length of the first message. Then, we can define the following state which
automatically gives us two copies of the state of AMain: ξ

′
λ =

∑
x∈{0,1}k(λ) qx,λ|x⟩⟨x| ⊗ ξx,λ ⊗ ξx,λ.

Crucially, observe that the state that AMain after its first message does not actually depend on the
PKE scheme instantiation. Therefore, we can use ξ′λ as the non-uniform quantum advice of A, in
which case it will indeed be able to obtain two copies of the final state of AMain and the reduction
goes through as above. Thus, we get the following result.

Theorem (Theorem 17). Let PKE be a public-key encryption scheme with key protection that
satisfies anti-piracy security with random challenge messages against adversaries with non-uniform
quantum advice. Then, it also satisfies 2-round random challenge message LOCC leakage-resilience
against adversaries with non-uniform quantum advice.

Win-Win Result for CPA-style Security and Quantum Lightning While are not able to
directly show that CPA-style unclonability implies CPA-style 1-round LOCC leakage-resilience, we
show the win-win result that a public-key encryption scheme that satisfies CPA-style anti-piracy
security either also satisfies CPA-style 1-round LOCC leakage-resilience, or can be used to build
quantum lightning. The main challenge here is the squaring of 1/2 issue we have when producing
two decryptors in the anti-piracy game. We show that it is either possible to side-step this issue,
or we can build quantum lightning. Suppose that PKE is anti-piracy secure but not 1-round LOCC
leakage-resilient. We let the public key of the quantum lightning scheme be pk (the public key of
PKE) and ℓ ← ALeak(pk,Rdec). Then, a quantum lightning bolt is the state ρm0,m1 of the main
adversary, and its serial number is (m0,m1), the challenge messages it chooses. Our verification
runs AMain on the claimed bolt ρm0,m1 , the leakage ℓ, and a challenge ciphertext PKE.Enc(pk,mb).
Verification succeeds if AMain correctly predicts b. Now, suppose that is possible to produce two
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bolts ρ and σ with the same serial number (m0,m1). Then, running the verification algorithm
above simultaneously on the bolts corresponds exactly to the CPA-style anti-piracy game. This
means that verification of the bolts succeeds with probability 1/2 + negl(λ). Correctness follows
by the 1-round LOCC leakage-resilience insecurity of PKE, since a valid bolt will succeed with
probability 1/2 + 1/poly(λ). In summary, we were able to side-step the “one adversary versus two
adversaries” problem that plagues the LOCC leakage-resilience to unclonability reduction precisely
because quantum lightning also involves a bipartite simultaneous verification. Thus, we obtain the
following result.

Theorem (Theorem 18, informal). Let PKE be a public-key encryption scheme with key protection
that satisfies CPA-style anti-piracy security. Then, either PKE is CPA-style 1-round LOCC leakage-
resilient, or PKE can be used to build weak quantum lightning.

Unclonability Does Not Imply General LOCC Leakage-Resilience. Finally, one might
wonder if the fact that we can only show that unclonability implies LOCC leakage-resilience in
a limited setting is a weakness of our proof techniques. We also show that this is likely not the
case – these limitations are an inherent property of these models. More precisely, we construct a
public-key encryption scheme, based on quantum lightning and virtual black box obfuscation, that
satisfies anti-piracy but does not satisfy even 2-round LOCC leakage-resilience. We construct such
a scheme as follows. Let d(λ) denote the length of the serial numbers of the quantum lightning
scheme QL. The proof utilizes the fact that in the anti-piracy game we need to come up with
two decrypting adversaries, as opposed to a single adversary in the LOCC leakage-resilience game.
In our construction, our secret key is a coset state, and we require that, to be able to decrypt a
ciphertext, the adversary needs to have a valid quantum lightning bolt, and it needs to output some
vectors in either Ai + si or A

⊥
i + s′i depending on the serial number of the bolt. Since the 2-round

LOCC adversary can sample a bolt, send the serial number to the leakage adversary, and measure
the coset state accordingly, this scheme is not LOCC leakage-resilient. However, the anti-piracy
adversary will need to produce two valid bolts, which will necessarily have different serial numbers.
Therefore, it will need to obtain vectors in both Ai + si and A⊥i + s′i to decrypt, but this is not
possible by monogamy-of-entanglement (or an even simpler version called direct product hardness
theorem for coset states [CLLZ21]). Hence, it will not be able to produce two freeloaders that can
both decrypt. Therefore, we obtain the following result.

Theorem (Theorem 20, informal). Suppose quantum lightning and virtual black-box obfuscation
scheme for quantum circuits exist. Then, there exists a public-key encryption scheme that satisfies
anti-piracy security but does not satisfy 2-round LOCC leakage-resilience.

2.5 Intrusion-Detection

We discuss how to construct an intrusion-detection scheme from any publicly verifiable key leasing
(i.e., certified key deletion) scheme for a primitive. As an example, we will elaborate on public-key
encryption; see Section 8 for the other primitives.

One might ask whether we could just digitally sign the quantum secret under this public key
and store it along with the secret itself. The TestIntrusion procedure would then just check the
validity of this signature. However, there are multiple problems with this approach. First, digital
signatures for signing quantum states do not exist (and quantum MACs necessarily also encrypt
the quantum state, causing loss of functionality). Secondly, an adversary may just try to clone
the secret without modifying it (which gives an impossibility result in our model in the classical
setting).
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We discuss how to construct public-key encryption schemes that support intrusion-detection
for unbounded quantum leakage attacks on the decryption key Rdec. More precisely, the PKE
scheme generates a public key pk, a test key tk (used to test whether an intrusion occurred), and
a (quantum) decryption key Rdec. An adversary is given (pk, tk,Rdec), and it can arbitrarily act
on the quantum part to produce a quantum leakage Rleak and two challenge messages m0 and m1.
Note that this may change the state in register Rdec. Before the distinguishing game proceeds, a
intrusion-detection step is run and the adversary automatically loses if its presence is detected, i.e.,
if TestIntrusion(tk,Rdec) = INTRUSION. If no intrusion is detected, we want to guarantee that it is
not possible to distinguish between Enc(pk,m0) and Enc(pk,m1) given (Rleak,m0,m1, tk, pk) with
probability negligibly close to the baseline

1

2
Pr[TestIntrusion(tk,Rdec) = NO INTRUSION].

We construct PKE schemes with these guarantees by establishing a connection to secure key
leasing [AL21, KN22, BK23, BGG+23]. We start with the notion of a PKE scheme with secure key
leasing, which features an additional deletion procedure that, given the secret decryption key Rdec,
produces a certificate cert which should certify that this key was indeed deleted. Roughly speaking,
this scheme satisfies the property that an adversary which is able to produce a valid certificate cert
based on Rdec, (validity of cert is checked by a Verify procedure using a certificate validation key cvk)
cannot distinguish between the ciphertexts Enc(pk,m0) and Enc(pk,m1) using the leftover state.
PKE schemes with secure key leasing have been recently constructed from any post-quantum PKE
scheme [AKN+23]3 or post-quantum indistinguishability obfuscation [BGG+23].

We show that we can construct a PKE scheme that supports intrusion-detection from a PKE
scheme with secure key leasing. Starting with a PKE scheme with secure key leasing, we construct
a TestIntrusion procedure which essentially tries to produce a deletion certificate for the secret
decryption key Rdec, and outputs NO INTRUSION if it succeeds. Intuitively, we can argue intrusion-
detection security as follows: If an adversary has obtained a leakage that allows it to distinguish
ciphertexts, then we should fail to produce a valid deletion certificate using our leftover state.
Otherwise, one can create a lessee attacker against the key leasing security that simulates the
intrusion adversary on their key, produces a valid deletion certificate using the leftover state, and
still succeeds in distinguishing ciphertexts using the leakage. However, the major problem with this
approach is reusability: even when there is no attack, we destroy our key when we test for leakage,
since we produce a deletion certificate.

Crucially, note that producing a valid deletion certificate using an undisturbed key succeeds
with overwhelming probability. Therefore, using the gentle measurement lemma (see Lemma 1),
we are able to construct an algorithm for producing a deletion certificate in such a way that we
can rewind our algorithm afterwards. While seemingly contradictory, this is not a violation of
lessor security. Indeed, in the lessor security game the certificate generation circuit will end with a
measurement, while our intrusion-detection procedure will skip this measurement and will instead
run the verification procedure coherently. Furthermore, the intrusion-detection procedure will not
trace out the garbage registers that are created while producing a certificate or testing for certificate
validity, which we then use to rewind the algorithm.

Using similar techniques, we can also build digital signatures, PRFs, functional encryption, and
indistinguishability obfuscation schemes supporting intrusion-detection. More generally, we show
that the notion of intrusion-detection is equivalent to key leasing/certified deletion. See Section 8
for more details.

3This scheme unfortunanely lacks public verifiability, which is crucial for intrusion detection since the adversary
gets the complete state of the honest party, including the verification key.
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Finally, we show that intrusion detection implies public-key quantum money. Let’s take the case
of public-key encryption with intrusion detection as an example. Our banknote is a quantum secret
key, along with the serial number which is the intrusion detection key. Our banknote verification
procedure checks for intrusion on the quantum key using the intrusion detection key. First, note
that without loss generality, we can assume that our intrusion detection algorithm first checks if
the key can successfully decrypt a the encryption of a random message. This check only makes
intrusion detection stronger. Then, it is easy to see that simultaneous verification of two banknotes
produced by an adversary given a single banknote corresponds to the intrusion detection game. We
refer the reader to Section 8 for more details.

3 Notation and Preliminaries

3.1 Notation and Computational Model

We write λ to denote a security parameter. We denote classical sets, random variables and quantum
registers by uppercase letters such as X, Y , and Z. We will write |X| to denote the size of the
alphabet associated with a register X. Similarly, we denote both classical sets, ensembles and
Hilbert spaces by calligraphic letters such as X and Y. The distinctions will always be clear from
context. We write [n] = {1, . . . , n}. Given a string s ∈ Sn and a set T ⊆ [n], we denote the
projection of s to the coordinates in T by sT = (si)i∈T . We write S∗ for

⋃∞
i=0 Si. For two

operators ρ, σ, writing ρ ≥ σ will mean that ρ−σ is positive semi-definite. Un denotes the uniform
distribution over the set {0, 1}n, and in the same expression all occurrences of Un will refer to the

same sample rather than independent samples, except when differentiated, such as U
(1)
n and U

(2)
n .

For a joint state ρ of some quantum registers R = {R1, . . . , Rn}, we will use ρ or ρR to denote the
joint state and ρ(Ri)i∈T or ρT to denote the state of the subsystem (Ri)i∈T alone for some T ⊆ [n],
given by TrR\{Ri}i∈T (ρ). Similarly, for a quantum operation Φ, we will sometimes use a superscript

to denote the registers to which it is applied, such as ΦX . We will use H to denote the Hilbert
space associated with a single qubit, that is, H = C{0,1}. Ea,b denotes the matrix that has 1 in the
entry (a, b) and zeroes in all other entries, and its dimensions will be clear from the context. For
a distribution D, we will write x ← D to mean x is sampled from D. Similarly for a mixed state
ρ, we will write R ← ρ to mean that the register R is initialized to the state ρ. x ← A(a) means
sample x from the distribution induced by the randomized algorithm A run on input a. For a
tuple or string x, (x)i will mean the i-th element or character. Uuniv denotes the universal quantum
circuit that takes in the description of a quantum circuit and an input, and evaluates the circuit
on this input.

Unless otherwise explicitly specified, we will make the following implicit assumptions. All of
our cryptographic assumptions will be against non-uniform QPT adversaries, i.e., QPT algorithms
(Definition 1) with non-uniform quantum advice. In particular, our assumptions and reductions
will be implicitly post-quantum. Algorithm will mean a quantum algorithm, and our schemes will
be uniform QPT algorithms. Separate adversaries will unentangled. In the computational setting,
negligible means negligible in the security parameter, λ and for two ensembles, X ≈ Y means
|Pr[A(X) = 1]−Pr[A(Y ) = 1]| < negl(λ) for either all QPT adversaries A or all unbounded adver-
saries A (will be clear from context). Sizes and bounds, such as leakage bounds, will implicitly be
functions of the security parameter, ℓ = ℓ(λ). In the context of security definitions, all adversaries
will mean all adversaries that have the appropriate input/output size and interactive structure as
required by the security game.
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Definition 1 (Computational model). We fix a universal set of unitary gates, such as {Hadamard,
phase, CNOT, π

8 }. We define a quantum polynomial time (QPT) algorithm to be a uniform family
of generalized quantum circuits {Φλ}λ with some fixed polynomials p(λ), q(λ) where each Φλ is
constructed by introducing an ancilla register of size at most q(λ), applying p(λ) many gates from
the fixed set of gates to input and ancilla, and finally tracing out some of the registers. Finally, if
the output of the algorithm is classical, the remaining registers are measured in the computational
basis. Writing Φ will implicitly mean Φλ. Note that by Stinespring Dilation Theorem and deferred
measurement principle, this model captures all efficient quantum adversaries.

We will also mainly use the quantum registers model. We consider registers as objects storing
quantum states, which can be correlated or entangled with other registers, and whose states evolve
as a result of applying channels to them.

3.2 Concepts from Quantum Information Theory

We assume familiarity with basic concepts from quantum computation, such as registers, pure
and mixed states, density matrices, entanglement, measurements, quantum channels and (vanilla)
quantum teleportation. We refer the reader to [NC10] and [Wat18] for an introduction.

3.3 Pseudorandom Functions

Below we introduce the definitions of various pseudorandom function family models.

Definition 2 (Weak pseudorandom functions). Let K be an efficient ensemble, denoting the key
space, and X ,Y be families of sets denoting the input and output space respectively. A family of
functions F = {fk}k is said to be weak pseudorandom if any QPT A has negligible advantage in
the following game.

1. Challenger samples a key k ← Kλ.

2. Challenger samples inputs x1, . . . , xp(λ) ← Xλ.

3. Challenger samples a challenge input x∗.

4. Challenger samples a challenge bit b← {0, 1}. If b = 0, it sets y∗ = x∗. Otherwise, it samples
y∗ ← Yλ.

5. Adversary gets (x1, fk(x1)), . . . , (xp(λ), fk(xp(λ))), (x
∗, y∗), and outputs a guess b′.

6. Challenger outputs 1 if and only if b = b′.

We define the advantage of A to be
∣∣Pr[b′ = b]− 1

2

∣∣.
Definition 3 (Puncturable Pseudorandom Functions). A puncturable pseudorandom function fam-
ily is a PRF family {0, 1}m(λ) → {0, 1}n(λ) with an additional algorithm Puncture that takes as input
the PRF key K and a set S ⊆ {0, 1}m(λ) and outputs a punctured key. We require that it satisfies
the following.

Correctness. For S ⊆ {0, 1}m(λ) and for all x ̸∈ S, we require

Pr
[
F (KS , x) = F (K,x) : K ← KeyGen(1λ),KS ← Puncture(K,S)

]
= 1.
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Puncturing Security We require that any stateful QPT adversary wins the following game with
probability at most 1/2 + negl(λ).

1. A outputs a set S and a point x ̸∈ S.

2. The challenger samples K ← KeyGen(1λ) and KS ← Puncture(K,S) and y ← {0, 1}n(λ).

3. The challenger samples b ← {0, 1}. If b = 0, the challenger submits KS , F (K,x) to the
adversary. Otherwise, it submits KS , y to the adversary.

4. The adversary outputs a guess b′.

5. We say that the adversary has won if b′ = b.

Definition 4 (Statistically Injective PRF). A statistically injective PRF with failure probability ε
is a PRF family where with probability 1 − ε over sampling of the key K, the function F (K, ·) is
an injective function.

Theorem 1. An extracting puncturable PRF with error ε(λ) for min-entropy k(λ) is a puncturable
PRF {0, 1}m(λ) → {0, 1}n(λ) such that if X is a distribution over {0, 1}m(λ) with min-entropy k(λ),
then the statistical distance between K,F (K,X) and F, Y is < ε where K ← KeyGen(1λ) and
Y ← {0, 1}n(λ).

Theorem 2 ([SW13]). Assuming (subexponentially secure) post-quantum one-way functions, there
exists a (subexponentially secure) post-quantum puncturable PRF family {0, 1}m(λ) → {0, 1}n(λ) for
any efficiently computable m,n.

Theorem 3 ([SW13]). Assuming (subexponentially secure) post-quantum one-way functions, there
exists a (subexponentially secure) post-quantum puncturable statistically injective PRF family {0, 1}m(λ) →
{0, 1}n(λ) with error 2−e(λ) for any efficiently computable m,n, e such that n(λ) ≥ 2m(λ) + e(λ).

Theorem 4 ([SW13]). Assuming (subexponentially secure) post-quantum one-way functions, there
exists a (subexponentially secure) post-quantum puncturable extracting PRF family {0, 1}m(λ) →
{0, 1}n(λ) with error 2−e(λ) for min-entropy k(λ) for any efficiently computable m,n, e, k such that
m(λ) ≥ k(λ) ≥ n(λ) + 2e(λ) + 2.

3.4 Indistinguishability Obfuscation

In this section, we introduce indistinguishability obfuscation.

Definition 5. An indistinguishability obfuscation scheme iO for a circuit class C = {Cλ}λ satisfies
the following.

Correctness. For all λ,C ∈ Cλ and inputs x, Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

Security. Let B be any QPT algorithm such that Pr
[
∀x C0(x) = C1(x) : (C0, C1, Raux)← B(1λ)

]
≥

1− negl(λ). Then, for any QPT adversary A,∣∣∣∣Pr[A(iO(C0), Raux) = 1 : (C0, C1, Raux)← B(1λ)
]
−

Pr
[
A(iO(C1), Raux) = 1 : (C0, C1, Raux)← B(1λ)

]∣∣∣∣ ≤ negl(λ).
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3.5 Digital Signatures

In this section we introduce the basic definitions of signatures schemes.

Definition 6. A digital signature scheme with message spaceM consists of the following algorithms
that satisfy the correctness and security guarantees below.

• Setup(1λ) : Outputs a signing key sk and a verification key vk.

• Sign(sk,m) : Takes the signing key sk, returns a signature for m.

• Verify(vk,m, s) : Takes the public verification key vk, a message m and supposed signature s
for m, outputs 1 if s is a valid signature for m.

Correctness We require the following for all messages m ∈M.

Pr

[
Verify(vk,m, s) = 1 :

sk, vk ← Setup(1λ)
s← Sign(sk,m)

]
= 1.

Adaptive existential-unforgability security under chosen message attack (EUF-CMA)
Any QPT adversary A with classical access to the signing oracle has negligible advantage in the
following game.

1. Challenger samples the keys sk, vk ← Setup(1).

2. A receives vk, interacts with the signing oracle by sending classical messages and receiving
the corresponding signatures.

3. A outputs a message m that it has not queried the oracle with and a forged signature s for
m.

4. The challenger outputs 1 if and only if Ver(vk,m, s) = 1.

If A outputs the message m before the challenger samples the keys, we call it selective EUF-CMA
security.

3.6 Functional Encryption

In this section we introduce the basic definitions of functional encryption schemes.

Definition 7 (Functional encryption). A functional encryption scheme for a family of functions
F consists of the following algorithms that satisfy the correctness and security guarantees below.

• Setup(1): Outputs a master secret key msk and a public key pk.

• KeyGen(msk, f): Takes in the master secret key and a function f , outputs a functional key
skf for f .

• Enc(pk,m): Takes in the public key and a message m, outputs an encryption of m.

• Dec(skf , ct): Takes in a functional key skf and a ciphertext, outputs evaluation of the en-
crypted message under f .
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Correctness For all functions f ∈ F and all messages m, we require the following.

Pr

Dec(skf , ct) = f(m) :
msk, pk ← Setup(1)

skf ← KeyGen(msk, f)
ct← Enc(pk,m)

 = 1.

Adaptive indistinguishability security Any QPT adversary A has negligible advantage in the
following game.

1. Challenger samples the keys msk, pk ← Setup(1).

2. The adversary receives pk. It makes polynomially many queries by sending functions f ∈ F
and receiving the corresponding functional key skf ← KeyGen(msk, f).

3. The adversary outputs challenge messages m0,m1.

4. The challenger samples a challenge bit b← {0, 1} and prepares ct← Enc(pk,mb).

5. The adversary receives ct, and it makes polynomially many functional key queries.

6. The adversary outputs a guess b′.

7. The challenger checks if f(m0) = f(m1) for all f queried by the adversary. If not, it outputs
0 and terminates.

8. The challenger outputs 1 if b′ = b.

We define the advantage of the adversary to be
∣∣Pr[b′ = b]− 1

2

∣∣. If the adversary outputs the chal-
lenge messages before the keys are sampled, we call it selective indistinguishability security.

3.7 Subspace Hiding Obfuscation

In this section, we introduce subspace hiding obfuscation.

Definition 8 ([CLLZ21]). A subspace hiding obfuscator for a field F and dimensions d0, d1 is an
efficient algorithm shO as follows.

• Input: Takes as input the description of a subspace A ⊆ Fλ of dimension d ∈ {d0, d1}.

• Output: Outputs a circuit Â.

Correctness Â computes membership in A. That is, denoting by A(x) the function that decides
membership in A, the following holds:

Pr
[
∀x Â(x) = A(x)

]
≥ 1− negl(λ)

where Â← shO(A).
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Security Any QPT adversary A wins the following game with probability 1/2 + negl(λ).

1. The adversary submits to the challenger a subspace S0 of dimension d0.

2. The challenger samples a uniformly random subspace S1 ⊆ Fλ of dimension d1 satisfying
S0 ⊆ S1. Then, the challenger runs S′ ← shO(Sb) and gives S′ to the adversary.

3. The adversary outputs a guess b′ for b.

4. We say that the adversary won if b′ = b.

Theorem 5 ([Zha19, CLLZ21]). If injective one-way functions exist, then any indistinguishability
obfuscator is also a subspace hiding obfuscator for field F and appropriate dimensions d0, d1 such
that Fλ−d1 is exponential.

3.8 Compute-and-Compare Obfuscation

In this section, we introduce compute-and-compare obfuscation.

Definition 9 (Compute-and-compare program). Let f : {0, 1}a(λ) → {0, 1}b(λ) be a function,
y ∈ {0, 1}b(λ) be a target value and z a hidden message. The following program P , described by
(f, y, z), is called a compute-and-compare program.

P (x) : Compute f(x) and compare it to y. If they are equal, output z. Otherwise, output ⊥.

Definition 10. A compute-and-compare obfuscation scheme for a class of distributions consists of
efficient algorithms CCObf.Obf and CCObf.Sim that satisfy the following. Consider any distribution
D over compute-and-compare programs along with quantum auxiliary input, in this class.

Correctness. For any function (f, y, z) in the support of D we have that

Pr
[
∀x D′(x) = D(x) : D′ ← CCObf.Obf(f, y, z)

]
= 1.

Security (CCObf.Obf(f, y, z), Raux) ≈ (CCObf.Sim(1λ, |f |, |y|, |z|), Raux) where (f, y, z), Raux ←
D(1λ).

We say that a distribution D of such programs is sub-exponentially unpredictable if for any
QPT adversary, given the auxilary information and the description of f , the adversary can predict
the target value y with at most subexponential probability.

Theorem 6 ([WZ17, CLLZ21]). Assuming the existence of post-quantum iO and the quantum hard-
ness of LWE, then there exist compute-and-compare obfuscation for any class of sub-exponentially
unpredictable distributions.

3.9 Quantum Goldreich-Levin with Quantum Auxiliary Input

We introduce the Goldreich-Levin theorem with quantum auxiliary input, which will be needed in
some of our constructions.

Theorem 7 ([AC02, CLLZ21]). Let {|x⟩⟨x| ⊗ ρx}x be a classical-quantum ensemble. Sample r,
with |r| = |x|, uniformly at random. If there exists an (efficient) quantum algorithm, that given
r and ρx, outputs ⟨x, r⟩ with probability at least 1/2 + ε, then there exists an (efficient) quantum
algorithm that takes ρx and outputs x with probability at least 4 · ε2.
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3.10 Almost As Good As New Lemma

For schemes with quantum keys satisfying correctness with overwhelming probability, we will use
the following lemma and the related gentle measurement lemma [Aar05] to argue that the algorithm
can be rewound so that the key can be used polynomially many times.

Lemma 1 (Almost As Good As New Lemma [Aar16], verbatim). Let ρ be a mixed state acting
on Cd. Let U be a unitary and (Π0,Π1 = I − Π0) be projectors all acting on Cd ⊗ Cd′. We
interpret (U,Π0,Π1) as a measurement performed by appending an ancillary system of dimension
d′ in the state |0⟩⟨0|, applying U and then performing the projective measurement Π0,Π1 on the
larger system. Assuming that the outcome corresponding to Π0 has probability 1− ε, we have∥∥ρ− ρ′∥∥

1
≤
√
ε

where ρ′ is the state after performing the measurement, undoing the unitary U and tracing out the
ancillary system.

3.11 Quantum Lightning

In this section we introduce quantum lightning.

Definition 11 (Quantum lightning [Zha19, Zha23]). A quantum lightning scheme consists of the
following algorithms.

• Bolt(1λ) Samples a lightning bolt with a serial number.

• Ver(sn,R) Takes in a supposed bolt register R and a serial number sn. Outputs 1 if R is a
valid bolt with serial number sn. Otherwise, outputs 0.

Correctness. We require that any honestly generated bolt passes the verification with overwhelm-
ing probability.

Security. We require that for any QPT adversary B; when we run (sn,R1, R2) ← B, b ←
Ver(sn,R1) and b

′ ← Ver(sn,R2), we have Pr[b = b′ = 1] ≤ negl(λ).

We can also define quantum lightning in a trusted setup model where there is a public-key,
sampled during setup, that is used in both bolt generation and verification. Note that this is
required if we want security against adversaries with non-uniform quantum advice.

We also define weak quantum lightning to be a quantum lightning scheme that satisfies correct-
ness with probability α(λ) (instead of overwhelming) and security with probability β(λ) (instead
of negliglible) such that α− β(λ) ≥ 1/p(λ) for some polynomial p(λ) and all sufficiently large λ.

3.12 Infinitely Often Security

In this section, we define infinitely often security, which is usually needed in win-win results for
quantum lightning (e.g., Section 5.2 and [Zha19]). Note that it is a weaker version of usual negligible
security definition, however, it can still be considered a meaningful security guarantee.

Definition 12 ([Zha19]). We say a scheme is not infinitely often secure if there exists an adversary
that breaks it with probability 1/p(λ) for all sufficiently large λ where p(·) is a polynomial.
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4 Coset States

In this section, we start by giving the definition of coset states [CLLZ21, VZ21] that we utilize in
our constructions and state the monogamy-of-entanglement property they satisfy. Then, we prove
an LOCC leakage-resilience theorem for coset states.

Definition 13 ([CLLZ21]). For a subspace A ⊆ Fn
2 and vectors s, s′ ∈ Fn

2 , we define
∣∣As,s′

〉
, the

coset state associated with A, s, s′, to be∣∣As,s′
〉
=
∑
a∈A

1√
|A|

(−1)⟨s′,a⟩|a+ s⟩.

We usually write A+ s to denote both the coset A+ s and the program that takes as input a
vector v ∈ Fn

2 and outputs 1 if and only if v ∈ A+s. The distinction will be clear from the context.

Fact 1 ([CLLZ21]). Consider a subspace A ⊆ Fn
2 and vectors s, s′ ∈ Fn

2 .

1. Given s, s′ and the description of A, we can efficiently construct
∣∣As,s′

〉
.

2. H⊗n
∣∣As,s′

〉
=
∣∣∣A⊥s′,s〉.

3. Define the canonical representative CanA(v) to be the lexicographically smallest element in
the coset A + v. There exists an efficient algorithm to compute CanA(v) on input v and the
description of A.

Now we state the monogamy-of-entanglement (MoE ) properties coset states satisfy. In an MoE
game, the adversary is presented with a coset state, and is required to split into two (possibly
entangled) adversaries that will need to simultaneously output some vectors in the cosets A + s
and A⊥ + s′.

Theorem 8 (Strong Monogamy-of-Entanglement Property for Coset States [CLLZ21]). Consider
the following game between an adversary tuple (A0,A1,A2) and the challenger.

MoE(λ,A)

1. Sample uniformly at random a subspace A of Fλ
2 of dimension λ

2 and two elements s, s′ ← Fλ
2 .

2. Submit
∣∣As,s′

〉
to A0.

3. A outputs two (possibly entangled) registers R1, R2.

4. For ℓ ∈ {1, 2}, run vℓ ← Aℓ(Rℓ, A).

5. Output 1 if and only if v1 ∈ A+ s and v2 ∈ A⊥ + s′.

Then, there exists a constant CMoE > 0 such that for any adversary tuple (A0,A1,A2),

Pr[MoE(λ,A) = 1] ≤ 2−λ
CMoE

for all sufficiently large λ.
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In the previous constructions of unclonable primitives [CLLZ21, LLQZ22], and also in our
constructions, we require the freeloader adversaries or the LOCC adversary to output a vector
from either A + s or A⊥ + s′, depending on a random bit presented to them. However, since
the leakage adversary can always guess this bit with probability 1/2 and measure the coset state
accordingly, we amplify the security by using multiple coset states to achieve negligible security.
To simplify our proofs, we formally define this variant of the game, which is implicitly used in some
form in [CLLZ21, LLQZ22].

Definition 14. Define CosetGen(1λ) to be the following algorithm, where we set c(λ) = 3·λ⌈1/CMoE⌉.

1. For i ∈ [c(λ)], sample uniformly at random a subspace Ai of F
λ
2 of dimension λ/2 and two

elements si, s
′
i ← Fλ

2 .

2. Output (Ai, si, s
′
i)i∈[c(λ)].

We call the output of CosetGen a coset tuple.

Theorem 9 (Strong Monogamy-of-Entanglement Property for Coset States - Multiple Challange
Version). Consider the following game between an adversary tuple A = (A0,A1,A2) and the chal-
lenger.

MoE−MultiChal(λ,A)

1. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

2. Submit
{∣∣∣Ai,si,s′i

〉}
i∈[c(λ)]

to A0.

3. A outputs two (possibly entangled) registers R1, R2.

4. Sample r1 ← {0, 1}c(λ) and r2 ← {0, 1}c(λ).

5. For ℓ ∈ {1, 2}, run (vℓ,i)i∈[c(λ)] ← Aℓ(Rℓ, rℓ, (Ai)i∈[c(λ)]).

6. For ℓ ∈ {1, 2} and all i ∈ [c(λ)], check if vℓ,i ∈ Ai + si if (rℓ)i = 0 and if vℓ,i ∈ A⊥i + s′i if
(rℓ)i = 1. Output 1 if and only if all the checks pass. Otherwise, output 0.

Then, there exists a constant CMoE−MultChal > 0 such that for any adversary tuple A = (A0,A1,A2),

Pr[MoE−MultiChal(λ,A) = 1] ≤ 2−λ
CMoE−MultChal

for all sufficiently large λ.

Proof. Suppose there exists an adversary tuple A = (A0,A1,A2) that wins MoE−MultiChal with
probability ε(λ). Define Hyb0 to be the original game MoE−MultiChal(λ,A) and define Hyb1 by
modifying it as follows. The challenger samples r1, r2 so that there is an index i ∈ [c(λ)] such
that (r1)i = 0 and (r2)i = 1. Since sampling r1, r2 uniformly and independently satisfies this with

probability 1− (3/4)c(λ), the distance between the two distributions is (3/4)c(λ), hence we get that

A wins in Hyb1 with probability at least ε(λ)− (3/4)c(λ).

For any j∗ ∈ [c(λ)], we define the adversary Aj∗ = (Aj∗

0 ,A′1,A′2) for MoE as follows.
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Aj∗

0

On input a state ρ, sample r1, r2 so that there is an index j∗ ∈ [c(λ)] such that (r1)j∗ = 0 and
(r2)j∗ = 1. Set ρj∗ = ρ. For all j ∈ [c(λ)] \ {j∗}, sample a subspace Aj , elements sj , s

′
j ← Fλ

2 , then

set ρj =
∣∣∣Aj,sj ,s′j

〉
. Then, run A0((ρj)j∈[c(λ)]) to obtain a bipartite state σ. Finally, output

((σ[1], (Aj)j∈[c(λ)]\{j∗}, j
∗, r1), (σ[2], (Aj)j∈[c(λ)]\{j∗}, j

∗, r2)).

A′ℓ for ℓ ∈ {1, 2}
A′ℓ runs Aℓ on its own input and the subspace description A it obtains from the challenger.

Output the j∗-th vector in the output of A′ℓ.
Note that A′ℓ can correctly rearrange the input order when passing it to Aℓ since it knows j∗.

Observe that for any fixed value of j∗, when Aj∗ is run on a uniformly random coset state, the
input to A is distributed the same as a coset state tuple obtained using CosetGen. Therefore, Aℓ

above output the correct vectors (i.e., in v ∈ Aj +sj or A
⊥
j +s′j depending on (rb)j for all j ∈ [c(λ)]

and b ∈ {0, 1}) simultaneously with probability at least ε(λ) − (3/4)c(λ), since above is a perfect
simulation of A playing Hyb1.

Finally, we construct an adversary A′ = (A′0,A′′1,A′′2) for MoE as follows. A′0 samples j∗

uniformly at random, and then simulates Aj∗

0 , but without sampling r1, r2. We similarly define
A′′1 and A′′2, which uses the challenge strings r1, r2 given to them by the challenger. By above,

A′ obtains the correct vectors with probability ε(λ) − (3/4)c(λ) as argued above. Moreover, with
probability 1/c(λ), independent of A′ obtaining the correct vectors, j∗ will be such that (r1)j∗ = 0
and (r2)j∗ = 1. Note that when j∗ satisfies this and the vectors obtained by A′ are correct, A′

wins MoE. Hence, A′ wins with probability at least ε(λ)−(3/4)c(λ)
c(λ) . This completes the proof, by our

choice of c(λ) = 3 · λ⌈1/CMoE⌉ and by Theorem 8.

Now, we show an LOCC leakage-resilience property for coset states. In the LOCC leakage
game, a leakage adversary in possesion of the coset state tuple and a main adversary will execute
an LOCC protocol. After the protocol is completed, the main adversary is presented with a random
challenge string r, and is required to produce vectors in correct cosets depending on r.

Theorem 10 (LOCC Leakage Property for Coset States). Consider the following game between
an LOCC adversary A = (AMain,ALeak) and the challenger.

Coset− LOCC(λ,A)

1. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

2. Submit
{∣∣∣Ai,si,s′i

〉}
i∈[c(λ)]

to ALeak.

3. (AMain,ALeak) execute their LOCC protocol.

4. After the LOCC protocol is over, challenger samples r ← {0, 1}c(λ) and submits (Ai)i∈[c(λ)]
and r to AMain.

5. AMain outputs (vi)i∈[c(λ)].

6. For all i ∈ [c(λ)], check if vi ∈ Ai + si if (r)i = 0 and if vi ∈ A⊥i + s′i if (r)i = 1. Output 1 if
and only if all the checks pass. Otherwise, output 0.
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Then, there exists a constant CLOCC > 0 such that for any LOCC adversary A = (AMain,ALeak),

Pr[Coset− LOCC(λ,A) = 1] ≤ 2−λ
CLOCC

for all sufficiently large λ.

We will prove the above result through a reduction to MoE−MultiChal, which we briefly sketch.
In the reduction, since the adversary for MoE−MultiChal will be in possession of the coset state
tuple, it can simulate both ALeak and AMain to produce the final state of the latter. However,
the MoE adversary needs to produce two registers that are capable of answering the challenges
correctly simultaneously. Hence, during the simulation of the LOCC protcol, we run AMain many
times each round to produce multiple copies of its state, culminating in two copies of its final state,
which then we output. While the probability of obtaining another copy of the adversary’s state
during a round might be arbitrarily small, we show that on average this is not the case.

Proof. Suppose for a contradiction that there exists a g(n)-round LOCC adversaryA = (AMain,ALeak)

that wins Coset− LOCC with probability 2−0.1λ
CMoE−MultChal

. Without loss of generality, assume that
the messages sent by both adversaries each round are of the same length and denote it as k(n).
We will construct an adversary A′ = (A′0,A′1,A′2) that wins MoE−MultiChal with probability

2−0.3λ
CMoE−MultChal

.
Let P denote the random variable that contains the transcript of the LOCC protocol A during

Coset− LOCC and let P−1 denote the same but with the last leakage message sent byALeak removed.
For some fixed value (ℓ−1,m) of P−1, let ρℓ−1,m denote the final state of AMain, i.e., its state
right before it receives the last leakage message ℓg(n) and the challenge string r, conditioned on
P−1 = (ℓ−1,m). Note that the final state of AMain does not depend on ℓg(n). Define deterministic

f(w) as f(w) = (Ai)i∈[c(λ)] where (Ai, si, s
′
i)i∈[c(λ)] = CosetGen(1λ;w) and similarly deterministic

predicate P as the function that outputs 1 if and only if the given vectors are in the correct cosets
according to r. Then, the winning probability of A can be written as

E(w,(ℓ,m))←(W,P)

[
Pr

r←{0,1}c(λ)
[P (AMain(ρℓ−1,m, ℓg(n), f(w), r), w, r) = 1]

]
. (1)

If we had two copies of ρℓ−1,m for the same coset state tuple and transcript ℓ−1,m, and ran the last
step of AMain twice independently on independent challenge strings r1, r2, we would have that the
probability of both copies winning simultaneously is

E(w,(ℓ,m))←(W,P)

[(
Pr

r1←{0,1}c(λ)
[P (AMain(ρl−1,m, ℓg(n), f(w), r1), w, r1) = 1]

)
·(

Pr
r2←{0,1}c(λ)

[P (AMain(ρl−1,m, ℓg(n), f(w), r2), w, r2) = 1]

)]
= E(w,(ℓ,m))←(W,P)

[(
Pr

r←{0,1}c(λ)
[P (AMain(ρl−1,m, ℓg(n), f(w), r), w, r) = 1]

)2
]

(2)

Then, since we have (1) > 2−0.1λ
CMoE−MultChal

, we get (2) > 2−0.2λ
CMoE−MultChal

by Jensen’s inequality.
We will construct an adversary A′0 for MoE−MultiChal such that given only a single copy of

the coset state tuple, it produces two copies of ρℓ−1,m with probability at least 1/2 (independently
of any fixed value of the transcript). Note that we produce two copies of ρℓ−1,m for the same
ℓ−1,m, since we only have one copy of the coset state tuple and running ALeak modifies this state.
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Therefore, we can run ALeak once each round, hence we run it on a single value of a messagemi from
AMain and receive only a single leakage ℓi each round. A′0 outputs ((ρℓ−1,m, ℓg(n)), (ρℓ−1,m, ℓg(n))) as
its bipartite state output. Finally, A′1 and A′2 both simulate AMain on the state they receive, along
with the subspace descriptions and the random challenge string they receive from the challenger.
Then, winning corresponds exactly to Equation (2), therefore we get that A′ wins MoE−MultiChal

with probability 2−0.2λ
CMoE−MultChal · 12 > 2−λ

CMoE−MultChal
, which is a contradiction by Theorem 9.

Now we will show how to construct such an adversary. First, note that the final state (before
receiving the final leakage message) ρ of the main adversary is output together with a message
mg(n), by running AMain on its previous state ρg(n)−1 and the previous leakage message ℓg(n)−1.
In turn, ρg(n)−1, mg(n)−1 and so on, all the way down to the initial state of AMain are sampled
similarly. Consider any input σ to AMain, i.e. a previous state and a leakage message4. Let∑

x∈{0,1}k(n) px|x⟩⟨x|⊗τx denote the output of AMain(σ). Then, we claim that given a(n) copies of σ

and a fixed value x, we can produce d(n) extra copies of τx for any d(n) with probability (1/2)1/g(n)

averaged over x, where

a(n) =
2k(n)+1 · d2(n)

1− (1/2)(1/g(n))−1
.

Starting with d(n) = 1 for the last round, we can calculate the number of copies needed all the way
down to the first level. While grows large with every round, the total number of copies of the initial
state needed is bounded since we have g(n) rounds. Therefore, we can construct a valid A′0 as
follows. For each round, it first simulates AMain to obtain a message x and a state. Then, it keeps
running AMain repeatedly until obtains the same message x again, in which case it has also obtained
the required copy of the state. It repeats this procedure many times to obtain sufficiently many
copies for the next round. Finally, it runs ALeak on the coset state tuple along with the message x
to produce the leakage. Repeating this simulation until the last round shows that we can obtain
two copies of ρℓ−1,m in a bounded amount of time. Note that by above, the many copy preparation

procedure succeeds with probability (1/2)1/g(n) for each round, independently of succeeding in the
previous rounds since we made the claim above for any input σ. Hence, we will obtain two copies
of ρℓ−1,m with probability 1/2 as desired.

Lastly, we prove our claim that a(n) copies of the input to AMain is sufficient to produce d(n)
extra copies of its output. While the desired output x that we want for it to reoccur might have
arbitrarily small probability, in which case it would take arbitrarily long to obtain the same state
again, this happens rarely. More formally, define the set GOOD to be all x ∈ {0, 1}k(n) such that

px > 2−k(n)(1− (1/2)(1/g(n))−1).

Then, a simple calculation shows that
∑

x∈GOOD px > (1/2)(1/g(n))−1. We have that the probability
of getting the first outcome x again d(n) many times in a(n) trials, averaged over all x, is at least∑

x∈GOOD

px(1− (1− px)a(n)/d(n))(d(n)).

A simple calculation shows that this value is at least (1/2)1/g(n) as desired.

Finally, similar to the computational MoE theorem shown by [CLLZ21, Theorem 4.19], we
prove a computational version of the above theorem, where the adversary is also presented with a
(obfuscated) program that checks for membership in the cosets.

Theorem 11 (Computational LOCC Leakage Property for Coset States). Consider the following
game between an LOCC adversary A = (AMain,ALeak) and the challenger.

4We bundle the leakage message in the state σ
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Coset− CompLOCC(λ,A)

1. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

2. For i ∈ [c(λ)],

2.1. Sample OP0
i ← iO(Ai + si).

2.2. Sample OP1
i ← iO(A⊥i + s′i).

3. Submit
{∣∣∣Ai,si,s′i

〉}
i∈[c(λ)]

, (OP0
i ,OP

1
i )i∈[c(λ)] to ALeak.

4. (AMain,ALeak) execute their LOCC protocol.

5. After the LOCC protocol is over, challenger samples r ← {0, 1}c(λ) and submits (Ai)i∈[c(λ)]
and r to AMain.

6. AMain outputs (vi)i∈[c(λ)].

7. For all i ∈ [c(λ)], check if vi ∈ Ai + si if (r)i = 0 and if vi ∈ A⊥i + s′i if (r)i = 1. Output 1 if
and only if all the checks pass. Otherwise, output 0.

Then, assuming the existence of iO and one-way functions, for any QPT LOCC adversary pair
(AMain,ALeak) we have that

Pr[Coset− CompLOCC(λ,A) = 1] ≤ negl(λ).

If we assume the existence of subexponentially-secure iO and one-way functions, then there
exists a constant CCompLOCC > 0 such that for any QPT LOCC adversary (AMain,ALeak) we have
that

Pr[Coset− CompLOCC(λ,A) = 1] ≤ 2−λ
CCompLOCC

for all sufficiently large λ.

Our proof closely follows the reduction from the computational monogamy-of-entanglement the-
orem to the information-theoretic version given in [CLLZ21], generalized to the multiple coset states
in a straightforward manner. The main idea of the proof is to replace all obfuscated membership
checking programs with functionally equivalent programs that instead use subspace hiding obfusca-
tion for the subspaces Ai, A

⊥
i . Then, we can further replace these with subspace hiding obfuscation

for random superspaces, which eventually allows us to remove the membership checking programs
and reduce to Coset− LOCC. We give our proof in full detail for completeness.

Proof. We will only prove the subexponential case, and the other case follows similarly. Assume
that iO and shO are 2−(λ/2)

CLOCC -secure. Suppose for a contradiction that there exists an adversary
AMain,ALeak that wins Coset− CompLOCC with probability 2−0.5·(λ/2)

CLOCC .
We prove security through a series of hybrids, each of which is constructed by modifying the

previous one. Note that while we change the way the membership checking programs are computed,
the challenger still tests the vectors output by the adversary according to Ai, si, s

′
i. Also note that

obfuscated programs are assumed to be padded to appropriate size.

Hyb0: The original game Coset− CompLOCC(λ,A).
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Hyb1: We now compute OP0
i as OP0

i ← iO(shO(Ai)(· − si))
5 and compute OP1

i as OP1
i ←

iO(shO(A⊥i )(· − s′i)) for all i ∈ [c(λ)].

Hyb2,j for j ∈ [c(λ)]: For all i ≤ j, sample a uniformly random subspace Bi ⊆ Fλ
2 such that

Bi ⊇ Ai and dim(Bi) = 3λ/4. Now we compute OP0
i as OP0

i ← iO(shO(Bi)(· − si))

Hyb3,j for j ∈ [c(λ)]: For all i ≤ j, sample a uniformly random subspace Ci ⊆ Fλ
2 such that

Ci ⊆ Ai and dim(Ci) = λ/4. Compute OP1
i as OP1

i ← iO(shO(C⊥i )(· − s′i)).

Hyb4,j for j ∈ [c(λ)]: For all i ≤ j, sample ui ← Bi. Compute OP0
i as OP0

i ← iO(shO(Bi)(· −
ui − si)).

Hyb5,j for j ∈ [c(λ)]: For all i ≤ j, sample u′i ← C⊥i . Compute OP1
i as OP1

i ← iO(shO(C⊥i )(· −
u′i − s′i)).

Hyb6: Instead of submitting
{∣∣∣Ai,si,s′i

〉}
i∈[c(λ)]

, (OP0
i ,OP

1
i )i∈[c(λ)] to ALeak, the challenger now sub-

mits
{∣∣∣Ai,si,s′i

〉}
i∈[c(λ)]

, (Bi, Ci, ui + si, u
′
i + s′i)i∈[c(λ)] to ALeak.

Claim 1. Hyb0 ≈ Hyb1.

By correctness of shO, all the obfuscated programs in these hybrids have the same functionality.
The result follows by the security of iO.

Claim 2. Hyb0 ≈ Hyb2,1 and Hyb2,j ≈ Hyb2,j+1 for all j ∈ [c(λ)− 1].

By the security of shO, we have shO(Ai) ≈ shO(Bi). Since the wrapper (· − si) and the outer
obfuscation are constructed efficiently, the result follows. Note that while the adversary also has
access to the coset state, we can still invoke subspace hiding obfuscation security since shO is secure
even when the subspace Ai is selected by the adversary (Definition 8).

Claim 3. Hyb2,c(λ) ≈ Hyb3,1 and Hyb3,j ≈ Hyb3,j+1 for all j ∈ [c(λ)− 1].

Note that Ci ⊆ Ai and dim(Ci) = λ/4 implies C⊥i ⊇ A⊥i and dim(Ci) = 3λ/4. The result
follows from the same argument as Claim 2.

Claim 4. Hyb3,c(λ) ≈ Hyb4,1 and Hyb4,j ≈ Hyb4,j+1 for all j ∈ [c(λ)− 1].

Observe that v − si ∈ Bi if and only if v − ui − si ∈ Bi since ui ∈ Bi. Since the obfuscated
programs have the same functionality, the result follows from the security of iO.

Claim 5. Hyb4,c(λ) ≈ Hyb5,1 and Hyb5,j ≈ Hyb5,j+1 for all j ∈ [c(λ)− 1].

Same argument as above.

Claim 6. The winning probability of the adversary in Hyb6 is higher than that in Hyb5,c(λ).

5shO(Ai)(−si) means the program that takes an input v, subtracts si and passes it to shO(Ai).
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Since the adversary can compute the obfuscated programs itself using (Bi, Ci, ui + si, u
′
i +

s′i)i∈[c(λ)], the result follows.
Finally, by above and by our choice of parameters for iO and shO, we get that AMain,ALeak

wins in Hyb6 with probability at least ε(λ) = 2−0.6·(λ/2)
CLOCC . That is, Pr[Hyb6 = 1] > ε(λ) =

2−0.6·(λ/2)
CLOCC .

We cannot reduce directly to Coset− LOCC yet because we cannot sample Bi, Ci since we do
not have Ai. To remedy this, we first fix Bi and Ci as follows. Let B∗ and C∗ denote the unique
subspaces of dimensions 3λ/4 and λ/4 where the last λ/4 and 3λ/4 are all zeroes, respectively.
Consider the modified version G of Coset− CompLOCC where we sample uniformly at random a
subspace A∗i of dimension λ/2 such that C∗ ⊆ A∗i ⊆ B∗, and use A∗i instead of Ai.

Lemma 2 ([CLLZ21]). Sample Ai, Bi, Ci, si, s
′
i, ui, u

′
i as above. Sample uniformly at random an

isomorphism Ti such that Ti(C∗) = Ci and Ti(B∗) = Bi. Sample u∗i ← B∗ and u
′∗
i ← (C∗)⊥. Then, ⊗

i∈[c(λ)]]

UTi

∣∣∣A∗i,si,s′i〉, (Ti(B∗), Ti(C∗), Ti(si + u∗i ), (T −1i )T (s′i + u
′∗
i ), Ti(Ai))i∈[c(λ)]]

 ≡
 ⊗

i∈[c(λ)]]

∣∣∣Ai,si,s′i

〉
, (Bi, Ci, si + ui, s

′
i + u′i, Ai)i∈[c(λ)]]

.
By the above lemma, we see that there exist A′Main,A′Leak6 that wins the modified game with

probability ε(λ). Finally, we reduce the modified game G to Coset− LOCC with security parameter
λ/2. Observe that C∗ ⊆ A∗i ⊆ B∗ implies that the last λ/4 components of A∗i are zeroes, while the
first λ/4 are completely unrestricted. Therefore, sampling A∗i is equivalent to sampling uniformly at

random a subspace A∗∗i of F
λ/2
2 of dimension λ/4, then adding all vectors v ∈ Fλ/4

2 at the beginning
and 0λ/4 at the end of each vector. Similarly, sampling si ← Fλ

2 is equivalent to sampling wi, qi ←

F
λ/4
2 and s∗∗i ← F

λ/2
2 and outputting wi||s∗∗i ||qi. Therefore, given the state

∣∣∣∣A∗∗i,s∗∗i ,s∗∗
′

i

〉
where A∗∗i is

sampled as above, we can sample s∗∗i , s
∗∗′
i , w′i ← F

λ/4
2 and construct

(∑
v∈Fλ/4

2

(−1)⟨v,w′
i⟩|v + wi⟩

)
⊗(∣∣∣∣A∗∗i,s∗∗i ,s∗∗

′
i

〉)
⊗|qi⟩ which is distributed exactly as

∣∣∣∣A∗i,s∗i ,s∗′i
〉
. By similarly converting the output

vectors, it is easy to see that we can construct A′′Main,A′′Leak that wins Coset− LOCC with probability

ε(λ) > 2−(λ/2)
CLOCC , which is a contradiction by Theorem 10.

5 Public-Key Encryption with Key Protection

In this section, we introduce the concept of public-key encryption schemes with key protection and
define various security models for it.

Definition 15 (Public-key encryption with key protection). A public-key encryption scheme PKE
with key protection consists of the following efficient algorithms.

• Setup(1λ) : Outputs classical secret key sk and a classical public key pk.

• QKeyGen(sk) : Takes the secret key sk, outputs a quantum key Rdec.

• Enc(pk,m): Takes the public key and a message m, returns an encryption of m.

6The adversary simply samples Ti and simulates AMain,ALeak with appropriate conversions using Ti.
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• Dec(Rkey, ct): Takes a quantum secret key register and a ciphertext ct, outputs decryption of
ct.

We require that the scheme satisfies correctness. LetM denote the message space.

Correctness For all messages m ∈M,

Pr

Dec(Rkey, ct) = m :
sk, pk ← Setup(1λ)
Rkey ← QKeyGen(sk)
ct← Enc(pk,m)

 = 1.

We can also define a relaxed correctness notion where we require correct decryption with prob-
ability 1− negl(λ). However, our constructions will satisfy perfect correctness.

As argued by [CLLZ21], the correctness property implies, via the As Good As New Lemma
(Lemma 1), that we can efficiently implement the decryption in a way such that we rewind after
decryption and the key register is not disturbed (or negligibly disturbed in the relaxed correctness
regime). We will assume that it is implemented as such and therefore correctness implies that the
protected key can be used to correctly decrypt any polynomial number of ciphertexts.

We first reproduce the two anti-piracy security7 definitions of [CLLZ21]. In the first one, we
require that an adversary cannot split a quantum key in a way that both registers can be used to
simultaneously decrypt encryptions of random messages.

Definition 16 (Anti-piracy security for public-key encryption - random challenge message [CLLZ21]).
Consider the following game between an adversary A and the challenger.

PKE− AntiPiracy − Guess(λ,A)

1. Sample pk, sk ← PKE.Setup(1λ).

2. Sample Rkey ← PKE.QKeyGen(sk) and submit pk,Rkey to A.

3. A gets access to Rdec and pk and it produces a pair of registers (R1, R2).

4. The challenger samples two challenge messages m∗1,m
∗
2 ←M.

5. The challenger computes ct1 ← PKE.Enc(pk,m∗1) and ct2 ← PKE.Enc(pk,m∗2).

6. The challenger runs m′1 ← Uuniv(R1, ct1) and m
′
2 ← Uuniv(R2, ct2).

7. Output 1 if and only if both m1
′ = m∗1 and m2

′ = m∗2.

A public-key encryption scheme PKE with key protection is said to satisfy random challenge message
anti-piracy security if for all QPT adversaries A,

Pr[PKE− AntiPiracy − Guess(λ,A) = 1] ≤ 1

|M|
+ negl(λ).

We call each register R1, R2 a freeloader or a decryptor. They are each interpreted as the
description of some quantum circuit Φ (with some hardwired state ρ) that we run using the universal
quantum circuit Uuniv, to obtain Φ(ρ, ct).

We can define a variation of the above security game, called identical challenge mode, where
we present both freeloaders with the same challenge ciphertext. [AKL23] show that security in the
independent challenge mode implies security in the identical challenge mode. However, we show
that the other direction is not true.

7Public key-encryption with anti-piracy security is also called single-decryptor encryption in the literature.
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Theorem 12. Let PKE be a public-key encryption scheme with key protection that satisfies random
challenge message anti-piracy security in the identical challenge mode. Then, PKE′ constructed
below satisfies random challenge message anti-piracy security in the identical challenge mode but
not in the independent challenge mode.

PKE′.Setup(1λ)

1. pk0, sk0 ← PKE.Setup(1λ).

2. pk1, sk1 ← PKE.Setup(1λ).

3. Output (pk0, pk1), (sk0, sk1).

PKE′.QKeyGen((sk0, sk1))

1. Output PKE.QKeyGen(sk0),PKE.QKeyGen(sk1).

PKE′.Enc(pk,m)

1. Sample c← {0, 1}.

2. Output (PKE.Enc(pkc,m), c).

PKE′.Dec((Rkey,0, Rkey,1), (ct, c))

1. Output PKE.Dec(Rkey,c, ct).

Proof. In the identical challenge mode, both freeloaders receive encryptions under the same public
key pkc. Therefore, by anti-piracy security of PKE, we get that PKE′ is also anti-piracy secure in
the identical challenge mode.

However, the following adversary A breaks independent challenge anti-piracy security for PKE′.
A outputs Rkey,0 to the first register and Rkey,1 to the second register. Observe that with probability
1/4, the first freeloader will receive an encryption under pk0 and the second one will receive one
under pk1. In this case, both freeloaders will be able to decrypt their challenge ciphertexts by
the correctness of PKE. Therefore, A wins anti-piracy security game in the independent challenge
mode with probability 1/4.

In the second definition, we require that an adversary cannot split a quantum key in a way
that both registers can be used to simultaneously distinguish encryptions of challenge messages.
Note the baseline success probability is 1/2 since the adversary can output the key to one of the
registers, and for the other register it outputs an adversary that randomly guesses the challenge
bit. By the correctness of the key, this attack succeeds with probability 1/2.

Definition 17 (Anti-piracy security for public-key encryption - CPA-style [CLLZ21]). Consider
the following game between an adversary A and the challenger.
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PKE− AntiPiracy − CPA(λ,A)

1. Sample pk, sk ← PKE.Setup(1λ).

2. Sample Rkey ← PKE.QKeyGen(sk) and submit pk,Rkey to A.

3. A gets access to Rdec and pk, and it produces a pair of registers (R1, R2) and two messages
m0,m1.

4. The challenger samples two challenge bits b1, b2 ← {0, 1}.

5. The challenger computes ct1 ← PKE.Enc(pk,mb1) and ct2 ← PKE.Enc(pk,mb2).

6. The challenger runs b′1 ← Uuniv(R1, ct1) and b
′
2 ← Uuniv(R2, ct2).

7. Output 1 if and only if both b1
′ = b1 and b′2 = b2.

A public-key encryption scheme PKE with key protection is said to satisfy CPA-style anti-piracy
security if for all QPT adversaries A,

Pr[PKE− AntiPiracy − CPA(λ,A) = 1] ≤ 1

2
+ negl(λ).

Lemma 3 ([CLLZ21]). Suppose a public-key encryption scheme satisfies CPA-style anti-piracy
security. Then, it also satisfies regular CPA-security.

For anti-piracy security, unlike the classical case, CPA-style security is not known to imply ran-
dom challenge message security since there are two adversaries that need to decrypt simultaneously.
See [CLLZ21, Appendix D.4] for a discussion.

Similar to the previous case, we can define a variation of the above security game, called identical
challenge mode, where use the same randomness to compute both of the challenge ciphertexts.

Theorem 13. Let PKE be a public-key encryption scheme with key protection that satisfies CPA-
style anti-piracy security in the identical challenge mode. Then, PKE′ constructed below Theorem 12
satisfies CPA-style anti-piracy security in the identical challenge mode but not in the independent
challenge mode.

Proof. In the identical challenge mode, both freeloaders receive encryptions under the same public
key pkc. Therefore, by anti-piracy security of PKE, we get that PKE′ is also anti-piracy secure in
the identical challenge mode.

However, the following adversary A breaks independent challenge anti-piracy security for PKE′.
A outputs Rkey,0 to the first register and Rkey,1 to the second register. Let c0, c1 denote the random
bits contained in the challenge ciphertexts.

• If c0 = 0, c1 = 0, the first freeloader uses its key to decrypt, the second freeloader outputs a
random prediction.

• If c0 = 0, c1 = 1, then both freeloaders can use their keys to correctly decrypt their challenge
ciphertexts.

• If c0 = 1, c1 = 0, then both freeloaders output random predictions.

• If c0 = c1 = 1,the second freeloader uses its key to decrypt, the first freeloader outputs a
random prediction.
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Observe that A wins the independent challenge anti-piracy security game with probability

1

4
· 1
2
+

1

4
· 1 + 1

4
· 1
4
+

1

4
· 1
2
=

9

16
.

We now introduce the notion of LOCC leakage-resilience. Similar to anti-piracy, we can define
two variants: random challenge message and CPA style. In both definitions, we assume that the
last message in the LOCC protocol is from the leakage adversary to the main adversary. Therefore,
if the number of rounds is even, the first message will be from the main adversary, and otherwise
it will be from the leakage adversary. We also define a relaxation of our model where the LOCC
adversary is only allowed a bounded, < g(λ), number of rounds8.

Definition 18 (LOCC Leakage-resilience for public-key encryption - random challenge message).
Consider the following game between the challenger and an LOCC adversary A = (AMain,ALeak).

PKE− LOCC− Guess(λ,A)

1. Sample pk, sk ← PKE.Setup(1λ).

2. Sample Rdec ← PKE.QKeyGen(sk) and submit pk,Rdec to ALeak.

3. (AMain,ALeak) execute their LOCC protocol.

4. After the LOCC protocol is over, challenger samples m ←M and ct ← PKE.Enc(pk,m). It
submits ct to AMain.

5. AMain outputs a guess m′ ∈ {0, 1}.

6. The challenger outputs 1 if and only if m′ = m.

A public-key encryption scheme PKE with key protection is said to satisfy random challenge message
g(λ)-round LOCC leakage-resilience if for any QPT g(λ)-LOCC adversary (AMain,ALeak),

Pr[PKE− LOCC− Guess(λ,A) = 1] ≤ 1

|M|
+ negl(λ).

If PKE satisfies the above for any polynomial g(λ), we simply say that it satisfies random
challenge message LOCC leakage-resilience.

Definition 19 (LOCC Leakage-resilience for public-key encryption - CPA-style). Consider the
following game between the challenger and an LOCC adversary A = (AMain,ALeak).

PKE− LOCC− CPA(λ,A)

1. Sample pk, sk ← PKE.Setup(1λ).

2. Sample Rkey ← PKE.QKeyGen(sk) and submit pk,Rdec to ALeak.

3. (AMain,ALeak) execute their LOCC protocol.

4. After the LOCC protocol is over, AMain outputs two messages m0,m1.

8Note that g(λ) is implicitly polynomial since we are considering QPT adversaries.
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5. Challenger samples b← {0, 1} and ct← PKE.Enc(pk,mb). It submits ct to AMain.

6. AMain outputs a guess b′ ∈ {0, 1}.

7. The challenger outputs 1 if and only if b′ = b.

A public-key encryption scheme PKE with key protection is said to satisfy CPA-style g(λ)-round
LOCC leakage-resilience if for any QPT g(λ)-round LOCC adversary (AMain,ALeak),

Pr[PKE− LOCC− CPA(λ,A) = 1] ≤ 1

2
+ negl(λ).

If PKE satisfies the above for any polynomial g(λ), we simply say that it satisfies CPA-style
LOCC leakage-resilience.

We make the following observations regarding these definitions.

Remark 1. g(λ)-round LOCC leakage-resilience implies h(λ)-round LOCC leakage-resilience for
any h(λ) < g(λ).

Remark 2. g(λ)-round LOCC leakage-resilience for g(λ) > 1 can be considered an adaptive leakage
model: The main adversary can send the leakage adversary description of an adaptive leakage
circuit, which the leakage adversary can execute on the public key pk and the quantum key using a
universal quantum circuit.

Lemma 4. Suppose a public-key encryption scheme satisfies CPA-style 1-round LOCC leakage-
resilience. Then, it also satisfies regular CPA-security.

Proof. Obvious: consider the leakage adversary ALeak that sends pk as its only message.

5.1 Relationship Between CPA-style and Random Challenge Message Leakage-
Resilience

In this section, we show that similar to the classical case, CPA-style security implies security against
random challenge messages in the LOCC leakage model. Then, we show that any scheme satisfying
the latter can be used to construct a scheme satisfying the former, by using randomness extractors
(more specifically, Goldreich-Levin bits).

Theorem 14. Let PKE be a public-key encryption scheme with key protection that satisfies CPA-
style g(λ)-round LOCC leakage-resilience. Then, it also satisfies random challenge message g(λ)-
round LOCC leakage-resilience.9

The results follows from the standard reduction.

Proof. Suppose for a contradiction that there exists a g(λ)-round QPT LOCC adversary A =
(AMain,ALeak) that wins the random challenge message LOCC leakage-resilience game with prob-
ability 1/q(λ) for infinitely many values of λ > 0 where q(·) is a polynomial. We construct an
adversary A′ = (A′Main,A′Leak) for the CPA-style LOCC leakage-resilience game as follows.

We define A′Leak to be the same as ALeak. A′Main is defined to be the same as AMain until the
end of the LOCC protocol, but we only change the challenge-response part of AMain. After the
protocol is over, A′Main samples two random messages m0,m1 ← M. It outputs (m0,m1) as its
choice of challenge messages and also saves them in its state. Then, when the challenge ciphertext

9We make the standard assumption that the message space M is of superpolynomial size.
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ct is presented, it runs AMain on ct (and its state) to obtain a guess m′. If m′ = m0 it outputs 0, if
m′ = m1 it outputs 1, otherwise it outputs a random bit b′′ ← {0, 1}.

Assume m0 ̸= m1, which is without loss of generality since it happens with overwhelming
probability.

Conditioned on the challenge bit value b = 0, A′ perfectly simulates PKE− LOCC− Guess(λ,A).
Therefore, AMain outputs m0 with probability 1/q(λ). Note that AMain outputs m1 with negligible
probability since m1 is independent of its view. Hence, A′ wins with probability at least 1/q(λ) +
(1− 1/q(λ)) · 1/2− negl(λ).

Conditioned on the challenge bit value b = 1, the adversary A′ again perfectly simulates
PKE− LOCC− Guess(λ,A). Therefore, by the same argument as above, A′ wins with probability
at least 1/q(λ) + (1− 1/q(λ)) · 1/2− negl(λ).

Finally, by above, we see that A′ wins PKE− LOCC− CPA with probability 1/2 + 1/2 · q(λ),
which is a contradiction.

Now we show that we can construct a CPA-style leakage-resilient scheme in a black-box way
from a scheme that is only leakage-resilient in the random challenge message setting.

Theorem 15. Suppose there exists a public-key encryption scheme encrypting plaintexts of size
m(λ) > λ into ciphertexts of size n(λ), that satisfies g(λ)-round LOCC leakage-resilience against
random challenge messages. Then, for any polynomial p(·), then there exists a public-key encryption
scheme, encrypting messages of size p(λ) into ciphertexts of size p(λ)·(m(λ)+n(λ)+1), that satisfies
CPA-style g(λ)-round LOCC leakage-resilience. Further, it uses the previous scheme in a black-box
way and it has the same key size.

Proof. Suppose PKE′ is a public-key encryption scheme that satisfies g(λ)-round LOCC leakage-
resilience against random challenge messages, as in the theorem statement. We construct PKE as
follows.

PKE.Setup(1λ)

Same as PKE′.Setup.

PKE.QKeyGen(sk)

Same as PKE′.QKeyGen.

PKE.Enc(pk,m)

1. For each i ∈ [p(λ)], sample ki, ri ← {0, 1}m(λ).

2. Output (PKE′.Enc(pk, ki), ri, ⟨ki, ri⟩ ⊕ (m)i)i∈[p(λ)].

PKE.Dec(Rdec, ct)

1. Parse (cti, ri, bi)i∈[p(λ)] = ct.

2. For each i ∈ [p(λ)], compute xi ← bi ⊕ ⟨PKE′.Dec(Rdec, cti), ri⟩.

3. Output (xi)i∈[p(λ)].
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It is easy to see that PKE satisfies correctness. Only subtlety is the fact that to decrypt a
ciphertext, we are using PKE′.Dec multiple times. However, as discussed before, by correctness of
PKE′.Dec and by rewinding, we can correctly decrypt polynomially many messages.

We claim that PKE satisfies CPA-style g(λ)-round LOCC leakage-resilience. For each j ∈
{0, 1, . . . , p(λ)}, define the hybrid game Hybj as follows by modifying PKE− LOCC− CPA. Change
the challenge ciphertext from

(PKE′.Enc(pk, ki), ri, ⟨ki, ri⟩ ⊕ (mb)i)i∈[p(λ)]

to

(PKE′.Enc(pk, ki), ri, U
(i)
1 ⊕ (mb)i)i∈[j], (PKE

′.Enc(pk, ki), ri, ⟨ki, ri⟩ ⊕ (mb)i)i∈{j+1,...,p(λ)}.

where each U
(i)
1 for i ∈ [p(λ)] are independent uniformly random samples from {0, 1}. Observe

that Hyb0 is the original leakage-resilience game PKE− LOCC− CPA. Further, it is easy to see that

Pr
[
Hybp(λ) = 1

]
≤ 1/2 since each bit of the message is encrypted with the one-time pad key U

(i)
1 ,

an independent random bit. Now, we will show that Hybj ≈ Hybj+1 for each j ∈ {0, 1, . . . , p(λ)},
and then an applying the hybrid lemma will complete the proof.

Suppose for a contradiction that there is an adversary A = (AMain,ALeak), an index j and a
polynomial w(λ) such that |Hybj−Hybj+1| ≥ 1

w(λ) for infinitely many values of λ. Let ρ denote the
final state of AMain, before it receives the challenge ciphertext. Note that this state has the same
distribution in both hybrids since they only differ in their computation of the challenge ciphertext.

Then, it is easy to see that we can distinguish (PKE′.Enc(pk, kj+1), rj+1, U1 ⊕ (mb)j+1) versus
(PKE′.Enc(pk, kj+1), rj+1, ⟨rj+1kj+1⟩ ⊕ (mb)j+1) with advantage 1/w(λ) using ρ. In turn, by a
standard argument, this implies that we can predict ⟨rj+1kj+1⟩ with probability at least 1/2+1/(2 ·
w(λ)) using ρ, PKE′.Enc(pk, kj+1) and rj+1. Finally, by Theorem 7, this means that there exists an
efficient algorithm that predicts kj+1 with probability 1/w2(λ) on input ρ and PKE′.Enc(pk, kj+1).
However, this is a contradiction to random challenge message g(λ)-round LOCC leakage-resilience
of PKE.

5.2 Relationship Between Anti-Piracy Security and Leakage-Resilience

In this section, we show various results regarding the relationship between anti-piracy security and
leakage-resilience.

Theorem 16. Let PKE be a public-key encryption scheme with key protection that satisfies anti-
piracy security with random challenge messages. Then, it also satisfies 1-round random challenge
message LOCC leakage-resilience.

The simple proof relies on the fact that if there is an adversary that can win the leakage-resilience
game, then in the anti-piracy game we can leak on the key first and then clone the leakage which
is classical.

Proof. Suppose for a contradiction that there exists a 1-round QPT LOCC adversary pair A =
(AMain,ALeak) that wins the random challenge message LOCC leakage-resilience game with non-
negligible probability. We construct an adversary A′ for PKE− AntiPiracy − Guess as follows.

A′(Rkey, pk)

Simulate ALeak on Rkey, pk to obtain a classical leakage message ℓ. Output ((A′′, ℓ), (A′′, ℓ)).
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A′′(R, ct)
Same as AMain.

Now, observe that conditioned on some fixed values of the leakage and the public key, the
success of the two freeloaders are independent. Hence, can write the probability of A′ winning as

Pr
[
PKE− AntiPiracy − Guess(λ,A′) = 1

]
= Epk,ℓ[

(
Pr
[
A′′(ℓ′, ct) = m∗|pk′ = pk, ℓ′ = ℓ

])2
] = Epk,ℓ[(Pr[AMain(ℓ, ct) = m∗])2]

where ct← PKE.Enc(pk′,m∗) and m∗ ←M. Note that we also have

1

p(λ)
< Pr[PKE− LOCC− Guess(λ,A) = 1] = Epk,ℓ[(Pr[AMain(ℓ, ct) = m∗])]

for infinitely many values of λ > 0 by assumption. Then, by Jensen’s inequality,

Epk,ℓ

[
Pr[AMain(ℓ, ct) = m∗]2

]
>

1

p2(λ)

for infinitely many values of λ > 0, which is a contradiction to anti-piracy security of PKE.
Our proof generalizes to the non-uniform quantum advice adversaries in a straightforwards

manner: If AMain has advice {σλ}λ and ALeak has advice {τλ}λ, we define A′ so that it has advice
{σ⊗2λ ⊗ τλ}λ. It uses τλ to simulate ALeak, and it outputs ((A′′, ℓ, σλ), (A′′, ℓ, σλ)) at the end. A′′
uses σλ that it receives in its input to simulate AMain.

Combining with our previous results, we obtain the following corollary.

Corollary 1. Suppose there exists a public-key encryption scheme with key protection that satisfies
anti-piracy security against random challenge messages. Then, there exists a public-key encryption
scheme with key protection that uses the former in a black-box way and satisfies CPA-style 1-round
LOCC leakage-resilience.

Theorem 17. Let PKE be a public-key encryption scheme with key protection that satisfies anti-
piracy security with random challenge messages against adversaries with non-uniform quantum
advice. Then, it also satisfies 2-round random challenge message LOCC leakage-resilience against
adversaries with non-uniform quantum advice.

Proof is similar to above, but it utilizes the non-uniform quantum advice to obtain two copies
of the state of AMain.

Proof. Suppose for a contradiction that there exists a 2-round QPT LOCC adversary pair A =
(AMain,ALeak) that wins the random challenge message LOCC leakage-resilience game with non-
negligible probability. SupposeAMain has advice {σλ}λ andALeak has advice {τλ}λ. SinceAMain out-
puts a classical message to ALeak and a state at the beginning, we can write

∑
x∈{0,1}k(λ) qx,λ|x⟩⟨x|⊗

ξx,λ = AMain(1
λ, σλ) where k(λ) is the length of the first message. Define

ξ′λ =
∑

x∈{0,1}k(λ)
qx,λ|x⟩⟨x| ⊗ ξx,λ ⊗ ξx,λ.

We construct an adversary A′ for PKE− AntiPiracy − Guess as follows. We define the non-
uniform quantum advice of A′ to be {τλ ⊗ ξ′λ}.
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A′(Rkey, pk, ξ
′
λ)

Sample from ξ′λ to obtain x and ξx,λ⊗ ξx,λ for some x ∈ {0, 1}k(λ). Simulate ALeak on Rkey, pk, x, τλ
to obtain a classical leakage message ℓ. Output ((A′′, ℓ, ξx,λ), (A′′, ℓ, ξx,λ)).

A′′(R, ct)
Same as AMain.

Similar to the proof of the previous theorem, observe that conditioned on some fixed values of the
leakage, the public key and the first message x, the success of the two freeloaders are independent.
Hence, can write the probability of A′ winning as

Pr
[
PKE− AntiPiracy − Guess(λ,A′) = 1

]
= Epk,x,ℓ[

(
Pr
[
A′′(ℓ′, ct, ξx′,λ) = m∗|pk′ = pk, x′ = x, ℓ′ = ℓ

])2
]

= Epk,x,ℓ[(Pr[AMain(ℓ, ct, ξx,λ) = m∗])2],

where ct ← PKE.Enc(pk′,m∗), m∗ ← M and x is sampled with probability qx,λ independently.
Note that we also have

1

p(λ)
< Pr[PKE− LOCC− Guess(λ,A) = 1] = Epk,x,ℓ[(Pr[AMain(ℓ, ct, ξx,λ) = m∗])]

for infinitely many values of λ > 0 by assumption. Then, by Jensen’s inequality,

Epk,x,ℓ

[
Pr[AMain(ℓ, ct, ξx,λ) = m∗]2

]
>

1

p2(λ)

for infinitely many values of λ > 0, which is a contradiction to anti-piracy security of PKE.

Again, combining with our extractor based transformation from the previous section, we obtain
the following result.

Corollary 2. Suppose there exists a public-key encryption scheme with key protection that satisfies
random challenge message anti-piracy security against adversaries with non-uniform quantum ad-
vice. Then, there exists a public-key encryption scheme with key protection that uses the former in
a black-box way and satisfies CPA-style 2-round LOCC leakage-resilience against adversaries with
non-uniform quantum advice.

While we are not able to directly show that CPA-style anti-piracy security implies CPA-style
LOCC leakage-resilience, we have the following win-win result that show that either such an impli-
cation does exist, or we can construct (weak) quantum lightning. Later, we also show that based
on existence of quantum lightning (and an additional strong obfuscation assumption), we can show
that anti-piracy security does not imply stronger LOCC leakage-resilience notions. Therefore, it is
likely that the current state of affairs we establish is not a limitation of our proof techniques but
rather it is the due to an inherent separation between anti-piracy and LOCC leakage-resilience.

Theorem 18. Let PKE be a public-key encryption scheme with key protection that satisfies CPA-
style anti-piracy security. Then both of the following are true.

• Either PKE is infinitely often CPA-style 1-round LOCC leakage-resilient, or PKE can be used
to build weak quantum lightning (in the setup model).

• Either PKE CPA-style 1-round LOCC leakage-resilient, or PKE can be used to build infinitely
often secure weak quantum lightning (in the setup model).
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Proof. We will assume that PKE is not LOCC leakage-resilient, and we will construct a quantum
lightning scheme. If PKE is anti-piracy secure against adversaries with quantum advice, the quan-
tum lightning scheme we construct is also secure against adversaries with quantum advice. The
only difference between the two bullet points is the advantage of the LOCC adversary being an
inverse polynomial or non-negligible. Therefore, we will focus on the first bullet, and the second
bullet follows by the same argument.

Let PKE be a CPA-style anti-piracy secure public-key encryption scheme. Let AMain,ALeak be
a 1-round QPT LOCC adversary that wins the CPA-style leakage-resilience game with probability
1/2+1/p(λ) for sufficiently large λ. We construct a weak quantum lightning scheme QL as follows.

QL.Setup(1λ)

1. pk, sk ← PKE.KeyGen(1λ).

2. Rkey ← PKE.QKeyGen(sk).

3. ℓ, σ ← ALeak(Rkey, pk).

4. Output pk, ℓ.

QL.Bolt((pk, ℓ))

1. Sample m0,m1, ρ← AMain(ℓ)

2. Output (m0,m1), ρ.

QL.Verify((ℓ, pk), (m0,m1), ρ)

1. b← {0, 1}.

2. ct← PKE.Enc(pk,mb).

3. b′ ← AMain(ρ, ct).

4. Output 1 if b′ = b. Otherwise, output 0.

First, we argue correctness. Observe that when the verification procedure is run on an honestly
generated bolt, it perfectly simulates AMain,ALeak playing PKE− LOCC− CPA. Since we assumed
that the adversary wins with probability 1/2 + 1/p(λ), correctness of QL with same probability
follows.

We now argue security. Suppose for a contradiction that there exists an adversary B(ℓ, pk)
that produces a pair of registers R1, R2 and a serial number (m0,m1) such that when we run
QL.Verify((ℓ, pk), (m0,m1), Ri) for i ∈ {1, 2}, with probability 1/2+1/q(λ) both verification passes
simultaneously, where q(λ) is a polynomial. Then, we construct the following adversary for the
anti-piracy game for PKE. Given the keys pk,Rkey, we first run ALeak to obtain ℓ, and then we run B
on these to obtain R1, R2 and (m0,m1) as above. Finally, we output ((AMain(R1, ·)), (AMain(R2, ·))
as the freeloader adversaries and m0,m1 as the challenge messages. Then, observe that running
QL.Verify((ℓ, pk), (m0,m1), Ri) for i ∈ {1, 2} exactly corresponds to the second part of the challenger
of the anti-piracy game. Hence, this adversary we constructed wins the anti-piracy game with
probability 1/2 + 1/q(λ), which is a contradiction. This establishes the 1/2 + negl(λ) security of
our mini-scheme.
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Quantum Lightning Implies the Other Direction

Above, we have established that anti-piracy security implies 2-round random challenge message
LOCC leakage-resilience (in non-uniform quantum advice model), and it also implies 1-round CPA-
style LOCC leakage-resilience or quantum lightning exists with no additional assumptions.

Therefore, one might wonder if LOCC leakage-resilience in general is a weaker notion than anti-
piracy and if it is directly implied by anti-piracy. In this section, we give a heuristical justification
that this is not the case: If quantum lightning exists, then based on additional (strong) obfuscation
assumptions, there exists a public-key encryption scheme with key protection that satisfies anti-
piracy security but not 2-round LOCC leakage-resilience (in no quantum advice model). Since our
construction is based on coset states, we suggest the reader first read Section 5.3.

We first give the following property of coset states.

Theorem 19 (Computational Direct Product Hardness for Coset States [CLLZ21, Theorem 4.6]).
Assume the existence of iO and one-way functions. Sample uniformly at random a subspace A of Fλ

2

of dimension λ
2 and two elements s, s′ ← Fλ

2 . Sample OP0 ← iO(A+ s). and OP1 ← iO(A⊥ + s′).
Then, any QPT adversary, on input

∣∣As,s′
〉
,OP0,OP1, outputs (v, w) such that v ∈ A + s and

w ∈ A⊥ + s′ with negligible probability.

Our theorem below is in the no quantum advice model for adversaries.

Theorem 20. Suppose qO is a virtual black-box obfuscation scheme for quantum circuits and QL
is a quantum lightning scheme. Then, there exists a public-key encryption scheme that satisfies
anti-piracy security but does not satisfy 2-round LOCC leakage-resilience.

We construct such a scheme as follows. Let d(λ) denote the length of the serial numbers of QL.
Proof utilizes the fact that in the anti-piracy game, we need to come up with two decrypting adver-
saries as opposed to a single adversary in the LOCC leakage-resilience game. In our construction,
we require that, to be able to decrypt a ciphertext, the adversary needs to have a valid quantum
lightning bolt and it needs to output some vectors in either Ai + si or A

⊥
i + s′i depending on the

serial number of the bolt. Since the 2-round LOCC adversary can sample a bolt, send the serial
number to the leakage adversary and measure the coset state accordingly, the construction is not
LOCC leakage-resilient. However, the anti-piracy adversary will need to produce two valid bolts,
which will have different serial numbers by the security of quantum lightning. Then, by direct
product hardness, it will not be able to produce two freeloaders that can both decrypt.

We now give the full construction.

PKE.Setup(1λ)

1. For i ∈ [d(λ)],

1.1. Sample Ai a subspace of dimension λ/2 of Fλ
2 .

1.2. Sample two vectors si, s
′
i ← Fλ

2 .

1.3. Sample OP0
i ← qO(Ai + si).

1.4. Sample OP1
i ← qO(A⊥i + s′i).

2. Set sk = (Ai, si, s
′
i)i∈[d(λ)].

3. Set pk = (OP0
i ,OP

1
i )i∈[d(λ)].

4. Output (pk, sk).
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PKE.QKeyGen(sk)

1. Parse (Ai, si, s
′
i)i∈[d(λ)] = sk.

2. Output
(∣∣∣Ai,si,s′i

〉)
i∈[d(λ)]

.

PKE.Enc(pk,m)

1. Parse (OP0
i ,OP

1
i )i∈[d(λ)] = pk.

2. Sample ct← qO(PCt).

PCt(Rbolt, x, u1, . . . , ud(λ))

Hardcoded: (OP0
i ,OP

1
i )i∈[d(λ)],m

1. Check if QL.Ver(Rbolt, x) = 1. If check fails, output ⊥ and terminate.

2. For i ∈ [d(λ)], check if OP0
i (ui) = 1 if (x)i = 0 and if OP1

i (ui) = 1 if (x)i = 1.

3. Output m if all the checks pass. Otherwise, output ⊥.

3. Output OPCt.

PKE.Dec(Rkey, ct)

1. Parse ((Ri)i∈[d(λ)]) = Rkey and OPCt = ct.

2. Sample x,Rbolt ← QL.Bolt(1λ).

3. For indices i ∈ [d(λ)] such that (x)i = 1, apply H⊗λ to Ri.

4. Measure ((Ri)i∈[d(λ)]) in the computational basis to obtain vectors (vi)i∈[d(λ)].

5. Run the program OPCt on Rbolt, v1, . . . , vd(λ).

6. Output the result of the program.

Proof. Correctness follows in a straightforward manner from the correctness of the underlying
primitives.10

We first show that this scheme is not 2-round LOCC leakage-resilient. AMain samples a bolt
x,Rbolt ← QL.Bolt(1λ). It keeps Rbolt, x as its state and also sends x to ALeak. Then, ALeak, which
has ((Ri)i∈[d(λ)]) = Rkey, applies H

⊗λ to Ri for indices i ∈ [d(λ)] such that (x)i = 1. Finally, it
measures the resulting registers in the computational basis to obtain vectors (vi)i∈[d(λ)]. It submits
the vectors to AMain. When AMain is presented with a challenge ciphertext, it runs it on Rbolt, x
and (vi)i∈[d(λ)]. It is easy to see that this is a perfect simulation of an honest decryption, therefore,
(AMain,ALeak) wins the 2-round leakage-resilience game with probability 1− negl(λ).

Now we show that PKE satisfies anti-piracy security. Suppose for a contradiction that there
exists an adversary that wins the anti-piracy security game with non-negligible probability. We
first replace the freeloader adversaries with oracle-aided simulated ones that we obtain using the
security of qO. Observe that for both to successfully decrypt, the simulated adversaries need to

10We only have overwhelming correctness here since QL.Ver is only guaranteed to have overwhelming correctness.
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query their PCt oracles with inputs Rbolt,1, x, v1, . . . , vd(λ) and Rbolt,2, y, w1, . . . , wd(λ) such that x =
QL.Ver(Rbolt,1, x) = 1, y = QL.Ver(Rbolt,2, y) = 1 and vi, wi for i ∈ [d(λ)] that are in correct cosets
with respect to (x)i, (y)i, respectively

11. Now, observe that, by security of QL, we will have x ̸= y
except with negligible probability. Hence there exists an index i∗ ∈ [d(λ)] such that (x)i∗ ̸= (y)i∗ .
Hence, once we have Rbolt,1, v1, . . . , vd(λ) and Rbolt,2, w1, . . . , wd(λ), we can run QL.Ver on both bolts

to find i∗, after which we obtain either vi∗ ∈ Ai∗+si∗ , wi∗ ∈ A⊥i∗+s′i∗ or wi∗ ∈ Ai∗+si∗ , vi∗ ∈ A⊥i∗+s′i∗ .
Overall, we obtain such vectors with probability 1/q(λ) for some polynomial q(·). Finally, we can
break the direct product hardness (Theorem 19) as follows. We place the coset state (and the
obfuscated programs) obtained from the challenger at a random index j ← [d(λ)] and run the
reduction above by filling in the other indices with coset states we sample ourselves. Since for
any value of j the input distribution to the reduction above is the same, we obtain vectors that
break the direct product hardness for the coset state obtained from the challenger with probability
1/(q(λ) · d(λ)), which is a contradiction by Theorem 19. Therefore, PKE satisfies anti-piracy
security.

It is easy to see that the result above can be generalized to the case of adversaries with non-
uniform quantum advice in a straightforward manner. In this case, we assume that the quantum
lightning scheme has a setup phase and a public key. The LOCC leakage attack proceeds the same
as before, with the only difference being that we now need 3 rounds and in the first round, ALeak

sends the public key of the lightning scheme to AMain.

Theorem 21. Suppose QL is a quantum lightning scheme and qO is a virtual black-box obfuscation
scheme for quantum circuits. Then, there exists a public-key encryption scheme that satisfies anti-
piracy security against adversaries with non-uniform quantum advice but does not satisfy 3-round
LOCC leakage-resilience.

5.3 Coset State-Based Construction

In this section, we show that the anti-piracy secure public-key encryption scheme of [CLLZ21]
based on coset states also satisfies CPA-style LOCC leakage-resilience. For completeness, we first
recall the construction of [CLLZ21], slightly modified to match our notation and the parameters
we require for LOCC leakage-resilience.

Assume the existence of following schemes.

• iO, subexponentially secure indistinguishability obfuscation scheme,

• CCObf, compute-and-compare obfuscation for 2−λ
0.5·CCompLOCC

-unpredictable distributions.

• Subexponentially-secure one-way functions.

PKE.Setup(1λ)

1. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

2. Set sk = (Ai, si, s
′
i)i∈[c(λ)].

11While the simulated adversaries will have many queries to their oracles, there will be polynomially many, and
we can make a random guess and we will correctly predict which query is of the above form with only a polynomial
loss. After out prediction, we do keep the register that is in the query but we do not run QL.Ver on it, since later
we will output it and the quantum lightning will run QL.Ver on it. We simply output the hidden message m for this
query. Observe that conditioned on having hit the correct index for this special query, we do not affect the rest of
the adversary.
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3. For i ∈ [c(λ)],

3.1. Sample OP0
i ← iO(Ai + si).

3.2. Sample OP1
i ← iO(A⊥i + s′i).

4. Set pk = (OP0
i ,OP

1
i )i∈[c(λ)].

5. Output (pk, sk).

PKE.QKeyGen(sk)

1. Parse (Ai, si, s
′
i)i∈[c(λ)] = sk.

2. Output
(∣∣∣Ai,si,s′i

〉)
i∈[c(λ)]

.

PKE.Enc(pk,m)

1. Parse (OP0
i ,OP

1
i )i∈[c(λ)] = pk.

2. Sample r ← {0, 1}c(λ).

3. Sample OPCt← iO(PCt), where PCt is the following program.

PCt(u1, . . . , uc(λ))

Hardcoded: (OP0
i ,OP

1
i )i∈[c(λ)],m

1. For i ∈ [c(λ)], check if OP0
i (ui) = 1 if (r)i = 0 and if OP1

i (ui) = 1 if (r)i = 1.

2. Output m if all the checks pass. Otherwise, output ⊥.

4. Output (OPCt, r).

PKE.Dec(Rkey, ct)

1. Parse ((Ri)i∈[c(λ)]) = Rkey and (OPCt, r) = ct.

2. For indices i ∈ [c(λ)] such that (r)i = 1, apply H⊗λ to Ri.

3. Run the program OPCt coherently on (Ri)i∈[c(λ)].

4. Measure the output register and output the outcome.

Theorem 22 ([CLLZ21]). PKE satisfies correctness and both CPA-style and random challenge
message anti-piracy security.

We claim that the construction is also LOCC-leakage-resilient.

Theorem 23. PKE satisfies both CPA-style LOCC leakage-resilience.

When we instantiate the assumed building blocks with known constructions, we get the following
corollary.

Corollary 3. Assuming subexponentially secure iO, one-way functions and polynomially hard
qLWE, there exists a public-key encryption scheme that satisfies CPA-style LOCC leakage-resilience.
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Proof of Security

In this section, we prove Theorem 23, that is, we show that the construction PKE satisfies LOCC
leakage-resilience. Our proof will be similar to the anti-piracy proof in [CLLZ21] in the sense that we
also utilize compute-and-compare obfuscation. However, our proof for LOCC leakage-resilience is
much more straightforward since we will not need to simultaneously extract vectors from entangled
adversaries.

We prove security through a series of hybrids.

Hyb0: The original game PKE− LOCC− CPA(λ,A).

Hyb1: We change the way we compute the challenge ciphertext.

1. Sample r ← {0, 1}c(λ).

2. Parse (Ai, si, s
′
i) = sk.

3. Sample r ← {0, 1}c(λ).

4. For i ∈ [c(λ)], set gi = CanAi if (r)i = 0 and set gi = Can(Ai)⊥ if (r)i = 1.

5. For i ∈ [c(λ)], compute yi = gi(si) if (r)i = 0 and yi = gi(s
′
i) if (r)i = 1.

6. Set g to be the function g(v1, . . . , vc(λ)) = (g1(v1)|| . . . ||gc(λ)(vc(λ))).

7. Set y = y1|| . . . ||yc(λ).

8. Compute OCC← CCObf.Obf(g, y,mb).

9. OPCt← iO(PCt′).

PCt′(u1, . . . , uc(λ))

Hardcoded: OCC

1. Output OCC(u1, . . . , uc(λ)).

10. Output (OPCt, r).

Hyb2: We again change the computation of the challenge ciphertext.

1. Sample r ← {0, 1}c(λ).

2. Parse (Ai, si, s
′
i) = sk.

3. Sample r ← {0, 1}c(λ).

4. For i ∈ [c(λ)], set gi = CanAi if (r)i = 0 and set gi = Can(Ai)⊥ if (r)i = 1.

5. For i ∈ [c(λ)], compute yi = gi(si) if (r)i = 0 and yi = gi(s
′
i) if (r)i = 1.

6. Set g to be the function g(v1, . . . , vc(λ)) = (g1(v1)|| . . . ||gc(λ)(vc(λ))).

7. Set y = y1|| . . . ||yc(λ).
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8. PSim← CCObf.Sim(1λ, |g|, |y|, |m|)

9. OPCt← iO(PCt′′).

PCt′′(u1, . . . , uc(λ))

Hardcoded: PSim

1. Output PSim(u1, . . . , uc(λ)).

10. Output (OPCt, r).

Claim 7. Hyb0 ≈ Hyb1.

Proof. Note that v ∈ Ai + si if and only if CanAi(v) = CanAi(si). Similarly for A⊥i + s′i. Then, by
correctness of the inner obfuscations (i.e., OP0

i ,OP
1
i ) in PCt and the correctness of CCObf, we have

that PCt and PCt′ have the same functionality. The result follows from the security of the outer
obfuscation.

Claim 8. Hyb1 ≈ Hyb2.

Proof. Suppose for a contradiction that there exists an adversary A = (AMain,ALeak) such that
|Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| is non-negligible. Then, we can construct a distribution D over
compute-and-compare functions and an adversary A′ for CCObf as follows.

D(1λ)

1. Sample pk, sk ← PKE.Setup(1λ).

2. Sample Rkey ← PKE.QKeyGen(sk) and submit pk,Rkey to ALeak.

3. (AMain,ALeak) execute their LOCC protocol.

4. After the LOCC protocol is over, AMain outputs two messages m0,m1. Let ρ be the final
state of AMain.

5. Sample b← {0, 1}.

6. Sample r ← {0, 1}c(λ).

7. Parse (Ai, si, s
′
i) = sk.

8. For i ∈ [c(λ)], set gi = CanAi if (r)i = 0 and set gi = Can(Ai)⊥ if (r)i = 1.

9. For i ∈ [c(λ)], compute yi = gi(si) if (r)i = 0 and yi = gi(s
′
i) if (r)i = 1.

10. Set g to be the function g(v1, . . . , vc(λ)) = (g1(v1)|| . . . ||gc(λ)(vc(λ))).

11. Set y = y1|| . . . ||yc(λ).

12. Output (g, y,mb), (ρ, b, r).
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A′(P,Raux)

1. Parse (ρ, b, r) = Raux.

2. Sampe OPCt← iO(PCt′′).

PCt′′(u1, . . . , uc(λ))

Hardcoded: P

1. Output P (u1, . . . , uc(λ)).

3. Run AMain on ρ and (OPCt, r). Let b′ be the output.

4. Output 1 if b′ = b. Otherwise, output 0.

It is easy to see that A′(OCC, Raux) corresponds to Hyb1 and A′(PSim, Raux) corresponds to
Hyb2. Since we assumed Hyb1 ̸≈ Hyb2, by Definition 10 we get that there exists an adversary A′′

such that given Raux and g, it outputs y with probability at least 2−λ
0.5·CCompLOCC

.
Then, we construct an adversary A′′′ = (A′′′Main,A′′′Leak) for Coset− CompLOCC as follows.

A′′′Leak

({∣∣∣Ai,si,s′i

〉}
i∈[c(λ)]

, (OP0
i ,OP

1
i )i∈[c(λ)]

)
Set Rkey =

∣∣∣Ai,si,s′i

〉
i∈[c(λ)]

and pk = (OP0
i ,OP

1
i )i∈[c(λ)]. Simulate ALeak on Rkey, pk.

AMain
′′′

Simulate AMain until the end of the LOCC protocol to obtain the final state ρ and the challenge
messages m0,m1. Sample b ← {0, 1}. Then, compute the description of g as done by D using the
subspace descriptions (Ai, si, s

′
i) and r obtained from the challenger. Finally, run A′′ on (ρ, b, r)

and g, and output the vectors output by it.

By above, we can see thatA′′′ outputs vectors in the correct cosets with probability 2−λ
0.5·CCompLOCC

in the game Coset− CompLOCC, which is a contradiction by Theorem 11.

Observe that in Hyb2, the challenge ciphertext is independent of b. Hence, Pr[Hyb2 = 1] ≤ 1
2

and therefore Pr[PKE− LOCC− CPA(λ,A)] ≤ 1
2 + negl(λ) by above.

6 Digital Signatures Schemes with Key Protection

In this section, we introduce the concept of digital signatures with key protection and formally
define LOCC leakage-resilience for digital signature schemes with key protection. Then, we show
that the construction of [LLQZ22] of a digital signature scheme that satisfies anti-piracy security
also satisfies LOCC leakage-resilience.

Definition 20 (Digital signature scheme with key protection). A digital signature scheme DS with
key protection consists of the following algorithms.

• Setup(1λ) : Outputs a classical signing key sk and a public classical verification key vk.

• QKeyGen(sk) : Takes the signing key sk, outputs a quantum key register Rsign.
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• Sign(Rsign,m): Takes the quantum signing key and a message m, returns a signature for m.

• Ver(vk,m, sg): Takes the public verification key, a message m and a (supposed) signature sg
for m, returns 1 if sg is a valid signature for m.

We require that the scheme satisfies correctness and psuedodeterministic signatures properties. Let
M denote the message space.

Correctness For all messages m ∈M,

Pr

Ver(vk,m, sg) = 1 :
sk, vk ← Setup(1λ)
Rsign ← QKeyGen(sk)
sg ← Sign(Rsign,m)

 ≥ 1− negl(λ).

Psuedodeterministic signatures For all messages m ∈M, there exists sg∗m such that

Pr

sg = sg∗m :
sk, vk ← Setup(1λ)
Rsign ← QKeyGen(sk)
sg ← Sign(Rsign,m)

 ≥ 1− negl(λ).

Similar to the public-key encryption case, psuedodeterministic signatures property implies, via
Lemma 1, that we can assume that the signing procedure only negligibly disturbs the key. Hence,
we can sign any polynomial number of messages.

We now reproduce the anti-piracy security12 definition of [LLQZ22]. We will require that an
adversary, given the protected key, cannot produce two (possibly entangled) adversaries that can
simultaneously sign random challenge messages. Note that in both the anti-piracy security and
later in the LOCC leakage-resilience security definition, we will require the adversary to sign a
random challenge message that is presented to it at the end of the game13. This is an inherent
requirement since the signatures are classical: If we allow the adversary to choose or even see
the challenge message before it splits (in anti-piracy game) or its LOCC protocol is done (in the
leakage-resilience game), the adversary can simple sign the challenge message(s) and output it.

Definition 21 (Anti-piracy security for digital signature schemes [LLQZ22]). Consider the follow-
ing game between the challenger and an adversary A.

Sign− AntiPiracy(λ,A)

1. Sample vk, sk ← DS.Setup(1λ).

2. Sample Rsign ← DS.QKeyGen(sk) and submit vk,Rsign to A.

3. A gets access to vk,Rsign and produces a pair of registers R1, R2.

4. The challenger samples x∗1, x
∗
2 ←M.

5. The challenger runs sg1 ← Uuniv(R1, x
∗
1) and sg2 ← Uuniv(R2, x

∗
2).

6. The challenger outputs 1 if and only if DS.Ver(vk, x∗1, sg1) = 1 and DS.Ver(vk, x∗2, sg2) = 1.

12Also called copy protection
13We also make the standard assumption that the message space M is of superpolynomial size.
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We say that the digital signature scheme DS with key protection satisfies anti-piracy security if for
any QPT adversary A,

Pr[Sign− AntiPiracy(λ,A) = 1] ≤ negl(λ).

We now introduce LOCC leakage-resilience for digital signature schemes.

Definition 22 (LOCC leakage-resilience for digital signature schemes). Consider the following
game between the challenger and an LOCC adversary A = (AMain,ALeak).

Sign− LOCC(λ,A)

1. Sample vk, sk ← DS.Setup(1λ).

2. Sample Rsign ← DS.QKeyGen(sk) and submit vk,Rsign to ALeak.

3. (AMain,ALeak) execute their LOCC protocol.

4. After the LOCC protocol is over, challenger samples x∗ ←M and submits x∗ to AMain.

5. AMain outputs a forged signature sg.

6. The challenger outputs 1 if and only if DS.Ver(vk, x∗, sg) = 1.

We say that the digital signature scheme DS with key protection satisfies g(λ)-round LOCC leakage-
resilience if for any QPT g(λ)-round LOCC adversary (AMain,ALeak),

Pr[Sign− LOCC(λ,A) = 1] ≤ negl(λ).

If DS satisfies the above for any polynomial g(λ), then we simply say that it satisfies LOCC
leakage-resilience.

Remark 3. Since both definitions above are with respect to random challenge messages, they do
not imply existential unforgeability. Therefore, we will separately require that a digital signature
scheme satisfies regular EUF-CMA security (Definition 6).

We also make the following observations regarding these definitions.

Remark 4. g(λ)-round LOCC leakage-resilience implies h(λ)-round LOCC leakage-resilience for
any h(λ) < g(λ).

Remark 5. g(λ)-round LOCC leakage-resilience for g(λ) > 1 can be considered an adaptive leakage
model since the main adversary can send the description of an adaptive leakage circuit to leakage
adversary, who then executes it on the public verification key vk and the quantum key.

6.1 Relationship Between Anti-Piracy Security and Leakage-Resilience

In this section, we show various results regarding the relationship between anti-piracy security and
leakage-resilience.

Theorem 24. Let DS be a digital signature scheme with key protection that satisfies anti-piracy
security. Then, it also satisfies 1-round LOCC leakage-resilience.

Proof. Follows from the same argument as Theorem 16: When reducing to the anti-piracy game,
we simply output the classical leakage obtained using ALeak twice. Like Theorem 16, our result is
true in both classical advice and non-uniform quantum advice models for adversaries.
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Theorem 25. Let DS be a digital signature scheme with key protection that satisfies anti-piracy
security against adversaries with non-uniform quantum advice. Then, it also satisfies 2-round
LOCC leakage-resilience against adversaries with non-uniform quantum advice.

Proof. Follows from the same argument as Theorem 17: When reducing to the anti-piracy game,
we simply define the non-uniform quantum advice of the adversary so that it automatically obtains
two copies of its state.

6.2 Coset State-Based Construction

In this section, we show that anti-piracy secure digital signature scheme construction of [LLQZ22]
also satisfies LOCC leakage-resilience. For completeness, we first recall their construction, slightly
modified to match our notation and the parameters we require for LOCC leakage-resilience.

Set d0(λ) = c(λ). Pick some d2(λ) such that d2(λ) − d0(λ) is large enough to describe some
circuits that will be defined in the proof. Pick d1(λ) ≥ 2·d2(λ)+λ. Set n(λ) = d0(λ)+d1(λ)+d2(λ),
and it will also be the message length.

Assume the existence of following schemes.

• iO, 2−λciO -secure indistinguishability obfuscation scheme,

• CCObf, compute-and-compare obfuscation for 2−λ
0.5·CCompLOCC

-unpredictable and 2−m(λ)-unpredictable
distributions.

• F1, an extracting PRF family with input length n(λ) = d0(λ) + d1(λ) + d2(λ), output length
m(λ) and extraction error probability 2−λ−1 for min-entropy n.

• F2, a puncturable statistically injective PRF family with failure probability 2−λ, input length
d2 and output length d1.

• F3, a puncturable PRF family with input length d1 and output length d2.

• f , a one-way function {0, 1}m(λ) → {0, 1}m(λ).

DS.Setup(1λ)

1. Sample PRF keys Ki ← Fi.KeyGen(1
λ) for i ∈ [3].

2. Sample OPVer← iO(PVer) where PVer is the following program.

PVer(x, sg)

Hardcoded: K1,K2,K3

1. Parse x0||x1||x2 = x with |xi| = di.

2. Parse x′0||Q′ = F3(K3, x1)⊕ x2 with |x′0| = d0.

3. If x0 = x′0 and x1 = F2(K2, x
′
0||Q′), then interpret Q′ as a classical circuit and

output Q′(mode = check, sg||0d0(λ)·λ−m(λ)) and terminate.

4. Output 1 if and only if f(F1(K1, x)) = f(sg). Otherwise, output 0.

3. Set vk = OPVer and sk = (K1,K2,K3).

4. Output (vk, sk).
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DS.QKeyGen(sk)

1. Parse (K1,K2,K3) = sk.

2. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

3. For i ∈ [c(λ)],

3.1. Sample OP0
i ← iO(Ai + si).

3.2. Sample OP1
i ← iO(A⊥i + s′i).

4. Sample OPSign← iO(PSign) where PSign is the following program.

PSign(x, u1, . . . , uc(λ))

Hardcoded: K1,K2,K3, (OP
0
i ,OP

1
i )i∈[c(λ)]

1. Parse x0||x1||x2 = x with |xi| = di.

2. Parse x′0||Q′ = F3(K3, x1)⊕ x2 with |x′0| = d0.

3. If x0 = x′0 and x1 = F2(K2, x
′
0||Q′), then interpret Q′ as a classical circuit and

output Q′(mode = eval, u1|| . . . ||uc(λ)) and terminate.

4. For i ∈ [c(λ)], check if OP0
i (ui) = 1 if (x0)i = 0 and if OP1

i (ui) = 1 if (x0)i = 1.

5. Output F1(K1, x) if all the checks pass. Otherwise, output ⊥.

5. Output
(∣∣∣Ai,si,s′i

〉)
i∈[c(λ)]

,OPSign.

DS.Sign(Rkey, x)

1. Parse ((Ri)i∈[c(λ)],OPSign) = Rkey.

2. Parse x0||x1||x2 = x with |xi| = di.

3. For indices i ∈ [c(λ)] such that (x0)i = 1, apply H⊗λ to Ri.

4. Run the program OPSign coherently on (Ri)i∈[c(λ)] and x.

5. Measure the output register and output the measurement outcome.

DS.Ver(vk, x, sg)

1. Parse vk = OPVer.

2. Output OPVer(x, sg).

Theorem 26 ([LLQZ22]). DS satisfies correctness, psuedodeterministic signatures property, EUF-
CMA security and anti-piracy security.

Theorem 27. DS satisfies LOCC leakage-resilience.

When we instantiate the assumed building blocks with known constructions, we get the following
corollary.

Corollary 4. Assuming subexponentially secure iO, one-way functions and polynomially hard
qLWE, there exists a digital signature scheme that satisfies LOCC leakage-resilience.
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Proof of Security

In this section, we prove Theorem 27. Our proof uses the puncturing argument employed in the
proof of copy-protection security of DS given by [LLQZ22]. The argument relates the security of
DS to the security of PKE (Section 5.3).

We start by reproducing the following result related to trigger inputs.

Lemma 5 ([LLQZ22]). Call any input x that passes the tests in Step 3 of PVer a hidden trigger
input. Then, over the sampling of K1,K2,K3 and x ← {0, 1}n, the probability that x is a hidden
trigger input is negligible.

Lemma 6 ([LLQZ22]). We define the algorithm GenTrigger as follows on input x0, y, K2, K3, and
the tuple (Ai, si, s

′
i)i∈[c(λ)]:

1. Sample OQ← iO(Q) where Q is the following program.

Q(mode, u1|| . . . ||uc(λ))

Hardcoded: y, x0, (Ai, si, s
′
i)i∈[c(λ)]

1. If mode = check,

1.1. Set sg to be the first m(λ) bits of u1|| . . . ||uc(λ).
1.2. Output 1 if sg = y. Otherwise, output 0.

1.3. Terminate.

2. If mode = eval,

2.1. For i ∈ [c(λ)], check if ui ∈ Ai + si if (x0)i = 0 and if ui ∈ A⊥i + s′i if (x0)i = 1.
Output y if all the checks pass. Otherwise, output ⊥.

2. q1 = F2(K2, x0||OQ).

3. q2 ← F2(K3, q1)⊕ (x0||OQ).

4. Output x0||q1||q2.

Then, even given the keys Rkey, vk, we have that GenTrigger(x0, F1(K1, x),K2,K3, (Ai, si, s
′
i)i∈[c(λ)])

is indistinguishable from a uniformly random sample from {0, 1}n when x← {0, 1}n.

We prove security through a series of hybrids, each of which is constructed by modifying the
previous one.

Hyb0: The original security game Sign− LOCC(A, λ).

Hyb1: After sampling the challenge input x∗, the challenger computes y∗ = F1(K1, x
∗). We change

the way the challenger verifies the forged signature sg at the end of the game: the challenger outputs
1 if and only if sg = y∗.

Hyb2: After sampling the challenge input x∗, the challenger parses it as x∗0||x∗1||x∗2 with |x∗i | =
di. Then, it samples x∗∗0 ||x∗∗1 ||x∗∗2 ← GenTrigger(x∗0, y

∗,K2,K3, (Ai, si, s
′
i)i∈[c(λ)]). Finally, it now

submits x∗∗ to the adversary as the challenge input instead of x∗. However, at the end it still checks
the forged signature sg by comparing to y∗.
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Hyb3: The challenger now samples y∗ uniformly at random from the output space of F1.

Hyb4: We open up the sampling of x∗∗.

1. Sample OQ← iO(Q) where Q is the following program.

Q(mode, u1|| . . . ||uc(λ))

Hardcoded: y∗, x∗0, (Ai, si, s
′
i)i∈[c(λ)]

1. If mode = check,

1.1. Set sg to be the first m(λ) bits of u1|| . . . ||uc(λ).
1.2. Output 1 if sg = y∗. Otherwise, output 0.

1.3. Terminate.

2. If mode = eval,

2.1. For i ∈ [c(λ)], check if ui ∈ Ai + si if (x
∗
0)i = 0 and if ui ∈ A⊥i + s′i if (x

∗
0)i = 1.

Output y∗ if all the checks pass. Otherwise, output ⊥.

2. q1 = F2(K2, x
∗
0||OQ).

3. q2 ← F2(K3, q1)⊕ (x∗0||OQ).

4. Set x∗∗0 = x∗0, x
∗∗
1 = q1 and x∗∗2 = q2.

Hyb5: We change the way we sample OQ above. First compute

1. For i ∈ [c(λ)], set gi = CanAi if (x
∗∗
0 )i = 0 and set gi = Can(Ai)⊥ if (x∗∗0 )i = 1.

2. For i ∈ [c(λ)], compute wi = gi(si) if (x
∗∗
0 )i = 0 and wi = gi(s

′
i) if (x

∗∗
0 )i = 1.

3. Set g to be the function g(v1, . . . , vc(λ)) = (g1(v1)|| . . . ||gc(λ)(vc(λ))).

4. Set w = w1|| . . . ||wc(λ).

5. Compute OCC← CCObf.Obf(g, w, y∗).

Then, sample OQ← iO(Q′) where Q′ is the following program.

Q′(mode, u1, . . . , uc(λ))

Hardcoded: y∗,OCC

1. If mode = check,

1.1. Set sg to be the first m(λ) bits of u1|| . . . ||uc(λ).
1.2. Output 1 if sg = y∗. Otherwise, output 0.

1.3. Terminate.

2. If mode = eval,

2.1. Output OCC(u1, . . . , uc(λ)).
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Hyb6: We first sample PSim ← CCObf.Sim(1λ, |g|, |y|, |m|). Then, we now sample OQ ← iO(Q′′)
where Q′′ is the following program.

Q′′(mode, u1, . . . , uc(λ))

Hardcoded: y∗,PSim

1. If mode = check,

1.1. Set sg to be the first m(λ) bits of u1|| . . . ||uc(λ).
1.2. Output 1 if sg = y∗. Otherwise, output 0.

1.3. Terminate.

2. If mode = eval,

2.1. Output PSim(u1, . . . , uc(λ)).

Hyb7: Let CC denote the following compute-and-compare program. On an input sg of length
c(λ) · λ, it parses out the first m(λ) bits and compares it to y∗. On equality, it outputs 1 as its
hidden value. Then, sample OCC′ ← CCObf.Obf(CC, y∗, 1).

We now sample OQ as OQ← iO(Q′′′) where Q′′′ is the following program.

Q′′′(mode, u1, . . . , uc(λ))

Hardcoded: PSim,OCC′

1. If mode = check,

1.1. Compute OCC′(u1, . . . , uc(λ)). If it outputs 1, output 1. Otherwise, output 0.

1.2. Terminate.

2. If mode = eval,

2.1. Output PSim(u1, . . . , uc(λ)).

Hyb8: First sample PSim′ ← CCObf.Sim(1λ, |CC|, |y∗|, 1). We now sample OQ ← iO(Q′′′′) where
Q′′′′ is the following program.

Q′′′′(mode, u1, . . . , uc(λ))

Hardcoded: PSim,PSim′

1. If mode = check,

1.1. Compute PSim′(u1, . . . , uc(λ)). If it outputs 1, output 1. Otherwise, output 0.

1.2. Terminate.

2. If mode = eval,

2.1. Output PSim(u1, . . . , uc(λ)).

Lemma 7. Hyb0 ≈ Hyb1.
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Proof. Since the hidden trigger set is sparse (i.e., negligibly small) by Lemma 5, with all but
negligible probability x∗ will be outside this set. Hence, the check sg = y∗ is equivalent to comparing
to DS.Ver(vk, x∗, sg).

Lemma 8. Hyb1 ≈ Hyb2.

Proof. Follows from Lemma 6.

Lemma 9. Hyb2 ≈ Hyb3.

Proof. GenTrigger only uses x∗0 rather than all of x∗. More generally, x∗1 and x∗2 are independent
from the view of the adversary. Hence, x∗ has min-entropy at least d1+d2. The result follows from
the extracting property of F1.

Lemma 10. Hyb3 ≈ Hyb4.

Proof. These hybrids are exactly the same.

Lemma 11. Hyb4 ≈ Hyb5.

Proof. Similar to Claim 7, the programs Q and Q′ have the exact same functionality. The result
follows by security of iO.

Lemma 12. Hyb5 ≈ Hyb6.

Proof. Similar to Claim 8, the target vector values are unpredictable by the LOCC security of the
coset states (Theorem 10). Note that the check part of the program and the verification key vk
are sampled independently of the coset states, therefore, they do not affect this property. Finally,
the signing program OPSign is correlated with the coset states, it is only through the membership
checking programs, of which it is an efficient function. Therefore, the unpredictability still remains,
and the proof follows as in Claim 8.

Lemma 13. Hyb6 ≈ Hyb7.

Proof. Q′′ and Q′′′ have the exact same functionalty by correctness of CCObf. The result follows
by security of iO.

Lemma 14. Hyb7 ≈ Hyb8.

Proof. Observe that y∗ is independent of the view of the adversary (except for the program OCC′).
Hence, given the rest of the view of the adversary and the program description CC, it is 2−m(λ)-
unpredictable. The result follows by the security of CCObf.

In Hyb8, the adversary is required to output y∗, which is sampled uniformly at random from
{0, 1}m(λ) and is independent of view of the adversary. Therefore, we have that Pr[Hyb8 = 1] ≤
2−m(λ). By above, this implies Pr[Sign− LOCC(λ,A)] ≤ negl(λ), completing the proof.
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7 Pseudorandom Function Families with Key Protection

In this section, we introduce the concept of psuedorandom function families with key protection and
formally define LOCC leakage-resilience for such schemes. Then, we show that the construction of
[CLLZ21] of a psuedorandom function family that satisfies anti-piracy security also satisfies LOCC
leakage-resilience.

Definition 23 (Pseudorandom function family with key protection). A pseudorandom function
family with key protection consists of the following QPT algorithms.

• Setup(1λ) : Outputs a classical PRF key k for a PRF family F = {fk}k .

• QKeyGen(k) : Takes the classical key k and outputs a quantum key register Rkey.

• Eval(Rkey, x): Takes a quantum key and an input x and returns the evaluation fk(x).

We require that the scheme satisfies correctness. Let X denote the input space.

Correctness For all inputs x ∈ X ,

Pr

[
Eval(Rkey, x) = fk(x) :

k ← Setup(1λ)
Rkey ← QKeyGen(k)

]
≥ 1− negl(λ).

Similar to public-key encryption, correctness and Lemma 1 implies that we can correctly eval-
uate the PRF on any polynomial number of points.

We first reproduce the anti-piracy security definitions of [CLLZ21]. Note that in both the anti-
piracy security and later in the LOCC leakage-resilience security definition, similar to the case of
digital signatures, we will require the adversary to either predict or distinguish the evaluation of
the PRF on a random challenge input14. This is an inherent requirement since if we allow the
adversary choose the challenge input, it can simply evaluate the PRF at that point and leak or
clone the classical evaluation result.

Similar to public-key encryption, we can define two different variations: indistinguishability and
unpredictability security.

Definition 24 (Unpredictability anti-piracy security for PRFs [CLLZ21]). Consider the following
game between the challenger and an adversary A.

PRF− AntiPiracy − Guess(λ,A)

1. Sample k ← PRF.Setup(1λ).

2. Sample Rkey ← PRF.QKeyGen(k) and submit Rkey to A.

3. A gets access to Rkey and produces a pair of registers R1, R2.

4. The challenger samples x∗1, x
∗
2 ← X .

5. The challenger runs y′1 ← Uuniv(R1, x
∗
1) and y

′
2 ← Uuniv(R2, x

∗
2).

6. The challenger outputs 1 if and only if y′1 = fk(x
∗
1) and y

′
2 = fk(x

∗
2).

14We also make the standard assumption that the input space X is of superpolynomial size.
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We say that the PRF family PRF with key protection satisfies unpredictability anti-piracy security
if for any QPT adversary A,

Pr[PRF− AntiPiracy − Guess(λ,A) = 1] ≤ negl(λ).

Definition 25 (Indistinguishability anti-piracy security for PRFs [CLLZ21]). Consider the follow-
ing game between the challenger and an adversary A. Let Y denote the output space of the PRF
family.

PRF− AntiPiracy − IND(λ,A)

1. Sample k ← PRF.Setup(1λ).

2. Sample Rkey ← PRF.QKeyGen(k) and submit Rkey to A.

3. A gets access to Rkey and produces a pair of registers R1, R2.

4. The challenger samples x∗1, x
∗
2 ← X and b1, b2 ← {0, 1}. It sets y∗1 = fk(x

∗
1) and y

∗
2 = fk(x

∗
2).

5. The challenger samples z∗1 ← Y and z∗2 ← Y.

6. The challenger runs b′1 ← Uuniv(R1, x
∗
1, y
∗
1) if b1 = 0 and b′1 ← Uuniv(R1, x

∗
1, z
∗
1) if b1 = 1.

7. The challenger runs b′2 ← Uuniv(R2, x
∗
2, y
∗
2) if b2 = 0 and b′2 ← Uuniv(R2, x

∗
2, z
∗
2) if b2 = 1.

8. The challenger outputs 1 if and only if b′1 = b1 and b′2 = b2.

We say that the PRF family PRF with key protection satisfies indistinguishability anti-piracy secu-
rity if for any QPT adversary A,

Pr[PRF− AntiPiracy − IND(λ,A) = 1] ≤ 1

2
+ negl(λ).

For anti-piracy security, unlike the classical case, indistinguishability security is not known
to imply unpredictability security since there are two adversaries that need to simultaneously
distinguish the PRF output from a random value. See [CLLZ21] for a discussion.

We now introduce LOCC leakage-resilience for PRF families.

Definition 26 (Unpredictability LOCC leakage-resilience for PRFs). Consider the following game
between the challenger and an LOCC adversary A = (AMain,ALeak).

PRF− LOCC− Guess(λ,A)

1. Sample k ← PRF.Setup(1λ).

2. Sample Rkey ← PRF.QKeyGen(k) and submit Rkey to ALeak.

3. (AMain,ALeak) execute their LOCC protocol.

4. After the LOCC protocol is over, the challenger samples x∗ ← X and submits it to AMain.

5. AMain outputs a guess y′.

6. The challenger outputs 1 if and only if y′ = fk(x
∗).
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We say that the PRF family PRF with key protection satisfies unpredictability g(λ)-round LOCC
leakage-resilience if for any QPT g(λ)-round LOCC adversary A,

Pr[PRF− LOCC− Guess(λ,A) = 1] ≤ negl(λ).

If PRF satisfies the above for any polynomial g(λ), we simply say that it satisfies unpredictability
LOCC leakage-resilience.

Definition 27 (Indistinguishability LOCC leakage-resilience for PRFs). Consider the following
game between the challenger and an LOCC adversary A = (AMain,ALeak). Let Y denote the output
space of the PRF family.

PRF− LOCC− IND(λ,A)

1. Sample k ← PRF.Setup(1λ).

2. Sample Rkey ← PRF.QKeyGen(k) and submit Rkey to ALeak.

3. (AMain,ALeak) execute their LOCC protocol.

4. After the LOCC protocol is over, the challenger samples x∗ ← X , b← {0, 1} and z∗ ← Y. It
sets y∗ = fk(x

∗).

5. If b = 0, the challenger submits x∗, y∗ to AMain. Otherwise, it submits x∗, z∗.

6. AMain outputs a guess b′.

7. The challenger outputs 1 if and only if b′ = b.

We say that the PRF family PRF with key protection satisfies indistinguishability g(λ)-round LOCC
leakage-resilience if for any QPT g(λ)-round LOCC adversary A,

Pr[PRF− LOCC− Guess(λ,A) = 1] ≤ 1

2
+ negl(λ).

If PRF satisfies the above for any polynomial g(λ), we simply say that it satisfies indistinguishability
LOCC leakage-resilience.

We make the following observations regarding these definitions.

Remark 6. g(λ)-round LOCC leakage-resilience implies h(λ)-round LOCC leakage-resilience for
any h(λ) < g(λ).

Remark 7. LOCC leakage-resilience implies regular weak PRF security (Definition 2) or even a
relaxed version of regular PRF security where the adversary can query the PRF at arbitrary points
but at the end it is presented with a challenge input that is chosen uniformly at random. Both
implications follow from the fact that the leakage adversary ALeak can simply simulate the regular
(weak) PRF adversary’s queries and leak the results.

Like the classical case, single-challenge indistinguishability security implies the multi-challenge
version where the adversary is either presented with p(λ) evaluations of the PRF (b = 0) or p(λ)
random samples from the output space Y (the case b = 1).

Lemma 15. Suppose the PRF family PRF with key protection satisfies single-challenge indistin-
guishability g(λ)-round LOCC leakage-resilience. Then, it also satisfies multi-challenge indistin-
guishability g(λ)-round LOCC leakage-resilience.

Proof. A simple analogue of the classical hybrid argument yields the result in a straightforward
manner, since there is only a single adversary that needs to predict the challenge bit b.
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7.1 Relationship Between Indistinguishability and Unpredictability Leakage-
Resilience

In this section, we show that similar to the classical case, indistinguishability security implies
unpredictability security in the LOCC leakage model. Then, we show that any scheme satisfying
the latter can be used to construct a scheme satisfying the former, by using randomness extractors
(more specifically, Goldreich-Levin bits).

Theorem 28. Let PRF be a PRF scheme with key protection that satisfies indistinguishability g(λ)-
round LOCC leakage-resilience. Then, it also satisfies unpredictability g(λ)-round LOCC leakage-
resilience.

The results follows from the standard reduction.

Proof. Suppose for a contradiction that there exists a g(λ)-round QPT LOCC adversary A =
(AMain,ALeak) that wins the unpredictability LOCC leakage-resilience game with probability 1/q(λ)
for infinitely many values of λ > 0 where q(·) is a polynomial. We construct an adversary A′ =
(A′Main,A′Leak) for the indistinguishability LOCC leakage-resilience game as follows.

We define A′Leak to be the same as ALeak. A′Main is defined to be the same as AMain until the end
of the LOCC protocol, but we only change the challenge-response part of AMain. After the protocol
is over, when A′Main receives the challenge input (x∗, a∗), it runs AMain on x∗ (and its state) to
obtain a guess y′. If y′ = a∗ it outputs 0, otherwise it outputs 1.

A simple calculation akin to the proof of Theorem 14 shows that A′ wins the indistinguishability
LOCC leakage-resilience game with probability 1/2+1/(2 · q(λ))−negl(λ), which is a contradiction.

Now we show that we can construct an indistinguishability leakage-resilient scheme in a black-
box way from a scheme that is only unpredictable leakage-resilient.

Theorem 29. Let F ′ = {f ′k}k be a wPRF family with input space {0, 1}p1(λ) and output space
{0, 1}p2(λ). Let PRF′ be an unpredictable g(λ)-round LOCC leakage-resilient protection scheme
for F ′. Then, PRF constructed below is an indistinguishability g(λ)-round LOCC leakage-resilient
protection scheme for F ′ wPRF F = {fk}k defined below.

F = {fk}k

• Key distribution: Same as F ′

• Input space: {0, 1}p1(λ) × {0, 1}p1(λ)

• Output space: {0, 1}1

• Evaluation: fk(x1||x2) = ⟨f ′k(x1), x2⟩

PRF

• PRF.Setup(1λ)

Same as PRF′.Setup.

• PRF.QKeyGen(k)

Same as PRF′.QKeyGen.
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• PRF.Eval(Rkey, x1||x2)

1. Output ⟨PRF′.Eval(Rkey, x1), x2⟩.

Proof. Follows from the same argument as Theorem 15.

While the PRF family constructed above has 1-bit output, it can be generalized to have any
polynomial output length: We simply sample q(λ) independent instances of PRF and to evaluate it
on some x, we evaluate x on indiviual schemes and concatenate the outputs. The resulting scheme
satisfies indistinguishability LOCC leakage-resilience in a straightforward manner.

7.2 Relationship Between Anti-Piracy Security and Leakage-Resilience

In this section, we show various results regarding the relationship between anti-piracy security and
leakage-resilience.

Theorem 30. Let PRF be a PRF family with key protection that satisfies unpredictability anti-
piracy security. Then, it also satisfies unpredictability 1-round LOCC leakage-resilience.

Proof. Follows from the same argument as Theorem 16: When reducing to the anti-piracy game,
we simply output the classical leakage obtained using ALeak twice. Like Theorem 16, our result is
true in both classical advice and non-uniform quantum advice models for adversaries.

Combining with our previous results, we obtain the following corollary.

Corollary 5. Suppose there exists a PRF family with key protection that satisfies unpredictability
anti-piracy security. Then, there exists a PRF family with key protection that uses the former in a
black-box way and satisfies indistinguishability 1-round LOCC leakage-resilience.

Theorem 31. Let PRF be a PRF family with key protection that satisfies unpredictability anti-
piracy security against adversaries with non-uniform quantum advice. Then, it also satisfies unpre-
dictability 2-round LOCC leakage-resilience against adversaries with non-uniform quantum advice.

Proof. Follows from the same argument as Theorem 17: When reducing to the anti-piracy game,
we simply define the non-uniform quantum advice of the adversary so that it automatically obtains
two copies of its state.

Again, combining with our extractor based transformation from the previous section, we obtain
the following result.

Corollary 6. Suppose there exists a PRF family with key protection that satisfies unpredictabil-
ity anti-piracy security against adversaries with non-uniform quantum advice. Then, there exists a
PRF family with key protection that uses the former in a black-box way and satisfies indistinguisha-
bility 2-round LOCC leakage-resilience against adversaries with non-uniform quantum advice.

7.3 Coset State-Based Construction

In this section, we show that anti-piracy secure PRF scheme construction of [CLLZ21] also satisfies
LOCC leakage-resilience. Note that the construction is the same as the digital signatures construc-
tion in Section 6.2, with verification key and the verification algorithm removed. For completeness,
we recall the construction.
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Set d0(λ) = c(λ). Pick some d2(λ) such that d2(λ) − d0(λ) is large enough to describe some
circuits that will be defined in the proof. Pick d1(λ) ≥ 2·d2(λ)+λ. Set n(λ) = d0(λ)+d1(λ)+d2(λ),
and it will also be the message length.

Assume the existence of following schemes.

• iO, 2−λciO -secure indistinguishability obfuscation scheme,

• CCObf, compute-and-compare obfuscation for 2−λ
0.5·CCompLOCC

-unpredictable and 2−m(λ)-unpredictable
distributions.

• F1, an extracting PRF family with input length n(λ) = d0(λ) + d1(λ) + d2(λ), output length
m(λ) and extraction error probability 2−λ−1 for min-entropy n.

• F2, a puncturable statistically injective PRF family with failure probability 2−λ, input length
d2 and output length d1.

• F3, a puncturable PRF family with input length d1 and output length d2.

• f , a one-way function {0, 1}m(λ) → {0, 1}m(λ).

PRF.Setup(1λ)

1. Sample PRF keys Ki ← Fi.KeyGen(1
λ) for i ∈ [3].

2. Set sk = (K1,K2,K3).

3. Output sk.

PRF.QKeyGen(sk)

1. Parse (K1,K2,K3) = sk.

2. Sample (Ai, si, s
′
i)i∈[c(λ)] ← CosetGen(1λ).

3. For i ∈ [c(λ)],

3.1. Sample OP0
i ← iO(Ai + si).

3.2. Sample OP1
i ← iO(A⊥i + s′i).

4. Sample OPEval← iO(PEval) where PEval is the following program.

PEval(x, u1, . . . , uc(λ))

Hardcoded: K1,K2,K3, (OP
0
i ,OP

1
i )i∈[c(λ)]

1. Parse x0||x1||x2 = x with |xi| = di.

2. Parse x′0||Q′ = F3(K3, x1)⊕ x2 with |x′0| = d0.

3. If x0 = x′0 and x1 = F2(K2, x
′
0||Q′), then interpret Q′ as a classical circuit and

output Q′(mode = eval, u1|| . . . ||uc(λ)) and terminate.

4. For i ∈ [c(λ)], check if OP0
i (ui) = 1 if (x0)i = 0 and if OP1

i (ui) = 1 if (x0)i = 1.

5. Output F1(K1, x) if all the checks pass. Otherwise, output ⊥.
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5. Output
(∣∣∣Ai,si,s′i

〉)
i∈[c(λ)]

,OPEval.

PRF.Eval(Rkey, x)

1. Parse ((Ri)i∈[c(λ)],OPEval) = Rkey.

2. Parse x0||x1||x2 = x with |xi| = di.

3. For indices i ∈ [c(λ)] such that (x0)i = 1, apply H⊗λ to Ri.

4. Run the program OPEval coherently on (Ri)i∈[c(λ)] and x.

5. Measure the output register and output the measurement outcome.

Theorem 32 ([CLLZ21]). PRF satisfies correctness and both unpredictability and indistinguisha-
bility anti-piracy security.

Theorem 33. PRF satisfies indistinguishability LOCC leakage-resilience.

Proof. The scheme is the same as the digital signature scheme from Section 6.2, with only the
verification key removed, which makes the security proof even easier. Therefore, the security
follows from the same argument as the security proof of Section 6.2. The only difference is that
we need to show an indistinguishability security, while in the digital signatures proof, we show an
unpredictability security. However, by a close inspection of the security argument there, we can
see that the proof shows that the target value (which is the target signature in the signature game)
can be made uniformly random and independent of the view of the adversary, through a series of
hybrids. Therefore, the initial hybrid there (once we remove the verification program) corresponds
to the b = 0 case in PRF security game and the final hybrids corresponds to the b = 1 case.
Hence the adversary has negligible advantage in the indistinguishability LOCC leakage-resilience
game.

When we instantiate the assumed building blocks with known constructions, we get the following
corollary.

Corollary 7. Assuming subexponentially secure iO, one-way functions and polynomially hard
qLWE, there exists a PRF scheme that satisfies indistinguishability LOCC leakage-resilience.

8 Cryptographic Schemes with Intrusion-Detection

In this section, we initiate the study of cryptographic primitives with intrusion-detection, yet
another set of schemes that are only possible through utilization of quantum phenomena. We show
that such schemes are equivalent to schemes with publicly verifiable secure leasing15.

In our intrusion-detection models, we will require that if our detection algorithm does not
detect intrusion after an attack, then the adversary should have negligible advantage in breaking
the security of the scheme. This should hold even if the adversary can arbitrarily tamper with
the secret. Intuitively, this means that any useful (to the adversary) leakage will be detected.
Furthermore, we will require that if there was no attack, then testing for intrusion only negligibly

15Also called certified deletion in the literature.
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disturbs the key. This means that the honest party can test for intrusion any polynomial number
of times while preserving the correctness and security guarantees, as long as there is no attack.

Now, we describe our transformation on a high level. Suppose there exists a scheme with secure
leasing. We will construct a TestIntrusion algorithm that essentially tries to produce a deletion
certificate for the secret, and outputs NO INTRUSION if it succeeds. Intuitively, we can argue
intrusion-detection security as follows. If an adversary has obtained a leakage that allows it to
break the underlying security guarantee, then we should fail to produce a valid deletion certificate
using our leftover state. Otherwise, one can create an attacker against the certified deletion game
that applies the previous adversary on their secret, produces a valid deletion certificate using the
leftover state, and still succeeds in breaking the security guarantee using the leak they obtained. The
major problem with this approach is that even when there was no attack, we destroy our key when
we test for leakage, since we produce a deletion certificate. However, note that producing a valid
deletion certificate using an undisturbed secret succeeds with overwhelming probability. Therefore,
using Lemma 1, we can construct an algorithm for producing a deletion certificate in a way such
that we can rewind our algorithm afterwards. While seemingly contradictory, this is not a violation
of the certified deletion security. In the certified deletion game, the certificate generation circuit
will end with a measurement, while our intrusion-detection procedure will skip this measurement,
and will instead run the verification procedure coherently. Furthermore, the intrusion-detection
procedure will not trace out the garbage registers that are produced while constructing a certificate
or testing for certificate validity, which we then use to rewind the algorithm.

Remark 8. Note that public verification property of the certified deletion scheme is essential to
build a intrusion detection scheme, since the leakage adversary will have access to the complete
state of the honest parties, including the key that is used to test for leakage.

8.1 Public-key Encryption with Intrusion-Detection

First, we start with public-key encryption. We define PKE schemes that allow us to test if a useful
leakage has been obtained on the secret decryption key. Then, we show that such schemes are
equivalent to public-key encryption schemes with secure key leasing. Our results hold both for
schemes with classical certificates and for schemes with quantum certificates.

Definition 28 (Public-key encryption with intrusion-detection). A public-key encryption scheme
with intrusion-detection is a public-key encryption scheme (Definition 15) with the following addi-
tional algorithms that satisfy the reusability and security guarantees below.

• QLKeyGen(sk) : Along with a quantum decryption key Rdec
16, also outputs a classical intrusion-

detection key tk.

• TestIntrusion(tk,Rdec) : Takes the intrusion-detection key and the decryption key, outputs
INTRUSION if leakage is detected, NO INTRUSION otherwise.

PKE correctness and security: We require the usual correctness and security (Definition 15)
satisfied for the decryption key generated by QKeyGen to now also hold for the decryption key
generated by QLKeyGen.

Detection correctness:

Pr

[
TestIntrusion(tk,Rdec) = NO INTRUSION :

sk, pk ← Setup(1)
tk,Rdec ← QLKeyGen(sk)

]
= 1.

16Note that the public key pk is still classical.
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Reusability after testing: Initialize the decryption register as (Rdec, tk)← QLKeyGen(sk) and
let ρ denote its state. Run the algorithm TestIntrusion on tk and Rdec, and let ρ′ denote the state
of the register Rdec immediately afterwards. Then, ∥ρ− ρ′∥1 ≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 1.

Intrusion-detection security: Consider the following game played by the challenger and an
adversary.

1. The challenger runs sk, pk ← PKE.Setup(1), and then

tk,Rdec ← PKE.QLKeyGen(sk).

2. The adversary Aintr gets access to Rdec, tk, and pk, and produces a register Radv and two
challenge messages m0,m1, along with the updated register Rdec.

3. The challenger runs tb ← PKE.TestIntrusion(tk,Rdec). If tb is INTRUSION, the challenger
outputs 0 and terminates.

4. The challenger samples a challenge bit b← {0, 1} and prepares the ciphertext ct← PKE.Enc(
pk,mb).

5. AMain gets Radv,m0,m1, tk, pk and ct, and outputs a prediction b′.

6. The challenger outputs 1 if b′ = b.

We say that the adversary has won the game if the challenger outputs 1 and we require that any
QPT adversary A = (AMain,Aintr) wins the game with probability at most

Pr[tb = NO INTRUSION]

2
+ negl(λ).

Similarly to the notions of secure software leasing [AL21] and functional encryption with secure
key leasing [KN22], we define public-key encryption schemes with secure key leasing.

Definition 29 (Public-key encryption with secure key leasing). A public-key encryption scheme
with secure key leasing is a public-key encryption scheme (Definition 15) with the following addi-
tional algorithms that satisfies the correctness and security guarantees below.

• QVKeyGen(sk) : Along with a quantum decryption key Rdec, also outputs a classical verifica-
tion key cvk.

• Cert(Rdec) : Takes the decryption key and outputs a certificate.

• Verify(cvk,Rcert) : Takes the verification key and a deletion certificate, outputs VALID if it is
a valid certificate.

PKE correctness and security: We require the usual correctness and security (Definition 15)
satisfied for the decryption key generated by QKeyGen to now also hold for the decryption key
generated by QVKeyGen.
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Verification correctness:

Pr

Verify(cvk,Rcert) = VALID :
sk, pk ← Setup(1)

cvk,Rdec ← QVKeyGen(sk)
Rcert ← Cert(Rdec)

 = 1.

Lessor security: Consider the following game played by the challenger and an adversary.

1. The challenger runs sk, pk ← PKE.Setup(1), and then

cvk,Rdec ← PKE.QVKeyGen(sk).

2. The adversary A1 gets access to Rdec, cvk and pk, it produces a certificate Rcert, a state
register R and two challenge messages m0,m1.

3. The challenger runs vb← PKE.Verify(cvk,Rcert). If vb is INVALID, challenger outputs 0 and
terminates.

4. The challenger samples a challenge bit b← {0, 1} and prepares the ciphertext ct← PKE.Enc(
pk,mb).

5. A2 gets R,m0,m1, cvk, pk and ct, it outputs a prediction b′.

6. The challenger outputs 1 if b′ = b.

We say that the adversary has won the game if the challenger outputs 1 and we require that any
QPT adversary A = (A1,A2) wins the game with probability at most

Pr[vb = VALID]

2
+ negl(λ).

Now, we move onto our construction of PKE with intrusion-detection.

Theorem 34. Suppose there exists a public-key encryption scheme with publicly verifiable secure
key leasing. Then, there exists a public-key encryption scheme with intrusion-detection.

Proof. Let PKE′ be a public-key encryption scheme with secure key leasing. We construct PKE
as follows. Let PKE.Setup,PKE.Enc,PKE.Dec be the same as those of PKE′, and PKE.QLKeyGen
be the same as PKE′.QVKeyGen. Consider the binary measurement implemented by the channel
PKE′.Verify(cvk,PKE′.Cert(·)), and let PKE.TestIntrusion be its rewinding version as obtained by
Lemma 1. We associate NO INTRUSION with VALID and INTRUSION with INVALID.

By Lemma 1, TestIntrusion(tk,R) has the same output distribution as the procedure PKE′.
Verify(vk,PKE′.Cert(R)) for any register R in any state. Therefore, by the verification correctness
of PKE′, when we initialize tk,Rdec ← PKE.QLKeyGen(sk), we have

Pr[PKE.TestIntrusion(tk,Rdec) = NO INTRUSION] = 1. (3)

which shows that PKE satisfies detection correctness.
Now, again initialize tk,Rdec ← PKE.QLKeyGen(sk) and let ρ, ρ′ denote the state of Rdec be-

fore and immediately after PKE.TestIntrusion(tk,Rdec), respectively. Then, by Equation (3) and
Lemma 1, we get ∥∥ρ− ρ′∥∥

1
≤ negl(λ),
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which shows that PKE satisfies reusability.
Finally, we argue intrusion-detection security. For a contradiction, suppose there exists an

adversary A = (AMain,Aintr) such that A wins the intrusion-detection game with probability

pdetection =
Pr[EINTRUSION]

2
+

1

p(λ)

for some polynomial p(·) and infinitely many values of λ where we let EINTRUSION be the event
that the output of TestIntrusion is INTRUSION. Then, we construct the following adversary A′ =
(A′1,A′2) against the secure key leasing game for PKE′.

A′1(Rdec, cvk, pk)

1. Run Radv,m0,m1 ← Aintr(Rdec, cvk, pk).
17

2. Run Rcert ← PKE′.Cert(Rdec).

3. Output Rcert, Radv,m0,m1.

A′2(R,m0,m1, cvk, pk, ct)

1. Run b← AMain(R,m0,m1, cvk, pk, ct).

2. Output b.

Consider the secure key leasing game played by A′ and the intrusion-detection game played
by A. Observe that they are exactly the same, except for the following differences. We rewind
TestIntrusion in the intrusion detection game, while in the key leasing game, the challenger does not
apply the same rewinding. However, crucially, in the intrusion-detection game, we are effectively
tracing out Rdec after testing for leakage, since we never use it again. Similarly, in the key leasing
game, we trace out any garbage left from testing the certificate or running the verification, and
we trace out the certificate itself too (once the verification succeeds), since A2

′ does not use it.
Since applying a channel to a subsystem and then tracing out the resulting subsystem is equivalent
to tracing out without applying the channel, conditioned on the game not terminating early on18,
we can see that the leftover state of Radv produced by A in the intrusion-detection game is the
same as the leftover state used to invoke AMain in the key leasing game played by A′. Hence, again
conditioned on the game not terminating early, we conclude that both games have the same output
distribution. Finally, since we have already observed that TestIntrusion(tk,R) has the same output
distribution as PKE′.Verify(cvk,PKE′.Cert(R)) for any register R, we see that the probability of
terminating early on is the same for both games. Hence, combined with the previous part, we get
that the probability of A′ winning the key leasing game, pleasing, is the same as the probability of
A winning the intrusion-detection game. Let EINVALID be the event that the output of Verify in the
secure key leasing game played by A′ is INVALID. Then,

pleasing =
Pr[EINTRUSION]

2
+

1

p(λ)

=
Pr[EINVALID]

2
+

1

p(λ)
.

17Note that the state of Rdec has been altered by applying Aintr, and references to this register afterwards are with
regards to its updated state.

18The game terminates early on when TestIntrusion outputs INTRUSION in the intrusion-detection game or when
Verify outputs INVALID in the key leasing game.
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This violates the key leasing security of PKE′, which is a contradiction.

Theorem 35. Suppose there exists a public-key encryption scheme with intrusion-detection. Then,
it is also a public-key encryption scheme with publicly verifiable secure key leasing with quantum
certificates.

Proof. We define PKE.Cert(Rdec) to output Rdec and we define PKE.Verify to be the same as
PKE′.TestIntrusion. Observe that if an adversary can break the secure key leasing, then the same
adversary can also break the intrusion-detection game by producing a fake certificate and placing
it instead of the key register.

We remark that, as discussed in Section 5.3, assuming the existence of the quantum hardness of
LWE, and post-quantum sub-exponentially secure iO and OWFs, one can construct PKE schemes
with unclonable keys, which is a stronger security notion than PKE with publicly-verifiable key
leasing. Further, [BGG+23] also construct functional encrpytion with publicly verifiable key leasing
(which implies public-key encryption with the same property), based on indistinguishability obfus-
cation and injective one- way functions. While the post-quantum iO is a strong assumption, we
show that intrusion detection implies public-key quantum money, whose only known construction in
the plain model relies is also based on post-quantum iO. We also note that a recent work [AKN+23]
also builds PKE with key leasing from any post-quantum PKE. However, this construction lacks
public-verifiability, which is crucially needed for intrusion-detection since the leakage adversary gets
access to the complete state of the honest party, which includes the intrusion-detection key.

Theorem 36. Suppose there exists a public-key encryption scheme with intrusion-detection. Then,
there exists a public-key quantum money scheme.

Proof. We will first construct a quantum money scheme that is only 1/2 + negl(λ) secure but
has perfect correctness. We can achieve negligible security by parallel amplification: A banknote
consists of λ banknotes from λ independent instances of the weak scheme and it is verified to be
valid if all the smaller banknotes are valid.

Let PKE be a public-key encryption scheme with intrusion-detection. Then, let PKE′ be the
scheme where we modify the intrusion detection algorithm to be the following.

PKE′.TestIntrusion(tk,Rdec)

1. Sample m0,m1 ←M.

2. Sample b← {0, 1}.

3. Sample ct← PKE.Enc(pk,mb).

4. Sample m′ ← PKE.Dec(Rdec, ct).

5. Sample tb← PKE.TestIntrusion(tk,Rdec).

6. Output 1 if and only m′ = mb and tb = NO INTRUSION.

One caveat is that the algorithm above uses pk. However, without loss of generality, we can
assume that the secret key includes pk, and therefore we can include pk in tk too.

We now argue that PKE′ still satisfies intrusion detection correctness: The decryption algorithm
on an honest key only negligibly disturbs it, therefore, the steps before running PKE.TestIntrusion
do not disturb the key.
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Now, we argue that PKE′ also satisfies intrusion detection security. Suppose for a contradiction
that an adversary A = (AMain,Aintr) wins the intrusion detection security game against PKE′

with non-negligible advantage. Then we can construct A′ = (A′Main,A′intr) for PKE as follows.
A′intr first runs Aintr on the keys to obtain the updated register Rdec, then it applies the first four
steps of PKE′.TestIntrusion. If b′ = b, A′intr outputs ⊥ as the leftover register. Now observe that
PKE.TestIntrusion run on the updated register corresponds exactly to running PKE′.TestIntrusion
in the intrusion detection security game played for PKE′. Therefore, we conclude the security of
PKE′.

Finally, now we move onto the weak quantum money scheme. Note that our scheme will be a
mini-scheme, where there is no secret key of the bank and there is only one banknote given to the
adversary. A mini-scheme can be updated to a full-fledged quantum money scheme using digital
signatures [AC12].

QM.Gen(1λ)

1. pk, sk ← PKE′.Setup(1λ).

2. tk,Rdec ← PKE′.QKeyGen(sk).

3. Output tk,Rdec.

QM.Verify(tk,Rdec)

1. Output PKE′.TestIntrusion(tk,Rdec).

Now we argue security of the scheme. Suppose there exists an adversaryA such that upon receiv-
ing tk,Rdec, it outputs two registersR1, R2 that both pass PKE′.Verify(tk,R1) and PKE′.Verify(tk,R2)
simultaneously with probability 1/2 + 1/poly(λ). We construct an adversary A′ = (AMain,Aintr)
for PKE′ as follows. It runs A on the keys to obtain R1, R2. It outputs R1 as the updated key
register, and R2 as its leakage register. It also outputs two random messages m0,m1 as its challenge
messages. Now, observe that the intrusion detection game runs PKE′.TestIntrusion on R1, and a
decryption test on R2, which corresponds to the first part of PKE′.TestIntrusion. Therefore, both
tests succeed simultaneously with probability 1/2 + 1/poly(λ) as desired.

8.2 Digital Signature Schemes with Intrusion-Detection

We show that digital signatures with intrusion-detection is equivalent to digital signature schemes
with key leasing, using essentially the same technique as used for PKEs in Section 8.1. Note that
our results hold only for uniformly sampled challenge messages. This is necessary with classical
signatures, as in the case of unclonable digital signature keys. In the intrusion detection game with
a selective challenge message, an adversary can sign a message of its choice (which only negligibly
disturbs the key) and leak the signature.

Definition 30 (Digital signatures with intrusion-detection). A digital signature scheme with intrusion-
detection is a digital signature scheme with the following additional algorithms that satisfies the
reusability and security guarantees below.

• QLKeyGen(sk) : Along with a quantum signing key Rsign, also outputs a classical intrusion-
detection key tk.

• TestIntrusion(tk,Rsign) : Takes the intrusion-detection key and the signing key, outputs INTRUSION
if leakage is detected, NO INTRUSION otherwise.
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Digital signature correctness and security We require the usual correctness and security
satisfied for the signing key generated by QKeyGen to now also hold for the signing key generated
by QLKeyGen.

Detection correctness

Pr

[
TestIntrusion(tk,Rsign) = NO INTRUSION :

sk, vk ← Setup(1)
tk,Rsign ← QLKeyGen(sk)

]
= 1.

Reusability after testing Initialize the signing register, Rsign, tk ← QLKeyGen(sk) and let ρ
denote its state. Run the algorithm TestIntrusion on tk and Rsign, and let ρ′ denote the state of the
register Rsign immediately afterwards. Then,∥∥ρ− ρ′∥∥

1
≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 1.

Intrusion-detection security Consider the following game between the challenger and an ad-
versary. We say that the adversary has won the game if the challenger outputs 1 and we require that
any QPT adversary A = (AMain,ALeak) wins the following game with probability at most negl(λ).

1. The challenger runs sk, vk ← DS.Setup(1), and then tk,Rsign ← DS.QLKeyGen(sk).

2. The adversary Aintr gets access to Rsign, tk and vk and it produces a leakage register Radv,
along with the updated register Rsign.

3. The challenger runs tb← DS.TestIntrusion(tk,Rsign). If tb is INTRUSION, challenger outputs
0 and terminates.

4. The challenger samples a challenge message m←M.

5. AMain gets Radv, tk, vk and m, it outputs a forged signature s.

6. The challenger outputs 1 if DS.Verify(m, s) = 1.

Similar to other primitives with secure leasing, we formally define signature schemes with secure
key leasing.

Definition 31 (Digital signatures with secure key leasing). A digital signature scheme with secure
key leasing is a digital signature scheme with the following additional algorithms that satisfies the
correctness and security guarantees below.

• QVKeyGen(sk) : Along with a quantum signing key Rsign, also outputs a classical deletion
verification key cvk.

• Cert(Rsign) : Takes the signing key and outputs a deletion certificate.

• VerifyDeletion(cvk,Rcert) : Takes the verification key and a deletion certificate, outputs VALID
if it is a valid certificate.

Digital signature correctness and security We require the usual correctness and security to
now also hold for keys generated by QVKeyGen.
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Verification correctness

Pr

VerifyDeletion(cvk,Rcert) = VALID :
sk, vk ← Setup(1)

cvk,Rsign ← QVKeyGen(sk)
Rcert ← Cert(Rdec)

 = 1.

Lessor security Consider the following game between the challenger and an adversary. We say
that the adversary has won the game if the challenger outputs 1 and we require that any QPT
adversary A = (A1,A2) wins the following game with probability at most negl(λ).

1. The challenger runs sk, vk ← DS.Setup(1), and then

cvk,Rsign ← DS.QVKeyGen(sk).

2. The adversary A1 gets access to Rsign, cvk and vk, it produces a certificate Rcert and a state
register R.

3. The challenger runs vb ← VerifyDeletion(cvk,Rcert). If vb is INVALID, challenger outputs 0
and terminates.

4. The challenger samples a challenge message m←M.

5. A2 gets R, cvk, vk and m, it outputs a forged signature s.

6. The challenger outputs 1 if DS.Ver(m, s) = 1.

Theorem 37. Suppose there exists a digital signature scheme with publicly verifiable secure key
leasing. Then, there exists a digital signature scheme with intrusion-detection.

Proof. The construction and the reduction are essentially the same as Theorem 34. Let DS′

be a public-key encryption scheme with secure key leasing. We construct DS as follows. Let
DS.Setup,DS.Sign,DS.Ver be the same as those of DS′, and let DS.QLKeyGen be the same as
DS′.QVKeyGen. Consider the binary measurement implemented by DS′.Verify(cvk,DS′.Cert(·)), and
let DS.TestIntrusion be its rewinding version as obtained by Lemma 1. We associate NO INTRUSION
with VALID and INTRUSION with INVALID.

Same arguments as in the proof of Theorem 34 show the detection correctness and reusability
of DS.

Finally, we argue intrusion-detection security. For a contradiction, suppose there exists an
adversary A = (AMain,Aintr) such that A wins the intrusion-detection game with probability 1

p(λ)

for some polynomial p(·) and infinitely many values of λ. Then, we construct the following adversary
A′ = (A′1,A′2) against the secure key leasing game for DS′.

A′1(Rsign, cvk, vk)

1. Run Radv ← Aintr(Rsign, cvk, vk).

2. Run Rcert ← DS′.Cert(Rsign).

3. Output Rcert, Radv.
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A′2(R, cvk, vk,m)

1. Run b← AMain(R, cvk, vk,m).

2. Output b.

The same arguments as in the proof of Theorem 34 show that A′ wins the key leasing game for DS′

with probability 1
p(λ) , which is a contradiction.

Theorem 38. Suppose there exists a digital signature scheme with intrusion-detection. Then, it is
also a digital signature scheme with publicly verifiable secure key leasing with quantum certificates.

Proof. We define DS.Cert(Rdec) to outputRdec. We define DS.Verify to be the same as DS′.TestIntrusion.
Observe that if an adversary can break the secure key leasing, then the same adversary can also
break the intrusion-detection game by producing a fake certificate and placing it instead of the key
register.

As discussed in Section 6.2, assuming post-quantum subexponentially secure indistinguishability
obfuscation, OWFs, and qLWE, one can construct digital signature schemes with unclonable signing
keys, which is a stronger notion that digital signatures with secure key leasing.

Similar to the case of public-key encryption, digital signatures with intrusion detection implies
public key quantum money.

Theorem 39. Suppose there exists a digital signature scheme with intrusion-detection. Then, there
exists a public-key quantum money scheme.

Proof. Let DS be a public-key encryption scheme with intrusion-detection. Then, let DS′ be the
scheme where we modify the intrusion detection algorithm to be the following.

DS′.TestIntrusion(tk,Rsign)

1. Sample m←M.

2. Sample sg ← DS.Sign(Rsign,m).

3. Sample tb← DS.TestIntrusion(tk,Rsign).

4. Output 1 if and only DS.Ver(vk,m, sg) = 1 and tb = NO INTRUSION.

Similar to the case of public-key encryption, we can show that DS′ still satisfies intrusion detection
correctness and security.

Finally, now we move onto the mini quantum money scheme. A mini-scheme can be updated
to a full-fledged quantum money scheme using digital signatures [AC12].

QM.Gen(1λ)

1. vk, sk ← DS′.Setup(1λ).

2. tk,Rdec ← DS′.QKeyGen(sk).

3. Output tk,Rdec.
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QM.Verify(tk,Rdec)

1. Output DS′.TestIntrusion(tk,Rdec).

Similar to Theorem 36, we can show that the scheme above is secure.

8.3 Functional Encryption with Intrusion-Detection

In this section, we introduce the notion of intrusion-detection for functional keys of public-key
functional encryption schemes, and show that it is equivalent to functional encryption schemes with
publicly verifiable certified key deletion [BGG+23]. We will have schemes for classical messages and
families of classical functions, with classical public-key and quantum functional keys.

Definition 32 (Functional encryption with intrusion-detection). A functional encryption scheme
with intrusion detection for a family of functions F is a public-key functional encryption scheme
(Definition 7) for F with the following additional algorithms that satisfy the correctness and security
guarantees below.

• QLKeyGen(msk, f) : Along with a quantum functional key Rf , outputs a classical intrusion
detection key tk.

• TestIntrusion(tk,Rf ): Takes the intrusion detection key and functional key, outputs INTRUSION
if leakage is detected, NO INTRUSION otherwise.

FE correctness and security: We require the usual functional encryption correctness and se-
curity (Definition 7) for keys generated by QLKeyGen.

Detection correctness: For all f ∈ F ,

Pr

[
TestIntrusion(tk,Rf ) = NO INTRUSION :

pk,msk ← Setup(1)
tk,Rf ← QLKeyGen(msk, f)

]
= 1.

Reusability after testing: We require the following for all f ∈ F . Initialize the functional key
register, tk,Rf ← QLKeyGen(msk, f) and let ρ denote its state. Run the algorithm TestIntrusion
on tk and Rf , and let ρ′ denote the state of the register Rf immediately afterwards. Then,∥∥ρ− ρ′∥∥

1
≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 1.

Intrusion detection security: For any polynomial p(·) and any functions f1, . . . , fp(λ) ∈ F ,
for any (stateful) QPT adversary A = (AMain,Aintr), the advantage of A in the following game is
negligible.

1. Aintr outputs two messages m0,m1.

2. The challenger runs pk,msk ← FE.Setup(1) and then for all i ∈ [p(λ)],

tk,Rfi ← FE.QLKeyGen(msk, fi).

3. The leakage adversary Aintr gets access to (Rfi)i∈[p(λ)], (fi)i∈[p(λ)], tk and pk, it produces a
leakage register Radv along with the updated registers (Ri)i∈[p(λ)].
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4. The challenger sets tb = 0 and runs the following for each i ∈ [p(λ)].

(a) tbi ← TestIntrusion(tk,Rfi).

(b) If tbi = INTRUSION and fi(m0) ̸= fi(m1), set tb = 1.

5. If tb = 1, challenger outputs 0 and terminates.

6. The challenger samples a challenge bit b← {0, 1} and prepares the ciphertext ct← FE.Enc(pk,
mb).

7. AMain gets Radv, (fi)i∈[p(λ)],m0,m1, tk, pk and ct, it outputs a prediction b′.

8. The challenger outputs 1 if b′ = b.

Let GameA denote the output of the above experiment. We define the advantage of A to be∣∣∣Pr[GameA = 1]− Pr[tb=1]
2

∣∣∣.
Prior work of [BGG+23] define and construct schemes for the related model of functional en-

cryption with certified key deletion.

Definition 33 (Functional encryption with certified key deletion [BGG+23]). A functional en-
cryption scheme with certified key deletion for a family of functions F is a public-key functional
encryption scheme for F with the following additional algorithms that satisfy the correctness and
security guarantees below.

• QVKeyGen(msk, f) : Along with a quantum functional key Rf , outputs a classical verification
key vk.

• Cert(Rf ): Takes the functional key and outputs a classical deletion certificate.

• Verify(vk, cert) : Takes the verification key and a deletion certificate, outputs VALID if it is a
valid certificate.

FE correctness and security: We require the usual functional encryption correctness and se-
curity (Definition 7) for keys generated by QVKeyGen.

Verification correctness: For all f ∈ F ,

Pr

Verify(vk, cert) = VALID :
pk,msk ← Setup(1)

vk,Rf ← QVKeyGen(msk, f)
cert← Cert(Rf )

 = 1.

Certified deletion security: For any (stateful) QPT adversary A, the advantage of A in the
following game is negligible.

1. A outputs two messages m0,m1.

2. The challenger runs pk,msk ← FE.Setup(1) and sends pk to the adversary.

3. For p(λ) many times for some polynomial p(·), A adaptively submits a query fi ∈ F and
receives Rfi , vki ← FE.QVKeyGen(msk, fi).

4. The adversary sends a list of deletion proofs cert1, . . . , certp(λ).
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5. The challenger sets vb = 0 and runs the following for each i ∈ [p(λ)].

(a) vbi ← Verify(vk, certi).

(b) If vbi = INVALID and fi(m0) ̸= fi(m1), set vb = 1.

6. If vb = 1, challenger outputs 0 and terminates.

7. The challenger samples a challenge bit b ← {0, 1} and prepares the ciphertext ct ← FE.Enc(
pk,mb).

8. The adversary receives ct and for polynomially many times, A adaptively submits a query f ∈
F . For each query f , if f(m0) = f(m1), challenger samples Rf , vk ← FE.QVKeyGen(msk, f)
and sends Rf , vk to the adversary.

9. Adversary outputs a guess b′.

10. Output 1 if b′ = b.

Let GameA denote the output of the above experiment. We define the advantage of A to be∣∣∣Pr[GameA = 1]− Pr[vb=1]
2

∣∣∣.
Theorem 40 ([BGG+23]). Assuming post-quantum indistinguishability obfuscation, public key en-
cryption, and injective one-way functions, there exists a functional encryption scheme with selective
secret key publicly verifiable certified deletion with classical certificates.

We show that publicly verifiable certified key deletion implies intrusion-detection, similar to the
previous primitives.

Theorem 41. Suppose there exists a functional encryption scheme for a family of functions F
with publicly verifiable certified key deletion. Then, there exists a functional encryption scheme for
F with intrusion detection.

Proof. Construction and the security proof are mostly the same as Theorem 34, so we only sketch it.
Let FE′ be a functional encryption scheme with certified deletion for F as in the theorem statement.
We construct a functional encryption scheme FE for F with intrusion detection as follows. Define
FE.Setup,FE.Enc,FE.Dec to be the same as those of FE′, and define FE.QLKeyGen to be the same as
FE′.KeyGen. Consider the binary measurement implemented by FE′.Verify(cvk,FE′.Cert(·)), and let
FE.TestIntrusion be its rewinding version as obtained by Lemma 1. We associate NO INTRUSION
with VALID and INTRUSION with INVALID.

It is easy to see that usual FE correctness and security, along with detection correctness and
reusability after testing are satisfied by FE. Finally, we argue intrusion detection security. Suppose
there exists an adversary A = (AMain,Aintr) that wins intrusion detection game with non-negligible
advantage. Then, we define an adversary A′ for the certified deletion game as follows. A′ runs
Aintr to obtain m0,m1 and outputs them. Then, it asks for keys for f1, . . . , fp(λ), and it runs Aintr

on these keys. It runs Cert on all of the updated functional key registers, outputs the resulting
certificates and keeps Radv as its state. In the second query stage, it does not make any queries.
Finally, when it receives the challenge ciphertext, it runs AMain on the ciphertext and Radv. An
argument similar to Theorem 34 shows that A′ wins the certified deletion game with non-negligible
advantage. Crucially note that we trace out the certificates in the certified deletion game, and the
after-the-leakage states of the functional keys in the intrusion detection game. Hence, the rewinding
of TestIntrusion has no effect.
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Theorem 42. Suppose there exists exists a functional encryption scheme for a family of functions
F with intrusion detection. Then, it is also a functional encryption scheme for F with publicly
verifiable certified key deletion with quantum certificates.

Proof. We define FE.Cert(Rdec) to outputRdec. We define FE.Verify to be the same as FE′.TestIntrusion.
Observe that if an adversary can break the secure key leasing, then the same adversary can also
break the intrusion-detection game by producing a fake certificate and placing it instead of the key
register.

Corollary 8. Assuming post-quantum indistinguishability obfuscation, public key encryption, and
injective one-way functions, there exists a functional encryption scheme with intrusion detection.

Remark 9. It is easy to see that when the underlying functional encryption scheme has adaptive-
function19 security for certified deletion, the intrusion detection scheme constructed in Theorem 41
will have intrusion detection security even when the functional keys possessed by the honest party
are for functions (adaptively) chosen by the adversary. Similarly, adaptive-message security of the
certified deletion scheme would imply adaptive-message intrusion detection security.

Since public-key encryption with intrusion-detection implies public-key quantum money, so does
functional encryption.

Theorem 43. Suppose there exists a public-key functional encryption scheme with intrusion-
detection. Then, there exists a public-key quantum money scheme.

8.4 Indistinguishability Obfuscation with Intrusion-Detection

In this section, we define intrusion-detection for differing-inputs obfuscation with intrusion-detection
and show that it is equivalent to obfuscation with certified deletion [BGG+23].

Definition 34 (Differing-inputs circuit family [BGG+23]). Let C = {Cλ}λ be a family of circuits
and let D be an efficiently sampleable ensemble associated with C. We say that (C,D) is a differing-
inputs circuit family if for every QPT adversary A, we have

Pr

[
C0(x) ̸= C1(x) :

(C0, C1, aux)← D
x← A(C0, C1, aux)

]
≤ negl(λ).

If C0, C1 differ on at most polynomially many inputs for all C0, C1 in the support of D, we say
that (C,D) is a differing-inputs circuit family with polynomially many differing inputs.

Definition 35 (Differing-inputs obfuscation [BCP14, BGG+23]). Let (C,D) be a differing-inputs
circuit family. An obfuscation scheme iO for (C,D) consists of the following algorithms satisfying
the correctness and security guarantees below.

• iO.Gen(C): Takes a circuit C and outputs an (possibly quantum) obfuscation of C.

• iO.Eval(Robf , x) : Takes an obfuscated program and evaluates it on x.

Functionality preservation: For all C ∈ C and all inputs x,

Pr[iO.Eval(Robf , x) = C(x) : Robf ← iO.Gen(C)] = 1.

19Functions adaptively chosen by the adversary by interacting with the functional key generator
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Obfuscation security For any QPT adversary A,

Pr

b′ = b :

(C0, C1, aux)← D
b← {0, 1}

Robf ← iO.Gen(Cb)
b′ ← A(C0, C1, aux,Robf)

 ≤ 1

2
+ negl(λ).

Definition 36 (Differing-inputs obfuscation with intrusion-detection). Let (C,D) be a differing-
inputs circuit family. An obfuscation scheme with intrusion detection for (C,D) is an obfuscation
scheme for (C,D) with the following additional algorithms that satisfy the security and correctness
guarantees below.

• QLGen(C): Along with a quantum obfuscation of C, also outputs a intrusion detection key
tk.

• TestIntrusion(tk,Robf): Takes the intrusion detection key and the obfuscation, outputs INTRUSION
if leakage is detected, NO INTRUSION otherwise.

Obfuscation correctness and security We require the usual correctness and security satisfied
by the obfuscation scheme to now also hold for obfuscations generated by QLGen.

Detection correctness For all circuits C in the support of D, we require that

Pr[TestIntrusion(tk,Robf) = NO INTRUSION : tk,Robf ← QLGen(C)] ≥ 1− negl(λ).

Reusability after testing For all circuits C in the support of D, we require the following.
Initialize the obfuscation register Robf ← QLGen(C), and let ρ denote its states. Run the algorithm
TestIntrusion on Robf and tk, and let ρ′ denote the state of the register Robf immediately afterwards.
Then, ∥∥ρ− ρ′∥∥

1
≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 1.

Intrusion detection security Any QPT adversary A = (AMain,Aintr) has at most negligible
advantage in the following game.

1. The challenger runs C0, C1, aux← D.

2. The challenger samples a challenge bit b ← {0, 1} and prepares the obfuscation Robf ←
iO.QLGen(Cb).

3. Aintr gets access to Robf , C0, C1, aux and tk, it produces a leakage Radv along with the updated
register Robf .

4. The challenger runs tb ← TestIntrusion(tk,Robf). If tb is INTRUSION, it outputs 0 and
terminates.

5. AMain gets Radv, C0, C1, aux and tk, it produces a guess b′.

6. Output 1 if b′ = b.
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Let GameA denote the output of the above experiment. We define the advantage of A to be∣∣∣Pr[GameA = 1]− Pr[tb=NO INTRUSION]
2

∣∣∣.
[BGG+23] define differing-inputs obfuscation with certified deletion and construct primitives

secure in this model.

Definition 37 (Differing-inputs obfuscation with certified deletion [BGG+23]). Let (C,D) be a
differing-inputs circuit family. An obfuscation scheme with certified deletion for (C,D) is an ob-
fuscation scheme for (C,D) with the following additional algorithms that satisfy the security and
correctness guarantees below.

• QGen(C): Along with a quantum obfuscation of C, also outputs a verification detection key
vk.

• Cert(Robf): Takes the obfuscation and produces a deletion certificate.

• Verify(vk, cert): Takes the verification key and a deletion certificate, outputs VALID if the
certificate is valid, INVALID otherwise.

Obfuscation correctness and security We require the usual correctness and security satisfied
by the obfuscation scheme to now also hold for obfuscations generated by QGen.

Deletion correctness For all circuits C in the support of D, we require that

Pr

[
Verify(vk, cert) = VALID :

vk,Robf ← QGen(C)
cert← Cert(vk,Robf)

]
≥ 1− negl(λ).

Deletion security Any QPT adversary A has at most negligible advantage in the following game.

1. The challenger runs C0, C1, aux← D.

2. The challenger samples a challenge bit b ← {0, 1} and prepares the obfuscation Robf ←
iO.QGen(Cb).

3. A gets access to Robf , C0, C1, aux and vk, it produces a state R and a deletion certificate cert.

4. The challenger runs vb← Verify(vk, cert). If vb is INVALID, it outputs 0 and terminates.

5. A gets R, it produces a guess b′.

6. Output 1 if b′ = b.

Let GameA denote the output of the above experiment. We define the advantage of A to be∣∣∣Pr[GameA = 1]− Pr[vb=VALID]
2

∣∣∣.
Theorem 44 ([BGG+23]). Assuming post-quantum indistinguishability obfuscation and one-way
functions, there exists a differing inputs obfuscation scheme with (publicly-verifiable) certified dele-
tion for polynomially many differing inputs.

Similar to the previous primitives, we show that certified deletion implies intrusion-detection.
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Theorem 45. Let (C,D) be a differing-inputs circuit family. Suppose there exists an obfuscation
scheme with publicly verifiable certified deletion for (C,D). Then, there exists an obfuscation scheme
with intrusion detection for (C,D).

Proof. The construction and the proof are mostly the same as Theorem 34 and Theorem 41, so
we only sketch it. Let iO′ be an obfuscation scheme as in the theorem statement. We con-
struct a intrusion-detection scheme iO for (C,D) as follows. Define iO.Eval to be the same as
iO′.Eval and iO.QLGen to be the same as iO′.QGen. Consider the binary measurement imple-
mented by iO′.Verify(cvk, iO′.Cert(·)), and let iO.TestIntrusion be its rewinding version as obtained
by Lemma 1. We associate NO INTRUSION with VALID and INTRUSION with INVALID.

It is easy to see that iO satisfies the obfuscation security and correctness, along with reusuability
after testing and detection correctness. Finally, we argue intrusion detection security. Suppose
there exists an adversary A = (AMain,Aintr) that wins intrusion detection game with non-negligible
advantage. Then, we define an adversary A′ for the certified deletion game as follows. A′ runs
Aintr on Robf to obtain a leakage, then runs Cert on the updated register. It outputs the resulting
certificate and keeps the leakage as its state. Finally, when it receives the challenge, it runs AMain

on the challenge and Radv. An argument similar to Theorem 34 and Theorem 41 shows that A′
wins the certified deletion game with non-negligible advantage.

Theorem 46. Let (C,D) be a differing-inputs circuit family. Suppose there exists an obfuscation
scheme with intrusion detection for (C,D). Then, it is also an obfuscation scheme with publicly
verifiable certified deletion for (C,D).

Proof. We define iO.Cert(Rdec) to outputRdec. We define iO.Verify to be the same as iO′.TestIntrusion.
Observe that if an adversary can break the secure key leasing, then the same adversary can also
break the intrusion-detection game by producing a fake certificate and placing it instead of the key
register.

Corollary 9. Assuming post-quantum indistinguishability obfuscation and one-way functions, there
exists a differing inputs obfuscation scheme with intrusion detection for polynomially many differing
inputs.

Similar to public-key encryption with intrusion detection, we can show that iO with intrusion-
detection implies public-key quantum money.

Theorem 47. Suppose there exists an indistinguishability obfuscation scheme with intrusion-detection.
Then, there exists a public-key quantum money scheme.

Proof. Follows from an argument similar to Theorem 36.

8.5 Intrusion-Detection for Software

In this section, we introduce the notion of intrusion-detection for software20, and show a con-
struction of such schemes from any publicly verifiable, strong secure software leasing (SSL) scheme
[AL21, KNY21, BGG+23] with only finite-term lessor security. This also gives the first natural use
case for SSL schemes that only satisfy the weaker notion of finite-term lessor security, in which the
lessee cannot keep the software forever and has to return it for the security guarantee to hold.

20Modeled as a sample from a distribution on a family of circuits.
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Definition 38 (intrusion-detection for software). Let C = {Cλ}λ be a family of classical circuits,
where C : {0, 1}n(λ) → {0, 1}m(λ) for all C ∈ Cλ, and let D = {Dλ}λ be an ensemble on C. A
β-perfect intrusion-detection scheme for (C,D) consists of the following QPT algorithms, with the
correctness and security guarantees below.

• Gen(C): Takes a circuit C, outputs a intrusion-detection key and the protected version of C,
a quantum state.

• Eval(Rprog, x) : Takes the protected version of C and an input x, evaluates C on x.

• TestIntrusion(tk,Rprog): Takes the intrusion-detection key and the program register, outputs
INTRUSION if leakage is detected, NO INTRUSION otherwise.

Evaluation correctness For all C ∈ C,

Pr
[
∀x ∈ {0, 1}n(λ) Eval(Rprog, x) = C(x) : Rprog, tk ← Gen(C)

]
≥ 1− negl(λ).

Detection correctness For all C ∈ C,

Pr
[
TestIntrusion(tk,Rprog) = NO INTRUSION : Rprog, tk ← Gen(C)

]
≥ 1− negl(λ).

Reusability after testing We require the following for all C ∈ C. Initialize the program register,
Rprog, tk ← Gen(C) and let ρ denote its state. Run the algorithm TestIntrusion on tk and Rprog,
and let ρ′ denote the state of the register Rprog immediately afterwards. Then, ∥ρ− ρ′∥1 ≤ negl(λ).

We note that reusability after testing will follow from detection correctness by utilizing Lemma 1.

β-intrusion-detection security. For all QPT adversaries A = (AMain,Aintr), we require that

Pr

 TestIntrusion(tk,R′prog) = NO INTRUSION
∧

∀x ∈ {0, 1}n(λ) Pr[AMain(tk,Radv, x) = C(x)] ≥ β
:

C ← D
Rprog, tk ← Gen(C)

Radv, R
′
prog ← Aintr(Rprog, tk)


is upper bounded by negl(λ).

We also introduce the related model of secure software leasing.

Definition 39 (Strong secure software leasing [BGG+23]). Let C = {Cλ}λ be a family of classical
circuits, where C : {0, 1}n(λ) → {0, 1}m(λ) for all C ∈ Cλ, and let D = {Dλ}λ be an ensemble on C.
A software leasing scheme for (C,D) consists of the following QPT algorithms, with the correctness
and security guarantees below.

• Gen(C): Takes a circuit C, outputs a verification key and the protected version of C, a
quantum state.

• Eval(Rprog, x) : Takes the protected version of C and an input x, returns C(x).

• Verify(vk,Rprog): Takes the verification key and the program register, outputs VALID if the
returned program is valid, INVALID otherwise.
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Evaluation correctness For all C ∈ C,

Pr
[
∀x ∈ {0, 1}n(λ) Eval(Rprog, x) = C(x) : Rprog, vk ← Gen(C)

]
≥ 1− negl(λ).

Verifcation correctness For all C ∈ C,

Pr
[
Verify(vk,Rprog) = NO INTRUSION : Rprog, vk ← Gen(C)

]
≥ 1− negl(λ).

β-perfect finite-term strong lessor security with public verification For all QPT adver-
saries A = (A1,A2), we require that

Pr

 Verify(vk,R1) = VALID
∧

∀x ∈ {0, 1}n(λ) Pr[A2(vk,R2, x) = C(x)] ≥ β
:

C ← D
Rprog, vk ← Gen(C)

R1, R2 ← A1(Rprog, vk)

 ≤ negl(λ).

[BGG+23] construct secure software leasing schemes for various classes in the plain model.

Theorem 48 ([BGG+23, Theorem 8.4, Corollary 8.18]). Assuming post-quantum indistinguisha-
bility obfuscation and one-way functions, there exists a finite-term publicly-verifiable strong secure
software leasing scheme for pseudorandom functions, evasive functions, random point functions,
and compute-and compare circuits.

Finally, we show that secure software leasing schemes imply intrusion-detection for the same
class.

Theorem 49. Let C be a family of classical circuits and let D be an ensemble on C. Suppose there
exists a β-perfect finite-term publicly-verifiable strong secure software leasing scheme for (C,D).
Then, there exists a β-perfect intrusion detection scheme for (C,D).

Proof. The proof is mostly the same as that of Theorem 34, so we only sketch it.
Let SSL be a secure leasing scheme as in the theorem statement. We construct a intrusion-

detection scheme SLD for (C,D) as follows. Define SLD.Gen and SLD.Eval to be the same as SSL.Gen
and SSL.Eval, respectively. Define SLD.TestIntrusion to be the rewinding version of SSL.Verify,
as obtained from Lemma 1, where we associate VALID with NO INTRUSION and INVALID with
INTRUSION.

It is easy to see that SLD satisfies evaluation and detection correctness. By verification correct-
ness of SSL and Lemma 1, SLD satisfies reusability. Finally, we argue detection security as follows.
Suppose there exists an adversary A = (AMain,Aintr) that violates the leakage security with prob-
ability 1

p(λ) for some polynomial p(·). Then, define the adversary A′ = (A′1,A′2) as follows.

A′1(Rprog, vk)

1. Run Radv, R
′
prog ← Aintr(Rprog, vk).

2. Output R′prog, Radv.
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A′2(vk,R2, x)

1. Output ← AMain(vk,R2, x).

As in Theorem 34, one can show that A′ violates the lessor security with probability 1
p(λ) .

Crucially, note that R1 in the lessor security condition for A′ will have the same distribution as
R′prog in the intrusion detection condition for A, therefore probability of SLD.TestIntrusion out-
putting NO INTRUSION for A is the same SSL.Verify outputting VALID for A. Further, condi-
tioned on the event NO INTRUSION, the adversary AMain does not use R′prog, hence rewinding
applied by TestIntrusion has no effect. Therefore, R2 in the lessor security for A′ (conditioned on
VALID) will have the same distribution as Radv in the intrusion detection security (conditioned on
NO INTRUSION).

Theorem 50. Let C be a family of classical circuits and let D be an ensemble on C. Suppose there
exists a β-perfect intrusion detection scheme for (C,D). Then, it is also a β-perfect finite-term
publicly-verifiable strong secure software leasing scheme for (C,D).

Proof. We define SLD.Cert(Rdec) to output Rdec and we define SLD.Verify to be the same as
SLD′.TestIntrusion. Observe that if an adversary can break the secure key leasing, then the same
adversary can also break the intrusion-detection game by producing a fake certificate and placing
it instead of the key register.

Corollary 10. Assuming post-quantum indistinguishability obfuscation and one-way functions,
there exist intrusion detection schemes for pseudorandom functions, evasive functions, random
point functions, and compute-and compare circuits.

Proof. Invoke Theorem 48 and Theorem 49.
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A Quantum Information Preliminaries

Here we present some quantum information theory concepts that are needed in Appendix B. We
refer the reader to the book of Nielsen and Chuang [NC10] and Watrous [Wat18] for an overview
of qunatum information theory. We briefly mention some additional concepts, and refer the reader
to the same references for details.
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Trace Distance. We will make use of the notion of trace distance between states.

Definition 40 (Trace distance). The trace distance between two mixed states with associated den-
sity matrices ρ and σ, denoted by D(ρ, σ), is given by

D(ρ, σ) =
1

2
∥ρ− σ∥1,

where ∥ρ∥1 = Tr
[√

ρ†ρ
]
is the trace norm. We write ρ ≈ε σ whenever D(ρ, σ) ≤ ε.

The trace distance is a metric and has the following useful interpretation: If D(ρ, σ) ≤ ε,
then any POVM applied to states with density matrices ρ and σ yields classical measurement
outcome distributions, say (p1, . . . , pm) and (q1, . . . , qm), which are ε-close in statistical distance,
i.e., 1

2

∑m
i=1 |pi − qi| ≤ ε. Therefore, when ρ and σ are classical mixed states, the trace distance

corresponds exactly to the statistical distance between the two probability distributions inducing
ρ and σ.

Definition 41 (Quantum channel [Wat18]). A quantum channel is a linear map Φ : X → Y that
is both trace preserving and completely positive.

Lemma 16 (Post-processing lemma for trace distance [NC10, Theorem 9.2]). Let Φ be a quantum
channel and ρ, σ density matrices. Then,

D(Φ(ρ, σ)) ≤ D(ρ, σ).

Definition 42 (Completely dephasing channel [Wat18]). Let X be a register with alphabet Σ. The
completely dephasing channel over X, denoted by ∆X , is defined as follows.

∆X(ρ) =
∑
a∈Σ

Tr(Ea,aρ)Ea,a

Definition 43 (Quantum-to-classical channel). A quantum channel Φ : X → A ⊗ B is called
classical over A if

(∆A ⊗ IB)Φ = Φ

Lemma 17 (Tracing out commutes with channel on the traced out system). Let Φ : X → Y be a
quantum channel. Then, for any register A and any joint state ρ of (A,X), we have

TrY ((I
A ⊗ ΦX)(ρ)) = TrX(ρ).

Proof. Let ρ =
∑

i pi|ψi⟩⟨ψi| be a diagonalization of ρ. Let |ψi⟩ =
∑

a,x αi,a,xαi,a,x|a⟩|x⟩. Then,

ρ =
∑

i,a,x,a′,x′

piαi,a,xα
∗
i,a′,x′ |a⟩

〈
a′
∣∣⊗ |x⟩〈x′∣∣.

Since Φ is trace preserving and Tr(|x⟩⟨x′|) = δx,x′ , we get

TrY ((I
A ⊗ ΦX))ρ =

∑
i,a,x,a′,x′

piαi,a,xα
∗
i,a′,x′ Tr

(
Φ(|x⟩

〈
x′
∣∣))|a⟩〈a′∣∣

=
∑

i,a,x,a′

piαi,a,xα
∗
i,a′,x|a⟩

〈
a′
∣∣.
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We also have

TrX(ρ) =
∑

i,a,x,a′,x′

piαi,a,xα
∗
i,a′,x′ Tr

(
|x⟩
〈
x′
∣∣)|a⟩〈a′∣∣

=
∑

i,a,x,a′

piαi,a,xα
∗
i,a′,x|a⟩

〈
a′
∣∣,

which completes the proof.

A.1 Min-Entropy and Randomness Extractors

As one of our main tools, we will require explicit constructions of seeded randomness extractors
that are secure against quantum side information and multi-source randomness extractors which
are resilient to quantum adversaries with shared entanglement. These objects have been studied
under many different models. For seeded extractors we will use the model of De, Portmann,
Vidick, and Renner [DPVR12] and for multi-source extractors we focus on the model of Kasher
and Kempe [KK12] and Chung, Li, and Wu [CLW14].

We first start with entropy definitions and useful lemmas.

Definition 44 (Min-entropy). The min-entropy of a random variable X supported on a finite set
X , denoted by H∞(X), is given by

H∞(X) = − logmax
x∈X

Pr[X = x].

Definition 45 (k-source). A random variable X is said to be a k-source if H∞(X) ≥ k.

Definition 46 (Average conditional min-entropy [DORS08]). Let X,Y be two (possibly correlated)
random variables. We define the average conditional min-entropy of X given Y as

H∞(X|Y ) = − logEy←Y max
x

Pr[X = x|Y = y].

Definition 47 (Quantum min-entropy). Let X be a register in the state ρ. We define the min-
entropy of X to be

H∞(X)ρ = − log(λmax(ρ)).

where λmax(ρ) denotes the largest eigenvalue of the density matrix ρ. When the state ρ is clear
from context, we will simply write H∞(X)

Definition 48 (Quantum conditional min-entropy). Let X,Y be registers with state space X ,Y
and joint state ρ. We define the conditional min-entropy of X given Y as

H∞(X|Y )ρ = − logmin
σ∈Y
{min
λ∈R

λI ⊗ σ ≥ ρ}.

When ρ is a cq-state, H∞(X|Y ) has an operational meaning in terms of the optimal guessing
probability for X given Y .

Definition 49. Let X,Y be two registers with state spaces X ,Y and joint cq-state ρ =
∑

x|x⟩⟨x| ⊗
σYx . Then, the guessing probability of X given Y , denoted by pguess(X|Y ), is given by

pguess(X|Y ) = max
{µx}x POVM

Tr
(
µxρ

Y
)
.
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Lemma 18 ([KRS09, Theorem 1]). Let X,Y be two registers in a cq-state. Then,

H∞(X|Y ) = − log pguess(X|Y ).

We will also utilize the following lemma.

Lemma 19 (Separable chain rule for quantum min-entropy [DD10, Lemma 7]). Let A,B,C be
registers with some joint, separable state ρ =

∑
i piτ

AB
i ⊗ σCi . Then,

H∞(A|B,C) ≥ H∞(A|B)− log |C|.

Now we move to extractors.

Definition 50 (Strong seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to
be a (k, ε)-strong seeded extractor if for every pair of random variables (X,W ) with X ∈ {0, 1}n
and H̃∞(X|W ) ≥ k it holds that

Ext(X,Ud), Ud,W ≈ε Um, Ud,W.

A seeded extractor Ext is said to be linear if Ext(·, s) is a linear function for every s ∈ {0, 1}d.

Definition 51 (Quantum-proof seeded extractor [DPVR12]). A function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is said to be a (k, ε)-strong quantum-proof seeded extractor if for any cq-state ρ ∈ H⊗n⊗Y
of the registers X,Y with H∞(X|Y ) ≥ k, we have

Ext(X,S), Y, S ≈ε Um, Y, S

where S ← {0, 1}d.

Note that any quantum-proof seeded extractor is also a classical seeded extractor with the same
parameters. We will use the following explicit linear strong seeded extractor due to Trevisan [Tre01]
with improvements by Raz, Reingold, and Vadhan [RRV02], which was later shown to be quantum-
proof by De, Portmann, Vidick, and Renner [DPVR12].

Lemma 20 ([Tre01, RRV02, DPVR12]). There exists an explicit linear (k, ε)-strong quantum-proof
seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log3(n/ε)) and m = k −O(d).

When we do not insist on linearity, we can use the following extractor with slightly improved
parameters.

Theorem 51 ([DPVR12]). There exists an explicit (k, ε)-strong quantum-proof seeded extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log2(n/ε) logm) and m = k − 4 log(1/ε)−O(1).

B BB84-based Cryptographic Schemes Resilient to Unbounded
Classical Leakage

In this section, we define the weaker notion of unbounded classical leakage-resilience and use BB84
states to construct secret key encryption and secret sharing schemes that satisfy this notion. While
this security notion is weaker than LOCC leakage-resilience, we believe constructions based on BB84
states are nevertheless useful since they are vastly more practical than highly entangled states like
coset states.

We first present some results regarding unbounded classical leakage on BB84 states that will
be useful in most of our schemes.
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B.1 Monogamy-of-Entanglement Games

In this section we introduce the notion of a Monogamy-of-Entanglement game (MoE game), as first
studied by Tomamichel, Fehr, Kaniewski, and Wehner [TFKW13], along with useful games and
associated results.

An MoE game is played by three parties, Alice, Bob, and Charlie and is parameterized by a list
Θ of possible POVM measurements performed by Alice. The game proceeds as follows:

1. Bob and Charlie select a tripartite quantum state ρABC . Alice has access to the contents of
register A, Bob has access to the contents of register B, and Charlie has access to the contents
of register C.

2. Alice samples a POVMmeasurement θ ← Θ and measures the contents of register A according
to θ. Let x denote the measurement outcome. Alice reveals θ to Bob and Charlie.

3. Bob and Charlie win the game if they both guess x given their quantum registers and knowl-
edge of θ.

A quantity of interest in an MoE game is the winning probability of Bob and Charlie, maximized
over the choice of the tripartite quantum state ρABC and strategies of Bob and Charlie. In our work
we will use bounds on the winning probability for the basic n-qubit “BB84” MoE game already
studied in [TFKW13], where register A contains n qubits and for each i ∈ [n] Alice measures the
i-th qubit with respect to the computational or Hadamard basis independently with probability
1/2. The following result was established in [TFKW13].

Lemma 21 ([TFKW13, Theorem 3]). The winning probability of the n-qubit BB84 MoE game is(
1
2 + 1

2
√
2

)n
.

Lemma 22 (Entropy loss of BB84 states with unbounded classical leakage). Let X, θ be indepen-
dent and uniformly distributed over {0, 1}λ and consider the BB84 state Hθ|X⟩. Let Leak be any
quantum-to-classical channel. Then, we have that

H∞(X|Leak(Hθ|X⟩), θ) ≥ CBB84 · λ

where CBB84 = − log
(
1
2 + 1

2
√
2

)
> 0.22.

Proof. The desired statement follows by framing the task of guessing X as an instance of the λ-
qubit BB84 MoE game from Appendix B.1. To see this, consider the tripartite quantum state
ρABC constructed as follows:

1. Generate λ EPR pairs |Φ1⟩, . . . , |Φλ⟩. Store the first half of each pair in Alice’s register A,
and the second half in another register A′.

2. Compute the classical leakage L by applying Leak to the contents of A′.

3. Store L in Bob’s and Charlie’s registers, B and C.

Note that if Alice samples θ uniformly at random from {0, 1}λ and measures the i-th qubit
in A according to the computational basis if θi = 0 and the Hadamard basis if θi = 1 obtaining
the measurement outcome X ∈ {0, 1}λ, then, after these measurements, the register A′ holds the
state Hθ|X⟩. Moreover, since the measurements above and the leakage function Leak are applied to
disjoint sets of registers, these operations commute and so L← Leak(Hθ|X⟩). As Bob and Charlie
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both have access to (L, θ), the winning probability of this MoE game equals the optimal probability
of guessing X given (L, θ). According to Lemma 21, this probability is exactly(

1

2
+

1

2
√
2

)λ

,

and so

H∞(X|L, θ) = − log pguess(X|L, θ) = −λ · log
(
1

2
+

1

2
√
2

)
= CBB84 · λ,

where the first equality uses Lemma 18.

We can also extend Lemma 22 against attacks that are composed of unbounded classical leakage
and bounded quantum leakage.

Lemma 23 (Entropy loss of BB84 states with unbounded classical and bounded quantum leakage).
Let X, θ be independent and uniformly distributed over {0, 1}λ and consider the BB84 state Hθ|X⟩.
Let ℓc(λ), ℓq(λ) be functions denoting the classical leakage and qubit leakage size, respectively. Then,
for any quantum channel Leak with ℓc(λ) bit classical output and ℓq(λ) qubit output, we have

H∞(X|Leak(Hθ|X⟩), θ) ≥ CBB84 · λ− ℓq(λ).

We first need a technical lemma that will help show that the quantum leakage will be unentan-
gled from the rest of the system.

Lemma 24 ([HSR03, Theorem 1]). Any channel of the form

Φ(ρ) =
∑
k

Rk Tr(Fkρ)

where {Fk}k is a POVM and each Rk is a density matrix, is entanglement breaking.
More formally, for such a channel Φ on register X, for any other register Y and any state σ of

(X,Y ), we have that (ΦX ⊗ IY )(σ) is separable.

Proof. Without loss of generality assume that the first ℓc(λ) registers of the output of Leak are
classical. Define the registers A,B,C,D where C will contain the classical leakage and D will
contain the quantum leakage, and consider the cccq state

ρ =
∑
x

1

2λ
|x⟩⟨x| ⊗

(∑
θ

1

2λ
|θ⟩⟨θ| ⊗ Leak(Hθ|x⟩)

)

over these registers.
We have (∆C ⊗ ID)Leak = Leak by Definition 43. We also have ∆C(σ) =

∑
a Tr(Ea,aρ)Ea,a by

Definition 42 where each Ea,a is a density matrix while {Ea,a}a form a POVM. Hence, by Lemma 24,
is ∆C is an entanglement breaking channel and therefore

Leak(Hθ|x⟩) =
∑
i

pθ,xi (τ θ,xi )C ⊗ (ξθ,xi )D.

for some density matrices {τ θ,xi }i, {ξ
θ,x
i }i and probability distribution {pθ,xi } for each θ, x. Then,

ρ =
∑
x,θ,i

pθ,xi

4λ
|x⟩⟨x| ⊗ |θ⟩⟨θ| ⊗ (τ θ,xi )C ⊗ (ξθ,xi )D.
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Hence, D is separable from rest of the system, and then by Lemma 19 we have

H∞(A, (B,C), D) ≥ H∞(A|B,C)− ℓq(λ) (4)

since D consists of ℓq(λ) qubits.
Observe that H∞(A|B,C) is H∞(X|θ, C) and C is classical. Hence, by Lemma 22 we have

H∞(A|B,C) ≥ CBB84 · λ. Finally combining this with Equation (4) yields the result.

B.2 Private-Key Encryption

We introduce private-key encryption schemes that are resilient against unbounded classical leakage
from encryption and decryption keys. We then show how to construct using our results regarding
leakage from BB84 states (Lemma 22, Lemma 23).

Definition 52 (Unbounded classical leakage-resilient private-key encryption). A private-key en-
cryption scheme SKE is said to be (∗, ℓq(λ))-leakage-resilient if for all polynomials ℓc(·) and p(·),
for all tuples of QPT adversaries A = (AMain,ALeak,enc,ALeak,dec) such that the output of ALeak,enc

and ALeak,dec consists of ℓc(λ) classical bits and ℓq(λ) qubits, respectively, the advantage of A in the
following game is negligible.

1. The challenger runs Renc, Rdec ← SKE.KeyGen(1).

2. Adversary outputs messages

(m
(1)
0 ,m

(1)
1 ), . . . , (m

(p(λ))
0 ,m

(p(λ))
1 )← AMain(1).

3. Challenger samples a challenge bit b← {0, 1}.

4. For i = 1 to p(λ), challenger sets Ri,ct ← SKE.Enc(Renc,m
(i)
b ).

5. The leakage adversaries get access to their keys and produce leakages

Rleak ← ALeak,enc(Renc),ALeak,dec(Rdec).

6. Given the leakage, adversary outputs a guess b′ ← AMain(Rct, Rleak).

7. Output 1 iff b = b′.

We define the advantage of A to be
∣∣Pr[b′ = b]− 1

2

∣∣.
We also require overwhelming correctness in the natural way, and assume that Dec is rewound

after each use.

Our definition can be seen as an everlasting security for messages encrypted before the leakage
attack. This is necessary since the leakage attack will collapse the key to a state known by the
adversary, after which it is impossible to satisfy security. However, one can use intrusion-detection
schemes (Section 8) to throw away the key after a leakage attack and establish new keys.

Theorem 52. Let m(·) be a polynomial denoting the message size and ℓq(·) be any polynomial
denoting the qubit leakage size. Let PKE be a public-key encryption scheme for message of size
m(λ) whose public-key length is k(λ) and key generation algorithm PKE.KeyGen has randomness
complexity r(λ). Let Ext be the extractor obtained by instantiating Theorem 51 with n = N ,
ε = (log(λ))− log(λ) and k = CBB84 · N − ℓq(λ) where we define N(λ) = 1

CBB84
(ℓq(λ) + r(λ) +

4 log(λ) log(log(λ)). Then, the following private-key encryption scheme SKE is (∗, ℓq(λ))-leakage-
resilient and

• its encryption key consists of N(λ) + k(λ) +O(log2(n) log2(log(n)) log(r(λ))) classical bits,

• its decryption key consists of N(λ) +O(1) qubits.
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SKE

• SKE.KeyGen(1)

1. Sample x, θ, s← {0, 1}N(λ).

2. pk, sk ← PKE.KeyGen(1λ;Ext(x, s)).

3. Renc ← (θ, s, pk).

4. Rdec ← Hθ|x⟩.
5. Output (Renc, Rdec).

• SKE.Enc((θ, s, pk),m)

1. ct← PKE.Enc(pk,m).

2. Output ct, θ, s.

• SKE.Dec(Rdec, (ct, θ, s))

1. Apply H−θ to Rdec.

2. Measure Rdec in computational basis to obtain x.

3. pk, sk ← PKE.KeyGen(1λ;Ext(x, s)).

4. Restore the key as Rdec ← Hθ|x⟩.
5. Output PKE.Dec(sk, ct).

Proof. It is straightforward to show that correctness holds with probability 1.
We will prove the security using a hybrid argument. Observe that, by Theorem 51, the output

length of Ext is r(λ) as required. Define the first hybrid, Hyb0 to be the original security game.
Define the second hybrid Hyb1 by replacing the line

pk ← PKE.KeyGen(1λ;Ext(x, s))

with

pk ← PKE.KeyGen(1λ;Ur(λ))

in SKE.KeyGen. By the entropy lemma for BB84 states given unbounded classical leakage (Lemma 23),
we have that H∞(x|ALeak,dec(Rdec), θ) ≥ CBB84 ·N − ℓ(λ). Hence, since ALeak,dec(Rdec), θ are inde-
pendent of the seed s and Ext is a strong quantum-proof extractor (Definition 51), we get

Ext(x, s), s,ALeak,dec(Rdec), θ ≈ Ur(λ), s,ALeak,dec(Rdec), θ

Then, by post-processing (Lemma 16), it follows that

PKE.KeyGen(1λ;Ext(x, s)), s,ALeak,dec(Rdec), θ ≈ PKE.KeyGen(1λ;Ur(λ)), s,ALeak,dec(Rdec), θ

which implies Hyb0 ≈ Hyb1. Now, for a contradiction, suppose there exists an adversary A =
(AMain,ALeak,enc,ALeak,dec) that wins the leakage-resilience game, Hyb0, with non-negligible advan-
tage. By Hyb0 ≈ Hyb1, the adversary A wins the game Hyb1 also with non-negligible advantage.
We construct the following adversary A′ for the security game of the public-key encryption scheme
PKE.
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A′

1. Output AMain(1) as the selected plaintexts.

2. On input (pk, ct), sample x, θ, s← {0, 1}N(λ) and output

AMain(ct, (ALeak,enc(θ, s, pk),ALeak,dec(H
θ|x⟩)))

It is easy to see that Hyb1 is exacty the same as the public-key encryption indistinguishability
game as played by A′. Hence, A′ breaks the security of PKE, which is a contradiction.

B.3 Secret Sharing Schemes Resilient to Unbounded Classical Leakage based
on BB84 States

B.3.1 Secret Sharing Schemes

We introduce basic definitions of access structures and secret sharing schemes.

Definition 53 (Access structure). We say that Γ ⊆ 2S is an access structure if A ∈ Γ and A ⊆ B
implies that B ∈ Γ. We call sets A ∈ Γ authorized.

Definition 54 (Secret sharing). A family of functions (Share, (RecT )T∈Γ) is an ε-secret sharing
scheme for an access structure Γ ⊆ 2[n] on n parties with message space X and share space S if
Share : X → S [n] and RecT : ST → X are quantum channels and the following two properties are
satisfied:

• Correctness: If T ∈ Γ (i.e., T is authorized) it holds that

Tr(|x⟩⟨x|RecT (Share(x)T )) = 1

for any message x ∈ X .

• ε-Privacy: If T ̸∈ Γ (i.e., T is unauthorized) it holds that

Share(x)T ≈ε Share(x
′)T

for any two messages x, x′ ∈ X .

In the special case where T ∈ Γ if and only if |T | ≥ t for some threshold t, we say that
(Share,Rec) is a t-out-of-n ε-secret sharing scheme.

B.3.2 Leakage-Resilient Secret Sharing for General Access Structures

We describe and analyze an efficient compiler that takes as input an appropriate secret sharing
scheme realizing an access structure without singletons21 and outputs a secret sharing scheme for
the same access structure which is additionally leakage-resilient against unbounded classical local
leakage and bounded quantum leakage. The compiler is inspired by the approach of Chandran,
Kanukurthi, Obbattu, and Sekar [CKOS22] for bounded classical leakage (which itself improves a
previous compiler of [ADN+19]) and uses the entropic monogamy-of-entanglement properties of
random BB84 states, as shown in Lemmas 22 and 23.

21Local leakage-resilience is trivially unachievable for access structures with singletons.
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Definition 55 (Unbounded-leakage-resilient secret sharing). We say that a secret sharing scheme
(Share, (RecT )T∈Γ) is ε-unbounded-leakage-resilient if for any unauthorized set T ̸∈ Γ, any family
of leakage functions {Leaki}i ̸∈T with possibly quantum input but classical output (but not sharing
entangled states), and any two messages m,m′ ∈M we have that

(Shi)i∈T , (Leaki(Shi))i ̸∈T ≈ε (Sh
′
i)i∈T , (Leaki(Sh

′
i))i ̸∈T , (5)

where (Shi)i∈[n] ← Share(m) and (Sh′i)i∈[n] ← Share(m′).
Similarly, we say that the scheme is ε-leakage-resilient to (∗, ℓ)-leakage if it satisfies Equation (5)

for any family of leakage functions {Leaki}i ̸∈T whose outputs each consist of arbitrary size classical
bits and ℓ qubits.

Now we move to our construction. Let n be the number of parties and Γ be the access structure.
We will assume access to the following objects:

• A secret sharing scheme (Share,Rec) for the access structure Γ, mapping a u-bit message m
to w-bit shares Zm

1 , . . . , Z
m
n with εpriv-privacy, i.e.,

(Zm
i )i∈T ≈εpriv (Z

m′
i )i∈T

for any unauthorized set T ̸∈ Γ and any two secrets m and m′. We additionally enforce the
marginal uniformity property that Zm

i ≈εunif Uw for all i ∈ [n] and m ∈ {0, 1}u. We also
require that the access structure Γ ⊆ 2[n] realized by (Share,Rec) contains no singletons.22

For the special case of threshold access structures, Shamir’s secret sharing scheme satisfies
these properties with εpriv = εunif = 0.

• An explicit linear (k = CBB84 · N − ℓ, εext)-strong quantum-proof seeded extractor Ext :
{0, 1}N × {0, 1}d → {0, 1}w, such as Trevisan’s extractor from Lemma 20 with seed length
d = O(log3(w/εext)) and such that

w ≥ k −O(d) = CBB84 ·N − ℓ−O(d).

As already shown in [CKOS22, Lemma 2], every such linear extractor Ext is equipped with
an efficient inversion procedure InvExt(z, s) which either samples x uniformly at random from
the preimage {x ∈ {0, 1}N : Ext(x, s) = z} or outputs ⊥ if this set is empty. If S ← {0, 1}d
and Z ≈εunif Um are independent, it holds that

Pr[InvExt(Z, S) = ⊥] ≤ εext + εunif . (6)

To see this, note that InvExt(Z, S) ≈εunif InvExt(Um, Ud), and that at most an εext-fraction of
output-seed pairs (z, s) ∈ {0, 1}w × {0, 1}d can have an empty preimage with respect to Ext.
Then, a union bound yields Equation (6).

• 2-out-of-n Shamir secret sharing schemes (Share2-n,Rec2-n) for N -bit and d-bit secrets.23

We construct a leakage-resilient secret sharing scheme (Share⋆,Rec⋆) realizing Γ using the objects
above. On input a secret m ∈ {0, 1}u, the sharing procedure Share⋆ proceeds as follows:

1. Compute (Z1, . . . , Zn)← Share(m).

22Note that locally leakage-resilient secret sharing is unachievable over any access structure with singletons.
23For the sake of simplicity, we avoid parameterizing these schemes by the secret length.
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2. Sample a basis θ ← {0, 1}N and a seed S ← {0, 1}d. Compute the 2-out-of-n Shamir shares
(θ1, . . . , θn)← Share2-n(θ) and (S1, . . . , Sn)← Share2-n(S).

3. For each i ∈ [n], sample Xi ← InvExt(Zi, S).

4. If Xi ̸= ⊥, set Shi = (Hθ|Xi⟩, Si, θi). Else, if Xi = ⊥ set Shi = (⊥, Zi).

The reconstruction procedure Rec⋆ is straightforward. Moreover, it is easy to show that (Share⋆,Rec⋆)
realizes Γ and satisfies εpriv-privacy. To conclude the argument, we proceed to show that (Share⋆,Rec⋆)
is resilient to local unbounded classical leakage.

Theorem 53. The secret sharing scheme (Share⋆,Rec⋆) for the access structure Γ is εleak-unbounded-
leakage-resilient with

εleak = 5n(εext + εunif) + εpriv.

Proof. We prove Theorem 53 via a hybrid argument. Fix an unauthorized set T ̸∈ Γ of size t.
Without loss of generality we may assume that T = {1, . . . , t}. For a secret m ∈ {0, 1}u and local
quantum-to-classical leakage functions

Leakt+1, . . . , Leakn,

let Leakm denote the output of the leakage experiment on m, i.e.,

Leakm = (Shi)i∈[t], (Leakj(Shj))j∈{t+1,...,n},

where (Sh1, . . . ,Shn) ← Share⋆(m). The desired result follows if we show that Leakm ≈εleak Leak
m′

for any two secrets m,m′ ∈ {0, 1}u. By Equation (6) and a union bound over all n shares, it follows
that the probability that there is at least one share of the form (⊥, Zi) is at most

n(εext + εunif).

Consequently, from here onwards we assume that no inversion procedure fails in the sharing phase,
and will add this term to the final leakage error εleak.

Towards this end, we consider hybrids Hybmi for i = t, . . . , n which behave like Leakm, but where
Xj ← {0, 1}N for every j ∈ {t + 1, . . . , i}. Note that Leakm ≡ Hybmt and, by εpriv-privacy of the
underlying scheme (Share,Rec), we also have

Hybmn ≈εpriv Hyb
m′
n .

Therefore, it suffices to establish the following.

Claim 9. For every secret m ∈ {0, 1}u and i ∈ {t+ 1, . . . , n} it holds that

Hybmi−1 ≈2(εext+εunif) Hyb
m
i .

Assuming Claim 9, repeated application of the triangle inequality yields

Leakm ≡ Hybm0 ≈2n(εext+εunif) Hyb
m
n−t ≈εpriv Hyb

m′
n−t ≈2n(εext+εunif) Hyb

m′
0 ≡ Leakm

′
.

The triangle inequality applied to this chain leads to Theorem 53. We proceed to prove Claim 9,
which concludes our argument.
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Proof of Claim 9. Note that Hybmi−1 and Hybmi only differ in the computation of the i-th share Shi.
We begin by observing that we may write Hybmi−1 and Hybmi as

Hybmi−1 = f(i, Zi, Si, S, θi, θ, Leaki(H
θ|InvExt(Zi, S)⟩, Si, θi))

and
Hybmi = f(i, Zi, Si, S, θi, θ, Leaki(H

θ|X⟩, Si, θi))

for the same randomized function f (with randomness independent of the input). Therefore, by
the post-processing property of trace distance, it suffices to show that

Zi, Si, S, θi, θ, Leaki(H
θ|InvExt(Zi, S)⟩, Si, θi) ≈2(εext+εunif) Zi, Si, S, θi, θ, Leaki(H

θ|X⟩, Si, θi). (7)

We claim that we can replace the Shamir shares Si and θi by Shamir shares of 0 and Zi by the
uniform distribution on {0, 1}w. Let S̃i and θ̃i denote the i-th Shamir secret sharing of 0. Since
Zi ≈εunif Uw and Zi and X are independent of each other and of Si, S, θi, θ, the 0-privacy of Shamir
secret sharing implies that

Zi, Si, S, θi, θ,X ≈εunif Uw, S̃i, S, θ̃i, θ,X.

Since both sides of Equation (7) are randomized functions of Zi, Si, S, θi, θ,X, in order to show
Equation (7) it is enough to argue that

Uw, S̃i, S, θ̃i, θ, Leaki(H
θ|InvExt(Um, S)⟩, S̃i, θ̃i) ≈2εext Uw, S̃i, S, θ̃i, θ, Leaki(H

θ|X⟩, S̃i, θ̃i). (8)

As S̃i and θ̃i are independent of X and θ, Lemma 22 guarantees that

H∞(X|Leaki(Hθ|X⟩, S̃i, θ̃i), θ̃i, θ) ≥ CBB84 ·N.

Therefore, invoking the strong extractor properties of Ext and the fact that S̃i, θ̃i, and θ are
independent of X and the seed S yields

Um, S̃i, S, θ̃i, θ, Leaki(H
θ|X⟩, S̃i, θ̃i)

≈εext Ext(X,S), S̃i, S, θ̃i, θ, Leaki(H
θ|X⟩, S̃i, θ̃i)

≡ Ext(X,S), S̃i, S, θ̃i, θ, Leaki(H
θ|InvExt(Ext(X,S), S)⟩, S̃i, θ̃i)

≈εext Um, S̃i, S, θ̃i, θ, Leaki(H
θ|InvExt(Um, S)⟩, S̃i, θ̃i),

and so Equation (8) follows by the triangle inequality.

Setting parameters in the compiler

In this section we show how to instantiate the compiler from Theorem 53 to obtain efficient threshold
secret sharing schemes resilient against unbounded classical leakage and a constant rate of quantum
leakage with exponentially small error. To be more precise, we obtain the following corollary.

Corollary 11. Given a security parameter λ, there is an efficient t-out-of-n secret sharing scheme
for u-bit secrets with the following properties:

• Its share length w⋆ satisfies w⋆ = O(u+ λ3);
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• It is (εleak = O(n2−λ))-unbounded-leakage-resilient to (∗, ℓ)-leakage for ℓ = Ω(w⋆) qubits of
leakage from each share.

Proof. Let λ be a security parameter. Our goal is to instantiate the compiler so that the resulting
scheme (Share⋆,Rec⋆) achieves leakage error εleak = O(n2−λ), where n is the number of parties,
while withstanding unbounded classical leakage and ℓ = Ω(w⋆) qubits of leakage from each share,
where w⋆ denotes the share length of (Share⋆,Rec⋆), and so that w⋆ is not much larger than the
original share size w of the underlying (non-leakage-resilient) secret sharing scheme.

Choose the underlying scheme (Share,Rec) to be a t-out-of-n Shamir secret sharing scheme
with secret size u and share size w = u. Note that (Share,Rec) satisfies (εpriv = 0)-privacy and
(εunif = 0)-uniformity. Lemma 20 guarantees the existence of an efficient linear (k, εext)-strong
quantum-proof seeded extractor Ext : {0, 1}N × {0, 1}d → {0, 1}w with error εext = 2−λ, input
source length N = C(w + λ3) for a sufficiently large constant C > 0, min-entropy requirement
k = cN for an arbitrary constant c > 0, and seed length d ≤ C ′ log3(N/εext) = C ′(λ3 + log3N) for
a sufficiently large constant C ′ > 0.

Combining the objects above with the compiler of Theorem 53 yields an efficient threshold
secret sharing scheme (Share⋆,Rec⋆) with share size w⋆ = 2N +d = O(w+λ3). It remains to argue
that we may set ℓ = Ω(w⋆) and εleak = O(n2−λ). Note that under these constraints we may assume
that CBB84N − ℓ ≥ cN for some constant c > 0, thus satisfying the min-entropy requirement of
the extractor Ext above, and obtaining final leakage error

εleak = 5n(εext + εunif) + εpriv = O(n2−λ).

B.3.3 An impossibility result for leakage-resilient secret sharing

We have designed secret sharing schemes which are resilient against unbounded classical leakage.
To complement this result, relying on ideas from a recent result of Ananth, Goyal, Liu and Liu
[AGLL23], we show that such schemes are unachievable if we additionally allow arbitrary entangled
states to be shared between local leakage adversaries, even if these adversaries only output classical
leakage and share no entanglement with the distinguisher. For simplicity, we present the result for
2-out-of-2 threshold secret sharing schemes, but the argument is easily generalizable to quantum
secret sharing schemes realizing arbitrary access structures.

Theorem 54. Given any quantum secret sharing scheme which encodes a secret m ∈ {0, 1} into
w-dimensional shares Shm = (Shm1 , Sh

m
2 ), there exist quantum-to-classical local leakage functions

Leak1 and Leak2 outputting ℓc = ℓc(w) classical bits each, for N and ℓc sufficiently large functions
of w, and a distinguisher D such that

Pr
[
D(Sh1i , Ri, Leak3−i(Sh

1
3−i, R3−i)) = 1

]
− Pr

[
D(Sh0i , Ri, Leak3−i(Sh

0
3−i, R3−i)) = 1

]
≥ 0.99

for any i ∈ {1, 2}, where R1, R2 is initialized to N = N(w) EPR pairs shared between them.

Before we proceed to the proof of Theorem 54, we introduce port-based teleportation.

Port-based teleportation Port-Based Teleportation (PBT), introduced by Ishizaka and Hi-
roshima [IH08, IH09] is a quantum teleportation protocol between two parties, Alice and Bob, with
special properties. More precisely, assuming that Alice and Bob share a large number N of EPR
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pairs24, Alice can teleport a d-dimensional quantum state to Bob by performing a joint measure-
ment and communicating its outcome (determining which EPR pairs contain the teleported state)
to Bob, who does not perform any operation. PBT necessarily incurs some failure probability or
non-perfect fidelity between the original and the teleported states. In contrast, vanilla quantum
teleportation has no failure probability and has perfect fidelity, but requires Bob to perform some
corrective operations to its state.

In the probabilistic version of PBT which we will be using, the protocol may fail with some prob-
ability p(d,N), and otherwise simulates an identity channel perfectly. It is known that p(d,N)→ 0
as N →∞ for every fixed dimension d. In fact, the asymptotics of this failure probability are well
studied [CLM+21], although we will not need them here.

This discussion is summarized in the following theorem.

Theorem 55 (Probabilistic PBT [IH08, CLM+21]). Fix a dimension d > 0. Suppose that Alice and
Bob share N EPR pairs indexed in some prespecified manner. There exists a protocol between Alice
and Bob through which Alice can teleport a d-dimensional quantum state to Bob by performing
a measurement and sending its classical outcome i to Bob. To obtain the teleported state, Bob
does not apply any operations to its state and simply selects its EPR halves indexed by the received
measurement outcome i. The protocol fails with some probability p(d,N) which satisfies p(d,N)→ 0
as N →∞, and otherwise perfectly simulates an identity channel.

Proof of Theorem 54

Suppose that a secret m ∈ {0, 1} is secret-shared into w-dimensional shares Shm = (Shm1 , Sh
m
2 ).

Consider the local leakage functions Leak1, Leak2 sharing N EPR pairs and where Leaki has access
to Shmi defined as follows:

1. Using the halves of their first w shared EPR pairs, Leak1 teleports Shm1 to Leak2. Let k, k
′ ∈

{0, 1}w denote the measurement outcome of the quantum teleportation protocol, so that the
halves of the w EPR pairs held by Leak2 now contain the state

Sh
m
1 =

(
XkiZk′i(Shm1 )i

)
i∈[w]

2. Leak2 now has access to Shm2 and the hidden share Sh
m
1 . Exploiting probabilistic PBT (see

Appendix B.3.3), Leak2 teleports (Sh
m
1 ,Sh

m
2 ) to Leak1 using the remaining EPR pairs. Let i⋆

denote the measurement outcome of the PBT protocol.

3. Using the measurement outcomes (k, k′) from the initial teleportation step, Leak1 applies⊗w
i=1X

kiZk′i to the EPR halves of each port corresponding to Sh
m
1 , and then applies the

reconstruction algorithm of the given quantum secret sharing scheme to the EPR halves
corresponding to each port. Finally, Leak1 leaks the classical output of the reconstruction
algorithm on each port.

4. Leak2 leaks the PBT measurement outcome i⋆.

Conditioned on the probabilistic PBT protocol succeeding, the EPR halves held by Leak1 cor-
responding to port i⋆ contain the state (Shm1 ,Sh

m
2 ). Therefore, the output of Leak1’s operations

on port i⋆, call it Li⋆ , satisfies Li⋆ = m. By Theorem 55, if the number N of EPR pairs shared

24Here we focus on the setting where Alice and Bob share EPR pairs. Settings where Alice and Bob share entangled
states optimized for PBT have also been studied. See, e.g., [IH08, IH09, CLM+21].
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by Leak1 and Leak2 is large enough then it holds that the probabilistic PBT protocol succeeds
with probability at least 0.99. As a result, the distinguisher D which outputs Li⋆ , which can be
computed given the classical outputs of Leak1 and Leak2, succeeds with the desired advantage.
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