
Quasi-linear masking against SCA and FIA,1

with cost amortization2

Claude Carlet ?, Abderrahman Daif ??,3

Sylvain Guilley ? ? ?, and Cédric Tavernier †4

Abstract. The implementation of cryptographic algorithms must be5

protected against physical attacks. Side-channel and fault injection anal-6

yses are two prominent such implementation-level attacks. Protections7

against either do exist. Against side-channel attacks, they are character-8

ized by SNI security orders: the higher the order, the more difficult the9

attack.10

In this paper, we leverage fast discrete Fourier transform to reduce the11

complexity of high-order masking. The security paradigm is that of code-12

based masking. Coding theory is amenable both to mask material at a13

prescribed order, by mixing the information, and to detect and/or correct14

errors purposely injected by an attacker. For the first time, we show15

that quasi-linear masking (pioneered by Goudarzi, Joux and Rivain at16

ASIACRYPT 2018) can be achieved alongside with cost amortisation.17

This technique consists in masking several symbols/bytes with the same18

masking material, therefore improving the efficiency of the masking. We19

provide a security proof, leveraging both coding and probing security20

arguments. Regarding fault detection, our masking is capable of detecting21

up to d faults, where 2d + 1 is the length of the code, at any place of22

the algorithm, including within gadgets. In addition to the theory, that23

makes use of the Frobenius Additive Fast Fourier Transform, we show24

performance results, in a C language implementation, which confirms in25

practice that the complexity is quasi-linear in the code length.26

Keywords: Side-channel analysis (SCA) · Fault injection analysis (FIA)27

· Strong Non Interference (SNI) · Code-Based Masking (CBM) · Fault28

Detection · Frobenius Additive Fast Fourier Transform (FAFFT) · Cost29

amortization.30

1 Introduction31

In this article we are interested in the security of block ciphers, such as the32

AES. Such algorithms encrypt and decrypt data using a key, which must re-33

main secret. Nonetheless, the implementation of cryptographic algorithms is34

? University of Bergen, Bergen, Norway, and LAGA, Department of Mathematics,
University of Paris 8 (and Paris 13 and CNRS), Saint–Denis Cedex 02, France.

?? BULL SAS, Les Clayes-sous-Bois, France.
? ? ? Secure-IC S.A.S., Paris, France, and Telecom Paris, Institut Polytechnique de Paris,

Palaiseau, France.
† Hensoldt France, Plaisir, France.

subject to several attacks, amongst which side-channel and fault injection at-35

tacks are especially powerful. Side-channel attacks consist in correlating guessed36

(key-dependent) variables with some information leakage, whereas fault injec-37

tion attacks consist in correlating sensitive variables with the fault outcomes.38

Both attacks try exhaustively all values of a subkey, and carry out a sufficient39

amount of attacks so as to rebuild the complete key with a divide-and-conquer40

approach.41

It is therefore paramount to protect implementations against those attacks.42

The protection against side-channel analysis is often based on “masking”: it con-43

sists in computing with randomized intermediate variables in order to provably44

deter attempts from an attacker to correlate on the randomized leakage. The45

protection against fault injection can typically rely on provable mathematical46

techniques, such as error detection codes.47

Recently, the “code-based masking” (CBM) paradigm has been introduced:48

it leverages codes to achieve protection against the two threats at the same49

time. A pair of linear complementary codes allows to linearly combine sensitive50

information with digital random numbers in such a way the randomness has51

maximal decorrelation power whilst ensuring the demasking remains possible52

at all times. The ability to handle faults is based on redundancy kept by codes,53

ensuring their length is large enough to enable a detection or correction capability54

meeting the requirements in terms of fault injection attacks coverage.55

1.1 Background on masking56

Masking, from a historical perspective. A consensual protection against side-57

channel analyses consists in randomizing data representation and computations.58

This method is commonly referred to as masking. Several masking schemes have59

been proposed already.60

Let us recap briefly the different milestones this technique has passed over61

the years. First of all, a proof-of-concept leveraging data randomization has62

been introduced by the seminal work of Kocher et al. [KJJ99]. Some early im-63

plementations have been proposed, and it has soon become clear that high-order64

attacks could defeat lower order masking schemes. Hence the research for prov-65

able protections against higher-order attacks. Formal definitions have been put66

forward by Blömer et al. in [BGK04]. A constructive scheme has been proposed67

by Ishai et al. [ISW03] on bits. This scheme has been subsequently extended to68

words (e.g., bytes) by Rivain and Prouff [RP10]. Some tools to perform auto-69

matic proofs for such schemes have been developed, for instance by Barthe et70

al. [BBD+15].71

Minimizing the number of multiplications. The bottleneck in terms of perfor-72

mance is the number of nonlinear multiplications (that is, multiplications of x73

by an element different from a linear combination of powers of x whose expo-74

nents are of the form 2j − 1), since the addition and linear multiplications pose75

no problem and all S-boxes over finite fields being polynomial, the global com-76

plexity of masking directly depends on the number of nonlinear multiplications77

in the unprotected algorithm.78

Then, a great deal of research has been devoted to reducing the number of79

multiplications in cryptographic operations, as for instance [CPRR15]. According80

to the before 2020, it seemed difficult to mask one element of the field Fq` in a81

way ensuring a dth-order probing security, with a better complexity than O(d2)82

multiplications over Fq` . Recently, leveraging Karatsuba multiplication, Maxime83

Plançon [Pla22] introduced RTIK masking scheme. This masking style manages84

to get reduced complexity down to O(dlog2(3)), i.e., O(d1.59), for limited values85

of d only (namely d being an extension order of the field where computations86

takes place, when this field happens to be an extension).87

Cost amortization and fault detection capability. In order to get the most from88

masking schemes, from a performance standpoint, some attempts have been89

made. One direction has been the simultaneous masking of several bytes, re-90

ferred to as “cost amortization”, as demonstrated constructively by Wang et91

al. [WMCS20]. Formerly, the same idea has been applied in the field of multi-92

party computation, under the name of “packed secret sharing” [DIK10]. It has93

required to make a difference between the number of shares (n) and the mask-94

ing order (d). Moreover, our masking is compatible with builtin fault detection95

capability, tightly intertwined with the CBM design.96

Quasi-linear masking complexity. Another direction for reducing the cost due to97

multiplications is in reducing the cost of each multiplication by leveraging spec-98

tral representations, such as the Number Theoretic Transform (NTT) as put99

forward first by Goudarzi, Joux and Rivain (GJR [GJR18]). Quasi-linear mask-100

ing enables significant performance improvements on masking schemes which101

considerably ease their adoption by the industry. Unfortunately the NTT works102

only for prime fields with odd characteristics and large orders which is not conve-103

nient in practice. Recently, the authors of [GPRV21] extended the GJR scheme104

of [GJR18] to the even characteristic by replacing the NTT by a Discrete Fourier105

Transform (abridged “DFT” in the sequel), namely the additive fast Fourier106

transform of Gao et al. [GM10]. (Notice that this DFT is “general” in that it107

operates on finite fields.) The novel masking scheme is dubbed “GJR+”.108

The initial proposal of [GJR18] (GJR) and the modification of [GPRV21]109

(GJR+) considerably improved upon the state of the art, since they allowed to110

reduce the complexity of multiplications from quadratic (O(d2)) to quasi-linear111

(O(d log d)). This improvement is significant because the multiplication is the112

bottleneck in terms of computational complexity.113

But the “DFT” in general (and NTT in particular) have a drawback: the114

linear operations (in the field) are no longer transparent. Instead of having a115

complexity O(n) (linear in the number n of shares), because each share is ap-116

plied the linear transformation on itself, individually, an operation of quasi-linear117

complexity shall be applied. Still, the overall complexity remains quasi-linear.118

Code-Based Masking (CBM). Besides, CBM has been introduced as a new119

paradigm to capture the security properties of masking. It describes the mask-120

ing scheme as the (vector space) sum of an encoded information taken from a121

code C, with an encoded mask taken from a code D, that is “disjoint” from C.122

The main advantage of CBM is that the security order is simple to determine:123

namely, the masking order is equal to the dual distance of the masking code mi-124

nus the number one [PGS+17]. Computing in CBM, including multiplications,125

has been put forward in [WMCS20]. Advantageously, CBM has been proven in126

the same article relevant to describe the capability to detect faults on top of a127

masking scheme: indeed, when the two vector spaces C and D are in direct sum128

but such that dim(C) + dim(D) < n where n is the length of C (or D), the129

information can be encoded in a redundant manner, enabling detection or even130

correction. Notice that CBM class includes as special cases Boolean masking and131

inner product masking.132

1.2 Analysis of the state of the art133

We begin in this subsection with a comparison with state-of-the-art of combined134

side-channel and fault injection attacks. The efficiency of side-channel analysis is135

captured by the masking complexity and the ability to mask several symbols at136

the same time (denoted “cost am.” for “cost amortization”). Only our proposal137

enjoys this cost amortization capability. The efficiency of the protection against138

fault injection is qualified according to:139

1. whether the detection is end-to-end throughout the algorithm;140

2. whether the detection needs to be performed at pre-defined checkpoints set at141

design time or whether no detection is required (e.g., when faults are infective142

thereby preventing an attack to exploit them). Notice that checkpoints may143

be placed at strategic waypoints during the execution of the algorithm, or144

only at the end prior to disclosing the demasked result.145

Most known masking countermeasures apply either to binary fields or to prime146

fields, whereas our masking can handle both binary and prime fields (and actually147

any finite field in general).148

The comparison is given in Tab. 1. Regarding the applicable field, the differ-149

ent fields are denoted by F2 vs Fq, where q stands for any prime power. Masking150

schemes compatible with Fq are thus more versatile.151

We analyze now the drawbacks of existing quasi-linear masking, in particu-152

lar [GPRV21].153

No cost amortization nor fault detection capability. Despite the advantages in154

terms of performance of quasi-linear masking ([GJR18] and [GPRV21] as well),155

the technique described in these papers does not unleash the full potential in156

terms of masking efficiency and fault attack protection. Regarding the efficiency,157

none of these papers addresses how to encode multiple bytes of information in158

one go. Besides, these papers do not show how to correct errors (it would require159

to encode redundant information, as for instance put forward in [CCG+20]).160

Table 1. Comparison of our masking scheme with the state of the art

Scheme name Side-channel protection Fault protection Field
Complexity Cost am. End-to-end Detection

ParTI [SMG16] Quadratic (O(d2)) No Yes At checkpoints F2

CAPA [RMB+18] Quadratic (O(d2)) No Yes At checkpoints F2

GJR [GJR18] Quasi-linear (O(d log d)) No No N/A Fp

M&M [MAN+19] Quadratic (O(d2)) No Yes Infective F2

DOMREP [GPK+21] Quadratic (O(d2)) No Yes At checkpoints F2

GJR+ [GPRV21] Quasi-linear (O(d log d)) No No N/A Fq

CINI MINIS [FRSG22] Quadratic (O(d2)) No Yes At checkpoints F2

RTIK [Pla22] Polynomial (O(dlog2 3)) No No N/A F2

SotA / laOla [BEF+23] Quadratic (O(d2)) No Yes At checkpoints Fq

Our work Quasi-linear (O(d log d)) Yes Yes At checkpoints Fq

Non-practical masking order. It is hinted in [GPRV21] that their quasi-linear161

masking “improves the efficiency of the masked cipher for a masking order n ≥ 64162

for the MiMC block cipher and n ≥ 512 for the AES”. These masking orders are163

non-practical. Indeed, in real life, masking order is rather low, such as 1, 2 or164

maximum 3.165

Complex implementation. The technique of [GPRV21] involves a randomized166

Fourier transform. Namely, the primitive root of unit which defines the Fourier167

transform must be chosen at random (see page 602). This is an obvious limitation168

in terms of efficiency: the DFT operations must be pre-computed prior to any169

cryptographic masked operation (whereas our scheme does not require any pre-170

computation).171

Abstract specification. In [GPRV21], the DFT is not instantiated, which limits172

the ability to compare with other schemes, apple to apple, in terms of actual173

performances (actually [GPRV21] only provides data complexities). As a side-174

effect, this negatively impacts the clarity of the security proof (which requires175

cumbersome hypotheses, such as leaving the DFT out of the scope of the security176

analysis).177

1.3 Our contributions178

In this paper, we introduce a practical masking scheme, with quasi-linear com-179

plexity, and fault detection/correction.180

Proofs of security against SCA and FIA based on code properties. Our masking181

algorithm is described as a CBM. Therefore, not only side-channel security order182

is related to a dual distance, but also the capability to detect & correct faults183

is also related to codes minimum distance. Namely, we show that our scheme184

features side-channel security order of d + 1 − t, detects d faults and corrects185

b(d− 1)/2c faults, where 2d+ 1 is the encoding length and t is the information186

size (t ≥ 1, and t > 1 when cost amortization is enforced).187

Cost amortization. Our masking algorithm allows to mask jointly several bytes,188

based on a proof leveraging coding theory (within the CBM paradigm). Former189

works involving quasi-linear masking are only concerned by masking individ-190

ual bytes. Notice that cost amortization also has an advantage in terms of the191

efficiency of fault detection capability.192

Practical and efficient DFT. We thoroughly studied several DFT algorithms,193

and deploy an efficient one. It offers improved efficiency owing to optimization194

from a numeric standpoint. Namely, it relies on a sparse representation with195

small & simple coefficients (e.g., most often, “1”s). This DFT can be leveraged196

in the same time for the computation of the masking and the error detection.197

Implementation and performance validation. We show that our quasi-linear198

masking is easily implementable. Namely, we provide performance characteri-199

zation in C language. In particular, it supports the effectiveness of cost amorti-200

zation. Our benchmarks are on the block cipher AES, but our masking can apply201

as well to lattice-based post-quantum cryptographic algorithms (such as Crys-202

tals Kyber and Dilithium, as explained in Sec. 8). We compare our performance203

results to others but rare are the papers on masking which actually indicated204

them with enough precision for allowing comparison.205

1.4 Outline206

Preliminary notions are given in Sec. 2. They focus on DFT computation as it is207

the most complex operation in our masking. We propose in Sec. 3 to consider an208

original DFT method proposed by Wang and Zhu in [WZ88] which is particularly209

adapted to both software and hardware implementation. Indeed, the Gao and210

Cantor methods that we mentioned could give similar theoretical complexity211

but would require a huge effort of implementation in practice. We show in Sec. 4212

how to extend this masking to the case of simultaneous protection of several213

symbols. We propose in a second phase, in Sec. 5 to detect or correct errors214

and erasures of any codeword present anywhere in the process of the ciphering215

algorithm, including within gadgets. The security rationale is detailed in Sec. 6,216

where we provide formal proofs in the CBM and SNI models. Implementation in217

C language is given in Sec. 7, along with performance results. Some discussions218

are available in Sec. 8. Conclusions and perpectives are in Sec. 9.219

Examples of quasi-linear DFT constructions adapted to handling bytes are220

given in App. A. We show the efficiency of this method on all platforms; our221

method definitively complies with hardware and software implementation and222

has a very low complexity. Namely, in App. A.1 (resp. App. A.2), we investi-223

gate the case of d = 2 (resp. d = 7). Those two values represent regular and224

substantial/high security levels.225

2 Preliminaries226

2.1 Finite fields227

In this article, we are interested in data represented as elements from finite fields.228

We denote by Fq the field of q elements. We recall that when q is a power of two,229

Fq is said of characteristic two; in this case, subtraction and addition are the230

same operation, simply denoted by “+”. A finite field of characteristic two can231

be seen as a polynomial extension of degree ` of F2, where q = 2`. In this case,232

the addition boils down to the `-bit parallel XOR operation. In this article, we233

illustrate our results on F256 (i.e., ` = 8), which is the natural field within AES.234

Let ν be a primitive element of Fq, that is a generator of the multiplicative group235

F∗q . Let n be a positive integer. We assume that n divides q − 1, then we have236

that the field element ω = ν
q−1
n is a primitive root of the unity (i.e. ωn = 1). By237

construction, n is odd with q is power of two. We denote n = 2d+ 1.238

2.2 Reed-Solomon codes239

We denote by Fnq the vector space of n field elements. A vector subspace of Fnq240

is also called a linear code of length n. The Reed-Solomon code of length n,241

dimension k and minimal distance n − k + 1 is an evaluation code for which242

a generator matrix can be defined as that of the evaluation of the polynomial243

basis 1, X,X2, . . . , Xk−1 over the set 1, ω, ω2, . . . , ωn−1. We denote this code by244

RS[n, k, n− k + 1].245

The dual C⊥ of a linear code C is the linear code equal to the kernel of the246

generator matrix of C. It is well-known that the dual code of RS[n, k, n− k+ 1]247

is a RS[n, n− k, k + 1] code.248

As a consequence, we know that the matrix (ωij)0≤i≤n−1,0≤j≤n−1, known249

as the Vandermonde matrix defined over 1, ω, ω2, . . . , ωn−1, is a generator ma-250

trix of the RS[n, n, 1] code. We have also that the inverse of the Vandermonde251

matrix corresponds to the generator matrix of the RS[n, n, 1] code defined over252

1, ωn−1, ωn−2, . . . , ω1.253

2.3 Multiplication of polynomials and DFTs in finite fields254

We are interested in the multiplication of two polynomials P and Q on Fq of255

degree less than or equal to d. The result is PQ, a polynomial of degree less than256

or equal to 2d.257

The naive computation has complexityO(d2). However, a less complex method258

can be implemented.259

Every polynomial is evaluated over {1, ω, . . . , ωn−1}. The evaluation of PQ260

is the pairwise product of the evaluation of P and Q. Thus, PQ is given by the261

interpolation of its truth table.262

Now, it is well-known that the evaluation of a polynomial is precisely its Dis-263

crete Fourier Transform (DFT). Reciprocally, the interpolation of a polynomial264

is given by the inverse DFT (IDFT) [Knu11, Vol 2]. Notice that the definition of265

the DFT (and of the IDFT) is relative to the value of ω. Whenever there can be266

ambiguity, we shall write DFTω (resp. IDFTω) instead of DFT (resp. IDFT).267

Besides, the evaluation of polynomial P on its support is equivalent to mul-268

tiplying the row (p0, p1, . . . , pd−1) made up of coefficients of P =
∑d−1
i=0 piX

i
269

by the Vandermonde matrix. Reciprocally, the interpolation of a polynomial P270

is given by the multiplication by the row (P (1), P (ω), . . . , P (ωn−1)) with the271

inverse of the Vandermonde matrix.272

Thus, for any vector (p0, . . . , p2d) ∈ F2d+1
q , we can associate the polynomial

P (X) = p0 + p1X + . . . + p2dX
2d and the discrete Fourier transform is defined

by:
DFT(p0, . . . , p2d) =

(∑2d
i=0 piω

ij
)
j∈{0,...,2d}

=
(
P (ωj)

)
j∈{0...2d} .

Then the DFT inverse is defined by:

IDFT(P (1), . . . , P (ω2d)) =
(∑2d

i=0 P (ωi)ω−ij
)
j∈{0,...,2d}

= (p0, . . . , p2d).

According to [Gao03], these operations (DFT and IDFT) can be computed273

using O(n log(n) log log(n)) operations in Fq operations. The details of these274

algorithms can be found in Chapters 8-11 of [vzGG13].275

Multiplicative DFT (see [Gao03]). The usual DFT requires that its support276

(n points, named ai) form a multiplicative group of order n, concretely, the277

polynomial Xn + 1 has n distinct roots in the underlying field. In this case278

we say that the field supports DFT, and we call such a DFT multiplicative. A279

multiplicative DFT has time complexity O(n log(n)) and can be implemented280

in parallel time O(log(n)), where the implicit constants are small. For such281

abovementioned fields, we can take n + 1 to be a power of 2 with n|(q − 1)282

and a1, . . . , an to be all the roots of Xn+1. Then a DFT and its inverse at these283

points can be computed using O(n log(n)) operations in Fq. By using DFTs,284

polynomial multiplication and division can also be computed using O(n log(n))285

operations. The implicit constants in all these running times are very small, so286

these algorithms are practical for n ≥ 256.287

Additive DFT (see [GM10]). Unfortunately multiplicative DFTs are not sup-288

ported by many finite fields, especially fields of characteristic two which are289

preferred in practical implementations. Cantor [Can89] finds a way to use the290

additive structure of the underlying field to perform a DFT over a finite field291

of order p` where ` is a power of p. This method is generalized by von zur Ga-292

then and Gerhard [vzGG96] to arbitrary `. Their additive DFTs (for p = 2)293

uses O(n log2 n) additions and O(n log2 n) multiplications in Fq. For fields of294

characteristic two and for n = 2`, Gao and Mateer [GM10] recently improved295

on Cantor’s method. When ` is a power of 2, the above time complexity can296

be improved to O(n log(n) log log(n)). For arbitrary `, there is an additive DFT297

using O(n log2(n)) additions and O(n log(n)) multiplications in Fq. These DFTs298

are highly parallel and can be implemented in parallel time O(log2(n)).299

2.4 Quasi-linear DFT in practice300

All DFT methods presented and discussed in the previous section 2.3 can be301

implemented in a pragmatic manner. Namely, first, a polynomial decomposition302

binary tree is computed off-line, once for all. Second, for each invocation of DFT303

or IDFT, a butterfly algorithm is executed on the pre-computed tree.304

Preparation of a polynomial decomposition tree. We leverage the method put305

forward by Wang and Zhu in [WZ88]. Their idea consists in remarking that306

P (νi) = P (X) mod (X + νi), then it is shown that the polynomial Xn+1 + X307

can be decomposed, as discussed below.308

Let us design a binary tree of polynomials qi,j , where i is the depth and j is309

an index for the breadth. Let n be the size of the DFT, then 0 ≤ i ≤ dlog2(n)e,310

and 0 ≤ j ≤ 2dlog2(n)e−i. The tree is defined recursively as follows:311

– The root is denoted by qdlog2(n)e,0 = Xn+1 +X;312

– intermediate nodes are denoted by qi,j and defined as qi,j =
∏1
k=0 qi−1,2j+k,313

with degree(qi,j) = 2i;314

– Eventually, the leaves are q0,j = X − βj , where βj are elements of Fq.315

By convention, the first leaf q0,0 = X. In fact intermediate divisors are completely316

determined once the ordering of the bottom divisors qi,0 is fixed.317

Example 1. We illustrate in this example such a binary tree, obtained from the318

Frobenius Additive Fast Fourier Transform (FAFFT) put forward in [LCK+18].319

We remind that X4 +X = X(X + 1)(X2 +X + 1). The polynomial X2 +X + 1320

is the minimal polynomial whose zero is ω (recall that ω is defined throughout321

the article as a root of the unity of Xn + 1). Then we have the following binary322

tree:

q2,0 = X4 +X

q1,0 = X2 +X q1,1 = X2 +X + 1

q0,0 = X q0,1 = X + 1 q0,2 = X + ω q0,3 = X + ω + 1

323

With the construction of [WZ88], it is possible to show that all qi,j are324

either linearized or affine polynomials [MS77] (that is: qi,j(X1 +X2) + qi,j(0) =325

qi,j(X1)+qi,j(X2)). Consequently, polynomials qi,j are sparse with at most i+1326

coefficients.327

Computation of an efficient DFT. Based on such a pre-computed binary tree,328

we can now introduce an algorithm to efficiently compute the DFT. It is given329

in Alg. 1.330

The last step in Alg. 1 (for i = 0) consists in a reduction modulo q0,j , which331

are polynomials of degree 1. Thus, the modulo operations yield a value in Fq.332

Algorithm 1: Quasi-linear (i.e., fast) Discrete Fourier Transform
Data: Pre-computed binary tree qi,j

Input: a = (a0, a1, . . . , an−1)
Output: (b0, b1, . . . , bn−1) the DFT of a

1 Pdlog2(n)e,0 ←
∑n−1

i=0 aiX
i

2 for i ∈ {dlog2(n)e − 1, dlog2(n)e − 2, . . . , 0} do
3 for j ∈ {1, . . . , 2dlog2(n)e−i} do
4 Pi,j ← Pi+1,bj/2c mod qi,j

5 return (P0,j)0≤j≤n−1) = (b0, b1, . . . , bn−1)

3 Quasi-Linear Masking without Cost Amortization333

In this section, we introduce our high-order CBM algorithm, without cost amor-334

tization. That is, we consider only the masking of t = 1 element (byte). The335

purpose of this particular case is to explain simply the DFT-based masking with336

fault detection capability.337

3.1 Masking construction338

We define now the Reed-Solomon code RSq[n, n, 1] whose generator matrix is339

given by the Vandermonde Matrix M ∈ Fn×nq where Mi,j = ωij . Let x ∈ Fq be340

a sensitive variable. To mask it, we pick randomly r0, . . . , rd−1 in Fq and encode341

the vector ~a = (x, r0, . . . , rd−1, 0, . . . , 0) ∈ Fnq with the Vandermonde matrix. We342

define:343

mask(x) := DFT(~a) =
(∑d

i=0 aiω
ij
)
j∈{0,...,2d}

= ~a ·M .

Unmasking corresponds to the computation of the inverse DFT. Namely,
let us denote ~z = mask(x) (i.e. zj =

∑d
i=0 aiω

ij). We have ~a = IDFT(~z). The
sensitive data is x = a0, thus we get:

unmask(~z) = IDFT(~z)0 =
(
~z ·M−1)

0 .

3.2 Masking addition and scaling344

Let us denote: ~z = mask(x) and ~z ′ = mask(x′). The following properties are345

satisfied:346

– mask(x+ x′) = ~z + ~z ′,347

– mask(λx) = λ · ~z for any λ ∈ Fq.348

3.3 Masking the multiplication349

The multiplication is not a linear operation, so the question is how to compute
mask(xx′) without unmasking x or x′. We denote ~y = ~z ∗ ~z ′ := (zjz′j)j∈{0,...,2d}
where “∗” is the term-to-term product between two vectors. For j ∈ {1, . . . , 2d},
we have:

yj = zjz
′
j =

(
x+

∑d
i=1 riω

ij
)(

x′ +
∑d
i=1 r

′
iω
ij
)

= xx′ +
∑2d
i=1 r

′′
i ω

ij

=⇒ ~y = DFT(xx′, r′′1 , . . . , r′′2d).

The coefficients r′′i are obtained from the multiplication between Z(X) = x +∑d
i=1 riX

i and Z ′(X) = x′ +
∑d
i=1 r

′
iX

i. Namely,

r′′i =
{∑

1≤k,l≤d, s.t. k+l=i rkr
′
l + xr′i + x′ri when 1 ≤ i ≤ d,∑

1≤k,l≤d, s.t. k+l=i rkr
′
l when d+ 1 ≤ i ≤ 2d.

The multiplication between Z(X) and Z ′(X) of degree d gives a polynomial350

Y (X) = xx′ +
∑2d
i=1 r

′′
i X

i of degree 2d. Thus, to get mask(xx′) we need to351

eliminate the coefficients r′′i for i ∈ {d+ 1, . . . , 2d}.352

Extracting the last coefficients We have:

Y (X) = xx′ +
∑2d
i=1 r

′′
i X

i = xx′ +
∑d
i=1 r

′′
i X

i +
∑2d
i=d+1 r

′′
i X

i .
=⇒ ~y = DFT(xx′, r′′1 , . . . , r′′d , 0, . . . , 0) + DFT(0, . . . , 0, r′′d+1, . . . , r

′′
2d) .

= mask(xx′) +DFT (0, . . . , 0, r′′d+1, . . . , r
′′
2d) .

=⇒ mask(xx′) = ~y +DFT (0, . . . , 0, r′′d+1, . . . , r
′′
2d) .

Now to construct DFT(0, . . . , 0, r′′d+1, . . . , r
′′
2d) we must come back to the defini-

tion of IDFT. We remind that:

IDFT(~y) =
(∑2d

i=0 yiω
−ij
)
j∈{0,...,2d}

= (xx′, r′′1 , . . . , r′′2d).

But in our case we are interested only by the coefficients r′′j for j ≥ d+ 1, thus
we have to evaluate:

r′′j =
2d∑
i=0

yiω
−ij with d+ 1 ≤ j ≤ 2d.

For 0 ≤ j ≤ d− 1 we have:353

r′′j+d+1 =
∑2d
i=0 yiω

−i(j+d+1)

r′′j+d+1 =
∑2d
i=0 yiω

−i(d+1)ω−ij

=⇒ ~r ′′ = IDFT(~w)

where ~w = (yiω−i(d+1))0≤i≤2d.354

Algorithm 2: ExtractLastCoefficients Complexity: n+ n log(n)
Input: a vector ~y ∈ Fn

q

Output: ~r ′′ ∈ Fn
q

1 Build the vector ~w = (yiω
−i(d+1))0≤i≤2d

2 return ~r ′′ = IDFT(~w)

Algorithm for the masked multiplication We get:

mask(xx′) = ~y + DFT(0, . . . , 0, ~r ′′) .

This computation is summarized in Alg. 3.355

A tedious calculation of the complexity of this algorithm in terms of the356

number of multiplications in Fq is given in Tab. 2.

Table 2. Complexity of operations involved in the masked multiplication

Variable Cost
~y n
~r ′′ n+ n log(n)
mask(xx′) 2n(1 + log(n))

357

Algorithm 3: oneElementMultiplication Complexity:
n(d+ 1 + log(n))

Input: two masked elements ~z = mask(x), ~z ′ = mask(x′) ∈ Fn
q

Output: mask(xx′) ∈ Fn
q

1 ~y ∈ Fn
q

2 for 0 ≤ i ≤ n− 1 do
3 yi ← ziz

′
i

4 ~r ′′ = ExtractLastCoefficients(~y) // Call to routine of Alg. 2
5 return ~y + DFT(0, . . . , 0, ~r ′′)

In conclusion, the complexity of addition is linear, that of multiplication358

is quasi-linear. Besides, masking and demasking each costs n log(n) multiplica-359

tions [TL20] over Fq, hence is quasi-linear as well. As a conclusion, all operations360

can be computed in quasi-linear complexity.361

4 Quasi-linear Masking with Cost Amortization362

Let us now extend our quasi-linear masking to several information elements (e.g.,363

bytes) simultaneously. This allows to explore a tradeoff between side-channel364

order (namely d+1−t) and the amount of information processed simultaneously365

(namely t).366

We propose then to translate this procedure in term of error correcting codes.367

We consider a set {u0, u1, . . . , u2d} ∈ Fd+1
q with ui 6= uj ∀i, j ∈ {0, . . . , 2d} and368

such that369

{u0, u1, . . . , u2d} ∩ {1, ω, ω2, . . . , ωn−1} = ø. (1)370

We want now to mask the vector ~x = (x0, . . . , xt−1) ∈ Ftq with 1 ≤ t < d. (the371

case t = 1 has been addressed in previous section 3.)372

4.1 Encoding procedure373

First we pick randomly ~r = (rt+1, rt+2, . . . , rd+1) in Fd+1−t
q . By Lagrange inter-374

polation, there exists a vector ~a = (a0, a1, . . . , ad) and the associated polynomial375

P~x(X) = a0 + a1X + · · · + adX
d of degree at most d that satisfies P~x(ui) = xi376

for i ∈ {0, . . . , t− 1} and P~x(ui) = ri for i ∈ {t, . . . , d}.377

Let us define the matrix A ∈ F(d+1)×(d+1)
q , where Ai,j = uij for any i, j ∈

{0, . . . , d}. This matrix is a Vandermonde matrix which is invertible since ui 6= uj
for i 6= j. Then we have:

~a = (~x | ~r)×A−1 .

The second step of encoding consists in computing DFTω(a0, . . . , ad, 0, . . . , 0).
Thus:

mask(~x) = DFTω(a0, . . . , ad, 0, . . . , 0) = DFTω
(
(~x | ~r)×

[
A−1|0

])
.

In this equation, (~x | ~r) is the row obtained by the concatenation of row vectors378

~x and ~r, and
[
A−1|0

]
is the vertical concatenation of the matrices A−1 and 0.379

This method is a O((d+ 1)2) complexity encoding procedure, but we can do380

better with the following one. We can construct P (X) = P ′(X)+P ′′(X) by first381

picking randomly the polynomial P ′′(X) = atX
t + · · ·+ adX

d, then we evaluate382

P ′(X) = a0 + a1X + · · · + at−1X
t−1 over u0, u1, . . . , ut−1 which costs t(d − t)383

multiplications over Fq.384

We want now to construct P ′(X) which allows to solve the following linear
system:[

a0 . . . at−1
]︸ ︷︷ ︸

~a ′

×A′ =
[
x0 + P ′′(u0) . . . xi + P ′′(ui) . . . xt−1 + P ′′(ut−1)

]
= ~x+

[
P ′′(u0) . . . P ′′(ui) . . . P ′′(ut−1)

]
= ~x+

[
at . . . ad

]︸ ︷︷ ︸
~a ′′

×A′′ = ~x+ ~a ′′ ×A′′ ,

where:385

– A′ ∈ Ft×tq , and A′i,j = Ai,j for any 0 ≤ i, j < t;386

– A′′ ∈ F(d+1−t)×t
q , A′′i,j = Ai+t,j for any 0 ≤ i < d+ 1− t and 0 ≤ j < t;387

– ~a ′′ ∈ Fd+1−t
q is a random vector.388

Thus, the calculation of ~a = (~a ′ | ~a ′′) =
(
(~x+ ~a ′′ ×A′′)×A′−1 | ~a ′′

)
costs389

t(d+ 1) multiplications over Fq (we note that A′′ and A′−1 may advantageously390

be pre-computed). Again, the second step of encoding consists in computing391

DFTω(~a | ~0) of complexity O(n log(n)).392

The overall masking procedure is given in Alg. 4. Decoding procedure follows393

the same tracks: we use the inverse discrete Fourier transformation to get ~a, then394

we have: ~x = ~a ′×A′+~a ′′×A′′ which has the same complexity as the masking395

operation.396

Algorithm 4: mask Complexity: t(d+ 1) + n log(n)
Input: a sensitive vector ~x ∈ Ft

q

Output: mask(~x) ∈ Fn
q

1 ~a ′′ = (at, at+1, . . . , ad) $← Fd+1−t
q

2 ~a ′ ← (~x+ ~a ′′ ×A′′)×A′−1

3 return DFTω(~a ′ | ~a ′′ | ~0)

The masking refresh allows to update the random part of the masked word,397

it consists of adding mask(~0), namely398

refresh(mask(~x)) = mask(~x) + mask(~0). (2)399

4.2 Masking the multiplication400

Let us denote ~z = mask(~x) and ~z ′ = mask(~x ′). Obviously,

~z ∗ ~z ′ = DFTω(a0, . . . , ad, 0, . . . , 0) ∗DFTω(a′0, . . . , a′d, 0, . . . , 0),

where the ‘∗’ operation stands for the pairwise product.401

The polynomial obtained by performing DFT−1
ω (DFTω(P~x)×DFTω(P~x′)) =402

P~x(X)×P~x′(X) = C(X) =
∑2d
i=0 ciX

i is a 2d degree polynomial, which satisfies403

C(ui) = P~x(ui)× P~x′(ui) = xix
′
i for any i in {0, . . . , t− 1}.404

Now we have to propose a method that associates a degree d polynomial405

D(X) to C(X). This polynomial must satisfy the same properties:D(ui) = C(ui)406

for all 0 ≤ i ≤ t− 1.407

The authors of [GJR18] proposed the following construction for t = 1:

D(X) = c0 + c1X + . . .+ cdX
d + ud0(cd+1X + . . .+ c2dX

d)
= c0 + (c1 + αdcd+1)X + · · ·+ (cd + αdc2d)Xd .

Obviously, in this case D(u0) = C(u0) = x1x
′
1. We propose to generalize this

construction. Let:

Uj(X) = udj
(X − u0) · · · (X − uj−1)(X − uj+1) · · · (X − ut−1)
(uj − u0) · · · (uj − uj−1)(uj − uj+1) · · · (uj − ut−1) .

Hence, by construction, Uj(uj) = udj and Uj(ui) = 0 for any i in {0, . . . , t−1}\{j}
and deg(Uj(X)) = t− 1. Then we set:

D(X) = c0 + c1X + · · ·+ cdX
d +

∑t−1
j=0 Uj(X)(cd+1X + · · ·+ c2d−t+1X

d−t+1)
+
∑t−1
j=0 Uj(X)

∑t−1
i=1 c2d−t+1+iu

d−t+1+i
j .

The degree d polynomial D(X) satisfies D(ui) = C(ui) = xix
′
i of any i ∈408

{0, . . . , t− 1}.409

In order to build efficiently DFTω(D(X)), let us write:

D(X) = c0 + c1X + · · ·+ cdX
d + (cd+1X + · · ·+ c2d−t+1X

d−t+1)
∑t−1
j=0 Uj(X)

+
∑t−1
i=1 c2d−t+1+i

∑t−1
j=0 Uj(X)ud−t+1+i

j .

Thus:
DFTω(D(X)) = DFTω(C(X))

+ DFTω(cd+1X
d+1 + · · ·+ c2dX

2d)
+ DFTω(cd+1X + · · ·+ c2d−t+1X

d−t+1) ∗ ~U
+
∑t−1
i=1 c2d−t+1+i ·Gi

= mask(~x ∗ ~x ′)

whereGi = DFTω(
∑t−1
j=0 Uj(X)ud−t+1+i

j) for i ∈ {1, . . . , t−1} and ~U = DFTω(
∑t
j=1 Uj(X))

are pre-computed values, and we define now how to build the last coefficients
cd+1, . . . , c2d without revealing some sensitive information. If we denote ~y =
(C(ωi))i∈J0..2dK, then we have IDFTω(y) = (c0, . . . , cd, . . . , c2d) and by defini-
tion, for 0 ≤ j ≤ d− 1,

cj+d+1 =
∑2d
i=0 yiω

−i(j+d+1)

=
∑2d
i=0

(
yiω
−i(d+1)

)
ω−ij

where ~w = (yiω−i(d+1))0≤i≤2d. Then we can calculate:410

~c =
(
cd+1, . . . , c2d, . . .

)
=
(
IDFT(~w)

)
. (3)411

This computation is formalized as a routine in Alg. 2, which indeed extracts the412

coefficients of largest degree (from d+ 1 to 2d).413

If we denote
φ(C,ω) = DFTω(cd+1X

d+1 + · · ·+ c2dX
2d)

+DFTω(cd+1X + · · ·+ c2d−t+1X
d−t+1) ∗ ~u

+
∑t−1
i=1 c2d−t+1+i ·Gi

,

we get
mask(~x ∗ ~x′) = mask(~x) ∗ mask(~x′) + φ(C,ω).

Algorithm 5: severalByteProduct Complexity: n(3 + t+ 4 log(n))
Input: two vectors ~z = mask(~x) ∈ Fn

q and ~z ′ = mask(~x ′) ∈ Fn
q

Output: mask(~x ∗ ~x ′) ∈ Fn
q

1 ~y ∈ Fn
q

2 for i ∈ {0, . . . , n− 1} do
3 yi ← ziz

′
i

4 ~c ′′ = ExtractLastCoefficients(~y) = (cd+1, . . . , c2d)
5 ~c← (0, . . . , 0 | ~c ′′) = (0, . . . , 0, cd+1, . . . , c2d) ∈ Fn

q .
6 ~v ← ~0 ∈ Fn

q

7 for 0 ≤ i < t− 1 do
8 for 0 ≤ j < n do
9 vj ← vj +Gi+1,j · c2d−t+2+i

10 ~c ′ ← ~0 ∈ Fn
q

11 for i ∈ {1, . . . , d− t+ 1} do
12 c′i ← cd+i

13 ~w ′ ← DFT(~c ′) ∈ Fn
q

14 for i ∈ {0, . . . , n− 1} do
15 w′i ← wiui

16 return refresh(~y + DFT(~c) + ~w ′ + ~v)

4.3 Matrix product masking414

It is necessary to also define the matrix product operation, as this type of op-
erations is essential to calculate MixColumns or ShiftRows for example, with
t ∈ {4, 8, 16}. Let us denote by L ∈ Kt×t a public matrix, we need to construct
an algorithm MatrixProduct such that:

MatrixProduct(mask(~x), L) = mask(~x · L) .

Let us recall that the masking operation is a combination between 2 FFTs,415

that can be represented as a matrix product as follows:416

mask(~x) = (~x,~r,~0) ·N . (4)417

where:

N =
[
A−1 0

0 0

]
×M ∈ Fn×nq .

Let us denote L′ = N−1 ·
[
L 0
0 I

]
·N , we have:

mask(~x) · L′ = (~x,~r,~0) · (N · L′)

= (~x,~r,~0) · (N ·N−1 ·
[
L 0
0 I

]
·N)

= (~x · L,~r,~0) ·N
= mask(~x · L) .

Thus:
MatrixProduct(mask(~x), L) = mask(~x) · L′ .

4.4 Exponentiation algorithm418

Let e be a power of 2, we denote ~x e = (xe1, . . . , xet+1) ∈ Ft+1
q . In order to419

calculate SubBytes transformation efficiently we need to calculate mask(~x e)420

(see for instance [RP10, Alg. 3]). We have:421

mask(~x)e = (~x,~r,~0)e ·Ne (where (Ne)i,j = (Ni,j)e)
=⇒ mask(~x)e · ((Ne)−1 ×N) = (~x,~r,~0)e ·N = mask(~xe) .

In this case, the order of the operations is very important. As a matter of fact, the422

mask(~x)e · (Ne)−1 can divulge the sensitive data if it has been done as indicated423

above. This is why it is mandatory to pre-compute ((Ne)−1 ×N) first (once for424

all), and only then calculate mask(~x)e · ((Ne)−1 ×N).425

5 Detecting/correcting fault injections426

5.1 Error correcting code interpretation427

We note that by construction, there exists an invertible matrix R that satisfies:

a0
...

at−1
at
...
ad


= R×



x0
...

xt−1
P (ut)

...
P (ud)


.

We note that this DFT computation corresponds to the encoding in the Reed-428

Solomon code defined by the evaluation of 1, X, . . . ,Xd over 1, ω, ω2, . . . , ω2d,429

and represented by a matrix V . Hence, we get that mask(y) = yR>V . We de-430

duce that our masking algorithm corresponds to an encoding procedure with431

a generalized Reed-Solomon code of minimal distance d + 1, dimension d and432

length 2d+ 1.433

5.2 Error detection method434

We have seen previously that our masking technique corresponds to an encoding435

in a Reed-Solomon code of parameters [n = 2d + 1, k = d + 1, d + 1]q. We436

propose in this section to describe a known method based on syndrome decoding437

[Pet60,Mas69,Jr.65,BHP98] that does not leak sensitive information.438

Our information on t words is included inside of d + 1 words which are439

then encoded in the Reed-Solomon code of length 2d. Next we assume that a440

reasonable number of faults is injected on this codeword c. This codeword is in441

correspondence with a degree k−1 = d polynomials c(X) = IDFTω(c) in Fq[X].442

It corresponds to the classic problem of error correction in a noisy channel.443

The error can be interpreted as a vector e = (e0, e1, . . . , en−1) = DFT−1
ω (e(X))444

where e(X) is a degree n − 1 polynomial over Fq. We denote by ε the weight445

of the non-zero coefficients (positions) in e(X). Hence, we study the vector y =446

c+ e = (ej)j∈J0,n−1K.447

To detect or correct the errors, we calculate a syndrome from y, which only448

depends on the error word e and not on the codeword c. We recall that the dual449

code of the RS[n, k] is the RS[n, n− k] code. A basis of this code is given by the450

monomials 1, X, . . . ,Xn−k−1 which are evaluated over the set 1, ω, . . . , ωn−1.451

Proposition 1 (Fast syndrom evaluation). Let S = (S0, S1, . . . , Sn−k−1).
It is a syndrome sequence which satisfies

S = (Sj)j∈J0,n−k−1K =
(
n−1∑
i=0

yjω
ij

)
j∈J0,n−k−1K

= DFTω(y).

Since deg(c(X)) < k, S = DFTω(y) = DFTω(e) which does not depend of c.452

We deduce that detecting the presence of faults injection (i.e. checking whether453

S 6= 0) can be computed in O(n log(n)) multiplications.454

To correct these faults, we need to construct the error locator polynomial.455

We introduce the vector λ = (λj)j∈J0,n−k−1K such that λj = 0 whenever the456

corresponding coefficient ej of e is non-zero, and λj 6= 0, whenever ej = 0. In this457

way, we have λj ·ej = 0 for all j ∈ {0, . . . , n−1}. If we denote Λ(X) = DFTω(λ)458

and E(X) = DFTω(e) = S, then, due to the well-known convolution theorem of459

the DFT, we have460

E(X)Λ(X) = 0 mod Xn − 1. (5)461

The ε roots ω−j1 , . . . , ω−jε of the polynomial Λ(X) correspond to the locations462

j1, . . . , jε of the erroneous positions in y. Therefore Λ(X) = Λ0+Λ1X+· · ·+ΛεX463

is called the “error locator polynomial”.464

Without loosing in generality, Λ(X) can be normalized by setting λ0 = 1.465

Equation (5) gives rise to a linear system of n equations. From these equations,466

n − k − t equations only depend on the n − k coefficients from E(X), which467

coincide with the elements S0, . . . , Sn−k−1 of the syndrome, and the unknown468

coefficients of the error locator polynomial λ(X). Hence, we extract a linear469

system of n− k − er equations and ε unknowns:470



S0 S1 . . . Sε−1
...

Si Si+1 . . . Sε+i−1
...

Sn−k−er−1 Sn−k−ε . . . Sn−k−2


︸ ︷︷ ︸

S

×



Λε
...
Λi
...
Λ1


︸ ︷︷ ︸
Λ

=



−Sε
...
−Si
...

−Sn−k−1


︸ ︷︷ ︸

T

. (6)471

Obviously, a unique solution exist as long as ε ≤ n−k
2 which means than we can472

correct not more than n−k
2 = d−1

2 faults.473

To avoid a large complexity to solve the system of equations (6), due to474

specific form of it, we can use the well-known Berlekamp-Massey algorithm that475

solves this system with a linear complexity.476

At this point we have located the errors by constructing Λ(X). Reconstruct-
ing the errors can be done by the Forney algorithm. It consists in calculating
the error evaluator polynomial

Ω(X) = Sp(X)Λ(X) mod 2er,

where Sp(X) is the partial syndrome polynomial:

Sp(X) = s0 + s1X + s2X
2 + . . .+ s2er−1X

2er−1.

Finally the error is given by evaluating the quantity for Xj = ωij :

ej =
Ω(X−1

j)
Λ′(X−1

j)
,

where Λ′ is the first derivative of Λ. These quantities can be again evaluated by477

using the DFT transform, hence correcting fault injection can be done with a478

linear complexity.479

Exemplary tradeoffs are given in table 3.480

5.3 Positive effect of cost amortization on fault detection capability481

Let us fix a field Fq and a minimal distance d. Then, it is more efficient from482

the code length point of view to mask two (resp. 2k) symbols together than each483

one (resp. each k) independently. Formally, let BLLC the BestLengthLinearCode484

function in Magma [Uni], which yields the minimal length of a code on Fq of a485

given dimension and minimum distance. We have that:486

BLLC(Fq, 2× k, d) ≤ 2× BLLC(Fq, k, d). (7)487

For instance, on F256, RS codes are minimum distance separable (MDS)488

and thus BLLC(Fq, k, d) = k + d − 1. Thus Eqn. (7) rewrites 2k + d − 1 ≤489

2(k + d− 1) ⇐⇒ d ≥ 1 which is always true.490

Table 3. Side-channel security order versus fault detection / correction, in F256

n d t SCA order
(d+ 1− t)

Nb. of detected
faults

Nb. of corrected
faults

5 2 1 2 2 02 1

15 7

1 7

7 32 6
...
...

7 1

17 8

1 8

8 32 7
...
...

8 1

6 Security proof491

The security of our scheme depends of our encoding procedure, our multiplication492

gadget and our capacity to detect fault injections during the computation steps493

of the encryption algorithm.494

6.1 The encoding procedure495

We remind that our encoding procedure of a vector ~x = (x0, . . . , xt−1) has been
defined in subsection 4.1. It consists in picking randomly ~r = (rt+1, rt+2, . . . , rd+1)
in Fd+1−t

q and performing the operation:

mask(~x) = DFTω
(
(~x | ~r)×

[
A−1|0

])
.

We also recall that the matrix A = (uji)i,j∈J0..dK. A first approach consists in
showing that our masking method corresponds to a special case of DSM scheme,
then we propose to translate this operation in a generic encoder as defined in
[WMCS20] (page 137, definition 13). Applying DFTω corresponds to a multi-
plication by one Vandermonde matrix. This matrix happens to be the generator
matrix of the Reed-Solomon code RS[n, n, 1] defined over Fq. A generator ma-
trix of this code is defined by the evaluation of the monomials (Xi)i∈{0,n−1}
over 1, ω, . . . , ωn−1. The multiplication by

[
A−1|0

]
leads to cancel the last rows

of the generator matrix of this RS[n, n, 1] code which becomes a Reed Solomon
code RS[n, d+ 1, n− d]. We denote R a generator matrix of this code. Hence,

mask(~x) = (~x,~r)×A−1 ×R

Remark 1. Our first remark at this point it that A−1 × R is still a RS[n, d +496

1, n−d] code that can detects n−d−1 errors. We propose consequently later in497

this section a method to detect errors without revealing sensitive information.498

We can rewrite our encoding procedure as follows:

mask(~x) =
(
(~x,~0)×A−1 ×R

)
⊕
(
(~0, ~r)×A−1 ×R

)
= ~xG⊕ ~rH,

where G = (Idt, 0)A−1R and H = (0, Idd+1−t)A−1R.499

Proposition 2. The masking operation mask(~x) is a generic encoder.500

Proof. We have seen that mask(~x) = ~xG ⊕ ~rH. By construction, rank(G) = t
and rank(H) = d+ 1− t. If we denote CG, CH and CHperp the codes respectively
generated by the generator matrix G,H and the kernel ofH, then CG∩CH = {0}.

If we denote B =
(
G
H

)
, then we have:

mask(~x) = (~x,~r)×B

and the B satisfies the definition of a generic encoder denoted encB .501

If we denote by d′ the minimal distance of CHperp : d′ = dmin(CHperp), then,502

as explained in [WMCS20], a direct consequence is that the encoding procedure503

encB is d′-private. Our task consists now in evaluating d′ and we propose to504

demonstrate the following theorem:505

Theorem 1. Let an integer t, 1 ≤ t ≤ d, a Vandermonde matrix A of the form
(uij)i,j∈J0,dK with ui 6= uj. Let R the generator matrix of the Reed-Solomon code
RS[2d+ 1, d+ 1, n− d] of the form (ωij)i∈J0,dK,j∈J0,2dK. We denote

H = (0t, Idd+1−t)×A−1 ×R.

Let CH the code generated by H, then, dmin
(
C⊥H
)
the minimal distance of C⊥H

satisfies
d+ 1− t ≤ dmin

(
H⊥
)
≤ d+ 2− t.

Proof. We denote by K the matrix which corresponds to the last d+ 1− t rows
of A−1, then

H = (0, Idd+1−t)A−1R = K ×R

where R = RS[n, d+ 1, n− d]. By construction, H is (d+ 1− t)×n matrix since506

(0, Idd+1−t)A−1 is a full rank matrix.507

It is well known that the parity check matrix of R that we can denote T is508

a Reed-Solomon code RS[n, d, n− d+ 1] and we have HtT = 0. Hence, HtT =509

K × R × tT = 0 and the subspace generated by the rows of T are included in510

the kernel of H.511

Study of K: We remind that K = (0, Idd+1−t)A−1. First of all, A−1 is a
Reed-Solomon generator matrix as any invertible square matrix because it is
equivalent (up to an invertible matrix) to a Reed-Solomon code. Hence K is
a generator matrix of a sub code of a RS[d + 1, d + 1] code. We would like to

determine now the dual code ofK and we observe the equation A−1×A = Idd+1.
By setting

A−1 =
(

K ′t×(d+1)
K(d+1−t)×(d+1)

)
and A =

(
B(d+1)×t, B

′
(d+1)×(d+1−t)

)
,

we get that(
K ′t×(d+1)

K(d+1−t)×(d+1)

)
×
(
B(d+1)×t, B

′
(d+1)×(d+1−t)

)
=
(

Idt 0t×(d+1−t)
0(d+1−t)×t Idd+1−t

)
.

We deduce that K(d+1−t)×(d+1) ×B(d+1)×t = 0(d+1−t)×t and we know that

K = K(d+1−t)×(d+1) and B = Kernel(K) = B(d+1)×t = (uji)i∈J0..dK,j∈J0..t−1K.

By construction t(B(d+1)×t) = tB is a generator matrix of a code generated512

by the polynomials 1, X,X2, . . . , Xt−1 defined over the set u0, . . . , ud: this is a513

Reed-Solomon code RS[d + 1, t, d + 2 − t] of minimal distance d + 2 − t. We514

deduce that the encoder (x, r) 7→ (x, r)A−1 is a generic encoder of probing order515

d+ 1− t.516

We want now to describe the kernel of K ×R. We can repeat the same con-
struction for R. If we denote Vω the Vandermonde matrix associated to DFTω:

Vω × V −1
ω =

(
R(d+1)×(2d+1)
R′d×(2d+1)

)
×
(
Ri(2d+1)×(d+1), Ri

′
(2d+1)×d

)
, and

Vω × V −1
ω =

(
Idd+1 0(d+1)×d

0d×(d+1) Idd

)
.

We deduce that R(d+1)×(2d+1)×Ri(2d+1)×(d+1) = Idd+1 with R = R(d+1)×(2d+1).517

The matrix V −1
ω is Vandermonde matrix associated to IDFTω, then Ri =518

Ri(2d+1)×(d+1) = (ω−ij)i∈J0..2dK,j∈J0..dK. We remark that K × R × tT = 0 and519

K×R×Ri×B = K×Id×H = 0. Hence we can build a vector space included in520

the kernel of H = K×R with T which is the generator matrix of a RS[2d+ 1, d]521

code and D = tB × tRi.522

We note that tRi = (ω(n−i)j)i∈J0..dK,j∈J0..2dK is a generator matrix of a523

code generated by d + 1 polynomials of degree more than d + 1. Then tB =524

(uji)i∈J0..t−1K,j∈J0..dK. Hence the code generated by D is an evaluation code gen-525

erated by t independent polynomials of degree more than d + 1 whereas T is526

a generator matrix of a code generated by d polynomials of degree strictly less527

than d, then these two codes are linearly independent and we deduce that we528

have built the kernel of H. We have now to evaluate the minimal distance of529

this code (T ∪D).530

Hence, we have

D = tB × tRi =
(

d∑
k=0

uki ω
(2d+1−k)j

)
i∈J0..t−1K,j∈J0..2dK

.

Let

Di,j =
d∑
k=0

uki ω
(2d+1−k)j = ω(d+1)j

d∑
k=0

uki ω
(d−k)j

and

Di,j = ω(d+1)j
d∑
k=0

u
(d−k)
i ωkj .

Then

Di,j = udiω
(d+1)j

d∑
k=0

(
ωj

ui

)k
= udiω

(d+1)j
1−

(
ωj

ui

)d+1

1− ωj

ui

.

For i = 0 (i.e t = 1), it means that the vector D0 corresponds to the evaluation531

of the fraction532

ud+1
0 Xd+1 +X

u0 +X
(8)533

over {1, ω, . . . , ω2d} and we are looking for a degree d polynomial P (X) that
cancels the maximum of positions of D0, i.e. such that Q(X) = (X+u0)P (X)+
X+ud+1

0 Xd+1 admits the maximum of zeros. We remark that degree(Q) ≤ d+1,
then the number of zero is less than d+1 which is equivalent to a minimal distance
greater than 2d+ 1− (d+ 1) = d. In the same time, the Singleton bound states
that dmin(T ∪D0) ≤ 2d+ 1− (d+ 1) + 1 = d+ 1. We deduce that for D = D0,

d+ 1− t ≤ dmin(T ∪D) ≤ d+ 2− t.

for t = 2, the Singleton bound states that dmin(T∪D0∪D1) ≤ 2d+1−(d+2)+1 =
d = d+2− t. We want to evaluate now the minimal distance of a codeword built
from a linear combination of D0,j , D1,j and T . It means that for a fixed element
θ ∈ Fq we are looking for a degree d polynomial P (X) such that for a maximum
of input we have

P (X) = ud+1
0 Xd+1 +X

u0 +X
+ θ

ud+1
1 Xd+1 +X

u1 +X
.

This is equivalent of studying the number of zero of the function T (X) = (X +534

u0)(X +u1)P (X) + (X +u1)(ud+1
0 Xd+1 +X) + θ(X +u0)(ud+1

1 Xd+1 +X). The535

degree of T (X) is less or equal to d + 2 then T (X) has d + 2 roots maximum536

which is equivalent to a minimal distance greater than 2d+ 1− (d+ 2) = d− 1537

and we deduce:538

d+ 1− t ≤ dmin(T ∪D) ≤ d+ 2− t.

By induction we have that for any t, d+ 1− t ≤ d′ ≤ d+ 2− t and the probing539

security order is between d−t and d+1−t, thus we have demonstrated Theorem 1.540

In this Theorem 1, we prove the security of the multiplicative gadget, includ-541

ing the transformation of the shares into the spectral domain (back and forth).542

This was left out of the scope of former work GJR+ [GPRV21]; we thus offer a543

comprehensive, end-to-end, security proof of the whole computation. Notice that544

in the section entitled “Discussion on Hypothesis 1”, page 620 of [GPRV21], the545

announced security orders (obtained by exhaustive search, for some examplary546

small orders) are lower than our bound d + 2 − t. The reason is that examples547

in [GPRV21] do not satisfy condition (1).548

Corollary 1. Let 0 ≤ i ≤ d − 1. If ui is such that ud+1
i

Xd+1+X
ui+X is a degree d549

polynomial, i.e ui +X divides ud+1
i Xd+1 +X, then we have d′ = d+ 2− t.550

Proof. Without losing in generality, we can assume that i = 0. For t = 1 this is
exactly the same proof than the previous one. For t > 1, we must evaluate the
number of zeros of the function:

T (X) = ud+1
0 Xd+1 +X

u0 +X
+ θ1

ud+1
1 Xd+1 +X

u1 +X
+ . . .+ θt−1

ud+1
t−1X

d+1 +X

ut−1 +X
.

As ud+1
0 Xd+1+X
u0+X is a degree d polynomial, then (X + u1) · · · (X + ut−1)T (X) is a551

polynomial of degree less than d+ t− 1 which implies that the minimal distance552

is greater than 2d+ 1− d− t+ 1 = d+ 2− t and the singleton bound states that553

it is less than d+ 2− t thus it is equal.554

This corollary shows that our masking scheme does reach the same masking555

order as [BEF+23].556

Example 2. If u0 = 0, we get D0,j = 1 and the property is satisfied.557

As summary, we have proven in this section that given a Vandermonde matrix
A = V (u) = (uji)i,j∈J0..dK, the encoder

x 7→ (x, r) 7→ (x, r)A−1

is d+1−t probing secured and if R is the generator matrix R of a Reed-Solomon
code RS[2d+1, d+1, d+1] with support in {1, ω, . . . , ωn−1}, then the composed
encoder

x 7→ (x, r) 7→ (x, r)A−1R

is at least d− t probing secure.558

6.2 NI and SNI criteria559

Definition 1 ([MZ22]). A function f is t-NI if, when given a total of s outputs560

and internal probes, s ≤ t implies a dependency with maximum s input shares. A561

function f is t-SNI if s ≤ t implies a dependency with maximum i input shares,562

where i is the number of internal probes.563

Corollary 2 ([WMCS20, Theorems 2 and 3]). The scalar multiplication564

gadget is t-SNI and the addition gadget masking is t-NI.565

Proof. We remind that for complexity reason, we have replaced the classical566

Vandermonde matrix by the DFT algorithm. Our chosen DFT has a particular567

structure, it is an iterative DFT et each step corresponds to a matrix multipli-568

cation, then totally, our DFT corresponds to a classical encoder by a (sparse)569

matrix. Therefore, Theorems 2 and 3 of [WMCS20] apply verbatim.570

Remark 2. The refresh gadget of [GPRV21] is obviously compliant with our571

procedure and it is (d− t)-SNI.572

To claim that the complete encoder with its associate gadgets is (d − t)-573

probing secured, we must prove the property for the multiplication gadget.574

6.3 The multiplication gadget575

The security of the masking representation is immediate owing to the number576

of shares. However, to be comprehensive, we have to show now that operations577

are also secure. Namely, the masked multiplication procedure offer also the same578

level of protection. Regarding the security of this gadget. We remind that the579

authors of [GPRV21] made a strong hypothesis that we convert in a theorem:580

Theorem 2 (Hypothesis (FFT Probing Security)). The circuits process-
ing

DFTω(x‖0) 7→ r and DFT−1
ω

are tDFTn -probing secure with tDFTn ≥ d− t.581

Proof. In fact the application DFTω(~x‖0) 7→ r corresponds exactly to our mask-582

ing operation mask(~x) = (~x,~r) × A−1 × R except that A is more general than583

simply a Matrix of the form (αij)i,j . We deduce that tDFTn ≥ d− t in this case584

since it corresponds to the theorem 1.585

Regarding DFT−1
ω : u′ 7→ tt: if fact, u′ = refresh(mask(~x) ∗ mask(~y)) where ∗

represents here the multiplication term by term and not the mask multiplica-
tion. In our masking, by definition, we have u′ = mask(~0) + mask(~x) ∗ mask(~y).
mask(~0) = ~rH where ~r is a d + 1 − t dimension vector which is random, then
building ~r requires at least d+ 1− t positions from the vector ~rH. By construc-
tion, DFT−1

ω (mask(~0)) = (a0(r), a1(r), . . . , ad(r), 0, . . . , 0) = (0, r)A−1. Then
DFT−1

ω (mask(~x) ∗ mask(~y)) = (c0, . . . , c2d). We deduce that:

tt = (c0 + a0(r), c1 + a1(r), . . . , cd + ad(r), cd+1, . . . , c2d).

We prove below this proof that we cannot construct a sensitive informa-586

tion from (cd+1, . . . , c2d). The coefficients ai of the vector (c0 + a0(r), c1 +587

a1(r), . . . , cd + ad(r)) depends linearly of r. We have already proven that the588

encoder (x, r)A−1 is d + 1 − t probing secured, thus getting information from589

(c0+a0(r), c1+a1(r), . . . , cd+ad(r)) requires to capture at least d+1−t positions.590

We deduce the final result, the hypothesis is correct with tDFTn = d− t.591

Then, due to the the previous demonstrated hypothesis, we deduce the following592

lemma:593

Lemma 1. [GPRV21] The circuit processing (mask(x), mask(y)) 7→ u = mask(x)∗594

mask(y) is (d− t)-probing secured.595

We provide here-after a proof by reduction of our Lemma 1 to the result formu-596

lated in [GPRV21, Lemma 1].597

Proof. The authors of [GPRV21] have proven (page 619, lemma 1) that the
following circuit processing

(x, y) 7→ u = DFT(x ‖ 0) ∗DFT(y ‖ 0)

is tFFTn probing secure (In fact, we proved that the encoder x 7→ (x, r)A−1 is598

d+ 1− t probing secure which implies that tFFTn = d in [GPRV21] context) and599

we have proven that mask(x) = DFT((x, r)A−1 ‖ 0) is at least d − t probing600

secure, then we can now apply the same proof, with tFFTn = (d − t): either601

a probe gives some information about mask(x) or about mask(y). Finally, each602

positionMt[i] = mask(x)[i]×mask(y)[i] depends symmetrically of mask(x)[i] and603

mask(y)[i] which are independent and uniformly distributed, thus less than d− t604

probes cannot give information about x and y.605

Remark 3 (Typographic mistake correction). The proof of lemma 1 in [GPRV21]606

contains twice the argument “w is added toW1”, whereas the second occurrence607

should read “w is added to W2”.608

We remind that the inner product mask(x)∗mask(y) here is not the gadget multi-609

plication mask(x)×mask(y). Unfortunately, we cannot claim that (mask(x), mask(y)) 7→610

mask(x)∗mask(y) is (d− t)-NI or SNI secured because the function (x, y) 7→ x ·y611

does not satisfies the t-NI property and we cannot use the composition theorem.612

The mask multiplication (gadget) is obtained from the following computation

DFTω(D(X)) = DFTω(C(X))
+ DFTω(cd+1X

d+1 + · · ·+ c2dX
2d)

+ DFTω
(

(cd+1X + · · ·+ c2d−t+1X
d−t+1) ∗ ~U

)
+
∑t−1
i=1 c2d−t+1+i ·Gi

= mask(~x ∗ ~x ′)

whereGi = DFTω(
∑t−1
j=0 Uj(X)ud−t+1+i

j) for i ∈ {1, . . . , t−1} and ~U =
∑t
j=1 Uj(X)

are a pre-computed values. Then, it is clear that the computation of DFTω(cd+1X
d+1+

· · ·+c2dX
2d), DFTω

(
(cd+1X + · · ·+ c2d−t+1X

d−t+1) ∗ ~U
)
and

∑t−1
i=1 c2d−t+1+i ·

Gi involves only the variables cd+1, . . . , c2d−t+1 related to the sensitive informa-
tion. Hence, the weakest side is obtained with the vector

(cd+1, . . . , c2d) = ExtractLastCoefficients(~z ∗ ~z′).

Then the question is: can we get information from d − t position of the vector
(cd+1, . . . , c2d). Our claim is that our gadget is at least d − t probing secured,
then we must assume that in the model of attack, maximum d − t values can
be guessed from some measures. From d− t pieces of knowledge from the vector
(cd+1, . . . , c2d), x = unmask(z) and x′ = unmask(z′) cannot be reconstructed: if
an attacker has access to the following system of equations

c2d = ada
′
d

c2d−1 = ad−1a
′
d + ada

′
d−1

c2d−2 = ad−2a
′
d + a′d−2ad + a′d−1ad−1

...
c2d−k =

∑k
i=0 ad−ia

′
d−(k−i)

...
cd+1 =

∑d−1
i=0 ad−ia

′
i+1.

We can evaluate the number of potential solutions for (ai)i∈Jd..2dK: by assuming613

that c2d 6= 0, then the equation c2d = ada
′
d admits 2m − 1 solutions. If c2d =614

0, then ada
′
d admits 2m solutions. By setting ad 6= 0 and a′d 6= 0 we get the615

equation c2d−1 = ad−1a
′
d + ada

′
d−1 admits 2m solutions. By induction, we get616

the same property at any step k ≤ d. Thus totally this system admits at least617

2m(d−1)(2m−1) solutions for d variables ai. This result is obviously worst with less618

equations, thus this system of equation does not give information from d+ 1− t619

values of (ai) solutions.620

We conclude that the gadget multiplication is d− t probing secured.621

Remark 4. It seems that our encoding method has similar properties than this622

one defined in [GPRV21] then it would be interesting to investigate if the region623

probing security still holds here.624

6.4 Fault detection/correction625

Fault attacks are very efficient in general [JT12]. Some fault attacks, such as626

Statistical Ineffective Fault Attacks (SIFA [DEG+18], inheriting from the semi-627

nal work of [YJ00]) can be applied despite masking against side-channel analysis628

and fault detection mechanisms are in place.629

First of all, we cannot claim that our method is fully resilient against fault630

attack because we did not study the impact of generating a fault on the checker631

itself (the syndrome calculation), however, we show in this paper that we harden632

considerably the resilience against fault injection.633

We considered two representative fault models, namely one where the at-634

tacker has no control over the fault (random model), and one where the attacker635

can inject targeted low weight faults. We recall that, in front of uniformly random636

faults, the detection capability is only characterized by the minimal distance.637

Furthermore, we assume that the attacker has the ability to inject a certain638

number of simultaneous faults which is less than the correction capacity of the639

considered code, especially the Red-Solomon code involved in the gadget mul-640

tiplication. We consider also that all codewords present in the implementation641

are corrected/checked. If not, we face an open problem: the impact of the error642

propagation in the cipher algorithm design and this is out of the scope of this643

paper.644

We recall that by construction, each masked element belongs to the code645

RS[n, d + 1, n − d]. Intentional or accidental errors can disturb the symmetric646

cipher implementation. If an error appears during the first rounds of the consid-647

ered cipher, then its propagation shall affect dramatically the rest of calculation,648

making the final result wrong and non-correctible due to the excessive number of649

errors. It can then give information that may compromise the key. Such scenarios650

appear for example in case of radiation or in case of intentional fault attacks.651

We are also aware that such channel perturbation can lead to the presence of652

erasures, which means that information simply disappears. As we consider the653

problem of decoding Reed-Solomon codes, erasures can simply be considered654

as errors. Hence, a decoding algorithm that works for Reed-Solomon codes can655

correct erasures. Of course it is essential that our counter-measure against FIA656

does not weaken the counter-measure against SCA, hence we propose to show in657

the next subsections that our error detection based on the syndrome decoding658

is secured and efficient.659

We recall that we have:660

mask(~x ∗ ~x ′) = mask(~x) ∗ mask(~x ′)
+ DFTω(cd+1X

d+1 + · · ·+ c2dX
2d)

+ DFTω(cd+1X + · · ·+ c2d−t+1X
d−t+1) ∗ ~U

+
∑t−1
i=1 c2d−t+1+i ·Gi

where (cd, . . . , c2d) = ExtractLastCoefficients(mask(~x) ∗ mask(~x ′)), with ~Uk
and Gi that are precomputed and we have denoted

mask(~x ∗ ~x ′) = mask(~x) ∗ mask(~x ′) + φ(C,ω).

Obviously, introducing errors in the gadget multiplication may be a problem661

for the following reason: mask(~x) ∗ mask(~x ′) equals DFTω(C(X)) where C is a662

degree 2d polynomial thus faults on the vector DFTω(C(X)) cannot be detected663

in the RS[2d+ 1, 2d+ 1] code. However, we remark that the first d coefficients of664

the polynomials involved in DFTω(cd+1X
d+1 + · · ·+ c2dX

2d) +DFTω(cd+1X +665

· · ·+c2d−t+1X
d−t+1)∗~U+

∑t−1
i=1 c2d−t+1+i·Gi are null by construction. We deduce666

that injecting a fault inside these vectors can be detected simply by a syndrome667

calculation (IDFT). An error may be injected in the coefficient cd+1, · · · , c2d, but668

in this case the resulting vector mask(~x∗~x ′) does not belong to the RS[2d+1, d]669

code and the error will be detected. An attacker may inject simultaneously errors670

in both vectors, but in this case we are no longer in the random injection model671

and we face an open problem out of scope of this paper.672

Finally this leads us to propose below some improvement.673

6.5 Detecting faults in the gadget674

We propose in this case to slightly modify the parameters of our encoder x 7→675

(~x,~r) 7→ A−1R with x ∈ Ftq and ~r ∈ Fd+1−t
q . We propose to consider some676

~r ∈ Fd+1−t−h
q with h < d + 1 − t. Hence the resulting polynomial has degree677

d−h instead of d. This modification implies that the vector mask(~x)∗mask(~x ′) =678

DFTω(C(X)) can be checked: C(X) has degree 2d− 2h in this case and conse-679

quently, the vector DFTω(C(X)) belongs to the RS[2d+ 1, 2d− 2h+ 1, 1 + 2h]680

code of minimal distance 1 + 2h, thus 2h errors can be detected. We remind681

that the error detection on a codeword can be done by computing its syndrome,682

and computing its syndrome corresponds with our parameters to perform the683

IDFT algorithm: the computation of IDFT (mask(~x) ∗ mask(~x′)) states whether684

it corresponds to a degree d− h polynomial or not.685

An attacker may inject faults in the vector φ(C,ω), however, by construction686

this vector belongs to RS[2d+1, 2d−2h+1, 1+2h] because φ(C,ω) = mask(~x)∗687

mask(~x ′) + mask(~x ∗ ~x ′) and for this error correcting code, up to 2h errors can688

be detected.689

Regarding the consequences for the SCA security, the probing order is clearly690

modified because the dimension of ~r is less than in the original encoder. By691

analysing carefully the proof of probing order, we observe that this modification692

does not modify the proof, only the security order is modified, passing from d− t693

order to d− t− h order. We can now summarize in the following algorithm the694

step of detection inside the gadget multiplication:695

Algorithm 6: severalByteProduct with detection Complexity:
n(3 + t+ 4 log(n))

Input: two vectors ~z = mask(~x) ∈ Fn
q and ~z ′ = mask(~x ′) ∈ Fn

q

Output: mask(~x ∗ ~x ′) ∈ Fn
q

1 ~y ∈ Fn
q

2 for i ∈ {0, . . . , n− 1} do
3 yi ← ziz

′
i

4 ~c ′′ = ExtractLastCoefficients(~y) = (cd+h, . . . , c2d, c0, . . . , cd+h−1)
5 Check that (c2d−2h+1, . . . , c2d) equals the null vector
6 If not, launch a security procedure
7 Else
8 Compute ~y + φ(c2d−2h+1, . . . , c2d, ω)
9 Check that degree(IDFT(~y + φ(c2d−2h+1, . . . , c2d, ω))) ≤ d− h

10 If not, launch a security procedure
11 Else
12 return refresh (~y + φ(c2d−2h+1, . . . , c2d, ω))

About syndrome computation leakage It is essential that our counter-696

measure against FIA does not weaken the counter-measure against SCA, thus we697

propose to show in this section that syndrome decoding cannot leak information.698

Namely, we consider the possibility of either detecting or even correcting er-699

rors and erasures anywhere in the calculation process where codewords are avail-700

able. In general, decoding errors leads to unmasking the sensitive information,701

which is of course not desired between the first and last round of the algorithm702

that we must protect. For example, Sudan [GS99] and Berlekamp-Welch [RR86]703

algorithms return directly the sensitive information, while syndrome decoding704

does not.705

Decoding generalized Reed-Solomon codes is classic, but we are particularly706

interested in syndrome decoding which does not reveal any sensitive informa-707

tion. The algorithm [Sha07,McE77,KB10] that uses the Euclidean algorithm is a708

syndrome decoding algorithm. It consists in building the polynomials that cor-709

respond to the error evaluator and error locator as explained in Theorem 4.3710

of [Sha07] and also, as explained at the beginning of the current section 5.2.711

Hence, this algorithm returns the vector corresponding to the error, that allows712

to return the corrected codeword belonging to the Reed-Solomon code. Never713

the sensitive information has been exposed during the process of decoding be-714

cause the first step consists in cancelling the codeword coming from the encoded715

information in order to construct the error as we will show later in this section.716

In the previous subsection regarding the encoding procedure, we have seen
that masking a vector ~x consists in performing

mask(~x) = (~x,~r)×A−1 ×R.

Hence ~z = mask(~x) is simply a codeword belonging to the RS(n, d+1, d+1) code.
If we denote by V the parity check matrix of R, we have by construction R×V =
0 and in particular mask(~x) × V = 0. Thus, by a simple syndrome calculation,
if we suppose ~z was modified by a fault injection attack or a radiation, then we
get ~z ′ = ~z + ~e, and we have:

~ε = ~z ′ × V = ~z × V + ~e× V = ~e× V.

Obviously the syndrome calculation does not bring any information since by717

definition a codeword corresponds to information that has been masked and we718

have assumed that the potential attacker has not more than d′ probes, thus no719

linear transformation can provide any information on the sensitive information.720

We note however that determining the efficiency of this method when faults721

take place in the decoding algorithm itself remains an open problem. But the722

method is efficient when the fault injections are directed on the masked design723

of the ciphered algorithm. Then each variable being encoded by our generalized724

Reed-Solomon code, we may potentially check all variables (this has of course a725

non negligible cost). The attacker may inject faults on the matrices G and H to726

disturb the multiplication; then either the number of constructed errors is too727

large and the algorithm cannot correct it, but it simply detects and alerts (to728

enable key zeroization for instance), or the number of errors is reasonable and729

the error correction algorithm can correct the disturbed multiplication.730

Eventually, it is up to the security policy to consider the best strategy be-731

tween detecting and launching a countermeasure or correcting.732

6.6 Comparison with [BEF+23]733

Recently, the authors of [BEF+23] proposed a similar solution based on poly-734

nomial encoding. Their solution gives a strong resilience against SCA and si-735

multaneously protects against a huge number of fault injections. We propose to736

compare the solutions here. We note that our solution works for a fixed length737

n (number of shares) which is given by the possibility of implementing a DFT738

instead of multiplying by a Vandermonde matrix whereas their solution has a739

free length (number of shares) depending on the number of detected errors e:740

either n = 2d+ e+ 1 in a first version (SotA) or n = d+ e+ 1 for the improved741

version (laOla). In order to make easier the comparison, we describe our perfor-742

mances with a Vandermonde matrix instead of a DFT and finally, we describe743

our performances with a trick used for laOla [BEF+23].744

Table 4. Comparison between [BEF+23] and our work.

Algorithm SotA
[BEF+23]

This work
(genuine, i.e.,
with DFT)

This work
(with Van-
dermonde
matrix)

This work
(with DFT
and the trick
of [BEF+23])

laOla
[BEF+23]

Nb of shares 2d+ e+ 1 2d+ 1 2d+ e+ 1 2d+ 1 d+ e+ 1
Cost amort. No (1) Yes (t) Yes (t) Yes (t) No (1)
Security
order d d+1− t−e/2 d+ 1− t d+ 1− t d

Detected er-
rors e e e d e

Amount of
randomness
in secure
multiplica-
tion

d2 d+ 1− t d+ 1− t d+ 1− t d2

Multiplication
gadget com-
plexity

2d2 +d(e+ 1)
(2d + 1)(3 +
t+ 4 log(2d+
1))

2d(d+ e+ 1)
3(2d+ 1)(3 +
t+ 4 log(2d+
1))

3d2+2d(e+1)

Error detec-
tion (and cor-
rection) com-
plexity

O(d2) (2d +
1) log(2d+ 1) 2d(d+ e+ 1) (2d +

1) log(2d+ 1) O(d2)

Table 4 compiles performance figures and/or complexities of [BEF+23] and745

our work. This table shows that our scheme is faster, owing to the quasi-linearity746

complexity of our multiplicative gadget. The difference of complexity also holds747

for the error detection (and correction) capability, namely quasi-linear in our748

case versus quadratic for [BEF+23]. Moreover, our scheme supports cost amor-749

tization, which allows for further speed-up and huge memory saving. Namely, we750

can process t sensitive elements altogether whereas [BEF+23] requires to repeat751

t times the computation.752

The only advantage we see for [BEF+23] scheme stems from its flexibility.753

The fault detection capability can be fine-tuned leveraging the parameter e.754

Nonetheless, we attempted to compare our work with [BEF+23] in the con-755

text of parametric fault detection capability. In this respect, we had to inten-756

tionally degrade our scheme to turn the (quasi-linear) DFT into a (quadratic)757

multiplication by a Vandermonde matrix. Indeed, DFT is rigid (of fixed size)758

whereas matrix multiplication is naturally scalable. Despite this handicap, one759

can notice that our performance are similar (of same quadratic complexity) to760

that of SotA. Also the error detection (or correction) capability is the same in761

those conditions. Remarkably, our scheme with “inefficient” Fourier transform762

still enjoys the advantage to allow for cost amortization.763

We note that the authors of [BEF+23] use an extra trick to reduce the degree
of the polynomials while t < d/2: indeed, we can set:

Px(X) = IDFTω(mask(~x))
= P0(X) +Xd/2P1(X),

and
Px′(X) = IDFTω(mask(~x′))

= P ′0(X) +Xd/2P ′1(X).

The Pi and P ′i can be computed because we have proven in section 6 that the
encoder x 7→ (x, r)A−1 is d+ 1− t probing secure. We have:

Px′(X)Px(X) = P0(X)P ′0(X)+Xd/2 (P ′0(X)P1(X) + P0(X)P ′1(X))+XdP1(X)P ′1(X),

with:764

T (X) = P ′0(X)P1(X) + P0(X)P ′1(X)
= T0(X) + xd/2T1(X).

Then we observe that d errors can be detected on the vectors:

~C0 = DFTω(P0(X)P ′0(X)),
~C1 = DFTω(Xd/2T0(X)),
~C2 = DFTω(XdT1(X)), and
~C3 = DFTω(XdP1(X)P ′1(X)),

just by remarking that at least d identified coefficients must be zero for each cor-765

responding polynomial, which enables error detection by syndrom computation.766

Finally we underline that our cost amortization capability can be applied for767

each vectors ~li, i ∈ {0, 1, 2, 3} in order to get 4 degree d polynomials D0, D1,768

D2 and D3 that satisfy D = D0 +D1 +D2 +D3. Hence we avoid the degree 2d769

polynomial in C(X) and consequently, d errors can be detected.770

Interestingly, this trick is compliant with our scheme. Thus, our work is also771

empowered to detect d faults, anywhere in any gadget, where 2d + 1 is the di-772

mension of the codes. This is reflected in the last-but-one column of Table 4.773

Our value of the security order benefits from Corollary 1 (i.e., it attains its max-774

imum value d+ 1− t), thereby equating the probing security order of [BEF+23]775

schemes (SotA and laOla).776

7 Software implementation777

The implementation of a masked AES-128 allowed us to accurately measure778

the gain in time and memory space that can be obtained with parallel masking779

(that is, t > 1). Indeed, as we can see in Fig. 1, the computation time decreases780

linearly according to the size of the sensitive data (t), consistently across values d781

(masking order). We can also witness the quasi-linearity of the computation time782

(this quasi-affine function depending on the value of d), and the non-linearity783

(namely, the “quadricity”) of RP masking [RP10]:784

– the RP masking (in log-log scale) computation time curve grows by two785

decades when d grows by one decade,786

– whereas for our scheme, the slope is less than two (and the value also is less).787

The need for randomness is represented in Fig. 2, and same observations can788

be done. All values of d are represented for which there exists a DFT (namely789

d ∈ {1, 2, 7, 8, 25, 42}), under the condition d > t.790

We had to represent speed and randomness for large values of d not be-791

cause practical applications requires very high masking order, but to show the792

asymptotic complexity.793

We used the C code from Jean-Sébastien Coron’s github project [Cor] to794

implement RP. But we replaced the optimized log-table based multiplication795

by a constant-time one. Namely, hardcoded tables sq, taffine, tsmult in file796

“aes_rp.c” have been replaced by their algorithmic counterparts. The rationale797

is that masking is pointless if applied on a non-constant time implementation,798

because timing leakage is exploitable at 1st order [BGV21]. Obviously, we have799

adopted the same constant-time implementation to our schemes, hence the com-800

parison is fair. Such implementation of field multiplication is used alike in both801

schemes (RP and ours).802

These statistics concern the calculation of 50 times an AES-128 encryption,803

implemented with C, compiled with gcc, with a refresh after each multiplication804

(SMult) or exponentiation, and executed on an Intel(R) Core(TM) i7-8550U,805

CPU 1.80 GHz processor, 16 GB of RAM, with different configurations of our806

scheme compared to Rivain and Prouff (RP) scheme [RP10].807

 0.001

 0.01

 0.1

 1

 10

 10 100

Ti
m

e
 i
n
 s

e
co

n
d

s

Masking order d

Our masking scheme with t = 4
Our masking scheme with t = 8

Our masking scheme with t = 16
RP scheme

Fig. 1. Computation time for 50 times AES calculation, with pre-calculated multipli-
cation.

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1 10 100

A
m

o
u
n
t

o
f

ra
n
d

o
m

n
e
ss

 i
n
 b

y
te

s

Masking order d

Our masking scheme with t = 4
Our masking scheme with t = 8

Our masking scheme with t = 16
RP scheme

Fig. 2. The amount of randomness generated in terms of bytes

Masking with cost amortization also reduces memory usage. Indeed, with808

t = 16, the total cost to mask a block of 16 bytes is n instead of 16n. In general,809

the size of a masked word for AES is 16n/t.810

8 Limitations and Future Work811

Side-channel security order. One drawback of our masking scheme is that the812

order of masking cannot be freely chosen. Namely n shall divide q − 1 (recall813

Sec. 2.1) and the choice of n is further limited by Eqn. (1) (which precludes in814

particular that n = q − 1). For instance, for the cases of:815

– AES (q = 256), the values of n are {3, 5, 15, 17, 51, 85}, i.e. d ∈ {1, 2, 7, 8, 25, 42}816

(recall n = 2d+ 1);817

– Crystals Kyber (q = 3329), the values of n are {2i, 2 ≤ i ≤ 8} ∪ {13 · 2i, 0 ≤818

i ≤ 7}, i.e. d ∈ {2, 4, i8, 16, 32, 64, 128, 6, 13, 26, 52, 104, 208, 416, 832} (note819

that n = 2d+ 1 if n is odd but n = 2d if n is even).820

9 Conclusions and perspectives821

Code-based masking (CBM) can implement arbitrary computations based on822

additions and multiplications, whist ensuring arbitrary chosen side-channel se-823

curity order. Besides, in terms of complexity, it has already been shown that824

those operations can be carried out in quasi-linear time.825

In this article, we show for the first time that such properties can be extended826

to the case of multiple bytes concomitantly masking (construction known as827

cost amortization). We also show how such masking is compatible with error828

detection and/or correction, that can be nested within the code-based masking829

representation.830

Furthermore, we detail the computation of the required Discrete Fourier831

Transform (DFT) involved in these operations. We show how it can be im-832

plemented efficiently for some specific DFT algorithms, which have a small833

implementation-level complexity.834

We show actual implementation complexity results in software and detail our835

gain in terms of performance.836

As a perspective, we intend to show results in hardware and show the gain837

of our masking in terms of gate size and power consumption as well.838

Acknowledgments839

The research of the first author is partly supported by the Norwegian Research840

Council. The two last authors declare that this work has partly benefited from841

the funding by French Bank for Innovation (BPI), through the project X7PQC842

(project call “Cryptographie post quantique”, held by the National Quantum843

Strategy “Develop the post-quantum cryptographical offering” and the National844

Cyber Strategy “Development of innovative and critical cyber technologies”).845

A Case of the Galois field F28846

The symmetric encryption algorithm AES is a byte-oriented block cipher. It de-847

sign leverages the irreducible polynomialX8+X4+X3+X+1. The Sbox is based848

on the inverse function defined over the finite field F28 = F2[X]
(X8+X4+X3+X+1) . The849

canonical basis is given by α = X in F28 and 1 +α is a primitive element of this850

field. Then X256−X = X(X255−1) and 255 = 3×5×17. We can consider DFT851

with n = 3, 5, 15, 17, 51, 85. The case n = 3 has been described in a previous852

section.853

We note that we have not a large choice for n if we keep this method. We will854

see in the next section that we can construct a DFT and its associate inverse by855

observing the different trees. The SAGE code and the executable source code in856

C language of our implementations are provided in a GitHub: https://github.857

com/daif-abde/FFT_masking.git.858

A.1 AES example with d = 2859

The case n = 2d + 1 = 5 corresponds to d + 1 − t = 3 − t order masking. The
case n = 5 is not a power of two but we can propose a decomposition that leads
to very low complexity and we consider ω = (1 + α) 255

5 = (1 + α)51, then

X6−X = X(X−1)(1+X+X2+X3+X4) = X(X−1)(X−ω)(X−ω2)(X−ω3)(X−ω4).

Hence, we can propose the polynomial decomposition tree displayed in Fig. 3.860

X + ω2X + ω3X + ω4X + ωX + 1X

X2 + (ω3 + ω2)X + 1X2 + (ω + ω4)X + 1X2 +X

X4 +X3 +X2 +X + 1X4 +X3

X6 +X

Fig. 3. Polynomial decomposition tree for X6 +X on F256.

We propose to evaluate precisely here the complexity of the ~r ′′ calculation
with

~r ′′ =
(
IDFT(~µ, 0, . . . , 0) + ~θ + ~w ∗ IDFT(~λ, 0, . . . , 0)

)
.

Hence this computation leads to consider a maximum degree 3 polynomial P (X)861

that we have to evaluate over {1, ω, . . . , ω4}.862

The Euclidean division of P (X) by X2 +X costs 2 additions over F28 . The863

Euclidean division of P (X) by X2 + (ω+ω4)X+ 1 costs 2 multiplications and 4864

https://github.com/daif-abde/FFT_masking.git
https://github.com/daif-abde/FFT_masking.git
https://github.com/daif-abde/FFT_masking.git

additions over F28 . We obviously get the same number for X2 + (ω+ ω4)X + 1.865

The last step consists in performing the Euclidean division by all monomials866

except X which costs: 5 additions and 4 multiplications. Hence totally the DFT867

cost 6 multiplications and 9 additions. For comparison, 11 > 6 ln(6) > 10 and868

20 > 6 ln2(6) > 19.869

A.2 AES example with d = 7870

The case n = 2d + 1 = 15 corresponds to d + 1 − t = 8 − t-order masking
maximum. The case n = 15 corresponds to a power of two and we can propose a
decomposition that lead to very fast complexity. Let ω = (1+α) 255

15 = (1+α)17 =
1 + α5 + α6 + α7. Then we get:

1 + ω2 = ω8;
1 + ω = ω4;
1 + ω7 = ω9;
1 + ω3 = ω14;
1 + ω5 = ω10;
1 + ω11 = ω12;

thus, according to [WZ88], we get the following decomposition tree depicted in871

Fig. 4. This tree is rotated so that it fits in the page limits.872

Regarding AES, block size is 16 bytes then we can apply three Fourier trans-873

forms over respectively 5 bytes, 6 bytes and 5 bytes. It means that we encode874

polynomials of degree at most 7. Hence in the diagram, we start from evaluating875

the division by a degree 4 polynomials.876

X + ω12

X + ω11

X + ω14

X + ω3

X + ω13

X + ω6

X + ω9

X + ω7

X + ω8

X + ω2

X + ω4

X + ω

X + ω10

X + ω5

X + 1

X

X2 +X + ω8

X2 +X + ω2

X2 +X + ω4

X2 +X + ω

X2 +X + ω10

X2 +X + ω5

X2 +X + 1

X2 +X

X4 +X + ω10

X4 +X + ω5

X4 +X + 1

X4 +X

X8 +X4 +X2 +X + 1

X8 +X4 +X2 +X

X16 +X

Fig. 4. Polynomial decomposition tree for X16 +X on F256.

References877

BBD+15. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,878

Benjamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-879

order masking. In Elisabeth Oswald and Marc Fischlin, editors, EURO-880

CRYPT, volume 9056 of Lecture Notes in Computer Science, pages 457–881

485. Springer, 2015.882

BEF+23. Sebastian Berndt, Thomas Eisenbarth, Sebastian Faust, Marc Gourjon,883

Maximilian Orlt, and Okan Seker. Combined Fault and Leakage Resilience:884

Composability, Constructions and Compiler. IACR Cryptol. ePrint Arch.,885

page 1143, 2023.886

BGK04. Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure887

masking of AES. In Helena Handschuh and M. Anwar Hasan, editors, Se-888

lected Areas in Cryptography, 11th International Workshop, SAC 2004, Wa-889

terloo, Canada, August 9-10, 2004, Revised Selected Papers, volume 3357890

of Lecture Notes in Computer Science, pages 69–83. Springer, 2004.891

BGV21. Antoine Bouvet, Sylvain Guilley, and Lukas Vlasak. First-Order Side-892

Channel Leakage Analysis of Masked but Asynchronous AES. In Pan-893

telimon Stănică, Sihem Mesnager, and Sumit Kumar Debnath, editors, Se-894

curity and Privacy, pages 16–29, Cham, 2021. Springer International Pub-895

lishing.896

BHP98. Richard E Blahut, W. Cary Huffman, and Vera Pless. Decoding of cyclic897

codes and codes on curves. Handbook of coding theory, 2:1569–1633, 1998.898

Can89. David G Cantor. On arithmetical algorithms over finite fields. Journal of899

Combinatorial Theory, Series A, 50(2):285–300, 1989.900

CCG+20. Claude Carlet, Wei Cheng, Kouassi Goli, Jean-Luc Danger, and Sylvain901

Guilley. Detecting Faults in Inner Product Masking Scheme IPM-FD: IPM902

with Fault Detection (Extended version). Journal of Cryptographic Engi-903

neering, page 15, May 30 2020. DOI: 10.1007/s13389-020-00227-6.904

Cor. Jean-Sébastien Coron. HTable countermeasure against side-channel attacks905

— reference implementation for the masking scheme presented in [Cor14].906

Source code available from: https://github.com/coron/htable.907

Cor14. Jean-Sébastien Coron. Higher Order Masking of Look-Up Tables. In908

Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT, volume909

8441 of Lecture Notes in Computer Science, pages 441–458. Springer, 2014.910

CPRR15. Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.911

Algebraic decomposition for probing security. In Rosario Gennaro and912

Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 -913

35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-914

20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer915

Science, pages 742–763. Springer, 2015.916

DEG+18. Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard,917

Florian Mendel, and Robert Primas. Statistical ineffective fault attacks on918

masked AES with fault countermeasures. In Thomas Peyrin and Steven D.919

Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th In-920

ternational Conference on the Theory and Application of Cryptology and921

Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Pro-922

ceedings, Part II, volume 11273 of Lecture Notes in Computer Science,923

pages 315–342. Springer, 2018.924

https://github.com/coron/htable

DIK10. Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-925

tiparty computation and the computational overhead of cryptography. In926

Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th927

Annual International Conference on the Theory and Applications of Cryp-928

tographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010.929

Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 445–930

465. Springer, 2010.931

FRSG22. Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim932

Güneysu. CINI MINIS: domain isolation for fault and combined secu-933

rity. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,934

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-935

munications Security, CCS 2022, Los Angeles, CA, USA, November 7-11,936

2022, pages 1023–1036. ACM, 2022.937

Gao03. Shuhong Gao. A new algorithm for decoding reed-solomon codes. In938

Communications, information and network security, pages 55–68. Springer,939

2003.940

GJR18. Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to Securely941

Compute with Noisy Leakage in Quasilinear Complexity. In Thomas Peyrin942

and Steven D. Galbraith, editors, ASIACRYPT, volume 11273 of Lecture943

Notes in Computer Science, pages 547–574. Springer, 2018.944

GM10. Shuhong Gao and Todd D. Mateer. Additive Fast Fourier Transforms Over945

Finite Fields. IEEE Trans. Inf. Theory, 56(12):6265–6272, 2010.946

GPK+21. Michael Gruber, Matthias Probst, Patrick Karl, Thomas Schamberger, Lars947

Tebelmann, Michael Tempelmeier, and Georg Sigl. Domrep-an orthogonal948

countermeasure for arbitrary order side-channel and fault attack protection.949

IEEE Trans. Inf. Forensics Secur., 16:4321–4335, 2021.950

GPRV21. Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.951

Probing security through input-output separation and revisited quasilinear952

masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):599–640,953

2021.954

GS99. Venkatesan Guruswami and Madhu Sudan. Improved decoding of955

reed-solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory,956

45(6):1757–1767, 1999.957

ISW03. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing958

hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-959

tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,960

Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume961

2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.962

Jr.65. G. David Forney Jr. On decoding BCH codes. IEEE Trans. Inf. Theory,963

11(4):549–557, 1965.964

JT12. Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryptography.965

Information Security and Cryptography. Springer, 2012.966

KB10. Sabine Kampf and Martin Bossert. The euclidean algorithm for generalized967

minimum distance decoding of reed-solomon codes. In Marcus Greferath,968

Joachim Rosenthal, Alexander Barg, and Gilles Zémor, editors, 2010 IEEE969

Information Theory Workshop, ITW 2010, Dublin, Ireland, August 30 -970

September 3, 2010, pages 1–5. IEEE, 2010.971

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-972

ysis. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99,973

19th Annual International Cryptology Conference, Santa Barbara, Califor-974

nia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes975

in Computer Science, pages 388–397. Springer, 1999.976

Knu11. Donald E. Knuth. The Art of Computer Programming. Addison Wesley,977

March 2011. ISBN-13: 978-0201038040.978

LCK+18. Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-979

Yin Yang. Frobenius Additive Fast Fourier Transform. In Manuel Kauers,980

Alexey Ovchinnikov, and Éric Schost, editors, Proceedings of the 2018 ACM981

on International Symposium on Symbolic and Algebraic Computation, IS-982

SAC 2018, New York, NY, USA, July 16-19, 2018, pages 263–270. ACM,983

2018.984

MAN+19. Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and985

Vincent Rijmen. M&m: Masks and macs against physical attacks. IACR986

Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):25–50, 2019.987

Mas69. James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans.988

Inf. Theory, 15(1):122–127, 1969.989

McE77. Robert J. McEliece. Encyclopedia of mathematics and its applications.990

The Theory of Information and Coding: A Mathematical Framework for991

Communication, 1977.992

MS77. Florence Jessie MacWilliams and N. J. A. Neil James Alexander Sloane.993

The theory of error correcting codes. North-Holland mathematical library.994

North-Holland Pub. Co. New York, Amsterdam, New York, 1977. Includes995

index.996

MZ22. Maria Chiara Molteni and Vittorio Zaccaria. A relation calculus for rea-997

soning about t-probing security. J. Cryptogr. Eng., 12(1):1–14, 2022.998

Pet60. W. Wesley Peterson. Encoding and error-correction procedures for the999

bose-chaudhuri codes. IRE Trans. Inf. Theory, 6(4):459–470, 1960.1000

PGS+17. Romain Poussier, Qian Guo, François-Xavier Standaert, Claude Carlet, and1001

Sylvain Guilley. Connecting and improving direct sum masking and inner1002

product masking. In Thomas Eisenbarth and Yannick Teglia, editors, Smart1003

Card Research and Advanced Applications - 16th International Conference,1004

CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Se-1005

lected Papers, volume 10728 of Lecture Notes in Computer Science, pages1006

123–141. Springer, 2017.1007

Pla22. Maxime Plançon. Exploiting algebraic structures in probing security. Cryp-1008

tology ePrint Archive, Paper 2022/1540, 2022. https://eprint.iacr.org/1009

2022/1540.1010

RMB+18. Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla1011

Nikova, Ventzislav Nikov, and Nigel P. Smart. CAPA: the spirit of beaver1012

against physical attacks. In Hovav Shacham and Alexandra Boldyreva, ed-1013

itors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International1014

Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-1015

ceedings, Part I, volume 10991 of Lecture Notes in Computer Science, pages1016

121–151. Springer, 2018.1017

RP10. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-1018

ing of AES. In Stefan Mangard and François-Xavier Standaert, editors,1019

CHES, volume 6225 of Lecture Notes in Computer Science, pages 413–427.1020

Springer, 2010.1021

RR86. Welch Lloyd R and Berlekamp Elwyn R. Error correction for algebraic1022

block codes, December 1986. US Patent 4,633,470.1023

https://eprint.iacr.org/2022/1540
https://eprint.iacr.org/2022/1540
https://eprint.iacr.org/2022/1540

Sha07. Priti Shankar. Decoding reed-solomon codes using euclid’s algorithm. Res-1024

onance, 12(4):37–51, 2007.1025

SMG16. Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards1026

Combined Hardware Countermeasures Against Side-Channel and Fault-1027

Injection Attacks. In Matthew Robshaw and Jonathan Katz, editors,1028

CRYPTO, volume 9815 of Lecture Notes in Computer Science, pages 302–1029

332. Springer, 2016.1030

TL20. Nianqi Tang and Yun Lin. Fast Encoding and Decoding Algorithms for1031

Arbitrary (n, k) Reed-Solomon Codes Over F2m . IEEE Commun. Lett.,1032

24(4):716–719, 2020.1033

Uni. University of Sydney (Australia). Magma Computational Algebra System.1034

http://magma.maths.usyd.edu.au/magma/, Accessed on 2022-08-22.1035

vzGG96. Joachim von zur Gathen and Jürgen Gerhard. Arithmetic and Factoriza-1036

tion of Polynomial over F2 (Extended Abstract). In Proceedings of the 19961037

International Symposium on Symbolic and Algebraic Computation, ISSAC1038

’96, page 1–9, New York, NY, USA, 1996. Association for Computing Ma-1039

chinery.1040

vzGG13. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra1041

(3. ed.). Cambridge University Press, 2013.1042

WMCS20. Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Stan-1043

daert. Efficient and private computations with code-based masking. IACR1044

Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):128–171, 2020.1045

WZ88. YaoWang and Xuelong Zhu. A fast algorithm for the Fourier transform over1046

finite fields and its VLSI implementation. IEEE J. Sel. Areas Commun.,1047

6(3):572–577, 1988.1048

YJ00. Sung-Ming Yen and Marc Joye. Checking Before Output May Not Be1049

Enough Against Fault-Based Cryptanalysis. IEEE Trans. Computers,1050

49(9):967–970, 2000. DOI: 10.1109/12.869328.1051

http://magma.maths.usyd.edu.au/magma/

	Quasi-linear masking against SCA and FIA, with cost amortization

