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Abstract

Consider a state-level adversary who observes and stores large amounts of en-
crypted data from all users on the Internet, but does not have the capacity to store
it all. Later, it may target certain “persons of interest” in order to obtain their de-
cryption keys. We would like to guarantee that, if the adversary’s storage capacity
is only (say) 1% of the total encrypted data size, then even if it can later obtain the
decryption keys of arbitrary users, it can only learn something about the contents
of (roughly) 1% of the ciphertexts, while the rest will maintain full security. This
can be seen as an extension of incompressible cryptography (Dziembowski CRYPTO
’06, Guan, Wichs and Zhandry EUROCRYPT ’22) to the multi-user setting. We
provide solutions in both the symmetric key and public key setting with various
trade-offs in terms of computational assumptions and efficiency.

As the core technical tool, we study an information-theoretic problem which we
refer to as “multi-instance randomness extraction”. Suppose X1, . . . , Xt are corre-
lated random variables whose total joint min-entropy rate is α, but we know nothing
else about their individual entropies. We choose t random and independent seeds
S1, . . . , St and attempt to individually extract some small amount of randomness
Yi = Ext(Xi;Si) from each Xi. We’d like to say that roughly an α-fraction of the
extracted outputs Yi should be indistinguishable from uniform even given all the
remaining extracted outputs and all the seeds. We show that this indeed holds for
specific extractors based on Hadamard and Reed-Muller codes.
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1 Introduction

Bounded-Storage Mass Surveillance. We consider a scenario where a powerful (e.g.,
state-level) adversary wants to perform mass surveillance of the population. Even if the
population uses encryption to secure all communication, the adversary can collect large
amounts of encrypted data from the users (e.g., by monitoring encrypted traffic on the
Internet). The data is encrypted and hence the adversary does not learn anything about
its contents when it is collected. However, the adversary may store this data for the
future. Later, it may identify various “persons of interest” and perform expensive targeted
attacks to get their secret keys (e.g., by remote hacking or by physically compromising
their devices). We will assume the adversary is capable of eventually getting any secret
key of any user of its choosing. Can we still achieve any meaningful notion of security
against such mass-surveillance?

One option is to rely on cryptosystems having forward secrecy [Gün90], which exactly
addresses the problem of maintaining security even if the secret key is later compromised.
Unfortunately, forward-secure encryption schemes inherently require either multi-round
interaction between the sender and receiver or for the receiver to perform key updates,
both of which can be impractical or impossible in many natural scenarios. Without
these, it may seem that no reasonable security is possible – if the adversary collects all
the ciphertexts and later can get any secret key, clearly it can also get any plaintext!

In this work, we restrict the adversary to have bounded storage, which is much smaller
than the total of size of all the encrypted data it can observe. This is a reasonable
assumption since the total communication of an entire population is likely huge.1 As a
running example throughout the introduction, we will assume that the adversary’s storage
capacity is 1% of the total encrypted data size. We allow the adversary to observe all
the encrypted data simultaneously and then compress it in some arbitrary way to fit
within its storage budget. Later, the adversary can get any secret key of any user of
its choosing, and eventually it may even get all the keys of all the users. What kind of
security guarantees can we provide in this setting?

Clearly, the adversary can simply store 1% of the ciphertexts and discard the remain-
ing 99%, which will allow it to later compromise the security of 1% of the users by getting
their secret keys. While one may pessimistically see this as a significant privacy violation
already, we optimistically regard this as a potentially reasonable privacy outcome that’s
vastly preferable to the adversary being able to compromise all the users. For example,
if the adversary later chooses a random user and wants to learn something about their
data, it will only be able to do so with 1% probability, even if it can get their secret key.
But can we argue that this is the best that the adversary can do? In particular, we’d like
to say that, no mater what compression strategy the adversary employs, it will be unable
to learn anything about the contents of 99% of the ciphertexts, even if it later gets all the
secret keys. Unfortunately, this is not generically true. For example, the adversary could
store the first 1% of the bits of every ciphertext. If the encryption scheme is (e.g.,) the
one-time pad, then an adversary who later learns the secret keys would later be able to
learn the first 1% of every encrypted message of every user, which may provide a pretty

1Global annual Internet traffic has long surpassed 1 zettabyte (1021 bytes) [BJ], while total world-wide
datacenter storage is only a couple zettabytes in 2022 [Dep].
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good idea of the overall message contents. In fact, it can get even worse than this. If
the encryption scheme is fully homomorphic, the adversary can individually compress
each ciphertext into a small evaluated ciphertext encrypting some arbitrary predicate of
the data (e.g., was the message insulting of the supreme leader), and therefore learn the
outcome of this predicate about the encrypted data of every user. Even worse, if the en-
cryption scheme is multi-key fully homomorphic, the adversary can derive a compressed
ciphertext that encrypts the output of a joint computation over all the data of all the
users, as long as the output is sufficiently small. Thus, in general, an adversary whose
storage capacity is only 1%, may still be able to learn some partial information about
the encrypted messages of a 100% of the users. The question is then, whether or not it
is indeed possible to guarantee only 1% of users are compromised, and if so to actually
design such a scheme.

Connection to Incompressible Cryptography. Encryption schemes that offer pro-
tection against bounded-storage mass surveillance can be seen as a generalization of in-
compressible encryption [Dzi06, GWZ22, BDD22] to the setting of multiple ciphertexts.
To clarify the distinction, we refer to the earlier notion of incompressible encryption as
individually incompressible and our new notion as multi-incompressible.

In an individually incompressible encryption scheme, we can make the size of a cipher-
text flexibly large, and potentially huge (e.g., many gigabytes). An adversary observes a
single ciphertext, but cannot store it in its entirety and can instead only store some com-
pressed version of it. Security dictates that even if the adversary later gets the user’s secret
key, it cannot learn anything about the encrypted message. The work of [Dzi06] gave
a construction of one-time symmetric-key encryption with information-theoretic security
in this setting, and the work of [GWZ22] showed how to achieve public-key encryption in
this setting, under the minimal assumption that standard public-key encryption exists.
The works of [GWZ22, BDD22] also constructed such public-key encryption schemes hav-
ing rate 1, meaning that the size of the message can be almost as large as the ciphertext
size, and the latter work even showed how to do so under specific but standard public-key
assumptions.

In our new notion of multi-incompressible encryption, we also have the flexibility to
make the ciphertext size arbitrarily large. But now the adversary observes a large number
of ciphertexts from many users and compresses them down to something that’s roughly
an α-fraction of the size of all the original ciphertexts, for some α. In particular, the
adversary’s storage may be much larger than a single ciphertext. Later the adversary
gets all the secret keys, and we want to say that the adversary can only learn something
about a (roughly) α-fraction of the messages, but cannot learn anything about the rest.

Our new notion of multi-incompressibility implies individual incompressibility. In
particular, in the case of a single ciphertext, unless the adversary stores essentially all
of it (i.e., α ≈ 1), it cannot learn anything about the encrypted message (= 100% of
the messages). But our notion is significantly more general. For example, individual
incompressibility does not even offer any guarantees if an adversary can take even 2
ciphertexts and compress them down to the size of 1, while multi-incompressibility ensures
that one of the messages stays secure.

Formalizing multi-incompressibility is tricky: the natural indistinguishability-based
approach would be to insist that the encryptions of two lists of messages are indistin-
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guishable. But unlike individually incompressible encryption, in our setting the adversary
can always learn something, namely the messages contained in ciphertexts it chose to
store. We therefore need a fine-grained notion which captures that some messages to be
learned, but other messages remain completely hidden. We give details on our solution
below.

Extracting randomness against correlated sources. Before getting to our results,
we discuss randomness extraction, which is a central tool in all existing constructions
of incompressible encryption. A randomness extractor Ext takes as input a source of
imperfect randomness X and uses it to distill out some (nearly) uniformly random string
Y . Here, we consider seeded extractors, which use a public uniformly random seed S
as a catalyst to extract Y = Ext(X;S), such that Y should be (nearly) uniform even
conditioned on the seed S.

While randomness extraction is very well studied, it is most often in the single-use
case, where a single string Y = Ext(X;S) is extracted from a single source X having
sufficient entropy. Here we ask: what if many strings Yi = Ext(Xi;Si) are extracted from
multiple sources Xi respectively (using independent random seeds Si), but where the
sources Xi may be arbitrarily correlated? What guarantees can be made? We consider
the case where we only know that the total joint entropy of all the sources is high, but
we know nothing else about their individual entropies; indeed some of the sources may
have no entropy at all! In this case, clearly not all of the extracted values Yi can be
uniform, and some may even be entirely deterministic. One may nevertheless hope that
some of the extracted values remain uniform, where the fraction of uniform values roughly
correlates to combined total entropy rate of all the sources. To the best of our knowledge,
randomness extraction in this setting has not been studied before.

1.1 Our Results.

Formalizing Multi-user Incompressible Encryption. We first provide definitions
for multi-user incompressible encryption. We depart from the indistinguishability-based
definitions of the prior work on incompressible cryptography [Dzi06, GWZ22, BDD22],
and instead give a simulation-based definition. Essentially, the definition says that any-
thing that an adversary can learn by taking many ciphertexts of different users, com-
pressing them down sufficiently, and later getting all the secret keys, can be simulated
by a simulator that can only ask to see some small fraction of the plaintexts but does
not learn anything about the remaining ones. In the single-instance case, this definition
implies indistinguishability-based security, but appears stronger. Nevertheless, existing
constructions and proofs are readily adapted to satisfy simulation security. The dis-
tinction becomes more important in the multi-user setting, however, where simulation
security allows us to naturally define what it means for some messages to be revealed and
some to remain hidden.

Multi-Instance Randomness Extractors. As our main technical tool, we explore a
new kind of extractor that we call a multi-instance randomness extractor, which aims to
solve the extraction problem outlined above. Syntactically, this is a standard extractor
Y = Ext(X;S) that takes as input a source X and a seed S and outputs some short
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randomness Y . However, we now imagine that the extractor is applied separately to
t correlated sources Xi, with each invocation using an independent seed Si, to derive
extracted values Yi = Ext(Xi;Si). The only guarantee on the sources is that the total
joint min-entropy of X = (X1, . . . , Xt) is sufficiently high. Any individual source Xi,
however, may actually be deterministic (have 0 entropy), in which case the corresponding
extracted value Yi is of course not random. However, provided the total min-enropy rate
of X is high, it is guaranteed that many of the t extracted values are statistically-close
uniform. Ideally, if the joint min-entropy rate of X is α, we would hope that roughly αt
of the extracted values are uniform.

Formalizing the above requires some care. For example, it may be the case that X
is chosen by selecting a random index i∗ ← [t], setting Xi∗ to be all 0’s, and choosing
the remaining block Xj for j ̸= i∗ uniformly at random. In that case X has a very high
entropy rate, but for any fixed index i, the min-entropy of Xi is small (at most log t since
with polynomial probability 1/t the value of Xi is all 0’s), and not enough to extract
even 1 bit with negligible bias. Therefore, we cannot argue that Yi = Ext(Xi;Si) is close
to uniform for any particular index i! Instead, we allow the set of indices i, for which Yi

is close to uniform, itself be a random variable correlated with X. (See Definition 3.1.)
We show constructions of multi-instance randomness extractors nearing the optimal

number of uniform extracted values. In particular, we show that if the joint min-entropy
rate ofX = (X1, . . . , Xt) is α then there exists some random variable IX denoting a subset
of ≈ α · t indices in [t] such that nobody can distinguish between seeing all the extracted
values Yi = Ext(Xi;Si) versus replacing all the Yi for i ∈ IX by uniform, even given all the
seeds Si. (See Corollary 3.4.) Our constructions are based on Hadamard codes (long seed)
and Reed-Muller codes (short seed). While the constructions themselves are standard,
our analysis is novel, leveraging the list-decodability of the codes, plus a property we
identify called hinting. Hinting roughly means that the values of {Ext(x;Si)}i on some
particular exponentially large set of pairwise independent seeds Si can be compressed
into a single small hint, of size much smaller than x. This hinting property is a crucial
feature in the local list-decoding algorithms for these codes, but appears not to have been
separately formalized/utilized as a design goal for an extractor.2

Applications. We then show that multi-instance randomness extraction can be used
essentially as a drop-in replacement for standard randomness extractors in prior con-
structions of individual incompressible encryption, lifting them to multi-incompressible
encryption. As concrete applications, we obtain multi-incompressible encryption in a
variety of settings:

• A symmetric key scheme with information-theoretic security, by replacing the ex-
tractor in [Dzi06].

2The work of [AOR+20] studied a notion of extractors for “Somewhere Honest Entropic Look Ahead”
(SHELA) sources. The notions are largely different and unrelated. In particular: (i) in our work X is an
arbitrary source of sufficient entropy while [AOR+20] places additional restrictions, (ii) we use a seeded
extractor while [AOR+20] wants a deterministic extractor, (iii) we apply the seeded extractor separately
on each Xi while [AOR+20] applies it jointly on the entire X, (iv) we guarantee that a large fraction of
extracted outputs is uniform even if the adversary sees the rest, while in [AOR+20] the adversary cannot
see the rest.

5



• A “rate-1” symmetric key scheme, meaning the ciphertext is only slightly larger
than the message. Here, we assume either decisional composite residuosity (DCR)
or learning with errors (LWE), matching [BDD22]3.

• A public key scheme, assuming any ordinary public key encryption scheme, match-
ing [GWZ22].

• A rate-1 public key scheme, under the same assumptions as [BDD22]4. The scheme
has large public keys.

• A rate-1 public key scheme that additionally has succinct public keys, assuming
general functional encryption, matching [GWZ22].

In all cases, we guarantee that if the adversary’s storage is an α fraction of the total size
of all the ciphertexts, then it can only learn something about a β ≈ α fraction of the
encrypted messages. We can make β = α − 1/p(λ) for any polynomial p in the security
parameter λ, by choosing a sufficiently large ciphertext size.

Multiple ciphertexts per user. Prior work, in addition to only considering a single
user, also only considers a single ciphertext per user. Perhaps surprisingly, security does
not compose, and indeed for any fixed secret key size, we explain that simulation security
for unbounded messages is impossible.

We therefore develop schemes for achieving a bounded number of ciphertexts per
user. We show how to modify each of the constructions above to achieve multi-ciphertext
security under the same assumptions.

The Random Oracle Model. We show how to construct symmetric key multi-user
incompressible encryption with an unbounded number of ciphertexts per user and also
essentially optimal secret key and ciphertext sizes, from random oracles. This shows
that public key tools are potentially not inherent to rate-1 symmetric incompressible
encryption.

1.2 Concurrent Work

A concurrent and independent work of Dinur et al. [DSWZ23] (Section 6.2) considers
an extraction problem that turns out to be equivalent to our notion of Multi-Instance
Randomness Extractor. They study this problem in a completely different context of
differential-privacy lower bounds. They show that (in our language) universal hash func-
tions are “multi-instance randomness extractors” with good parameters, similar to the
ones in our work. While conceptually similar, the results are technically incomparable
since we show our result for hinting extractors while they show it for universal hash func-
tions. One advantage of our result is that we show how to construct hinting extractors
with short seeds, while universal hash functions inherently require a long seed. Their
proof is completely different from the one in our paper.

3One subtlety is that, for all of our rate-1 constructions, we need a PRG secure against non-uniform
adversaries, whereas the prior work could have used a PRG against uniform adversaries.

4[BDD22] explores CCA security, but in this work for simplicity we focus only on CPA security.
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The fact that multi-instance randomness extractors have applications in different con-
texts, as demonstrated in our work and Dinur et al. [DSWZ23], further justifies them as
a fundamental primitive of independent interest. We believe that having two completely
different techniques/approaches to this problem is both interesting and valuable.

1.3 Our Techniques: Multi-Instance Randomness Extraction

We discuss how to construct a multi-instance randomness extractor Ext. Recall, we want
to show that, if the joint min-entropy rate of X = (X1, . . . , Xt) is α then there exists some
random variable IX denoting a subset of ≈ α · t indices in [t] such that the distribution
(Si, Yi = Ext(Xi;Si))i∈[t] is statistically indistinguishable from (Si, Zi)i∈[t] where Zi is
uniformly random for i ∈ IX and Zi = Yi otherwise.

A failed approach. A natural approach would be to try to show that every standard
seeded extractor is also a “multi-instance randomness extractor”. As a first step, we
would show that there is some random variable IX denoting a large subset of [t] such
that the values Xi for i ∈ IX have large min-entropy conditioned on i ∈ IX . Indeed,
such results are known; see for example the “block-entropy lemma” of [DQW22] (also
[DKZ18, DFR+07]). In fact, one can even show a slightly stronger statement that the
random variables Xi for i ∈ IX have high min-entropy even conditioned on all past blocks
X1, . . . , Xi−1. However, it cannot be true that Xi has high min-entropy conditioned on all
other blocks past and future (for example, think of X being uniform subject to

⊕t
i=1 Xi =

0). Unfortunately, this prevents us for using the block-entropy lemma to analyze multi-
instance extraction, where the adversary sees some extracted outputs from all the blocks.5

It remains as a fascinating open problem whether every standard seeded extractor is also
a multi-instance randomness extractor or if there is some counterexample.6

Our approach. We are able to show that particular seeded extractors Ext based on
Hadamard or Reed-Muller codes are good multi-instance randomness extractors. For
concreteness, let us consider the Hadamard extractor Ext(x; s) = ⟨x, s⟩.7 Our proof
proceeds in 3 steps:

Step 1: Switch quantifiers. We need to show that there exists some random variable IX
such that every statistical distinguisher fails to distinguish between the two distributions
(Si, Yi)i∈[t] and (Si, Zi)i∈[t]. We can use von Neumann’s minimax theorem to switch the
order quantifiers.8 Therefore, it suffices to show that for every (randomized) statistical

5This strategy would allow us to only prove a very weak version of multi-instance extraction when
the number of blocks t is sufficiently small. In this case we can afford to lose the t extracted output bits
from the entropy of each block. However, in our setting, we think of the number of blocks t as huge,
much larger than the size/entropy of each individual block.

6We were initially convinced that the general result does hold and invested much effort trying to prove
it via some variant of the above approach without success. We also mentioned the problem to several
experts in the field who had a similar initial reaction, but were not able to come up with a proof.

7For the sake of exposition, here we only show the case where the extractor output is a single bit. In
section 3, we construct extractors with multiple-bit outputs.

8Think of the above as a 2 player game where one player chooses IX , the other chooses the distinguisher
and the payout is the distinguishing advantage; the minimax theorem says that the value of the game is
the same no matter which order the players go in.
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distinguisher D there is some random variable IX such that D fails to distinguish the
above distributions.

Step 2: Define IX . For any fixed x = (x1, . . . , xt) we define the set Ix to con-
sist of indices i ∈ [t] such that D fails to distinguish between the hybrid distributions
({Sj}j∈[t], Z1, . . . , Zi−1, Yi, . . . , Yt) versus ({Sj}j∈[t], Z1, . . . , Zi, Yi+1, . . . , Yt), where in both
distributions we condition on X = x. In other words, these are the indices where we can
replace the next extracted output by random and fool the distinguisher. We then define
the random variable IX that chooses the correct set Ix according to X. It is easy to show
via a simple hybrid argument that with this definition of IX it is indeed true that D fails
to distinguish (Si, Yi)i∈[t] and (Si, Zi)i∈[t].

Step 3: Argue that IX is large. We still need to show that IX is a large set, containing
≈ α · t indices. To do so, we show that if IX were small (with non negligible probability)
then we could “guess”X with sufficiently high probability that would contradictX having
high min-entropy. In particular, we provide a guessing strategy such that for any x for
which Ix is small, our strategy has a sufficiently high chance of guessing x. First, we guess
the small set Ix ⊆ [t] as well as all of the blocks xi for i ∈ Ix uniformly at random. For
the rest of the blocks i ̸∈ Ix, we come up with a guessing strategy that does significantly
better than guessing randomly. We rely on the fact that distinguishing implies predicting,
to convert the distinguisher D into a predictor P such that for all i ̸∈ Ix we have:
P (Si, {Sj,Ext(xj;Sj)}j∈[t]\{i}) = Ext(xi;Si) with probability significantly better than 1/2.
Now we would like to use the fact that the Hadamard code (Ext(x; s) = ⟨x, s⟩)s is list-
decodable to argue that we can use such predictor P to derive a small list of possibilities
for x. Unfortunately, there is a problem with this argument. To call the predictor, the
predictor requires an auxiliary input, namely auxi = {Sj,Ext(xj;Sj)}j∈[t]\{i}. Supplying
the auxi in turn requires knowing at least t bits about x. We could hope to guess a good
choice of auxi, but there may be a different good choice for each i ∈ [t], and therefore we
would need to guess a fresh t bits of information about x just to recover each block xi,
which when |xi| < t is worse than the trivial approach of guessing xi directly! Instead, we
use a trick inspired by the proof of the Goldreich-Levin theorem. For each block j ∈ [t],

we guess the values of b(k) := ⟨xj, S
(k)
j ⟩ for a very small “base set” of Q random seeds

S
(1)
j , . . . , S

(Q)
j . We can then expand this small “base set” of seeds into an exponentially

larger “expanded set” of 2Q − 1 seeds S
(K)
j :=

∑
k∈K S

(k)
j for K ⊆ [Q] \ ∅, and derive

guesses for b(K) := ⟨xj, S
(K)
j ⟩ by setting b(K) =

∑
k∈K b(k). By linearity, the expanded set

of guesses is correct if the base set is correct, and moreover the expanded sets of seeds
(S

(K)
j )K are pairwise independent for different sets K. Therefore, for each set K, we can

derive the corresponding aux
(K)
i . We can now apply Chebyshev’s bound to argue that if

for each i we take the majority value for P (Si, aux
(K)
i ) across all 2Q− 1 sets K, it is likely

equal to Ext(xi;Si) with probability significantly better than 1/2. Notice that we got our
saving by only guessing Qt bits about x = (x1, . . . , xt) for some small value Q (roughly
log(1/ε) if we want indistinguishability ε) and were able to use these guesses to recover
all the blocks xi for i ̸∈ Ix.

Generalizing. We generalize the above analysis for the Hadamard extractor to any
extractor that is list-decodable and has a “hinting” property as discussed above. In
particular, this also allows us to use a Reed-Muller based extractor construction with a
much smaller seed and longer output length.
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1.4 Our Techniques: Multi-Incompressible Encryption

We then move to considering incompressible encryption in the multi-user setting.

Definition. We propose a simulation-based security definition for multi-incompressible
encryption. Roughly, the simulator first needs to simulate all the ciphertexts for all the
instances without seeing any of the message queries, corresponding to the fact that at
this point the adversary can’t learn anything about any of the messages. To model the
adversary then learning the secret keys, we add a second phase where the simulator can
query for a subset of the messages, and then must simulate all the private keys. We
require that no space-bounded distinguisher can distinguish between the receiving real
encryptions/real private keys vs receiving simulated encryptions/keys. The number of
messages the simulator can query will be related to the storage bound of the distinguisher.

Upgrading to multi-incompressible encryption using multi-instance random-
ness extraction. All prior standard-model constructions of individual incompressible
encryption [Dzi06, GWZ22, BDD22] utilize a randomness extractor. For example, Dziem-
bowski [Dzi06] gives the following simple construction of a symmetric key incompressible
encryption scheme:

• The secret key k is parsed as (s, k′) where s is a seed for a randomness extractor,
and k′ is another random key.

• To encrypt a message m, choose a large random string R, and output c = (R, d =
Ext(R; s)⊕ k′ ⊕m).

The intuition for (individual) incompressible security is that an adversary that cannot
store essentially all of c can in particular not store all of R, meaning R has min-entropy
conditioned on the adversary’s state. The extraction guarantee then shows that Ext(R; s)
can be replaced with a random string, thus masking the message m.

We demonstrate that our multi-instance randomness extractors can be used as a drop-
in replacement for ordinary random extractors in all prior constructions of individual
incompressible encryption, upgrading them to multi-incompressible encryption. In the
case of [Dzi06], this is almost an immediate consequence of our multi-instance randomness
extractor definition. Our simulator works by first choosing random s for each user, and
sets the ciphertexts of each user to be random strings. Then it obtains from the multi-
instance randomness extractor guarantee the set of indices i where Yi is close to uniform.
For these indices, it sets k′ to be a uniform random string. This correctly simulates the
secret keys for these i.

For i where Yi is not uniform, the simulator then queries for messages for these i. It
programs k′ as k′ = d ⊕ Ext(R; s) ⊕m; decryption under such k′ will correctly yield m.
Thus, we correctly simulate the view of the adversary, demonstrating multi-incompressible
security.

Remark 1.1. The set of indicies where Yi is uniform will in general not be efficiently
computable, and multi-instance randomness extraction only implies that the set of indices
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exist. Since our simulator must know these indices, our simulator is therefore ineffi-
cient. In general, an inefficient simulator seems inherent in the standard model, since
the adversary’s state could be scrambled in a way that hides which ciphertexts it is storing.

We proceed to show that various constructions from [GWZ22, BDD22] are also secure
in the multi-user setting, when plugging in multi-instance randomness extractors. In
all cases, the proof is essentially identical to the original single-user counterpart, except
that the crucial step involving extraction is replaced with the multi-instance randomness
extraction guarantee. We thus obtain a variety of parameter size/security assumption
trade-offs, essentially matching what is known for the single-user setting.

One small issue that comes up is that, once we have invoked the multi-instance ran-
domness extractor, the simulation is inefficient. This presents a problem in some of the
security proofs, specifically in the “rate-1” setting where messages can be almost as large
as ciphertexts. In the existing proofs in this setting, there is a computational hybrid
step that comes after applying the extractor. Naively, this hybrid step would seem to
be invalid since the reduction now has to be inefficient. We show, however, that the
reduction can be made efficient as long as it is non-uniform, essentially having the choice
of indices (and maybe some other quantities) provided as non-uniform advice. As long as
the underlying primitive for these post-extraction hybrids has non-uniform security, the
security proof follows.

Multiple ciphertexts per user. We also consider the setting where there may be
multiple ciphertexts per user, which has not been considered previously.

It is not hard to see that having an unbounded number of ciphertexts per user is im-
possible in the standard model. This is because the simulator has to simulate everything
but the secret key without knowing the message. Then, for the ciphertexts stored by
the adversary, the simulator queries for the underlying messages and must generate the
secret key so that those ciphertexts decrypt to the given messages. By incompressiblity,
this means the secret key length must be at least as large as the number of messages.

We instead consider the case of bounded ciphertexts per user. For a stateful encryption
scheme, it is trivial to upgrade a scheme supporting one ciphertext per user into one
supporting many: simply have the secret key be a list of one-time secret keys. In the
symmetric key setting, this can be made stateless by utilizing k-wise independent hash
functions.

In the public key setting, achieving a stateless construction requires more work, and
we do not believe there is a simple generic construction. We show instead how to modify
all the existing constructions to achieve multiple ciphertexts per user. Along the way,
we show an interesting combinatorial approach to generically lifting non-committing en-
cryption to the many-time setting without sacrificing ciphertext rate.

Random Oracle Model. In Section 7, we finally turn to constructions in the random
oracle model. We give a construction of symmetric key incompressible encryption with
optimal key and ciphertext length, achieving security for an unbounded number of users
and unbounded number of ciphertexts per user. As explained above, this is only possible
because our simulator utilizes the random oracle: the incompressibility argument no

10



longer applies since the simulator can covertly set the messages by programming random
oracle queries. The construction is essentially a 2-round unbalanced Feistel network.

We also show that standard hybrid encryption lifts essentially any random oracle-
based symmetric key incompressible encryption to a public key scheme, assuming only
general public key encryption. This significantly generalizes a construction of [BDD22].
Note, however, that as observed by [BDD22], the security of the scheme in the standard
model is problematic: they show that if the PKE scheme is instantiated with fully ho-
momorphic encryption, then there is a simple efficient attack that completely violates
incompressible security. This gives a very natural random oracle uninstantiability result.
In particular, all prior random oracle uninstantiabilities require a contrived instantiation
of some building block9, whereas this uninstantiability only requires instantiating hybrid
encryption with fully homomorphic encryption.

Remark 1.2. Note that the underlying symmetric key scheme in [BDD22] uses ideal
ciphers instead of random oracles. Thus, their uninstantiability is only for the ideal ci-
pher model. [BDD22] claims the counterexample applies to random oracles, since random
oracles and ideal ciphers are supposedly equivalent [HKT11]. However, this is incor-
rect, as the equivalence only holds in the “single stage” setting [RSS11]. Importantly,
incompressible encryption is not a single stage game, owing to the space bound on the
adversary’s storage between receiving the ciphertexts and receiving the secret keys. In the
more general multi-stage setting encompassing incompressible encryption, the equivalence
of ideal ciphers and random oracles is open. Our generalized construction fixes this issue
by directly designing our symmetric key scheme from random oracles.

2 Preliminaries

Notation-wise, for n ∈ N, we let [n] denote the ordered set {1, 2, . . . , n}. We use capital
bold letters to denote a matrix M. Lowercase bold letters denote vectors v. Let Mi,j

denote the element on the i-th row, and j-th column of M, and vi denote the i-th element
of v.

Lemma 2.1 (Johnson Bound, Theorem 3.1 of [Gur04]). Let C ⊆ Σn with |Σ| = q be any
q-ary error-correcting code with relative distance p0 = 1 − (1 + ρ)1

q
for ρ > 0, meaning

that for any two distinct values x, y ∈ C, the Hamming distance between x, y is at least

p0 · n. Then for any δ >
√
ρ(q − 1) there exists some L ≤ (q−1)2

δ2−ρ(q−1) such that the code is

(p1 = (1− (1 + δ)1
q
), L)-list decodable, meaning that for any y ∈ Σn

q there exist at most L
codewords x ∈ C that are within Hamming distance p1n of y.

Lemma 2.2 (Distinguishing implies Predicting). For any randomized function D : {0, 1}n
× {0, 1}m → {0, 1} there exists some randomized function P : {0, 1}n → {0, 1}m such
that for any jointly distributed random variables (A,B) over {0, 1}n × {0, 1}m:

if Pr[D(A,B) = 1]− Pr[D(A,Um) = 1] ≥ ε then Pr[P (A) = B] ≥ 1

2m
(1 + ε).

9For example, even the “natural” uninstnatiability of Fiat-Shamir [GK03] requires a contrived proof
system.
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Proof. Define P (a) as follows. Sample a random b0 ← {0, 1}m, if D(a, b0) = 1 output b0
else sample a fresh b1 ← {0, 1}m and output b1.

Define p = Pr[D(A,Um) = 1]. Let B0, B1 be independent random variables that are
uniform over {0, 1}m corresponding to the strings b0, b1 . Then we have

Pr[P (A) = B] = Pr[D(A,B0) = 1 ∧B0 = B] + Pr[D(A,B0) = 0 ∧B1 = B]

= Pr[B0 = B] Pr[D(A,B) = 1] + Pr[D(A,B0) = 0] Pr[B1 = B]

=
1

2m
(ε+ p) + (1− p)

1

2m
=

1

2m
(1 + ε).

Min-Entropy Extractor. Recall the definition for average min-entropy:

Definition 2.1 (Average Min-Entropy). For two jointly distributed random variables
(X, Y ), the average min-entropy of X conditioned on Y is defined as

H∞(X|Y ) = − logE
y

$←Y
[max

x
Pr[X = x|Y = y]].

Lemma 2.3 ([DRS04]). For random variables X, Y where Y is supported over a set of
size T , we have

H∞(X|Y ) ≥ H∞(X, Y )− log T ≥ H∞(X)− log T.

Definition 2.2 (Extractor [Nis90]). A function Extract : {0, 1}n × {0, 1}d → {0, 1}m
is a (k, ϵ) strong average min-entropy extractor if, for all jointly distributed random
variables (X, Y ) where X takes values in {0, 1}n and H∞(X|Y ) ≥ k, we have that
(Ud,Extract(X;Ud), Y ) is ϵ-close to (s, Um, Y ), where Ud and Um are uniformly random
strings of length d and m respectively.

Remark 2.1. Any strong randomness extractor is also a strong average min-entropy
extractor, with a constant loss in ϵ.

2.1 Incompressible Encryption

Incompressible PKE [GWZ22]. First, recall the definition of incompressible public
key encryption (PKE) by Guan, Wichs, and Zhandry [GWZ22]. The syntax of an incom-
pressible PKE scheme is analogous to that of a classical PKE scheme, except that Gen
takes an additional security parameter S, which is the space bound of the adversary(’s
long term storage). The “rate” of the scheme is defined as the ratio of the message length
to the ciphertext length. Note that the rate is always between 0 and 1, with 1 being the
ideal rate, meaning that the ciphertext does not add any overhead to the message length.

The security is defined through the following experiment DistIncomPKE
A,Π (λ) [GWZ22]:

1. The adversary A1 takes 1λ, and outputs a space bound 1S.

2. Run Gen(1λ, 1S) to obtain keys (pk, sk).

3. Sample a uniform bit b ∈ {0, 1}.

12



4. The adversary is given the public key pk and submits an auxiliary input aux.

5. The adversary submits the challenge query consisting of two messages m0 and m1,
and receives ct← Enc(pk,mb).

6. A1 produces a state st of size at most S.

7. The adversary A2 is given the tuple (pk, sk, aux, st) and outputs a guess b′ for b. If
b′ = b, we say that the adversary succeeds and the output of the experiment is 1.
Otherwise, the experiment outputs 0.

Definition 2.3 (Incompressible PKE Security). Let λ and S be security parameters. A
public key encryption scheme Π = (Gen,Enc,Dec) is said to have incompressible PKE
security if for all PPT adversaries A = (A1,A2):

Pr
[
DistIncomPKE

A,Π (λ) = 1
]
≤ 1

2
+ negl(λ).

Incompressible SKE [Dzi06]. One can also imagine an analogous incompressible sym-
metric key encryption (SKE) scheme. This object has been studied earlier by Dziem-
bowski under the name forward-secure storage [Dzi06]. The syntax of an incompressible
SKE also follows a standard SKE scheme. The “rate” is also defined the same as the
ratio of the message length to the ciphertext length. The security of an incompressible
SKE can be analogously defined through the following experiment DistIncomSKE

A,Π (λ):

1. The adversary A1 takes 1λ, and outputs a space bound 1S.

2. Run Gen(1λ, 1S) to obtain the key k.

3. Sample a uniform bit b ∈ {0, 1}.

4. The adversary submits an auxiliary input aux.

5. The adversary submits the challenge query consisting of two messages m0 and m1,
and receives ct← Enc(k,mb).

6. A1 produces a state st of size at most S.

7. The adversary A2 is given the tuple (k, aux, st) and outputs a guess b′ for b. If
b′ = b, we say that the adversary succeeds and the output of the experiment is 1.
Otherwise, the experiment outputs 0.

Definition 2.4 (Incompressible SKE Security). Let λ and S be security parameters. A
symmetric key encryption scheme Π = (Gen,Enc,Dec) is said to have incompressible SKE
security if for all PPT adversaries A = (A1,A2):

Pr
[
DistIncomSKE

A,Π (λ) = 1
]
≤ 1

2
+ negl(λ).
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2.2 Functional Encryption

The constructions by [GWZ22] use single-key game-based functional encryption as a
building block. Let λ be the security parameter. Let {Cλ} be a class of circuits with
input space Xλ and output space Yλ. A functional encryption scheme for the circuit class
{Cλ} is a tuple of PPT algorithms FE = (Setup,KeyGen,Enc,Dec) defined as follows:

• Setup(1λ) → (mpk,msk) takes as input the security parameter λ, and outputs the
master public key mpk and the master secret key msk.

• KeyGen(msk, C) → skC takes as input the master secret key msk and a circuit
C ∈ {Cλ}, and outputs a function key skC .

• Enc(mpk,m) → ct takes as input the public key mpk and a message m ∈ Xλ, and
outputs the ciphertext ct.

• Dec(skC , ct)→ y takes as input a function key skC and a ciphertext ct, and outputs
a value y ∈ Yλ.

We can analogously define the “rate” of an FE scheme to be the ratio between the mes-
sage length to the ciphertext length. We require correctness and security of a functional
encryption scheme.

Definition 2.5 (Correctness). A functional encryption scheme FE = (Setup,KeyGen,Enc,
Dec) is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

y = C(m) :

(mpk,msk)← Setup(1λ)
skC ← KeyGen(msk, C)

ct← Enc(mpk,m)
y ← Dec(skC , ct)

 ≥ 1− negl(λ).

Consider the following Semi-Adaptive Security Experiment, DistSemiAdpt
FE,A (λ):

• Run FE.Setup(1λ) to obtain (mpk,msk) and sample a random bit b← {0, 1}.

• On input 1λ and mpk, The adversary A submits the challenge query consisting of
two messages m0 and m1. It then receives ct← FE.Enc(mpk,mb).

• The adversary now submits a circuit C ∈ {Cλ} s.t. C(m0) = C(m1), and receives
skC ← FE.KeyGen(msk, C).

• The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary
succeeds and experiment outputs 1. Otherwise, the experiment outputs 0.

Definition 2.6 (Single-Key Semi-Adaptive Security). For security parameter λ, a func-
tional encryption scheme FE = (Setup,KeyGen,Enc,Dec) is said to have single-key semi-
adaptive security if for all PPT adversaries A :

Pr
[
DistSemiAdpt

FE,A (λ) = 1
]
≤ 1

2
+ negl(λ).

We can also consider selective security, where the adversary only receives mpk after
sending the challenge messages.
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3 Multi-Instance Randomness Extraction

3.1 Defining Multi-Instance Extraction

Definition 3.1 (Multi-Instance Randomness Extraction). A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is (t, α, β, ε)-multi-instance extracting if the following holds. Let X =
(X1, . . . , Xt) be any random variable consisting of blocks Xi ∈ {0, 1}n such that H∞(X) ≥
α · tn. Then, there exists some random variable IX jointly distributed with X, such that
IX is supported over sets I ⊆ [t] of size |I| ≥ β · t and:

(S1, . . . , St,Ext(X1;S1), . . . ,Ext(Xt;St)) ≈ε (S1, . . . , St, Z1, . . . , Zt)

where Si ∈ {0, 1}d are uniformly random and independent seeds, and Zi ∈ {0, 1}m is
sampled independently and uniformly random for i ∈ IX while Zi = Ext(Xi;Si) for i ̸∈ IX .

In other words, the above definition says that if we use a “multi-instance extracting”
extractor with independent seeds to individually extract from t correlated blocks that
have a joint entropy-rate of α, then seeing all the extracted outputs is indistinguishable
from replacing some carefully chosen β-fraction by uniform.

3.2 Hinting Extractors

Definition 3.2 (Hinting Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a
(δ, L, h,Q)-hinting extractor if it satisfies the following:

• List Decodable: If we think of ECC(x) = (Ext(x; s))s∈{0,1}d as a (2d, n)Σ={0,1}m error-
correcting code over the alphabet Σ = {0, 1}m, then the code is (p = 1 − (1 +
δ)2−m, L)-list decodable, meaning that for any y ∈ Σ2d, the number of codewords
that are within Hamming distance p · 2d of y is at most L.

• Pairwise-Independent Hint: There exists some functions hint : {0, 1}n×{0, 1}τ →
{0, 1}h, along with rec0 and rec1 such that:

– For all x ∈ {0, 1}n, r ∈ {0, 1}τ , if we define σ = hint(x; r), {s1, . . . , sQ} =
rec0(r), and {y1, . . . , yQ} = rec1(σ, r), then Ext(x; si) = yi for all i ∈ [Q].

– Over a uniformly random r ← {0, 1}τ , the Q seeds {s1, . . . , sQ} = rec0(r), are
individually uniform over {0, 1}d and pairwise independent.

Intuitively, the pairwise-independent hint property says that there is a small (size h)
hint about x that allows us to compute Ext(x; si) for a large (size Q) set of pairwise
independent seeds si. We generally want Q to be exponential in h.

The list-decoding property, on the other hand, is closely related to the standard
definition of strong randomness extractors. Namely, if Ext is a (k, ε)-extractor then it
is also (p = 1 − (1 + δ)2−m, 2k)-list decodable for δ = ε · 2m, and conversely, if it is
(p = 1 − (1 + δ)2−m, 2k)-list deocdable then it is a (k + m + log(1/δ), δ)-extractor (see
Proposition 6.25 in [V+12]).
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Construction 1: Hadamard. Define Ext : {0, 1}n×{0, 1}n → {0, 1}m via Ext(x; s) =
⟨x, s⟩, where we interpret x, s as elements of Fn̂

2m for n̂ := n/m and all the operations are
over F2m . The seed length is d = n bits and the output length is m bits.

Lemma 3.1. The above Ext : {0, 1}n × {0, 1}n → {0, 1}m is a (δ, L, h,Q)-hinting
extractor for any h, δ > 0 with Q ≥ 2h−m and L ≤ 22m/δ2.

Proof. The list-decoding bounds on δ, L come from the Johnson bound (Lemma 2.1) with
q = 2m, ρ = 0. For pairwise-independent hints, let ĥ = h/m and define hint(x;R) to

parse R ∈ Fĥ×n̂
2m and output σ = R · x⊤, which has bit-size h. Let V ⊆ Fĥ

2m be a set of
vectors such that any two distinct vectors v1 ̸= v2 ∈ V are linearly independent. Such a
set V exists of size Q = (2m)ĥ−1+(2m)ĥ−2+ · · ·+2m+1 ≥ 2h−m, e.g., by letting V be the
set of all non-zero vectors whose left-most non-zero entry is a 1. Define rec0(R) so that it
outputs {sv = v · R}v∈V . Correspondingly, rec1(σ,R) outputs {yv = ⟨v, σ⟩}v∈V . It’s easy
to see that the seeds sv are individually uniform and pairwise independent, since for any
linearly-independent v1 ̸= v2 ∈ V and the value sv1 = v1R and sv2 = v2R are random and
independent over a random choice of the matrix R. Moreover for all seeds sv we have

Ext(x, sv) = ⟨sv, x⟩ = v ·R · x⊤ = ⟨v, σ⟩ = yv.

Construction 2: Hadamard ◦ Reed-Muller. Define Ext(f ; s = (s1, s2)) = ⟨f(s1),

s2⟩, where f ∈ F
(
ℓ+g
g

)
2w is interpreted as a ℓ-variate polynomial of total degree g over some

field of size 2w > g, and s1 ∈ Fℓ
2w is interpreted as an input to the polynomial (this

is Reed-Muler).10 Then y = f(s1) and s2 are interpreted as a values in Fw/m
2m and the

inner-product ⟨y, s2⟩ is computed over F2m (this is Hadamard). So overall, in bits, the
input length is n = w ·

(
ℓ+g
g

)
, the seed length is d = w(ℓ+ 1) and the output length is m.

This code has relative distance 1− ( 1
2m

+ g
2w
) = 1− 1

2m
(1 + g

2w−m ).

Lemma 3.2. For any w, ℓ, g,m, δ such that 2w > g and m divides w, if we set n =
w ·

(
ℓ+g
g

)
, d = w(ℓ+ 1) then the above Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (δ, L, h,Q)-

hinting extractor with δ =
√

g22m/2w, L = 22m

δ2−g22m/2w
, h = w · (g + 1), Q = 2w.

In particular, for any n,m,w such that m divides w, we can set ℓ = g = log n to get
an (δ, L, h,Q)-hinting extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(w log n),
δ = 2m+log logn−w/2, h = O(w log n) and Q = 2w.

Proof. The list-decoding bounds on δ, L come from the Johnson bound (Lemma 2.1)
with q = 2m, ρ = g

2w−m . On the other hand, for pairwise-independent hints, we can define

hint(f ; r) as follows. Parse r = (r0, r1, s11, . . . , s
Q
1 ) with r0, r1 ∈ Fℓ

2w and si1 ∈ Fw/m
2m . Let

f̂(i) = f(r0 + i · r1) be a univariate polynomial of degree g and define the hint σ = f̂
to be the description of this polynomial. Define {si = (si0, s

i
1)) = rec0(r) for i ∈ F2w by

setting si0 = r0 + i · r1. Define {yi} = rec1(σ, r) via yi = ⟨f̂(i), si1⟩. It is easy to check
correctness and pairwise independence follows from the fact that the values si0 = r0+ i ·r1
are pairwise independent over the randomness r0, r1.

10Since the the input to the extractor is interpreted as a polynomial, we will denote it by f rather
than the usual x to simplify notation.
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3.3 Hinting-Extractors are Multi-Instance-Extracting

Lemma 3.3 (Multi-Instance-Extraction Lemma). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m
be a (δ, L, h,Q)-hinting extractor. Then, for any t, α > 0 such that Q ≥ 2t2

2m

δ2
, it is also

(t, α, β, ε)-multi-instance extracting with ε = 6tδ and β = α− logL+h+log t+log(1/ε)+3
n

.

Proof. Our proof follows a sequence of steps.

Step 0: Relax the Size Requirement. We modify the statement of the lemma as
follows. Instead of requiring that |IX | ≥ β · t holds with probability 1, we relax this to
requiring that Pr[|IX | < β · t] ≤ ε/4. On the other hand, we strengthen the requirement
on statistical indisitnguishability from ε to ε/2:

(S1, . . . , St,Ext(X1;S1), . . . ,Ext(X1;St)) ≈ε/2 (S1, . . . , St, Z1, . . . , Zt).

This modified variant of the lemma implies the original.
To see this, notice that we can replace the set IX that satisfies the modified variant

with I ′X which is defined as I ′X := IX when |IX | ≥ βt and I ′X := {1, . . . , βt} else. The set
I ′X then satisfies the original variant. In particular, we can prove the indisintinguishability
guarantee of the original lemma via a hybrid argument: replace I ′X by IX (ε/4 statistical
distance), switch from the left distribution to right distribution (ε/2 statistical distance),
replace IX back by I ′X (ε/4 statistical distance) for a total distance of ε.

Step 1: Change quantifiers. We need to prove that: for all X with H∞(X) ≥ α ·tn,
there exists some random variable IX ⊆ [t] with Pr[|IX | < βt] ≤ ε/4 such that for all
(inefficient) distinguishers D:

Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1]− Pr[D(S1, . . . , St, Z1, . . . , Zt) = 1] ≤ ε/2 (1)

where we define Yi = Ext(Xi;Si), and the random variables Zi are defined as in the
Lemma. By the min-max theorem, we can switch the order of the last two quantifiers.
In particular, it suffices to prove that: for all X with H∞(X) ≥ α · tn and for all
(inefficient, randomized) distinguishers D there exists some random variable IX ⊆ [t]
with Pr[|IX | < βt] ≤ ε/4 such that equation (1) holds.

We can apply min-max because a distribution over inefficient distinguishers D is the
same as a single randomized inefficient distinguisher D and a distribution over random
variables IX is the same as a single random variable IX .

Step 2: Define IX. Fix a (inefficient/randomized) distinguisher D.
For any fixed value x ∈ {0, 1}n·t, we define a set Ix ⊆ [t] iteratively as follows. Start

with Ix := ∅. For i = 1, . . . , t add i to Ix if(
Pr[D(S1, . . . , St, Z

x
1 . . . , Z

x
i−1, Y

x
i , Y

x
i+1, . . . , Y

x
t ) = 1]

− Pr[D(S1, . . . , St, Z
x
1 , . . . , Z

x
i−1, Um, Y

x
1+1, . . . , Y

x
t ) = 1]

)
≤ 3δ (2)

where Si is uniform over {0, 1}d, Y x
j = Ext(xj;Sj) and for j < i we define Zx

j to be
uniformly random over {0, 1}m for j ∈ Ix, while Zx

j = Y x
j for j ̸∈ Ix. Note that Y x

i =
(Yi|X = x) and Zx

i = (Zi|X = x).
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Define IX to be the random variable over the above sets Ix where x is chosen according
to X. With the above definition, equation 1 holds since:

Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1]− Pr[D(S1, . . . , St, Z1, . . . , Zt) = 1]

= Ex←X Pr[D(S1, . . . , St, Y1, . . . , Yt) = 1|X = x]− Pr[[D(S1, . . . , St, Z1, . . . , Zt) = 1|X = x]

= Ex←X Pr[D(S1, . . . , St, Y
x
1 , . . . , Y

x
t ) = 1]− Pr[D(S1, . . . , St, Z

x
1 , . . . , Z

x
t ) = 1]

= Ex←X

∑
i∈[t]

(
Pr[D(S1, . . . , St, Z

x
1 , . . . , Z

x
i−1, Y

x
i , Y

x
i+1, . . . , Y

x
t ) = 1]

− Pr[D(S1, . . . , St, Z
x
1 , . . . , Z

x
i−1, Z

x
i , Y

x
i+1, . . . , Y

x
t ) = 1]

)
︸ ︷︷ ︸

(∗)

≤ 3tδ = ε/2

The last line follows since, for any x and any i ∈ [t], if i ̸∈ Ix then Y x
i = Zx

i and therefore
(∗) = 0, and if i ∈ Ix then (∗) ≤ 3δ by the way we defined Ix in equation (2).

Step 3: Argue IX is large. We are left to show that

Pr[|IX | < β · t] ≤ ε/4. (3)

We do this via a proof by contradiction. Assume otherwise that (3) does not hold. Then
we show that we can guess X with high probability, which contradicts the fact that X
has high min-entropy. In particular, we define a randomized function guess() such that,
for any x for which |Ix| < β · t, we have:

Pr
x̂←guess()

[x̂ = x] ≥ 1

4

(
tβt+12htLt2βtn

)−1
. (4)

Then, assuming (3) does not hold, we have

Pr
x̂←guess(),x←X

[x̂ = x] ≥ Pr
x←X

[|Ix| < βt] Pr
x̂←guess(),x←X

[x̂ = x | |Ix| < βt]

≥ ε

16

(
tβt+12htLt2βtn

)−1
.

which contradicts H∞(X) ≥ αtn.
Before defining the function guess(), we note that by the definition of Ix in equation

(2) and the“distinguishing implies predicting” lemma (Lemma 2.2), there exist some
predictors Pi (depending only on D), such that, for all x ∈ {0, 1}n and i ̸∈ Ix, we have:

Pr[Pi(S1, . . . , St, Z
x
1 , . . . , Z

x
i−1, Y

x
i+1, . . . , Y

x
t ) = Y x

i ] ≥
1

2m
(1 + 3δ) (5)

The guessing strategy. We define guess() using these predictors Pi as follows:

1. Sample values r1, . . . , rt with ri ← {0, 1}τ .

2. Sample a set Îx ⊆ [t] of size |Îx| ≤ βt uniformly at random.

3. Sample values σ̂i ← {0, 1}h for i ̸∈ Îx uniformly at random.
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4. Sample values x̂i ← {0, 1}n for i ∈ Îx uniformly at random.

5. Let {s1i , . . . , s
Q
i } = rec0(ri), and {y1i , . . . , y

Q
i } = rec1(σ̂i, ri).

6. Use all of the above values to define, for each i ̸∈ Îx, a randomized function P̂i(s)
which chooses a random j∗ ← [Q] and outputs:

P̂i(s) = Pi(s
j∗

1 , . . . , sj
∗

i−1, s, s
j∗

i+1, . . . , s
j∗

t , zj
∗

1 , . . . , zj
∗

i−1, y
j∗

i+1, . . . , y
j∗

t )

where zj
∗

i := yj
∗

i if i ̸∈ Îx and zj
∗

i ← {0, 1}m if i ∈ Îx.

7. For each i ̸∈ Îx, define cwi ∈ Σ2d by setting cwi[s] ← P̂i(s), where Σ = {0, 1}m.
Let Xi be the list of at most L values x̃i such that the Hamming distance between
ECC(x̃i) and cwi is at most (1 + δ)2d, as in Definition 3.2.

8. For each i ̸∈ Îx, sample x̂i ← Xi.

9. Output x̂ = (x̂1, . . . , x̂t).

Fix any x such that |Ix| < βt and let us analyze Prx̂←guess()[x̂ = x].

Event E0. Let E0 be the event that Îx = Ix and, for all i ∈ Ix: x̂i = xi and σ̂i = hint(xi, ri).

Then Pr[E0] ≥
(
tβt+12ht2βtn

)−1
. Let us condition on E0 occurring for the rest of the anal-

ysis. In this case, we can replace all the “hatted” values Îx, σ̂i, x̂i with their “unhatted”
counterparts Ix, σi = hint(xi, ri), xi and we have yji = Ext(xi; s

j
i ). Furthermore, since the

“hatted” values were chosen uniformly at random, E0 is independent of the choice of
r1, . . . , rt and of all the “unhatted” values above; therefore conditioning on E0 does not
change their distribution.

Event E1. Now, for any fixed choice of r1, . . . , rt, define the corresponding procedure P̂i

to be “good” if

Pr
s←{0,1}d

[P̂i(s) = Ext(xi; s)] ≥ (1 + 2δ)
1

2m
,

where the probability is over the choice of s← {0, 1}d and the internal randomness of P̂i

(i.e., the choice of the index j∗ ← [Q] and the values zj
∗

i ← {0, 1}m for i ∈ Ix). Let E1

be the event that for all i ̸∈ Ix we have P̂i is good, where the event is over the choice of
r1, . . . , rt. Define random variables V j

i over the choice of r1, . . . , rt where

V j
i = Pr

s←{0,1}d
[P̂i(s) = Ext(xi; s) | j∗ = j]

= Pr
s←{0,1}d

[Pi(s
j
1, . . . , s

j
i−1, s, s

j
i+1, . . . , s

j
t , z

j
1, . . . , z

j
i−1, y

j
i+1, . . . , y

j
t ) = Ext(xi; s)].

and Vi :=
∑

j∈Q V j
i . Then P̂i is good iff Vi ≥ Q(1 + 2δ) 1

2m
. By equation (5), we have

E[Vi] =
∑

j E[V j
i ] ≥ Q(1 + 3δ) 1

2m
. Furthermore, for any fixed i, the variables V j

i are

pairwise independent by Definition 3.2 and the fact that V j
i only depends on sji . Therefore
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V ar[Vi] =
∑

j V ar[V j
i ] ≤ Q. We can apply the Chebyshev inequality to get:

Pr[E1|E0] ≥ 1− Pr

[
∃i ̸∈ Ix : Vi < Q(1 + 2δ)

1

2m

]
≥ 1−

∑
i ̸∈Ix

Pr

[
Vi < Q(1 + 2δ)

1

2m

]
≥ 1−

∑
i ̸∈Ix

Pr

[
|Vi − E[Vi]| > Qδ

1

2m

]
≥ 1− t

22m

δ2Q
≥ 1

2

Event E2. Now fix any choice of the values in steps (1)-(6) such that E0, E1 hold. Let cwi

be the values sampled in step 7. Define the event E2 to hold if for all i ̸∈ Ix the value cwi

agrees with ECC(xi) is at least (1+δ)2d−m coordinates, where the probability is only over
the internal randomness used to sample the components cwi(s) ← P̂i(s). We can define
random variables W s

i which are 1 if cwi(s) = Ext(xi; s) and 0 otherwise. These variables
are mutually independent (since each invocation of P̂i uses fresh internal randomness)
and E[

∑
sW

s
i ] = 2d Prs[P̂i(s) = Ext(xi; s)] ≥ (1 + 2δ)2d−m. Therefore, by the Chernoff

bound:

Pr[E2|E1 ∧ E0] = 1− Pr[∃i ̸∈ Ix :
∑
s

W s
i ≤ (1 + δ)2d−m]

≥ 1−
∑
i ̸∈Ix

Pr[
∑
s

W s
i ≤ (1 + δ)2d−m]

≥ 1− t · e−δ22d−m/8 ≥ 1

2

Event E3. Finally, fix any choice of the values in steps (1)-(7) such that E0, E1, E2 hold.
Let E3 be the event that for each i ̸∈ Îx if x̂i ← Xi is the value sampled in step (8) then

x̂i = xi. Then Pr[E3|E2∧E1∧E0] ≥
(
1
L

)t
. Therefore, our guess is correct if E0, E1, E2, E3

all occur, which gives us the bound in equation (4).

Corollary 3.4. For any n,m, t, ε > 0, α > 0, there exist extractors Ext : {0, 1}n ×
{0, 1}d → {0, 1}m that are (t, α, β, ε)-multi-instance extracting with either:

1. seed length d = n and β = α− O(m+log t+log(1/ε))
n

, or

2. seed length d = O((log n)(m+ log log n+ log t+ log(1/ε))) and β = α− O(d)
n

.

In particular, letting λ denote the security parameter, for any input length n = ω(λ log λ)
with n < 2λ, for number of blocks t < 2λ, any entropy rate α > 0, there exists an
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with output length m = λ and seed length
d = O(λ log n), which is a (t, α, β, ϵ = 2−λ)-multi-instance randomness extractor with
β = α − o(1). In other words, the fraction of extracted values that can be replaced by
uniform is nearly α.
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4 Multi-User Security for Incompressible Encryption

Utilizing multi-instance randomness extractors, we can now explore the multi-user setting
for incompressible encryptions. But first, we need to formally define what it means for
an incompressible PKE or SKE scheme to be multi-user secure.

We propose a simulation-based security definition. Roughly, the simulator first needs
to simulate all the ciphertexts for all the instances without seeing any of the message
queries. So far, this is akin to the standard semantic security notion for encryption. But
we need to now model the fact that the adversary can store ciphertexts for later decryp-
tion, at which point it has all the private keys. We therefore add a second phase where the
simulator can query for a subset of the messages, and then must simulate all the private
keys. We require that no space-bounded distinguisher can distinguish between receiving
real encryptions/real private keys vs receiving simulated encryptions/keys. The number
of messages the simulator can query is related to the storage bound of the distinguisher.

Put formally, let Π = (Gen,Enc,Dec) be a public key encryption scheme, to define
simulation-based incompressible ciphertext security for the multiple-instance setting, con-
sider the following two experiments:

• In the real mode experiment, the adversary A = (A1,A2) interacts with the chal-
lenger C, who has knowledge of all the adversary’s challenge messages.

Real Mode ExpRealΠC,A=(A1,A2)
(λ, η, ℓ, S):

1. For i ∈ [η], the challenger C runs Gen(1λ, 1S) to sample (pki, ski).

2. The challenger C sends all the pki’s to A1.

3. For each i ∈ [η], A1 can produce up to ℓ message queries {mi,j}j∈[ℓ]. The
adversary submits all of the message queries in one single batch {mi,j}i,j and
receives {cti,j}i,j where cti,j ← Enc(pki,mi,j).

4. A1 produces a state st of size at most S.

5. On input of st, {mi,j}i,j, {(pki, ski)}i, A2 outputs a bit 1/0.

• In the ideal mode experiment, the adversaryA = (A1,A2) interacts with a simulator
S, which needs to simulate the view of the adversary with no/partial knowledge of
the challenge messages.

Ideal Mode ExpIdealΠS,A=(A1,A2)
(λ, η, ℓ, q, S):

1. For i ∈ [η], the simulator S samples pki.

2. The simulator S sends all the pki’s to A1.

3. For each i ∈ [η], and j ∈ [ℓ], A1 produces mi,j. All of the queries {mi,j}i,j are
submitted in one batch and the simulator S produces {cti,j}i,j without seeing
{mi,j}i,j.

4. A1 produces a state st of size at most S.

5. The simulator now submits up to q number of (i, j) index pairs, and receives
the corresponding messages mi,j’s. Then S simulates all the secret keys ski’s.
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6. On input of st, {mi,j}i,j, {(pki, ski)}i, A2 outputs a bit 1/0.

Notice that the simulator needs to simulate the ciphertexts first without knowing
the corresponding messages, and then sample the secret keys so that the ciphertexts
appear appropriate under the given messages.

Definition 4.1 (Multi-Instance Simulation-Based CPA Security). For security parame-
ters λ, η(λ), ℓ(λ), q(λ) and S(λ), a public key encryption scheme Π = (Gen,Enc,Dec) is
(η, ℓ, q, S)-MULT-SIM-CPA secure if for all PPT adversaries A = (A1,A2), there exists a
simulator S such that:∣∣Pr [ExpRealΠC,A(λ, η, ℓ, S) = 1

]
− Pr

[
ExpIdealΠS,A(λ, η, ℓ, q, S) = 1

]∣∣ ≤ negl(λ).

Remark 4.1. If ℓ = 1, we say that the scheme has only single-ciphertext-per-user secu-
rity. For ℓ > 1, we say that the scheme has multi-ciphertext-per-user security.

Remark 4.2. Notice that by replacing the underlying PKE scheme with a Symmetric
Key Encryption (SKE) scheme and modifying corresponding syntaxes (sample only sk’s
instead of (pk, sk) pairs, and remove step 2 of the experiments where the adversary receives
the pk’s), we can also get a MULT-SIM-CPA security definition for SKE schemes.

5 Symmetric Key Incompressible Encryption

In this section, we explore the multi-user security of incompressible SKEs, both in the low-
rate setting and the rate-1 setting. We also present a generic lifting technique to obtain an
SKE with multi-ciphertext-per-user security from an SKE with single-ciphertext-per-user
security.

5.1 Low Rate Incompressible SKE

For low rate incompressible SKE, it follows almost immediately from multi-instance ran-
domness extractors that the forward-secure storage by Dziembowski [Dzi06] is MULT-
SIM-CPA secure (by using multi-instance randomness extractors as the “BSM function”
and using One Time Pad (OTP) as the underlying SKE primitive).

First, let us recall the construction by Dziembowski [Dzi06], with the multi-instance
randomness extractors and OTP plugged in.

Construction 1 (Forward-Secure Storage [Dzi06]). Let λ and S be security parameters.
Given Ext : {0, 1}n × {0, 1}d → {0, 1}w a (t, α, β, ϵ)-multi-instance randomness extractor
as defined in Definition 3.1 where the seed length d = poly(λ), output length w = poly(λ)
and n = S

(1−α)t + poly(λ), the construction Π = (Gen,Enc,Dec) for message space {0, 1}w
works as follows:

• Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, and a key
k′ ← {0, 1}w. Output k = (s, k′).

• Enc(k,m): To encrypt a message m, first parse k = (s, k′) and sample a long
randomness R← {0, 1}n. Compute the ciphertext as ct = (R, ct′ = Ext(R; s)⊕ k′⊕
m).
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• Dec(k, ct): First, parse ct = (R, ct′) and k = (s, k′). Then compute m = Ext(R; s)⊕
k′ ⊕ ct′.

Correctness is straightforward. Construction 1 is also MULT-SIM-CPA secure. Es-
sentially, the simulator simply sends cti’s as uniformly random strings. Then when the
simulator sends the keys, it would use the simulator for the multi-instance randomness
extractor to get the index subset I ⊂ [η], and for i ∈ I, simply send ki as a uni-
formly random string. For i ̸∈ I, it samples the extractor seed si and then compute
k′i = mi⊕Ext(Ri; si)⊕ ct′i. Notice that for i ̸∈ I, ct′i = mi⊕Ext(Ri; si)⊕k′i, and for i ∈ I,
ct′i = mi ⊕ ui ⊕ k′i where ui is a w-bit uniform string. This is now just the definition of
multi-instance randomness extractors.

We prove below the MULT-SIM-CPA security of Construction 1 formally through a
sequence of hybrids.

In hybrid 0, we start with the ideal mode experiment ExpIdealΠS,A=(A1,A2)
with a specific

simulator plugged in, and through the sequence of hybrids, we gradually move towards
the real mode experiment ExpRealΠS,A=(A1,A2)

.

Sequence of Hybrids

• Hybrid H0: The ideal mode experiment ExpIdealΠC,A=(A1,A2)
(t, 1, (1− β)t, S).

1. For each i ∈ [t], A1 produces mi. All of the queries {mi}i are submitted in
a single batch and not available to the simulator S. S samples uniformly
random ciphertexts cti = (Ri, ct

′
i), and hence is able to produce {cti}i without

seeing {mi}i.
2. A1 produces a state st of size at most S.

3. The simulator S runs the simulator for the multi-instance randomness extrac-
tor to get a set of indices I ⊆ [t] with |I| ≥ βt. The simulator now submits the
set [t]\I, and receives the corresponding messages {mi}i ̸∈I . Then S simulates
all the keys ki’s. For i ∈ I, sample a uniform ki ← {0, 1}w. For i ̸∈ I, sample
a uniform seed si, and compute ki = (si,mi ⊕ Ext(Ri; si)⊕ ct′i).

4. On input of st, {mi}i, {ki}i, A2 outputs a bit 1/0.

• Hybrid H1: The same as H0, except that in step 3, for i ∈ I, sample a uniform si
and compute ki = (si,mi ⊕ ui ⊕ ct′i), where ui is a uniformly random w-bit string.

• Hybrid H2: The same as H1, except that in step 3, for all i, sample a uniform
seed si, and compute ki = (si,mi ⊕ Ext(Ri; si) ⊕ ct′i). Notice that the game is
now identical to the real mode experiment ExpRealΠC,A=(A1,A2)

, where we send the
adversary faithful encryptions of the message queries.

Proof of Hybrid Arguments

Lemma 5.1. No adversary can distinguish between H0 and H1 with non-negligible prob-
ability.

23



Proof. Notice that the only difference between H0 and H1 is that in H0, for i ∈ I, we
sample a uniform si and a uniform k′i, and in H1, we sample a uniform si and compute k′i
as mi⊕ui⊕ ct′i, where ui is a uniform w-bit string. This is just an One Time Pad (OTP)
encryption of mi ⊕ ct′i, and hence should be indistinguishable from a uniformly random
k′i by the information-theoretic security of OTP.

Lemma 5.2. If Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance random-
ness extractor with n = S

(1−α)t + poly(λ), then no adversary can distinguish between H1

and H2 with non-negligible probability.

Proof. First, notice the difference between H1 and H2. In H2, for all i, we have ki =
(si,mi ⊕ Ext(Ri; si) ⊕ ct′i). In H1, for i ∈ I, ki = (si,mi ⊕ ui ⊕ ct′i). For i ̸∈ I, ki =
(si,mi ⊕ Ext(Ri; si)⊕ ct′i) is the same.

Notice that each Ri is a uniformly random n-bit string independent of mi. So by
lemma 2.3, H∞({Ri}i|st, {mi}i) = H∞({Ri}i|st) ≥ nt− n(1− α)t = α · tn, i.e. {Ri}i has
at least α · tn bits of min-entropy conditioned on the adversary’s view. And recall that
I is the set of indices output by the multi-instance randomness extractor simulator. We
can invoke the property of the multi-instance randomness extractor, and hence have

(s1, . . . , st,Ext(R1; s1), . . . ,Ext(Rt; st)) ≈ϵ (s1, . . . , st, Z1, . . . , Zt),

where Zi = ui for all i ∈ I, and Zi = Ext(Ri; si) for all i ̸∈ I. Notice that in H1, we
equivalently have ki = (si,mi⊕Zi⊕ct′i), and inH2, we have ki = (si,mi⊕Ext(Ri; si)⊕ct′i).
The only difference is that in H1 we have the Zi’s instead of the Ext(Ri; si)’s in H2, and
these are indistinguishable by the extractor property. Hence, no adversary can distinguish
between H1 and H2 with non-negligible probability.

Theorem 5.3. Let λ, S be security parameters. If Ext : {0, 1}n × {0, 1}d → {0, 1}w is
a (t, α, β, ϵ)-multi-instance randomness extractor with d, w = poly(λ) and n = S

(1−α)t +

poly(λ), then Construction 1 is (t, 1, (1− β)t, S)-MULT-SIM-CPA secure.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments
where no adversary can distinguish one from the next with non-negligible probability.
Notice that the first hybrid H0 corresponds to the ideal mode experiment of multi-user
security, and the last hybrid H2 corresponds to the real mode one. The simulation-based
security follows.

Remark 5.1. While MULT-SIM-CPA security only requires that no PPT adversaries can
distinguish between the real mode and the ideal mode experiments, what we have proved
for construction 1 here is that it is actually MULT-SIM-CPA secure against all (potentially
computationally unbounded) adversaries, and hence is information theoretically MULT-
SIM-CPA secure.

5.2 Rate-1 Incompressible SKE

Branco, Döttling and Dujmovic [BDD22] construct rate-1 incompressible SKE from HILL-
Entropic Encodings [MW20], extractors and PRGs. We show that by replacing the
extractors with multi-instance randomness extractors and slightly modifying the scheme,
we get MULT-SIM-CPA security.
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First, we recall the definitions and security requirements of a HILL-Entropic Encoding
scheme [MW20].

Definition 5.1 (HILL-Entropic Encoding [MW20]). Let λ be the security parameter. An
(α, β)-HILL-Entropic Encoding in the common random string setting is a pair of PPT
algorithms Code = (Enc,Dec) that works as follows:

• Enccrs(1
λ,m)→ c: On input the common random string crs, the security parameter,

and a message, outputs a codeword c.

• Deccrs(c) → m: On input the common random string and a codeword, outputs the
decoded message m.

It satisfies the following properties.

Correctness. For all λ ∈ N and m ∈ {0, 1}∗, Pr[Deccrs(Enccrs(1λ,m)) = m] ≥ 1 −
negl(λ).

α-Expansion. For all λ, k ∈ N and for all m ∈ {0, 1}k, |Enccrs(1λ,m)| ≤ α(λ, k).

β-HILL-Entropy. There exists a simulator algorithm SimEnc such that for all poly-
nomial k = k(λ) and any ensemble of messages m = {mλ} of length k(λ), consider the
following real mode experiment:

• crs← {0, 1}t(λ,k)

• c← Enccrs(1
λ,mλ)

and let CRS, C denote the random variables for the corresponding values in the real
mode experiment. Also consider the following simulated experiment:

• (crs′, c′)← SimEnc(1λ,mλ)

and let CRS′, C ′ be the corresponding random variables in the simulated experiment. We
require that (CRS, C) ≈c (CRS

′, C ′) and that H∞(C
′|CRS′) ≥ β(λ, k).

Moran and Wichs [MW20] show that we can construct HILL-Entropic Encodings
in the CRS model from either the Decisional Composite Residuosity (DCR) assump-
tion [Pai99, DJ01] or the Learning with Errors (LWE) problem [Reg05]. Their construc-
tion achieves α(λ, k) = k(1 + o(1)) + poly(λ) and β(λ, k) = k(1− o(1))− poly(λ), which
we call a “good” HILL-entropic encoding.

Now we reproduce the construction from [BDD22] with the multi-instance randomness
extractors and some other minor changes (highlighted below).

Construction 2 ([BDD22]). Let λ and S be security parameters. Given Ext : {0, 1}n ×
{0, 1}d → {0, 1}w a (t, α, β, ϵ)-multi-instance randomness extractor as defined in Defini-
tion 3.1 where the seed length d = poly(λ), w = poly(λ) and n = S

(1−α)t + poly(λ), Code =

(Enc,Dec) a “good” (α′, β′)-HILL-Entropic Encoding scheme, and PRG : {0, 1}w →
{0, 1}n a pseudorandom generator secure against non-uniform adversaries, the construc-
tion Π = (Gen,Enc,Dec) for message space {0, 1}n works as follows:
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• Gen(1λ, 1S): Sample a seed s ← {0, 1}d for the randomness extractor, a common
random string crs ∈ {0, 1}poly(λ,n) for the HILL-Entropic Encoding, and a random
pad r ← {0, 1}n. Output k = (s, r, crs).

• Enc(k,m): To encrypt a message m, first parse k = (s, r, crs) and sample a random
PRG seed s′ ← {0, 1}w. Compute c1 = Code.Enccrs(1

λ,PRG(s′) ⊕r ⊕m) and c2 =
s′ ⊕ Ext(c1, s). The final ciphertext is ct = (c1, c2).

• Dec(k, ct): First, parse ct = (c1, c2) and k = (s, r, crs). Then compute s′ =
Ext(c1; s)⊕ c2 and obtain m = Code.Deccrs(c1)⊕ PRG(s′) ⊕r.

Correctness follows from the original construction and should be easy to verify. Notice
that by the α′-expansion of the “good” HILL-entropic encoding, the ciphertexts have
length (1+ o(1))n+w+ poly(λ) = (1+ o(1))n+ poly(λ) (the poly(λ) part is independent
of n), while the messages have length n. Hence the scheme achieves an optimal rate of 1
((1− o(1)) to be exact). The keys are bit longer though, having size d+ n+ poly(λ, n) =
n+poly(λ, n). Furthermore, Moran and Wichs [MW20] show that the CRS needs to be at
least as long as the message being encoded. Thus the key has length at least 2n+poly(λ).

We prove security of Construction 2 through a sequence of hybrids.

Sequence of Hybrids

• Hybrid H0:

– Run the adversary A1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample ri ← {0, 1}n uniformly at random.

∗ Sample s′i ← {0, 1}w uniformly at random.

∗ Sample crsi uniformly at random.

∗ Let c1,i ← Code.Enccrsi(1
λ,PRG(s′i)⊕ ri ⊕mi).

∗ Let c2,i ← s′i ⊕ Ext(c1,i; si).

∗ Let cti = (c1,i, c2,i).

– Send {cti}i to A1 and receive a state st.

– Let {ki}i = {(si, ri, crsi)}i.
– On input of st, {mi}i, {ki}i, A2 outputs a bit 1/0.

• Hybrid H1:

– Run the adversary A1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample ri ← {0, 1}n uniformly at random.

∗ Sample s′i ← {0, 1}w uniformly at random.
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∗ Let (crsi, c1,i)← SimEnc(1λ,PRG(s′i)⊕ ri ⊕mi).

∗ Let c2,i ← s′i ⊕ Ext(c1,i; si).

∗ Let cti = (c1,i, c2,i).

– Send {cti}i to A1 and receive a state st.

– Let {ki}i = {(si, ri, crsi)}i.
– On input of st, {mi}i, {ki}i, A2 outputs a bit 1/0.

• Hybrid H2:

– Run the adversary A1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample ui ← {0, 1}n uniformly at random.

∗ Sample s′i ← {0, 1}w uniformly at random.

∗ Let (crsi, c1,i)← SimEnc(1λ, ui ).

∗ Let c2,i ← s′i ⊕ Ext(c1,i; si).

∗ Let cti = (c1,i, c2,i).

– Send {cti}i to A1 and receive a state st.

– For each i ∈ [t]:

∗ Let ri = ui ⊕ PRG(s′i)⊕mi.

∗ Let ki = (si, ri, crsi).

– On input of st, {mi}i, {ki}i, A2 outputs a bit 1/0.

• Hybrid H3:

– Run the adversary A1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample ui ← {0, 1}n uniformly at random.

∗ Let (crsi, c1,i)← SimEnc(1λ, ui).

∗ Sample c2,i ← {0, 1}w uniformly at random.

∗ Let cti = (c1,i, c2,i).

– Send {cti}i to A1 and receive a state st.

– For each i ∈ [t]:

∗ Let ri = ui ⊕ PRG(c2,i ⊕ Ext(c1,i; si))⊕mi.

∗ Let ki = (si, ri, crsi).

– On input of st, {mi}i, {ki}i, A2 outputs a bit 1/0.

• Hybrid H4:
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– Run the adversary A1 to receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample ui ← {0, 1}n uniformly at random.

∗ Let (crsi, c1,i)← SimEnc(1λ, ui).

∗ Sample c2,i ← {0, 1}w uniformly at random.

∗ Let cti = (c1,i, c2,i).

– Send {cti}i to A1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of
indices I ⊆ [t] with |I| ≥ βt. For each i ∈ [t]:

∗ If i ∈ I, let ri = ui ⊕ PRG(c2,i ⊕ vi)⊕mi where vi is a uniformly sampled
w-bit string.

∗ If i ̸∈ I, let ri = ui ⊕ PRG(c2,i ⊕ Ext(c1,i; si))⊕mi.

∗ Let ki = (si, ri, crsi).

– On input of st, {mi}i, {ki}i, A2 outputs a bit 1/0.

• Hybrid H5:

– Run the adversary A1 to receive {mi}i for i ∈ [t]. Discard {mi}i without
looking at it.

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample ui ← {0, 1}n uniformly at random.

∗ Let (crsi, c1,i)← SimEnc(1λ, ui).

∗ Sample c2,i ← {0, 1}w uniformly at random.

∗ Let cti = (c1,i, c2,i).

– Send {cti}i to A1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of
indices I ⊆ [t] with |I| ≥ βt. Submit the set [t]\I, and receive the correspond-
ing messages {mi}i ̸∈I . For each i ∈ [t]:

∗ If i ∈ I, sample a uniform ri ← {0, 1}n.
∗ If i ̸∈ I, let ri = ui ⊕ PRG(c2,i ⊕ Ext(c1,i; si))⊕mi.

∗ Let ki = (si, ri, crsi).

– On input of st, {mi}i, {ki}i, A2 outputs a bit 1/0.

28



Proof of Hybrid Arguments

Lemma 5.4. If Code = (Enc,Dec) has β′-HILL-entropy, then no PPT adversary can
distinguish between H0 and H1 with non-negligible probability.

Proof. The only difference between H0 and H1 is that in H0, crsi is sampled uniformly
random and c1,i ← Code.Enccrsi(1

λ,PRG(s′i)⊕ ri ⊕mi), while in H1, we get (crsi, c1,i) ←
SimEnc(1λ,PRG(s′i) ⊕ ri ⊕ mi). By the β′-HILL-entropy, the crsi and c1,i in H0 are
computationally indistinguishable from the ones in H1. Hence, no PPT adversary can
distinguish between H0 and H1 with non-negligible probability.

Lemma 5.5. No adversary can distinguish between H1 and H2 with non-negligible prob-
ability.

Proof. Here we are just changing the ways the variables are sampled. In H1, we sample a
uniform ri and compute ui = PRG(s′i)⊕ri⊕mi, while in H2, we sample a uniform ui, and
then compute ri = PRG(s′i) ⊕ ui ⊕mi. These two ways of sampling are equivalent, and
hence no adversary can distinguish between H1 and H2 with non-negligible probability.

Lemma 5.6. No adversary can distinguish between H2 and H3 with non-negligible prob-
ability.

Proof. This step is similar to the previous one, another change of variables. In H2, we
sample a uniform s′i, and compute c2,i = s′i⊕Ext(c1,i; si), while in H2, we sample a uniform
c2,i and compute s′i = c2,i⊕Ext(c1,i; si). These are equivalent and hence no adversary can
distinguish.

Lemma 5.7. If Code = (Enc,Dec) is a “good” HILL-entropic encoding with β′-HILL-
entropy, and Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance randomness
extractor with n = S

(1−α)t + poly(λ), then no adversary can distinguish between H3 and
H4 with non-negligible probability.

Proof. By the β′-HILL-entropy and the goodness of the encoding scheme, H∞(c1,i|crsi) ≥
β′(λ, n) = n(1−o(1))−poly(λ). With all the c1,i’s combined, we haveH∞({c1,i}i|{crsi}i) ≥
tn(1− o(1))− tpoly(λ). Then, by the fact that c1,i’s are sampled independent of the mi’s
and lemma 2.3, H∞({c1,i}i|{crsi}i, {mi}i, st) = H∞({c1,i}i|{crsi}i, st) ≥ tn(1 − o(1)) −
(1 − α)nt = α · tn. Therefore, we can invoke the multi-instance randomness extraction
property and have

(s1, . . . , st,Ext(c1,1; s1), . . . ,Ext(c1,t; st)) ≈ϵ (s1, . . . , st, Z1, . . . , Zt),

where Zi = vi for all i ∈ I, and Zi = Ext(c1,i; si) for all i ̸∈ I. Notice that in H3,
we have ri = ui ⊕ PRG(c2,i ⊕ Ext(c1,i; si)) ⊕ mi, and in H4, we equivalently have ri =
ui⊕PRG(c2,i⊕Zi)⊕mi. The only difference is that in H4 we have the Zi’s instead of the
Ext(c1,i; si)’s in H3, and these are indistinguishable by the extractor property. Hence, no
adversary can distinguish between H3 and H4 with non-negligible probability.

Lemma 5.8. If PRG is a pseudorandom generator secure against non-uniform adver-
saries, then no PPT adversary can distinguish between H4 and H5 with non-negligible
probability.
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Proof. First, notice that in H4, for i ∈ I, we compute ri = ui⊕PRG(c2,i⊕vi)⊕mi, where
vi is a uniformly random string. This is equivalent as ri = ui⊕PRG(v′i)⊕mi where v

′
i is a

uniformly random string. So here we are running the PRG on a uniformly random seed.
Although we do need to run the inefficient simulator for the multi-instance randomness
extractor earlier, we can still replace the PRG output with random if the PRG is secure
against non-uniform adversaries. Hence we have ri = ui⊕u′i⊕mi where u

′
i is a uniformly

random n-bit string, and this is just equivalent as having a uniformly random ri, which
is the exact case in H5. Therefore, no PPT adversary can distinguish between H4 and
H5 with non-negligible probability.

Theorem 5.9. If Ext : {0, 1}n×{0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance random-
ness extractor with n = S

(1−α)t + poly(λ), Code = (Enc,Dec) is a “good” HILL-entropic

encoding with β′-HILL-entropy, and PRG is a pseudorandom generator secure against
non-uniform adversaries, then Construction 2 is (t, 1, (1 − β)t, S)-MULT-SIM-CPA se-
cure.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experi-
ments where no PPT adversary can distinguish one from the next with non-negligible
probability. Notice that the first hybrid H0 corresponds to the real mode experiment
of multi-user security, and the last hybrid H5 corresponds to the ideal mode one. The
simulation-based security follows.

5.3 Dealing with Multiple Messages per User

Above we have showed MULT-SIM-CPA security for SKE schemes where the number of
messages per user ℓ is equal to 1. Here, we show how we can generically lift a SKE
scheme with single-message-per-user MULT-SIM-CPA security to multiple-messages-per-
user MULT-SIM-CPA security.

Construction 3. Let λ, S be security parameters. Given SKE = (Gen,Enc,Dec) a
(η, 1, q, S)-MULT-SIM-CPA secure SKE with key space {0, 1}n 11 and F a class of ℓ-wise
independent functions with range {0, 1}n, we construct Π = (Gen,Enc,Dec) as follows.

• Gen(1λ, 1S): Sample a random function f ← F . Output k = f .

• Enc(k = f,m) : Sample a short random string r with |r| = polylog(ℓ), compute
k′ = f(r), and get c← SKE.Enc(k′,m). Output ct = (r, c).

• Dec(k = f, ct = (r, c)) : Compute k′ = f(r), and output m← SKE.Dec(k′, c).

Correctness should be easy to verify given the correctness of the underlying SKE
scheme and the deterministic property of the ℓ-wise independent functions.

Lemma 5.10. If SKE is a (η, 1, q, S)-MULT-SIM-CPA secure SKE with key space {0, 1}n
and F is a class of ℓ-wise independent functions with range {0, 1}n, then Construction 3
is (η/ℓ, ℓ, q, S − η · polylog(ℓ))-MULT-SIM-CPA secure.

11Here we assume SKE’s keys are uniformly random n-bit strings. This is without loss of generality
since we can always take the key to be the random coins for Gen.
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Proof. We prove this through a reduction. We show that if there is an adversary A =
(A1,A2) that breaks the (η/ℓ, ℓ, q, S − η · polylog(ℓ))-MULT-SIM-CPA security of Π, then
we can construct an adversary A′ = (A′1,A′2) that breaks the (η, 1, q, S)-MULT-SIM-CPA
security of SKE. A′ = (A′1,A′2) works as follows:

• A′1: First, run A1 to get a list of message queries {mi,j}i∈[η/ℓ],j∈[ℓ]. Let m′i =
m(i/ℓ)+1,((i−1) mod ℓ)+1 for i ∈ [η]. Notice that here we are essentially flattening
the list of messages. Submit the list {m′i}i∈[η] and receive {ct′i}i∈[η]. Reconstruct
cti,j = (ri,j, ct

′
(i−1)·ℓ+j) for i ∈ [η/ℓ] and j ∈ [ℓ], where ri,j is a uniformly random

string sampled from {0, 1}polylog(ℓ). Notice that the ri,j’s have no collisions under the
same i with overwhelming probability. Send the list of ciphertexts {cti,j}i,j back to
A1 and receive a state st. Output the state st′ = (st, {ri,j}i,j). The size of the state
is |st|+ η · polylog(ℓ) ≤ S − η · polylog(ℓ) + η · polylog(ℓ) = S.

• A′2: First receive st′ = (st, {ri,j}i,j), {m′i}i∈[η], {k′i}i∈[η] from the challenger / simula-
tor. Reorganize mi,j = m′(i−1)·ℓ+j for i ∈ [η/ℓ] and j ∈ [ℓ]. Construct ki as an ℓ-wise

independent function fi s.t. for all i ∈ [η/ℓ] and j ∈ [ℓ], fi(ri,j) = k′(i−1)·ℓ+j. Send

st, {mi,j}i∈[η/ℓ],j∈[ℓ], {ki = fi}i∈[η/ℓ] to A2 and receive a bit b. Output b.

Notice that A′ perfectly simulates the view for A. If A says it is in the real mode,
this means the ciphertexts are faithful encryptions of the message queries, and hence
A′ should be in the real mode as well, and vice versa. Therefore, construction 3 is
(η/ℓ, ℓ, q, S − η · polylog(ℓ))-MULT-SIM-CPA secure.

6 Public Key Incompressible Encryption

Here we explore multi-user security of incompressible Public Key Encryptions (PKEs),
considering constructions from [GWZ22, BDD22]. Unlike the SKE setting, where we can
generically lift single-ciphertext-per-user security to multi-ciphertext-per-user security,
here we show how to obtain multi-ciphertext security by modifying each construction
specifically.

6.1 Low Rate Incompressible PKE

For low rate incompressible PKE, we show that the construction from [GWZ22] is MULT-
SIM-CPA secure by plugging in the multi-instance randomness extractor. Then, we up-
grade the construction to have multi-ciphertext-per-user security by upgrading the func-
tionality of the underlying functional encryption scheme.

Construction by [GWZ22]. We recall the low rate incompressible PKE construction
by [GWZ22], with the multi-instance randomness extractor plugged in.

Construction 4 ([GWZ22]). Given FE = (Setup,KeyGen, Enc,Dec) a single-key se-
lectively secure functional encryption scheme and a (t, α, β, ϵ)-multi-instance random-
ness extractor Ext : {0, 1}n × {0, 1}d → {0, 1}w, with d = poly(λ), w = poly(λ) and
n = S

(1−α)t + poly(λ), the construction Π = (Gen,Enc,Dec) with message space {0, 1}w
works as follows:
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• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the
secret key for the following function fv with a hardcoded v ∈ {0, 1}d+w:

fv(s
′ = (s, pad), flag) =

{
s′ if flag = 0

s′ ⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv ← FE.KeyGen(FE.msk, fv).

• Enc(pk,m): Sample a random tuple s′ = (s, pad) where s ∈ {0, 1}d is used as a
seed for the extractor and pad ∈ {0, 1}w is used as a one-time pad. The ciphertext
consists of three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long randomness R ∈
{0, 1}n, and z = Ext(R; s)⊕ pad⊕m.

• Dec(sk, ct = (FE.ct, R, z)): First, obtain s′ ← FE.Dec(FE.skfv ,FE.ct), and then use
the seed s to compute Ext(R; s)⊕ z ⊕ pad to recover m.

The correctness follows from the original construction.

Theorem 6.1. If FE is a single-key selectively secure functional encryption scheme and
Ext : {0, 1}n×{0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-instance randomness extractor with
d, w = poly(λ) and n = S

(1−α)t + poly(λ), then Construction 4 is (t, 1, (1− β)t, S)-MULT-
SIM-CPA secure.

We prove Theorem 6.1 through a sequence of hybrids, starting with H0 being the real
mode experiment and ending with H3 being the ideal mode experiment. The proofs of
the hybrid arguments are identical to those from [GWZ22] (except for the extractor step,
which is analogous to the proof of Lemma 5.2), so we will not reproduce them here and
instead point the reader to the original [GWZ22] paper.

Sequence of Hybrids

• Hybrid H0:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ) and sample a
uniform random vi ← {0, 1}d+w. Set pki = FE.mpki and ski = FE.skfvi ←
FE.KeyGen(FE.mski, fvi).

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample padi ← {0, 1}w uniformly at random.

∗ Let s′i = (si, padi).

∗ Let FE.cti ← FE.Enc(FE.mpki, (s
′
i, 0)).

∗ Sample Ri ← {0, 1}n uniformly at random.

∗ Let zi = Ext(Ri; si)⊕ padi ⊕mi.

∗ Let cti = (FE.cti, Ri, zi).

– Send {cti}i to A1 and receive a state st.
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– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H1:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ) and sample a
uniform random vi ← {0, 1}d+w. Set pki = FE.mpki and ski = FE.skfvi ←
FE.KeyGen(FE.mski, fvi).

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Sample padi ← {0, 1}w uniformly at random.

∗ Let s′i = (si, padi).

∗ Let FE.cti ← FE.Enc(FE.mpki, (s
′
i ⊕ vi, 1)).

∗ Sample Ri ← {0, 1}n uniformly at random.

∗ Let zi = Ext(Ri; si)⊕ padi ⊕mi.

∗ Let cti = (FE.cti, Ri, zi).

– Send {cti}i to A1 and receive a state st.

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H2:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ). Set only pki = FE.mpki.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t]:

∗ Sample ui ← {0, 1}d+w uniformly at random.

∗ Let FE.cti ← FE.Enc(FE.mpki, (ui, 1)).

∗ Sample Ri ← {0, 1}n uniformly at random.

∗ Sample zi ← {0, 1}w uniformly at random.

∗ Let cti = (FE.cti, Ri, zi).

– Send {cti}i to A1 and receive a state st.

– For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ Let padi = Ext(Ri; si)⊕ zi ⊕mi.

∗ Let s′i = (si, padi) and compute vi = s′i ⊕ ui.

∗ Obtain ski = FE.skfvi ← FE.KeyGen(FE.mski, fvi).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H3:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ). Set only pki =
FE.mpki.

33



– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t]. Discard {mi}i
without looking at it.

– For each i ∈ [t]:

∗ Sample ui ← {0, 1}d+w uniformly at random.

∗ Let FE.cti ← FE.Enc(FE.mpki, (ui, 1)).

∗ Sample Ri ← {0, 1}n uniformly at random.

∗ Sample zi ← {0, 1}w uniformly at random.

∗ Let cti = (FE.cti, Ri, zi).

– Send {cti}i to A1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of
indices I ⊆ [t] with |I| ≥ βt. Submit the set [t]\I, and receive the correspond-
ing messages {mi}i ̸∈I . For each i ∈ [t]:

∗ Sample si ← {0, 1}d uniformly at random.

∗ If i ∈ I, sample padi ← {0, 1}w uniformly at random.

∗ If i ̸∈ I, let padi = Ext(Ri; si)⊕ zi ⊕mi.

∗ Let s′i = (si, padi) and compute vi = s′i ⊕ ui.

∗ Obtain ski = FE.skfvi ← FE.KeyGen(FE.mski, fvi).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

Upgrading to Multiple Ciphertexts Per User. Additionally, We show that the
constructions from [GWZ22] can be upgraded to have multi-ciphertext-per-user security.
Essentially, all we need is to upgrade the functionality of the underlying functional en-
cryption scheme to work for a slightly more generalized class of functions. We will need
functions f{vi}i(s, flag) = s⊕ vflag for hard coded values v1, . . . , vℓ and a special v0 being
the all 0 string. Notice that the original GWZ construction [GWZ22] can be viewed
as using functions that are a special case where ℓ = 1. We show how to construct FE
schemes for such f{vi}i functions from plain PKE below. With this new class of functions,
we can achieve (t, ℓ, (1− β)ℓt, S)-MULT-SIM-CPA security. In the hybrid proof where we
replace FE.Enc(FE.mpk, (s′, 0)) with FE.Enc(FE.mpk, (s′⊕v, 1)), now for the j-th message
query for the i-th user where i ∈ [t] and j ∈ [ℓ], we replace FE.Enc(FE.mpki, (s

′
i,j, 0)) with

FE.Enc(FE.mpki, (s
′
i,j ⊕ vi,j, j)). The rest of the hybrid proof follows analogously.

Instantiating FE for f{vi}i Functions. Here we show how to construct the FE scheme
for the new class of functions that we need to upgrade construction 4 to have multi-
ciphertext-per-user security. We only need plain PKE for the construction. Recall that
our functions f{vi}i have the form f{vi}i(s, flag) = s⊕ vflag, where flag ∈ {0, 1, . . . , ℓ}.

Construction 5. Let (Gen′,Enc′,Dec′) be a public key encryption scheme. Our scheme
FE = (Setup,KeyGen,Enc,Dec) for a single message bit s is defined as:

• Setup(1λ): For i ∈ {0, 1, . . . , n}, b ∈ {0, 1}, run (pki,b, ski,b) ← Gen′(1λ). Output
(mpk = {pki,b}i,b , msk = {ski,b}i,b).

• KeyGen(msk, f{vi}i) = {ski,vi}i. Notice that we hardcode v0 = 0.
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• Enc(mpk, (s, flag)): Sample uniformly random bits s(0), s(1), . . . , s(n) s.t. s(0)⊕ s(1)⊕
· · ·⊕s(n) = s. For i ∈ {0, 1, . . . , n}\{flag}, b ∈ {0, 1}, compute ci,b = Enc′(pki,b, s

(i)).

For b ∈ {0, 1}, compute cflag,b = Enc′(pki,b, s
(flag) ⊕ b). Output c = (ci,b)i,b.

• Dec(sk{vi}i , c): Output x = x(0) ⊕ x(1) ⊕ · · · ⊕ x(n) where x(i) = Dec′(ski,vi , ci,vi)

For correctness, note that for i ̸= flag, x(i) = s(i), and that x(flag) = s(flag) ⊕ vflag,
therefore x = s(0) ⊕ s(1) ⊕ · · · ⊕ s(n) ⊕ vflag = s⊕ vflag.

Lemma 6.2. If (Gen′,Enc′,Dec′) is a CPA secure public key encryption scheme, then
Construction 5 is single key semi-adaptively secure for the functions f{vi}i.

Proof. Consider a single key semi-adaptive adversary for Construction 5. Let m0 =
(s0, flag0),m1 = (s1, flag1) be the challenge messages. For a fixed flag, f{vi}i is injective.
Therefore, if m0 ̸= m1, it must be that flag0 ̸= flag1. Then if the adversary’s secret
key query is on f{vi}i , we must have s0 ⊕ vflag0 = s1 ⊕ vflag1 . Therefore the ci,vi ’s always
encrypt an instance of a secret share of the same value s0 ⊕ vflag0 = s1 ⊕ vflag1 . Hence,

for i ̸∈ {flag0, flag1}, b̂ ∈ {0, 1}, ci,b̂’s follow the same distribution in both cases and
do not depend on the challenge bit b. The only dependence on the challenge bit b is
that cflagb,0 always encrypts the opposite bit that cflagb,1 encrypts, whereas cflag1−b,0 and
cflag1−b,1 always encrypt the same bit. However, since the adversary never gets to see the
secret key skflagb,1−vflagb , a simple hybrid argument shows that flipping the challenge bit is
indistinguishable.

6.2 Rate-1 Incompressible PKE

For rate-1 incompressible PKE, we first show that we can easily plug in the multi-instance
randomness extractor to the construction by Guan, Wichs and Zhandry [GWZ22]. We
also provide a generalization on the construction by Branco, Döttling and Dujmovic [BDD22]
using a Key Encapsulation Mechanism (KEM) with a special non-committing property.
For both constructions, we show how to adapt them to allow for multi-ciphertext-per-user
security.

Construction by [GWZ22]. We first reproduce the rate-1 PKE construction from
[GWZ22], with the multi-instance randomness extractors plugged in.

Construction 6 ([GWZ22]). Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 functional
encryption scheme satisfying single-key semi-adaptive security, Ext : {0, 1}n × {0, 1}d →
{0, 1}w a (t, α, β, ϵ)-multi-instance randomness extractor with d, w = poly(λ), n = S

(1−α)t+

poly(λ) and PRG : {0, 1}w → {0, 1}n a secure PRG against non-uniform adversaries, the
construction Π = (Gen,Enc,Dec) for message space {0, 1}n works as follows:

• Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk) ← FE.Setup(1λ). Then, generate the
secret key for the following function fv,s with a hardcoded large random pad v ∈
{0, 1}n and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

{
x if flag = 0

PRG(Extract(x; s))⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv,s ← FE.KeyGen(FE.msk, fv,s).
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• Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the underlying
FE scheme, i.e. FE.ct← FE.Enc(FE.mpk, (m, 0)).

• Dec(sk, ct): Decryption also corresponds to FE decryption. The output is simply
FE.Dec(FE.skfv,s , ct) = fv,s(m, 0) = m as desired.

Correctness easily follows from the original construction. The rate of the construction
is the rate of the underlying FE multiplied by n

n+1
. If the FE has rate (1 − o(1)), the

construction has rate (1− o(1)) as desired.

Theorem 6.3. If FE = (Setup,KeyGen, Enc,Dec) is a single-key semi-adaptively secure
functional encryption scheme, Ext : {0, 1}n × {0, 1}d → {0, 1}w is a (t, α, β, ϵ)-multi-
instance randomness extractor, with d, w = poly(λ) and n = S

(1−α)t + poly(λ), and PRG :

{0, 1}w → {0, 1}n is a PRG secure against non-uniform adversaries, then Construction 6
is (t, 1, (1− β)t, S)-MULT-SIM-CPA secure.

We prove Theorem 6.3 through a sequence of hybrids, starting with H0 being the real
mode experiment where we play the role of the challenger and ending with H6 being the
ideal mode experiment where we play the role of the simulator. For the proofs of each
hybrid argument, see the original [GWZ22] paper, since they are identical except for the
extractor step (analogous to Lemma 5.2) and the PRG against non-uniform attackers
step (analogous to Lemma 5.8).

Sequence of Hybrids

• Hybrid H0:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ) and sample uni-
formly random vi ← {0, 1}n and si ← {0, 1}d. Set pki = FE.mpki and
ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], let cti = FE.cti ← FE.Enc(FE.mpki, (mi, 0)).

– Send {cti}i to A1 and receive a state st.

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H1:

– For each i ∈ [t], obtain (FE.mpki,FE.mski)← FE.Setup(1λ). Only set pki = FE.mpki
for now.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], let cti = FE.cti ← FE.Enc(FE.mpki, (mi, 0)).

– Send {cti}i to A1 and receive a state st.

– For each i ∈ [t]:

∗ Sample a uniformly random si ← {0, 1}d.
∗ Sample a uniformly random ui ← {0, 1}n, and let vi = ui ⊕mi.
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∗ Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H2:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ). Only set pki =
FE.mpki for now.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], let cti = FE.cti ← FE.Enc(FE.mpki, (mi, 0)).

– Send {cti}i to A1 and receive a state st.

– For each i ∈ [t]:

∗ Sample a uniformly random si ← {0, 1}d.
∗ Sample a uniformly random PRG key ki ← {0, 1}w, and let vi = PRG(ki)⊕mi.

∗ Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H3:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ). Only set pki =
FE.mpki for now.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], sample a uniformly random Ri ← {0, 1}n, and let cti =
FE.cti ← FE.Enc(FE.mpki, (mi, 0)).

– Send {cti}i to A1 and receive a state st.

– For each i ∈ [t]:

∗ Sample a uniformly random si ← {0, 1}d.
∗ Let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.

∗ Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H4:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ). Only set pki =
FE.mpki for now.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], sample a uniformly random Ri ← {0, 1}n, and let cti =
FE.cti ← FE.Enc(FE.mpki, (Ri, 1)).

– Send {cti}i to A1 and receive a state st.

– For each i ∈ [t]:

∗ Sample a uniformly random si ← {0, 1}d.
∗ Let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.
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∗ Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H5:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ). Only set pki =
FE.mpki for now.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t].

– For each i ∈ [t], sample a uniformly random Ri ← {0, 1}n, and let cti =
FE.cti ← FE.Enc(FE.mpki, (Ri, 0)).

– Send {cti}i to A1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of
indices I ⊆ [t] with |I| ≥ βt. For each i ∈ [t]:

∗ Sample a uniformly random si ← {0, 1}d.
∗ If i ∈ I, sample a uniformly random PRG key ki ← {0, 1}w, and let vi =
PRG(ki)⊕mi.

∗ If i ̸∈ I, let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.

∗ Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.

• Hybrid H6:

– For each i ∈ [t], obtain (FE.mpki,FE.mski) ← FE.Setup(1λ). Only set pki =
FE.mpki for now.

– Send {pki}i to the adversary A1 and receive {mi}i for i ∈ [t]. Discard {mi}i
without looking at it.

– For each i ∈ [t], sample a uniformly random Ri ← {0, 1}n, and let cti =
FE.cti ← FE.Enc(FE.mpki, (Ri, 0)).

– Send {cti}i to A1 and receive a state st.

– Run the simulator for the multi-instance randomness extractor to get a set of
indices I ⊆ [t] with |I| ≥ βt. Submit the set [t]\I, and receive the correspond-
ing messages {mi}i ̸∈I . For each i ∈ [t]:

∗ Sample a uniformly random si ← {0, 1}d.
∗ If i ∈ I, sample a uniformly random vi ← {0, 1}n.
∗ If i ̸∈ I, let ki = Ext(Ri; si), and let vi = PRG(ki)⊕mi.

∗ Let ski = FE.skfvi,si ← FE.KeyGen(FE.mski, fvi,si).

– On input of st, {mi}i, {(pki, ski)}i, A2 outputs a bit 1/0.
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Upgrading to Multiple Ciphertexts Per User. Upgrading Construction 6 to multi-
ciphertext-per-user security is rather straightforward. Since the construction already
requires a full functionality FE scheme, we just modify the class of functions that the
underlying FE scheme uses, without introducing any new assumptions. Specifically, we
use the class of functions f{vj}j ,{sj}j with hard-coded values vj ∈ {0, 1}n and sj ∈ {0, 1}d
for j ∈ [ℓ] that behaves as follows:

f{vj}j ,{sj}j(x, flag) =

{
x if flag = 0

PRG(Extract(x; sflag))⊕ vflag if flag ∈ [ℓ]
.

This gives us (t, ℓ, (1−α)ℓt, S)-MULT-SIM-CPA security. Notice that this modification
does slightly harm the rate of the scheme, since the flag is now log(ℓ) bits instead of one
bit, but asymptotically the rate is still (1− o(1)).

The hybrid proof works analogously to that of Theorem 6.3, except that in the hybrid
proof where we swap the FE encryption of (m, 0) to (R, 1), we now swap from (mi,j, 0)
to (Ri,j, j) for the j-th ciphertext from the i-th user.

Generalization of Construction by [BDD22]. [BDD22] show how to lift a rate-1
incompressible SKE scheme to a rate-1 incompressible PKE scheme using a Key Encap-
sulation Mechanism [CS03] built from programmable Hash Proof Systems (HPS) [CS02,
Kal05]. Their construction satisfy CCA2 security. We show that if we are to relax the
security notion to only CPA security, all we need for the lifting is a Key Encapsulation
Mechanism with a non-committing property, defined as follows.

Definition 6.1 (Key Encapsulation Mechanism [CS03]). Let λ be the security parameters,
a Key Encapsulation Mechanism (KEM) is a tuple of algorithms Π = (KeyGen,Encap,
Decap) that works as follow:

• KeyGen(1λ, 1Lk)→ (pk, sk): The key generation algorithm takes as input the security
parameter and the desired symmetric key length Lk, outputs a pair of public key and
private key (pk, sk).

• Encap(pk) → (k, c): The encapsulation algorithm takes the public key pk, produces
a symmetric key k ∈ {0, 1}Lk , and a header c that encapsulates k.

• Decap(sk, c) → k: The decapsulation algorithm takes as input the private key sk
and a header c, and decapsulates the header to get the symmetric key k.

We require correctness of the KEM.

Definition 6.2 (Correctness). A key encapsulation mechanism KEM = (KeyGen,Encap,
Decap) is said to be correct if:

Pr

k′ = k :
(pk, sk)← KeyGen(1λ, 1Lk)

(k, c)← Encap(pk)
k′ ← Decap(sk, c)

 ≥ 1− negl(λ).
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Definition 6.3 (Non-Committing). A key encapsulation mechanism KEM = (KeyGen,
Encap,Decap) is said to be non-committing if there exists a pair of simulator algorithm
(Sim1, Sim2) such that Sim1(1

λ, 1Lk) outputs a simulated public key pk′, a header c′ and
a state st with |st| = poly(λ,Lk), and for any given target key k′ ∈ {0, 1}Lk , Sim2(st, k

′)
outputs the random coins rKeyGen and rEncap. We require that if we run the key generation
and encapsulation algorithm using these random coins, we will get the desired pk′, c′, and
k′, i.e.:

Pr

pk′ = pk
k′ = k
c′ = c

:
(pk, sk)← KeyGen(1λ, 1Lk ; rKeyGen)

(k, c)← Encap(pk; rEncap)

 ≥ 1− negl(λ).

Kindly notice that by the correctness property, Decap(sk, c′)→ k′.

This non-committing property allows us to commit to a public key and header first,
but then later able to reveal it as an encapsulation of an arbitrary symmetric key in the
key space. And it will be impossible to distinguish the simulated public key and header
from the ones we get from faithfully running KeyGen and Encap.

Using this non-committing KEM, we are able to construct rate-1 incompressible PKE
from rate-1 incompressible SKE, with multi-user security in mind. This is a generalization
of the construction by [BDD22].

Construction 7 (Generalization of [BDD22]). Let λ, S be security parameters. Given
KEM = (KeyGen,Encap,Decap) a non-commiting KEM and SKE = (Gen,Enc,Dec) a
rate-1 incompressible SKE for message space {0, 1}n, we construct rate-1 incompressible
PKE Π = (Gen,Enc,Dec) for message space {0, 1}n as follows:

• Gen(1λ, 1S): First, run SKE.Gen(1λ, 1S) to determine the required symmetric key
length Lk under security parameters λ, S. Then run (pk, sk)← KEM.KeyGen(1λ, 1Lk)
and output (pk, sk).

• Enc(pk,m): First, run (k, c0)← KEM.Encap(pk) to sample a symmetric key k, and
encapsulate it into a header c0. Then compute c1 ← SKE.Enc(k,m). The ciphertext
is the tuple (c0, c1).

• Dec(sk, ct = (c0, c1)): First, decapsulate c0 using sk to obtain k ← KEM.Decap(sk, c0),
and then use k to decrypt c1 and get m← SKE.Dec(k, c1).

Correctness follows from the correctness of the underlying incompressible SKE and
the KEM scheme. In terms of the rate, to achieve a rate-1 incompressible PKE, we
would require the KEM to produce “short” headers, i.e. |c0| = poly(λ) independent of
Lk (notice that Lk = poly(λ, n) and needs to be at least as large as n). We can build
such KEMs using various efficient encapsulation techniques [BBB+17, ACP+19, BCL+17].
With the short header and an incompressible SKE with rate (1 − o(1)), the ciphertext
length is n/(1− o(1)) + poly(λ), yielding an ideal rate of (1− o(1)) for the construction.
However, these KEMs require long public keys, as opposed to the short public keys in
Construction 6.

For security, we prove that if the underlying SKE has MULT-SIM-CPA security, then
Construction 7 has MULT-SIM-CPA security as well.
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Theorem 6.4. If KEM is a non-commiting KEM, and SKE is a (η, 1, q, S)-MULT-SIM-
CPA secure SKE with message space {0, 1}n, then Construction 7 is (η, 1, q, S − η ·
poly(λ, n))-MULT-SIM-CPA secure.

Proof. We prove this through a reduction. We show that if there is an adversary A =
(A1,A2) that breaks the (η, 1, q, S − η · poly(λ, n))-MULT-SIM-CPA security of Π, then
we can construct an adversary A′ = (A′1,A′2) that breaks the (η, 1, q, S)-MULT-SIM-CPA
security of SKE. A′ = (A′1,A′2) works as follows:

• A′1: Use the security parameters λ, S to determine the key length Lk for the un-
derlying SKE12. For each i ∈ [η], obtain (pki, c0,i,KEM.sti) ← KEM.Sim1(1

λ, 1Lk).
Send {pki}i to A1 to get a list of message queries {mi}i. Then, forward the list
{mi}i to the challenger / simulator and receive a list of ciphertexts {ct′i}i. Con-
struct cti = (c0,i, ct

′
i), and send all {cti}i to A1 to receive a state st. Output

the state st′ = (st, {KEM.sti}i). The size of the state is |st| + η · poly(λ,Lk) ≤
S − η · poly(λ, n) + η · poly(λ, n) = S.

• A′2: First receive st′ = (st, {KEM.sti}i), {mi}i, {ki}i from the challenger / simulator.
For each i ∈ [η], run (rKeyGeni , rEncapi ) ← KEM.Sim2(KEM.sti, ki), and (pki, ski) ←
KEM.KeyGen(1λ, 1Lk ; rKeyGeni ). Notice that pki matches the pki produced previously
by A′1 due to the non-committing property of the KEM. Send st, {mi}i, {(pki, ski)}i
to A2 and receive a bit b. Output b.

Notice that A′ perfectly simulates the view for A. If A says it is in the real mode
interacting with the challenger, this means the ciphertexts cti’s are faithful encryptions
of the message queries mi’s, i.e. Dec(ski, cti) = SKE.Dec(KEM.Decap(ski, c0,i), ct

′
i) = mi

for all i ∈ [η]. This implies that SKE.Dec(ki, ct
′
i) = mi, and hence A′ is also in the real

mode. The converse also holds true. Therefore, construction 7 is (η, 1, q, S−η ·poly(λ, n))-
MULT-SIM-CPA secure.

Upgrading to Multiple Ciphertexts Per User. Next we show how to upgrade
Construction 7 to have multi-ciphertext-per-user security. All we need is to upgrade the
KEM to be ℓ-strongly non-committing, defined as below.

Definition 6.4 (ℓ-Strongly Non-Committing). A key encapsulation mechanism KEM =
(KeyGen,Encap,Decap) is said to be ℓ-strongly non-committing if there exists a pair of
simulator algorithm (Sim1, Sim2) such that Sim1(1

λ, 1Lk) outputs a simulated public key
pk′, a set of simulated headers C ′ = {c′1, c′2, . . . , c′ℓ} and a state st with |st| = poly(λ,Lk, ℓ),
and for any given set of target keys K′ = {k′1, k′2, . . . , k′ℓ} where k′i ∈ {0, 1}Lk for all i ∈ [ℓ],
Sim2(st,K′) outputs a set of random coin pairs {(rKeyGeni , rEncapi )}i∈[ℓ]. We require that if
we run the key generation and encapsulation algorithm using the i-th pair of these random
coins, we will get the desired pk′, c′i, and k′i, i.e. for all i ∈ [ℓ]:

Pr

pk′ = pk
k′i = k
c′i = c

:
(pk, sk)← KeyGen(1λ, 1Lk ; rKeyGeni )

(k, c)← Encap(pk; rEncapi )

 ≥ 1− negl(λ).

Kindly notice that by the correctness property, Decap(sk, c′i)→ k′i.

12For the ease of syntax, we imagine the security parameters to be part of the public parameters always
accessible to the adversary.
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We show how to construct ℓ-strongly non-committing KEMs by composing plain non-
committing KEMs below.

To get multi-ciphertext security, we simply plug in the ℓ-strongly non-committing
KEM in place of the plain non-committing KEM in construction 7. The resulting con-
struction has (η/ℓ, ℓ, q, S − η · poly(λ, n, ℓ))-MULT-SIM-CPA security. The security proof
follows analogous from that of Theorem 6.4.

Instantiating ℓ-Strongly Non-Committing KEM. We give a simple construction
of ℓ-strongly non-committing KEM by composing 2ℓ plain non-committing KEMs.

Construction 8. Let KEM1,KEM2, . . . ,KEMn be n = 2ℓ instances of non-committing
KEMs, we construct an ℓ-strongly non-committing KEM Π = (KeyGen,Encap,Decap) as
follows:

• KeyGen(1λ, 1Lk): For each i ∈ [n], run (pki, ski) ← KEMi.KeyGen(1
λ, 1Lk). Publish

pk = {pki}i and sk = {ski}i.

• Encap(pk): First sample a random subset I ⊆ [n]. Then for all i ∈ I, get (ki, ci)←
KEMi.Encap(pki). Output k =

⊕
i∈I ki, and c = (I, {ci}i).

• Decap(sk, c): First parse c = (I, {ci}i). Then for all i ∈ I, get ki ← KEMi.Decap(ski,
ci). Output k =

⊕
i∈I ki.

Correctness is trivial given the correctness of the underlying KEMs. The public key,
private key and header sizes all blow up by a factor of n.

Lemma 6.5. If KEM1,KEM2, . . . ,KEMn are non-committing KEMs, then construction 8
is ℓ-strongly non-committing.

Proof. We show how to construct the pair of simulator algorithms (Sim1, Sim2) for Π:

• Sim1(1
λ, 1Lk): For all i ∈ [n], get (pk′i, c

′
i, sti) ← KEMi.Sim1(1

λ, 1Lk). For all j ∈
[ℓ], sample a random subset Ij ⊆ [n], and let ĉj = (Ij, {c′i}i∈Ij). Output pk′ =
{pk′i}i∈[n], C ′ = {ĉj}j∈[ℓ], and st = ({Ij}j∈[ℓ], {sti}i∈[n]).

• Sim2(st,K′ = {k′j}j∈[ℓ]): First, parse {Ij}j∈[ℓ] as a ℓ× n bit matrix M. Mα,β = 1 if
and only if β ∈ Iα. Solve for the vector v = (v1,v2, . . . ,vn) where each vi ∈ {0, 1}Lk
such that

M · v⊤ = (k′1, k
′
2, . . . , k

′
ℓ)
⊤.

Assume for now that there exists a satisfying solution for v. Notice that this
means for all j ∈ [ℓ], k′j =

⊕
i∈Ij vi, i.e. v gives an assignment of keys for

KEM1,KEM2, . . . ,KEMn that satisfies the target key setK′ for Π. Now we just to run
(rKeyGeni , rEncapi )← KEMi.Sim2(sti,vj) for all i ∈ [n]. Output {(rKeyGeni , rEncapi )}i∈[n].

By the non-committing property of the underlying KEMs, it is easy to see that these
random coins yield the simulated public keys, headers and the target keys.

The only remaining thing to show is that M · v⊤ = (k′1, k
′
2, . . . , k

′
ℓ)
⊤ has a satisfying

solution for v. Notice that v has at least one solution if M has rank ℓ. Having rank ℓ
essentially says that all the rows of M are linearly independent. This ensures that the
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linear equation system generated byM·v⊤ = (k′1, k
′
2, . . . , k

′
ℓ)
⊤ is consistent. Notice having

rank ℓ also means that M has at least ℓ non-zero columns. This gives us a consistent
linear equation system with ℓ equations and at least ℓ variables, which is guaranteed to
have a (not necessarily unique) solution. Notice that if we choose n = 2ℓ, then M is an
ℓ × 2ℓ matrix, which has full rank (rank ℓ) with overwhelming probability 1 − O(2−ℓ).

7 Incompressible Encryption in the Random Oracle

Model

7.1 Rate-1 Incompressible SKE from Random Oracles

We show how to build rate-1 incompressible SKE in the random oracle model.

Construction 9. Let λ, S be security parameters. Given G : {0, 1}poly(λ)×{0, 1}poly(λ) →
{0, 1}n, H : {0, 1}poly(λ) × {0, 1}n → {0, 1}poly(λ) two hash functions modelled as random
oracles, we construct Π = (Gen,Enc,Dec) for message space {0, 1}n as follows:

• Gen(1λ, 1S): Sample a uniformly random key k ∈ {0, 1}poly(λ). Output k.

• Enc(k,m): First, choose a random r ← {0, 1}poly(λ). Let d = G(k, r)⊕m. Then let
c = H(k, d)⊕ r. Output ct = (c, d).

• Dec(k, ct = (c, d)): First, Compute r = H(k, d)⊕ c, and then m = G(k, r)⊕ d.

Correctness is easy to verify given that G and H are deterministic. The ciphertext
has length |c|+ |d| = n+ poly(λ), which gives an ideal rate of (1− o(1)). The secret key
size is poly(λ), which is also optimal.

The construction has (2λ, 2λ, S
n
, S)-MULT-SIM-CPA security. Notice that this security

holds for an unbounded (exponential) number of ciphertexts per user.

Theorem 7.1. If G,H are hash functions modelled as random oracles, then construc-
tion 9 is (2λ, 2λ, S

n
, S)-MULT-SIM-CPA secure.

Proof. We prove this by limiting the adversary’s queries to the random oracles G and H
through several steps. First, recall the challenger’s behavior in the real mode experiment:

• For i ∈ [2λ], sample a uniform ki ∈ {0, 1}poly(λ).

• Receive a list of message queries {mi,j}i,j∈[2λ] from A1.

• For each i, j ∈ [2λ]:

– Sample a uniformly random ri,j ← {0, 1}poly(λ).
– Let di,j = G(ki, ri,j)⊕mi,j.

– Let ci,j = H(ki, di,j)⊕ ri,j.

– Let cti,j = (ci,j, di,j).
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• Send {cti,j}i,j to A1 and receive a state st of size at most S.

• On input of st, {mi,j}i,j, {ki}i, A2 outputs a bit 1/0.

Now we limit the adversary’s queries to G and H.

1. Notice that A1 can never query the random oracles G or H using some ki, since
the ki’s remain hidden from A1. The probability of A1 guessing a ki correctly is
exponentially small.

2. A2 can only query G(ki, ri,j) after querying H(ki, di,j). This is because if A2 has not
queried H(ki, di,j) yet, then ri,j = H(ki, di,j)⊕ ci,j is just a uniformly random λ-bit
string to the adversary, and the probability of guessing it correctly is exponentially
small.

3. A2 can make at most S/n queries to H(ki, di,j) with different (i, j) pairs. Notice
that the probability of guessing a di,j correctly is exponentially small. So in order
to successfully query H(ki, di,j), di,j must be stored in st. But each di,j is n bits,
and |st| ≤ S, so A2 can recover at most S/n such di,j’s and hence make at most
S/n valid queries to H.

With these limitations in mind, the simulator for the ideal mode experiment works as
follow:

• Receive a list of message queries {mi,j}i,j∈[2λ] from A1. Discard without looking at
it.

• For each i, j ∈ [2λ]:

– Sample a uniformly random ci,j ← {0, 1}poly(λ).
– Sample a uniformly random di,j ← {0, 1}n.
– Let cti,j = (ci,j, di,j).

• Send {cti,j}i,j to A1 and receive a state st of size at most S.

• Sample uniformly random keys ki ∈ {0, 1}poly(λ)

• A2 receives st, {mi,j}i,j, {ki}i.

• Whenever A2 queries the random oracle on H(ki, di,j), submit a query for message
mi,j. There will be at most S/n such queries. Program H(ki, di,j) to output a
uniformly random string r′i,j ← {0, 1}poly(λ), and program G(ki, r

′
i,j ⊕ ci,j) = mi,j ⊕

di,j.

• A2 outputs a bit 1/0.

Notice that this simulator queries a subset of messages that has size at most S/n.
It is easy to see that a PPT adversary cannot distinguish between the challenger and
the simulator. For a pair of index (i, j) that A has queried H(ki, di,j), we have cti,j =
(ci,j, di,j) = (H(ki, di,j)⊕ ri,j, G(ki, ri,j)⊕mi,j) is just a faithful encryption of mi,j, which
is the same thing the challenger in the real mode would output. For a pair of index (i, j)
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that A has not queried H(ki, di,j), then by limitation 2 above, A has also not queried
G(ki, ri,j). Here, mi,j is essentially masked with a random string, so the adversary cannot
tell between an encryption of mi,j and a random ciphertext, i.e. the challenger output
and the simulator output.

7.2 Rate-1 Incompressible PKE from Random Oracles

We then show how to construct rate-1 incompressible PKE from random oracles, plain
PKE, and rate-1 incompressible SKE. The construction is essentially a hybrid mode
PKE with random oracles plugged in. Notice that this construction can be viewed as a
generalization of Construction 5 in Section 7.1 of [BDD22].

Construction 10. Let λ, S be security parameters. Given PKE′ = (Gen′,Enc′,Dec′) a
plain PKE scheme with many-time CPA security, SKE = (Gen,Enc,Dec) a rate-1 incom-
pressible SKE with (2λ, 1, q, S)-MULT-SIM-CPA security, message space {0, 1}n and key
space {0, 1}Lk , and H : {0, 1}poly(λ) → {0, 1}Lk a hash function modelled as a random
oracle, we construct Π = (Gen,Enc,Dec) for message space {0, 1}n as follows:

• Gen(1λ, 1S): Run (pk, sk)← PKE′.Gen′(1λ). Output (pk, sk).

• Enc(pk,m): Sample a short random r ∈ {0, 1}poly(λ). Compute c← PKE′.Enc′(pk, r)
and d← SKE.Enc(H(r),m). Output ct = (c, d).

• Dec(sk, ct = (c, d)): Get r ← PKE′.Dec′(sk, c), and output m← SKE.Dec(H(r), d).

It is easy to see that given the correctness of PKE′ and SKE and thatH is deterministic,
this construction is correct. The ciphertexts have length |c|+ |d| = n+ poly(λ), yielding
an ideal rate of (1 − o(1)). The public key and the private key both have size poly(λ),
which is optimal.

We show that the construction has (2λ, 2λ, q, S)-MULT-SIM-CPA security.

Theorem 7.2. If PKE′ has many-time CPA security, SKE has (2λ, 1, q, S)-MULT-SIM-
CPA security, and H is a hash function modelled as a random oracle, then construction 10
is (2λ, 2λ, q, S)-MULT-SIM-CPA secure.

Proof. We show how to construct the simulator for the ideal mode experiment by using
the simulator for the underlying incompressible SKE.

• For i ∈ [2λ], sample (pki, ski)← PKE′.Gen′(1λ).

• Receive a list of message queries {mi,j}i,j∈[2λ] from A1. Discard without looking at
it.

• Run the simulation for the incompressible SKE to obtain a list of ciphertexts {di,j}i,j
for i, j ∈ [2λ].

• For each i, j ∈ [2λ]:

– Sample a uniformly random ri,j ← {0, 1}poly(λ).
– Let ci,j ← PKE′.Enc′(pki, ri,j).
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– Let cti,j = (ci,j, di,j).

• Send {cti,j}i,j to A1 and receive a state st of size at most S. Forward the state st
to the simulator for the incompressible SKE.

• Run the incompressible SKE simulator to obtain the simulated symmetric keys
{ki,j}i,j, and reprogram the random oracle H to output H(ri,j) = ki,j. In the
process, if the SKE simulator queries for message mi,j, also query for mi,j. Notice
that there will be at most q such queries.

• A2 receives st, {mi,j}i,j, {(pki, ski)}i and outputs a bit 1/0.

The security of the underlying PKE′ ensures that the reprogramming of H is undetectable
to the adversary. This is because for A1, ri,j’s are encrypted under PKE′, and the PKE′

private keys remain hidden to A1. Therefore, A1 is not able to query H on any of the
ri,j’s before the reprogramming happens, and hence is not able to detect it.

By the property of the incompressible SKE simulator, the rest is easy to see that the
simulator constructed above is indistinguishable from a real mode challenger.

Remark 7.1. By using construction 9 as the incompressible SKE schme in construc-
tion 10, we would get a rate-1, random oracle based, incompressible PKE scheme for
message space {0, 1}n that has (2λ, 2λ, S

n
, S)-MULT-SIM-CPA security.
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