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Abstract. The Extended Access Control (EAC) protocol for authen-
ticated key agreement is mainly used to secure connections between
machine-readable travel documents (MRTDs) and inspection terminals,
but it can also be adopted as a universal solution for attribute-based
access control with smart cards. The security of EAC is currently based
on the Diffie-Hellman problem, which may not be hard when considering
quantum computers.

In this work we present PQ-EAC, a quantum-resistant version of the
EAC protocol. We show how to achieve post-quantum confidentiality and
authentication without sacrificing real-world usability on smart cards. To
ease adoption, we present two main versions of PQ-EAC: One that uses
signatures for authentication and one where authentication is facilitated
using long-term KEM keys. Both versions can be adapted to achieve
forward secrecy and to reduce round complexity. To ensure backwards-
compatibility, PQ-EAC can be implemented using only Application Pro-
tocol Data Units (APDUs) specified for EAC in standard BSI TR-03110.
Merely the protocol messages needed to achieve forward secrecy require
an additional APDU not specified in TR-03110. We prove security of all
versions in the real-or-random model of Bellare and Rogaway.

To show real-world practicality of PQ-EAC we have implemented a
version using signatures on an ARM SC300 security controller, which
is typically deployed in MRTDs. We also implemented PQ-EAC on a
VISOCORE® terminal for border control. We then conducted several
experiments to evaluate the performance of PQ-EAC executed between
chip and terminal under various real-world conditions. Our results strongly
suggest that PQ-EAC is efficient enough for use in border control.
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1 Introduction

EAC protocol The Extended Access Control (EAC) protocol for authenticated
key agreement was proposed by the German Federal Office for Information
Security (BSI) for German ePassports in 2005 and is defined in the technical
guideline TR-03110 [18]. EAC is meant to provide authenticated key establish-
ment between a terminal and a smart card. ICAO Doc 9303 [33], a standard for
electronic machine-readable travel documents (eMRTDs) such as ePassports,
mandates authentication via EAC before a terminal may request sensitive data
such as fingerprints from the chip in an eMRTD. The security of EAC rests on
assumptions about the hardness of computing discrete logarithms. Due to the
results of Shor [59], these assumptions are now considered to be false when tak-
ing into account quantum computers. In this work we present PQ-EAC, a new
version of the EAC protocol that achieves security against attacks from quantum
computers by substituting Diffie-Hellman key exchange with post-quantum Key
Encapsulation Mechanisms (KEMs).

Post-quantum cryptography In 1994, Peter Shor presented a quantum algorithm
that solves integer factorization and discrete logarithms — two problems for
which no efficient algorithm on classical computers is known — in polynomial
time [59]. Shor’s work thereby falsified the foundational assumption of public-
key cryptography that factorization and discrete logarithms are hard problems.
While only a quantum computer of sufficient size could break public-key cryp-
tography as used in modern internet infrastructure, recent developments show
that such a machine is a realistic scenario [4]. Michele Mosca estimates a 1/7
chance of a quantum computer breaking RSA-2048 by 2026 and a 1/2 chance of
this break occurring by 2031 [48].

Fortunately, there are alternatives to cryptography based on factorization or
discrete logarithms. As proposed by Bernstein [12] we say that a cryptographic
construction is ’post-quantum secure’ when it is assumed to be appropriately
secure against quantum adversaries. For performance reasons, one of the most
promising approaches to post-quantum cryptography is lattice-based cryptogra-
phy. In regards to post-quantum digital signatures, hash-based signatures are an
interesting alternative to classical constructions. They have been known since the
1970s [46,41] and provide provable security under the weak assumption that one-
way functions exist. They require careful state management and might therefore
not be suitable for all use cases. However, due to the confidence in their security,
they could serve as a useful building block for cryptographic agility in smart
cards: In the case that the post-quantum algorithms deployed on a smart card
turn out to be insecure, they could be replaced with an update whose integrity
is secured by a hash-based signature.

NIST competition To alleviate the threat of quantum computers against cryp-
tography, the US National Institute of Standards and Technology (NIST) initi-
ated a post-quantum cryptography (PQC) competition in 2017. In 2022, NIST
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announced that they will standardize the lattice-based Key Encapsulation Mech-
anism (KEM) Kyber [57], two lattice-based signature schemes (Dilithium [43],
Falcon [52]) and the hash-based signature scheme SPHINCS+ [30] as quantum-
resistant cryptographic mechanisms [2]. In addition, the hash-based signature
schemes LMS [45] and XMSS [29] have already been recommended in NIST SP
800-208 [49].

Hybrid Protocols Many of these conjecturally post-quantum secure schemes have
not yet been adequately studied in terms of their security. This concerns not only
cryptanalytic attacks using classical computers, but also side-channel and error
attacks and the exploitation of implementation errors. Therefore, it is prudent
to use hybrid protocols, i.e., a combination of classical and quantum-resistant
primitives; see also, for example, the recommendations of the German Federal
Office for Information Security [19].

PoQuID Even though a quantum computer powerful enough to break modern
cryptography might be more than a decade away, in the context of identity doc-
uments urgent action is required. This is because identity documents typically
have a validity period of ten years and technical changes require lengthy regu-
latory approval. Therefore, in 2019 the German federal ministry for economic
affairs commissioned researchers at Fraunhofer AISEC, Infineon and Bundes-
druckerei to conduct the research project Post-Quantum Protocols for Identity
Documents (PoQuID). The goal of PoQuID was the development of a new
quantum-resistant version of the EAC protocol, ideally using hybrid schemes
that combine post-quantum and classical algorithms. Another goal of PoQuID
was a software implementation of this new protocol for contactless smart cards
(in eMRTDs) as well as inspection terminals, in order to create a blueprint for
the standardization of the new EAC protocol with ICAO.

In this paper, we summarize the project results and showcase several versions
of a quantum-resistant EAC protocol with varying security properties and trade-
offs.

1.1 Outline

We start out with a discussion of ePassports in Section 2 and exhibit the orig-
inal EAC protocol in Section 3. In Section 4 we subsequently propose several
modifications to EAC, which will replace the Diffie-Hellman-style key exchange
with Key Encapsulation Mechanisms (KEMs). Afterwards, we discuss our im-
plementation and give performance benchmarks in Section 5.

To distinguish between the EAC protocol as defined by BSI [18] and our
proposal for post-quantum EAC, we call the former classic EAC or EAC classic
and the latter PQ-EAC. We continue to write EAC when referring to the protocol
as such. EAC is usually conducted between two parties: One the one side we
have an eMRTD which might be an identity card, a passport or similar, in the
following called ’chip’. On the other side we have a chip reader, which could
be an inspection terminal at border control, a device to authenticate identity
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cards for e-government services, or similar, in the following called ’terminal’.
The terms MRTD and eMRTD are used in this document as a generic reference
to all types of Machine Readable Travel Documents based on optical character
reading or electronically enabled means. Examples of MRTDs are ePassports,
laissez-passer, identity cards, seafarer cards and refugee travel documents.

We use the notion of forward secrecy as given in Boyd and Gellert [16]: An
authenticated key exchange (AKE) protocol provides forward secrecy (resp. is
forward-secure) if compromise of long-term secrets does not lead to compromise
of session keys of previously completed sessions.

1.2 Related Work on Post-Quantum Cryptography for MRTDs

Post-quantum Cryptography NIST recently announced [2] that as an outcome
of the PQC competition they will recommend and standardize the lattice-based
KEMKyber [57] and the lattice-based signature scheme Dilithium [43] as quantum-
resistant schemes. Accordingly, we instantiate the KEMs and signature schemes
in our PQ-EAC implementation with Kyber and Dilithium. As we will detail
in Section 5, both schemes are efficient enough for use in ressource-constrained
environments such as smart cards typically deployed in MRTDs.

Simultaneously, there have been multiple works concerned with making Diffie-
Hellman-based protocols quantum-resistant: Schwabe et al. [58] present post-
quantum versions of TLS, including a version with mutual authentication. Hüls-
ing et al. [31] show how to achieve post-quantum security for the handshake pro-
tocol of the WireGuard VPN. Brendel et al. [17] attempt to give a post-quantum
alternative to Signal’s X3DH handshake using split KEMs. Finally, Angel et al.
[3] introduce a post-quantum variant of the Noise framework. Unlike PQ-EAC,
the protocols mentioned above cannot serve as drop-in replacements for EAC
as standardized in TR-03110. However, our work and the mentioned protocols
share the basic idea of replacing a Diffie-Hellman key exchange with KEMs to
achieve post-quantum security.

PAKE In BSI standard TR-03110 [18], the Password Authenticated Connection
Establishment (PACE) protocol – a variant of Password-Authenticated Key Ex-
change (PAKE) – is used to set up the initial communication between MRTD
chip and terminal reader. Since the security of PACE is based on hardness as-
sumptions about discrete logarithms, it needs to be modified to become quantum-
resistant. Fortunately, there have been a number of attempts to devise post-
quantum PAKE, for example by Katz and Vaikuntanathan [38] and Katz and
Groce [27]. Moreover, there has been a recent proposal for PAKE based on group
actions by Abdalla et al. [1]. However, since the only known quantum-resistant
instantiation of group actions is based on CSIDH [22], this construction would
not be efficient enough for use in smart cards.

PKI Regarding public-key infrastructure (PKI), there has been work by Bindel
et al. [14] towards hybrid PKI (meaning PKI that combines classical and post-
quantum constructions). Additionally there are proposals by Pradel and Mitchell
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[51] as well as Vogt and Funke [60] speficially in regards to post-quantum PKI
for MRTDs.

ePassports Recent publications in regards to ePassports have been concerned
with the security of Basic Access Control (BAC) [5,11,24], the security of PACE
[11,10] and the security of classic EAC [23].

EAC Besides a status report about the PoQuID project [47] to the best of our
knowledge there have not been any publications regarding the post-quantum
security of the EAC protocol.

2 ePassports

History Extended Access Control (EAC) was devised as a mechanism to protect
biometric data stored in MRTDs. The International Civil Aviation Organization
(ICAO), a specialized agency of the United Nations, introduced standards for
electronic MRTDs and specifically ePassports in 2006 in Volume 2 of the sixth
edition of ICAO Doc 9303 [33]. Since then, more than 140 countries have adopted
ePassports, with 90 countries enrolled in the ICAO Public Key Directory (PKD).

ICAO mandates in Doc 9303 [33] the execution of EAC before terminals
may read sensitive data from MRTDs. The technical specification of EAC for
EU passports has been devised by the Brussels Interoperability Group (BIG)
and is published by the German Federal Office for Information Security (BSI)
in their technical report TR-03110 [18].

EAC as defined in this specification includes two authentication mechanisms,
Chip Authentication (CA) and Terminal Authentication (TA): CA authenti-
cates the chip and TA prevents the reading of biometric data from unautho-
rized terminals. While EAC originated in the context of travel documents, it is
also utilized in different contexts: For example, version 2 of EAC authenticates
transactions performed by the German identity card, such as proof of identity
or e-government. While we focus on the passport context in this work, most of
our results apply more generally.

Security Threats to ePassports Because ePassports use contactless radio-frequency
identification (RFID) technology to communicate with terminals, they are sub-
ject to skimming and eavesdropping attacks: In skimming attacks, the attacker
retrieves data from the chip by making connection attempts in close physical
proximity of the MRTD. Even if the attacker cannot retrieve any information
from the passport, he might be able to link it to previous connection attempts,
meaning that he is able to track the passport. If a MRTD is secure against such
attacks, it is said to be unlinkable [24].

Eavesdropping refers to the interception of communication between honest
parties by an attacker. Authenticated key exchange (AKE) and encryption is
used to prevent an eavesdropper from reading or modifying the communication
between chip and terminal. ICAO Doc 9303 specifies two layers of authentication:
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Access to information that can be read by anyone in physical possession of the
ePassport, including primary biometrics (facial image), requires authentication
via PACE or BAC (described below) that uses the machine-readable zone (MRZ)
of the MRTD as a trust anchor. The underlying assumption here is that when
a passport holder allows a terminal to read the MRZ of his passport via optical
character recognition (OCR), he is also consenting to the transmission of other
data visually recognizable on the document. Also note that the use of OCR
instead of RFID to read the MRZ prevents eavesdropping on the MRZ itself by
an attacker. The access to secondary biometrics, meaning either fingerprints or
iris data, requires the execution of Terminal Authentication.

Other attacks on the ePassport concern its integrity: One way to forge a
passport would be to modify the data groups (name, nationality, etc.) on a
passport’s chip. To prevent this, the passport issuer hashes all data groups,
signs them and stores them in the Document Security Object (SOD). To verify
data integrity, a terminal must then use Passive Authentication (described four
paragraphs below). An adversary could overcome these provisions by copying the
SOD to a new chip (also called cloning). Assuming that the protections provided
for the chip’s private key successfully prohibit any access to it, cloning can be
detected during Chip Authentication when the chip fails to generate a shared
key.

PACE To establish connection, chip and terminal generate a high-entropy shared
key through Password Authenticated Connection Establishment (PACE), an asym-
metric key exchange procedure based on a shared (possibly low-entropy) pass-
word. In the context of ePassports, the password is either the MRZ or the card
access number (CAN). Some document types (for example the German identity
card) also support a secret user PIN. As such, the terminal authenticates itself
to the chip by proving that the holder has entered a pin or put the document
on the terminal reader. PACE creates an encrypted communication channel and
allows terminals to read less sensitive data groups such as name, nationality and
other information.

BAC Alternatively, MRTDs issued before 2018 may use Basic Access Control
(BAC) instead of PACE to establish a shared key from the MRTD’s machine-
readable zone (MRZ). Since the MRZ consists of the holder’s birth date, the
MRTD’s expiry date and a 9-digit serial number1, the maximum entropy of the
key is 73 bits, but in practice the entropy of the key can be assumed to be
40-50 bits [11]. The low entropy of the key permits sniffing attacks where the
communication between terminal and chip is recorded by an eavesdropper and
later decrypted by guessing the shared key [42,5]. Moreover, Filimonov et al.
showed in 2019 that it is possible to track passports using BAC [24]. Due to
these weaknesses, it is recommended (and mandated for ePassports issued after
2017) to use PACE instead of BAC [11].

1 Depending on the issuing country, the serial number is subject to various constraints:
Some digits may be predictable check digits, some blocks may indicate the issuing
passport office, etc.
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Public-key Infrastructure In order for chip and terminal to be able to mutu-
ally authenticate each other, each document issuing country has established a
PKI, which consists of the following entities (among others): a Country Sign-
ing Certificate Authority (CSCA) and a Country Verifying Certificate Authority
(CVCA), Document Signer certificates, Document Verifier certificates and cer-
tificate revocation lists (CRLs). Document Signer certificates and key-pairs are
issued by the CSCA to the entity that is manufacturing the MRTDs. The private
key is then used to sign a list of hashes of the data groups of the MRTD. The
signature, hashes and the respective Document Signer certificate are then stored
in the SOD and can be used by the MRTD to authenticate itself to a terminal.

Similarly, the CVCA issues manufacturers of terminals Document Verifier
key-pairs and certificates, which can be used by a terminal to authenticate itself
towards chips.

To enable international interoperability, all countries share their CSCA and
CVCA public keys (via a master list), Document Signer certificates, Document
Verifier certificates and CRLs in the ICAO PKD.

Passive Authentication The terminal uses a protocol called Passive Authentica-
tion to authenticate the data that is stored on the chip. Passive Authentication
involves the following steps:

– The terminal reads the Document Security Object (SOD) from the chip and
retrieves the corresponding Document Signer certificate, the CSCA certifi-
cate and the corresponding certificate revocation list. The SOD holds hashes
of all data groups and a signature over these hashes. Note that the chip’s
public key is also stored in one of these data groups.

– The terminal verifies the Document Signer certificate.
– The terminal then computes the hash values of all data groups it has access

to and compares them to the hash values from the SOD. Subsequently it
verifies the signature over these hash values using the public key from the
Document Signer certificate.

Passive Authentication does not protect against cloning attacks, where the
SOD (but not the secret key which is assumed to be secured against copying)
is copied from one MRTD to another, but only verifies the integrity of the data
groups on the chip. To prove that the chip is actually in possession of the corre-
sponding secret key, EAC and Chip Authentication come into play.

3 Classic EAC Protocol

Overview EAC works as follows: The terminal uses Chip Authentication (CA) to
verify the authenticity of the chip. Vice versa, the chip can verify the inspection
system’s authorization to read sensitive biometric data such as fingerprints or
iris data during Terminal Authentication (TA) [33]. In EAC version 1, which
is included in ICAO’s standard for ePassports, chip and terminal first execute
CA and then TA. If EAC is not executed, the terminal is not allowed to read

7



secondary biometric data. To assure more privacy for the MRTD holder, in (the
otherwise identical) version 2 of EAC chip and terminal first perform TA and
then CA, and the terminal is only allowed to read data groups once PACE, TA
and CA have completed. EAC version 2 is, for example, used by the German
identity card. In this work we aim for the stronger security properties of EAC
version 2 but maintain compatibility with EAC version 1.

We say x ← {0, 1}n to denote that a n-bit string x is sampled uniformly at
random from {0, 1}n. With x ← F (. . . ) we refer to a non-deterministic assign-
ment for a function F , or, if F is a distribution, random assignment using this
distribution. We denote the Diffie-Hellman (DH) key generation procedure with
DH.KeyGen and the derivation of a shared DH key with DH(·, ·).

Terminal Authentication The goal of TA as shown in Figure 1 is to prove to the
chip that the inspection terminal is authorized to view sensitive data of the chip.
In the context of passports, sensitive data means secondary biometric data such
as fingerprints or iris data of the passport holder. To show that the terminal is
in possession of a key-pair (pkT , skT ) that is validated by a Document Verifier
certificate, the terminal initiates a challenge-response procedure.

Terminal Authentication

Chip C Terminal T
CVCA root certificate certCVCA certificate certT for pkT

pkCVCA long-term key pair (pkT , skT )

certT

check certT with pkCVCA

extract pkT from certT (pkeT , skeT )← DH.KeyGen(1n)

pkeT

r1 ← {0, 1}n

IDC , r1

σ1 ← Sig(skT , IDC ∥ r1 ∥ pkeT )

σ1

if Vf(pkT , IDC ∥ r1 ∥ pkeT , σ1) ̸= 1

then abort

store pkT for CA

store pkeT for CA

Fig. 1: Terminal Authentication in the classic EAC protocol.

Firstly, the terminal generates an ephemeral Diffie-Hellman key pair (pkeT , sk
e
T )

and sends pkeT to the chip. It also sends its certificate certT , which consists of
the Document Verifier certificate and the validation of its public key pkT by
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the Document Verifier. Subsequently, the chip verifies the certificate and the
terminal’s public key pkT .

To generate the challenge, the chip chooses uniformly at random a nonce r1
and sends it to the terminal. In addition, it sends a pre-agreed value IDC . If
PACE is used, IDC is a suitable hash of the chip’s public key from the PACE
key agreement; this serves to bind EAC with the previous PACE execution. If
BAC is used, it is the document number read from the MRZ.

Finally, the terminal proves possession of the secret key skT by generating a
signature over r1, IDC and its ephemeral public key. The chip concludes the TA
if it can successfully verify the signature using pkT .

Chip Authentication In CA (shown in Figure 2), the chip C authenticates itself to
the terminal T with its static DH public key pair (skC , pkC) that is validated by
the Document Signer. At the outset, the chip sends the terminal its Document
Signer certificate, its SOD and its static public key pkC , all of which we will
call certC in Figure 2.2 Afterwards, the terminal sends the ephemeral public
Diffie-Hellman key pkeT generated during the TA. As the chip already received
pkeT during TA, one might wonder whether this message could be eliminated.
Unfortunately, this is not possible due to the need to maintain compatibility
with EAC version 1 where the TA is optional.

To avoid non-repudiation — which is undesirable from a privacy standpoint
— C does not produce a signature to authenticate itself. Instead, chip and ter-
minal establish a shared key k via a DH key exchange using the chip’s long-term
DH key pkC and the terminal’s ephemeral DH key pkeT . Afterwards, the chip
generates a nonce r2 uniformly at random and derives keys kMAC, kENC from
the shared key k and r2. Finally, C sends sends r2 and a Message Authentica-
tion Code (MAC) t over pkeT under the key kMAC to T . If t matches the MAC
computed by T , the Chip Authentication concludes successfully. kENC can be
used to encrypt any further communication between terminal and chip after the
completion of EAC.

Security properties The main goals of EAC are the authentication of chip and
terminal to each other and the establishment of a shared secret key between
chip and terminal. Dagdelen and Fischlin [23] have proven authenticated key-
exchange (AKE) security for EAC in the random oracle model (ROM). However,
there are also other security properties that the EAC protocol is supposed to
provide: Firstly, the protocol should provide forward secrecy, meaning that past
session keys are protected from being recovered, even if the long-term secrets of
chip or terminal are compromised. While the classic EAC version only provides
this for the terminal’s long-term secret [23], we will present versions of PQ-EAC
providing forward secrecy for the long-term keys of both chip and terminal in
Section 4.

Secondly, since the chip represents a travel document, it is desirable for the
chip to have plausible deniability of participation in EAC, meaning we do not

2 This is usually performed during Passive Authentication but to simplify the presen-
tation, we show it as part of the CA.
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Chip Authentication

Chip C Terminal T
static DH key pair (skC , pkC) CSCA root certificate certCSCA

certificate certC for pkC ephemeral key pair (pkeT , skeT )

r2 ← {0, 1}n

certC , certDS

check certC with certCSCA

extract pkC from certC

pkeT

verify that pkeT matches pkeT from TA k = DH(skeT , pkC)

k = DH(skC , pk
e
T )

kMAC = KDFMAC(k, r2)

kENC = KDFENC(k, r2)

t = MAC(kMAC, pk
e
T )

r2, t

kMAC = KDFMAC(k, r2)

kENC = KDFENC(k, r2)

if t ̸= MAC(kMAC, pk
e
T )

then abort

return kENC return kENC

Fig. 2: Chip Authentication in the original EAC protocol.

want non-repudiation. Since signatures usually provide non-repudiation, in EAC
the authenticity of the chip is established through a key-agreement.

4 Quantum-resistant EAC Protocol Versions

4.1 Overview

This section is concerned with our efforts towards a quantum-resistant version
of EAC (called PQ-EAC). EAC is subject to many, sometimes conflicting con-
straints. For example, to reduce waiting times for access control, it would be
beneficial to use round-reduced EAC. However, for privacy reasons, it may not
be desirable that the chip sends information about its public key to an unauthen-
ticated terminal. Similarly, forward secrecy helps to protect earlier messages in
the case that the private key of the chip is compromised but increases the number
of cryptographic operations. An additional consideration is that some versions
of PQ-EAC might be more suitable than others for maintaining backwards-
compatibility with EAC classic.

We distinguish between solutions with the terminal signing the data (SigPQEAC,
see Section 4.2) and an alternative where the terminal uses a long-term KEM
for authentication (KemPQEAC, see Section 4.3). The common approach in both
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cases is to replace the Diffie-Hellman key agreement step in the CA by having
the terminal send a secret key protected under the chip’s long-term KEM key
pkC . The KEM itself is assumed to be post-quantum secure.

For each of the two types we can consider a forward-secure variant where the
chip, in addition to the long-term KEM key pkC , also generates an ephemeral
KEM key pkeC during protocol execution. The terminal then encapsulates another
key ke under pkeC . The long-term key is then used for authentication, especially
of the ephemeral part. Both parties derive the session key from either the en-
capsulated key k (in the non-forward-secure version) resp. together with the
encapsulated key ke (in the forward-secure version with the ephemeral KEM).
Another option we we discuss below is to combine the TA and CA phases and
save on the round-trip time by joining some data into single transmissions.

We thus have eight protocol variants via possible combinations: with and
without terminal signatures, with and without forward security, and potentially
combining messages. The combined versions allow for further simplifications,
e.g., by letting the terminal only create a single signature instead of two signa-
tures. We present the two fundamentally different versions, one with signatures
for terminal authentication and one with KEMs for authentication, and discuss
the other four sub versions for either one within. We discuss further options for
the combined versions afterwards. We leave it to the discretion of the imple-
menting bodies to weigh advantages and disadvantages of the various versions.

Assumptions For all protocols we assume that the following holds:

– Passive Authentication binds the chip’s data groups with its key-pair (pkC , skC).
– The communication partners have agreed on IDC . If PACE is used, it is a

suitable hash of the chip’s public key from the previous PACE execution;
if BAC is used, it is the document number read from the machine-readable
zone (MRZ).

– The protocol is instantiated with a post-quantum or hybrid IND-CCA-secure
key encapsulation mechanism, a post-quantum or hybrid EUF-CMA-secure
signature scheme, a key derivation function KDF with output length n and a
dual pseudorandom key combiner KComb. See Appendix A for the respective
definitions and security experiments of the mentioned primitives.

– The security parameter n is of appropriate size and all keys have been gen-
erated according to n.

We note that while chip and terminal send the EAC protocol messages in an
encrypted channel that was established through BAC or PACE, PQ-EAC would
still provide AKE security if all messages were sent in the open.

4.2 Authentication With Signatures

We start with the four variants in which the terminal uses a quantum-resistant
signature scheme to authenticate. The protocol framework is given in Figure 3
and describes the plain variant, as well as the forward-secure variant (with the
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optional ephemeral KEM steps written as [ ]) and the combined version of TA
and CA (with the dashed arrows indicating which protocol messages can be
combined).

In the protocol we use all relevant exchanged data (certT , certC , r2, c, [pk
e
C , c

e])
for authentication purposes, including the certificates and the nonce and cipher-
texts sent by the terminal. Since these data coincide with the session identifier
sid used in the security proof we conveniently write sid in the protocol, too. We
note that the final value kCNF transmitted by the chip with the last protocol mes-
sage also serves as an authentication tag for all values in sid = (certT , certC , r2,
c, [pkeC , c

e]). Instead of using a message authentication code we use a derived key
under the KDF directly, inserting sid into the key derivation step instead, and
taking advantage of the pseudorandomness of the KDF. This method has been
suggested for example in [25] for key confirmation. In principle, one could also
use kCNF in a message authentication code, applied to some public input.

Terminal Authentication The terminal T initiates the TA protocol by sending
the chip its certificate certT , which contains its public key pkT , a signature over
pkT and its Document Verifier certificate. The certificates can be validated by
the chip with its CVCA certificate. If the verification of certificates was success-
ful, the chip chooses a nonce r1 uniformly at random and sends it to T , along
with IDC . Subsequently, T signs r1 and IDC , and sends the signature to C. The
TA protocol completes successfully if the chip can verify the signature using pkT .
We note that for the authentication of the terminal only, the Terminal Authenti-
cation protocol may be run solely, without the subsequent Chip Authentication.
The Chip Authentication requires the (valid) public key pkT obtained during
Terminal Authentication.

Chip Authentication While certificates are usually checked during Passive Au-
thentication before EAC starts, here we move this part of the process into the
CA to simplify the presentation. C sends its Document Signer certificate, its
SOD and its public key (all of which we will call certC) to T . The terminal can
then verify the certificate chain using the CSCA root certificate. In addition, C
sends a n-bit number r2, chosen uniformly at random.

In order to check that C is in possession of the secret key skC pertaining to
pkC , the terminal uses pkC to encapsulate a shared key k in a ciphertext c. It
then sends c to C, along with a signature to prove integrity of the encapsulation.
Next, C verifies the signature and decapsulates c to obtain k. k is then used along
with the session id sid to derive a confirmation key kCNF and an encryption key
kKEY. The final value kCNF serves as an authentication tag for all values in sid.

Forward secrecy As is, the plain version of SigPQEAC provides forward secrecy
for the case that only the terminal’s long term keys are corrupted. However, an
adversary would still be able to decrypt past communication after corrupting
the chip. To achieve real forward secrecy, we propose several changes to the CA
protocol, written as [ ].
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In a nutshell, the chip generates an additional, ephemeral key-pair (pkeC , sk
e
C)

and sends the public key to T . The terminal then uses pkeC to encapsulate a
second key ke, and sends the encapsulation ce back to C, along with the encap-
sulation c of the first key and a signature over both encapsulations. Both keys,
k and ke, serve as input to derive kCNF and kKEY. This way, an attacker that
compromises the chip after EAC and subsequent communication has terminated
will not be able to recover the ephemeral key ke of that session or other previous
sessions, and therefore will not be able to generate the session key kKEY.

One potential attack that is enabled by sending the ephemeral public key to
T , is that an active adversary could exchange pkeC by a different public key and
bring himself in possession of ke, which is half of the input required to generate
kKEY. However, since both keys k, ke are combined using a dual pseudorandom key
combiner, the adversary still only has negligible chance of guessing the correct
session key.

Round-reduced Combined Version At the cost of sacrificing some privacy it is
easy to improve efficiency of the protocol described above. In particular, we can
combine two pairs of messages into one message each: Instead of exchanging
a challenge and a signature during TA as well as during CA, the terminal can
encapsulate a key, sign a concatenation of the session id sid and the encapsulation
and send the signature and the encapsulation to the chip in one go. The resulting
combined variant of PQ-EAC is shown with the dashed arrows indicating which
protocol messages can be combined.

As shown in Section 5.1, saving two messages and the signature verification
improves performance significantly. On the flip side, the combined version forces
the chip to send its public key before the terminal has been authenticated. Even
though the public key is usually considered public information, it is desirable to
avoid sending it to unauthorized terminals to protect the MRTD holder’s privacy
as much as possible. This could be important in contexts where an execution of
PACE does not already authorize the terminal to read data.

4.3 Authentication via Long-Term KEMs

Next we present in Figure 4 the four variants in which the terminal avoids
signatures, which are usually expensive, but uses a long-term key of a KEM to
authenticate instead. To this end, the chip sends a key kTA encapsulated under
the terminal’s long-term key. While the chip has to perform an additional key
encapsulation to do so, this is less expensive than the signature verification it
would have to perform normally. The key is used to derive a confirmation value
kTCNF, replacing the signature in terminal authentication, and a MAC key kTMAC
used instead of the second signature. A noteworthy feature of these versions is
that now the certificate certC can be sent encrypted in the CA step to hide the
long-term identity of the card. The key kTENC for this encryption is also generated
in the TA phase with the help of the terminal’s long-term KEM.
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SigPQEAC: PQ-EAC with Terminal Signatures

Chip C Terminal T
Terminal Authentication

long-term key pair (pkT , skT ),

certified by certT

certT

check certT with pkCVCA

extract pkT from certT

pick r1 ∈ {0, 1}n IDC, r1 σT ← Sig(skT , ’TA’ ∥ IDC ∥ r1)

σT

verify σT with pkT

store pkT for Chip Authentication

Chip Authentication

long-term key pair (skC, pkC)

certified by certC

[generate ephemeral key pair (pkeC , sk
e
C)]

pick r2 ∈ {0, 1}n certC , r2, [pk
e
C ]

check certC with pkCVCA

extract pkC from certC

(k, c)← Encaps(pkC)

[(ke, ce)← Encapse(pkeC)]

σc ← Sig(skT , ’CA’ ∥ sid)

c, σc, [c
e]

verify σc with pkT

k← Decaps(skC, c)

[ke ← Decapse(skeC , c
e)]

kKDF ← k resp. [kKDF ← KComb(k, ke)]

kCNF ← KDF(kKDF, ’CNF’ ∥ sid, n)
kKEY ← KDF(kKDF, ’KEY’ ∥ sid, n)

kCNF

kKDF ← k resp. [kKDF ← KComb(k, ke)]

check kCNF = KDF(kKDF, ’CNF’ ∥ sid, n)
kKEY ← KDF(kKDF, ’KEY’ ∥ sid, n)

return kKEY return kKEY

Fig. 3: PQ-EAC with terminal signatures, divided into TA and CA phase.
Optional steps for achieving forward security are given in blue and
brackets [ ]. In the combined version we can save a full round trip by
combining protocol messages as indicated by the arrows. We note that
each party sets the partner identity pid to be the distinguished name in
the received certificate. The session identifier consists of all sent data,
except for the authentication parts, sid = (certT , certC , r2, c, [pk

e
C , c

e]).
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KemPQEAC: PQ-EAC with Terminal Authentication through Long-Term KEM

Chip C Terminal T
Terminal Authentication

long-term key pair (pkT , skT ),

certified by certT

certT

check certT with pkCVCA

extract pkT from certT

pick r1 ∈ {0, 1}n

(kTA, cTA)← Encaps(pkT ) IDC, r1, cTA kTA ← Decaps(skT , cTA)

kTMAC ← KDF(kTA, ’TMAC’ ∥ r1) kTMAC ← KDF(kTA, ’TMAC’ ∥ r1)
kTENC ← KDF(kTA, ’TENC’ ∥ r1) kTENC ← KDF(kTA, ’TENC’ ∥ r1)
kTCNF ← KDF(kTA, ’TCNF’ ∥ r1) kTCNF ← KDF(kTA, ’TCNF’ ∥ r1)

kTCNF

verify kTCNF

store pkT , kTENC, kTMAC for Chip Authentication

Chip Authentication

long-term key pair (skC , pkC)

certified by certC

[generate ephemeral key pair (pkeC , sk
e
C)]

pick r2 ∈ {0, 1}n

cCA ← Enc(kTENC, certC ∥ r2 [∥pk
e
C ])

cCA certC ∥ r2 [∥pkeC ]← Dec(kTENC, cCA)

check certC with pkCVCA

extract pkC from certC

(k, c)← Encaps(pkC)

[(ke, ce)← Encapse(pkeC)]

σc ← MAC(kTMAC, ’CA’ ∥ sid)

c, σc, [c
e]

verify σc with kTMAC

k← Decaps(skC, c)

[ke ← Decapse(skeC , c
e)]

kKDF ← k resp. [kKDF ← KComb(k, ke)]

kCNF ← KDF(kKDF, ’CNF’ ∥ sid, n)

kKEY ← KDF(kKDF, ’KEY’ ∥ sid, n) kCNF

kKDF ← k resp. [kKDF ← KComb(k, ke)]

check kCNF = KDF(kKDF, ’CNF’ ∥ sid, n)
kKEY ← KDF(kKDF, ’KEY’ ∥ sid, n)

return kKEY return kKEY

Fig. 4: PQ-EAC with terminal authentication through long-term KEMs,
divided into TA and CA phase. Optional steps for achieving forward
security are given in blue and brackets [ ]. In the combined version we
can save a full round trip by combining protocol messages as indicated

by the arrows.
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4.4 Instantiation with Hybrid Schemes

The push for quantum-resistant identity documents is subject to two opposed
constraints: On the one hand, the demand to secure transactions from the threat
posed by quantum computers and the long validity of MRTDs make it imperative
to take care of post-quantum security in the short term. On the other hand, one
cannot be truly confident in the concrete security of post-quantum schemes yet:
Parameter choices for post-quantum schemes might not yet be reliable [62] and
evolving cryptanalysis could show them to be vulnerable even to classical attacks
[44,21]. Hybrid schemes3 offer a way out: they combine two or more algorithms
of the same kind such that the combined scheme provides security as long as one
of the components provides security.

Of course, if the attacker is in possession of a quantum computer and the
post-quantum scheme is flawed, security can only be restored by repair- or re-
placement of the post-quantum cryptographic scheme. However, in the case that
the post-quantum scheme turns out to be insecure against classical attacks, but
no quantum computer is available yet, hybrid schemes can thwart attacks by
falling back on the security of the classical scheme. In Appendix B we present
combiner schemes, which are a drop-in solution to achieve hybrid security. The
PQ-EAC protocols defined above achieve hybrid security if they are instantiated
with hybrid KEMs and signature schemes. Our implementation as described in
Section 5 is using non-hybrid quantum-resistant schemes.

4.5 Security Proofs

A security proof for PQ-EAC in the real-or-random security model of Bellare
and Rogaway [9] can be found in Appendix C. Below we provide a short sketch
of the proof. The security properties to show are session matching and key se-
crecy. Session matching covers fundamental properties such as partnered sessions
deriving the same key, pairwise uniqueness of partners, and correct identifica-
tion of roles and partners. For all protocol versions (SigPQEAC and KemPQEAC,
with or without forward secrecy, with or without round reduction) this property
follows by protocol construction and the uniqueness of nonces. We note that
all proofs take into account potential decryption errors of KEMs. Key secrecy
ensures that only the intended partner shares the derived session key and that
session keys are indistinguishable from random to the adversary, unless the ad-
versary trivially knows the key. The proof for key secrecy for the variants of
SigPQEAC is via game-hopping. Here, we only outline the main steps. We first
exclude attacks in which a party accepts a different public key pk as identified
in the issued certificate cert. By the unforgeability of the certificate scheme this
cannot occur, except with negligible probability. But it follows that, if the chip
accepts only the certified public key of the terminal, then the unforgeability of

3 The notion of hybrid schemes is also used to refer to schemes that combine asym-
metric and symmetric primitives, e.g. the Integrated Encryption Scheme. However,
in the context of post-quantum cryptography, it denotes the combination of classical
and post-quantum algorithms.
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the terminal’s signature scheme ensures that only the honest terminal is able
to create the valid signature σc over the ciphertext c (and the ephemeral values
pkeT and ce in the forward-secure version). We can conclude that the encapsu-
lated key k (resp. keys k and ke) must have been created by an honest terminal,
such that the IND-CCA security of the chip’s long-term KEM guarantees that
they are hidden from the adversary. The security of the key derivation function
(together with the key combiner in the forward-secure version) ensure that the
session key is indistinguishable from random for the adversary.

We note that in the analysis the final confirmation value sent by the chip is
only required for the forward-secure case. Here the adversary may impersonate
a chip and later learn the long-term secret key of the KEM. But the adversary
would have to create a valid confirmation value before it later corrupts the chip’s
long-term secret. This once more is infeasible by the security of the chip’s KEM.

The proof of the KEM-based variant KemPQEAC is very similar to the
signature-based protocol. Only here we need to argue that only the honest ter-
minal can create the valid MAC σc over the ciphertext(s). This can be shown via
two extra steps in which we argue that only the terminal can decapsulate kTA in
terminal authentication (by the IND-CCA security of the terminal’s long-term
KEM) and that the derived keys from kTA are random by the security of the key
derivation function. The other steps are as in the proof of SigPQEAC.

We finally remark that our proofs show post-quantum security of the pro-
tocols. The proof steps consist of (straightline) reductions to the involved stan-
dard primitives like signature schemes, KEMs, or key derivation functions, and
do not require idealized primitives such as random oracles. Hence, any success-
ful quantum adversary against the key exchange protocol would thus yield a
successful quantum adversary against the underlying primitive. Assuming that
the primitives are all quantum-resistant, it follows that the overall protocol also
withstands such attacks.

5 Implementation

To show the feasibility of PQ-EAC for border control systems and to evaluate
the chip-side of the protocol proposals in resource-constrained environments,
we implemented the combined version of SigPQEAC (without forward secrecy)
on a chip similar to those deployed in ePassports and on a terminal of the
type that is used for border control checks. The chip is integrated in a proof
of concept post-quantum MRTD and runs an ePassport application compliant
with ICAO standards. Our performance tests reveal that the post-quantum ver-
sion of EAC is practical and only slightly slower than the classic version. We
published the benchmarking tool that we used to measure the performance of
SigPQEAC on a smart card4. Other components utilized for benchmarking such
as the VISOCORE® terminal software, the ePassport application and our cus-
tomized Dilithium and Kyber implementations are part of confidential propri-
etary software libraries and remain unpublished.

4 https://github.com/frankmorgner/OpenSC-pqc-SSR2023
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We designed the Application Protocol Data Unit (APDU) interface for read-
ing files or initiating cryptographic operations on the chip to be compatible with
the existing standards of ICAO, BSI, and ISO [33,18,34,35]. For this reason,
our implementation uses more than the minimal number of messages possible.
We proceed by stating the results of our runtime experiments with our imple-
mentation in Section 5.1. Finally, we analyze the impact of data transmission
rates on the performance of the protocol in Section 5.2. Since transmission speeds
vary between platforms, and because incorrect placement of the MRTD can slow
transmission rates significantly, this analysis will help to gauge the real-world
performance of PQ-EAC more precisely.

5.1 Performance Evaluation

In our experimental setup we instantiated Combined PQ-EAC without forward
secrecy with the post-quantum signature scheme Dilithium3 [43] and the post-
quantum KEM Kyber1024 [57,15]. NIST’s security level 3 (for the signature
scheme) and 5 (for the KEM), respectively, were chosen to support the MRTD’s
long lifetime of typically ten years. AES256 and SHA256 were used as support-
ing cryptographic building blocks for the message authentication codes and key
derivation functions. In our implementation we assume that the certificates are
based on post-quantum signatures. For the sake of data minimization we stick
to a single post-quantum signature and public key per certificate.

Chip Specification A proof of concept post-quantum MRTD was implemented on
a a contactless security controller from Infineon Technologies based on an ARM
SC300 architecture. The security controller comes with significantly increased
RAM-size of 96 kBytes, which is more than double the amount of RAM com-
pared to previous security controller chips in this application domain, to support
memory-intensive lattice-based schemes such as Kyber and Dilithium.

Chip Software We implemented Kyber and Dilithium in C according to speci-
fications given in the NIST PQC competition round 3 submissions [57,43], tak-
ing into account the requirements posed by the hardware architecture of our
security controller. In particular, memory requirements had to be carefully man-
aged: Our implementation utilizes almost the full RAM capacity of 96 kBytes.
However, not all memory optimization opportunities have been exploited by us:
By assigning overlapping memory segments to public-key and symmetric cryp-
tographic operations, it would be possible to reduce memory usage to ca. 60
kBytes. Other than memory optimizations, our versions stay close to the mostly
unoptimized reference implementation. Since the focus of our work has been
the creation of a functional proof of concept for PQ-EAC, most cryptographic
building blocks have not been optimized for performance or hardened against
side channel analysis (SCA) and fault attacks (FA). To improve the security of
Kyber and Dilithium against SCA and FA the strategies described in Oder et
al. [50], Saarinen [55], Ravi et al. [53], Bache et al. [6] or Heinz et al. [28] could
be used.
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Besides a hardware-based random number generator, no acceleration has
been used in the project. The chip’s ePassport application is running as na-
tive code on the hardware without an intermediate operating system. All state
management (which needs to carefully consider hardware limitations around the
volatile and non-volatile memory) is done in that application. For communica-
tion with the terminal we utilize a proprietary ISO/IEC 14443 communication
library.

Terminal Implementation For demonstration purposes, we modified terminal
hard- and software of the type that is used by German border control with
post-quantum algorithms. Specifically, we used a Bundesdruckerei VISOTEC®

Expert 8005 running the verification software VISOTEC® Inspect, which was
extended by us with the same post-quantum schemes as the MRTD.

Benchmarking We ran 1000 experiment executions with the test chip to bench-
mark the performance of the combined version of SigPQEAC. We measured the
time it took to send and receive the card commands via the PC/SC API on the
terminal’s operating system. Thus, this duration includes the terminal’s over-
head of processing the data with the smart card reader’s driver, its firmware,
transceiving data via ISO 14443, and finally the processing by the test chip. For
PQ-EAC, we reliably measured a total runtime of 1.28 seconds. The standard
deviation for a single command-response pair was between 0.0001 and 0.0003
milliseconds.

In a second experiment we used the same setup with a smart card emulation
device (Hitex Tanto3 FPGA) instead of the MRTD. This device emulates all
electrical properties of the MRTD’s chip and allows control and inspection of
the card’s internal workflow. This way we were able to determine or manually
control the connection parameters between reader and card. Specifically, we set
the data rate to 848 kBit/s and controlled the frame size for sending 4089 bits
of payload data. The emulated chip was constantly run with 100MHz and didn’t
suffer any throttling due to, for example, bad coupling with the smart card
reader (a common problem in practice).

The total time for performing all PQ-EAC operations on the emulated chip
and the data transfer is 1.28 seconds. In Figure 5 we can see that the execution
time on the chip is heavily dominated by the cryptographic operations during sig-
nature validation and KEM decapsulation. As such, Kyber decapsulation takes
596 ms, Dilithium verification takes 86 ms, but choosing a nonce and reading
certC only take 0.01 ms each.

The rest of the transaction time is caused by transferring the data back
and forth between terminal and card. Again, most of this can be attributed to
the large ciphertexts, public keys, and signatures of Dilithium and Kyber. For
example, certT contains a a Dilithium signature (2701 bytes) and the terminal’s
Dilithium public key (1472 bytes) which add up to 97.6% of the overall size of
the certificate. Transferring this data with a data rate Rb of 848 kBit/s takes
roughly 50 ms including the ISO/IEC 14443 overhead.

5 https://www.bundesdruckerei-gmbh.de/en/solutions/visocore
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Fig. 5: Measurements of combined SigPQEAC with 848kBit/s via ISO/IEC
14443 using an emulated chip.

Our analysis shows that the processing time on the chip is almost exclu-
sively caused by the the post-quantum algorithms. Further, we observe that in
our proof of concept implementation each of encapsulation, decapsulation and
key generation take around five times longer than verifying a signature. How-
ever, the literature suggests that a better optimized implementation on similar
hardware speeds up the Kyber1024 encapsulation by an order of magnitude to
half the execution time of the signature verification of Dilithium3 [36]. Such an
improvement would most likely allow an overall execution time for PQ-EAC of
one second or below.

5.2 Impact of the Data Transfer Rate

We observed that the post-quantum algorithms are causing most of the data that
needs to be transceived between MRTD and chip. Using our experimental data
we can confirm that the (extended) ISO/IEC 14443 I-Block framing is causing
an overhead of roughly 26% of the transmitted protocol data6. Also, we observe
that the constant overhead for encoding the data into command and response
APDUs varies between 9 and 35 bytes. This observation allows to approximate
the runtime of other variants of PQ-EAC in relation to data transfer rates.

Using the measurements from our experiments with the test chip and the
estimated communication load, we present the estimated runtime for the pro-
tocols relative to different transmission data rates in Table 1. Mostly due to
the fact that it transfers less data and uses one less signature verification, the
combined version of SigPQEAC achieves the shortest runtime. The advantage of
KemPQEAC under low data rates is due to the fact that no signatures, which are

6 The ISO/IEC 14443 overhead is between 23% for very big APDUs and 72% for very
small APDUs. Since most of the EAC protocols’ runtime is spent on big commands,
we stick to an approximation near that of bigger commands.
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Estimated Runtime (in milliseconds)

Data Rate (Rb) SigPQEAC Combined SigPQEAC KemPQEAC

848 kbit/s 1406 1280 1569
424 kbit/s 1718 1530 1754
106 kbit/s 3586 3204 2865

Table 1: Estimation for the protocol variants for typical transmission rates. For
details on PQ-EAC Combined at 848 kbit/s see Figure 5.

typically larger than ciphertexts or keys, need to be sent. The slow key encap-
sulation of the KEM in our proof-of-concept implementation, however, causes it
to be the slowest protocol for higher data transfer rates. Given that benchmarks
[36] show that KEM encapsulation is usually much faster than signature veri-
fication, runtime of PQ-EAC and especially of KemPQEAC should significantly
benefit from further optimizations of the implementation.

Comparison with Classical EAC An execution of classical EAC on MRTDs and
terminals commonly in use today typically takes around 1.5 to 2 seconds. Noting
that most deployed electronic passports and verification terminals are already
supporting 848 kbit/s data rate, our proof-of-concept implementation for PQ-
EAC with well below 2 seconds execution time supports the conclusion that
eMRTDs can be migrated to quantum-resistant algorithms. Considering perfor-
mance gains from hardware acceleration and general implementation improve-
ments we assume that instantiations with hybrid schemes are also feasible.

6 Conclusions

In the preceding sections we have presented and implemented quantum-resistant
versions of the EAC protocol. Our results show that post-quantum travel doc-
uments are practical. Moreover, our implementation of PQ-EAC can still be
optimized. It can also easily be instantiated with alternative KEMs and signa-
ture schemes. Below, we document a few opportunities for future research.

Post-quantum PKI and PACE In our protocols we assumed that the authen-
ticity of the chip and terminal are secured by quantum-resistant certificates: A
quantum-resistant PKI that will provide such certificates is a challenge to be
addressed by future research. The transition towards a post-quantum PKI could
potentially be conducted by means of intelligent composed algorithms as de-
scribed in Byszio et al. [20]. Similarly, we assumed that the initial connection
between chip and terminal is secured via PACE. As current versions of PACE
are based on classical assumptions, there is need for a quantum-resistant con-
struction that can secure the transmission of less sensitive data groups. Another
option would be to simply do without PACE and instead mandate an execution
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of EAC for all requests of chip data, not only for sensitive data groups. This
solution would provide the same security guarantees as a sequential execution of
PACE and EAC, and additionally rectify a current privacy issue that arises when
only PACE is performed: Since Passive Authentication requires the chip to send
a list of hashes of all data groups, it allows anyone who knows the chip’s MRZ to
match the hash of the fingerprint with a collection of precollected fingerprints.
When EAC is mandatory, we can eliminate this privacy threat by forcing the
terminal to authenticate before performing Passive Authentication.

Cryptographic Agility Another problem we leave for future research is crypto-
graphic agility in MRTDs. In particular it is desirable to have an update mech-
anism that provides an authenticated update for MRTDs in the case that the
deployed quantum-resistant algorithms need to be replaced. This would be the
case when flaws in the used algorithms have been discovered. The challenge here
is that we have a chicken-egg situation: Ultimately the authentication mecha-
nism of the update would have to inspire more confidence than the post-quantum
schemes we have instantiated EAC with. A potential candidate for such an au-
thentication mechanism are hash-based signatures [29,45]: While they are less
practical than lattice-based constructions, their security rests on weaker assump-
tions, namely on the one-wayness of certain hash functions.

Future Directions for MRTDs Recently ICAO has established a working group
on the so called Digital Travel Credential (DTC) and published version 4.4 of
’Guiding Core Principles for the Development of Digital Travel Credential DTC’
[32]. In this document the DTC is described as consisting of two parts: the DTC
Physical Component (DTC-PC) and the DTC Virtual Component (DTC-VC).
While a DTC-PC represents a physical MRTD, the DTC-VC could potentially be
stored on a smartphone and then be used in lieu of a physical MRTD. However,
at the moment it is planned to store only primary biometrics (facial image) in the
DTC-VC, while secondary biometrics (fingerprint) will be exclusively stored on
the DTC-PC. Future research will need to address security of DTCs, especially
when coupled with smartphones.
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chine readable travel documents, and its security. In: Keromytis, A.D. (ed.) Fi-
nancial Cryptography and Data Security - 16th International Conference, FC
2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 7397, pp. 344–358. Springer (2012).
https://doi.org/10.1007/978-3-642-32946-3 25
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A Security Definitions

In this section we introduce the underlying primitives and their security notions
for building the key exchange protocols as defined in, for example, [37].

A.1 Key Encapsulation

Definition 1 (Key Encapsulation Mechanism). A key encapsulation mech-
anism KEM = (KeyGen,Encaps,Decaps) consists of three efficient algorithms
where:

Key Generation: Algorithm KeyGen on input the security parameter 1n (in
unary) outputs a key pair, (sk, pk) ← KeyGen(1n). We assume that 1n is
recoverable from either key.

Encapsulation: The encapsulation algorithm takes as input a public key pk and
returns a ciphertext and a key, (c, k)← Encaps(pk). We assume usually that
the key is of bit length n.
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Decapsulation: The decapsulation algorithm takes as input a secret key sk and
a ciphertext c, and returns a key or an error symbol, k← Decaps(sk, c), where
k is either of size n or equals ⊥. Usually decapsulation is deterministic.

We require that decapsulation merely has a negligible error. That is, we de-

note by Pr
[
ExpdecErr

KEM (n) = 1
]
the probability of an encryption error for KEM =

(KeyGen,Encaps,Decaps), where Decaps(sk, c) ̸= k for (sk, pk)← KeyGen(n) and
(c, k)← Encaps(pk).

We next define CPA- and CCA-security for key encapsulation mechanism in
one go:

Definition 2 (IND-CPA and IND-CCA security of KEM). For a key en-
capsulation mechanism KEM = (KeyGen,Encaps,Decaps) and adversary A define
experiment ExpIND-att

KEM,A (n) as in Figure 6. We say that KEM is IND-att secure
(for att=CPA or CCA) if for any efficient adversary A we have that

AdvIND-att
KEM,A (n) := Pr

[
ExpIND-att

KEM,A (n) = 1
]
− 1

2

is negligible.

Experiment ExpIND-att
KEM,A (n)

1 : (sk, pk)← KeyGen(1n)

2 : b← {0, 1}
3 : (k∗0, c

∗)← Encaps(pk)

4 : k∗1 ← {0, 1}
|k∗0 |

5 : b∗ ← AODecaps(·)(pk, k∗b , c
∗)

6 : return [b = b∗]

Oracle ODecaps(c)

1 : if c = c∗ or att=CPA then

2 : return ⊥
3 : else

4 : return Decaps(sk, c)

Fig. 6: IND-CPA/IND-CCA security experiment for key encapsulation
mechanism

For our key exchange protocol KemPQEAC we also use a symmetric encryp-
tion scheme (for keys k from {0, 1}n) where c← Enc(k,m) creates a ciphertext,
and m ← Dec(k, c) always recovers the encrypted message m. In the protocol
this encryption step provides extra privacy for the chip by encrypting its iden-
tity. We do not discuss this privacy property formally here and thus neither the
security notions for the encryption scheme.

A.2 Message Authentication, Signature Schemes, and Certificate
Schemes

We define message authentication schemes, signature schemes, and certificate
schemes with a single definition. All schemes serve the purpose of authenticating
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data. The only difference between the private-key message authentication codes
(MACs) and the public-key signature and certificate schemes lies in the verifica-
tion key vk: MACs use the key vk = sk to verify authenticity, whereas signatures
and certificates are verified against the public key vk = pk. In the descriptions
and security games we thus set vk accordingly, and the public key for MACs to
be empty and for signatures and certificates equal to vk. We call the primitive
abstractly an authentication scheme:

Definition 3 (Authenticaton Scheme). An authentication scheme AS =
(AKGen,AAuth,AVf) consists of three efficient algorithms such that:

Key Generation: Algorithm AKGen on input 1n returns a key triple (sk, pk, vk)←
SKGen(1n). We assume that n is recoverable from either key.

Authentication: On input the secret key sk and a message m ∈ {0, 1}∗, the
authentication algorithm outputs an authenticator, σ ← AAuth(sk,m).

Verification: On input a verification key vk, a message m, an authenticator σ,
the verification algorithm outputs a decision bit, d← AVf(vk,m, σ). Usually,
AVf is deterministic.

We require that verification always succeeds. That is, it never happens that
AVf(sk,m, σ) = 0 for any (sk, pk, vk) ← SKGen(1n), any m ∈ {0, 1}∗, and any
σ ← AAuth(sk,m).

Unlike key encapsulation we define authentication schemes with perfect cor-
rectness since all known schemes in practice achieve this.

Definition 4 (EUF-CMA of Authentication Schemes). For an authenti-
cation scheme AS = (AKGen,AAuth,AVf) and adversary A define experiment
ExpEUF-CMA

AS,A (n) as in Figure 7. We say that AS is EUF-CMA if for any effi-

cient adversary A we have that Pr
[
ExpEUF-CMA

AS,A (n) = 1
]
is negligible.

Experiment ExpEUF-CMA
AS,A (n)

1 : (sk, pk, vk)← AKGen(1n)

2 : Q ← ∅

3 : (m∗, σ∗)← AOAAuth(sk,·)(pk)

4 : return [SVf(vk,m∗, σ∗) and m∗ /∈ Q]

Oracle OAAuth(sk,m)

1 : Q ← Q∪ {m}
2 : σ ← AAuth(sk,m)

3 : return σ

Fig. 7: EUF-CMA security experiment for authentication schemes

A signature scheme S = (SKGen,Sig,SVf) is an authenticator scheme where
(sk, pk, vk) ← AKGen(1n) for (sk, pk) ← SKGen(1n) and vk ← pk. A certificate
scheme C = (CKGen,CSign,CVf) is an authenticator scheme where (sk, pk, vk)←
AKGen(1n) for (sk, pk) ← CKGen(1n) and vk ← pk. A message authentication
codeM = (MKGen,MAC,MVf) is an authenticator scheme where (sk, pk, vk)←
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AKGen(1n) for sk ← MKGen(1n) and vk ← sk and pk ← ⊥. EUF-CMA secu-
rity now follows from the general definition. We usually assume that the key
generation algorithm simply generates a uniformly distributed key of n bits.

A.3 Key Derivation Functions

We assume that key derivation functions act as pseudorandom functions, as long
as the keying material contains enough (min-)entropy. The latter is captured
by considering arbitrary distributions D which take the seucurity parameter
1n as input and output IKM with min-entropy H∞(IKM) ≥ n. We call such
distributions non-trivial. We follow here the presentation of Krawczyk [40].

Definition 5 (Key Derivation Function). A key derivation function KDF
takes as input keying material IKM, context information ctxt, and an integer ℓ,
and outputs a string of length ℓ. We assume that the length of IKM determines
the security parameter n.

Security now requires that the key derivation function’s output for IKM looks
random, even if the adversary sees actual derived keys at other inputs (ctxt, ℓ):

Definition 6 (Pseudorandomness of Key Derivation Function). For a
key derivation function KDF, adversary A, and distribution D define experiment
ExpPRF

KDF,A,D(n) as in Figure 8. We say that KDF is pseudorandom if for any
efficient adversary A and any non-trivial distribution (with min-entropy n), we
have that

AdvPRF
KDF,A,D(n) := Pr

[
ExpPRF

KDF,A,D(n) = 1
]
− 1

2

is negligible.

A.4 Key Combiners

For the forward-secure version of the PQEAC protocols we use a static KEM
and an ephemeral KEM to share keys k and ke. In this case the parties need
to derive a single key from the two keys. This has been discussed more broadly
in the context of KEM combiners in [26] and for quantum adversaries in [13],
but since we have already embedded the KEM mechanism in the key exchange
protocol, we focus here on the pure key combining part. We note that we cannot
immediately rely on the KEM combiner in [13], since it assumes faithfully cre-
ated but potentially weak encapsulations, whereas in our setting the adversary
may choose the encapsulations maliciously. While Bindel et al. [13] argue that
such genuine encapsulations are sufficient to build hybrid authenticated key ex-
change protocols via Krawczyk’s SIGMA compiler [39], the EAC protocol does
not perfectly comply to the SIGMA standard.

Definition 7 (Key Combiner). A key combiner KComb takes as input keying
material IKM0, IKM1, both of length n, and outputs a string of length n.
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Experiment ExpPRF
KDF,A,D(n)

1 : IKM← D(1n)
2 : Q ← ∅
3 : b← {0, 1}

4 : b∗ ← AOKDF(IKM,·,·),Ob(IKM,·,·)(1n)

5 : return [b = b∗]

Oracle OKDF(IKM, ctxt, ℓ)

1 : if (ctxt, ℓ) ∈ Q then

2 : return ⊥
3 : Q ← Q∪ {(ctxt, ℓ)}
4 : k← KDF(IKM, ctxt, ℓ)

5 : return k

Oracle Ob(IKM, ctxt, ℓ)

1 : if (ctxt, ℓ) ∈ Q then

2 : return ⊥
3 : Q ← Q∪ {(ctxt, ℓ)}
4 : k0 ← KDF(IKM, ctxt, ℓ)

5 : k1 ← {0, 1}
ℓ

6 : return kb

Fig. 8: Pseudorandomness experiment for Key Derivation Functions

Security demands that KComb is a dual pseudorandom function, meaning
that both KComb(IKM0, ·) and KComb(·, IKM1) are pseudorandom functions. It
follows that we can reasonably assume that HKDF resp. HMAC [40,7] or the
TLS-based nested key derivation function in [56] is an appropriate instantiation
for a key combiner.

Definition 8 (Dual Pseudorandomness of Key Combiner). For a key

combiner KComb and adversary A define experiment ExpdPRF−β
KComb,A(n) as in Fig-

ure 9. We say that KComb is (dual) pseudorandom if for any efficient adversary
A we have that

AdvdPRF
KComb,A(n) := max

β∈{0,1}

{
Pr

[
ExpdPRF−β

KComb,A(n) = 1
]
− 1

2

}
is negligible.

B Hybrid Schemes

KEM Combiner To achieve hybrid security, we make use of combiner schemes as
proposed by Bindel et al. [13]. In the following, let KEM1 = (KeyGen1,Encaps1,Decaps1)
and KEM2 = (KeyGen2,Encaps2,Decaps2) be two KEMs and let C[KEM1,KEM2] =
(KeyGenC ,EncapsC ,DecapsC) be the hybrid KEM constructed by combiner mech-
anism C from KEM1 and KEM2. For all combiners, the key generation of the
combined scheme will simply be the concatenation of the two scheme’s keys as
shown in Figure 10.

A combiner is called robust if it combines two or more algorithms of the
same kind such that the combined scheme provides security as long as one of
the components provides security.
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Experiment ExpdPRF−β
KComb,A(n)

1 : IKM0, IKM1 ← {0, 1}n

2 : b← {0, 1}
3 : Q ← ∅

4 : b∗ ← AOb,β(IKM0,IKM1,·)(1n)

5 : return [b = b∗]

Oracle Ob,β(IKM0, IKM1, x)

1 : if x ∈ Q then return ⊥
2 : Q ← Q∪ {x}
3 : if β = 0 then

4 : k0 ← KComb(IKM0, x)

5 : else

6 : k0 ← KComb(x, IKM1)

7 : k1 ← {0, 1}
|k0|

8 : return kb

Fig. 9: Dual pseudorandomness experiment for Key Combiners

C[Σ1, Σ2].KeyGen(1
n)

1 : (pk1, sk1)← Σ1.KeyGen(1
m)

2 : (pk2, sk2)← Σ2.KeyGen(1
m)

3 : pk = (pk1, pk2)

4 : sk = (sk1, sk2)

5 : return (pk, sk)

Fig. 10: Key generation function C[Σ1, Σ2].KeyGen(1
n). The security parameter

m needs to be derived from n depending on the requirements of the
combiner.

The XOR-Combiner A naive method to combine two KEMs would be to take the
XOR of their keys k = k1⊕k2 as shown in Figure 11. As noticed by Giacon et al.
[26] this results in a KEM that is IND-CPA, but not IND-CCA secure. Assuming
that the challenger combines two IND-CCA secure KEMs by taking the XOR
of their keys as described, then an adversary in the IND-CCA experiment can
proceed as follows: Given a challenge (c∗1, c

∗
2), the adversary makes two decapsu-

lation requests for (c∗1, c2) and (c1, c
∗
2) with randomly chosen ciphertexts c1 = c2.

This information then allows the adversary to compute the decapsulation of the
challenge ciphertext by taking the xor: k = k∗1 ⊕ k2 ⊕ k1 ⊕ k∗2 = k∗1 ⊕ k∗2 .

The XOR-then-MAC Combiner A better way to combine two KEMs is the XOR-
then-MAC combiner as specified in Figure 12. This approach prevents the mix-
and-match attack. The construction requires a strongly robust MAC combiner
C[MAC1,MAC2] that provides one-time unforgeability even if one of the keys are
chosen adversarially. Such a MAC combiner can be instantiated based on the
Carter-Wegman paradigm [61] using universal hash functions. The XOR-then-
MAC combiner is shown by Bindel et al. [13] to be robust. One drawback of this
construction is that the resulting key-length is only half of that of the underlying
KEMs.
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Encapsxor(pk1, pk2)

1 : (c1, k1)← KEM1.Encaps(pk1)

2 : (c2, k2)← KEM2.Encaps(pk2)

3 : k← k1 ⊕ k2

4 : c← (c1, c2)

5 : return (c, k)

Decapsxor((sk1, sk2), (c1, c2))

1 : k1 ← KEM1.Decaps(sk1, c1)

2 : k2 ← KEM2.Decaps(sk2, c2)

3 : k← k1 ⊕ k2

4 : return k

Fig. 11: KEM XOR[KEM1,KEM2] constructed by the naive XOR combiner (not
IND-CCA secure).

EncapsXtM(pk1, pk2)

1 : (c1, kKEM1
||kMAC1

)← KEM1.Encaps(pk1)

2 : (c2, kKEM2
||kMAC2

)← KEM2.Encaps(pk2)

3 : kKEM ← kKEM1
⊕ kKEM2

4 : kMAC ← C[MAC1,MAC2](kMAC1
, kMAC2

)

5 : c← (c1, c2)

6 : τ ← MAC(kMAC , c)

7 : return ((c, τ), kKEM)

DecapsXtM((sk1, sk2), (c1, c2), τ)

1 : k′KEM1
||k′MAC1

← KEM1.Decaps(sk1, c1)

2 : k′KEM2
||k′MAC2

← KEM2.Decaps(sk2, c2)

3 : k′KEM ← k′KEM1
⊕ k′KEM2

4 : k′MAC ← C[MAC1,MAC2](k
′
MAC1

, k′MAC2
)

5 : if Vf(k′MAC, (c1, c2), τ) = 0 : return ⊥
6 : return k′KEM

Fig. 12: KEM XtM[KEM1,KEM2] constructed by the XOR-then-MAC
combiner.

Signature combiner As with KEMs there are also combiners that provide hy-
brid security for signature schemes. One might be tempted to avoid the use of
signature combiners and instead deploy hash-based signature schemes, which
are well-known to provide post-quantum security based on very weak assump-
tions. Such kinds of schemes have been around since the 1980s, which means
that the usual concerns over the maturity of post-quantum cryptography do not
apply here. However, even when using hash-based signatures it might be wise to
combine them with a classical scheme as a fallback. This is because hash-based
signatures require careful state management that is often difficult to assure.

Let Π1 = (KeyGen1,Sig1,Vf1) and Π2 = (KeyGen2,Sig2,Vf2) be two sig-
nature schemes. Then denote as C[Π1, Π2] = (KeyGenC ,SigC ,VfC) the hybrid
signature scheme constructed from Π1 and Π2 using combiner mechanism C.
For all combiners, the key generation of the combined scheme will simply be the
concatenation of the two scheme’s keys as shown in Figure 10. A signature com-
biner is called robust if it combines two or more algorithms of the same kind
such that the combined scheme provides security as long as one of its components
provides security.

C|| Combiner This trivial combiner concatenates independent signatures from
the two schemes side-by-side, as defined in Figure 13. Even though very simple,
the construction is shown to be robust by Bindel et al. [14].
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SigC||
(sk,m)

1 : σ1 ← Π1.Sig(sk1,m)

2 : σ2 ← Π2.Sig(sk2,m)

3 : return σ ← (σ1, σ2)

VfC||(pk, σ)

1 : return Π1.Vf(pk1,m, σ1) ∧Π2.Vf(pk2,m, σ2)

Fig. 13: Hybrid signature scheme C||[Π1, Π2] constructed by concatenation.

Cstr-nest-Combiner One problem with the C||-Combiner is that due to downgrade
attacks, separability of signatures is usually considered a liability in signature
combiners. In downgrade attacks an adversary queries a signing oracle for a
combined signature and later pretends to know only one of the schemes – this
makes it possible for the adversary to separate a signature from a combined
signature and pass it as a forgery. If downgrade attacks are to be expected –
as it might be the case with an international protocol like EAC with multiple
versions in concurrent use – it is recommended to use a Cstr-nest-Combiner. Here,
the second signature scheme signs both the message and the signature from the
first signature scheme, as defined in Figure 14. Bindel et al. [14] show that the
Cstr-nest-Combiner is robust and inseparable.

SigCstr-nest
(sk,m)

1 : σ1 ← Π1.Sig(sk1,m)

2 : σ2 ← Π2.Sig(sk2, (m,σ1))

3 : return σ ← (σ1, σ2)

VfCstr-nest
(pk, σ)

1 : return Π1.Vf(pk1,m, σ1)

∧Π2.Vf(pk2, (m,σ1), σ2)

Fig. 14: Hybrid signature scheme Cstr-nest[Π1, Π2] constructed by nesting.

C Security Proof

C.1 Security Model

Setup We assume that there is a set P of parties. At the beginning, each party
P ∈ P is assigned a long-term key pair (skP , pkP ), certified via certP under a
public key pkCVCA of a country verifying certificate authority. We assume that
all parties know this public key of the certificate authority. For the attack we
assume, to the advantage of the adversary, that all public keys pkP and cer-
tificates certP are already known by the adversary. We also presume that each
certificate carries the identifier from P or, to be precise, since we do not make
any stipulation on the form of the identifiers in P, we rather set the identifiers
according to the distinguished name in the certificate.

It is sometimes convenient to further divide the set of parties P disjointly
into chips and terminals, P = C ∪ T . We say that a party P is a chip if P ∈ C,
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and a terminal of P ∈ T . Note that the two protocol versions, with signatures
and using KEMs instead, differentiate between the type of the public keys for
terminals: In the former case it is a certified signing key, in the latter case it
is a certified KEM key. Chips use KEM keys in both versions. For the abstract
security model, however, we do not distinguish the type of public key.

Sessions The adversary can now interact with the protocol in different sessions,
representing a local protocol execution of a party. This is done via oracles to
initiate new sessions (Init), to send protocol messages to a session (Send), to
reveal a session key (Reveal), to test a session (Test), and to corrupt the
long-term key of a party (Corrupt). Besides the protocol state the session can
be described by the following entries:

– lbl is a unique administrative identifier lbl, chosen by the game during the
execution.

– owner denotes the identity (from P) of the owner of the session.
– role ∈ {chip, terminal} describes the role of the party owner.
– pid specifies the identity of the intended communication partner from P.
– st ∈ {running, accepted, rejected} denotes the current state of the session.
– sid denotes the protocol’s session identifier, initialized to ⊥ and set only once

upon acceptance.
– revealed ∈ {true, false} indicates if the adversary has revealed the session key.
– tested ∈ {true, false} indicates if the adversary has tested the session.
– key denotes the session key (or ⊥).

It is convenient to use the unique identifier lbl to refer to individual entries,
i.e., by writing lbl.owner, lbl.role, lbl.pid etc.

Attacks As mentioned earlier we prove security of the protocols in the real-or-
random model of Bellare Rogaway [8]. This means that a secret challenge bit
b ← {0, 1} is chosen randomly at the outset, and the adversary either receives
the actual session key of a tested session, or an independently sampled random
string of the same length, the choice depending on the bit b. The task of the
adversary is to predict b, ruling out trivial attacks like cases where the adversary
knows the session key of a communication partner. To capture forward security
we also assume a set F ⊆ P describing the parties resp. roles which provide
forward security. In our setting, if the chip picks an ephemeral KEM key, then
F = C ∪T covers all parties, else we have forward secrecy only for the terminals,
F = T .

The attacker initially receives all certificates certP including the public keys
pkP of all parties P ∈ P. We will use the initially empty set C to store the
identities of all corrupt parties. During the attack, the adversary may issue the
following oracle queries (where we cover both forward and non-forward security
in a single definition):

Initialization: The Init(P, r) command first checks that party P ∈ P\C is not
corrupt, and that P ∈ C belongs to the chips for role r = chip resp. P ∈ T for
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r = terminal. If all properties hold then it picks a new label lbl and initializes
a new session for this label for owner owner← P with role role← r. It sets
st← running, revealed← false, tested← true, sid← ⊥, and key← ⊥.

Sending protocol messages: Upon calling Send(lbl,m) for an initialized ses-
sion with identifier lbl, check that the session owner lbl.owner /∈ C has not
been corrupted yet. If so, then deliver the protocol message m to the party
and hand the possible response back to the adversary. This may affect the
status of the session and switch it to rejected or accepted (which we assume
is known by the adversary). If it turns to accepted then the key key and the
session identifier sid are set.
Upon acceptance, if there exists a partnered session lbl′ ̸= lbl with lbl.sid =
lbl′.sid as well as lbl′.revealed = true, or if lbl.pid ∈ C, then set lbl.revealed←
true; else set lbl.revealed← false. If there exists a partnered session lbl′ ̸= lbl
with lbl.sid = lbl′.sid and lbl′.tested = true, then set lbl.tested← true; else set
lbl.tested← false. This means that the session here inherits the revealed and
tested flag from a partnered session resp. is considered to be revealed if the
intended partner is already corrupt upon completion of the session here.

Reveal session key: Upon Reveal(lbl) check that lbl.st = accepted. If not,
return ⊥. Else, return lbl.key and set lbl.revealed← true and also set
lbl′.revealed← true for any partnered session lbl′ ̸= lbl with lbl′.sid = lbl.sid.

Test session: For Test(lbl) check that lbl.st = accepted and that lbl.tested =
false. If not, return⊥. Otherwise, if b = 0 then return lbl.key, and if b = 1 then
return a random value k← {0, 1}|lbl.key| of the same length. Set lbl.tested←
true and also lbl′.tested← true for any other partnered session lbl′ ̸= lbl with
lbl′.sid = lbl.sid. The latter spares us from keeping track of consistency, when
the adversary tests both partners.

Corruption of long-term secrets: When calling Corrupt(P ) for P ∈ P\C,
return skP to the adversary and add P to C← C∪{P}. Note that any session
for this party cannot be stepped anymore via Send queries.
In the non-forward-secure setting, when P /∈ F , mark all sessions lbl with
lbl.owner = P or lbl.pid = P as revealed: lbl.revealed← true. This means that
subsequent corruption of the long-term secret endangers the secrecy of the
session key (on either side).

We assume that the adversary eventually outputs a guess b∗ for b. We write
Expke

Π,A,C,T ,F (n) = 1 if b∗ = b in the above experiment for adversary A.

C.2 Security Requirements

With the above attack model we can now state the security requirements. We
note that we also require functional correctness in the sense that if two parties
engage in an interaction and the adversary does not interfere with the executions,
then the two parties obtain the same session identifier sid. This can be easily seen
to hold for the protocols. Session matching now enforces that, even in presence
of the adversary, two partnered sessions also derive the same key and correctly
identify the intended partner and its role:
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Definition 9 (Session Matching). A key exchange protocol Π (for party sets
P = C ∪ T and F) provides session matching if for any efficient adversary A
the following holds:

Matching Keys: For any distinct completed partnered sessions lbl, lbl′ with
lbl.sid = lbl′.sid ̸= ⊥ we have lbl.key = lbl′.key.

Exclusive Session Identifiers: There do not exist three distinct sessions lbl,
lbl′, lbl′′ with lbl.sid = lbl′.sid = lbl′′.sid ̸= ⊥.

Matching Roles: For any distinct partnered sessions lbl ̸= lbl′ with lbl.sid =
lbl′.sid ̸= ⊥ we have {lbl.role, lbl′.role} = {chip, terminal}.

Authentication: For any distinct partnered sessions lbl ̸= lbl′ with lbl.sid =
lbl′.sid ̸= ⊥ we have lbl.pid = lbl′.owner.

We write Expmatch
Π,A,C,T ,F (n) = 1 if the adversary in the attack described above

violates any of the four properties.

Key secrecy now demands that the adversary cannot predict the secret chal-
lenge bit b better than by guessing, guaranteeing that session keys look random.
This requires to exclude some trivial attacks, e.g., where a party interacts with
an already corrupt partner or where the session key (of the party or of the
partner) has also been revealed:

Definition 10 (Key Secrecy). A key exchange protocol Π (for party sets P =
C ∪T and F) provides key secrecy if for any efficient adversary A mounting the
attack described above, the probability that

Correct Prediction: b∗ = b, and

Non-trivial attack: There do not exist (not necessarily distinct) completed
sessions lbl, lbl′ with lbl.sid = lbl′.sid ̸= ⊥ with lbl.tested = lbl′.revealed = true.

is negligibly close to 1
2 . More concretely we write AdvkeΠ,A,C,T ,F (n) for the prob-

ability minus 1
2 that the two properties hold.

We next prove the security of the two variants SigPQEAC (with signatures)
and KemPQEAC (with KEM-based authentication). We start with the signature-
based variant, and simultaneously consider the forward-secure and non-forward-
secure version in the proof. We discuss afterwards that the proof also holds
for the combined version. The proof of the KEM-based version then follows
straightforwardly from the signature case, as we discuss afterwards.

C.3 Security Proofs for SigPQEAC

We first show the session matching property for SigPQEAC. We note once more
that we give the proof of the forward-secure and non-forward-secure version
within a single proof:
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Proposition 1 (Session Matching of SigPQEAC). The protocol SigPQEAC
provides session matching. Specifically, for any adversary A initiating at most
S sessions we have

Pr
[
Expmatch

Π,A,C,T ,F (n) = 1
]

≤ 2S2 ·
(
2−|r2| + 2−|k| + Pr

[
ExpdecErr

KEM (n) = 1
]
) + Pr

[
ExpdecErr

KEMe (n) = 1
])

.

We note that the decryption error term Pr
[
ExpdecErr

KEMe (n) = 1
]
is only re-

quired in the forward-secure version where the parties use an ephemeral KEM.
In the non-forward-secure version this term disappears.

Proof. Recall that we have to show four properties, namely, that (1) identical
session identifiers imply identical keys, (2) session identifiers are unique between
two (partnered) session, (3) the roles match, and (4) for any distinct partnered
sessions they point to the identity of the other party. Session identifiers are
given as sid = (certT , certC , c, r2, [pk

e
C , c

e]), and the partner identities are the
distinguished names appearing in the certificates.

As for (1), the final session key is derived as KDF(kKDF, ’KEY’∥sid), where kKDF
is the encapsulated key in ciphertext c under long-term key pkC or, if present,
mixed with the encapsulated key ke in ciphertext ce under the ephemeral key
pkeC . Since all values c, pkC , c

e, pkeC and r2 appear in the session identifier, a
key mismatch for identical session identifiers can only happen in case of a de-
cryption error for the encapsulations chosen by an honest terminal. The prob-
ability for this to happen for either of the two keys in any session is at most

S · (Pr
[
ExpdecErr

KEM (n) = 1
]
+ Pr

[
ExpdecErr

KEMe (n) = 1
]
). In the proposition’s claim

we subsume this under the factor S2 for property (2).

For (2) note that the client contributes random string r2 to the session
identifiers, and the terminal sends a ciphertext c containing a random key
k. Hence, the probability of having a session identifier for a chip-chip com-
bination is at most 2−|r2|, and for a terminal-terminal combination at most

2−|k|+Pr
[
ExpdecErr

KEM (n) = 1
]
, taking into account the possibility of creating the

same ciphertext for different keys, resulting in a decryption error. Multiplying
this by the at most S2 number of session pairs, still yields a negligible bound.
For (3) we assume that a chip or terminal only starts a communication in its
indented role, such that the first certificate certT specifies the terminal, and the
second one certC determines the chip. Hence, (4) also follows, because a match
on session identifiers means that distinct partnered sessions use the same certifi-
cates, pointing to each other mutually. ⊓⊔

Theorem 1 (Key Secrecy of SigPQEAC). Protocol SigPQEAC provides key
secrecy. Specifically, for any adversary A initiating at most S sessions with U
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users there exist adversaries Bcert,BSig, CKEM, CKEMe , CKDF, CKComb such that

AdvkeΠ,A,C,T ,F (n)

≤ 3S3 ·
(
2−|r2| + 2−|k| + Pr

[
ExpdecErr

KEM (n) = 1
])

+U ·
(
Pr

[
Expcert-unf

C,Bcert
(n) = 1

]
+ Pr

[
ExpEUF-CMA

S,BSig
(n) = 1

])
+S2 ·

(
4U ·AdvIND-CCA

KEM,CKEM
(n) + 2 ·AdvIND-CPA

KEMe,CKEMe (n)

+4 ·AdvPRF
KDF,CKDF,DKDF

(n) + 4 ·AdvdPRF
KComb,CKComb

(n) + 2−|kCNF|
)

Here, the sets for forward security are given as F = P = C ∪ T if the ephemeral
KEMe is used, and F = T otherwise. The algorithms Bcert,BSig, CKEM, CKEMe ,
CKComb, CKDF run in approximately equal time as A, and DKDF is the uniform
distribution on bit strings of length equal to |kKDF|.

Proof. Since the proofs for both versions are almost identical we give them si-
multaneously, explaining the slight adaptions when using the ephemeral data.
We also note that the proof for the combined version where we slot together the
chip’s and terminal’s messages is also identical, such that we do not mention this
explicitly here. The proof itself follows by game hopping, starting with Game0,
the original attack of adversary A. In each game hop we make slight changes to
the games, gradually taking away attack possibilities. Formally, we will declare
the adversary to lose and we stop the game immediately if one of these attack
possibilities is triggered. We compensate for this by adding the (usually small)
probability of such an attack to happen to the overall advantage of adversary
A. In the final game, A’s advantage in predicting the secret bit b is exactly 1

2 .
We denote by Pr[Gamei] the probability that A wins, i.e., correctly predicts

the bit b in the i-th game and satisfies the freshness condition, minus the pure

guessing probability 1
2 . In particular, Pr[Game0] = Pr

[
Expke

Π,A,C,T ,F (n) = 1
]
− 1

2 .

We also say that a party (resp. a key) is honest (at a certain point in time during
the attack) if this party (resp. the party holding the key) has not been added to
C through a Corrupt request at this point; else it is called malicious or corrupt.

Game Game0. The original attack of A.

Game Game1. In this game we declare the adversary to lose if there are two (or
more) sessions of honest chips resulting in the same value r2.

Since the values r2 are chosen uniformly, the probability of a collision in two
of the at most S sessions, is given by S2 · 2−|r2| by the birthday bound. Hence,

Pr[Game0] ≤ Pr[Game1] + S2 · 2−|r2|.

Game Game2. In this game we now declare the adversary to lose if there are two
(or more) sessions of the honest terminals sending the same ciphertext values c
for the same chip identity certC .
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Note that any such collision would mean that, either the encapsulated keys
k must be equal, which happens with probability at most S2 · 2−|k| across all
sessions, or the keys are distinct but map to the same ciphertext c. The latter,
however, would mean that decryption cannot be correct, such that we have a

bound of S2 · Pr
[
ExpdecErr

KEM (n) = 1
]
for this case. Therefore,

Pr[Game1] ≤ Pr[Game2] + S2 · (2−|k| + Pr
[
ExpdecErr

KEM (n) = 1
]
).

Game Game3. Compared to Game2 declare the adversary to lose if an honest
party accepts a certificate certP of some honest party (with identity P ) but for
a public key different than the generated one pkP .

Note that this can happen on the chip side, during Terminal Authentication,
as well as on the terminal’s side during Chip Authentication. Either way it gives
in a straightforward way a reduction Bcert to the (un)forgeability of certificates:
Initially guess (with probability 1/|P|) for which party P this will happen. Create
all public keys of users, and certify pkP for the certificate scheme for verification
key pkCVCA. Run A’s attack. If A eventually sends a valid certificate cert∗P for
pk∗P ̸= pkP , then output this certificate with pk∗P as the certificate forgery.

Since we guess the right party with probability 1/U for U = |P|, and the
simulation of A’s attack is perfect, we can bound the advantage in the previous
game by the term for certificate unforgeability:

Pr[Game2] ≤ Pr[Game3] + U · Pr
[
Expcert-unf

C,Bcert
(n) = 1

]
.

At this point any (completed) session of an honest party contains a unique
identifying value (r2 on the chip’s side and c on the terminal’s side). Furthermore,
looking at the opposite received value in that session (c for a chip resp. r2 for
a terminal), it follows that there can exist at most one honest partner session
which has sent that value. We can thus, via a hybrid argument, assume that the
adversary A only makes a single Test oracle call, to a completed honest session,
and that we can predict the number i of the session (according to initialization
calls) upfront. This comes at a factor S in the security loss.

Game Game4. We change Game4 by letting the adversary lose if an honest chip
obtains a valid signature σC of an honest terminal T for a message sid which has
not been signed by the terminal during chip authentication at this point yet.

Note that, by the previous game hops, the signature can only be for the ac-
tual certified public key pkT of the terminal. Furthermore, since terminals use
different prefixes ’TA’ resp. ’CA’ when signing in the two phases, the terminal
cannot have signed these data in terminal authentication either.7 It follows that
such a valid signature constitutes a forgery for the signature scheme S. The
formal reduction BSig receives a public key pk of the signature scheme, to guess

7 This would in particular be also true if we combine the messages and let the terminal
only sign once over all values. See Remark 3 after the proof.
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the terminal’s identity upfront with probability 1/|P|, and to run the attack in
Game3, with injecting the given signature key pk as pkT for the corresponding
terminal. All other steps of the attacks are carried out locally, except for signa-
ture requests for our challenge terminal (where our reduction calls the signing
oracle). If the reduction eventually encounters a valid signature for previously
unsigned data, it outputs this as a valid forgery under pk = pkT .

Since the reduction provides a perfect view of A’s attack in Game3 up to the
point of forgery for a correct guess of the party, we thus have:

Pr[Game3] ≤ Pr[Game4] + U · Pr
[
ExpEUF-CMA

S,BSig
(n) = 1

]
.

Note that, since we have at most one honest matching partner according
to games Game1 and Game2, then receiving a valid signature on the chip’s side
implies that it must come for the partnered terminal session—or the terminal is
already corrupt at this point, in which case the chip’s session cannot be success-
fully tested anymore.

For the next game hop we remark that with another factor S we can account
for the prediction of the (at most) single honest partner session j, where we
assume i = j if there does not exist such a session. If any of the predictions
turns out to be false, then we immediately output a random guess for the secret
challenge bit b and stop. We can view this as a game modification, resulting in
Game5:

Game Game5. Let the adversary only make a single Test query and output the
session number i and its potential partner session number j at the outset.

With the above discussion it follows that

Pr[Game4] ≤ S2 · Pr[Game5].

We next branch according to a non-forward secure or forward-secure execu-
tion for the (only) test session.

Non-Forward Secure Case Assume that the i-th session, the one which eventually
gets tested, is run in non-forward secure mode. In particular, the session does
not involve the ephemeral keys.

Game Game6a. Consider the ciphertext c for key k sent or received in the i-th
session, encrypted under the long-term key pkC of a chip with certificate certC .
Let k̄ ← {0, 1}|k| be a random and independent key of the same length. In all
subsequently processed honest sessions of the same chip with certC in which this
chip receives c, as well as in the i-th session and in the j-th session, use k̄ instead
of k for the internal computations. Note that we do not need to take care of
other honest terminal sessions using the same pair (c, certC), since there exists
none according to Game2.

Note that if the test session i is a terminal session, then the partner chip
session j cannot be for a corrupt chip identity C; else A’s attack would be
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declared unsuccessful. This, together with the fact that only certified public
keys are accepted by the terminal according to Game3, implies that the public
key pkC used to generate the ciphertext c must not be compromised. Hence,
because the ciphertext c was created by the honest terminal itself, we have a
pair (pkC , c) generated resp. held by honest parties only.

Analogously, if the test session i is a chip session, then expected partner
terminal with certificate certT must be honest at this point, or else the attack
is deemed as trivial. But according to Game5 it must then be the case that
the incoming message with the ciphertext c for pkC has been signed (and thus
created) exactly by the honest partner terminal with certT . Once more, it follows
that the pair (pkC , c) is faithfully generated.

We first note that the probability that the chip with certC “accidentally”
receives the ciphertext c before the i-th resp. j-th session is bounded by S ·
(2−|k| + Pr

[
ExpdecErr

keyEM (n) = 1
]
). Observe that Game2 only covers the case of

ciphertexts generated by honest terminals, but now c may have also been created
by a malicious terminal. But it also holds here that either the freshly picked key
in our ciphertext c equals the previously decapsulated key, or that a decryption
error under the honest public key pkC occurs. Since there are at most S sessions
before, the bound follows. From now on we exclude this case.

Now we can argue that replacing k by k̄ is valid, assuming security of the
KEM. The reduction BKEM to the IND-CCA security of the long-term KEM now
works as follows. The reduction guesses the chip’s identity for pkC in question at
the outset (with probability 1/|P|). Knowing C, i, j, it receives (pk∗, k∗, c∗) and
injects pk∗ as pkC in the game. This uses the fact that the public key is genuine
in the i-th and j-th session. The reduction next executes the entire attack game,
but uses k∗ whenever it is supposed to use k̄. It also injects c∗ in the corre-
sponding terminal session j as c (which is again possible due to the previous
considerations). For any other decapsulation request for a ciphertext different
from c∗ sent to chip C for pkC = pk∗, it calls the decapsulation oracle; all other
decapsulation requests for other parties can be done locally. Here we use the
fact that no previous session of the chip accidentally receives the same cipher-
text c earlier, such that we can indeed process all possible incoming ciphertexts
accordingly.

Since the adversary cannot corrupt the chip’s long-term KEM key in the
non-forward-secure setting, F = T , the simulation above is sound: We never
have to reveal the decapsulation key of the chip later via a Corrupt request.
We also observe that later corruption of the terminal’s long-term signing key
can be simulated; we only required confidentiality of the key in Game5 up to the
step where the honest terminal signs. In Game6a the reduction may know the
singing key and can reveal it in a subsequent Corrupt call. It follows that

Pr[Game5] ≤ Pr[Game6a]

+S ·
(
2−|k| + Pr

[
ExpdecErr

KEM (n) = 1
])

+ 2U ·AdvIND-CCA
KEM,CKEM

(n),

42



where the factor 2 in term 2U compensates for moving from a random challenge
bit in the IND-CCA game to one with a fixed challenge bit.

Game Game7a. Replace in Game6a the result of applying KDF to k̄ for label ’KEY’
in sessions i and j by an independent and random value of the corresponding
length.

To capture the loss for performing this game hop we give a reduction to
the pseudorandomness of the KDF for the uniform distribution DKDF(1

n) on
{0, 1}|kKDF|. Our reduction BKDF essentially runs A’s attack with help of the or-
acle OKDF (returning true KDF values) and the challenge oracle Ob (returning
actual or random values). The only stipulation is that the two oracles are never
called about the same input (ctxt, ℓ). For the simulation note that we have al-
ready replaced the actual key by a random value k̄ which now acts as the keying
material IKM in the pseudorandomness game. However, this is done consistently
for all chip sessions which receive the same ciphertext c as in the i-th and j-th
session. Necessarily, according to the previous game, this can only happen for
ciphertexts received after the i-th or j-th session.

In the simulation we thus call oracle OKDF for all sessions receiving the same
value c about ctxt ← ’CNF’ ∥ sid resp. ctxt ← ’KEY’ ∥ sid and ℓ = n. For the
i-th and j-th session, however, for prefix ’KEY’ we call oracle Ob instead, for the
value ’KEY’ ∥ ctxt. This is admissible since any session of honest parties uses a
unique value r2 resp. c according to Game1 and Game2, such that the context
information ctxt is two calls to OKDF and Ob are never equal in other sessions
(and in the i-th and j-th session the call for label CNF is different). Our reduction
eventually outputs whatever A outputs.

It is now easy to conclude that

Pr[Game6a] ≤ Pr[Game7a] + 2 ·AdvPRF
KDF,BKDF,DKDF

(n),

for the uniform input distribution DKDF on bit strings of length |kKDF|.
Remarkably, this already concludes the analysis in the non-forward secure

case. We have now replaced kKEY by an independent and random value in the
test session, such that A cannot predict b better than by guessing. This step,
in contrast to the forward-secure case considered next, does not depend on the
security of the confirmation value kCNF. The reason is that the security of the
chip’s long-term KEM key, together with the fact that it cannot be legitimately
corrupted later, already provides the necessary level of (implicit) authentication.

Forward-Secure Case The forward-secure case is slightly more involved but fol-
lows a similar line of reasoning. We branch off from Game5 again. We denote by
the terminal session of interest the session i if this is a terminal session resp. the
session j if this is the partnered terminal session (and if it exists, i.e., if i ̸= j).
Analogously, we let the chip session of interest be the corresponding other session
(if it exists).

A potential attack vector is now that the adversary may impersonate an
honest chip C in a session with the honest terminal T . Then the adversary could
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send its own (unauthenticated) ephemeral public key p̃k
e
in the session with

T , allowing to decapsulate the ephemeral key k̃
e
sent by the terminal. Only

the other key part k, protected by the chip’s long-term key pkC , would not be
immediately available. But in the forward-secure scenario the adversary could
later corrupt the chip’s long-term key, revealing also the part k and thus obtain
both secrets. As we discuss below, however, the protocol prevents such attacks,
since the adversary would have to send the confirmation value kCNF in the session
with the terminal before being able to corrupt the chip’s long-term secret and
getting hold of both keys.

Game Game6b. Change Game5 by declaring the adversary to lose if the terminal
session of interest (for certificate certT ) exists and receives a valid final value
kCNF, and where the intended chip partner certC is still honest at this point, but
there is no partnered chip session of interest. In particular, the latter means that
the test session is the terminal session and we must have i = j.

We argue through a sequence of several sub steps that this cannot happen
too often. The reason is that, for this to happen, the adversary would still need
to learn the key k protected under the chip’s (then) honest long-term key pkC .
Otherwise the steps to combine and derive the keys still make kCNF random. The
first step is thus similar to the IND-CCA case in the non-forward case. Since we
only consider the case that the chip is honest at this point, and only need to
measure if kCNF is valid before corruption takes place, we can in a first step replace
k for any c sent to the intended chip partner by an independent random value
k̄. It follows as in Game6a that this increases the adversary’s success probability
(of generating such a value kCNF) by at most

S ·
(
2−|k| + Pr

[
ExpdecErr

KEM (n) = 1
])

+ 2U ·AdvIND-CCA
KEM,CKEM

(n)

for reduction CKEM.
Next, replace kKDF ← KComb(k̄, ke) in any honest session receiving or sending

the ciphertext c for chip certC by a random and independent value k̄KDF. Note
that this is possible by the (dual) pseudorandomness of KComb. The reduction
CKComb controls all steps of Game6b and uses the real-or-random oracle to simulate
all queries about KComb(k̄, ·) for sessions with the ciphertext c. Since we have
already excluded for the CCA-case the possibility to receive c in some session
before it appears in the i-th or j-th session, this simulation is sound and corre-
sponds to have real values kKDF or random values k̄KDF. Let us stress once more
that we let reduction determine its output depending on the adversary sending
a valid confirmation value kCNF in the terminal session of interest. Altogether, we
lose another term

2 ·AdvdPRF
KComb,CKComb

(n).

The next step is to replace the key kCNF in the i-th session (and thus j-th
session because i = j) by an independent and random value k̄CNF. It follows from
the pseudorandomness of KDF that this is a valid strategy. More formally, we
build a reduction CKDF which calls the real-or-random oracle about ’CNF’∥ sid in
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the i-th session, and the real key derivation oracle for any other honest session
(necessarily with a different session identifier). The reduction checks once more
if the adversary succeeds in sending a valid confirmation value in the terminal
session of interest. This adds another term of

2 ·AdvPRF
KDF,CKDF,DKDF

(n)

for the uniform distribution DKDF on strings equal to the length of derivation
keys.

The final step is now to notice that the adversary needs to predict a random
and unknown value k̄CNF. The reason is that we have already replaced the actual
value kCNF by this random value in the i-th session. Since there is no chip session
of interest, it follows that the adversary, when supposed to send the confirmation
value, has absolutely no information about k̄CNF and can thus only succeed with
probability 2−|kCNF|.

We emphasize that we are still not done yet. The previous game hop only
covers cases where the chip is honest in the moment when it is supposed to send
the confirmation value. But we can conclude that, if the test session is a chip
session, then an honest party picks the ephemeral public key pkeC freshly in that
execution, and since the terminal cannot be corrupt for a successful attack when
sending the signature, it must be the partnered honest terminal session creating
the ciphertext ce. Moreover, by the previous game hop, if the test session is a
terminal session and created the ephemeral ciphertext ce, then there must be a
(unique) matching chip session, where the chip was honest when creating pkeC
in that session. In both cases we thus have an ephemeral public key pkeC and a
ciphertext ce generated honestly by the partnered sessions.

Game Game7b. Replace the key ke in the i-th and j-th session by an independent
random value k̄

e
.

We can now run a reduction to the IND-CPA security of the ephemeral KEMe.
The reduction CKEMe essentially simulates the attack according to Game6b. We
inject a given key pk∗ as the ephemeral public key pkeC of the chip C in the
session of interest. If the terminal is supposed to create a ciphertext ce in its
session of interest then we inject the given ciphertext c∗ as ce. We use the
corresponding given key value k∗, either random or encapsulated in c∗, as a
replacement for ke in both sessions. Note that this reduction and especially the
injection of the given values are possible because, according to the previous game
hop, the ephemeral public key and ciphertext are generated by honest parties.
Any subsequent corruption of the chip’s long-term key can be easily simulated
by the reduction, since the ephemeral secret key to pkeC is not revealed for this.
We derive:

Pr[Game6b] ≤ Pr[Game7b] + 2 ·AdvIND-CPA
KEMe,CKEMe (n).

Game Game8b. In the i-th and j-th session replace the computed value kKDF
immediately by an independent and random value k̄KDF.
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By the previous game hop we now use an independent random value k̄
e
in

the i-th and j-th session. By the (dual) pseudorandomness of KComb, the output
of KComb(k, k̄

e
) is thus indistinguishable from random. We can easily wrap this

into a corresponding reduction C′KComb, and obtain

Pr[Game7b] ≤ Pr[Game8b] + 2 ·AdvdPRF
KComb,C′

KComb
(n).

Game Game9b. In the i-th and j-th session replace kKEY by an independent and
random value k̄KEY of the same length.

This can be done by the pseudorandomness of KDF. Formally, we get a re-
duction C′KDF which simulates all other steps of Game8b locally, but uses the
real-or-random oracle for KDF when computing kKEY in the sessions of interest.
For the confirmation key kCNF it uses the actual KDF oracle in the pseudoran-
domness game. Since the computation of the confirmation key uses a different
label ’CNF’ than for the session key, this is admissible according to the pseudo-
randomness game.

We finally have that the test session (and its partner session) both output
an independent and random session key. It follows that the adversary cannot
predict the secret challenge bit b in the key exchange protocol better than by
guessing.

Conclusion To bound the original success probability Pr[Game0] we can consider
the maximum over the non-forward secure and the forward secure variant:

Pr[Game0] ≤ max {Pr[Game7a],Pr[Game9b]} .

We simply sum the other advantages in both cases to get the claimed bound.
The stated bound in the theorem simplifies the bound further, e.g., by bunching
together adversaries attacking the same primitive and prepending a correspond-
ing factor. ⊓⊔

C.4 Variations and Remarks

We discuss some properties and options of the protocol and its security proof.

Remark 1 (Post-Quantum Security). We stress that our derived adversaries Bcert,
BSig, CKEM, CKEMe , CKComb, CKDF in the reductions of the game hops make straight-
line (black-box) use of adversary A. It follows that they are quantum if A is, but
the reductions work nonetheless. In particular, if we assume that the underlying
primitivies are post-quantum secure, then so is the key exchange protocol.

Remark 2 (Terminal Authentication). In the proof we do not consider the ter-
minal’s first signature σT in the Terminal Authentication. The reason is that for
the secrecy of the derived key only the second signature σc is crucial to prevent
the adversary from sending data in the name of the terminal. Still, terminal
authentication through σT provides an extra layer of entity authentication via
a challenge-response sub protocol, even if Chip Authentication is not executed.
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Remark 3 (Combining signatures). In the round-reduced version we can simplify
the protocol further. Instead of computing two signatures in the same round on
the terminal’s side, σT ← Sig(skT , ’TA’∥ IDC ∥r1) and σc ← Sig(skT , ’CA’∥ sid),
one can compute a single signature σ ← Sig(skT , ’TC’ ∥ IDC ∥ r1 ∥ sid) instead.
The proof remains valid for this case.

Remark 4 (Re-using random challenges). For the combined version, since the
random values r1, r2 are sent within the same message flow now, one can omit
r1 and use a single random value r2 for both signatures. Or, if combining with
the above signature simplification, omit r1 and create the (single) signature over
the data with r2 only.

Remark 5 (Key Confimation). We have used a simplification according to [25]
for the confirmation values. Usually, one uses the derived key kCNF to compute
a message authentication code (on quasi unique parts of the session transcripts,
such as the r2-value). This is possible and the proof would indeed hold if the MAC
is unforgeable. However, as pointed out in [25], one can also use some keying
material (different from the session key) directly to accomplish key confirmation.

Remark 6 (Transcript Hashing). The signature and later the key derivation steps
use the session identifiers sid = (certT , certC , r2, c, [pk

e
C , c

e]). To save on storage,
one can compute a hash value of sid under a collision-resistant hash function.
This will add a term for finding collisions under the hash function to the security
bound in the theorem. If the hash function is an iterated hash function, then
the party only needs to mix in the current data and merely needs to keep the
intermediate hash value. This has been done for example in TLS 1.3 [54] for
transcript hashes.

C.5 Security Proofs for KemPQEAC

We next discuss the security of the protocol version KemPQEAC where the ter-
minal uses a long-term KEM key to decapsulate a key kTA from which it derives
an encryption key kTENC, a confirmation key kTCNF for Terminal Authentication,
and a MAC key kTMAC. The encryption key is used by the chip to encrypt its cer-
tificate information in Chip Authentication, providing privacy. The confirmation
key is used as a replacement for the terminal’s signature in Terminal Authen-
tication, and the MAC key is used as a replacement for the signature in Chip
Authentication.

We note that the proofs for KemPQEAC is very similar to the one for Sig-
PQEAC, noting that the KEM-based transfer of kTCNF implicitly ensures that only
the honest terminal can recover the key and use it in the message authentication
step. We thus only discuss the necessary adaptations. We also note that session
matching holds as before.

Theorem 2 (Key Secrecy of KemPQEAC). Protocol KemPQEAC provides
key secrecy. Specifically, for any adversary A initiating at most S sessions with
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U users there exist adversaries Bcert,DMAC,DKEM, CKEMe ,DKDF, CKComb such that

AdvkeΠ,A,C,T ,F (n)

≤ 3S3 ·
(
2−|r1| + 2−|r2| + 2−|k| + Pr

[
ExpdecErr

KEM (n) = 1
])

+U · Pr
[
Expcert-unf

C,Bcert
(n) = 1

]
+ SU · Pr

[
ExpEUF-CMA

M,DSig
(n) = 1

]
+S2 ·

(
6U ·AdvIND-CCA

KEM,DKEM
(n) + 2 ·AdvIND-CPA

KEMe,CKEMe (n)

+6U ·AdvPRF
KDF,DKDF,DKDF

(n) + 4 ·AdvdPRF
KComb,CKComb

(n) + 2−|kCNF|
)

Here, the sets for forward security are given as F = P = C ∪ T if the ephemeral
KEMe is used, and F = T otherwise. The algorithms Bcert,BSig, CKEM, CKEMe ,
CKComb, CKDF run in approximately equal time as A, and DKDF is the uniform
distribution on bit strings of length equal to |kKDF| = |kTA|.

Proof. The proof follows the one for the signature-based variant SigPQEAC al-
most identically. The only difference lies in Game4 where the proof for SigPQEAC
we relied on the unforgeability of the terminal’s signature scheme. Subsequently,
however, we merely used the fact that this signature could have only come from
the terminal session of interest. We can prove the same property here for the
KEM-based solution, but need several game hops to reach that conclusion. We
start again in the proof for SigPQEAC after Game4, and replace the hop to Game5
by the analogue for MACs:

Game Game4′ . Modify Game3 by letting the adversary lose if an honest chip
(having sent cTA and r1) obtains a valid MAC σc of an honest terminal T for
a message sid which has not been authenticated by the terminal during chip
authentication at this point yet.

The reduction considers several sub steps: First we need to take into account
potential collisions for the r1 value for honest chips. It follows by the birthday
bound that honest chip sessions have colliding values with probability at most
S2 · 2−|r1|. From now on we exclude such cases, meaning that there is at most
one honest chip session which uses the same r1-value as in the forgery.

Next we need to guess the right terminal (with probability 1/U) as well as the
chip session in which this happens for the first time (with probability 1/S). Then
we replace the the key kTA encapsulated by the honest chip in ciphertext cTA by a
random key k̄TA. This is done consistently for any other session of that terminal
receiving cTA (and any other honest chip session creating the same cTA for T ).
It follows by the IND-CCA security of the KEM that this is indistinguishable
for the adversary. The formal reduction DKEM receives (pk∗, c∗, k∗) as input and
injects pk∗ as pkT for the predicted terminal, as well as c∗ as cTA in the chip
session. It uses k∗ as the decapsulated key in all sessions for this terminal in
which it receives cTA (and, analogously in any honest chip session creating cTA
for T ). Note that this is possible since c∗ is given to the reduction in advance.
Any other ciphertext sent to T can be decapsulated via the decryption oracle
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(and honest chips know the encapsulated values anyway). We also remark that
we are only interested in the point of time in which T is still honest, such that
Corrupt queries cannot occur at this point.

Next, replace kTMAC in the predicted chip session and in any terminal session
receiving cTA and r1 by a random value k̄TMAC. This is admissible since kTMAC is
derived by the pseudorandom key derivation function KDF, applied to the now
random key k̄TA. By the consideration above, it also holds that there is at most
one chip session in which r1 is used. The reduction DKDF is straightforward, and
uses the fact that we can compute the other derived keys under k̄TA via the KDF
oracle, either because they use a different r1-value or a different prefix ’TENC’

or ’TCNF’.
Lastly, use the unforgeability of the MAC for the final step. That is, our

reduction DMAC uses an external MAC oracle for computing the MAC σc in chip
authentication for any terminal session receiving cTA and r1. We remark once
more that no other chip (or terminal session) than the predicted chip session
needs to call verification (or MAC) for that key. Hence, if the predicted chip
session receives a valid σc for a previously unauthenticated message ’CA’ ∥ sid,
then the reduction has found a forgery for the MAC scheme.

Altogether it follows:

Pr[Game3] ≤ Pr
[
Game′4

]
+ S2 · 2−r1

+ SU ·
(
Pr

[
ExpEUF-CMA

M,DMAC
(n) = 1

]
+ 2 ·AdvIND-CCA

KEM,DKEM
(n)

+ 2 ·AdvPRF
KDF,DKDF,DTA

(n)
)

for the uniform distribution DTA on {0, 1}|kTA|. The rest of the proof is as in the
one for Theorem 1. Subsuming the terms above under the theorem’s statement
yields the claimed bound. ⊓⊔

Remark 7 (Privacy). Recall that we encrypt the chip’s identity certC in the first
message of Chip Authentication under the key kTENC derived in Terminal Authen-
tication for privacy reasons. In the argument above the security of the encryption
schemes does not enter the security bound, such that it follows immediately that
the proof also holds if encryption is not used. We note that the chip’s identity
also enters the value sid which is used at several places in the protocol, but usu-
ally in MACs or key derivation steps which are often regarded as pseudorandom
function.
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