
Zero-Knowledge Arguments for Subverted RSA Groups

Dimitris Kolonelos⋆1,2, Mary Maller3,4, Mikhail Volkhov⋆5

1 IMDEA Software Institute, Madrid, Spain
dimitris.kolonelos@imdea.org

2 Universidad Politecnica de Madrid, Spain
3 Ethereum Foundation, UK
mary.maller@ethereum.org

4 PQShield, UK
5 The University of Edinburgh, UK

mikhail.volkhov@ed.ac.uk

Abstract. This work investigates zero-knowledge protocols in subverted RSA groups where the prover
can choose the modulus and where the verifier does not know the group order. We introduce a novel
technique for extracting the witness from a general homomorphism over a group of unknown order that
does not require parallel repetitions. We present a NIZK range proof for general homomorphisms such
as Paillier encryptions in the designated verifier model that works under a subverted setup. The key
ingredient of our proof is a constant sized NIZK proof of knowledge for a plaintext. Security is proven
in the ROM assuming an IND-CPA additively homomorphic encryption scheme. The verifier’s public
key is reusable, can be maliciously generated and is linear in the number of proofs to be verified.

Update August 2023: Samuel Ranellucci reported a serious security issue with the sigma protocol
in Fig. 2. Please see Section 1.2 for more details.

1 Introduction

A zero-knowledge proof consists of a prover that demonstrates to a verifier that a statement is true
while revealing no information about the witness. Sigma protocols [62, 29] are a special type of
zero knowledge proof that avoid expensive NP encodings and work naturally with many popular
non-general relations. Sigma protocols enjoy negligible soundness-error in groups of known order.
The story is different in groups of hidden order where negligible soundness can only be achieved
by running O(λ) sigma protocols in parallel [6, 64], thus multiplying the prover, proof size, and
verifier costs by O(λ).

In the common reference string model [11], a negligible soundness-error of hidden order group
sigma protocols can be directly linked to hardness assumptions such as the strong-RSA [9, 43, 36,
28]. However, relying on hardness assumptions introduces an avenue for subversion: we can make
no guarantees about any hardness assumption when a malicious prover corrupts the parameters of
the hidden order group. For the prominent case of RSA-groups, i.e., multiplicative groups over the
ring ZN with N = p× q, subversion is easy because one can compute the order of the group given
the factorization, p and q.

To date, no natural6 protocol for general homomorphism-languages with hidden order co-domain
has negligible soundness-error (without repetitions), and at the same time does not rely on compu-
tational assumptions over the co-domain. Indeed, the task of constructing zero-knowledge proofs
over subverted RSA-groups is exceedingly challenging; strictly more so than over traditional hidden

⋆ Most of the work was done while the first and third authors were interns at Ethereum Foundation.
6 By ’natural’ we mean a protocol that works directly for the underlying language and does not involve NP-reductions.

order groups that are correctly formed. One can make no guarantees about how the modulus was
generated and the Fiat-Shamir challenges can be continuously sampled until one from a malicious
distribution is found.

Our question. We thus put forward the question:

Can one build a generalised sigma-protocol in subverted RSA-groups achieving negligible
soundness-error without repetitions?

Our answer to this question is affirmative assuming a designated-verifier; we provide and prove
secure a construction in the designated verifier model [35, 58]. Currently the only known method to
construct RSA-groups is via a trusted setup [49]. Generating secure RSA parameters with a MPC is
an extremely challenging task to realise in practice and to date no large scale RSA-MPCs have ever
been completed. Our work thus provides an exciting avenue for numerous results in RSA-groups to
remain applicable in subverted settings.

Subverted RSA groups are primarily interesting because they are a rare instantiation for groups
of unknown order. The only known alternative for building hidden order groups is class groups,
that can also be used to build ZKPs (e.g. [27]). In high contrast to RSA groups, cryptanalysists
have only recently started focusing on class groups and we are still learning the best practices for
choosing the parameters for implementation [41, 51, 53].

Further, the potential for N to be subverted is a delicacy which is rarely considered when using
the additively homomorphic Paillier [57] encryption scheme. Here subverted parameters should be
considered the default because participants can choose their encryption modulus N . Nonetheless,
the handling of subverted parameters is a detail that is often overlooked in protocols that use
Paillier. For example, in the influential paper by Hazay et al. [49], we see that they require a
subversion resistant zero-knowledge range proof to realise their multiparty MPC but that none of
their suggestions are subversion resistant. For more detail see Appendix A . As a second example,
in the Damgard-Jurik voting scheme [39], they assume that a modulus N is generated by a trusted
third party. If it were instead chosen by an election authority — which is a likelihood in real world
systems — then this modulus could certainly be subverted. By colluding with just a single voter, the
authority could provide verifying proofs of faulty encryptions and thus entirely decide the election
result.

1.1 Our Contributions

In this paper we investigate zero-knowledge proofs under subverted RSA parameters. This is an
extremely adversarial setting where the modulus N can be factorised by the prover but not by the
verifier. We make no assumptions about ideal properties of the modulus: for example we can have
that N is smooth or even that the prover knows the factorisation of N .

Our first contribution is a new extraction method for extracting a witness inside general homo-
morphisms. This extraction technique is completely new to the literature. We use this technique
through a designated-verifier protocol, named DVProt, which answers affirmatively the main ques-
tion of this work introduced in the previous section. A substantial caveat for our extractor is that
the challenges used by the sigma protocol are encrypted under the designated verifiers secret key
(which importantly is independent from the potentially subverted N). Our extractor should fail if
the adversary could decrypt the challenges, thus we describe the general extraction method and

2

reduce the probability of the extractor failing to an adversary’s advantage against IND-CPA. At the
heart of our extraction method is an information-theoretical lemma about the distribution of the
challenges extracted, which we prove to hold unconditionally. Exemplifying the extraction method,
and as a stepping stone towards the second contribution, we explain how to make the DVProt pro-
tocol practical, with reusable and potentially maliciously generated verifier’s public key. Our main
results are in the random oracle model however we also provide an optimised version in the generic
group model.

Using our extraction technique we arrive at our second contribution, namely a zero-knowledge
designated verifier range proof for Paillier encryptions under subverted modulus with negligible
soundness, which we call DVRangeProt. The protocol prevents a prover from encrypting a value
outside the range even if the prover chooses the encryption key. Our proof is non-interactive (in
the random oracle model) and has negligible soundness error without parallel repetitions. Security
is proven in the RO model under the assumption that Paillier is IND-CPA. Our techniques for
proving security are potentially of independent interest and described in more detail in Section 1.4.
We discuss how our range proof can be applied for non-injective homomorphisms in Appendix C.3.

The verifier’s public key has size O((λ + Q) logN) for N a Paillier modulus, λ the security
parameter, and Q the number of proofs the verifier will respond to. Our protocol does not require a
common reference string; being DV the (designated) verifier inherently runs a setup to generate their
potentially malicious key. To ensure zero-knowledge holds against all verifier keys we describe a non-
interactive publicly verifiable key generation algorithm. In more detail, the verifier runs a publicly
verifiable range proof to demonstrate that the verification public key (VPK) contains ciphertexts
in the correct range. We apply amortisation techniques by Cramer et al. [31] (in Section 4.3) to
minimise the cost of this range proof. The key generation process is relatively expensive and can
be avoided in scenarios where the verifier only needs to retrospectively prove honest behaviour by
revealing the secrets behind their public key. Such scenarios are common in applications such as
MPC with identifiable abort (ID-MPC, [50]).

1.2 An issue with the relations of our protocols (Update August 2023)

Please be aware that a serious error was reported to us in August 2023. We have kept this work
available for historical purposes but at present we cannot recommend its use in real world sys-
tems. We would like to thank Samuel Ranellucci not only for finding the mistake but also for
communicating it to us in a professional manner.

The claim that our protocols can prove relations of the form Y = ψ(w), ψ : D → H is incorrect.
In fact, the extractors of our protocols can only extract w for the relaxed statement Y = u · ψ(w),
where u ∈ H is a element of low (poly(λ)) order. In (non-subverted) groups of unknown order such
as Class Groups or the coset of an RSA group Z∗

N/{1,−1} elements of low order cannot be found
(computationally in the former, information-theoretically in the latter). Therefore over these groups
our protocols can prove the exact statement Y = ψ(w) and this issue doesn’t appear. However,
in Subverted RSA groups, it cannot be excluded that low order elements exist, thus our protocols
over Subverted RSA groups only prove statements of the relaxed form (Y, ψ;u,w) : Y = u · ψ(w).
It is application-dependent whether this relaxed statement can be meaningful or not.

Technically, in the proof of 4.1, in case 4.1 (and 4.2) it is not true that (ψ(s
(j)
1)Y −1)c

(j)
= 1

translates to ψ(s
(j)
1)Y −1 = 1 but in fact it can traslate to u · ψ(s(j)1)Y −1 = 1 if uc

(j)
= 1. That

3

happens with noticeable probability only if u is a low order element of order ℓ and ℓ is a factor of
c(j) (the latter happens with probability ≈ 1/ℓ).

In future we plan to make a holistic update to the paper to remove any false claims.

1.3 Related Work

In composite order groups the standard Σ-protocol has knowledge error of only 1/2 [6]. For a
negligibly small extraction error one needs to run the protocol λ times in parallel (for λ the security
parameter). This induces an O(λ) multiplicative overhead. There are many different approaches in
the literature to proving composite group statements more efficiently which we summarise here.

Proofs over groups of unknown order. An intensive line of work focuses on constructring
efficient zero knowledge proofs for relations over groups where the order is unknown to all parties.
Examples include the Fujisaki-Okamoto solution [43, 36, 28], the protocols of [19, 8] and the solution
by Boneh et al. [13]. These are computationally-sound and thus would be insecure subverted RSA
groups where the prover knows the group order. For specific relations, [39, 37] present efficient
protocols where the prover knows the order of the group, however they are sound only when the
RSA group is correctly formed. The work of Cramer et. al. [30, 31] presents a transformation that
allows the protocol to have negligible soundness error when proving λ statements simultaneously.
For a single proof it cannot be applied. Finally, Bangerter et al. [6] and Terelius et al. [64] show a
lower bound on soundness error for constant round sigma-like protocols in the standard model (no
CRS, no RO), that translates to 1/2 for common parameters.

Proving RSA relations with zk-SNARKs. Many zk-SNARK proof systems are both general
enough to encode any NP circuit and efficient enough to be used in practice. Thus we can prove
relations about subverted RSA groups by representing them with an arithmetic circuit or similar.
Ozdemir et al. implement an RSA based accumulator inside a SNARK [56]. Their work improves
upon xJsnark [52]. Using Ozdemir et al.’s BigNat library7 we compute the size of the Paillier
knowledge-of-plaintext circuit at 80 million gates for 2048 bit N . This is towards the upper end of
what can feasibly be computed with a SNARK. To the best of our knowledge the biggest circuits
currently in production have about 100-million constraints and take minutes to compute even on
specialist hardware8. Our work does not require a reduction to NP and therefore we avoid this
prover overhead, however we do require a designated verifier.

Range proofs in the RSA setting. In this work we present range proofs for RSA-like relations
(e.g Paillier encryption), or generally (additive) homomorphisms with unknown co-domain. Varia-
tions of basic Schnorr-like Σ-protocol exist for RSA-like range relations [42, 26, 21, 36, 19, 12, 28].
Boudot [15] presents the first range proof for general range [L,R] with slackness 1 (i.e. the message
lies exactly in m ∈ [0 . . . R] as opposed to some extended range m ∈ [0 . . . δR]). Further [15] uses a
so-called four-squares integer decomposition property, a technique which is later used and improved
in [54, 47, 66]. None of these works consider a subverted modulus.

7 https://github.com/alex-ozdemir/bellman-bignat
8 https://research.protocol.ai/sites/snarks/

4

https://github.com/alex-ozdemir/bellman-bignat
https://research.protocol.ai/sites/snarks/

Proofs of correct form of moduli. An orthogonal to the above line of work intends to prove
that the group itself is not subverted [65, 44, 20, 10, 3, 45], meaning that the modulus N of the
RSA group has some beneficial property; for example is square-free, a product of two primes,
a product of equally-sized primes, a Blum integer or a product of two safe primes, etc. Other
works consider proving that moduli are correctly formed in the context of specific applications as
password-based key agreement [24] or threshold ECDSA signatures [22]. All these solutions require
parallel repetitions of the sigma protocol to reach a negligible soundness-error. Furthermore, to
apply computationally-sound protocols for general homomorphisms (such as Fujisaki-Okamoto)
over the group afterwards, one needs to prove that the RSA group is a product of two safe primes.
Proving that an RSA group is the product of two safe primes is considerably more challenging than
just proving biprimality [20].

1.4 Overview of Techniques

In this work we design efficient designated-verifier ZK protocols for knowledge and range of RSA
group homomorphisms, which have negligible soundness error without repetitions even when the
group is maliciously chosen. The main unifying ideas of all our techniques are (1) an alternative
approach to Σ-protocols’ witness extraction and (2) a careful realisation through homomorphic
encryption with respect to (also potentially subverted) verifier’s modulus, which allows hiding
protocol challenges from the prover in a way that prevents lower-bound attacks of [6, 64].

Let ψ : D → H be a group homomorphism where H is an RSA-related group, such as exponenta-
tiations w 7→ gw over H = Z∗

N (or multiexponentations), or Paillier encryption (w, r) 7→ (N+1)whr.
We wish to design an efficient argument of knowledge of w such that Y = ψ(w), and w ∈ {0 . . . R}
for R ∈ D ⊂ Z.

Σ-protocol soundness. The classic Σ-protocol for proving knowledge of w such that Y =
ψ(w), described in Fig. 1, is only secure if elements from D are invertible. The standard special-
soundness extractor behaves as follows: given two successful transcripts with the same first message
(a, c, s), (a, c′, s′) such that aY c = ψ(s) and aY c′ = ψ(s′) and c ̸= c′ it combines the two:

aY c = ψ(s) aY c′ = ψ(s′)

from which it gets Y = ψ(s− s′)(c−c′)−1
= ψ((s− s′)(c− c′)−1). When H is a group of public prime

order p, as in case of the Schnorr protocol, this strategy always succeeds, because (c− c′)−1 mod p
is efficiently computable. However, when H is a maliciously chosen RSA group, the extractor has
two problems. First, it does not know the order of the group and thus can only compute (c− c′)−1

when c − c′ = 1 (in this trivial case Y 1 = ψ(s − s′), and s − s′ is the witness). This limitation is
similar to the hardness of taking roots in groups of unknown order. Second, some inverses (c−c′)−1

do not exist because it is possible that gcd(c− c′, ord(D)) ̸= 1 for a maliciously chosen N .

In fact the impossibility results of [6, 64] show that the above extractor fails for any group H
whose order is not publicly known, such as RSA groups.

A generalized extraction lemma. Towards constructing an efficient protocol with negligible
soundness error, our starting point is a generalized extraction approach. Assume that our extractor

5

Prover P(x) Verifier V(Y)

r ←$ D; a = ψ(r) a
c←$ {0, 1}λc

s = r + cx s
Return aY c ?

= ψ(s)

Fig. 1. A Σ-protocol for the relation containing elements (Y,w) such that Y = ψ(w), where ψ is
a general homomorphism. This protocol is only knowledge sound if elements from D are invertible.

has M ≥ 3 successful transcripts9 {(a, ci, si)}Mi=1 such that:

aY c1 = ψ(s1) aY c2 = ψ(s2) . . . aY cM = ψ(sM)

then combining the first with the rest we get the equivalent:

Y c2−c1 = ψ(s2 − s1) . . . Y cM−c1 = ψ(sM − s1)

Now if gcd(c2 − c1, . . . , cM − c1) = 1 then we can always compute coefficients γ2, . . . , γM such that
γ2(c2 − cm) + . . .+ γM (c2 − cM) = 1, which means:

Y 1 = Y γ2(c2−c1)+...+γ2(cM−c1) = ψ(γ2(s2 − s1) + . . .+ γM (sM − s1))

so s∗ = γ2(s2 − s1) + . . .+ γM (sM − s1) is a valid pre-image.
This extraction technique succeeds as long as gcd(c2 − c1, . . . , cM − c1) = 1. If we had an

honest prover and the ci challenges were truly random and independent, then well-known results
from mathematics show that this happens with probability 1/ζ(M), for ζ being the zeta Riemann
function. This probability is overwhelming (negligibly close to 1) as a function of M .

However, a malicious prover may choose not to respond upon receiving certain challenges c, so
that gcd(c2 − c1, . . . , cM − c1) ̸= 1. As an example they can choose only to answer even challenges.
The natural conclusion is that for this generalized extraction to work we need the (adversarial)
prover to be oblivious to the challenges it answers.

Designated verifier techniques. We bootstrap the protocol of Fig. 1 to a secure one (with
negligible soundness error) in the Designated-Verifier model.

One of our key observations is that in the Designated-Verifier setting we can hide the challenge
c from the malicious prover by encrypting it with a homomorphic encryption scheme for verifier’s
public key. Then the prover computes the response to the challenge “blindly”, using additive homo-
morphism of the encryption scheme. The verifier, who possesses the secret key of the encryption,
decrypts the response normally in order to retrieve the plaintext response of the Σ-protocol. For
this we need the verifier to hold the corresponding secret key, which must be kept secret from the
prover. The public key of the designated verifier (VPK) is merely the pk of the encryption scheme
and the ciphertext ct of the encrypted challenge. The idea of encrypting a (single) challenge in the
designated-verifier public key appears in previous DV protocols [35, 25]

To prove the existence of an extractor we require M answers with different challenges from the
prover. This is clearly not possible when we encrypt just a single challenge; but we also cannot do

9 Extracting k successful transcripts is no harder than extracting 2 [1].

6

it even when we encrypt M challenges — the prover can potentially choose only to answer with
respect to the first challenge. What we require is an exponential sized challenge space. For this, we
encrypt λ sub-challenges that are chosen uniformly at random: ct1 = Enc(c1), . . . , ctλ = Enc(cλ)
and add them to the public key. Then the value P responds to is a random (0, 1) linear combination
of {ci}: c =

∑λ
i=1 bici where b = (b1, . . . , bλ) a random bitstring-challenge sampled by the verifier,

which gives rise to exponential C.
To prove soundness, the core of our security proof is an information-theoretical lemma showing

that afterM = poly(λ) linear combinations have been extracted, the probability of {bic⊤}Mi=1 being
coprime is overwhelming (assuming that ci’s were uniformly sampled and independent during the
setup).

DV with a reusable VPK. A common issue in the Designated-Verifier model is that a prover,
after seeing whether some proofs of its choice verify or not, can learn information about the VPK’s
structure and break soundness. This is the analogue of IND-CCA security of encryption schemes.
Intuitively, the verification oracle behaves in a similar manner to a decryption oracle. Additive
homomorphic encryption schemes cannot be IND-CCA and thus an attacker could use a verification
oracle to learn information about vpk. We overcome this by adding Q = poly(λ) statistical blinding
factors e1, . . . , eQ encrypted in the VPK. At each proof one of these factors is added to the linear
combination and thus statistically blinds it; thus Q is maximum number of verification queries the
prover can ask. The CRS size is thus O(1) per proof.

1.5 Comparison with Alternative Approaches

To the best of our knowledge, this work is the first that deals with the problem of constructing zero-
knowledge proofs in subverted RSA groups. On the other hand, the literature provides numerous
techniques on constructing zero-knowledge proofs in non-subverted RSA groups. It is challenging to
compare the efficiency of our scheme directly against the state-of-the-art for non-subverted solutions
because this would require fully researching how to convert multiple solutions into the subverted
setting. Instead we here briefly justify our techniques against two possible alternative approaches
that provide partial solutions to the problem.

Combine with an auxiliary group of unknown order. A possible approach to constructing
a sound proof of knowledge in the subverted RSA setting would be to combine the simple protocol
of Fig. 1 with a proof of a preimage in an established group of unknown order. That is, generate
an unknown order group G, commit to the same preimage Commit(w) and send the commitment
to the verifier. Then compose in parallel a proof of knowledge for Commit(w) (over G) and the
protocol of Fig. 1 (over the subverted RSA group). The Fujisaki-Okamoto extraction technique [43,
36, 28] gives negligible knowledge error and avoids the need for λ repetitions. However, this solution
either requires a private-coin trusted setup in case an RSA group is used as the auxiliary group of
unknown order, or must rely on class groups [17]. Solutions relying on class groups are outside the
scope of this work.

Range proof with an auxiliary prime order group. For the range proof problem for the
preimage w of a homomorphism, Y = ψ(w) with 0 < w < R, one possible approach is the following.
Generate an auxiliary prime order group G and commit to the preimage, Commit(w) over this group

7

(e.g. via Pedersen commitment). Then run in parallel the protocol of Fig. 1 for ψ(w) in the subverted
RSA group and a simple Schnorr protocol for the commitment on G, to prove that Commit(w) and
ψ(w) contain the same value. Afterwards one can use a range proof protocol in the prime order
group [18, 27] to prove the range of w. The main benefit here is that due to progress on range
proofs over prime order groups, the actual range proof block is concretely efficient.

This solution, however, inherits the soundness-error (and thus the required iterations) of the
protocol of Fig. 1. That is 1/2 for general homomorphisms 1/poly(λ) for some specific special
homomorphisms such as the (original) Paillier Encryption [6]. This leads to an overhead of O(λ)
and O(λ/ log(λ)) respectively, due to the repetitions needed.

Our work concerns with the former category, general non-special homomorphisms (such as
ElGamal-Paillier) where the overhead is O(λ), and provides a unique perspective on how to decrease
their asymptotic efficiency to O(1) which was not previously known to be possible. We achieve this
by providing and proving secure an alternative extraction technique together with an information
theoretical lemma that have no dependence on parallel executions.

2 Preliminaries

2.1 Notation

We denote the security parameter with λ; poly(λ) is any positive f(n) = O(poly(n)), and negl(λ) is
a negligible positive function. With [a, b] we denote the set {a, a+1, . . . , b}, and with [n] we denote
[1, n]. Similarly with JnK we denote the set [−

⌊
n
2

⌋
. . .
⌊
n
2

⌋
]. Adversaries are assumed to be stateful

unless stated otherwise.

Zn is the additive group of order n. We often explicitly consider interval JnK as the integer
encoding for Zn. Z∗

n is the multiplicative group of all integers in JnK coprime with n. With ϕ(·)
we denote the Euler’s totient function. US stands for uniform distribution on S as a finite set (e.g.
UZp); U[L,R] is a uniform distribution on [L,R], and UR is a shorthand for U[0,R]. In general we
denote with capital letters, e.g. Y , elements of the RSA group. In bold we denote vectors (e.g. s)
and matrices (e.g. A).

2.2 Homomorphic Encryption Schemes

In this work we engage public-key encryption schemes that have additively homomorphic properties.
That is an encryption scheme is called additively homomorphic if for every pk ∈ PK and m1,m2 ∈
M, Encpk(m1) · Encpk(m2) = Encpk(m1 +m2), where ‘·’ is a ciphertext space operation. In the rest
we assume that the message space M of the additively homomorphic schemes we refer to forms
a ring. Some known examples of additively homomorphic encryption are the Paillier cryptosystem
and its variants [57, 39, 33, 16] in the RSA setting, the Castagnos-Laguillaumie cryptosystem over
class groups [23] and schemes from lattices [46, 59]. Notably, no additively homomorphic public-key
cryptosystems from groups of prime order exist.10

10 Although the lifted ElGamal cryptosystem (alike ElGamal but the message is lifted in the exponent) is additively
homomorphic, the decryption is not polynomial-time, unless one restricts the message space to polynomial size.
This makes it unsuitable for most applications.

8

Paillier encryption scheme. We briefly recall the Paillier public key encryption scheme [57],
and refer the reader to Appendix B for more details.

KeyGen(1λ): sample p, q primes of the size λ and set N = p · q. Compute d = ϕ(N)−1 mod N2.
Output pk = N and sk = (d, ϕ(N)).

Encpk(m): sample uniformly r ←$ Z∗
N and output ct = (N + 1)mrN mod N2.

Decsk(ct): compute c = (ctϕ(N) − 1)d mod N2 and return m = c
N .

2.3 Homomorphisms and Efficient Σ-protocols

Let ψ : D → H be a homomorphism between a domain D (group or ring), and an output group H
(e.g. RSA). When Y = ψ(w), we call w a witness, and Y an instance.

A pair (v, u) ∈ Z × D is called a pseudo-preimage (PP) for instance Y = ψ(x), if Y v = ψ(u)
holds [7, 5], where v is called a degree of a given PP. Pseudo-preimages naturally occur in Σ-
protocols: the extractor usually transforms two transcripts for the same commitment a (Y cia =
ψ(si), i ∈ 1, 2) into a single PP by dividing the equations: Y c1−c2 = ψ(s1−s2), thus (c1−c2, s1−s2)
is a PP.

In prime-order groups (|H| = p) knowledge of PP implies knowledge of preimage, since inverses
in Zp are efficiently computable. In groups where the order is not prime or even unknown to V
(e.g. in Paillier H = Z∗

N2) there is another way to extract a proper preimage, but from two pseudo-
preimages: given (v1, u1), (v2, u2) with gcd(v1, v2) = 1 for any Y we can use the so-called called
“Shamir’s trick”. Given (v1, u1), (v2, u2) s.t. Y

vi = ψ(ui), i ∈ {1, 2}, it first checks if gcd(v1, v2) ̸= 1
and aborts if not. Then it computes Bezout coefficients — integers γ, δ such that γv1 + δv2 = 1,
and returns u := γu1 + δu2. This extractor succeeds, since given Y vi = ψ(ui), Y = Y γv1+δv2 =
ψ(u1γ + u2δ) = ψ(u).

Special homomorphisms. In [7], following Cramer [29], the homomorphism ψ : D → H is called
special if for any instance Y one can easily find a non-trivial PP (v̂, û) of Y (non-trivial means v̂ ̸= 0
mod |H|). Examples of special homomorphisms include Schnorr-like homomorphism11 ψ : Zq → Z∗

p,
ψ : x 7→ hx with ord(h) = q, q | (p− 1) and Paillier homomorphism12.

For special homomorphisms it is sometimes possible to build Σ-protocols with non-binary chal-
lenge spaces (and thus small soundness error) by applying Shamir’s trick to just one extracted
PP, and the special PP. This is the best known method of extraction for Paillier in the honest
setting. However, in the subverted N scenario it does not work, and binary challenges are still
optimal. This is because of the GCD condition in Shamir’s trick: A can choose N to maximize
Pr[gcd(c1 − c2, N) ̸= 1] (N is a degree of Paillier special PP); with binary challenges c1 − c2 = 1,
and GCD is always 1. Other variants of Paillier (e.g. ElGamal-Paillier [33, 16]), are not known to
be special, thus even the above extraction technique fails unless challenges are binary (c1− c2 = 1).

2.4 Designated-Verifier Arguments of Knowledge

We assume some familiarity with the notion of interactive arguments of knowledge and their stan-
dard security properties (completeness, knowledge-soundness, and zero-knowledge). In the desig-
nated verifier (DV) model, additionally to P,V programs we claim existence of a KeyGen routine

11 Its special PP is (q, 0), since Y q = ψ(0); and the PP is non-trivial: q ̸= 0 mod p.
12 From Y = GmrN we can derive Y N = (GmrN)N = G0(GmrN)N , so (N, (0, Y)) is a pseudo-preimage of degree N

(and N ̸= 0 mod ϕ(N2)).

9

that the verifier uses to create verifier’s public key (VPK). This public key is then used to inter-
act with this verifier only, and can potentially be reused multiple times. The formal definitions of
completeness, soundness with reusable VPK, and honest verifier zero-knowledge are below.

Definition 2.1 (DV Completeness). An interactive protocol (KeyGen,P,V) is statistically com-
plete w.r.t. relation R if for all (vsk, vpk)← KeyGen(1λ) and (x,w) ∈ R:

Pr[⟨P(w),V(vsk)⟩(vpk, x) = 1] = 1− negl(λ)

In the following notion we formalize soundness holding when V replies to at most Q verification
queries (reminiscent of the bounded IND-CCA decryption oracle).

Definition 2.2 (DV Reusable Knowledge Soundness). An interactive protocol (KeyGen,P,V)
is knowledge sound with soundness error κ(λ) with Q-times reusable VPK w.r.t. R if the following
holds.

Let A a malicious PPT prover, and (vsk, vpk, τ)← KeyGen(1λ, Q). Let

p(x) = Pr[⟨AOVerify(vsk,·)(1λ),V(vsk)⟩(vpk, x) = 1]

where A has access to the non-rewindable verification oracle OVerify(vsk, ·, ·) that it can query, on
any (x, π), at most Q times. Then for all x of size λ, if p(x) > κ(λ), then there exists a PPT
extractor Ext s.t. ExtA(vpk, τ, x) returns w satisfying (x,w) ∈ R, and Ext terminates in expected
number of steps poly(λ)/(p(x)− κ(λ)).

In practice, VPK is split into the verifier’s encryption key, and a part resembling a reference
string, where only this reference string has to be regenerated when the VRS is expired.

Definition 2.3 (DV Honest-Verifier Zero-Knowledge). An interactive protocol (KeyGen,P,V)
is statistical honest-verifier zero-knowledge w.r.t. R if ∀(x,w) ∈ R there exists a PPT simulator S
such that for (vsk, vpk)← KeyGen(1λ) it holds that:

⟨P(w),V(vsk)⟩(vpk, x) s≈ S(vsk, vpk, x)

We further consider the notion of zero-knowledge under maliciously generated verifier’s public
VPK. This notion captures the scenario where VPK is generated by an adversarial, untrusted verifier
which still cannot break zero-knowledge. The definition was introduced by Quach et. al. [60] in the
context of DV NIZKs, but we modify it for the interactive DV case. We note that although the
adversary can subvert the setup, we still consider the verifier honest during the protocol execution
(HVZK), having in mind Fiat-Shamir transforming this public-coin part of the interaction.

Definition 2.4 (DV HVZK Under Malicious VPK). An interactive protocol (KeyGen,P,V) is
statistical honest-verifier zero-knowledge under maliciously-generated VPK w.r.t. R if ∀(x,w) ∈ R
there exists a PPT simulator S such that for any PPT adversary A and (vsk, vpk)← A(1λ) it holds
that:

⟨P(w),V(vsk)⟩(vpk, x) s≈ S(vsk, vpk, x)

3 Our Extraction Technique

In this section we state and prove two lemmas about our novel extraction method. The first is
a generalised extraction lemma, Lemma 3.1, that describes how to extract a witness given M
accepting transcripts such that the gcd of the challenges is 1. Our second lemma, Lemma 3.2, is
the core information-theoretical lemma behind the security of our construction, which argues about
this probability of random challenges being coprime.

10

3.1 The Generalized Extraction Lemma

We consider the three-round public-coin protocol of Figure 1 where transcripts have the form
(a, c, s). In Lemma 3.1 we design an extractor that, given M valid transcripts on the same first
message, always succeeds provided that gcd(c(2)− c(1), . . . , c(M)− c(1)) = 1. The following is proven
in Appendix D.1.

Lemma 3.1. Let T =
{
(a, c(i), s(i)

}M
i=1

be a collection of M ≥ 3 successful transcripts for the

relation RHom and input Y , aY c(i) = ψ(s(i)), such that gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1. Then
there exists a PPT extractor Ext that outputs w such that Y = ψ(w) with probability 1.

3.2 Our Core Coprimality Lemma

The above generalized extraction technique is effective conditioned on the fact that differences of
the challenges in the extracted transcripts are coprime, gcd(c(2)−c(1), . . . , c(M)−c(1)) = 1. However,
this cannot be guaranteed for any malicious prover. This stems from the fact that an adversarial
prover can manipulate the c(i)’s by selectively choosing to answer successfully or not, after receiving
c(i).

Intuitively, we would like the adversary to answer independently of c(i). Then for sufficiently
large M = poly(λ), gcd(c(2)− c(1), . . . , c(M)− c(1)) = 1 would hold. To this end we let the challenges
consist of two factors: the challenge is e = bcT where b is sampled during the protocol execution
and c is a vector that is uniformly random from the point of view of the adversary. The adversary
can manipulate b because b is chosen during the protocol, but c cannot be manipulated. Looking
ahead, in Section 4 we realize this technique in the designated-verifier setting.

In Lemma 3.2 we prove an information-theoretical statement which is at the core of our construc-
tion. The distribution of values output by our extractor depend nontrivially on some adversarial
matrix B: the matrix of all b that the adversary chooses to answer successfully. Because there are
no computational restrictions on how an adversary might choose B, we require that for any B the
extractor will succeed with high probability. Lemma 3.2 is new to this work and as far as we are
aware there are no similar results in the literature.

How to interpret the lemma. As previously noted, Lemma 3.2 aims to information-theoretically
prove that M extracted accepting transcripts (on the same first message) have coprime challenges
where each challenge is b(i)cT . From the point of view of the adversary b is known but c is not,
and assumed uniformly random.

To make the applicability of the lemma more clear we briefly recall (omitting the non-relevant
details) the extractor of [1, Theorem 8] (that generalizes [34]) which obtains M accepting tran-
scripts, with the same first message, for any Σ-protocol.

Let H be the binary matrix where the rows represent the first messages α1 = ψ(r1), α2 =
ψ(r2), . . . , α|D| = ψ(r|D|) and the columns represent the different challenges b1, b2, . . . , b2λ . The
position Hi,j is 1 if the adversary can answer successfully on αi, bj and 0 otherwise. The extractor
works as follows:

– Probes different positions of H until it finds a 1.

– If it finds a first 1 it continues sampling uniformly in the same row until it finds M − 1 more
1’s (or terminates with some specific probability).

11

Attema et. al. [2] show that this extraction strategy outputs M accepting transcripts in expected
polynomial time.

Assume that the extractor succeeds in outputting the M transcripts from some row i. Then
B (in matrix form) represents all the bj ’s of this row that have 1. Similarly, B′ (also in matrix
form) represents all the b(j)’s of the row that were sampled (uniformly) by the extractor, contained
1 and thus gave an accepting transcript. Lastly, for the lemma to be applied we need that B
has exponentially large number of rows > 2λ/poly(λ). Conditioned on the fact that the extractor
terminates in (expected) polynomial time this holds, otherwise the probability of the extractor to
find M 1’s in the row (in poly-time) would be negligible. Clearly then, B′ is a polynomially sized
sub-matrix of B.

We highlight that the matrix H represents the malicious prover’s strategy and it is clearly
adversarially chosen, thus so is B. For this it is important that the lemma holds for any arbitrary
B. This makes the lemma and its proof highly non-trivial.

Lemma statement. Lemma 3.2 proves the following. Assume any exponentially-large (2λ/poly(λ))
space B of binary vectors with λ coordinates. Then if we sample uniformly M = poly(λ) vectors

from this space b(1), . . . , b(M) $←− B and λ uniformly random values (from an exponentially large

space) c := (c1, . . . , cλ)←$
(
J2λK

)λ
we get that their inner products b(1)cT , . . . , b(M)cT are coprime,

except with negligible probability. This then generalizes to our final result that concerns with the
differences {b(i)cT − b(1)cT }Mi=2 being coprime.

Crucially, this holds for any space B as long as it is sufficiently large.

Lemma 3.2. Let B be any (ϵ′2λ) × λ binary matrix consisting of ϵ′2λ distinct binary rows, with
ϵ′ > 1/poly(λ). Sample:

– M = poly(λ) rows of B, ik ←$ [1, ϵ′2λ] for k = 1, . . . ,M , and set

B′ = (b(1) b(2) . . . b(M))T := (bi1 bi2 . . . biM)T

– λ uniformly random values, ci ←$ J2λK for i = 1, . . . , λ, and set

c = (c1 c2 . . . cλ)

and set (e(1) . . . e(M))T = B′c. Then:

Pr[gcd(e(2) − e(1), . . . , e(M) − e(1)) = 1] = 1− negl(λ)

the probability is over the choices of c,B′.

Proof. The proof goes as follows:

• The probability that e(1), . . . , e(M) are coprime follows from the probability that no prime num-
ber q divides all e(1), . . . , e(λ) at the same time:

Pr
[
gcd(e(1), e(2), . . . , e(M)) = 1

]
=

∏
q, prime

(
1− Pr

[
q | e(1), e(2), . . . , e(M)

])

12

where we abuse the notation with
(
q | e(1), e(2), . . . , e(M)

)
to denote (q | e(1) ∧ q | e(2) ∧ . . . ∧ q |

e(M)). The event on the right side of equation is equivalent to:
e(1)

e(2)

...

e(M)

 =


0
0
...
0

 (mod q) (1)

for every prime q.
Each e ∈ Z can be written as e = bc⊤, where b = (b1 b2 . . . bλ) ∈ {0, 1}λ, and c = (c1 c2 . . . cλ) ∈(
J2λK

)λ
. Let the matrix of all possible e’s, E resulting from B be:

E =


e1
e2
...

eϵ′2λ

 = Bc⊤ =


b1,1 b1,2 . . . b1,λ
b2,1 b2,2 . . . b2,λ
...

...
. . .

...
bϵ′2λ,1 bϵ′2λ,2 . . . bϵ′2λ,λ



c1
c2
...
cλ


• To start with, we show that for any prime q, rank(B) ≥ 1 +

⌈
logq(ϵ

′2λ−1)
⌉
over Fq. To show

this, first recall that any n linearly independent vectors over Fq span at most qn vectors: let
x1,x2, . . . ,xn ∈ (Fq)

λ be n linearly independent vectors, then their span is a1x1 + a2x2 + . . .+
anxn for ai ∈ Fq, so there at most qn different coefficients {ai}ni=1.
In our case a more fine-grained analysis shows that n linearly independent vectors span at most
2qn−1 binary vectors in Fq:

a1b1 + a2b2 + . . .+ anbn =


a1b1,1 + a2b2,1 + . . .+ anbn,1
a1b1,2 + a2b2,2 + . . .+ anbn,2

...
a1b1,λ + a2b2,λ + . . .+ anbn,λ


In our case only linear combinations that give a vector in {0, 1}λ are valid. So for each i ∈ [λ]
we have that

∑n
j=1 ajbj,i should be 0 or 1. Take a row i∗ where not all bj,i∗ are 0 (there is such a

row otherwise all bj = 0). This row restricts the aj ’s to at most 2qn−1 valid: let the row having
k number of 0’s and n− k number of 1’s (0 ≤ k ≤ n− 1), wlog b1,i∗ = 0, . . . bk,i∗ = 0, bk+1,i∗ =
1, . . . , bn,i∗ = 1. For the 0-values any aj is valid which gives us qk combinations. For the 1-values
we have the restriction that ak+1 + . . .+ an ∈ {0, 1} and from a simple combinatorial argument
we can see that this gives 2qn−k−1 combinations. So overall at most qk · 2qn−k−1 = 2qn−1

combinations are valid.
Conversely, the minimal number of Fq-vectors that can span a set of ϵ′2λ binary vectors is
d(q) := 1 +

⌈
logq(ϵ

′2λ/2)
⌉
= 1 +

⌈
logq(ϵ

′2λ−1)
⌉
, meaning that there are at least d(q) linearly

independent rows in B. Where unambiguous, we write d for simplicity.

• Now, let B′ =
(
b(1) b(2) . . . b(M)

)T
be a matrix consisting of uniformly random rows picked

from B (the resulting b(i) are pairwise different with overwhelming probablity). Again in the
vector form:

E′ =


e(1)

e(2)

...

e(M)

 = B′c⊤ =


b
(1)
1 b

(1)
2 . . . b

(1)
λ

b
(2)
1 b

(2)
2 . . . b

(2)
λ

...
...

. . .
...

b
(M)
1 b

(M)
2 . . . b

(M)
λ



c1
c2
...
cλ


13

We claim that for any q and M = O(λ log λ), rank(B′) = rank(B) ≥ d(q) (over Fq) with
overwhelming probability.

The argument is by induction. Let the sampling (conceptually) proceed in (d− 1) steps, where
at each step i we sample k̂(i) rows of B, denote b̂(i,1), . . . , b̂(i,k(i)), until the overall sampled-
until-now rows, denoted:

B̂′
i :=

(
b̂(1,1) . . . b̂(1,k(1)) . . . b̂(i,1) . . . b̂(i,k(i))

)
have rank i i.e. rank(B̂′

i) = i. As a base case we have k̂(1) = 1 and rank(B̂′
1) = 1.

We claim that at each step i ∈ [1, d− 1] the number of samples needed (to reach rank(B̂′
i) = i)

is at most k̂(i) ≤ λ
(d−i) log q elements with overwhelming probability 1− negl(λ). In other words,

the probability to sample k̂(i) row-vectors from B and not find a vector outside the span of

the sampled in previous steps vectors B̂′
i−1 :=

(
b̂(1,1) . . . b̂(1,k(1)), . . . , b̂(i−1,1) . . . b̂(i−1,k(i−1))

)
is

negligible. To see this, assume that rank(B̂′
i−1) ≥ i−1 (inductive hypothesis) and consider the

probability for a single uniformly sampled b̂(i,1) to be in the span of B̂′
i−1:

Pr
[
b̂(i,1) ∈ Span(B̂′

i−1) | b̂(i,1) ←$ B
]

=
| Span(B̂′

i−1) ∩B|
|B|

≤ 2qi−2

ϵ′2λ
=
qd−(d−i+2)

ϵ′2λ
=

1

qd−i+2

q1+⌈logq(ϵ′2λ−1)⌉

ϵ′2λ

≤ 1

qd−i+2

qlogq(ϵ
′2λ−1)+2

ϵ′2λ
=

1

2qd−i

<
1

qd−i

The first (≤) transition is crucial: in Fq the maximum number of binary vectors that is spanned
by a n-dimensional subspace is at most 2qn−1, so any initial matrix B cannot contain over-
whelmingly big subspaces of low rank.

This argument generalizes: if we sample k vectors instead of just one at each step, the probability
of them all to be in the span of previous vectors is ≤ 1/qk(d−i) for any choice of B. So when k
is chosen to be k := λ/((d− i) log q), this probability becomes 1/2λ = negl(λ). Therefore, if we
query k values at step i we will get at least one new linearly independent vector. So k̂(i) is at
most λ/((d− i) log q).
This means that in total for all steps, a uniformly random choice of

k̂(1) + . . . k̂(d− 1) ≤ λ

log q

d−1∑
i=1

1

d− i
= O

(
λ log d

log q

)

vectors, has rank d with overwhelming probability.

Hence, if we set M = O
(
λ log d
log q

)
then rank(B′) ≥ d over Fq with overwhelming probability. For

that we set M = O (λ log d) = O (λ log λ) so that rank(B′) ≥ d over any Fq, q ≥ 2.

14

• Now we want to find an M such that rank(B′) ≥ d(q) over Fq for all q = poly(λ). By a simple
union-bound argument we get thatM = O(λ log λ) ·poly(λ) = poly(λ) suffices. Therefore we set
M = poly(λ). On the other hand, for superpolynomial moduli q > poly(λ) we have rank(B′) ≥ 2
over Fq, since a single element generates at most 2q1−1 = 2 elements. This is summarized in the
following lemma:

Lemma 3.3. Let M = poly(λ) then:

rank(B′) ≥ d∗(q) :=

{
d(q), if q = poly(λ)

2, otherwise

• Now we are ready to evaluate the probability that Eq. (1) holds, for any arbitrary prime q.
Wlog assume that the first d∗(q)×d∗(q) sub-matrix has non-zero determinant (since rank(B′) ≥
d∗(q)). After Gaussian elimination we get the equivalent system of equations:



1 0 . . . 0 b̃
(1)
d+1 . . . b̃

(1)
λ

0 1 . . . 0 b̃
(2)
d+1 . . . b̃

(2)
λ

...
...
. . .

...
...

...

0 0 . . . 1 b̃
(d)
d+1 . . . b̃

(d)
λ

...
...

...
...

...





c1
c2
...
cd
cd+1
...
cλ


=



0
0
...
0
0
...
0


(mod q)

or 
c1
c2
...
cd
...

 = −



∑λ
i=d+1 b̃

(1)
i ci∑λ

i=d+1 b̃
(2)
i ci

...∑λ
i=d+1 b̃

(d)
i ci

...


(mod q)

Since c1, . . . , cλ are uniformly sampled and independently the above probability is (1/q)d (for

any b̃
(j)
i). Therefore

∏
q, prime

(
1− Pr[q | e(1), . . . , e(M)]

)
≥

∏
q, prime

(
1− 1

qd∗(q)

)

15

Now we discern two cases. For polynomial-size primes, q = poly(λ):

∏
q=poly(λ)
q prime

(
1− 1

qd∗(q)

)
=

∏
q=poly(λ)
q prime

(
1− 1

q1+⌈logq(ϵ′2λ−1)⌉

)

≥
∏

q=poly(λ)
q prime

(
1− 1

qϵ′2λ−1

)

>

(
1− 1

qminϵ′2λ−1

)#q

≥ 1− #q

2ϵ′22λ−1 = 1− poly(λ)

ϵ′2λ−2

= 1− negl(λ)

For super-polynomial size prime, q > poly(λ) (hence 1/q = negl(λ)), we use a more fine-grained
analysis that implicitly groups products of the same bit-size. Let Bmin and Bmax be the minimum
and maximum bit-size respectively of all the q > poly(λ):∏

q>poly(λ)
q prime

(
1− 1

qd∗(q)

)
=

∏
q>poly(λ)
q prime

(
1− 1

q2

)

=

Bmax−1∏
k=Bmin

2k+1∏
q=2k

q prime

(
1− 1

q2

)

>

Bmax−1∏
k=Bmin

(
1− 1

q2min

)#q

≥
Bmax−1∏
k=Bmin

(
1− 2k

(2k)2

)

=

Bmax−1∏
k=Bmin

(
1− 1

2k

)

=

Bmax−1∏
k=Bmin

(1− negl(λ))

= 1− (Bmax − 1−Bmin)negl(λ)

= 1− negl(λ)

where in the above we used the fact that e(i) ≤ λ2λ thus Bmax − Bmin > λ + log λ and that
1/qmin = negl(λ).
We conclude that

∏
q, prime

(
1− Pr[q | e(1), . . . , e(M)]

)
= 1− negl(λ)

• Finally, to conclude our proof we need to show that:

Pr[gcd(e(2) − e(1), . . . , e(M) − e(1)) = 1] = Pr[gcd(e(2), . . . , e(M)) = 1]

16

Recall that

Pr[gcd(e(2) − e(1), . . . , eM − e(1)) = 1] =

=
∏

q, prime

(
1− Pr

[
q | (e(2) − e(1)), . . . , (e(M) − e(1))

])
So we need to evaluate the probability:

Pr
[
q | (e(2) − e(1)), . . . , (e(M) − e(1))

]
=

=Pr
[
(e(2) − e(1)) = 0 ∧ . . . ∧ (e(M) − e(1)) (mod q)

]
=

=

q−1∑
k=0

Pr
[
e(2) = k ∧ . . . ∧ e(M) = k (mod q)

]
Pr
[
e(1) = k (mod q)

]
=q · Pr

[
e(2) = 0 ∧ . . . ∧ e(M) = 0 (mod q)

] 1
q

The last equality comes from the fact that Pr[e(i) = x (mod q)] = Pr[e(i) = y (mod q)] for any
x, y ∈ [q − 1] since c is uniformly sampled.

Remark 3.1. Our protocols use binary values for B. The above lemma generalizes for any choice
of domain D ⊆ Z that is polynomially bounded, |D| = poly(λ), for the elements of B.

4 Designated Verifier Proofs of Knowledge for General Homomorphisms

In this section we design a designated verifier argument of knowledge for an opening to a gen-
eral homomorphisms. We prove that there is a negligible soundness error assuming an additively
homomorphic encryption scheme that is CPA secure. Zero-knowledge holds even under subverted
parameters and it does not require a common reference string. Our proofs consist of 6 elements and
can be made non-interactive using the Fiat-Shamir transform.

We show in Section 5 that knowledge of an opening for a general homomorphism is powerful
enough to build range proofs for ciphertexts over a subverted encryption key. For now we focus on
the simpler general relation

RHom = { ψ,A w : Y = ψ(w) }

where ψ : D → H and H is a group parametrized by a maliciously generated RSA modulus N (for
example Z∗

N or Z∗
N2). Although not directly in our scope, the techniques of this sections also apply

to any group of unknown order.

4.1 The Designated-Verifier Protocol

We are now ready to present our designated verifier zero-knowledge proof system for RHom where
ψ is any additive group homomorphism.

The public-coin interactive DV protocol for RHom is run between a prover and the verifier. The
protocol is a modification of the sigma protocol in Fig. 1 to ensure soundness even for subverted
RSA groups. One of the key observations is that in the Designated-Verifier setting we can hide

17

the challenge from the malicious prover. We can thus assume that all the challenges answered are
independent, provided that they are sampled independently by the verifier. In order to hide the
challenges from the prover they are encrypted with a public key homomorphic encryption scheme.
These encrypted challenges are provided in advance inside the verifier’s public key.

Then if these encrypted challenges are linearly combined with fresh (binary) challenges, sampled
during the actual execution one can directly apply the extraction techniques of Section 3 (Lemma 3.1
and Lemma 3.2). The linear combination is performed homomorphically through the ciphertexts.

The full protocol is presented in DVProt. For ease of presentation, we first describe our protocol
incrementally: with respect to a trusted setup that always outputs (vpk, vsk) honestly and without
allowing any reusability of it; then in the next sections we incrementally present how to achieve
these properties.

Our construction makes use of any additive additively homomorphic encryption scheme with
message spaceM, randomness space R, and ciphertext space CT such that CT forms a multiplica-
tive group. For simplicity we will assume AHE to be standard Paillier w.r.t. Npk, andM to be the
ring ZNpk

for an integer Npk, although our scheme works with any AHE and ringM.13

First the key generation algorithm creates a verification key: it chooses an encryption key pair

(pk, sk) and sets the verifier’s secret key to vsk = sk. It then samples uniformly λ values, c1, . . . , cλ
$←−

J2λK (denote c = (c1, . . . , cλ)) and encrypts them under pk, ct1 = Encpk(c1), . . . , ctλ = Encpk(cλ). In
Section 4.3 we describe a protocol by which the verifier proves that their vpk is well formed, ensuring
that we achieve zero-knowledge under subverted vpk (hence without trusting the designated verifier
for the key setup).

The protocol then proceeds in 5 moves which we detail in Fig. 2. The prover essentially proves
that Y = ψ(w) by sending a = ψ(r); an encryption S of (r+cw); and a proof (T, u1, u2, u3) that the
prover knows the contents of S. The additional steps 4 and 5 that prove knowledge of the preimage
of S are there so that we can technically avoid passing vsk to the extractor to compute s. Instead
they can extract s from the additional protocol of these steps. This explains why d is sampled
from the exponentially big challenge space – the modulus in question (chosen by the verifier and
extractor) is trusted for soundness.

As usual in public-coin protocols, the interactive DVProt can be transformed into a non-interactive
one applying the Fiat-Shamir transformation (in the random oracle model).

4.2 Security

We now argue the security of our DVProt. For correctness, we only need to make sure that the
message space M of AHE is large enough to fit the largest possible s = r1 + cw. That is we
require an additively homomorphic IND-CPA secure Encryption Scheme with message space |M| >
22λ+log λ|D|.

Knowledge soundness. To demonstrate knowledge soundness we first describe an extractor that
can rewind a malicious prover and aims to output the prover’s witness. This extractor obtains
M(λ) = poly(λ) different verifying transcripts from the prover and succeeds if the gcd of the
challenges of these transcripts is equal to 1. We then describe a reduction B that succeeds at IND-
CPA whenever the extractor fails at obtaining a valid witness. The reduction queries an encryption
oracle to determine the vpk and therefore does not know the contents of the encryptions. It runs

13 As long as all elements in J2λ+1K have a multiplicative inverse inM.

18

V.KeyGen(1λ): Generate a VPK:

– Sample a key pair (sk, pk)← AHE.KeyGen(1λ) with |M| > 22λ+log λ|D|.
– Sample challenges uniformly: c1, . . . , cλ

$←− J2λK
– Encrypt them: cti = Encpk(ci) for each i ∈ [1, λ].
– Return vpk = (pk, ct1, . . . , ctλ), vsk = sk.

P ↔ V: The prover and the verifier interact as follows.

P(vpk, ψ, Y, w) V(vsk, vpk, ψ, Y)

r1
$←− J22λ+log λ|D|K

a = ψ(r1) a

b
$←− {0, 1}λb

C =

λ∏
i=1

ctbii

r2
$←− R

S = Cw · Encpk(r1; 0)

t1
$←− J22λ|D|K

t2
$←−M, t3

$←− R
T = Ct1 · Encpk(t2; 0) S, T

d
$←− J2λK

d
u1 = t1 + dw ∈ Z
u2 = t2 + dr1 ∈M

u1, u2 s = Decsk(S)

c =
∑

cibi;C =
∏

ctbii

aY c ?
= ψ(s)

TSd ?
= Cu1 · Encpk(u2; 0)

Fig. 2. DVProt: The designated-verifier Σ-protocol forRHom demonstrating knowledge of a preimage
of ψ(·). The additively homomorphic encryption scheme is instantiated with Paillier with |M| =
|Npk|. This scheme is knowledge sound for subverted RSA groups provided that the outputs of
KeyGen(1λ) are well-formed.

19

the prover and decides whether a transcript verifies or not based on whether the transcript verifies
with both possible contents. We argue that if it verifies with one of the possible contents but not
the other, then provided the domain space of ψ() is bigger than 2λ, then B can guess the contents
of the ciphertexts with overwhelming probability. We further argue that the gcd of the challenges
the prover does not see must equal 1 with overwhelming probability. Thus if the extractor fails then
B can guess which challenges the ciphertexts contain based on whether the gcd is 1 or not.

The protocol and theorem currently do not give the prover oracle access to the verifier. In
Section 4.4 we will describe an extension of our DV protocol that can give the prover this access.

Theorem 4.1 (Knowledge Soundness). The DVProt protocol is knowledge-sound in the desig-
nated verifier model, provided that the AHE is IND-CPA secure.14

Proof. Suppose that (vpk, vsk, τ)
$←− KeyGen(1λ), where τ = {c1, . . . , cλ} contains the challenges

encrypted in vpk but not the secret key sk of AHE. Assume that P∗(vpk, ψ, Y ; coin) is a malicious
prover that is run on random coins coin. We first describe an extractor Ext, that has rewindable
black-box access to the prover P∗, such that whenever P∗ outputs verifying (Y ; (a, S, T, u1, u2, u3))
ExtP

∗
(τ, vpk, ψ, Y) outputs a witness w such that Y = ψ(w). The Ext algorithm depends on two

subalgorithms, Ext0 and Ext1 where Ext0 is the extractor from Lemma 3.1, and Ext1 we present
below.

Ext1, on input τ, vpk, ψ and Y , runs P∗(vpk, ψ, Y ; coin) (on challenges b, d of its choice) until it
obtains a full (M, 2)-tree of accepting transcripts, for the same first message a. That is:

T =
{(
a, b(j), S(j), T (j), d(j,k), u

(j,k)
1 , u

(j,k)
2

)}
j∈[M],k∈[2]

and outputs T . For Ext1 we use a generic (M, 2)-special soundness extractor (see [14, Lemma 1]
and for a more fine-grained analysis [2, Lemma 5]), that efficiently finds such a tree. As we argue
later we set M = poly(λ).

More specifically, Ext1 proceeds as follows. It probes P∗ on randomly sampled coin, b, d until it

obtains
(
a, b(1), S(1), T (1), d(1,1), u

(1,1)
1 , u

(1,1)
2

)
such that T (1)(S(1))d

(1,1)
= (C(1))u

(1,1)
1 Encpk(u

(1,1)
2 ; 0),

where C(1) =
∏λ

i=1 ct
b
(1)
i
i . Since it does not have vsk it cannot directly decrypt S(1) to s(1) and check

whether aY c(1) = ψ(s(1)). For this it continues probing P∗ on the same coin and b(1) until it obtains

a second
(
a, b(1), S(1), T (1), d(1,2), u

(1,2)
1 , u

(1,2)
2

)
such that T (1)(S(1))d

(1,2)
= (C(1))u

(1,2)
1 Encpk(u

(1,2)
2 ; 0).

So we have:

T (1)(S(1))d
(1,1)

= (C(1))u
(1,1)
1 Encpk(u

(1,1)
2 ; 0)

T (1)(S(1))d
(1,2)

= (C(1))u
(1,2)
1 Encpk(u

(1,2)
2 ; 0)

or

(S(1))d
(1,1)−d(1,2) = Encpk(u

(1,1)
2 + c(1)u

(1,1)
1 − u(1,2)2 − c(1)u(1,2)1)

From assumption gcd(d(1,1) − d(1,2), N) = 1 (given that the largest prime factor of N is larger that

|d(1,1) − d(1,2)|) so the inverse
(
d(1,1) − d(1,2)

)−1
exists inM and Ext1 extracts s(1) = s

(1)
2 + c(1)s

(1)
1

14 We further assume that if ZN is the message space, then the largest factor of N is larger than 2λ+1, which is the
case for example in Paillier.

20

such that S(1) encrypts s(1) (under some randomness unknown to the extractor) where

s
(1)
1 =

(
u
(1,1)
1 − u(1,2)1

)(
d(1,1) − d(1,2)

)−1
mod N

s
(1)
2 =

(
u
(1,1)
2 − u(1,2)2

)(
d(1,1) − d(1,2)

)−1
mod N

From here Ext1 can verify aY c(1) = ψ(s(1)) to confirm if the two transcripts are accepting or not. It
continues in a similar manner until it obtains a full (M, 2)-tree of accepting transcripts T . Whenever
P∗ convinces V with non-negligible probability Ext1 computes the decryption of S(1) in polynomial
time thus the probability that Ext1 accepts a false transcript is negligible.15

Now, the extractor Ext behaves as follows. It runs T ← ExtP
∗

1 (τ, vpk, ψ, Y) and computes c(j) =

b(j)cT =
∑λ

i=1 cib
(j)
i . If gcd(c(2) − c(1), . . . , c(λ) − c(1)) ̸= 1 it aborts. Else it computes s(j) as

shown above (where it holds that s(j) = Decsk(S
(j))) for each j ∈ [M] and runs w ← Ext0(ψ, Y ;

(a, c(1), s(1)), . . . , (a, c(M), s(M))) and returns w.
We first see that Ext runs in polynomial time provided that the adversary P∗ has non-negligible

probability of success. So either ϵ(λ) is polynomial in λ or P∗ only convinces V with negligible
probability. Let ϵ(λ) > 1/poly(λ) denote the probability that P∗ convinces an honest verifier on
input (ψ, Y). By Lemma 3.1 we have that Ext0 runs in polynomial time. For the runtime of Ext1
we rely on [2, Lemma 5] which shows that Ext1 runs in expected time O(λ

ϵ−(M−1)/2λ
), which is

polynomial (since we assumed that ϵ is non-negligible).
We must now show that Ext only aborts with negligible probability. This occurs if and only if

gcd(c(2)− c(1), . . . , c(M)− c(1)) ̸= 1 with non-negligible probability. In order to show this, we design
an adversary B against IND-CPA that, using Ext, wins the IND-CPA game:

BOEnc(pk)

c1, z1, . . . , cλ, zλ
$←− J2λK

cti
$←− OEnc(ci, zi) for i ∈ [λ];

vpk← (pk, ct1, . . . , ctλ)

coin
$←− [1, 2λ]; j ← 1

while j < M : (transj,1, transj,2)← P∗(vpk, ψ, Y ; coin)

if aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1) and aY z(j) ̸= ψ(s

(j)
2 + z(j)s

(j)
1) return 0

if aY c(j) ̸= ψ(s
(j)
2 + c(j)s

(j)
1) and aY z(j) = ψ(s

(j)
2 + z(j)s

(j)
1) return 1

if aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1) and aY z(j) = ψ(s

(j)
2 + z(j)s

(j)
1) j ← j + 1

if gcd(c(2) − c(1), . . . , c(M) − c(1)) ̸= 1 return 0

if gcd(z(2) − z(1), . . . , z(M) − z(1)) ̸= 1 return 1

where we denote c(j) = b(j)cT and z(j) = b(j)zT .

Case 4.1. First we show that if aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1) and aY z(j) ̸= ψ(s

(j)
2 + z(j)s

(j)
1), then with

overwhelming probability the encryptions contain c1, . . . , cλ and B succeeds.

The fact that aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1) can be rewritten as:(

aψ(−s(j)2)
)
=
(
ψ(s

(j)
1)Y −1

)c(j)
15 For ease of exposition we keep the description simple. We omit the technical details of special soundness extractors

related to aborting senarios, that ensure termination in polynomial time(see lemma 5, [2]).

21

Assume that cti ̸= Encpk(ci) then P∗ gets no information about c1, . . . , cλ, so they are perfectly
hidden. This means that from the point of view of P∗ these are uniformly random over J2λK,
which makes the above happen with probability 2−λ (considering also that |H| > 2λ), unless

aψ(−s(j)2) = ψ(s
(j)
1)Y −1 = 1. Now, since aY z(j) ̸= ψ(s

(j)
2 + z(j)s

(j)
1) then a ̸= ψ(s

(j)
2) or Y ̸= ψ(s

(j)
1).

We conclude then that, except with negligible probability 2−λ, {cti}i contain encryptions of ci.

Case 4.2. Second, we use the same argument as in the previous case to claim that if aY c(j) ̸=
ψ(s

(j)
2 +c(j)s

(j)
1) and aY z(j) = ψ(s

(j)
2 +z(j)s

(j)
1), then with overwhelming probability the encryptions

contain z1, . . . , zλ and B succeeds.

Case 4.3. Third we argue that if the extractor Ext fails then B succeeds. Indeed we have from the

first two cases that transcripts only verify if both aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1) and aY z(j) = ψ(s

(j)
2 +

z(j)s
(j)
1). If the encryptions contain c1, . . . , cλ then Ext only fails if gcd(c(2)−c(1), . . . , c(M)−c(1)) ̸= 1.

In this case B correctly guesses.

If the encryptions instead contain z1, . . . , zλ then Ext only fails if gcd(z(2)−z(1), . . . , z(M)−z(1)) ̸=
1. In this case B guesses correctly unless gcd(c(2) − c(1), . . . , c(M) − c(1)) ̸= 1. The (c1, . . . , cλ) are
uniformly distributed values that are perfectly hidden from the prover and the extractor. Indeed,
the encryptions contain no information and, by the first two cases, the behaviour of the extractor is
entirely determined by the verification with respect to z1, . . . , zλ. So the probability that gcd(c(2)−
c(1), . . . , c(M) − c(1)) = 1 is overwhelming (see Lemma 3.2). We thus argue that if Ext fails then B
succeeds with overwhelming probability.

Indeed Lemma 3.2 shows that Pr[gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1] = 1− negl(λ).

To see why Lemma 3.2 applies in our case, B corresponds to the matrix containing all the
challenges b which the adversary can successfully answer, when the first message is a. Since the
extractor was able to obtain M such challenges in (expected) polynomial time, this means that B
is at most polynomially smaller than 2λ: there exists ϵ′ > 1/poly(λ) such that |B| = ϵ′2λ. We can
show this by contradiction, assume that ϵ′ = 1/ω(poly(λ)), then the expected time for Ext to find
a successful answer would be non-polynomial ω(poly(λ)). Finally, B′ corresponds to the matrix
consisting of the challenges in T .

Zero-knowledge. To demonstrate zero-knowledge we will provide a simulator and argue that
the simulators outputs are indistinguishable from the honest provers. We make use of a standard
blinding lemma (see Appendix F).

The main HVZK result is as follows :

Theorem 4.2 (Honest Verifier Zero Knowledge). DVProt is statistical honest-verifier zero-
knowledge for the relation RHom.

Proof. Deferred to Appendix D.2.

Since our DV protocol is essentially Schnorr-like, the simulator is almost as usual: it samples
response values uniformly (since they are properly blinded in the honest protocol), and generates
(encrypted) challenges using verifier’s equations. The only difference is that one challenge is an
encryption value. Also the proof assumes honest CRS setup.

22

4.3 Malicious VPK Generation

The DVProt protocol in the previous section assumes that the verifier’s public key is trusted. In
particular, zero-knowledge only holds on the condition that cti contains plaintexts ci ∈ J2λK for all
i. In this section we explain how to generate a vpk in a way that prevents dishonest verifiers from
breaking zero-knowledge of our DV construction.

The malicious-verifier alternative key generation procedure is presented in Fig. 3 below. We
edit the setup algorithm such that the verifier must provide a range proof on the ciphertexts it
generates for vpk.

We prove range of the VPK ciphertext efficiently with SigmaRangeAProt, presented in Ap-
pendix E, together with its security proof. The protocol follows the transformation by Cramer
et al. [30, 31] allowing to increase performance when proving multiple instances simultaneously;
however our instantiation has a number of differences from the original transformation. The range
proof comes with a slack: a verifying π on the prover’s side guarantees that when ci ∈ J2λK, the
resulting messages in the ciphertexts cti of vpk are in the extended interval J23λ+log λ−1K (the slack
is 22λ+log λ−1). Therefore the encrypted sum-challenge P replies to is in J23λ+2 log λ−1K. To preserve
zero-knowledge we must increase the blinding parameter r1 on the prover’s side to this value, mul-
tiplied by |D|. This in turn requires us to increase AHE |M| to |D|23λ+2 log λ, to be enough to fit
the new s = r1 + cw

s≈ r1.

V.KeyGen(1λ): Generate a VPK together with well-formedness proofs:

– Sample (sk, pk)
$←− AHE.KeyGen(1λ) with pk = Npk > |D|24λ+2 log λ.

– c1, . . . , cλ
$←− J2λK; cti = Encpk(ci) for i ∈ [1, λ]

– Obtain proof π1 by running [45, Protocol PPaillier−N] to certify that gcd(Npk, ϕ(Npk)) = 1
– Obtain range proof π2 by running SigmaRangeAProt for x = {cti}, w = {ci}λi=1, using

range bound R = 2λ

– Return vpk = (pk, {cti}λi=1, π1, π2), vsk = sk

P(vpk = (pk, {cti}λi=1, π1, π2), ψ, Y, w):

– Verify π1 w.r.t. pk = Npk

– Verify π2 w.r.t. {cti} and R = 2λ−1

– Pick r1 ←$ J24λ+2 log λ−1|D|K
– Proceed as the honest prover in DVProt

Fig. 3. Alternative key generation protocol for the DVProt protocol.

In addition to this, we also must prove that verifier’s public key Npk gives rise to an injective
Paillier instantiation, since otherwise the statement of the range proof is not useful , as we explain
in Appendix C.3. For this we use [45, Protocol PPaillier−N, Sec. 3.2] — it is public-coin, so can be
executed non-interactively (using FS); it proves gcd(Npk, ϕ(Npk)) = 1, which is enough to achieve
injectivity of Paillier; and it is quite efficient, only taking a few percent of all KeyGen computations.

23

Theorem 4.3. Protocol DVProt, augmented with KeyGen and P from Fig. 3, is statistical honest-
verifier zero-knowledge under malicious VPK for the relation RHom.

Proof. Deferred to Appendix D.3.

4.4 Reusable VPK

In this section we present DVReusableProt(Fig. 4), a modification of DVProt, in which vpk is reusable
Q = poly(λ) number of times. This means the prover can query the verifier to learn whether their
response verifies up to Q times. We achieve this by adding Q encrypted challenges to the vpk. The
result is that both the communication and the computation complexity related to vpk generation
and verification can be amortized down to O(1) per query.

V.KeyGen(1λ, Q):

– Sample a key pair (sk, pk)← AHE.KeyGen(1λ) with |M| > 23λ+log λ|D|
– Sample challenges uniformly c1, . . . , cλ

$←− J2λK and cλ+1, . . . , cλ+Q
$←− Jλ22λK

– Encrypt them cti = Encpk(ci) for each i ∈ [λ+Q]
– Initialize U ← ∅
– Return vpk = (pk, ct1, . . . , ctλ+Q), vsk = sk

P(vpk, ψ, Y, w, κ)↔ V(vsk, vpk, ψ, Y, κ): The prover and the verifier interact as in Fig. 2, except:

– Both parties take as input the round index κ
– r1 is sampled from Jλ23λ|D|K
– P replies w.r.t. C = ctλ+κ

∏λ
i=1 ct

bi
i

– Before running the final checks, V checks if κ
?
∈ U , and if yes, updates U ← U ∪ {κ}

– V runs checks as before, but w.r.t. c = cλ+κ +
∑
cibi

Fig. 4. DVReusableProt: A variant of our DVProt with Q-times reusable VPK. Here the prover and
verifier agree in advance on the instance κ of the protocol being run, and V makes sure each κ is
used once.

For the basic DVProt it is possible to show an attack in which an adversarial prover, interacting
with the verifier many times, uses the information of whether a (malicious) proof of their choice
verifies or not in order to learn plaintext challenges ci in the vpk. This in turn defeats the purpose
of hiding the challenges, and prevents extraction, breaking soundness.

To overcome this we introduce additional challenge blinders. First, we sample ĉκ of size at least
λ22λ per query, encrypt them to ĉtκ, and add them all to the VPK. Then we use ĉtκ in the final
challenge C = ĉtκ

∏
i ct

bi
i (for a challenge bit-vector b) so that ĉκ statistically hides

∑
cibi since ĉκ

is at least 2λ larger. This means that the adversary statistically learns no information about {ci},
but only about ĉκ. Each challenge ĉκ must be used exactly once, which is enforced by V.

The final challenge size now grows to λ22λ, which means r1 must be sampled from Jλ23λ|D|K,
and |M| of verifier’s AHE must be bigger than this value.

24

Theorem 4.4. DVReusableProt is a complete, honest-verifier zero-knowledge protocol in the designated-
verifier setting, that has knowledge-soundness with Q-times reusable VPK for any polynomial Q(λ).

Proof. Deferred to Appendix D.4.

4.5 Malicious and Reusable VPK

Techniques from the two previous sections can be combined. The reusable VPK from Section 4.4
can also be generated maliciously with the same technique from Section 4.3.

The batched range proof now must also cover new “bigger” challenges introduced for reusability.
From the perspective of efficiency of amortized SigmaRangeAProt it is optimal to batch exactly n = λ
instances together. Thus we will prove challenge ranges of ci in batches of size λ, where first batch
uses range bound R1 = 2λ (corresponding to small ciphertexts), and the following Q/λ batches use
R2 = λ22λ. When λ ∤ Q, SigmaRangeAProt instance can be padded with dummy values.

Given 2λ+log λ−1 slack of the range proof, we must sample r1 ∈ J25λ+2 log λ|D|K; and |M| must
be chosen to be bigger than this r1.

4.6 Efficiency Optimization in the Generic Group Model

Here we describe a variant of the DVProt protocol that consists of 3 rounds (instead of 5) and thus
saves 4 elements from the proof size. The protocol transcript simply consists of (a, b, S) omitting
T, d, u1, u2, u3 together with the last two rounds.

In DVProt the last three messages T, d and (u1, u2, u3) are used to prove that S is a well-formed
ciphertext. Namely, the extractor of Theorem 4.1, at each accepting transcript should be able to
obtain an s(j) such that S(i) = Encpk(s

(j)). We observe that if we instantiate the encryption scheme

with the variant of Paillier with randomness in the exponent (S(j) = (N + 1)s
(j)
hr, we will refer

to this variant as “lite Cramer-Shoup”, see [16]), then our extractor can obtain s(j) for free in the
generic group model [63, 55] (GGM).

GGM for unknown order groups has been established [40, 13] in a similar manner to the original
model. For this optimization we make use of this model. For knowledge-soundness we assume that
the group generated for the Paillier encryption is honest (it’s part of VPK), thus the model applies
normally.

The following proof is almost identical to that of Theorem 4.1 except that the extractor now
uses whitebox access to the prover instead of the rewinding argument to find a representation for
S.

Theorem 4.5 (Knowledge Soundness). The optimised DVProt described above is knowledge-
sound in the generic group model provided that the AHE is IND-CPA secure.

Proof. Deferred to Appendix D.5.

5 Designated Verifier Range Proof

In this section we construct DVRangeProt — a zero-knowledge argument of knowledge for the range
of the pre-image of general homomorphisms. Formally, we are interested in the relation:

RHomRange =
{
(ψ, Y,R);x : Y = ψ(x) ∧ x ∈ [0, R]

}
25

where ψ : D → G and G is a group parameterised by a (possibly subverted) RSA modulus N .
We use our designated-verifier protocol of Section 4, that is able to extract the witness using the
extraction strategy of Lemma 3.1.

On top of that, we use the range proof from [28] for RSA groups, to achieve the final range pro-
tocol. In particular, we choose this protocol to prove range since it is the state-of-the-art for (exact)
range proofs over (non-subverted) RSA groups. In combination with our extraction technique gives
an (exact) range proof over subverted RSA groups.

The protocol from [28] works over an integer commitment [43, 36] c = gxhr in an RSA group
for which the order is unknown to the prover. Since we cannot assume that G is such a group
(recall that the prover might know the order of G) we let the verifier generate an RSA modulus
Ncm together with the bases of the commitment g, h, which are included in the verification key.
The prover first commits to the pre-image x in ZNcm , c = gxhr and sends c to the verifier. Then it
performs the two protocols, the opening of ψ (section 4.1) and the range proof of [28] (compiled
with the same Designated-Verifier technique), in parallel.

For completeness, we recall the aforementioned integer commitment scheme used. It works over
any group of unknown (to the committer) order such as an RSA group or a class group. In our
case, we focus on the RSA instantiation, thus the underlying group is ZNcm , where Ncm is an RSA
modulus. The commitment key consists of two random elements g, h ∈ ZNcm such that g ∈ ⟨h⟩.
In the key generation phase we sample uniformly g ←$ ZNcm and f ←$ ϕ(Ncm)

16 and output
(g, h) = (hf , h). A commitment to x is merely c = gxhr for a random r ←$ JNcm

2 K. The opening
values are (x, r) and the verification is c = ±gxhr.17 The scheme is binding under the factoring
assumption for Ncm and statistically hiding.

We present DVRangeProt in Fig. 6,and Fig. 5 describes its key generation.For ease of presentation
parts related to the range proof and the opening of ψ are visually separated, denoted as (1) and
(2) respectively. We directly present our protocol with reusable and maliciously generated vpk,
similarly to how these were presented for DVProt in Sections 4.3 and 4.4.

For the key generation, except for a secret/public key of the additively homomorphic encryption
scheme (Paillier cryptosystem), we further need an RSA modulus Ncm and the group elements g, h
to instantiate the integer commitment scheme. For zero-knowledge to hold even under maliciously
generated vpk it is important that g = hf holds. Therefore we additionally include a zero-knowledge
proof ensuring it.

Security. The above protocol consists of two sub-protocols: our protocol of Section 4.1 and the
range proof by Couteau et. al. [28] over RSA groups. Thus the security of the protocol can be
proven in a straightforward way from the security of these subprotocols. For correctness, again we
need to consider the size of the message spaceM of the encryption scheme AHE. Indeed |M| needs
to be at least as large as the maximum value encrypted, which equals τ +

∑3
i=1 xiti − 4(R − x)t,

the content of U4. Knowledge-Soundness follows directly from the knowledge-soundness of the two
sub-protocols.

Theorem 5.1. Let AHE be an IND-CPA secure Encryption Scheme with message space |M| >
26λ+2 log λ+4NcmR. Then DVRangeProt is a designated verifier argument of knowledge for the relation

16 In case ϕ(Ncm) is unknown, sampling f ←$ JNcm
2

K is statistically close.
17 The ± relaxation is artificially added in order to achieve a sound zero-knowledge proof of opening of c, which

however does not affect the binding of the commitment scheme.

26

V.KeyGen(1λ, Rmax, Q):

– Sample an RSA modulusNcm secure w.r.t. λ, and random group elements h←$ Z∗
Ncm

, g =

hf , where f ←$ ϕ(Ncm).
– Sample a key pair (sk, pk)← AHE.KeyGen(1λ), with Npk := pk > 26λ+2 log λ+4NcmRmax.
– Sample challenges uniformly c1, . . . , cλ ←$ J2λK and cλ+1, . . . , cλ+Q ←$ Jλ22λK and en-

crypt them cti = Encpk(ci) for each i ∈ [λ+Q].

– Run18 [45, Protocol PPaillier−N] to prove gcd(Npk, ϕ(Npk)) = 1; obtain proof π1.

– Run SigmaRangeAProt on {(x = cti, w = ci)}λi=1, using range bound R = 2λ; obtain proof

π2. Similarly for {ci}λ+Q
i=λ+1 and R = λ22λ in batches of size λ; obtain π3.

– Run SigmaProt for {(g, f) : g = hf mod Ncm} (a variant of Fig. 7); obtain proof π4.

– Return vpk = ((pk, π1), ({cti}i∈[λ+Q], π2, π3), (Ncm, g, h, π4)), vsk = sk.

P(vpk, ψ, . . .):
– Verify π1 w.r.t. vpk.Npk

– Verify π2 and π3 w.r.t. {vpk.cti}λ+Q
i=1 .

– Verify π4 w.r.t. (vpk.Ncm, vpk.g, vpk.h).
– Run the main P body from DVRangeProt (Fig. 6).

Fig. 5. The key generation procedure for the DVRangeProt range proof of a preimage of ψ. It closely
follows the structure of DVProt.KeyGen in Fig. 3, but additionally introduces commitment scheme
and π3, π4.

27

P(vpk, ψ, Y,R, κ, x)↔ V(vsk, vpk, ψ, Y,R, κ):

P1: 1. Sample t←$ J2λNcm
2 K and compute cm = gxht mod Ncm.

2. Sample r ←$ J25λ+2 log λRK, σ ←$ J26λ+2 log λNcm
2 K and compute β = grhσ.

3. Find x1, x2, x3 ∈ Z such that 4x(R− x) + 1 =
∑3

i=1 x
2
i (using e.g. [61]).

4. Sample ti ←$ J2λNcm
2 K and compute cmi = gxihti , for i ∈ [1, 3].

5. Sample ri ←$ J25λ+2 log λRK, σi ←$ J26λ+2 log λNcm
2 K and compute βi = grihσi , for

i ∈ [1, 3].
6. Sample τ ←$ J26λ+2 log λ+4Ncm

2 RK and compute β4 = hτcm4r
∏3

i=1 cm
−ri
i .

7. Compute α = ψ(r).
P → V: send a =

(
cm, {cmi}i∈[1,3], α, β, {βi}i∈[1,4]

)
V1: Sample b

$←− {0, 1}λ (denote (b1, . . . , bλ) := b).
V → P: send b

P2: 1. Compute challenge ciphertext C = ctλ+κ ·
∏λ

i=1 ct
bi
i

2. Compute:
• U = Encpk(r; 0) · CR−x, V = Encpk(σ; 0) · C−t.
• Ui = Encpk(ri; 0) · Cxi , Vi = Encpk(σi; 0) · Cti , for i ∈ [1, 3].

• U4 = Encpk(τ ; 0) · C
∑3

i=1 xiti−4(R−x)t.
P → V: send S = (U, V, {Ui}i∈[1,3], {Vi}i∈[1,3], U4)

V2: 1. Compute plaintext challenge c = cλ+κ +
∑λ

i=1 cibi
2. Decrypt U, V, {Ui}i∈[1,3], {Vi}i∈[1,3], U4: u = Decsk(U), v = Decsk(V), ui = Decsk(Ui),
vi = Decsk(Vi) for i ∈ [1, 3] and u4 = Decsk(U4)

3. Perform the following checks:

• β(cm−1gR)c
?
= guhv

• βicmc
i

?
= guihvi , for i ∈ [1, 3]

• β4
∏

i∈[1,3] cm
ui
i

?
= hu4gccm4u

• ui
?
∈ J25λ+2 log λRK, for i ∈ [1, 3]

• α
(
Y −1ψ(R)

)c ?
= ψ(u)

P ↔ V: (Non-GGM part:) For each ciphertext of the third message S perform a variant of the
three-round SigmaProt for the relation R =

{
(Si, C); (w1, w2) : Si = Encpk(w1; 0) · Cw2

}
with |C| = 2λ. This can be done in two extra rounds starting with P2, as in Fig. 2.

Fig. 6. DVRangeProt: The designated-verifier range proof of a preimage of ψ. The key generation
phase is presented in Fig. 5.

28

VPK Gen VPK Verify Prove Verify Proof size VPK size

DVProt M 9391 10923 79 59 4.86 KB 742 KB

DVProt T 2377 - 67 50 4.54 KB 160 KB

DVProt M GGM 9391 10923 45 38 2.32 KB 742 KB

DVProt T GGM 2377 - 38 33 2.19 KB 160 KB

DVRangeProt M 13667 15911 777 467 30.39 KB 844 KB

DVRangeProt T 3657 - 623 373 28.16 KB 189 KB

DVRangeProt M GGM 13667 15911 192 125 11.05 KB 844 KB

DVRangeProt T GGM 3657 - 167 105 10.41 KB 189 KB

Table 1. Evaluation of our main protocols. Timings are in ms. “GGM” is GGM optimisation, and
“M/T” stand for malicious or trusted setup.

RHomRange that is: correct, Q-reusable knowledge-sound under the Factoring assumption for Ncm and
IND-CPA security of AHE and statistically honest-verifier zero-knowledge under malicious VPK.

Proof. Deferred to Appendix D.6.

DVRangeProt can be optimised in the generic group model similarly to how it is done in Sec-
tion 4.6. In this case we can omit the final interaction between prover and verifier in Fig. 6 that
proves knowledge of the plaintext inside Si.

6 Evaluation and Performance

We implemented19 and benchmarked our protocols, primarily focusing on evaluating DVProt and
DVRangeProt. Recall DVProt proves knowledge of the ciphertext message and DVRangeProt shows it is
in range. Our results are summarised in Table 1. As a baseline we also implemented several flavours
of the basic Σ-protocol (Table 2). For simplicity here we only present non-interactive variants. Our
benchmarks are run for commonly used parameters, on an accessible hardware, and without any
complex or hardware optimisations.

Setup and Instantiation Details. All the evaluations are presented for λ = 128, and logN = 2048;
for the range proof we take R = 2256; the maximum query number of VPK reuses is set to Q = 128.
For Fiat-Shamir transformation we instantiate the random oracle with the Blake2b [4] hash function.
We ran our benchmarks on the Intel i5-8500 @ 3.00GHz processor. For illustrative purposes the
protocol code runs in the single-core mode only and no low-level optimisations are used. Note it is
likely that the use of parallelism and optimisations would substantially improve the proving and
verification time.

For DVProt and DVRangeProt we use Paillier-ElGamal encryption as the target homomorphism.
Paillier-ElGamal encryption is additively homomorphic in both message and randomness. For the
additively homomorphic encryption scheme on the verifier’s side we use the “lite Cramer-Shoup”

19 The implementation is available publicly on Github: https://github.com/volhovm/rsa-zkps-impl. Note it is not
production-ready and is only intended for approximate evaluation purposes.

29

https://github.com/volhovm/rsa-zkps-impl

Prove Pre-Verify Verify Proof size

SigmaProt, λ = 128 reps 1385 0 2445 134.00 KB

SigmaProt, 8 reps 87 4 155 8.38 KB

SigmaProt, 7 reps 76 36 137 7.33 KB

SigmaProt, 6 reps 65 339 117 6.28 KB

SigmaProt, 5 reps 55 6573 98 5.23 KB

SigmaRangeProt (with slack) 1383 0 2458 108.00 KB

Table 2. Performance for the baseline algorithms. Timings are in milliseconds. SigmaProt is eval-
uated with different pmax/number of repetition parameters. Note that SigmaRangeProt has range
slack while DVRangeProt is tight.

variant of Paillier where ciphertexts are computed as (1 +mN)hr mod N2 (see Section 4.6). The
performance of lite Cramer-Shoup is similar to the original Paillier but it is extractable in the
GGM. For each of our two protocols we evaluate four cases, depending on whether we use the
GGM optimisation or not, and whether we consider malicious VPK or a trusted one (for the
ID-MPC case). For trusted VPK we do not consider VPK verification time.

For the baseline SigmaProt and SigmaRangeProt we also use Paillier-Elgamal as our target ho-
momorphism. We evaluate SigmaProt with naive λ = 128 reps, and also with varying log pmax ∈
{16, 19, 22, 26}, which implies different number of repetitions λ/ log pmax; when pmax > 1, this
means the verifier has to perform the small primes check for numbers up to pmax. This illustrates
the trade-off between pre-verifying the malicious prover’s modulus N once, which allows more ef-
ficient interaction afterwards. The range proof SigmaRangeProt cannot use the pmax optimisation.
Note, importantly, that SigmaRangeProt has multiplicative range slack 2λ+1, while our DVRangeProt
is tight; this means comparing them directly is not possible for all applications.

Performance Overview. Below we will mostly consider the GGM optimised variants of our protocols
that assumes trusted setup because it gives us the best performance. However, the malicious GGM
instantiation can also be competitive when amortization over VPK size and verification is taken
into account. The evaluation indicates that our protocols are a strictly better choice for applications
that can tolerate malicious VPK (e.g. ID-MPC such as RSA ceremonies), as they exhibit better
verification time and communication size. The most noticeable performance improvements are ver-
ification time and communication space, however our proving time is also strictly less. However,
the baseline protocols in Table 2 are publicly verifiable whereas our DVProt and DVRangeProt are
designated verifier.

The main advantage of our DVProt and DVRangeProt is that they are single-shot, requiring no
repetitions. This benefits DVRangeProt more because the baseline SigmaRangeProt cannot avoid λ
repetitions. Our verification time is strictly less than the baseline: 2-3.5× for DVProt, and 23×
for DVRangeProt. This is due to us evaluating the target homomorphism ψ less times for the final
verification equation (exponents over N2 are the most expensive operation).

Communication is more efficient too, since our proofs are strictly smaller. Even with our VPK
being comparably heavy, its size together with Q = 128 proofs gives us 1.5-2× improvement for
DVProt and 6-9× improvement for DVRangeProt. Smaller proofs amortize VPK size over time. The

30

unavoidable bottleneck is the encrypted ciphertexts in the VPK, and their range proofs in the
malicious VPK case.

Our proving time is about 1.5-1.7× smaller for DVProt, and about 8× smaller for DVRangeProt.
Proving time is one of the bottlenecks of our protocols, due to the necessity to evaluate homomorphic
operations modulo verifier’s N2

pk. The N
2
pk is bigger than the original language modulus due to the

requirement that AHE’s message space must fit all the homomorphic operations.

On Comparing DV and Public Coin. The comparisons between our DV protocols and the public-
coin base-line protocols assume that two parties are interacting. In some scenarios, however, this
is not the case: for example, whenever N parties all need to communicate pairwise about their
moduli, this means creating 1 proof per user in the public coin setup, or N proofs per user in
the DV model (since now every party must prove to every other party). In these cases our DV
performance numbers for proof size, prover time, and verifier time should be multiplied by N .

Potential Improvements. Our target homomorphism was chosen to be Paillier-ElGamal.We could
have instead targeted the “lite Cramer-Shoup” variant, which is more efficient and has smaller
ciphertexts.

Finally, we note that it is possible to further save communication size by employing a well-
known transformation where instead of the first round commitments one can send their hash. This
would decrease the DVRangeProt proof size by 3.2 KB, which is about 30% in the GGM case. We
did not implement this transformation.

Acknowledgements The first author received funding from projects from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program un-
der project PICOCRYPT (grant agreement No. 101001283), from the Spanish Government under
project PRODIGY (TED2021-132464B-I00), and from the Madrid Regional Government under
project BLOQUES (S2018/TCS-4339). The last two projects are co-funded by European Union
EIE, and NextGenerationEU/PRTR funds. The last author was partially funded by Input Output
(iohk.io) through their funding of the Edinburgh Blockchain Technology Lab.

References

[1] T. Attema and R. Cramer. “Compressed Σ-Protocol Theory and Practical Application to Plug & Play Secure
Algorithmics”. In: CRYPTO 2020, Part III. Ed. by D. Micciancio and T. Ristenpart. Vol. 12172. LNCS.
Springer, Heidelberg, Aug. 2020, pp. 513–543. doi: 10.1007/978-3-030-56877-1_18.

[2] T. Attema, R. Cramer, and L. Kohl. “A Compressed Σ-Protocol Theory for Lattices”. In: Annual International
Cryptology Conference. Springer. 2021, pp. 549–579.

[3] B. Auerbach and B. Poettering. “Hashing Solutions Instead of Generating Problems: On the Interactive Certifi-
cation of RSA Moduli”. In: PKC 2018, Part II. Ed. by M. Abdalla and R. Dahab. Vol. 10770. LNCS. Springer,
Heidelberg, Mar. 2018, pp. 403–430. doi: 10.1007/978-3-319-76581-5_14.

[4] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. “BLAKE2: Simpler, Smaller, Fast as MD5”.
In: ACNS 13. Ed. by M. J. Jacobson Jr., M. E. Locasto, P. Mohassel, and R. Safavi-Naini. Vol. 7954. LNCS.
Springer, Heidelberg, June 2013, pp. 119–135. doi: 10.1007/978-3-642-38980-1_8.

[5] E. Bangerter. “Efficient zero knowledge proofs of knowledge for homomorphisms.” PhD thesis. Citeseer, 2005.
[6] E. Bangerter, J. Camenisch, and S. Krenn. “Efficiency Limitations for S-Protocols for Group Homomorphisms”.

In: TCC 2010. Ed. by D. Micciancio. Vol. 5978. LNCS. Springer, Heidelberg, Feb. 2010, pp. 553–571. doi:
10.1007/978-3-642-11799-2_33.

31

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-319-76581-5_14
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-642-11799-2_33

[7] E. Bangerter, J. Camenisch, and U. Maurer. “Efficient Proofs of Knowledge of Discrete Logarithms and Rep-
resentations in Groups with Hidden Order”. In: PKC 2005. Ed. by S. Vaudenay. Vol. 3386. LNCS. Springer,
Heidelberg, Jan. 2005, pp. 154–171. doi: 10.1007/978-3-540-30580-4_11.

[8] E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, and J.-K. Tsay. “On the design and implementation
of efficient zero-knowledge proofs of knowledge”. In: Software Performance Enhancements for Encryption and
Decryption and Cryptographic Compilers–SPEED-CC 9 (2009), pp. 12–13.

[9] N. Bari and B. Pfitzmann. “Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees”.
In: EUROCRYPT’97. Ed. by W. Fumy. Vol. 1233. LNCS. Springer, Heidelberg, May 1997, pp. 480–494. doi:
10.1007/3-540-69053-0_33.

[10] F. Benhamouda, H. Ferradi, R. Géraud, and D. Naccache. “Non-interactive Provably Secure Attestations for
Arbitrary RSA Prime Generation Algorithms”. In: ESORICS 2017, Part I. Ed. by S. N. Foley, D. Gollmann,
and E. Snekkenes. Vol. 10492. LNCS. Springer, Heidelberg, Sept. 2017, pp. 206–223. doi: 10.1007/978-3-
319-66402-6_13.

[11] M. Blum, P. Feldman, and S. Micali. “Non-Interactive Zero-Knowledge and Its Applications (Extended Ab-
stract)”. In: 20th ACM STOC. ACM Press, May 1988, pp. 103–112. doi: 10.1145/62212.62222.

[12] F. Böhl, D. Hofheinz, T. Jager, J. Koch, J. H. Seo, and C. Striecks. “Practical Signatures from Standard
Assumptions”. In: EUROCRYPT 2013. Ed. by T. Johansson and P. Q. Nguyen. Vol. 7881. LNCS. Springer,
Heidelberg, May 2013, pp. 461–485. doi: 10.1007/978-3-642-38348-9_28.

[13] D. Boneh, B. Bünz, and B. Fisch. “Batching Techniques for Accumulators with Applications to IOPs and
Stateless Blockchains”. In: CRYPTO 2019, Part I. Ed. by A. Boldyreva and D. Micciancio. Vol. 11692. LNCS.
Springer, Heidelberg, Aug. 2019, pp. 561–586. doi: 10.1007/978-3-030-26948-7_20.

[14] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge Arguments for Arithmetic
Circuits in the Discrete Log Setting”. In: EUROCRYPT 2016, Part II. Ed. by M. Fischlin and J.-S. Coron.
Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 327–357. doi: 10.1007/978-3-662-49896-5_12.

[15] F. Boudot. “Efficient Proofs that a Committed Number Lies in an Interval”. In: EUROCRYPT 2000. Ed. by
B. Preneel. Vol. 1807. LNCS. Springer, Heidelberg, May 2000, pp. 431–444. doi: 10.1007/3-540-45539-6_31.

[16] E. Bresson, D. Catalano, and D. Pointcheval. “A Simple Public-Key Cryptosystem with a Double Trapdoor
Decryption Mechanism and Its Applications”. In: ASIACRYPT 2003. Ed. by C.-S. Laih. Vol. 2894. LNCS.
Springer, Heidelberg, 2003, pp. 37–54. doi: 10.1007/978-3-540-40061-5_3.

[17] J. Buchmann and S. Hamdy. A Survey on {IQ} Cryptography. 2001. url: http : / / tubiblio . ulb . tu -

darmstadt.de/100933/.
[18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs for Confi-

dential Transactions and More”. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[19] J. Camenisch, A. Kiayias, and M. Yung. “On the Portability of Generalized Schnorr Proofs”. In: EURO-
CRYPT 2009. Ed. by A. Joux. Vol. 5479. LNCS. Springer, Heidelberg, Apr. 2009, pp. 425–442. doi: 10.1007/
978-3-642-01001-9_25.

[20] J. Camenisch and M. Michels. “Proving in Zero-Knowledge that a Number Is the Product of Two Safe Primes”.
In: EUROCRYPT’99. Ed. by J. Stern. Vol. 1592. LNCS. Springer, Heidelberg, May 1999, pp. 107–122. doi:
10.1007/3-540-48910-X_8.

[21] J. Camenisch and M. Michels. “Separability and Efficiency for Generic Group Signature Schemes”. In: CRYPTO’99.
Ed. by M. J. Wiener. Vol. 1666. LNCS. Springer, Heidelberg, Aug. 1999, pp. 413–430. doi: 10.1007/3-540-
48405-1_27.

[22] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. “UC Non-Interactive, Proactive, Threshold
ECDSA with Identifiable Aborts”. In: ACM CCS 20. Ed. by J. Ligatti, X. Ou, J. Katz, and G. Vigna. ACM
Press, Nov. 2020, pp. 1769–1787. doi: 10.1145/3372297.3423367.

[23] G. Castagnos and F. Laguillaumie. “Linearly Homomorphic Encryption from DDH”. In: CT-RSA 2015. Ed. by
K. Nyberg. Vol. 9048. LNCS. Springer, Heidelberg, Apr. 2015, pp. 487–505. doi: 10.1007/978-3-319-16715-
2_26.

[24] D. Catalano, D. Pointcheval, and T. Pornin. “IPAKE: Isomorphisms for Password-based Authenticated Key
Exchange”. In: CRYPTO 2004. Ed. by M. Franklin. Vol. 3152. LNCS. Springer, Heidelberg, Aug. 2004, pp. 477–
493. doi: 10.1007/978-3-540-28628-8_29.

[25] P. Chaidos and G. Couteau. “Efficient Designated-Verifier Non-interactive Zero-Knowledge Proofs of Knowl-
edge”. In: EUROCRYPT 2018, Part III. Ed. by J. B. Nielsen and V. Rijmen. Vol. 10822. LNCS. Springer,
Heidelberg, 2018, pp. 193–221. doi: 10.1007/978-3-319-78372-7_7.

32

https://doi.org/10.1007/978-3-540-30580-4_11
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-319-66402-6_13
https://doi.org/10.1007/978-3-319-66402-6_13
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/978-3-540-40061-5_3
http://tubiblio.ulb.tu-darmstadt.de/100933/
http://tubiblio.ulb.tu-darmstadt.de/100933/
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48405-1_27
https://doi.org/10.1007/3-540-48405-1_27
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-540-28628-8_29
https://doi.org/10.1007/978-3-319-78372-7_7

[26] A. H. Chan, Y. Frankel, and Y. Tsiounis. “Easy Come - Easy Go Divisible Cash”. In: EUROCRYPT’98. Ed. by
K. Nyberg. Vol. 1403. LNCS. Springer, Heidelberg, 1998, pp. 561–575. doi: 10.1007/BFb0054154.

[27] G. Couteau, M. Klooß, H. Lin, and M. Reichle. “Efficient Range Proofs with Transparent Setup from Bounded
Integer Commitments”. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2021, pp. 247–277.

[28] G. Couteau, T. Peters, and D. Pointcheval. “Removing the Strong RSA Assumption from Arguments over the
Integers”. In: EUROCRYPT 2017, Part II. Ed. by J.-S. Coron and J. B. Nielsen. Vol. 10211. LNCS. Springer,
Heidelberg, 2017, pp. 321–350. doi: 10.1007/978-3-319-56614-6_11.

[29] R. Cramer. “Modular design of secure yet practical cryptographic protocols”. In: Ph. D. Thesis, CWI and
University of Amsterdam (1996).

[30] R. Cramer and I. Damg̊ard. “On the Amortized Complexity of Zero-Knowledge Protocols”. In: CRYPTO 2009.
Ed. by S. Halevi. Vol. 5677. LNCS. Springer, Heidelberg, Aug. 2009, pp. 177–191. doi: 10.1007/978-3-642-
03356-8_11.

[31] R. Cramer, I. Damg̊ard, and M. Keller. “On the Amortized Complexity of Zero-Knowledge Protocols”. In:
Journal of Cryptology 27.2 (Apr. 2014), pp. 284–316. doi: 10.1007/s00145-013-9145-x.

[32] R. Cramer, R. Gennaro, and B. Schoenmakers. “A Secure and Optimally Efficient Multi-Authority Election
Scheme”. In: EUROCRYPT’97. Ed. by W. Fumy. Vol. 1233. LNCS. Springer, Heidelberg, May 1997, pp. 103–
118. doi: 10.1007/3-540-69053-0_9.

[33] R. Cramer and V. Shoup. “Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure
Public-Key Encryption”. In: EUROCRYPT 2002. Ed. by L. R. Knudsen. Vol. 2332. LNCS. Springer, Heidelberg,
2002, pp. 45–64. doi: 10.1007/3-540-46035-7_4.

[34] I. Damg̊ard. “On Σ-protocols”. In: Lecture Notes, University of Aarhus, Department for Computer Science
(2002). Accessed: 16/02/2022, p. 84.

[35] I. Damg̊ard, N. Fazio, and A. Nicolosi. “Non-interactive Zero-Knowledge from Homomorphic Encryption”. In:
TCC 2006. Ed. by S. Halevi and T. Rabin. Vol. 3876. LNCS. Springer, Heidelberg, Mar. 2006, pp. 41–59. doi:
10.1007/11681878_3.

[36] I. Damg̊ard and E. Fujisaki. “A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden
Order”. In: ASIACRYPT 2002. Ed. by Y. Zheng. Vol. 2501. LNCS. Springer, Heidelberg, Dec. 2002, pp. 125–
142. doi: 10.1007/3-540-36178-2_8.

[37] I. Damg̊ard and M. Jurik. “A Length-Flexible Threshold Cryptosystem with Applications”. In: ACISP 03.
Ed. by R. Safavi-Naini and J. Seberry. Vol. 2727. LNCS. Springer, Heidelberg, July 2003, pp. 350–364. doi:
10.1007/3-540-45067-X_30.

[38] I. Damg̊ard and M. Jurik. “Client/Server Tradeoffs for Online Elections”. In: PKC 2002. Ed. by D. Naccache
and P. Paillier. Vol. 2274. LNCS. Springer, Heidelberg, Feb. 2002, pp. 125–140. doi: 10.1007/3-540-45664-3_9.

[39] I. Damg̊ard and M. Jurik. “A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic
Public-Key System”. In: PKC 2001. Ed. by K. Kim. Vol. 1992. LNCS. Springer, Heidelberg, Feb. 2001, pp. 119–
136. doi: 10.1007/3-540-44586-2_9.

[40] I. Damg̊ard and M. Koprowski. “Generic Lower Bounds for Root Extraction and Signature Schemes in General
Groups”. In: EUROCRYPT 2002. Ed. by L. R. Knudsen. Vol. 2332. LNCS. Springer, Heidelberg, 2002, pp. 256–
271. doi: 10.1007/3-540-46035-7_17.

[41] S. Dobson, S. D. Galbraith, and B. Smith. Trustless Groups of Unknown Order with Hyperelliptic Curves.
Cryptology ePrint Archive, Report 2020/196. https://eprint.iacr.org/2020/196. 2020.

[42] E. Fujisaki and T. Okamoto. “A Practical and Provably Secure Scheme for Publicly Verifiable Secret Sharing
and Its Applications”. In: EUROCRYPT’98. Ed. by K. Nyberg. Vol. 1403. LNCS. Springer, Heidelberg, 1998,
pp. 32–46. doi: 10.1007/BFb0054115.

[43] E. Fujisaki and T. Okamoto. “Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations”.
In: CRYPTO’97. Ed. by B. S. Kaliski Jr. Vol. 1294. LNCS. Springer, Heidelberg, Aug. 1997, pp. 16–30. doi:
10.1007/BFb0052225.

[44] R. Gennaro, D. Micciancio, and T. Rabin. “An Efficient Non-Interactive Statistical Zero-Knowledge Proof
System for Quasi-Safe Prime Products”. In: ACM CCS 98. Ed. by L. Gong and M. K. Reiter. ACM Press,
Nov. 1998, pp. 67–72. doi: 10.1145/288090.288108.

[45] S. Goldberg, L. Reyzin, O. Sagga, and F. Baldimtsi. “Efficient Noninteractive Certification of RSA Moduli and
Beyond”. In: ASIACRYPT 2019, Part III. Ed. by S. D. Galbraith and S. Moriai. Vol. 11923. LNCS. Springer,
Heidelberg, Dec. 2019, pp. 700–727. doi: 10.1007/978-3-030-34618-8_24.

33

https://doi.org/10.1007/BFb0054154
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/s00145-013-9145-x
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-45067-X_30
https://doi.org/10.1007/3-540-45664-3_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-46035-7_17
https://eprint.iacr.org/2020/196
https://doi.org/10.1007/BFb0054115
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1145/288090.288108
https://doi.org/10.1007/978-3-030-34618-8_24

[46] S. Goldwasser and D. Kharchenko. “Proof of Plaintext Knowledge for the Ajtai-Dwork Cryptosystem”. In:
TCC 2005. Ed. by J. Kilian. Vol. 3378. LNCS. Springer, Heidelberg, Feb. 2005, pp. 529–555. doi: 10.1007/978-
3-540-30576-7_29.

[47] J. Groth. “Non-interactive Zero-Knowledge Arguments for Voting”. In: ACNS 05. Ed. by J. Ioannidis, A.
Keromytis, and M. Yung. Vol. 3531. LNCS. Springer, Heidelberg, June 2005, pp. 467–482. doi: 10.1007/
11496137_32.

[48] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, and A. A. Nicolosi. Efficient RSA Key Generation and Threshold
Paillier in the Two-Party Setting. Cryptology ePrint Archive, Report 2011/494. https://eprint.iacr.org/
2011/494. 2011.

[49] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, and A. A. Nicolosi. “Efficient RSA Key Generation and Threshold
Paillier in the Two-Party Setting”. In: Journal of Cryptology 32.2 (Apr. 2019), pp. 265–323. doi: 10.1007/
s00145-017-9275-7.

[50] Y. Ishai, R. Ostrovsky, and V. Zikas. “Secure Multi-Party Computation with Identifiable Abort”. In: CRYPTO 2014,
Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug. 2014, pp. 369–386.
doi: 10.1007/978-3-662-44381-1_21.

[51] P. Kirchner and P.-A. Fouque. Getting Rid of Linear Algebra in Number Theory Problems. Cryptology ePrint
Archive, Report 2020/1619. https://ia.cr/2020/1619. 2020.

[52] A. Kosba, C. Papamanthou, and E. Shi. “xJsnark: A framework for efficient verifiable computation”. In: 2018
IEEE Symposium on Security and Privacy (SP). IEEE. 2018, pp. 944–961.

[53] J. Lee. The security of Groups of Unknown Order based on Jacobians of Hyperelliptic Curves. Cryptology ePrint
Archive, Report 2020/289. https://eprint.iacr.org/2020/289. 2020.

[54] H. Lipmaa. “On Diophantine Complexity and Statistical Zero-Knowledge Arguments”. In: ASIACRYPT 2003.
Ed. by C.-S. Laih. Vol. 2894. LNCS. Springer, Heidelberg, 2003, pp. 398–415. doi: 10.1007/978-3-540-40061-
5_26.

[55] U. M. Maurer. “Abstract Models of Computation in Cryptography (Invited Paper)”. In: 10th IMA International
Conference on Cryptography and Coding. Ed. by N. P. Smart. Vol. 3796. LNCS. Springer, Heidelberg, Dec. 2005,
pp. 1–12.

[56] A. Ozdemir, R. Wahby, B. Whitehat, and D. Boneh. “Scaling verifiable computation using efficient set accu-
mulators”. In: 29th USENIX Security Symposium (USENIX Security 20). 2020, pp. 2075–2092.

[57] P. Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”. In: EUROCRYPT’99.
Ed. by J. Stern. Vol. 1592. LNCS. Springer, Heidelberg, May 1999, pp. 223–238. doi: 10.1007/3-540-48910-
X_16.

[58] R. Pass, a. shelat, and V. Vaikuntanathan. “Construction of a Non-malleable Encryption Scheme from Any
Semantically Secure One”. In: CRYPTO 2006. Ed. by C. Dwork. Vol. 4117. LNCS. Springer, Heidelberg, Aug.
2006, pp. 271–289. doi: 10.1007/11818175_16.

[59] C. Peikert and B. Waters. “Lossy trapdoor functions and their applications”. In: 40th ACM STOC. Ed. by
R. E. Ladner and C. Dwork. ACM Press, May 2008, pp. 187–196. doi: 10.1145/1374376.1374406.

[60] W. Quach, R. D. Rothblum, and D. Wichs. “Reusable Designated-Verifier NIZKs for all NP from CDH”. In:
EUROCRYPT 2019, Part II. Ed. by Y. Ishai and V. Rijmen. Vol. 11477. LNCS. Springer, Heidelberg, May
2019, pp. 593–621. doi: 10.1007/978-3-030-17656-3_21.

[61] M. O. Rabin and J. O. Shallit. “Randomized algorithms in number theory”. In: Communications on Pure and
Applied Mathematics 39.S1 (1986), S239–S256.

[62] C.-P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: CRYPTO’89. Ed. by G. Brassard.
Vol. 435. LNCS. Springer, Heidelberg, Aug. 1990, pp. 239–252. doi: 10.1007/0-387-34805-0_22.

[63] V. Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In: EUROCRYPT’97. Ed. by W.
Fumy. Vol. 1233. LNCS. Springer, Heidelberg, May 1997, pp. 256–266. doi: 10.1007/3-540-69053-0_18.

[64] B. Terelius and D. Wikström. “Efficiency Limitations of S-Protocols for Group Homomorphisms Revisited”. In:
SCN 12. Ed. by I. Visconti and R. D. Prisco. Vol. 7485. LNCS. Springer, Heidelberg, Sept. 2012, pp. 461–476.
doi: 10.1007/978-3-642-32928-9_26.

[65] J. van de Graaf and R. Peralta. “A Simple and Secure Way to Show the Validity of Your Public Key”.
In: CRYPTO’87. Ed. by C. Pomerance. Vol. 293. LNCS. Springer, Heidelberg, Aug. 1988, pp. 128–134. doi:
10.1007/3-540-48184-2_9.

[66] T. H. Yuen, Q. Huang, Y. Mu, W. Susilo, D. S. Wong, and G. Yang. “Efficient non-interactive range proof”.
In: International Computing and Combinatorics Conference. Springer. 2009, pp. 138–147.

34

https://doi.org/10.1007/978-3-540-30576-7_29
https://doi.org/10.1007/978-3-540-30576-7_29
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/11496137_32
https://eprint.iacr.org/2011/494
https://eprint.iacr.org/2011/494
https://doi.org/10.1007/s00145-017-9275-7
https://doi.org/10.1007/s00145-017-9275-7
https://doi.org/10.1007/978-3-662-44381-1_21
https://ia.cr/2020/1619
https://eprint.iacr.org/2020/289
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-32928-9_26
https://doi.org/10.1007/3-540-48184-2_9

A Example Use Case: The HMRTN RSA Ceremony

To illustrate the complexity of the problem at hand, we comment on the protocol by Hazay et
al. [49] that is constructing an RSA modulus jointly (the work was first presented in [48]). They
provide a simulatable two-party protocol that constructs an RSA public key, and a related two-
party threshold Paillier encryption scheme (that decrypts under the joint RSA key). They also
generalise their result to the multiparty setting. Security in the multiparty setting is claimed to
hold against active adversaries, tolerating k − 1 out of k corrupted parties.

We claim that the multi-party construction in [49] requires the range proofs for Paillier cipher-
texts to be subversion resistant. The suggestions cited in that work are unsuitable because they are
not subversion resistant. Thus our zero-knowledge proofs are an essential extension to this setup
ceremony. The issue arises where parties exchange Paillier ciphertexts created for their (potentially
malicious) public keys.

To ellaborate, in [49] each party generates their own Paillier encryption key Ni which, if they
are honest, has the form Ni = pi × qi for primes pi and qi. They prove in zero-knowledge that
gcd(ϕ(Ni), Ni) = 1 in order to cover the scenario where Ni is maliciously chosen. However, they do
not prove that Ni is actually a biprime. In Appendix C.1, Step 3, each party Pi sends a Paillier
encryption cαi,j of αi

20 to Pj under its own key Ni. Then, each party proves plaintext knowledge
of αi and that the value is bounded. Consider the scenario where αi is not in fact bounded. Then
in the next step, where Pj returns the ciphertext

c̄i,j = (cαi,j)
βj · EncNi(−s

(j)
i,j +Q · ri,j)

then Pi could decrypt this value learn some partial information about βj if, for example, we have

that αi > −s(j)i,j +Q · ri,j . This goes against the claim that βj is entirely hidden from the adversary
and hence the proof for αi being bounded is vital.

The suggested proofs that the αi is bounded include decomposing the encryption into bits and
proving their binary form using [32]; or using the range proofs of [15, 54, 38] whose solutions depend
on a homomorphic integer commitment scheme such as [43, 36]. None of these solutions would suffice
in this highly subverted setting where the only guarantee we have is that gcd(ϕ(Ni), Ni) = 1. Indeed,
the solutions by [32] is given for ElGamal encryptions or for RSA encryptions that are generated
under a modulus composed of safe primes. The solutions by [15, 54] require that Ni is a composite
number whose factorisation is unknown. The [38] solution depends on the Strong RSA assumption
which does not hold for subverted Ni. The [38] solution also points to [39] as providing range proofs
for Paillier ciphertexts, but these all require that Ni has no small divisors.

B Background: Properties of the Paillier Cryptosystem with Subverted
Moduli

In this section we revise the basic properties of Paillier cryptosystem [57] and the multiplicative
group Z∗

N2 . The properties listed here hold for any modulus N including if N is not biprime. Let
N =

∏
pαi
i ∈ N be any natural number, where {pi} are all distinct prime numbers.

Lemma B.1. The order of Z∗
N2 is equal to ϕ(N2) = Nϕ(N).

20 Here we diverge from the notation in [49] and use αi in the place of their pi to avoid overloading notation.

35

Proof. Given ϕ(N) =
∏
pαi−1
i (pi − 1), note that

ϕ(N2) =
∏

p2αi−1
i (pi − 1) = (

∏
pαi
i p

αi−1
i (pi − 1)) = Nϕ(N)

Lemma B.2. For any N, i ∈ N, (N + 1)i = 1 + iN (mod N2).

Proof. From the bionomial theorem, for any i we have that (N +1)i =
∑i

k=0

(
i
k

)
Nk. For any i ≥ 2

see that N i mod N2 = 0. Hence

(N + 1)i mod N2 =

(
i

0

)
N0 +

(
i

1

)
N1 mod N2 = 1 + iN mod N2.

Lemma B.3. For any N > 0, the order of (N +1) in Z∗
N2 is N i.e. N is the smallest integer such

that (N + 1)N = 1 mod N2.

Proof. By Lemma B.2 we have that (1 +N)i mod N2 = 1 + iN mod N2. For all i < N we have
that 1 < 1 + iN < N2. Thus N is the smallest integer such that (1 +N)N mod N2 = 1.

Lemma B.4. For all G ∈ Z∗
N2, the order of G is bounded by

ord(G) ≤ lcm({p2αi−1
i (pi − 1)}i)

Proof. Given that N2 =
∏
p2αi
i , we know that Z∗

N2
∼=
∏

i Z∗
p
2αi
i

. Each group in the product has

order ϕ(p2αi
i) = p2αi−1

i (pi − 1), and the maximum order of the element from the group product is
equal to the LCM of product group orders.

Definition B.1 (N-th residues). A z ∈ Z∗
N2 is an N -th residue modulo N2 if there is an r ∈ Z∗

N2

such that z = rN (mod N2). The set of the N -th residues modulo N2 is denoted by Res(N).

Lemma B.5. Res(N) forms a subgroup of Z∗
N2.

Proof. We first show that Res(N) is a subgroup of Z∗
N2 . Note that if z ∈ Res(N) then z ∈ Z∗

N2 and
thus Res(N) ⊂ Z∗

N2 . We show that Res(N) is a group. There is an identity element because 1 = 1N

mod N2. Associativity holds because Z∗
N2 is associative. We next show closure. If a1, a2 ∈ Res(N)

then a1 = rN1 mod N2 and a2 = r2 mod N2 for some r1, r2 ∈ Z∗
N2 . Hence a1 · a2 = (r1r2)

N

mod N2 for r1r2 ∈ Z∗
N2 , implying that a1 · a2 ∈ Res(N). Finally we see that if a1 ∈ Res(N) then

a−1
1 = (r−1

1)N mod N2 and thus a−1
1 ∈ Res(N) and thus we have inverses. These are the four

defining properties of a group and together give us that Res(N) is a subgroup of Z∗
N2 .

We define B = {e | ord(e) = αN}α∈Z. Now let the function fG : ZN × Z∗
N → Z∗

N2 , fG(x, r) =
GxrN mod N2. f is a homomorphism between ZN ×Z∗

N and Z∗
N2 We use N + 1 as a default base

and say f(x, r) = fN+1(x, r).

Lemma B.6 (Injectivity of Paillier). Let N be any composite number such that gcd(ϕ(N), N) =
1, G ∈ B, and x1, x2 ∈ Z, r1, r2 ∈ Z∗

N2 (note the extended domain). Then from Gx1rN1 = Gx2rN2

mod N2 it follows that x1 = x2 mod N (not just mod ord(G)), and r2 = r1G
x1−x2

N mod N2.

36

Proof. Assume Gx1rN1 = Gx2rN2 mod N2, then Gx2−x1(r2/r1)
N = 1. After raising it to λ we get

Gλ(x2−x1) = 1 mod N2 (Carmichael’s theorem works for any N). From this we conclude that
λ(x2 − x1) = 0 mod αN . Since gcd(λ,N) = 1, necessarily N | (x2 − x1) (since N doesn’t divide
the other term λ). Therefore x2 − x1 = 0 mod N , say x2 − x1 = kN .

Returning back, we now see that (r2/r1)
N = G−kN mod N2, then r2/r1 = G−k.

When G = 1 +N , the last condition means that r2 = r1(1 + kN), so r1 − r2 = 0 mod N .

Lemma B.7 (Bijectivity of Paillier). Let N be any composite number such that gcd(ϕ(N), N) =
1, and G ∈ B. Then fG : ZN × Z∗

N → Z∗
N2 is a bijection.

Proof. Since the size of domain and range match, being equal to N × ϕ(N), we only need to show
injectivity. By Lemma B.6, if fG(x1, r1) = fG(x2, r2) for xi ∈ ZN , ri ∈ Z∗

N , we have x1 = x2
mod N , so just x1 = x2. At the same time, r2 = r1G

0 mod N2, so randomness is just equal too
mod N , which concludes the injectivity proof.

The following two lemmas points out a smaller condition of injectivity for G = 1 +N :

Lemma B.8. If any composite N such that gcd(ϕ(N), N) = 1 it holds that {e | eN = 1}∩Res(N) =
{1}. In other words, 1 + iN /∈ Res(N) for i ∈ [1, N − 1].

Proof. The maximum order of any element in Z∗
N2 must divide Nϕ(N). Assuming that e =

n√
1,

let ord(e) = k. If there exists g ∈ Z∗
N2 such that gN = e, then gkN = 1. In this case kN | ϕ(N)N ,

and since gcd(N,ϕ(N)) = 1, it means k | ϕ(N). But since any order of element e in subgroup of
order N must have an order divisible by N , so it must be k | N . If k | N and k | ϕ(N), it means
k = 1, so 1 is the only N -th residue from the N -th roots of unity.

Lemma B.9 (Injectivity from Weaker Assumptions). Let N ∈ Z such that {e | eN =
1} ∩ Res(N) = {1}, G ∈ B, and x1, x2 ∈ Z, r1, r2 ∈ Z∗

N2. Then (N + 1)x1rN1 = (N + 1)x2rN2

mod N2 implies x1 = x2 mod N , and r2 = r1G
x1−x2

N mod N2.

Proof. Consider the following:

(N + 1)x1rN1 = (N + 1)x2rN2 (mod N2)

⇒ (N + 1)x1−x2 = (r−1
1 r2)

N (mod N2)

⇒ (x1 − x2) = 0 (mod N)

The last implication is due to the fact that (N + 1)x1−x2 has a root of degree N (r−1
1 r2), therefore

it must be that x1 − x2 = 0 mod N by the previous lemma.

B.1 ElGamal-Paillier Cryptosystem

The ElGamal-Paillier [33, 16] is a variant of the original Paillier cryptosystem where the decrypter
does not need to know the order of the group Z∗

N . This makes it useful in threshold settings. It
works as follows.

KeyGen(1λ): samples two prime numbers p, q of the size λ and sets N = p · q. Then samples
µ←$ Z∗

N2 , τ ←$ [1, ϕ(N2)/2] and sets G = µ2, H = Gτ . Outputs pk = (N,G,H) and sk = τ .
Encpk(m): samples r ←$ [0, N/2] and outputs ct = (ct1, ct2) = (Gr, (N + 1)mHr).
Decsk(ct): computes c = ct2ct

−τ
1 mod N2 and returns m = c−1

N .

Again the scheme is additively homomorphic and IND-CPA-secure under DCRA.

37

C Efficient NIZKs for Key-Subverted Paillier Ciphertexts

In this section we present a zero-knowledge proof of knowledge for a plaintext inside a Paillier
ciphertext (Appendix C.1). We then extend the protocol to encompass a range proof i.e. to show
that the plaintext inside a Paillier ciphertext is within a given range (Appendix C.2). We also
discuss how a batching method by Cramer et al. [30] can be applied to the range proofs such that
we can prove many statements with considerably better efficiency than proving each statement
individually.

The proofs in this section are publicly verifiable and the number of parallel repetitions they
require to achieve negligible soundness error depends on the security parameter. Later, in Section 4
we show how, in the designated verifier setting, we can avoid this need for parallel repetitions.
However, for the verifier to prove that it’s public key has indeed been generated honestly, we will
use our publicly verifiable range proof from Appendix C.2.

C.1 The Basic Proof of Plaintext Knowledge

Dealing with an arbitrary modulus turns the construction of zero-knowledge proofs for correspond-
ing ciphertexts into a very challenging task, even for the simplest relation of just proving knowledge
of the plaintext encrypted. Formally, we wish to construct a protocol for the relation:

RPai =
{
(N, ct); (m, r) : ct = (N + 1)mrN (mod N2)

}
for any N ∈ Z, ct ∈ Z∗

N2 . Since N is any arbitrary integer, the usual three-round Schnorr protocol
may result in gcd(N, c − c′) ̸= 1, thus an the inverse is only guaranteed to exist if c − c′ = 1. The
folklore solution to achieving soundness when the gcd(N, c− c′) may be different to 1 is to restrict
the challenge space to {0, 1} and soundness error 1/2. To amplify soundness the protocol is iterated
O(λ) times, which can be done in parallel. This leads to an O(λ) (multiplicative) overhead.

Smaller overhead is achievable when N does not have divisors smaller than pmax, using tech-
niques inspired by [45]. In this case gcd(N, c − c′) = 1 whenever c − c′ ≤ pmax and the challenge
space can instead be [1, pmax] (the soundness error is then 1/pmax). We thus consider the alternative
relation

RPai,pmax =

{
(N, ct); (m, r) :

ct = (N + 1)mrN (mod N2) ∧
DivVer(N, pmax) = 1

}
where DivVer : Z× Z→ {0, 1} is a function defined as follows:

DivVer(N, pmax) =

{
0, if ∃p ∈ [2, pmax] | p divides N

1, otherwise

Essentially, RPai,pmax is RPai where N is restricted to integers with prime factors greater than pmax.
The restriction onN of having factors greater than pmax can be publicly verified by DivVer inO(pmax)
time by plain division tests. Provided that pmax is polynomial in λ we have that DivVer is efficient.
The protocol, SigmaProt is presented in Fig. 7. The soundness of this modified protocol is 1/pmax,

and, therefore, knowledge of a Paillier plaintext can be proven using only λ/ log(pmax) = O
(

λ
log λ

)
parallel iterations.

Theorem C.1. SigmaProt is a correct, perfect honest-verifier zero knowledge and knowledge-sound,
with soundness error 1/pmax, protocol for the relation RPai,pmax.

38

P(N, ct,m, r) V(N, ct, pmax)

if DivVer(N, pmax) = 0 abort

rm ←$ ZN

rr ←$ Z∗
N

a = (N + 1)rmrNr mod N2
a

c←$ [0, pmax]c
sm = rm + cm mod N

sr = rr · rc mod N sm, sr
a · ctc ?

= (N + 1)smsNr

Fig. 7. SigmaProt: A zero-knowledge proof of knowledge of a plaintext for Paillier with soundness
error 1/pmax. It can be similarly generalised to any hidden order co-domain homomorphism.

Proof. HV Zero-Knowledge. The simulator Sim on input (N, ct, pmax, c), first checks the validity
of the input. If DivVer(N, pmax) = 0 it aborts. If not it chooses at random s∗m ←$ ZN , s

∗
r ←$ Z∗

N ,
sets a∗ = (N + 1)s

∗
ms∗Nr · ct−c and outputs a simulated transcript (a∗, c, (s∗m, s

∗
r)). Note that rm, rr

and s∗m, s
∗
r are sampled uniformly at random in the simulated and real transcript resp. Also, a∗ =

(N + 1)s
∗
m−m·c(s∗rr

−c)N is distributed identically to a because s∗m − m · c
p
= sm and s∗rr

−c p
= rr.

Therefore, the distributions of (a∗, c, (s∗m, s
∗
r)) and (a, c, (sm, sr)) are identical.

Knowledge Soundness. For knowledge soundness consider an adversary P∗ that plays the role
of a malicious prover and has probability of success in convincing the verifier ε > 1

pmax
+ 1

poly(λ) .

We construct an extractor Ext that has rewindable black-box access to P∗ and can output a valid
witness for RPaiRange corresponding to the statement (ct, R).

The extractor Ext(N, ct, R) runs P∗ (by choosing it’s internal random coins and the challenges)
until it gets a valid transcript (a, c, sm, sr). Then it continues running P∗ until it gets a second
valid transcript on the same first message and a different challenge (a, c′, s′m, s

′
r). Assume wlog that

c > c′. Then Ext checks whether gcd(c − c′, N) = 1 and aborts if not. If gcd(c − c′, N) = 1, then
Ext computes the Bezout coefficients (γ, δ) such that γ(c− c′) + δN = 1 and outputs21

m∗ = γ(sm − s′m) mod N r∗ =

(
sr
s′r

)γ

ctδ mod N

Note that inverting s′r is always possible, since it is guaranteed (implicitly by V) to be in Z∗
N .

We now argue that Ext: does not abort, terminates with the correct output, and runs in poly-
nomial time.

Observe that 0 < c − c′ < pmax and additionally from the relation description (that is checked
before the protocol begins by DivVer) we know that N has no prime divisor smaller that pmax,
which means that gcd(c− c′, N) = 1. Hence Ext does not abort.

Since both transcripts are valid it holds that a·ctc = (N + 1)smsNr and a·ctc′ = (N + 1)s
′
m(s′r)

N

and by dividing the two equations we get

ctc−c′ = (N + 1)sm−s′m

(
sr
s′r

)N

21 γ is merely an inverse of (c− c′) mod N .

39

Now see that

ct = ctγ(c−c′)+δ(N) =

[
(N + 1)sm−s′m

(
sr
s′r

)N
]γ

ctδN =

= (N + 1)γ(sm−s′m)

[(
sr
s′r

)γ

ctδ
]N

= (N + 1)m
∗
r∗N

which justifies the output of the extractor.
Finally, the expected number of times the extractor runs the prover is O(1

ε−1/pmax
) which is

equal to O(poly(λ)) [34]. After that, the process to output m∗, r∗, described above, takes O(1)-
time. Overall, the extractor’s expected running time is polynomial for a knowledge error of κ =
1/pmax.

C.2 Range Proof for Binary Challenges

The basic SigmaProt with binary challenges only needs a small modification to additionally prove
that the message inside the ciphertext is in a certain range. Formally, the proof we construct is for:

RR
PaiRange =

{
(N, ct); (m, r) :

ct = (N + 1)mrN (mod N2) ∧
m ∈ JRK

}
Range proofs such as [42, 26, 21, 15, 30, 27] are not applicable because they either assume trusted
RSA setup, or a non-Paillier (discrete logarithm or Pedersen) relation. We present our range proof
SigmaRangeProt for Paillier in the subverted N setting. We cannot apply the pmax optimisation
from the previous section in the range case due to the irregular nature of sm distribution when the
challenge is not binary.

P(pk, ct, R,m ∈ JRK, r) V(pk, ct, R)
rm ←$ [0, 2λ−1R]
rr ←$ Z∗

N

a = Encpk(rm; rr) a
c←$ {0, 1}c

sm = rm +mc

sr = rr · rc mod N sm, sr
sm

?
∈ [0, 2λ−1R]

a · ctc ?
= Encpk(sm; sr)

Fig. 8. SigmaRangeProt: The zero-knowledge proof for the range of a plaintext (proving m ∈
J2λ+1RK) encrypted with the Paillier cryptosystem. Can be generalized to other homomorphisms
in the hidden order setting.

The following theorem states that when m ∈ JRK, SigmaRangeProt will prove m ∈ J2λ+1RK.

Theorem C.2. SigmaRangeProt, when parameterized by R < N/2λ+1, is a honest-verifier zero

knowledge and knowledge-sound protocol, for RJR·2λ+1K
PaiRange . It has soundness error 1/2, and is statisti-

cally correct for messages m ∈ JRK.

40

Proof. This proof is similar to Theorem C.1 — except that in this protocol challenges are binary
(pmax = 1) and there is a range check.

Correctness. The correctness of the algebraic operations is straightforward, as before. For the
correctness of the inequality check on V’s side, note if m ∈ JRK = [−R

2 ,
R
2], rm ∈ [0, 2λ−1R] and

c ∈ [0, 1] then

−R
2
≤ sm = rm + cm ≤ 2λ

R

2
+
R

2

However, note that rm
s≈ rm+cm (since the distributions are only different at the interval [−R

2 ,−1]∪
[2λR

2 + 1, 2λR
2 + R

2], which is negligibly small) Therefore rm + cm /∈ [0, 2λ−1R] occurs only with
negligible probability and the check passes with overwhelming probability.

HV Zero-Knowledge. The simulator for the protocol works similarly to the one in the proof
of Theorem C.1: the random response sm ∈ U[0,2λ−1R], sr ∈ U[0,N] and challenge c ∈ {0, 1} are

chosen, and then the commitment is computed as a = Encpk(sm, sr)(ct
c)−1. The transcript is then

(a, c, (sm, sr)).
As shown previously, picking sm ∈ U[0,2λ−1R] is statistically indistinguishable from picking it

from the “honest” distribution as defined by sm = rm + cm. The challenge is distributed exactly
the same in both worlds. As for a, the honest distribution is GrmrNr , and simulated distribution is
Gsm−c·m(srr

−c)N — since rm
p
= sm and rr

p
= sr (as distributions), and moreover sm − c ·m

s≈ sm,
and ∀r ̸= 0. sr

p
= srr

−1, we obtain that arguments to Enc are statistically indistinguishable, so
a

s≈ a∗. Therefore, the two transcripts are also statistically indistinguishable.

Knowledge Soundness. Let Ext be an extractor, similar to the one in the proof of Theorem C.1.
Ext gets two transcripts (a, c, sm, sr), (a, c

′, s′m, s
′
r) and outputs:

m∗ = sm − s′m mod N r∗ = sr ∗ (s′r)−1

By extraction c′ ̸= c, so wlog assume c = 1, c′ = 0. Both transcripts are valid: a · ct1 =
Encpk(sm; sr) and a · ct0 = Encpk(s

′
m; s′r). This implies

ct = Enc(sm − s′m mod N ; sr ∗ (s′r)−1) = Encpk(m
∗; r∗)

where the modulo N reduction occurs because (N + 1) in Enc(m, r) := (N + 1)mrN still has order
N even when N is subverted. This attests to correctness of Ext as before.

Now we are left with proving that m∗ is in the correct range. Because of the range check and
validity of the transcripts, it holds that 0 ≤ sm, s′m ≤ 2λ−1R which directly gives us:

−2λR < sm − s′m = m∗ ≤ 2λR (mod N)

This shows that extracted message is in the specified range J2λ+1RK. The expected extractor’s
running time is still O(1

ε−1/2), as in Theorem C.1.

;
Unlike in Appendix C.1, SigmaRangeProt cannot be trivially extended to support a bigger chal-

lenge space. Assuming that C > 2, we have m∗ = γ(sm − s′m), where γ = (c− c′)−1 mod N , with
c−c′ ∈ [−|C|, |C|]. In this case, even though we know the bound on sm−s′m, deriving any non-trivial
bound onm∗ difficult. This is because γ, on average, is not restricted to any subinterval of ZN (with
binary challenges γ = 1−1 = 1). This is also why the optimization with pmax from Appendix C.1
cannot be applied.

41

C.3 Range Proof on Non-Injective Homomorphisms

One caveat with RJRK
PaiRange occurs when N is subverted such that Paillier is non-injective. If N is not

injective then we can extract some preimage which is in the range but there could still be another
preimage outside of the range. Non-injective Paillier is degenerate thus it is not obvious how this
style of subversion would lead to any concrete attacks. However an easy way to guarantee injectivity
is to have P show that gcd(N,ϕ(N)) = 1. This proof [45] is efficient, and we use it in Section 4.3
when proving the range of ciphertexts in a KeyGen. Note that it still a challenge to prove the range
even when gcd(N,ϕ(N)) = 1 is already proven; it is a relatively weak well-formedness property of
N .

D Deferred Security Proofs

D.1 Proof of Lemma 3.1 (Generalized Extraction Lemma)

Proof. Let T =
{
(a, c(i), s(i))

}M
i=1

be a collection ofM succesful transcripts with gcd(c(2)−c(1), . . . , c(M)−
c(1)) = 1. We will construct a polynomial-time extractor Ext that on input T outputs a valid witness
with respect to RHom and Y .

The extractor Ext first sets (γ2, γ3, . . . , γM) ∈ Z to be the Bezout coefficients such that

γ2(c
(2) − c(1)) + γ3(c

(3) − c(1)) + . . .+ γM (c(M) − c(1)) = 1 (2)

which exist and can be found in polynomial time because gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1. It
then sets γ1 = −γ2 − γ3 − . . .− γM and returns

w =
M∑
i=1

γis
(i)

Note the size of γi’s cannot be larger than the biggest c(i), which guarantees that w can also be
computed in polynomial time.

To see that Ext succeeds observe that aY c(i) = ψ(s(i)) for each i ∈ {1, . . . ,M} implies that

aγ1+γ2+...+γMY γ1c(1)+γ2c(2)+...γM c(M)
= ψ(s(1))γ1ψ(s(2))γ2 . . . ψ(s(M))γM

Now by design γ1 + . . .+ γM = 0 and by rearranging (2) we see that

γ2c
(2) + γ3c

(3) + . . .+ γMc
(M) = 1 + (γ2 + . . .+ γM)c(1)

Hence we have

Y = a0Y −(γ2+...+γM)c(1)+1+(γ2+...+γM)c(1) = ψ(
M∑
i=1

γis
(i))

and w as constructed above is a valid witness.

42

D.2 Proof of Theorem 4.2 (DVProt HVZK)

Proof. Consider the following simulator for our protocol:

Sim(vpk, vsk, ψ, Y)

Sample b←$ {0, 1}λ. Extract challenges c1 . . . cλ from vpk (decrypting it with vsk), set c =
∑λ

i=1 cibi

and C =
∏λ

i=1 ct
bi
i . Sample s←$ Jλ22λ|D|K. Compute

a := ψ(s)Y −c

Encrypt S = Encpk(s, rs) as Encpk(s; 0) · Encpk(0;
∑λ

i=1 biri), where ri is the randomness used for
cti = Encpk(ci; ri). Sample d←$ J2λK, u1, u2 ←$M. Finally, set

T := Cu1 · Encpk(u2; 0)S
−d

Return trans∗ := (a, b, S, T, d, u1, u2)

The simulated transcripts are valid because T and a are computed backwards from the verifier’s
equations, similarly to how it is done in Fig. 7.

We must now argue that simulated transcripts trans∗ are indistinguishable from honest tran-
scripts trans. First see that b, d are uniformly sampled in both transcripts and thus are indis-
tinguishable. We must argue that a, S, T, u1, u2 are indistinguishable. Let us first start with a.
In the real world it is ψ(Ds), in the simulation it is ψ(Ds) · Y −DC . Because ψ is homomorphic,
ψ(Ds) · Y −DC = ψ(Ds − DC · w). By Lemma F.1 we have that Ds = [1, λ22λ|D|] is big enough
to blind DC · w. Indeed Dc ∈ λ2λ, since we sum λ plaintexts upper-bounded with 2λ each, and
therefore w ·Dc(b) ∈ [0, |D|λ2λ]. This shows a s≈ a∗.

Next, consider S. Here both the simulator’s and user’s randomness are the same (rs =
∑λ

i=1 biri).
Thus the only place where the distributions differ is with the plaintext s. . If ψ() is injective then s
is the unique plaintext satisfying the deterministic verification equation aY c = ψ(s). Thus we have
that S

s≈ S∗.
The tuples (u∗1, u

∗
2), (u1, u2) are both sampled uniformly fromM×M correspondingly and thus

are indistinguishable.
The component T , which is also deterministically defined by the V’s equation TSd = Cu1 ·

Encpk(u2; 0) by all the previous elements, therefore T
s≈ T ∗. This completes the proof.

D.3 Proof of Theorem 4.3 (Malicious DVProt HVZK)

Proof. The proof of zero-knowledge uses the same simulation strategy as in Theorem 4.2. The key
differences are the following:

– As a very first step, the P and Sim checks the validity of proof for vpk, and abort if the proof
does not verify. If ci ̸∈ 23λ+log λ−1 then V breaks the statistical soundness of the range proof.

– Sim chooses s from a bigger interval, equal to the new honest prover’s r1: s←$ J24λ+2 log λ−1|D|K.
This value is equal as the bound of VPK range proof (23λ+log λ−1), multiplied by λ because we
sum at most λ ciphertexts, multiplied by |D| (at this point this is the upper bound of cw), and
finally multiplied by the 2λ factor for proper statistical blinding.

43

The rest of the proof of the indistinguishability of simulated transcripts proceeds exactly the same
as in Theorem 4.2.

D.4 Proof of Theorem 4.4 (Reusable DVProt Security)

Proof. To prove that knowledge soundness holds we only need to show that the adversary B of The-
orem 4.1 can simulate successfully Q = poly(λ) verification oracle queries of P∗. The rest of the
proof remains identical.

We first change the knowledge soundness game to a game Game1 such that the encryptions
ctλ+1, . . . , ctλ+Q contain 0 but the extractor and the verification oracle behave identically to the
case that the encryptions contain cλ+1, . . . , cλ+Q. By the IND-CPA of the encryption scheme the
probability that the extractor succeeds is negligibly close in both games.

The reduction BOEnc(pk) is sampling c1, . . . , cλ, z1, . . . , zλ
$←− J2λK and similarly eλ, . . . , eλ+Q

$←−
Jλ22λK and is sending {ci}i∈[λ], {zi}i∈[λ] to the encryption oracle to get ct1, . . . , ctλ. The rest of the
ciphertexts are computed normally cti = Encpk(0) for each i ∈ [λ, λ+Q]. We denote:

c = (c1, . . . , cλ), z = (z1, . . . , zλ), e = (eλ, . . . , eλ+Q)

We need simulate the verifier in Q verification oracle queries of P∗, without knowing vsk.
Assume a query OVerify(vsk, (ψ, Y, κ), π), where 1 < κ < Q is unqueried and where π =

(a, b(1), S(1), T (1), d(1,1), u
(1,1)
1 , u

(1,1)
2 , u

(1,1)
3). First BOEnc(pk) uses the extractor of the sub-protocol

(T (1), d1,1), u
(1,1)
1 , u

(1,1)
2 , u

(1,1)
3) (for the input S(1) = Cw · Encpk(r1; r2)) in order to extract s

(1)
1 and

s
(1)
2 such that S(1) = Encpk(s

(1)
2 +x(1)s

(1)
1), where x(1) is either xc = eκ+b(1) ·c⊤ or xz = eκ+b(1) ·z⊤.

In order to check if the proof verifies it needs to check whether aY x(1)
= ψ(s

(1)
2 + x(1)s

(1)
1) holds.

Recall that if Y ̸= ψ(s
(1)
1) or a ̸= ψ(s

(1)
2) then B can guess x1 except with negligible probaility.

Assume that Y = ψ(s
(1)
1) and a = ψ(s

(1)
2) then the only case where aY x(1) ̸= ψ(s

(1)
2 + x(1)s

(1)
1) is if

s
(1)
2 + x(1)s

(1)
1 > N over the integers, so that an overflow happens in ZN during the encryption.

Here is how BOEnc(pk) is answering to the verification oracle queries:

1. If both aY xc = ψ(s
(1)
2 + xcs

(1)
1) and aY xz = ψ(s

(1)
2 + xzs

(1)
1) hold then output 1.

2. If neither aY xc = ψ(s
(1)
2 + xcs

(1)
1) nor aY xz = ψ(s

(1)
2 + xzs

(1)
1) hold then output 0.

3. If aY xc ̸= ψ(s
(1)
2 + xcs

(1)
1) and aY xz = ψ(s

(1)
2 + xzs

(1)
1), choose a bit at random and output it.

4. If aY xc = ψ(s
(1)
2 + xcs

(1)
1) and aY xz ̸= ψ(s

(1)
2 + xzs

(1)
1), choose a bit at random and output it.

The first two cases simulate the verification correctly, while the last two only with probability 1/2.
We show that Cases 3 and 4 occur only with negligible probability.

Assume that Case 3 happens amd B does not terminate. This means that s
(1)
2 +xcs

(1)
1 > N but

s
(1)
2 + xzs

(1)
1 < N . Denote T (1) =

N−s
(1)
2

s
(1)
1

and see that

xc > T (1) ⇒ b(1)c⊤ + eκ > T (1)

xz < T (1) ⇒ b(1)z⊤ + eκ < T (1)

However, since by construction any eκ >> 2λ
∑λ

i=1 ci (and similarly for zi), we get that T (1) is
statistically close to eκ. Where the adversary has no information about eκ the above happens only
with negligible probability. The same reasoning goes for Case 4.

44

Hence if B does not terminate then P∗ only makes queries within Case 1 and 2 with overwhelm-
ing probability. But then B’s simulation of the verification oracle is sound . By the same argument
as Theorem 4.1 B will compute a correct IND-CPA response with overwhelming probability.

D.5 Proof of Theorem 4.5 (GGM DVProt Knowledge Soundness)

Proof. Suppose that (vpk, vsk, τ)
$←− KeyGen(1λ), where τ = {c1, . . . , cλ} contains the challenges

encrypted in vpk but not the secret key sk of AHE. Assume that P∗(vpk, ψ, Y ; coin) is a malicious
prover that is run on random coins coin. We first describe an extractor Ext, that has white-box
access to the prover P∗, such that whenever P∗ outputs verifying (Y ; (a, S)) then ExtP

∗
(τ, vpk, ψ, Y)

outputs a witness w such that Y = ψ(w). The Ext algorithm depends on two subalgorithms, Ext0
and Ext1 where Ext0 is the extractor from Lemma 3.1, and Ext1 we present below.

Ext1, on input τ, vpk, ψ and Y , runs P∗(vpk, ψ, Y ; coin) (on challenges b of its choice) until it
obtains M accepting transcripts, for the same first message a. That is:

T =
{(
a, b(j), S(j)

)}
j∈[M]

and outputs T . For Ext1 we use the generic M -special soundness extractor (see [2]), that efficiently
finds such a tree. As we argue later we set M = poly(λ).

More specifically, Ext1 proceeds as follows. It probes P∗ on randomly sampled coin, b until it
obtains

(
a, b(1), S(1)

)
. Since it does not have vsk it cannot directly decrypt S(1) to s(1) and check

whether aY c(1) = ψ(s(1)). For this it uses the generic representation of S(1) i.e. (s1,g, s1,1, . . . , s1,λ)
such that

S(1) = (1 +N)s1,gh0
λ∏

i=1

cts1,i

and sets

s(1) = s1,g +
λ∑

i=1

s1,ici

From here Ext1 can verify aY c(1) = ψ(s(1)) to confirm if the transcript is accepting or not. It
continues in a similar manner until it obtains M accepting transcripts T .

Now, the extractor Ext behaves as follows. It runs T ← ExtP
∗

1 (τ, vpk, ψ, Y) and computes c(j) =∑λ
i=1 cib

(j)
i . If gcd(c(2) − c(1), . . . , c(λ) − c(1)) ̸= 1 it aborts. Else it computes s(j) = Decsk(S

(j)) for
each j ∈ [M] and runs w ← Ext0(ψ, Y ; (a, c(1), s(1)), . . . , (a, c(M), s(M))) and returns w.

We first see that Ext runs in polynomial time provided that the adversary P∗ has non-negligible
probability of success. So either ϵ(λ) is polynomial in λ or P∗ only convinces V with negligible
probability. Let ϵ(λ) > 1/poly(λ) denote the probability that P∗ convinces an honest verifier on
input (ψ, Y). By Lemma 3.1 we have that Ext0 runs in polynomial time. For the runtime of Ext1
we rely on [2, Lemma 5] which shows that Ext1 runs in expected time O(λ

ϵ−(M−1)/2λ
), which is

polynomial (since we assumed that ϵ is non-negligible).
We must now show that Ext only aborts with negligible probability. This occurs if and only if

gcd(c(2)− c(1), . . . , c(M)− c(1)) ̸= 1 with non-negligible probability. In order to show this, we design
an adversary B against IND-CPA that, using Ext, wins the IND-CPA game:

45

BOEnc(pk)

c1, z1, . . . , cλ, zλ
$←− J2λK

cti
$←− OEnc(ci, zi) for i ∈ [λ];

vpk← (pk, ct1, . . . , ctλ)

coin
$←− [1, 2λ];

while j < M : transj,1 ← P∗(vpk, ψ, Y ; coin)

if aY c(j) = ψ(s1,g +
∑λ

i=1 s1,ici) and aY
z(j) ̸= ψ(s1,g +

∑λ
i=1 s1,izi) return 0

if aY c(j) ̸= ψ(s1,g +
∑λ

i=1 s1,ici) and aY
z(j) = ψ(s1,g +

∑λ
i=1 s1,izi) return 1

if aY c(j) = ψ(s1,g +
∑λ

i=1 s1,ici) and aY
z(j) = ψ(s1,g +

∑λ
i=1 s1,izi) j ← j + 1

if gcd(c(2) − c(1), . . . , c(M) − c(1)) ̸= 1 return 0

if gcd(z(2) − z(1), . . . , z(M) − z(1)) ̸= 1 return 1

The argument that BOEnc succeeds against IND-CPA is identical to the proof in Theorem 4.1.

D.6 Proof of Theorem 5.1 (DVRangeProt Security)

Proof. Correctness. It holds provided that the message space of AHE is larger than the maximum
of u, v, {ui}i∈[1,4], {vi}i∈[1,3], so that the encryption is correct. Since the maximum is u4, encrypting

the value statistically close to the distribution of τ ←$ J26λ+2 log λ+4Ncm
2 RK, and since the |M| is

chosen to match exactly this value, the encryption scheme is correct for u, v, {ui}i∈[1,4], {vi}i∈[1,3].
The correctness of the algebraic operations can be confirmed by inspection.

Honest-Verifier Zero-Knowledge. First we need to show that the integer commitment scheme
preserves hiding under maliciously generated Ncm, as long as g = hf for any integer f . In fact, for a
uniformly random r ←$ J2λN

2 K we get that gmhr = gmf+r. The order of g is at most ϕ(N)
2 < N

2 . Thus
we see that r is at least 2λ larger than mf mod ord(g), which gives us that mf + r mod ord(g)
is statistically close to uniform. So any two commitments gm0hr0 and gm1hr1 are statistically close.

The simulator Sim is verifying the proofs π1, π2, π3, π4. With overwhelming probability this
implies that the vpk is correctly formed. Then HVZK comes in a similar way to Theorem 4.3 and
under the fact that the integer commitment is statistically hiding.

Knowledge-Soundness. Consider an adversary P∗ that has probability of success in convincing
the verifier ϵ, for a non-negligible ϵ. We construct an extractor Ext that has rewindable black-
box access to P∗ and can output a valid witness for RHomRange corresponding to the statement
(vpk, ψ, Y,R).

Ext uses Ext′ the extractor of Theorem 4.1, as a black-box. Ext′ can simulate up to Q verifica-
tion oracle queries of P∗ correctly with overwhelming probability. Then Ext′, running in expected
polynomial time, outputs integers u∗, v∗, {u∗i }i∈[1,4], {v∗i }i∈[1,3] ∈ Z such that

Y −1ψ(R) = ψ(u∗)

cm−1gR = gu
∗
hv

∗

cmi = gu
∗
i hv

∗
i , i ∈ [1, 3]∏

i∈[1,3]

cm
u∗
i

i = hu
∗
4g · cm4u∗

46

assuming IND-CPA security of AHE holds. Combining the last three we get

g
∑

i∈[1,3](u
∗
i)

2−4(u∗−R)u∗−1h
∑

i∈[1,3] −v∗i u
∗
i−4u∗v∗−u∗

4 = 1

which under the factoring assumption over ZN gives us that
∑

i∈[1,3](u
∗
i)

2 − 4(u∗ − R)u∗ − 1 = 0

or 4(u∗ − R)u∗ + 1 =
∑

i∈[1,3](u
∗
i)

2 over the integers. Under the three-square theorem we get that
u∗ ∈ [0, R].

Combining the last with Y = ψ(R−u∗), the extractor outputs u = R−u∗ which is in the range
u∗ ∈ [0, R].

E Amortizing the DVProt VPK Generation

In this section we argue that the amortization result from [30] applies to our smaller range proof
(SigmaRangeProt) from Appendix C. In this section we refer to the newer version of this paper [31].

Our protocol, however similar to [31, Prototocol 1] (including modifications from [31, Sec. 6]),
has a number of differences which makes it impossible to directly apply the results of that work to
our case. Namely:

1. Section 6 of [31] covers the case of groups of unknown order, but only considers the one-argument
exponentiation homomorphism x→ gx, while we work with the two-argument Paillier. This is
a crucial difference, since in the Paillier case the message space is public (equal to ZN), while
in the DL case it is hidden (as |g| is), so computations are done over Z.

2. Lemmas 7 to 9 of their work explain how to deal with the case of commitment values (i.e. rr, rm)
sampled from a big uniform subspace over integers. For the range proof in DL case they suggest
using [0, NRn] for n being number of iterations. In the case of Paillier it does not make sense
to sample rm bigger than the message space ZN , so our rm is only λ+ log (Rn) bits big (where
R is a message range). This affects the HVZK proof.

3. The previous difference is also related the size of the range proof, which is in our case is much
smaller.

4. In our case, unlike in [31], the prover knows the factorization of N , so we need to pay close
attention to the extraction strategy (which, luckily, is the same as in [31]).

We use the same notation as [31]. First, all vector products, e.g. a ·b are component-wise, while
matrix-vector multiplication Em is as usual. Second, when E is an m×n matrix, and x is a vector

of size n, xE is defined as (xE)i =
∏n

j=1 x
Ei,j

j .
Let n be the number of repetitions we want the range protocol to be scaled up to (think n = λ

at least since our base protocol has binary challenges). Let w : C → Zm×n, where m = 2n+1, be a
function mapping challenges from C = [0, 2n − 1] to m× n matrices as follows:

w(c) =


c1 0
...
. . .

cn c1
. . .

...
0 cn


where ci is a i-th bit of c.

47

P(pk, R,m ∈ JRKn, r) V(pk, ct, R)
rm ←$ [0, 2l]m

rr ←$ (Z∗
N)m

a = Encpk(rm; rr) a
c←$ [0, 2n − 1]c

sm = rm + Em

sr = rE · rr mod N sm, sr

∀i. (sm)i
?
∈ [0, 2l]

a · ctE ?
= Encpk(sm; sr)

Fig. 9. SigmaRangeAProt: Amortized variant of SigmaRangeProt which proves knowledge of Paillier
preimage and its range for n instances, where E = w(c), and l = λ+ log n+ logR− 1.

The presented SigmaRangeAProt is a variant of [31][Protocol 1 and Lemma 10], adapted to the
Paillier case, which is proving the preimage knowledge and range for n instances simultaneously,
with error probability 1/2n, and slack 2λ−1+nn.

The following result is a (close) adaptation of [31, Lemmas 10 and 11] to our setup.

Theorem E.1. SigmaRangeAProt is a complete, statistical honest-verifier zero-knowledge, and knowledge-
sound PoK for m ∈ JRKn, with soundness error 2−n for the language{

ct ∈ (Z∗
N2)

n | ∃m, r.
ct = Encpk(m, r) ∧
m ∈ J2λ−1+nnRKn

}
Proof. Correctness. The correctness of this protocol is easy to verify. First, observe that the latter
verifier’s equality check passes:

ai = G(rm)i(rr)
N
i

(sm)i = (rm)i +

n∑
j=1

Ei,jmj (sr)i = (rr)i ·

 n∏
j=1

r
Ei,j

j


(a · ctE)i = ai

 n∏
j=1

ct
Ei,j

j

 = G(rm)i(rr)
N
i

G∑n
j=1 mjEi,j

 n∏
j=1

r
Ei,j

j

N


= G(rm)i+
∑n

j=1 mjEi,j

(rr)i

n∏
j=1

r
Ei,j

j

N

= G(sm)i((sr)i)
N

= (Encpk(sm; sr))i

Therefore, indeed a · ctE = Encpk(sm; sr) holds.
As for correctness of the inequality range check on verifier’s side, note what happens to sm =

rm + Em. Since E is a binary matrix, entries in Em are in JRnK, since (Em)i = ⟨Ei,m⟩, where∑
j Ei,j ≤ n. Adding this to rm, we see that sm ∈ [−Rn/2, 2λ−1Rn + Rn/2]. However, Rn/2 is

negligibly smaller than 2λ−1Rn, so Pr[sm /∈ [0, 2λ−1Rn]] = negl(λ) for honest provers.

48

Soundness. Let (a, c, sm, sr) and (a, ĉ, ŝm, ŝr) be two valid transcripts for the same commitment
a:

Enc(sm, sr) = ctE · a

Enc(ŝm, ŝr) = ctÊ · a

where E and Ê are the two matrices corresponding to e, ê.
The inverse of the last equation is equal to:

Enc(−ŝm, ŝ−1
r) = ct−Ê · a−1

Where the negation in the first argument of Enc is as usual modulo N , and ŝ−1
r always exists

because ŝr ∈ Z∗
N2 is checked by V. Now when we multiply this by the first equation we get:

Enc(sm, sr) · Enc(−ŝm, ŝ−1
r) = ctE−Ê

By the homomorphic property of Enc we transform the left side:

Enc(sm − ŝm, sr/ŝr) = ctE−Ê (3)

Call δs := sm−ŝm and∆E := E−Ê. Let j0 be the first index such that cj0 ̸= ĉj0 , let di := ci−ĉi,
and w.l.o.g assume dj0 = 1. Then we know by construction that E− Ê has a diagonal that starts at
row j0; it consists of 1, and above this diagonal are only zeroes. Because ∆E has such a diagonal,
it has rank n and therefore is left-invertible over Z (and thus over ZN). Let M be the left inverse
of ∆E (M ·∆E = 1n), where M is n ×m and consists of Z entries. More concretely, here is how
these matrices look like:

1 j0 j0 + n m

M =


0 . . . 1 0 0 . . . 0 . . . 0
0 . . . −a 1 0 . . . 0 . . . 0
0 . . . (a2 − b) −a 1 . . . 0 . . . 0

...
. . .

. . .
. . .

0 . . . −a 1 . . . 0

 ∆E =



... 0
1

dj0+1
. . .

...
. . . 1

dn dj0+1

. . .
...

0 dn


where (a, b, . . .) := (dj0+1, dj0+2, . . .) for readability. The logic of howM is constructed is that every
next Mi,j0 is equal to −⟨Mi−1,j , (dj0+1, dj0+2, . . .)⟩, which importantly is always computable over
the integers and does not require taking inverses, even if N is subverted by P.

The Eq. (3) we had before can be rewritten as:

(1 +N)δs(sr/ŝr)
N = ct∆E (4)

Taking a look at the exponents of (1 +N), we obtain (δs)i =
∑

mj(∆E)i,j mod N , which is
essentially δs = ∆E ·m mod N . So to find m we must be a solution of this system over ZN . A
similar logic holds for r.

49

When we raise both sides of Eq. (4) to M on the left22 we obtain:

(1 +N)M(sm−ŝm)((sr/ŝr)
M)N = ctM(E−Ê) = ct

which implies that ∀i ∈ [1, n], (mi, ri) is a valid message-randomness pair for cti, where m, r are
defined as follows:

mi =
m∑
j=1

Mi,j((sm)i − (ŝm)i) (mod N)

ri =

m∏
j=1

(
(sr)i
(ŝr)i

)Mi,j

(mod N2)

This is what Ext returns, and we have just elaborated why these values are valid.

Regarding soundness of the range check — that is, that the protocol indeed proves m ∈ J2l+nKn,
the analysis is similar to the one presented in [31][Lemma 11], except for our range values being
different.

So we have δs = sm − ŝm = (E − Ê)m, and we know by checking sm range that δs ∈
J2λ+logR+lognKm = J2l+1Km. where l = λ+ logR+ log n− 1 as before.

Looking at Eq. (4), we can derive that (δs)i =
∑n

j=1mj · (∆E)i,j for all i ∈ [m]. Given that the
first j0 − 1 rows of ∆E are empty, and j0th row is (1 0 . . . 0), we conclude that (δs)j0 = m1, where
mi is a message for cti.

By induction on i ∈ [1, n] we will argue that mi ∈ J2l+iK. We have already confirmed the base
case: m1 = (δs)j0 ∈ J2l+1K. First, with the change of indices:

(δs)j0−1+i =
n∑

j=1

mj · (∆E)j0−1+i,j

=
i−1∑
j=1

mj · (∆E)j0−1+i,j +mi · (∆E)j0−1+i,i︸ ︷︷ ︸
=1, on diagonal

Then for i ∈ [2, n]:

|mi| = |(δs)j0−1+i −
i−1∑
j=1

mj · (∆E)j0−1+i,j |

≤ |(δs)j0−1+i|+
i−1∑
j=1

|mj |

≤ 2l +
i−1∑
j=1

2l+j−1 = 2l · (1 +
i−2∑
j=0

2j) = 2l+i−1

where the first ≤ is by triangle inequality, and second one by inductive hypothesis. This concludes
the proof that ∀i ∈ [1, n].mi ∈ J2l+iK ⊂ J2l+nK, in other words m ∈ J2l+nKn = J2λ+n−1nRK.
22 This transformation may appear somewhat nontrivial. For x of size n and two matrices A and B of sizes n×m and

m × n correspondingly, it maps xB to xAB , transforming every row i from
∏n

j=1 x
Bi,j

j into
∏n

j=1 x
∑m

k=1 Ai,kBk,j

j .

With a bit of linear algebra, we can express this transformation directly: given a = xB it returns a vector where

ith component is
∏m

k=1 a
Ai,k

k , which is simply aA.

50

Honest-Verifier Zero-Knowledge. The simulation strategy is as follows: S samples c∗ ←$ [0, 2λ],
s∗m ←$ [0, 2l]m, s∗r ←$ (Z∗

N)m, and then computes a∗ = Enc(s∗m, s
∗
r) · (ctw(c))−1. We must argue that

the transcript trans∗ = (a∗, c∗, (s∗m, s
∗
r)) produced by S is statistically indistinguishable from an

honest one. Obviously, we sample c = c∗ identically in both worlds, so we need to prove statistical
indistinguishability only for the commitment and the responses.

Starting with the responses, s∗m = Um
[0,2l]

, s∗r = Um
Z∗
N

are uniform, while sm = rm +Em mod N

and sr = rE · rr mod N . Compare these two:

(s∗m)i ∈ U[0,2λRn] (sm)i = U[0,2λRn] +
∑

(Ei,j · U[−R,R] mod N)

As we argued in completeness,
∑
Ei,j ≤ n (since E is binary), and Rn ≪ 2λRn, so ∀E it is easy

to show (sm)i
s≈ U[0,l] = (s∗m)i. And also we have that ∀E,

(sr)i =

 m∏
j=1

r
Ei,j

j


︸ ︷︷ ︸

e∈Z∗
N

·(rr)i = e · UZ∗
N

p
= UZ∗

N
= (s∗r)i

This is because e =
(∏m

j=1 r
Ei,j

j

)
is an element of Z∗

N with overwhelming probability (P,V are

honest), and thus x 7→ e · x is injective.
Now as for the commitment, a = (1+N)rm(rr)

N in the real world, but a∗ = (1+N)sm−Em(sr/(r
E))N

in the simulation. Again, viewing this component-wise, by the same argument as in the previous
paragraph (except now we subtract m), for any E:

(sm)i −
n∑

j=1

Ei,jmj
s≈ U[0,2l] = rm

And similarly
sr/ (r

E)︸︷︷︸
e∈Z∗

N

= UZ∗
N
· e p

= UZ∗
N
= rr

Therefore, since the arguments of Enc(·, ·) for a,a∗ are statistically indistinguishable, a∗ s≈ a. So
trans∗

s≈ trans.

F Statistical Blinding Lemma

In this section we recall and prove a statistical blinding lemma, Lemma F.1, that is used to prove
the zero-knowledge of our protocols. This lemma shows that if an integer is chosen from a large
enough domain then it statistically blinds a smaller integer.

Lemma F.1. Let X be a random variable on [0, R] ⊂ Z, and let U := U[0,R2λ], then U
s≈ U +X.

Proof. What we must show is

∆(λ) =
1

2

∑
v∈Z

∣∣∣Pr[U = v]− Pr[U +X = v]
∣∣∣ = negl(λ)

51

Immediately, note that U +X is defined on [0, R2λ+R], therefore we should only consider v in this
range.

The first probability Pr[U = v] = 1/R2λ for all v ∈ [0, R2λ], and is zero otherwise.
The second probability is more interesting. For any v,

Pr[U +X = v] =
∑

x∈[0,R]

Pr[X = x] Pr[U = v − x]

When v ∈ [R,R2λ], for any x ∈ [0, R] we have v − x ∈ [0, R2λ], so

Pr[U +X = v] =
1

R2λ

∑
x∈[0,R]

Pr[X = x] =
1

R2λ

When v ∈ [0, R− 1], x only ranges in [0, v], because otherwise U < 0 and the related probability is
0:

Pr[U +X = v] =
∑

x∈[0,v]

Pr[X = x] Pr[U = v − x] = 1

R2λ
FX(v)

where FX = Pr[X ≤ x] is a CDF of X. A similar statement holds for v ∈ [R2λ + 1, R2λ +R]:

Pr[U +X = v] =
∑

x∈[v−R2λ,R]

Pr[X = x] Pr[U = v − x]

=
1

R2λ
Pr[X ≥ v −R2λ] = 1

R2λ
(1− FX(v −R2λ − 1))

Combining this all together, we see that for v ∈ [R,R2λ] the value of ∆(λ) = 0, so we compute
it over the other two intervals:

∆(λ) =
1

2

 ∑
v∈[0,R−1]

∣∣∣∣ 1

R2λ
− 1

R2λ
FX(v)

∣∣∣∣+ R2λ+R∑
v=R2λ+1

∣∣∣∣ 1

R2λ
(1− FX(v −R2λ − 1))

∣∣∣∣


=
1

R2λ+1

 ∑
v∈[0,R−1]

|1− FX(v)|+
R2λ+R∑

v=R2λ+1

∣∣∣1− FX(v −R2λ − 1)
∣∣∣


=
1

R2λ+1

 ∑
v∈[0,R−1]

|1− FX(v)|+
∑

v∈[0,R−1]

|1− FX(v)|


=

1

R2λ

 ∑
v∈[0,R−1]

|1− FX(v)|

 ≤ 1

2λ
= negl(λ)

which concludes the proof.

52

	Zero-Knowledge Arguments for Subverted RSA Groups
	Dimitris Kolonelos , Mary Maller, Mikhail Volkhov
	Introduction
	Our Contributions
	An issue with the relations of our protocols (Update August 2023)
	Related Work
	Overview of Techniques
	Comparison with Alternative Approaches

	Preliminaries
	Notation
	Homomorphic Encryption Schemes
	Homomorphisms and Efficient -protocols
	Designated-Verifier Arguments of Knowledge

	Our Extraction Technique
	The Generalized Extraction Lemma
	Our Core Coprimality Lemma

	Designated Verifier Proofs of Knowledge for General Homomorphisms
	The Designated-Verifier Protocol
	Security
	Malicious VPK Generation
	Reusable VPK
	Malicious and Reusable VPK
	Efficiency Optimization in the Generic Group Model

	Designated Verifier Range Proof
	Evaluation and Performance
	Example Use Case: The HMRTN RSA Ceremony
	Background: Properties of the Paillier Cryptosystem with Subverted Moduli
	ElGamal-Paillier Cryptosystem

	Efficient NIZKs for Key-Subverted Paillier Ciphertexts
	The Basic Proof of Plaintext Knowledge
	Range Proof for Binary Challenges
	Range Proof on Non-Injective Homomorphisms

	Deferred Security Proofs
	Proof of thm:extractorgivengcd (Generalized Extraction Lemma)
	Proof of thm:dvhvzk ([fig:dv]DVProt HVZK)
	Proof of thm:dvhvzkmalicious (Malicious [fig:dv]DVProt HVZK)
	Proof of thm:dvReusable (Reusable [fig:dv]DVProt Security)
	Proof of thm:DVsoundnessggm (GGM [fig:dv]DVProt Knowledge Soundness)
	Proof of thm:DVRange ([fig:dvrange]DVRangeProt Security)

	Amortizing the [fig:dv]DVProt VPK Generation
	Statistical Blinding Lemma

