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Abstract. GIFT-64 is a block cipher that has received a lot of attention
from the community since its proposal in 2017. The attack on the highest
number of rounds is a differential related-key attack on 26 rounds [13]. We
studied this attack, in particular with respect to the generic framework
for improving key recovery from [5], and we realised that this framework,
combined with an efficient parallel key guessing of interesting subsets of
the key and a consequent list merging applied to the partial solutions, can
improve the complexity of the attack. We propose two different trade-offs,
as a result of the improved key-recovery. We believe that the techniques
are quite generic and that it is possible to apply them to improve other
differential attacks.

1 Introduction

Among the most successful classes of attacks against modern symmetric prim-
itives there are undoubtedly the statistical attacks. In a nutshell, in each of
these attacks a certain property exhibited in a statistically significant way by
the encryption algorithm is used to distinguish it from a random function. This
distinguishing property is then used to reduce the space of possible keys to the
ones that pass the statistical test. This reduced list of key candidates is usually
determined by a key enumeration algorithm, usually referred to as key guessing.

A special interest in introducing new ideas for improving the key-recovery
phase in statistical attacks has been carried out recently [16,4,5]. In particular,
a generic framework for improving key-recovery attacks that exploits the Sbox
properties to reduce the number of bits needed to guess on average was presented
in [5]. This framework can be applied to several cryptanalysis families, including
differential cryptanalysis.

The block cipher GIFT [1], proposed in 2017 has received much attention
from the community, as the numerous cryptanalysis results ([15,11,14,7,8] among
many) can show. In [13] the currently best known attack on reduced round
versions of the 64-bit version of GIFT is proposed, a related-key differential
attack on 26-rounds that is presented in Table 1.
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Table 1: Summary of results on GIFT-64.
Rounds Source Attack type Time Data Memory

24 [14] Rectangle (RK) 291.58 260 260.32

25 [10] Rectangle (RK) 2120.92 263.78 264.10

26 [13] Differential (RK) 2123.23 260.96 2102.86

26 [9] Rectangle (RK) 2122.78 263.78 263.78

26 This paper Differential (RK) 2113.03 261.96 295.15

26 This paper Differential (RK) 2120.44 260.96 225.22

In this paper we consider the generic framework for improving key guessing
from [5] and we combine it with a clever parallel guess of the key bits in the pre-
vious best differential attacks on GIFT [13] in order to improve their complexity
and become the best known attacks on GIFT. Besides showing a new application
of the techniques from [5] and an improved attack on the cipher that gains a
time factor of about 210 (while the previous attack had a complexity close to ex-
haustive search), we believe our results propose a parallel guessing method that
can be generalized and applied in many other differential attacks. Furthermore,
we show how the improvement in enumerating the possible key guesses can lead
to an attack that reduces significantly the necessary memory. In addition, we
have implemented the techniques presented in this paper on a toy-cipher, which
has allowed us to verify our theoretical predictions. The results are summarised
in Table 1. In a simultaneous and independent recent work, published at Euro-
crypt 2022 [9], an improved attack with respect to [13] was proposed, but this
work has worse complexities than the improved attack we propose here.

The paper is organized as follows: Section 2 introduces some notations and
preliminaries about differential attacks, GIFT and key guessing techniques from [5]
and Section 3 summarises the main ideas of the attack. The previous 26-round
related-key attack on GIFT-64 [13] and its complexity is discussed in Section 4,
while our new improved attacks are introduced in Section 5. Section 6 concludes
the paper. The implementations on a GIFT-like toy-cipher that we have done in
order to verify the correctness of our techniques are described in Appendix E.3

2 Preliminaries

In this section we introduce some of the notations that will be used throughout
the paper, as providing an overview of GIFT, differential cryptanalysis and the
techniques introduced in [5] that we are going to use.

2.1 Description of GIFT-64

GIFT-64 is a block cipher first introduced in [1] of block size 64 and key length
128. The 64-bit state consists of 16 4-bit nibbles which will be denoted by

3 The code relative to the experiments is provided as supplementary material and will
be made publicly available for the final version.
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b0 . . . b63 = x0∥ . . . ∥x15. Following the well-known SPN design, each round of
GIFT-64 consists of three steps: the application in parallel of 16 4-bit Sboxes, a
bit permutation, and the addition of a 32-bit subkey. We here present the spec-
ifications of GIFT according to the representation used in the original paper of
the attack we improve upon [13], where the bit ordering is mirrored with respect
to the original paper [1] (where the least significant bit is the rightmost one,
etc.).

The GIFT Sbox. The GIFT SBox GS is given below.

xxx 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x)GS(x)GS(x)8 4 6 a 2 d c 1 5 b f 0 3 e 9 7

Bit permutation. As a linear layer, GIFT uses the permutation

P64(π(i)) = π

(
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((
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)
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)
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where π is the permutation that mirrors the bits, that is π(i) = (63− i) mod 64.

GIFT-64 uses 32-bit round subkeys which are XORed to the bit positions of
the state of the form b4i+2, b4i+3, i = 0, . . . , 15 (that is, the two rightmost bits
of each Sbox before the non-linear layer).

Key addition and key schedule. The round keys of GIFT-64 are 32 bits, as for
each nibble of the state only the two most significant bits are mixed with the
round key.

The key state is initialized by the master key K and split into eight 16-bit
substates, K = k0|| . . . ||k7. A round key is extracted from a two 16-bit words of
the key state extracted as RK = U ||V :

U ← k6, V ← k7.

The key state is then updated as follows: k0||k1||...||k7 ← k6 ≪ 2||k7 ≪
12||..||k4||k5, where ≪ i is an i bits right rotation within a 16-bit word. Fi-
nally, round constants generated by a 6-bit LFSR are added to the state. For
further details we refer to [1].

2.2 Differential cryptanalysis

Differential cryptanalysis, introduced in [2], is a family of statistical attack that
aims at distinguishing a non-ideal permutation by studying the propagation of
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differences. Formally, a related key differential distinguisher on E1 : Fn
2 × Fm

2 →
Fn
2 is a triplet (δ,∆, γ) ∈ F2n+m

2 such that

Prx∈Fn
2
{E1(x, k) + E1(x+ δ, k + γ) = ∆} = p > 2−n

for any fixed key k. This means that for every p−1 pairs having the desired input
difference δ and encrypted with the same pair of keys related by the difference
γ, we expect that one will yield the output difference ∆; otherwise, this would
happen randomly, i.e. once every 2n pairs. Since this class of attacks depend on
keeping track of how many pairs result in a certain output difference ∆, we refer
to such pairs as good pairs.

More generally, let I,O ⊂ Fn
2 and f : Fn

2 → Fn
2 . We say that (x, x̃) is a good

pair for a differential transition I
f→ O if (x, x̃) ∈ δ and f(x) + f(x̃) ∈ O for all

δ ∈ I.
A key recovery attack using such a related key distinguisher can be mounted

on the r′ + r rounds cipher E1 ◦ E0 (where E0 is r′ rounds) by guessing the
necessary keybits needed to compute, for each key guess, many pairs (m, m̃)
such that E0(m, k) + E0(m̃, k + γ) = δ (usually p−1 such pairs, if p is the
probability of the distinguisher). In fact, if this is the case, we would expect that
for the right key-guess one in every p−1 pairs would yield the expected output
difference, whereas for a wrong key-guess the encryption algorithm would behave
like a random permutation, so that the expected output difference would only
appear once every 2n pairs. Clearly, the same can be done by appending r′′

rounds of key guessing E2 after E1 ◦ E0.
We will consider the notion of good triplets (formed by a pair of data and an

associated subkey for which the pair is a good pair, i.e. satisfies the differential).
We denote the maximum number of triplets at any point of the attack as T . The
term associated to this step is likely to be the bottleneck in the estimation of
the time complexity. If, for instance, we consider τ1 as the average complexity
(in terms of encryptions) needed to establish whether a single triplet is good or
not, then

T1 ∼ τ1 · T

is the term we will need to pay in the complexity for retrieving all the good
triples. After this step, we want to retrieve the secret key out of the candidates
given by the triplets. It will be possible to filter a certain number of master
subkey candidates, according to statistic Σk that is usually the number of times
a triplet vote for a specific value k, that is if θ is the threshold that we set
for a possible subkey value, then we want to estimate the so called false flag
probability

β = Pr(Σk ≥ θ)

so that we expect 2128β keys will pass the first step. Therefore, we expect T2 =
2128β(1− 2−64) encryptions to finally recover the entire master key.

Finally, the overall complexity of the attack is

T = T0 + T1 + T2
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where T0 is the number of encryptions necessary to prepare the plaintext cipher-
text pairs in case we use, for example, structured data.

To estimate the probability of false flag and the probability of success of this
procedure, we refer to [3].

Notations When analysing a single Sbox GS (resp. GS−1), we will use the con-
vention of naming the input bits as x0, . . . , x3 and the output bits as y0, . . . , y3.
The key material XORed to the input bits x2, x3 will be called k = (k0, k1). We
will sometimes write, with abuse of notation, x ⊕ k meaning x ⊕ (0, 0, k0, k1).
When necessary, the bits of key that are XORed to the output bits y0, y1 in the
later (resp. earlier) round will be called κ0, κ1. Notice that the GIFT permuta-
tion is the identity modulo 4, meaning that least significant bits are sent to least
significant bits, and so on.

When talking about the intermediate states of the encryption algorithm, we
will use the same notations of [13] (i.e. Xi, Y i are the states before and after
the Sbox layer of round i). We then call ∆i the differences required by the
distinguisher in round i, and RKi the i-th round key.

For any vector V = (v0, . . . , vn), we indicate by V [i1, . . . , il] the vector
(vi1 , . . . , vil) or by V [α], the bit ⟨α, V ⟩. Let S ⊂ F4

2, we write that S = A0A1A2A3

where, for each j = 0, . . . , 3, Aj = i if xj = i for all x ∈ S (i ∈ {0, 1}), otherwise
Aj = X; in other words, Aj = X whenever the j-th bit of the set of differences
is not set. For example, XXXX = F4

2 and 000X = {0, 8}. Finally, let I,O ⊂ Fn
2

and f : Fn
2 → Fn

2 . We indicate by∇I→O the set of possible values that an element
of a good pair can take, that is

{x ∈ Fn
2 : f(x) + f(x+ δ) ∈ O for some δ ∈ I}.

2.3 Tree-based key-recovery techniques and key absorption

We remind briefly the techniques introduced in [4] that are relevant to our attack.

Tree-based guessing Suppose we want to determine f(x+k), where f : Fn
2 → Fm

2

is a partial m-bit output of an Sbox, for many possible k. This is often the case
when guessing over multiple rounds, where the output bit of an Sbox is needed to
determine a certain property on a later round. Instead of naively guessing the full
n-bit word of k, the authors of [5] introduce a dynamic key-guessing technique
from the observation that f can be described as a binary-decision tree, and an
efficient guessing strategy can be carried out according to such trees. We will
not go into the details of this but we provide the trees used in this paper for the
relevant output bits of both GS and GS−1 in Appendix A.

As an example, if f is the function that computes the output bit y0 of GS
we will use the following guessing strategy to determine it (where we consider
z = x + (0, 0, k) = (x0, x1, x2 ⊕ k0, x3 ⊕ k1) to be the input of f , with k0, k1
unknown):

1. if ⟨x, 1⟩ = x0 = 0, then y0 = ⟨z, 8⟩ = x3⊕ k1. Therefore, only k1 is necessary
to determine y0.
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2. if ⟨x, 1⟩ = x0 = 1, then

– if ⟨x, 2⟩ = x1 = 0, y0 = ⟨z, c⟩ = x3⊕x2⊕ k1⊕ k0 and only k0⊕ k1 needs
to be guessed additionally.

– if ⟨x, 2⟩ = x1 = 1, y0 = ⟨z, 4⟩ = x2 ⊕ k0 and only bit k0 needs to be
guessed additionally.

This strategy allows to compute y3 with an average of one keybit guessed instead
of 2 for every Sbox where it is needed.

Key absorption We describe the key absorption technique in the case of GIFT
for simplicity. Let us consider the following general case for GIFT, where we
need to determine an output bit j of GS for some round i, Y i[j], in order to
determine the corresponding bit of the next round Xi+1[P (j)] = Y i[j]+RKi[m]
for some round key bit m. The naive guessing strategy would be to guess the
two bits necessary to determine Y i[j] and then the bit RKi[m]. This is however
not necessary using the key absorption technique.

In fact, let us write Y i[j] as a linear relation on a bit of the input state Xi

that is we find α, β such that

Y i[j] = Y i−1[α] +RKi−1[β] + c (1)

for some c ∈ {0, 1}. This relation can be found, for instance, among the ones
given by the appropriate trees. Then

Xi+1[P (j)] = Y i[j] +RKi[m] = Y i−1[α] +RKi−1[β] + c+RKi[m].

Therefore, in order to determine Xi+1[P (j)] we can simply guess RKi−1[β] +
c+RKi[m] and the round key bit that we guessed to find the relation of Equa-
tion (1). We remark that in the case of a bit permutation like GIFT, this is
essentially always possible for any Sbox when guessing an intermediate round i
and j is 2 or 3 modulo 4, since it will be always XORed with the round key of
the following round.

3 Generic ideas for improving key guessing: minimal and
parallel guesses and efficient merging

In this paper we are going to present how the key-recovery of differential attacks
can be improved in a quite generic way, by considering three a priori simple
ideas:

– Using the framework from [5], we can reduce the number of needed key
bits to guess in each key recovery step, ultimately reducing the number
of triplets (and therefore key candidates) generated. We sometimes recover
linear relations (i.e. with absorption) instead of direct bits, but this relations
are also useful for efficient sieving during the posterior merging phase.
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– Instead of guessing all the needed key bits round per round, we consider
subsets of key bits that might be interesting (possibly covering several partial
rounds) and guess them in parallel, keeping the partial solutions in lists.

– Use efficient list merging algorithms, in particular the ones from [12,6] for
recomposing the parallel lists and for finding the well defined triplets to test.

In order to illustrate this, we propose an example on the previously best
known attack on GIFT-64, which is a related-key attack reaching 26 rounds,
and we show how to reduce the time complexity by a factor of about 210 while
keeping comparable data and memory.

Key independent relations: pre-sieving Suppose we are in the following general
scenario. Let S : Fn

2 → Fn
2 be an n-bit Sbox layer. We want to determine RK

such that

S(X +RK) + S(X̃ +RK) ∈ O (2)

where O ⊂ Fn
2 . If O is small enough, we have that (X, X̃) must satisfy some

restriction R in order for Equation (2) to be satisfiable, i.e.

(X +RK, X̃ +RK) satisfies Equation (2) for any RK =⇒ (X, X̃) ∈ R

and this restriction is independent of the value of RK. This is relevant in the case
where the value of (X, X̃) depends on some previous guess (i.e. it is actually a
triplet), then one can sieve some key guess candidates (or, equivalently, triplets)
based on these restrictions. This remark alone allows to perform the further
guess of RK on a smaller number of triplets, thus reducing the guessing cost.
We call this pre-sieving.

Computing such relations is very simple. They come from the fact that Equa-
tion (2) is satisfied if and only if (X + RK, X̃ + RK) ∈ ∇I→O. For example,
in the case of the GIFT Sbox if I = F4

2 and O = {0, 2}, we know that good
pairs cannot have input difference in I1 = {1, 2, 4, 5, 7, 8, 9, c, d}, that is ∇δ→O

is the empty set for δ ∈ I1, and all such pairs can be sieved without any need to
determine RK. In other words, the sieving probability of each input differences
in I1 is π1 = 0. Furthermore, when theinput difference is 5, we see that the
elements of ∇3→O have most significant bits (x2, x3) = 00, 10, that is 2−1 pairs
having this difference can be sieved regardless of RK (which is not mixed with
the two most significant bits). Notice that the same happens for input differences
a, b, d, f, so that I2 = {6, a, b, d, f} has sieving probability π2 = 2−1, while no
pre-sieving is possible I3 = {0, 3}, that is π3 = 1. In particular, means that the
total pre-sieve probability amounts to

1

16

∑
δ∈I1

π1 +
∑
δ∈I2

π2 +
∑
δ∈I3

π3 =
1

16

(
9 · 0 + 5 · 2−1 + 2 · 1

)
= 2−1.83

where the factor 1
16 is given by the assumption that the probability of a pair

having a fixed difference δ is uniform over I.



8 Federico Canale and Maŕıa Naya-Plasencia

Merging tables for more efficient sieving The idea of merging is particularly
useful in the case where X (and therefore X̃) can be split into two substates
that can be independently determined by two parallel guesses.

More precisely, let (P, P̃ ) be a fixed plaintext pair and MK be the m master
keybits necessary to compute X = f(MK,P ). Then splitting X means that
there exist X = XA +XB where XA = fA(MKA, P ) and XB = fB(MKB , P )
where MKA and MKB are respectively ℓA and ℓB bits of the master key. Then,
let us consider the restrictions these substates need to satisfy, that is let R such
that

(X +RK, X̃ +RK) satisfies Equation (2) =⇒ (XA +XB , X̃A + X̃B) ∈ R.

For simplicity, we are going to writeX(MK) for f(MK,P ) and similarlyXA(MKA)
for fA(MKA, P ) and XB(MKB) for fB(MKB , P ).

Indeed, in most concrete instances, and certainly in the case of SPN ciphers,
the states XA and XB , as well as the sieving relations R can be split group-wise,
e.g. Sbox-wise. Then the algorithms for group-wise efficient merging can be used.
Following [6], let the size of LA of the possible values of XA be 2ℓA and that of
LB be 2ℓB . Suppose that the elements of the two lists can be decomposed into
t groups of size mi for LA and pi for LB and that each group must satisfy the
relation Ri (that is R = R1× . . .×Rt) each of probability πi, where i = 1, . . . , t.
Then we can do a memoryless parallel matching by dividing these groups into
three parts of t1, t2, t − t1 − t2 groups each and the two tables can be merged
for a time complexity of(

Πt1
i=1πi

)
2ℓB+mi +

(
Πt2

i=t1+1πi

)
2ℓA+pi +

(
Πt1+t2

i=1 πi

)
2ℓA+ℓB

and a memory complexity given by storing the initial and final lists. This is to be
compared to the naive cost of guessing all bits to determine X, that is 2ℓA+ℓB .
In our attack, we will use this to avoid enumerating, for example, a list of 238

possible values by merging two tables of 219 bits for a cost of 229.68.
We remark that X can be split into more than two substates and one would

simply have to use the algorithm recursively.

4 Related-key attack on 26 rounds of GIFT-64 [13]

Since our attack is based on [13], we here give a high level description of how
the original attack works. We refer to [13] for details.

4.1 The distinguisher

The attack uses a differential related-key distinguisher. The input/output differ-
ences is

∆in = 0x0060 0000 0006 0000, ∆out = 0x8200 0000 2800 0000,

while the master key is related by having a difference

∆MK = 0x0000 0000 0000 0000 0000 0000 0028 0000.



Guessing Less and Better: Improved Attacks on GIFT-64 9

4.2 The key recovery procedure

The key recovery is done by first organizing the data set into structures and then
the key-guess is done using the partial sum technique and taking the properties
of the key schedule into account.

Building the starting pairs To generate the starting pairs, we prepare struc-
tures of 256 elements, each containing all possible plaintexts such that only the
bits Y 0[16, 20, 21, 25, 33, 40, 44, 45] are fixed, and the corresponding ciphertext of
the 26-round encryption. Notice that we can consider Y 0 as the plaintext for the
sake of simplicity, since the preceding Sbox layer can be uncomputed at no cost.
We can then build 2112 pairs for each two structures that satisfy the difference
in ∆Y0, i.e. out of 2

57 encrypted plaintexts. This means that we can prepare S
twin structures, i.e. N1 = S · 2112 pairs can be used in the attack, with a data
complexity of S · 257. In the original attack S = 23.96.

For each possible pair, we obtain the corresponding ciphertext pair and then
do the key recovery as follows. We partially guess each round-key Sbox by Sbox
and verify whether ∆Y 1 is satisfied, discarding the triplets that do not. As an
example, for each possible pair (X, X̃), we start from the leftmost Sbox and
guess the two keybits k = RK0[0, 1], so that we can verify for which triplets
(x, x̃, k) the desired condition

S(x+ (0, 0, k)) + S(x̃+ (0, 0, k)) ∈ {0, 8} (3)

is satisfied. Notice that this check costs 2 Sbox evaluations for each of the pos-
sible triplets of plaintext pair and key guess, and sieves 2−3 of them due to
Equation (3). Therefore, this first step will cost 2 · 2112 · 22 = 2 · S · 2114 in total
and will sieve S · 2114−3 = S · 2111 triplets. We then repeat the same procedure
for the other nibbles and round keys, each time guessing some bits of the key
and then filtering the triplets that do not satisfy the desired output difference.

According to [13], after analysing the first two rounds, if N1 is the number
of possible starting pairs, then we will end up with N1 ·2−56 pairs after guessing
the earlier rounds, having guessed 240 key values, which means we will have
N1 · 2−56+40 = N1 · 2−16 triplets after guessing the earlier rounds.

After that, we look at the tail of the encryption and guess 24 bits of RK25,
which also consists in the bottleneck of the guessing of the final rounds, when
N1 ·2−16+24 = N1 ·28 triplets are generated. Since all the active bits of RK24 were
already determined when guessing the earlier rounds, we can simply determine
X22 by 2 full round encryptions (or approximately 2·32 Sbox computations) with
no further guess. This step alone will cost N1 ·28+6 = N1 ·214 Sbox computations.
Finally, the remaining bits of RK23 and RK22 are guessed similarly to RK0 and
RK1, for a total complexity of the entire guessing ofN1·215.9 Sbox computations,
which corresponds to T1 = N1 · 215.9 · 1

16·26 = S · 2123.16 26-round encryptions.

To estimate the data complexity needed for a success probability of the attack
of at least 0.9, the authors have used the model provided in [3], so that the choice
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of S = 23.96 and the choice of a threshold θ = 2 result in a false alarm probability
β = 2−9.14, meaning that the total complexity of the attack is

T1 + 2128 · β(1− 2−64) ∼ 2123.23

for a data complexity of 260.96 and memory complexity is 2102.86 given by storing
the generated subkeys.

In the following section we are going to see how to improve T1 by a factor
of 212.24, which will lead to different trade-offs for time and memory complexity.
We are also going to see how the significant reduction of the number of gener-
ated triplets leads to the possibility of a significant improvement in the memory
complexity.

5 Improved related-key attack on 26-round GIFT

In this section we present how to improve the key-recovery and therefore decreas-
ing the time complexity of the attack. We also discuss a second method to do
the key-recovery which, at the cost of a smaller improvement in time complexity,
significantly decreases the memory complexity as well.

5.1 A high level overview of the guessing steps

Similarly to the original attack presented in the previous section, we prepare
S · 257 plaintexts divided in S structures.

In order to build the good triplets through the first round, for all S · 257
plaintexts x, we generate the partner x̃ such that S(x)+S(x̃) is in the desired set
of differences by guessing the necessary amount of keybits. To do this, we guess
the necessary key material based on the value of x, which is usually significantly
less than guessing both bits of key.

The main idea for this step is that a pair (x + k, x + δ + k) is analogous to
the one used to compute the pre-sieving introduced in Section 3, that is, since a
good pair if and only if x+ k belongs to ∇I→O and this set is usually small for
GS, the restrictions in the two least significant bits (which are not mixed with
any key material) result in the possibility of filtering out plaintexts (or triplets)
without any key guess or determination. Another important consequence of the
small size of ∇I→O is that in most case the sole knowledge of the two least
significant bits is enough to completely determine the entire word x + k and,
therefore, the value of k. Finally, we will also use the techniques reminded in
Section 2.3 for a finer key guessing and generate a smaller amount of triplets.

In this way, we first guess and determine RK0, generating 2N1−18.62 triplets
and then do the same for RK1, generating 2N1−21 triplets. The bottleneck of
this step is the analysis of the 2N1−18.62 triplets at the beginning of the guess of
RK1, which is about 2N1−17.62 Sbox computations. We remark that, as a result
of the better sieving, we have generated 2−5 less triplets than with the simple
partial sum technique. This reduced guess comes at the cost of some master
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keybits not being determined at this point, or being only partially determined
via linear relations, which will be crucial to keep track of in order to reduce the
guessing material for the last rounds, where the same key bits will need to be
determined.

In fact, for each of the generated triplet, we then go to the tail of the encryp-
tion and do the guessing of the final round keys RK24, RK25 from the ciphertext
side. However, our goal here is to reduce the amount of key guessing by deter-
mining in parallel two separate halves of the state X24 (that can be determined
by independent key guesses) in order to exploit the fact that the differential
transitions that need to be satisfied in round 23 allow for a sieving independent
of the value of RK23, thanks again to the fact that ∇I→O is small. The idea is
that we can build two tables with the possible values that the two states of X24

can take depending the key guesses and then merge them using the fact that the
resulting full state must satisfy some conditions given by ∇I→O. Notice that for
correctly estimating the complexity of this step, it will be crucial to determine
which key guesses will be needed for determining each table.

Finally, we will guess RK23, RK22, RK21 by guessing group of nibbles in a
specific order that allows to keep the number of triplets low at each step, thanks
to the possibility of pre-sieving in those rounds. This step will have a complexity
of 28.75 for each triplet.

Notice that the above key recovery strategy can be concretely applied in
two different ways, providing two possibly different trade-offs (discussed in Sec-
tion 5.4):

1. by building all triplets and storing for each triplet the key guess that it de-
termines and then determining the remaining bits for the subkey candidates
that are voted by a number of triplets above a certain threshold θ. The
memory complexity given by the storage of the possible sub key candidates.

2. by generating each triplet one by one and, for each guess the remaining
undetermined bits of key so that the full master key can be tested.

5.2 Guessing RK0 and RK1

We here provide a detailed description of how to do a better sieving than the
one used in [13] that was explained in Section 4.2, by using the fact that the two
least significant bits of each input nibble are always known, and that sometimes
to determine good pairs (triplets), the guessing of some keybits is unnecessary or
can be postponed thanks to the key-guessing techniques presented in Section 2.3.
It is especially relevant to keep track of these bits, because, when guessing the last
round keys, we are going to make use of the partial knowledge of the master key
accumulated in the earlier rounds. For this reason, for each generated triplet, we
will have to keep track of which bits were or were not determined in the previous
key-guess.

We first provide a detailed example of how to do the key-guessing of the
leftmost Sbox, and then we will analyse each Sbox based on the transition that
they have to satisfy (see Figure 1). For example, Type 1 Sboxes are the ones
satisfying XXXX → 000X.
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18-round related-key differential distinguisher

X The value of the bit should be known. ∆ The difference is known and must be nonzero. The value of the subkey bit should be known.

i The subkey bit equals the i-th bit of the master key. i The master key bit with the nonzero difference.

Fig. 1: Circled in green the keybits that are determined or guessed for each
triplet; in violet the ones that may be undetermined, coming from Type 1; in
red the ones that may be undetermined, coming from Type 4; in yellow the ones
that may be undetermined, coming from Type 5; in blue the ones that may be
undetermined, coming from Type 6. Sboxes are counted from left.

Detailed key-guessing for Type 1 Sbox Let us now see an example of how
to generate a smaller number of triplets than what was done in [13], by reducing
or postponing the amount of guessed key material. Consider again the leftmost
Sbox, for which a differential transition of the kind XXXX → 000X has to be
verified, i.e. the input pairs can take any value and the output pair must satisfy a
difference of 0 or 8. Furthermore, we will determine the most significant output
bit y3 because it will be needed to check the transitions in the next round.
In reality, determining a linear relation on one keybit may suffice to avoid an
unnecessary guess thanks to the key absorption technique.

In order to generate the good triplets, we first notice that the possible input
differences for this transition are D = {0, 5, 7, 9, b, d, f}. As explained in Sec-
tion 3, this implies that for each x ∈ F4

2, not all (x, x̃) need to be considered, but
simply (x, x + δ) for δ ∈ D. 4 Furthermore, we can sieve on average half of the
pairs (x, x+ δ) where δ ∈ {9, b, d, f} just by looking at the two least significant
bit of x. In fact, for each such δ, half of the possible values of x will not lead to
the desired output difference regardless of the value of the key.

As an example, if the input difference is 9, we know that ∇9→8 = {7, e}.
Therefore, the possible input values of the Sbox that lead to an output difference
9 can only be (0111, 1110) or (1110, 0111). In particular, we discard any x such

4 When using this improved sieving in intermediate rounds, we assume that the pos-
sible difference of a triplet is uniformly random (i.e. Prx,x′(x + x′ = δ) is the same
for every input differences δ). In other words, each input difference has the same
amount of triplets that satisfy it.
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that the two least significant bits (which are not XORed with any key material)
are different from 10 and 11. After that, the only key surviving will be the one
that satisfies

x+ (0, 0, k) =

{
0111 if (x1, x0) = 01

1110 if (x1, x0) = 11

(we remind that x = (x3, x2, x1, x0) is the 4-bit partial state before the xor of the
key, and k = (k0, k1) is the partial round-key, so that (0, 0, k) = (0, 0, RK0[0, 1])
in this case). This means that half of all possible pairs (x, x+9) will be pre-sieved,
and for each of these only one keyword will be possible, generating exactly one
good triplet.

The same happens for b, d, f, that is half of the input pairs with the given
input difference can be discarded, while the other half fully determines the key-
bits RK0[0, 1] based on the value of the two least significant bits of the input,
each generating one good triplet.

For the pairs with input differences 5 and 7, no pre-sieving is possible but
both keybits are uniquely determined, again generating exactly one good triplet.

For the pairs of input difference 0, all of them are necessarily good pairs and
we simply need to determine the output value y3. To do so, we always guess
one keybit (k0), and then in half of the cases the output is determined and we
have one undetermined keybit (k1), in the other we will avoid the guess with key
absorption. In particular, each pair will generate 2 triplets with undetermined k1,
but for half of them we know that, if in the second round we want to determine
z0 + κ0 = y3 + k1 + κ0, we can guess simultaneously the value k1 + κ0 (we recall
here, from notation, that κ0 represents the bit added to the output in the next
round). More concretely, we will not guess k1 (which correspond to master keybit
97) as we do not need it, and when guessing the Sbox 3 of the second round,
we will directly guess k1 + κ0, which corresponds to determining a relation for
MK[89, 97], that is between master keybits MK[97] and MK[89].

The above information is summarised in Table 2 where, for each possible
input difference, the set of possible good pairs ∇δ→8 are listed, together with
the amount of pre-sieve and key sieve that this set determines, followed by the
number of triplets it generates. In order to compute the total sieve, or amount
of key guesses, or triplets, one has to sum all the values in the respective column
weighted by 1

16 (that is the probability that a random pair, or triplet, has the
given input difference).

Overall, at the end of the analysis of this Sbox we will have generated for
each possible x, 4 · 2−1 = 2 triplets with differences 9, b, d, f and 2 · 1 = 2 from
the second group of non-zero differences 5, 7, all with both keybits determined.
We will also have generated 2 triplets of difference 0, one with k1 undetermined,
and another one with k1 will be absorbed. In other words, we generate 6 ∼ 22.59

triplets for each possible x, of which

– 2
3 have both keybits determined (corresponding to master-key bits 97, 113),

– 1
3 have k1 undetermined (master-key bit MK[97]) of which 1

6 with possibility
of absorbing it when guessing the next round key. This means that, to deter-
mine the LSB of Sbox 10 in round 1, we determine neither k1 (MK[97]) nor
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κ0 (MK[89]), but a linear relation between the two k1+κ0. This distinction
will be later useful when guessing the last rounds.

Notice that the naive key guessing would require to generate for each x ∈ F4
2,

24 pairs and 22 key guesses, that is 24 · 22 = 26 triplets that need 2 · 26 =
27 Sbox evaluations to generate 26−3 = 23 good ones. In total, S · 257 · 27 =
S · 264 Sbox evaluations. However, with our method, each plaintext (or pair)
generates on average 6 = 22.59 triplets requiring a complexity of less than 2
Sbox computations. Indeed, all the information needed for determining whether
a pair is good or not for a certain transition I → O can be stored in a table
that has at most 16 entries for each possible input difference, each of which has
a maximum of 4 possible entries (i.e. the elements of ∇δ→O, which correspond
to the possible assignments of x+ k). The total complexity for this step is then
S · 258 Sbox evaluations.

Table 2: Triplet sieving for Type 1 (XXXX → 000X). The triplet sieve takes
into account the key absorption used for δ = 0.
Input difference ∆δ→∆ Pre sieve # of possible keys # of triplets

0 F4
2 20 21 21

5 {9, a, c, f} 20 20 20

7 {1, 3, 4, 6} 20 20 20

9 {7, e} 2−1 20 2−1

b {0, b} 2−1 20 2−1

d {5, 8} 2−1 20 2−1

f {2, d} 2−1 20 2−1

Guess of RK0 We will analyse each transition type, and keep track of which
bits we do not need to determine, since we might need to guess those bits in the
final rounds. Furthermore, with the key-absorption technique we will determine
relations on the keybits that will also turn out to be useful in the last rounds.
This information is summarised in Figure 1, where the keybits that will be
determined (or guessed) for any triplet are in green, while the ones that are not
determined with some probability are in red, and in yellow the ones that are not
determined but a linear relationship among them exist.

Type 1 (Sboxes 1, 5, 12, 16) As already discussed, for these Sboxes we can
determine both keybits whenever the pair has a non-zero difference. When the
pair has difference zero (on average, 1

3 of the total number of good triplets),
then we always guess k0. This is enough in order to determine y0 for half of the
pairs, while for the remaining half we can do key-absorption and compute y0 as
linearly dependent on the undetermined bit k1.

This means that, on average, for 1
3 of the total number of good triplets, k1 is

undetermined (which correspond to master keybits MK[97, 101, 108, 112]) and
in half of those cases we do key-absorption between k1 and κ0, that is a linear
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relationship between the master keybits MK[90, 101], MK[89, 97], MK[108, 95],
MK[112, 96] will be determined when guessing round 1. The possibly undeter-
mined keybits from Type 1 are violet.

The analysis of each of these Sboxes sieves on average 2−1.41 of all possi-
ble triplets for each Sbox, costing 2 Sbox evaluation per triplet. This is to be
compared to the naive sieve of 2−1 costing 2 · 22 = 23 Sbox computations per
triplet.

Type 2 (Sboxes 2, 9) As summarised in Table 4, we determine both keybits
for all. In this way, we have a sieving of 2−2 triplets for each Sbox, which is
equivalent to the naive sieve, but costing 2 Sbox evaluations against 23.

Type 3 (Sboxes 3, 7, 10, 14) For every input difference, no pre-sieving is possible
but both keybits are then completely determined (Table 5). No additional triplets
are then generated, i.e. the sieving amounts to a factor of 1.

Type 4 (Sboxes 4, 8, 11, 15) For this group of Sboxes (Table 6, we know that
the LSB of the key k0 is always determined, while k1 is undetermined when
δ = 6 (which happens for 1

11 of the good triplets), or when δ = 0 ( 4
11 of the good

triplets), in which case half of the times k1 is also undetermined (it is not needed
to determine y1), and in the other half of the cases a key-absorption between k1
and κ1 is possible.

Overall, in 5
11 cases (i.e. triplets whose input difference is 0 or 6) k1 is un-

determined (which correspond to master key bits MK[100, 104, 107, 111]), but
in 2

11 cases key absorption is done and we also have bits MK[73, 74, 79, 80] un-
determined. In this case, however, as soon as the guessing of round 1 will be
done, a linear relation between k1 and κ1 will be determined, as already noted.
In terms of master keybits, a relation between bits MK[100, 73], MK[104, 74],
MK[107, 79], MK[111, 80] will be determined when guessing the next round.

The possibly undetermined keybits from Type 4 are red. The amount of
sieving is 2−1.54 triplets for each Sbox.

Type 5 (Sboxes 6,13) In this case (Table 7), we know that when δ ̸= 0, then we
fully determine k0 and k1. When the pair has input difference 0 (which are 1

3 of
the good triplets), following the tree 3 for y3 (Appendix A), then either k0 or
k1 are not guessed (with probability 1

4 and 1
2 resp.), while in the remaining 1

4 of
the cases k0 + k1 must be guessed, which means that in this case k0 and k1 are
undetermined but a linear relation between the two is guessed.

Overall, this means that 1
3 of the good triplets for each Sbox, one bit between

MK[109, 125] and/or one bit between MK[102, 118] is undetermined.
The possibly undetermined keybits from Type 5 are depicted in yellow. The

total sieving of triplets is 2−1.41 for each Sbox.

Overall sieve The above method used to guessRK0 generates 2−4·1.41−2·2−4·1.54−2·1.41 =
2−18.62 triplets for each pair, for a total of S ·293.38 triplets at the end of the first
round. For comparison, in the original paper [13], S · 298 triplets are generated.
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Guess of RK1

Type 6 (Sboxes 10, 16) For this group of Sboxes, when δ = 6 (i.e. 1
7 of the cases)

the input bit z2 after round key addition is undetermined. This means that bit
MK[74] (or a linear relations between keybits MK[111] and MK[80], for the
triplets for which key absorption was done in the previous round) is unknown
in 1

7 of the cases. Similarly, bit MK[80] (or a linear relation between keybits
MK[104] and MK[74]) is not determined in 1

7 of the cases. However, z3 is always
determined and this means that master keybits MK[96] and MK[90] (or, when
key absorption was done previously, linear relations between keybitsMK[96, 112]
and between keybits MK[90, 101], respectively) are also determined. The sieving
is 2−1.19 for each Sbox.

Type 3 (Sboxes 9, 15) For these Sboxes, all the keybits are determined for
any triplet, and the sieving is 1. Therefore, keybits MK[73, 89] (or linear re-
lations between keybits MK[97, 89] and between keybits MK[73, 100], respec-
tively), as well as keybits MK[79, 95] (or linear relations between masterkey bits
MK[79, 107] and MK[95, 108]) are always determined.

5.3 Guessing the final rounds

From the above considerations, we see that the numner of triplets after guessing
the early rounds is equal to N1 · 2−18.62−2.38 = N1 · 2−21 (instead of N1 · 2−16 of
the original paper).

Guess of RK25 and RK24 The goal is to guess the remaining bits of RK24

and RK25 (the ones that have not been determined so far) in two separate
groups in parallel. We will then merge these two groups of guesses thanks to
relations that the state X24 needs to satisfy, in order for a good triplet to satisfy
the difference ∆X23. In fact, we separately guess the key bits involved in the
independent computations in the group of nibbles 1, 2, 3, 4, 9, 10, 11, 12 of the
state X24 (blue Sboxes) that we call A and nibbles 5, 6, 7, 8, 13, 14, 15, 16 of
the state X24 (green Sboxes) that we call B.

Thus, we generate two lists of triplets, one associated to the possible values
of the group A nibbles of X24 and the other to the possible values of the group
B, that we can merge together to determine the full state of the triplets at X24.
This merging is done considering the filtering of probability 2−0.91 (or 2−0.87)
per Sbox that are possible in round 23 without knowledge of RK23, as well as the
linear relations (determined when guessing the first two rounds) between master
keybits that are each needed when building a different table (we will explain this
in detail).

In fact, similarly to the pre-sieving that was done to filter triplets regardless
of the key values, Table 9 and Table 10 show that it is possible to filter out triplets
for the transitionsXXXX → X0X0 andXXXX → 0X0X respectively, simply
by looking at the possible values that the first two bits of X24 can have in order
to belong to the desired ∇δ→∆ (where ∆ is X0X0 or 0X0X).
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18-round related-key differential distinguisher
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X The value of the bit should be known. ∆ The difference is known and must be nonzero. The value of the subkey bit should be known.

i The subkey bit equals the i-th bit of the master key. i The master key bit with the nonzero difference.

Fig. 2: Circled in green the keybits that were always determined/guessed in the
earlier rounds; in violet the ones that may be undetermined (coming from Type
1); in red the ones that may be undetermined (from Type 4); in yellow the
ones that may be undetermined (from Type 5); in grey the ones that may be
undetermined (from Type 6). Sboxes are counted from left.

In order to determine how many keybits must be guessed for building each
table, we keep track of which keybits were already determined in the earlier
rounds.

The following 20 keybits of the masterkey that are part of RK24 are always
guessed or determined in the first two rounds:MK[121, 122, 103, 123, 124, 105, 106, 126, 127, 128, 113, 110, 114,
115, 116, 117, 98, 99, 119, 120]. We now focus on the keybits that may be unde-
termined for building each table.

Building the first table for Group A In order to determine X24 in the first group
of nibbles, the following 12 bits from RK25 are always undetermined and need
at this point to be guessed: MK[81, 82, 75, 83, 76, 84, 65, 66, 67, 91, 68, 92].

As for the remaining bits involved in the determination of the bits of Group
A, we have already seen in the previous section that one bit out of master key-
bits 89 and 97 is undetermined with probability 1

3 , while being otherwise fully
determined; similarly, one bit out of master keybits MK[90, 101] is undeter-
mined with probability 1

3 and one bit out of the master key bits MK[109, 125] is
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Table 3: Keybits determined in the earlier rounds.
Group Master Keybits involved Notes

A

MK[81, 82, 75, 83, 76, 84, 65, 66, 67, 91, 68,
92]

All bits undetermined with
probability p = 1

MK[89, 97], MK[90, 101], MK[109, 125] One out of each couple of bits
undetermined with p = 1

3

MK[111, 117, 73∗, 74∗] Each bit undetermined with
p = 5

11

B

MK[69, 93, 77, 85, 70, 94, 78, 86, 71, 87, 72,
88]

All bits undetermined with
probability p = 1

MK[96, 112], MK[95, 108], MK[102, 118] One out of each couple of bits
undetermined with p = 1

3

MK[100, 104, 79, 80] Each bit undetermined with
p = 5

11

also undetermined with probability 1
3 . Furthermore, bits MK[111, 107] are each

undetermined with a probability of 5
11 , while bits MK[73, 74] are each undeter-

mined when key-absorption happened for Sboxes 4 and 8 of round 0, i.e. with a
probability of 2

11 . However, for simplicity we suppose it happens with probability
5
11 , so that we do not have to distinguish between the two cases.

The above information, and the equivalent for Group B, is summarised in
Table 3.

Building the second table for Group B The following 12 bits from RK25 are al-
ways undetermined and need to be always guessed:MK[69, 93, 77, 85, 70, 94, 78, 86, 71, 87,
72, 88]. However, only one bit out of master keybits MK[96, 112], as well as one
bit out of MK[95, 108], each need to be guessed with probability 1

3 ; similarly,
one bit out of MK[102, 118] is undetermined with probability 1

3 . On the other
hand we consider bits 100, 104, MK[79, 80] undetermined each with probability
5
11 for simplicity, as before.

Linear relations from key-absorption Finally, whenever key-absorption was done
in round 0 for Sboxes 13, 9, 6, 2 (Type 4), linear relations between keybits
were possibly determined, but are not possible to be used when building tables
because the relations are between keybits that are needed for different tables
(contrary to the linear relations among bits belonging to the same group, which
we have indeed used). These linear relations can however be used when merging
the tables. In particular, a relation between master keybits MK[74, 104] and
MK[80, 111] are known each with probability 6

7 (i.e. when x1 + κ1 + k0 was
determined in round 1) when key absorption was done on Sboxes 8 and 15 of
round 0. Similarly, a linear relation between bits MK[73, 100] or between bits
MK[79, 107] is known always whenever key absorption was done on Sboxes 13
and 6 of round 0.



Guessing Less and Better: Improved Attacks on GIFT-64 19

How to recover X24 merging the tables efficiently After building the tables LA

and LB from Group A and Group B respectively, with entries equal to a possible
substate value of X24 according to a different key guess, we want to finally merge
the tables to recover X24.

In order to merge them efficiently, we consider t1 Sboxes from the first group
and t2 sboxes from the second group (e.g., when t1 = t2 = 4 we can consider
Sboxes 1, 2, 3, 4 and Sboxes 5, 6, 7, 8) and do the merging of the tables according
to these Sboxes, following the memoryless parallel matching introduced in [6].

In particular, let us consider the 6 bits of each Sbox that count towards the
sieve, that is the key-independent input bits of each input pair (x3, x̃3, x2, x̃2)
and the two output bits of the difference (z1 = ∆y3, z0 = ∆y1). We then do a
memoryless group-wise parallel matching, considering for each Sbox the group
of three bits x3, x̃3, z1 and the m bits of the linear relation of the key (3 · t1 +m
bits in total) and the group of three bits of x2, x̃2, z0 (3 · t2 bits in total), that is
we decompose the two lists according to the values of groups of 3 · t1 +m and
3 · t2 bits respectively.

More precisely, let LA and LB be of size 2ℓA and 2ℓB respectively, ordered
lexicographically according to the first group of 3 · t1 and the possible 2m values
of the keybits involved in the linear relations previously determined, and then
to the second group of 3 · t2 bits. That is, the first 2ℓA−3·t1−m entries of LA are
all 0 in the aforementioned 3 · t1 +m bits, 1 in the next 2ℓA−3·t1−m, and so on,
so that LA is composed of sublists L(α) whose first 3 · t1 bits take value α for
all α ∈ {0, . . . , 23·t1+m − 1}. These sublists are of size 2ℓA−3·t1 . The same we do
for LB , being an ordered list of sublists LB(β) for β ∈ {0, . . . , 23·t1+m − 1}.

Then for all possible α ∈ {0, . . . , 23·t1+m − 1}, we do the following

1. we consider the sublist LA(α) and build a new list Laux made by the union of
(α,L(β)) such that the relation given by the sieve is satisfied. This happens
on average for 23−0.91·t1 such β, so that Laux has size 2t1·(3−0.91)+ℓB−3·t1 =
2ℓB−0.91·t1 and is then sorted according to the second group of bits 3 · t2.
This step has approximately the cost of building Laux, that is 2

ℓB−m−0.91·t1 ;
2. for each element in LA(α), we check whether it belongs to Laux and can

be associated. This step has the cost of finding these matches, which is
approximately 2ℓA−3·t1−m+(3−0.87)·t2 , since Laux was ordered according to
the group of 3 · t2 bits.

After that, for each finding, we can test and sieve with respect to the remaining
group of bits and to the linear relations for a cost of 2ℓA+ℓB−m−t1·0.91−t2·0.87 and
a further sieve sieve of 2(8−t1)·0.91−(8−t2)·0.87. The total complexity is then on
average approximately

2m+3·t1 · (2ℓB−m−0.91·t1 + 2ℓA−m−3·t1+(3−0.87)·t2) + 2ℓA+ℓB−m−t1·0.91−t2·0.87

= 2ℓB−2.09·t1 + 2ℓA−2.13·t2 + 2ℓA+ℓB−m−0.91·t1−0.87·t2

(4)

Let us now see how to estimate the above complexity for the average key
guess, i.e. depending on the sizes of the lists and the number of linear relations
due to the previous key guessing.
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Computing the expected complexity of the merging Let us see as an example the
worst scenario, and then we will examine the general case. The worst possible
situation happens when all bits that may have not been determined or guessed
in the earlier rounds, are indeed undetermined and need to be guessed at the
moment of building the tables for X24. This correspond to the case when all
the Type 1 transitions have one keybit undetermined (probability ( 13 )

4, as well
as Type 5 (( 13 )

2) and Type 6 (( 17 )
2); finally, for all Type 4 key-absorption was

performed (( 5
11 )

4). This then happens with a probability:(
1

3

)6

·
(
1

7

)2

·
(

5

11

)4

= 2−19.67.

In this case, we would have 19 bits to guess in order to build each table, i.e. for
each pair we would have to merge two tables of size 219 for which 16 (non-linear)
relations exist, each satisfied with a probability of 2−0.91, and two linear relations
coming from the key-absorption of Sboxes 13 and 6 of round 0 (Sboxes 9 and 2 of
round 0 do not yield a relation because we are in the worst case scenario in which
the Type 6 Sboxes of round 1 do not determine x1). Therefore, the worst case
scenario (which corresponds to the case where ℓA = ℓB = 19,m = 2 and happens
with probability 2−19.67) has a time complexity according to Equation (4) equal
to

219+2.09t1 + 219+2.13t2 + 236−0.91·t1−0.87·t2

which, for the case of t1 = t2 = 4 is equal to 229.68.
Let us show how to determine the average complexity of the above procedure.

As summarised in Table 3, we always need to guess 12 bits for each table, while
the remaining 7 may be determined, depending on the guessing of the earlier
rounds. Let LA = ℓA − 12 be the random variable that counts the number of
guesses necessary to build the first table, in addition to the 12 which are always
necessary; similarly, let LB = ℓB − 12 be the number of guesses for the second
table and let M be the number of linear relations from Type 4 transitions coming
from key-absorption and that can thus only be used during the merging. To keep
track of this, we model each Sbox as a random binomial variable.

For Sboxes of Type 1 and 5 the variable takes 0 when both keybits of the
Sbox are determined, while 1 when they are not (we have seen that this can con-
sidered always as one bit known, one bit undetermined). We call these variables
X1, X5, X6, X12, X13, X16 (the index comes from the number of the respective
Sbox in round 0) and they are then binomial variables which are 1 with proba-
bility 1

3 . Similarly with Sboxes of Type 4, they can take 0 with probability 6
11 ,

but the variable takes 1 when we are doing key-absorption and then two bits
are undetermined (so with probability 5

11 , in the simplified worse scenario). The
variables are named as Y4, Y8, Y11, Y15. A linear relation is however known in the
case of Sboxes 13 and 6 of round 0, while for Sboxes 9 and 2 it is only known
when the random variably of Sboxes 7 and 1 of round 1 (which we call Z10 and
Z16) take value 0.

Therefore, we have 12 random binomial variables, mutually independent, and
depending on the value of each we need to guess 12 + LA keybits for Table A
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and 12 + LB bits for Table B, and have at our disposal M additional linear
relations coming from key-absorption. For example, in the worst case scenario,
we have seen that LA = LB = 7 and M = 2. Or when Z10 and Z16 are 0,
but Xi and Yj are 1 for all i = 1, 5, 6, 12, 13, 16 and j = 4, 8, 11, 15 (which
happens with probability 2−14.50): then LA = LB = 7 and M = 4. Another
possibility is, for example, if Z10 Z16 and Y15 are 0, and Xi and Yj are 1 for all
i = 1, 5, 6, 12, 13, 16 and j = 4, 8, 11 (which happens with probability 2−14.24):
then LA = 6, LB = 7,M = 3.

From Equation (4), we know that the complexity of the merging if LA = lA
and LB = lB is

C(lA, lB , r) = 212(2lA+2.09t1 + 2lB+2.13t1) + 224+lA+lB−m−0.91·t1−0.87·t2 .

Then, the average complexity is given by∑
0≤lA,lB≤7,0≤r≤2

Pr(LA = lA, LB = lB ,M = m) · C(lA, lB ,m).

Using a computer program to compute the above costs and probabilities, we
find out that the average complexity of the merging is 224.22, where we have used
the heuristic choice of t1 = t2 = 3 when lA + lB ≤ 10, while t1 = t2 = 4 when
lA + lB > 10.

At the end of this, an average of∑
0≤lA,lB≤7,0≤m≤4

(lA + lB −m) · Pr(LA = lA, LB = lB ,M = m)

keybits are guessed, which we have found to be equal to 28.03 keybits (including
the linear relations). Given that a total sieving of probability 2−8·0.91−8·0.87 is
done, then T · 228.03−8·0.91−8·0.87 = T · 213.79 remain on average, if T was the
number of triplets at the beginning of this step.

Guessing RK23, RK22, RK21 At this point of the key guessing, the active
bits ofRK21 are already determined as the master keybitsMK[71, 73, 75, 89, 77, 91, 93, 95]
were already determined when guessing RK25. We need then to guess RK23 and
RK22. Let T (0) be the number of triplets at the start of this phase of the guess-
ing.

We divide the guess of RK23 into four steps, by determining four different
substates of X23. First, we guess Sboxes 1, 5, 9, 13 of round 23, each generating
respectively 20.91, 20.87, 20.91, 20.87 triplets (according to Table 9 and Table 10),
which in total is 23.56 new triplets. Building these triplets can be estimated to
cost 2 · 4 Sbox computations per triplet, for a total complexity of C(0) = 8 · T (0)

Sbox computations. Since these values determine nibbles 1 and 3 of X23, which
both need to satisfy the transition XXXX → 0XX0, a pre-sieve of 2−1 is
possible for each nibble (Table 13) in round 22, without need of guessing RK22.
Therefore, at the end of this step T (1) = T (0) · 23.56−1−1 = T (0) · 21.56 remain.
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Next, we guess RK23 for the Sboxes 3, 7, 11, 15 of round 23, generating
again a total of 24.56 triplets for a cost of 2 · 4 Sbox computations for each
triplet, that is C1 = 8 ·T (1) ·8 = T (0) ·23.56 Sbox computations. This determines
nibbles 9 and 11 of X23, which need to satisfy the transition XXXX → X00X
and XXXX → X001 respectively, so that a pre-sieve is possible of 2−0.71 and
2−1.09 respectively (Table 15 and Table 16). At the end of this step, T (2) =
T (1) · 23.56 · 2−1.90 = T (0) · 21.56+3.56−0.71−1.09 = T (0) · 23.32 remain.

Next, we guess Sboxes 2, 6, 10, 14 of round 23, generating once more a total
of 23.56 triplets for a total cost of C2 = 8 ·T (2) = T (0) · 26.32 Sbox computations.
This determines nibbles 5 and 7 of X23, which need to satisfy the transition
XXXX → 00X1 and XXX → 00XX respectively, so that a pre-sieve sieve is
possible of 2−1.19 and 2−0.68 respectively (Table 12 and Table 11), after which
T (3) = T (2) · 23.56 · 2−1.87 = T (0) · 23.22+3.56−1.87 = T (0) · 25.01 remain.

Finally, we guess nibbles 4, 8, 12, 16, generating again a total of 23.56 triplets.
This costs a total of C3 = 8·T (3) = T (0) ·28.01 Sbox computations and determines
nibbles 13 and 15 of X23. These two Sboxes need to both satisfy the transition
XXXX → XX00, so that a pre-sieve of 2−0.83 is possible for each (Table 14).
At the end of this step, T (4) = T (3) · 23.56−1.66 = T (0) · 26.91 triplets will remain.

In order to determine RK22, we do similarly as before, determining first
Sboxes 1, 5, 9, 13, which correspond to generating each 21, 20.19, 20.71, 20.83

triplets respectively, for a total of T (4) · 22.73 new triplets and a cost of C4 =
8 · T (4) = 29.91 Sbox computations. After this, Sbox 16 of round 21 will be fully
determined, since the master key bits of RK21 were already guessed, and a sieve
of 2−4 is possible, so that T (5) = T (4) · 22.73−4 = T (0) · 25.64 triplets remain.

Finally, we determine the remaining nibbles of RK22, which generate for each
triplet 21+0.68+0.09+0.83 = 22.6 new ones, for a total of T (6) = T (5) · 22.6 = 28.24

and a cost of C5 = 2 · T (5) = 26.64 Sbox computations.
After this, the final nibbles 7, 8 and 15 of round 21 are determined, each

providing an additional sieve of 2−4 for each of them since RK21 is determined,
that is T (6) · 2−12 = T (0) · 2−3.76 will be the number of triplets generated at the
end of the key guessing.

The cost of generating these triplets is then

5∑
i=0

C(i) = T (0)(23 + 24.56 + 26.32 + 28.01 + 29.91 + 25.64) = 210.43 · T (0)

Sbox computations.

5.4 Final complexity

Let us estimate the final complexity of the attack with the improved key guessing.
We propose two different variants for better time complexity or better memory
complexity.

Improved time complexity We first prepare the data in S structures of size 257

plaintext-ciphertext pair each. We will estimate S later, but for now we observe
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that this step has a time complexity of S · 257 26-round encryptions and the
same amount of plaintext ciphertext pairs.

We can then estimate that the complexity of guessing the first round keys
RK0 and RK1 to be approximately the cost of generating the triplets of the
guess of RK0, that is

2 ·N1 · 2−18.62 = 2 · 2112 · 2−18.62 = S · 294.38

Sbox computations. In fact, when guessing RK1 we actually reduce the possible
triplets thanks to the pre-sieving. All in all, the cost of guessing the first two
round key is actually negligible in comparison to the steps necessary to guess
the final round keys, as we are now going to explain.

In fact, the next step uses S ·2112−21 triplets (2−21 were sieved when guessing
the first two rounds as was observed), and for each of them we guess RK24 and
RK25 in two separate groups that are needed to build two tables for X24, each
of size up to 219, that we have seen can be merged for an average complexity of
224.32. Therefore, this step alone can be estimated to cost about

N1 · 2−21(219 + 219 + 224.32)

Sbox computations.
Finally, for each of the newly generated S · 2112−21 · 213.79 triplets we have

seen that the guess of RK23, RK22, RK21 costs 28.75 on average. Therefore,
estimating one Sbox computation as 1

26·16 26-round encryptions), the total time
complexity of the entire procedure is approximately

T1 = N1 · 2−21(219 + 219 + 224.32 + 213.79 · 210.43) · 1

26 · 16
= N1 · 2−4.39

= S · 2107.61
(5)

26-round encryptions. We remark that the total subkey recovery phase with the
partial sum technique of the original paper had a complexity of S · 2119.22.

After this phase of the key guessing, we will count how many triplets vote
a subkey value k̃, that is how many triplets will have k̃ as the associated key
value for the 112 key bit guessed in the procedure. Analogously to what we
explained in Section 4.2, this is to say that for any possible master key value
k, we can consider a statistic Σk given by these counters, and test the ones
with the higher counter as candidates (by eventually guessing the remaining 16
bits) by encrypting a plaintext under the candidate key and testing whether the
ciphertext matches the one provided by the oracle.

In particular, if we test the candidates whose counter pass a certain threshold
θ, we have to test 2128β key candidates, where β is the false flag probability that
indicates the probability of a random key candidate passing the fixed threshold.
As we have seen, this β depends on the values of N , θ, which also determine the
probability that the entire routine succedes, α. In order to have the same success
probability of at least 90% ( that is α < 0.1) as in the original attack, we choose
the number of pairs N = 260.96 and θ = 4. Then we have that for this choice of
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parameters β = 216.85 and the data complexity is D = 2 · N = 261.96, that we
need S = 24.96 structures. Furthermore, the time complexity will be given by T1

of Equation (5) and T2 = 2128β(1− 264), for a total

T1 + T2 = 2112.57 + 2111.15 = 2113.03

26-round encryptions. This also requires a memory complexity of 2112β = 295.15

112-bit keys in order to store the key candidates that satisfy the threshold.

Improved memory complexity Let us now describe how to perform an attack
with minimal memory thanks to our improved key recovery techniques. In order
to do so, we do perform the guess by generating all possible triplets and store
the subkey values that pass the threshold. Instead, for each possible N plaintext-
ciphertext pair, we do the key guessing exactly as before, at each step generating
a triplet that we analyse on the fly. That is, we do not store any triplet or key
candidate, but simply do the key guess to generate, one by one, all the possi-
ble good triplets for the distinguisher according to our improved key-guessing.
As soon as we generate a good triplet, to which a 112-bit subkey candidate is
associated, we guess the remaining 16 bits of the master key that are not yet
determined, and we then test the correctness of the full key. If the key is wrong,
we generate the next triplet and do the same until the right key is recovered.

The time complexity is then given by the time it takes to generate all the
possible good triplets, that amounts as before to

T0 = N1 · 2−21(219 + 219 + 224.32 + 213.79 · 210.43) 1

26 · 16
= N1 · 2−4.40

26-round encryptions generating a total of N1 · 2−21 · 213.79−4.36 = N1 · 2−10.97

triplets. For each of this triplet, we need to guess the undetermined 16 bits of
the master key. Therefore, the total complexity is

T1 = T0 +N1 · 2−10.97 · 216 ∼ N1 · 25.03 = 2120

for the choice of data complexity equal to D = 2 · N = 259.96, which is half
as in the original attack, that is N1 = 2114.96 and α < 0.1 (i.e. the probability
of success is higher than 90%). Notice that in this case the bottleneck of the
memory is given simply by the size of the tables that are built in the process,
i.e. 224.32 entries of two plaintext and one key guess which are then the size
of 225.32 128-bit words. Finally, we remark that this variant of the attack was
made possible thanks to the fact that our better sieving lead to number of good
triplets that allow to generate the remaining 16 bits without getting too close
to exhaustively searching 2128 values.

6 Conclusion

We have proposed two different trade-offs to improve the previous best known
attacks on GIFT-64: a related-key differential attack on 26 rounds [13].
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We propose one that improves the memory complexity by a factor of 277 and
a time complexity reduced by about 23, while having the same data complexity.
The other one allows to reduce the time complexity by a factor of 210 and the
memory by a factor 27.5 at the cost of increasing the data by a factor 2. We
have implemented our techniques in a toy cipher in order to verify their validity
(described in Appendix E).

We also believe that the ideas we applied, that are very generic, should be
taken into account when building key-recovery attacks with differential crypt-
analysis. We believe similar improvements would also apply in the case of the best
single-key attacks on GIFT-64, on 21 rounds, but as it is a multiple-differential
attack, the techniques would need some adaptation, and we leave this case as an
interesting open problem. The final aim of our techniques is to algorithmically
optimize the cost of the different steps of the key recovery part, by applying a
parallel search on efficient subsets and an efficient merging of the partial solu-
tions.

Finally, we would like to point out that improving the needs of memory
complexity is a task that should be considered more often.
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A Tree-guessing for y0, y1, y2, y3

For y0, we use the following guessing strategy:

– if (x1, x0) = (0, 0), then y0 = x3 ⊕ k1
– if (x1, x0) = (0, 1), then y0 = x3 ⊕ x2 ⊕ k1 ⊕ k0
– if (x1, x0) = (1, 0), then y0 = x3 ⊕ k1
– if (x1, x0) = (1, 1), then y0 = x2 ⊕ k0

For y1, we use the following guessing strategy:

– if (x1, x0) = (0, 0), then y0 = x2 ⊕ k0 ⊕ x1

– if (x1, x0) = (0, 1), then y0 = x3 ⊕ k1 ⊕ x1

– if (x1, x0) = (1, 0), then y0 = x2 ⊕ k0 ⊕ x1

– if (x1, x0) = (1, 1), then y0 = x3 ⊕ x2 ⊕ k1 ⊕ k0 ⊕ x1

For y2, we use the following guessing strategy:

– Guess k0
• if (x1, x2 ⊕ k0) = (0, 0), then y2 = x0 + x3 + k1;

• if (x1, x2 ⊕ k0) = (0, 1), then y2 = x0;

• if (x1, x2 ⊕ k0) = (1, 0), then y2 = x0 + 1;

• if (x1, x2 ⊕ k0) = (1, 1), then y0 = x0 + x3 + k1.

For y3, we use the following guessing strategy:

– Guess k0
• if x2 ⊕ k0 = 0, then y3 = x3 ⊕ k1 ⊕ x1 ⊕ x0 ⊕ 1;

• if x2 ⊕ k0 = 1, then y3 = x1 ⊕ x0

B Tables for the triplet sieve of RK0 and RK1

Table 4: Triplet sieving for Type 2 (XXXX → 1000)
Input difference ∆δ→∆ Pre sieve # of possible keys # of triplets

3 {5, 6} 2−1 20 2−1

7 {a, d} 2−1 20 2−1

8 {4, c} 2−2 21 2−1

9 {1, 8} 2−1 20 2−1

a {3, 9} 2−1 20 2−1

c {7, b} 2−2 21 2−1

d {2, f} 2−1 20 2−1

e {0, e} 2−1 20 2−1
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Table 5: Triplet sieving for Type 3 (XXXX → 0100).
Input difference ∆δ→∆ Pre sieve # of possible keys # of triplets

3 {0, 1, 2, 3} 20 20 20

7 {8, 9, e, f} 20 20 20

b {6, 7, c, d} 20 20 20

f {4, 5, a, b} 20 20 20

Table 6: Triplet sieving for Type 4 (XXXX → 00X0). The triplet sieve takes
into account the key absorption used for δ = 0.
Input difference ∆δ→∆ Pre sieve # of possible keys # of triplets

0 F4
2 20 21 21

3 {9, a, c, f} 20 20 20

6 {0, 2, 4, 6} 2−1 20 2−1

a {1, b} 2−1 20 2−1

b {5, e} 2−1 20 2−1

e {3, d} 2−1 20 2−1

f {7, 8} 2−1 20 2−1

Table 7: Triplet sieving for Type 5 (XXXX → X000). The triplet sieve takes
into account the key absorption used for δ = 0.
Input difference ∆δ→∆ Pre sieve # of possible keys # of triplets

0 F4
2 20 21 21

3 {5, 6} 2−1 20 2−1

7 {a, d} 2−1 20 2−1

8 {4, c} 2−2 21 2−1

9 {1, 8} 2−1 20 2−1

a {3, 9} 2−1 20 2−1

c {7, b} 2−2 21 2−1

d {2, f} 2−1 20 2−1

e {0, e} 2−1 20 2−1
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Table 8: Triplet sieving for Type 6 (X1XX → 0010). The triplet sieve takes into
account the key absorption used for δ = 0.
Input difference ∆δ→∆ Pre sieve # of possible keys # of triplets

3 {9, a, c, f} 20 20 20

6 {0, 2, 4, 6} 2−1 20 2−1

a {1, b} 2−1 20 2−1

b {5, e} 2−1 20 2−1

e {3, d} 2−1 20 2−1

f {7, 8} 2−1 20 2−1
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C Tables for pre-sieving of X24

Table 9: Pre-sieving for XXXX → X0X0. The average pre-sieve is 2−0.87; for
each sieved triplet, a guess of 20.87 is then needed.
Input difference ∆δ→∆ Pre-sieve # of possible keys

0 F4
2 20 22

5 {8, b, d, e} 20 20

6 {2, 3, 4, 5, 9, a, c, f} 20 21

7 {0, 1, 6, 7} 20 20

8 {3, 7, b, f} 2−2 22

9 {0, 4, 9, d} 2−1 21

a {2, 6, 8, c} 2−1 21

b {1, 5, a, e} 2−1 21

c {4, 6, 8, a} 2−1 21

d {1, 3, c, e} 20 20

e {5, 7, 9, b} 2−1 21

f {0, 2, d, f} 20 20

Table 10: Pre-sieving for XXXX → 0X0X. The average pre-sieve is 2−0.91; for
each sieved triplet, a guess of 20.91 is then needed.
Input difference ∆δ→∆ Pre-sieve # of possible keys

0 F4
2 20 22

1 {2, 3, a, b} 2−1 21

3 {5, 6, d, e} 2−1 21

4 {0, 4} 2−2 21

5 {9, c} 2−1 20

6 {1, 7} 2−1 20

7 {8, f} 2−1 20

9 {6, 7, e, f} 2−1 21

a {0, 3, 5, 7, 9, a, d, f} 20 21

b {0, 2, 9, b} 20 20

c {1, d} 2−2 21

d {5, 8} 2−1 20

e {2, 4, 6, 8, a, c} 2−1 21

f {1, 3, 4, b, c, e} 20 20
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D Tables for guessing RK23 and RK22

Table 11: Pre-sieving for XXXX → 00XX. The average pre-sieve is 2−0.68. The
average number of triplets generated is 20.68.
Input difference ∆δ→∆ Pre-sieve # of possible

keys
# of triplets

0 F4
2 20 22 22

1 {0, 1, 2, 3} 20 20 20

3 {c, d, e, f} 20 20 20

5 {9, b, c, e} 20 20 20

6 {1, 3, 5, 7, 9, b, d, f} 2−1 22 21

7 {0, 2, 5, 7} 20 20 20

9 {4, 6, d, f} 20 20 20

a {0, 2, 4, 6, 8, a, c, e} 2−1 22 21

b {1, 3, 8, a} 20 20 20

d {5, 7, 8, a} 20 20 20

f {4, 6, 9, b} 20 20 20

Table 12: Pre-sieving for XXXX → 00X1. The average pre-sieve is 2−1.19; for
each sieved triplet, a guess of 20.19 is then needed.
Input difference ∆δ→∆ Pre-sieve # of possible

keys
# of triplets

1 {0, 1, 2, 3} 20 20 20

3 {c, d, e, f} 20 20 20

5 {9, c} 2−1 20 2−1

6 {1, 7, b, d} 2−1 21 20

7 {2, 5} 2−1 20 2−1

9 {6, f} 2−1 20 2−1

a {0, 4, a, e} 2−1 21 20

b {3, 8} 2−1 20 2−1

d {5, 7, 8, a} 20 20 20

f {4, 6, 9, b} 20 20 20
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Table 13: Pre-sieving for XXXX → 0XX0. The average pre-sieve is 2−1; for
each sieved triplet, a guess of 21 is then needed.
Input difference ∆δ→∆ Pre-sieve # of possible

keys
# of triplets

0 F4
2 20 22 22

4 {2, 6, 8, c} 2−1 21 20

5 {1, 4, b, e} 20 20 20

6 {3, 5, 9, f} 2−1 21 20

7 {0, 7, a, d} 20 20 20

9 {4, 7, d, e} 20 20 20

a {2, 3, 5, 6, 8, 9, c, f} 20 21 21

b {0, 1, a, b} 20 20 20

c {1, 3, 5, 7, 9, b, d, f} 2−1 22 21

e {0, 2, 4, 6, 8, a, c, e} 2−1 22 21

Table 14: Triplets sieving for XXXX → XX00. The average pre-sieve is 2−0.83;
for each sieved triplet, a guess of 20.83 is then needed.
Input difference ∆δ→∆ Pre-sieve # of possible

keys
# of triplets

0 F4
2 20 22 22

1 {c, d} 2−1 20 2−1

2 {4, 6, 8, a} 2−1 21 20

3 {1, 2} 2−1 20 2−1

4 {3, 7, b, f} 2−2 22 20

5 {0, 5} 2−1 20 2−1

7 {9, e} 2−1 20 2−1

9 {7, e} 2−1 20 2−1

a {3, 5, 9, f} 2−1 21 20

b {0, b} 2−1 20 2−1

c {1, 4, 6, 8, a, d} 20 3 3

d {1, 3, c, e} 20 20 20

e {2, 4, 5, 6, 7, 8, 9, a, b, c} 20 21 21

f {0, 2, d, f} 20 20 20
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Table 15: Triplet sieving for XXXX → X00X. The average pre-sieve is 2−0.71;
for each sieved triplet, a guess of 20.71 is then needed.
Input difference ∆δ→∆ Pre-sieve # of possible keys # of triplets

0 F4
2 20 22 22

1 {2, 3, 4, 5} 20 20 20

3 {8, b, d, e} 20 20 20

5 {9, a, c, f} 20 20 20

6 {0, 1, 6, 7} 20 20 20

8 {1, 9} 2−2 21 2−1

9 {6, f} 2−1 20 2−1

a {0, a} 2−1 20 2−1

b {7, c} 2−1 20 2−1

c {2, 4, 6, 8, a, e} 2−1 21 20

d {1, 3, 5, 8, c, e} 20 20 20

e {3, 5, 7, 9, b, d} 2−1 21 20

f {0, 2, 4, b, d, f} 20 20 20

Table 16: Triplet sieving for XXXX → X001. The average pre-sieve is 2−1.09;
for each sieved triplet, a guess of 20.09 is then needed.
Input difference ∆δ→∆ Pre-sieve # of possible keys # of triplets

1 {2, 3, 4, 5} 20 20 20

3 {8, b, d, e} 20 20 20

5 {9, a, c, f} 20 20 20

6 {0, 1, 6, 7} 20 20 20

8 {1, 9} 2−2 21 2−1

9 {6, f} 2−1 20 2−1

a {0, a} 2−1 20 2−1

b {7, c} 2−1 20 2−1

c {2, e} 2−2 21 2−1

d {5, 8} 2−1 20 2−1

e {3, d} 2−1 20 2−1

f {4, b} 2−1 20 2−1

E Experimental verification

In order to verify the correctness of the improved attack we propose on GIFT,
and because the whole attack is not practical, we have implemented the new
introduced techniques and ideas when applied on a toy-cipher based on GIFT.

First, we describe our improved upper rounds guessing part, applied on a
key-recovery attack on a GIFT-like toy cipher with 4 Sboxes per round. We
have been able to experimentally verify the predicted complexities using the
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techniques we propose in the paper. For the sake of simplicity, so that we can
better verify our new proposed techniques, we have not included the absorption
technique that was already introduced in [5].

We have also verified that the amount of undetermined key material for the
triplets thus generated is the same as our analysis expects. This confirms that
the estimate for the size of the lists that are used for merging in Section 5.3 are
indeed accurate.

Finally, we verify that the sieving probability predicted by our techniques in
Section 5.3 is correct. This, together with the confirmation of the correctness of
the expected size of the lists used for merging, and the fact that the complexity
of the parallel matching algorithm was already experimentally verified in [6],
confirms that the techniques used in Section 5.3 for an efficient guess of RK22

and RK21 yield the correct complexities. In particular, we show the impact
that guessing in groups and then using efficient merging algorithms like parallel
matching [12] can have.

In order to have a clear confirmation of the correctness of the respective
techniques, we have chosen to implement both of them separately, as there is no
reason to expect that combining both of them in the same attack would alter
the results.
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Fig. 3: Two consecutive rounds of the GIFT-like toy cipher. Master key bits are
represented in blue circles.

E.1 Description of the toy-cipher

A round of the GIFT-like toy-cipher we have considered is composed of AddRK,
SboxLayer, PermuteBits. A state is divided into four words of 4-bit each, so
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n = 16. The master key mk is KL = 16 bits long. A graphical representation of
two consecutive rounds is provided in Figure 3.

In particular, AddRK is a XOR of the bits

rk0 = MK[2 · (4r + i) (mod KL)]

and
rk1 = MK[2 · (4r + i) + 1 (mod KL)]

to the two MSB (x2 and x3 resp.) of the i-th word in round r, where MK[j]
is the j-th bit of the masterkey. SboxLayer is the parallel application of the
GIFT Sbox to each nibble. Finally, PermuteBits permutes bits according to the
following π:

π(i) = 4 · i (mod 16) + i (mod 16).

E.2 Key recovery with improved triplet sieving
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GS

14 15
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12 13 14 15

Fig. 4: Key recovery with improved triplet sieving (early rounds). Active bits with
variable difference are depicted in red squares, while active bits with difference
set to 1 are underlined and depicted in yellow squares. White squares represent
inactive bits. Master key bits are represented in blue circles.

We want to perform two rounds of key recovery considering a distinguisher
whose input difference is 1000 0000 0000 0000, as shown in Figure 4. We here
focus on estimating the improved filtering as of Section 5.2, as well as the fre-
quency with which some bits may or may not be determined due to this (which is
the underlying assumption for the cost estimates of the final guess in Section 5.3),
both experimentally verified. We recall that for the sake of clarity, we will not
make use of the key absorption technique, since it was already introduced in [5].

We now estimate the number of triplets generated as done in Section 5.2.
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Sbox 1, round 1. For the transition XXXX → X000, we consider first the case
when the input difference δ = 0 (which happens with probability 2−4) and we
want to determine the output bit y0. This needs 1 bit guess instead of 2 thanks
to trees. Next, when δ ̸= 0, the output difference must be ∆ = 1. In this case, our
technique generates 2−1 triplets for each of the possible eight input differences
(as can be seen in Table 4). This implies that each pair generates on average

1

24
· 2 + 8 · 1

24
· 2−1 =

6

24

instead of the naive 2−1. Furthermore, for the 2
24 generated triplets with input

difference zero, due to the tree of y0, half of them only have rk0 determined,
one fourth only rk1 and one fourth only rk0⊕ rk1. In other words, out of the 6

24

triplets generated in total, 1
3 of them will have one bit ofMK[0, 1] undetermined.

In particular, 1
6 have MK[0] undetermined, for 1

12 triplets have MK[1] undeter-
mined, for 1

12 triplets MK[0] and MK[1] are undetermined, but MK[0]⊕MK[1]
is determined.

Sbox 2, round 1. Similarly, for the transition XXXX → 000X, when the in-
put difference δ = 0, we can determine the output bit y3 with 3 instead of 4
guesses.When ∆ = 8, our technique generates on average 2−1 triplets for four
of the six input differences and 1 for the other two (Table 2). That means that
each pair generates

1

24
· 3 + 4 · 1

24
· 2−1 + 2 · 1

24
· 2 =

7

24

instead of the naive 2−1. As before, we observe that for the 3
24 triplets generated

with input difference 0, for half of them rk1 is undetermined, and therefore bit
MK[3] is undetermined for 1

7 of all generated triplets on average.

Sbox 3, round 1. For XXXX → 00X0, when the input difference δ = 0, we
can determine the output bit y2 with 3 instead of 4 guesses. When ∆ = 8, our
techniques generate on average 2−1 triplets for four of the six input differences
and 1 for the other two (Table 6). That means that each triplet generates

1

24
· 3 + 4 · 1

24
· 2−1 + 2 · 1

24
· 2 =

7

24

on average. As with Sbox 1, since the tree of y2 is similar to the one of y3, we
expect 1

7 of all generated triplets to have bit MK[4] undetermined.

Sbox 4, round 1. For XXXX → 0X00, we can determine the output bit y1 with
2 (instead of 4) guesses when δ = 0 (therefore ∆ = 0). Otherwise, for δ ̸= 0, 1
triplet is generated for each of the four possible input differences. In total

1

24
· 2 + 4 · 1

24
· 1 =

6

24
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triplets are generated on average. Given the tree for y1, we expect 1
3 of all

generated triplets to have one bit of MK[6, 7] undetermined. In particular, 1
6 of

the triplets have MK[7] undetermined, 1
12 have undetermined MK[6], and the

remaining 1
12 have MK[6] and MK[7] undetermined, but MK[6] ⊕MK[7] is

determined.

Table 17: Triplet sieving for XXXX → 0X00 without key absorption
Input difference ∆δ→∆ Pre-sieve # of possible keys # of triplets

0 F2
2 20 21 21

3 {0, 1, 2, 3} 20 20 20

7 {8, 9, e, f} 20 20 20

b {6, 7, c, d} 20 20 20

f {4, 5, a, b} 20 20 20

Sbox 1, round 2. As with Sbox 0 of round 0, the transition XXXX → 1000
generates 2−1 triplets for each of the possible eight input differences (Table 7),
that is each pair generates on average

8 · 1
24
· 2−1 =

4

24
.

In this case, since no tree (or key absorption) was used, the masterkey bits are
always determined.

Verification of the estimated number of triplets generated From the analysis
above, we estimate that for N random pairs (with N sufficiently large)

N ·
(

6

24

)2

·
(

7

24

)2

· 4
24

= N · 7056
220

∼ N · 2−7.21

triplets should be generated, instead of the naive N · 210 · 2−16 = N · 2−6. This
is an improvement over the naive filter of 2−1.21 over a 10-bit guess. Indeed,
when using N = 10 · 220 random pairs, our experiment generates 71611 ∼ 216.12

triplets, which is very close to the theoretically expected number of 70560 ∼
216.11 triplets.

Verification of the undetermined keybits As stated above, we expect that

– MK[0] is determined for 1− 1
6−

1
12 = 3

4 of the triplets (experimentally, 51517
out of 71611)

– MK[1] is determined for 1 − 1
12 −

1
12 = 5

6 of the triplets (experimentally,
58273 out of 71611)

– MK[0]⊕MK[1] (but not MK[0, 1]) is determined 1
12 of the triplets (exper-

imentally, 6650 out of 71611)
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– MK[2] is determined for 6
7 of the triplets (experimentally, 62552 out of

71611)
– MK[4] is determined for 6

7 of the triplets (experimentally, 61483 out of
71611)

– MK[6] is determined for 1 − 1
12 −

1
12 = 5

6 of the triplets (experimentally,
58253 out of 71611)

– MK[7] is determined for 1− 1
6−

1
12 = 3

4 of the triplets (experimentally, 51735
out of 71611)

– MK[6]⊕MK[7] (but not MK[6, 7]) is determined 1
12 of the triplets (exper-

imentally, 6684 out of 71611)
– MK[3, 6, 8, 9] is determined for all triplets (experimentally, 71611 out of

71611).

These results seem to follow quite closely our predictions. The highest discrep-
ancy between theoretical and experimental results is given by the frequency with
which MK[0] is determined (the observed frequency is ∼ 0.72 instead of 0.75),
which can be explained by the choice of N being not sufficiently large, and the
existence of some dependencies that we do not consider in our theoretical anal-
ysis. However, due to the mismatch between theory and experiments varying
only between 1%-4% for a relatively small sample size, we believe that these
results show that the independency assumption used to carry out the analyis is
convenient and yields reasonably accurate results, confirming in particular that
the prediction of the amount of undetermined keybits (that is, the size of the
lists that need to be merged) computed in Section 5.3 are indeed quite accurate.

E.3 Key recovery using pre-sieving and parallel-matching

We also verified experimentally the significance of pre-sieving, thus confirming
the relevance of the technique, and the importance of combining it with an
efficient guessing method, such as separating the key material in groups and use
algorithms like the parallel matching for efficient merging.

In order to verify this step and preserve a parallelism with the original at-
tack we will consider a key guessing on the final rounds. This means doing a
key recovery for a differential distinguisher whose output difference is aaaa, as
represented in Figure 5. A naive guessing procedure of the last rounds keys could
be the following:

1. guess 8 bits of masterkey from round 1, for a complexity of N · 28 Sbox
evaluations, generating N · 28 triplets.

2. for each of the N · 28 triplets, guess the remaining 8 master keybits, for a
complexity of N · 216 Sbox evaluations.

The time complexity is dominated by step 2, amounting to circa N · 216 Sbox
evaluations (this complexity can be lowered guessing each Sbox singularly, but
the bottleneck would still be this step).

However, we can see from Table 18 that for the transition XXXX → 0101 it
is possible to sieve 2−2.68 triplets taking into account the input difference of the
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Fig. 5: Key recovery for with parallel matching (final rounds). Active bits with
variable difference are underlined and depicted in red squares, while active bits
with difference set to 1 are depicted in yellow squares. White squares represent
inactive bits. Master key bits are represented in blue circles.

pair, and the value of the two least significant bits. A better technique would be
then

1. guess 8 bits of masterkey from round 1, for a complexity of N ·28 Sbox eval-
uations and producing N ·28 triplets. For each of the generated triplet, sieve
according to their input difference and least significant bits. N · 28−2.68·4 =
N · 2−2.72 triplets remain. This was experimentally verified with 220 pairs,
that generate 160952 ∼ 217.3 triplets.

2. for each of the remaining triplets, guess the remaining 8 master keybits, for
a complexity of N · 2−2.72+8 = N · 25.28 Sboxes.

The guessing complexity is now dominated by step 1, for a total of N · (28 +
25.28) = N ·28.2 Sbox computations. We can further improve this complexity with
a more efficient step 1 thanks to parallel matching. In fact, we can guess the first
roundkey by dividing it into two groups (the first being Sbox 0 and Sbox 2, and
the other Sbox 1 and Sbox 3) and making use of the parallel matching algorithm
to filter out wrong triplets efficiently. In this case, in fact, the complexity of the
merging using groups of t1 and t2 Sboxes, would then amount to

N · (23·t1+4−2.68·t1 + 23·t2−2.68·t2 + 28−2.68·(t1+t2)) =

N · (20.32·t1 + 20.32·t1 + 28−2.68·(t1+t2))

which is 21.71 table lookups for t1 = t2 = 2, which we can compare to an
Sbox computation since such tables are smaller than an Sbox. The bottleneck
of this step would then be building the two lists to merge, that is N · 24 Sbox
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computations, thus making the overall complexity dominated by step 2, for a
total of N · 24 +N · 25.28 = N · 25.78.

Table 18: Pre-sieving for XXXX → 0101. The average pre-sieve is 2−2.68.
Input difference ∆δ→∆ Pre-sieve

2 {8, a, c, e} 2−1

4 {0, 2, 4, 6} 2−1

8 {3, b} 2−2

a {5, f} 2−1

c {1, d} 2−2

e {7, 9} 2−1
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