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Abstract. A witness map deterministically maps a witness w of some NP statement x into compu-
tationally sound proof that x is true, with respect to a public common reference string (CRS). In
other words, it is a deterministic, non-interactive, computationally sound proof system in the CRS
model. A unique witness map (UWM) ensures that for any fixed statement x, the witness map should
output the same unique proof for x, no matter what witness w it is applied to. More generally a com-
pact witness map (CWM) can only output one of at most 2α proofs for any given statement x, where
α is some compactness parameter. Such compact/unique witness maps were proposed recently by
Chakraborty, Prabhakaran and Wichs (PKC ’20) as a tool for building tamper-resilient signatures,
who showed how to construct UWMs from indistinguishability obfuscation (iO). In this work, we
study CWMs and UWMs as primitives of independent interest and present a number of interesting
connections to various notions in cryptography.
• First, we show that UWMs lie somewhere between witness PRFs (Zhandry; TCC ’16) and iO –

they imply the former and are implied by the latter. In particular, we show that a relaxation of
UWMs to the “designated verifier (dv-UWM)” setting is equivalent to witness PRFs. Moreover,
we consider two flavors of such dv-UWMs, which correspond to two flavors of witness PRFs
previously considered in the literature, and show that they are all in fact equivalent to each other
in terms of feasibility.

• Next, we consider CWMs that are extremely compact, with α = O(log κ), where κ is the security
parameter. We show that such CWMs imply pseudo-UWMs where the witness map is allowed to
be pseudo-deterministic – i.e., for every true statement x, there is a unique proof such that, on any
witness w, the witness map outputs this proof with 1− 1/p(λ) probability, for a polynomial p that
we can set arbitrarily large.

• Lastly, we consider CWMs that are mildly compact, with α = p(λ) for some a-priori fixed poly-
nomial p, independent of the length of the statement x or witness w. Such CWMs are implied
by succinct non-interactive arguments (SNARGs). We show that such CWMs imply NIZKs, and
therefore lie somewhere between NIZKs and SNARGs.

1 Introduction

When several mathematicians prove the same theorem, it is unlikely that they would all write
down the exact same proof. Similarly, in the context of NP, a true statement (e.g., that some
graph is 3-colorable) will often have many different proofs/witnesses (e.g., 3-colorings of the
vertices). Can we come up with a proof system for NP languages where the proofs are guaran-
teed to be unique?

This question was studied extensively in complexity theory, where the class of languages
with unique proofs is known as UP [17]. It is believed to be unlikely that NP = UP, mean-
ing that we do not believe that all NP languages have unique proof systems, and there are
several results that separate the two classes relative to oracles [1, 2, 15]. Recently, the work of
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Chakraborty, Prabhakaran and Wichs [4] proposed unique proof systems with computational
soundness (aka arguments). They defined the notion of a unique witness map (UWM) in the com-
mon reference string (CRS) model. This is a deterministic polynomial-time map that takes as
input an NP statement x and some arbitrary witness w for x (and the CRS) and maps them to a
unique proof w∗ for x. Any other witness w′ for x is mapped to the same unique proof w∗. There
is also a polynomial time verifier that checks whether w∗ is a good proof of the statement x.
The computational soundness guarantee ensures that no polynomial time adversary can cause
the verifier to accept a proof of a false statement x, except with negligible probability over the
choice of the CRS. In other words, a UWM is a deterministic non-interactive computationally
sound proof (aka argument) system with unique proofs. More generally, [4] also considered
a relaxation of UWMs to compact witness maps (CWMs) where the number of possible proofs
w∗ that the map can output for any given statement x is bounded by 2α, for some compactness
parameter α. UWMs then naturally correspond to CWMs with α = 0.

It is worth noting that UWMs/CWMs only impose a restriction on the number of proofs
w∗ that the prover outputs, but not on the number of proofs that the verifier accepts for a given
statement x. It may be the case that we have a UWM where the prover outputs a unique proof
w∗ for a given statement x, but there are exponentially many alternate proofs that the verifier
would accept as well. We also note that UWMs are easily seen to be a special case of a witness-
indistinguishable proof system, since all witnesses are mapped to the same unique proof.

The work of [4] showed how to construct UWMs from indistinguishability obfuscation
(iO) and one-way functions, closely following the construction of NIZKs due to [16]. They
also showed that UWMs imply witness encryption. As their main result, they gave an applica-
tion of UWMs to the problem of leakage and tamper-resilient signatures with a deterministic
signer. However, not much else was known about UWMs/CWMs and how they relate to other
notions in cryptography.

1.1 Our Results

In this work, we undertake the thorough study of UWMs/CWMs as primitives of interest
in their own right. We provide a number of novel results to better understand these notions
and discover surprising connections between UWM/CWM and other cryptographic objects of
interest. Interestingly, we show that (quantitative) compression factor affects the (qualitative)
cryptographic power, leading to a hierarchy of “worlds”, depending on whether all of NP has
α-CWM for, say, α = 0, O(1), log n, nc (c < 1), somewhat akin to Impagliazzo’s worlds.

The study of UWMs/CWMs can be seen as part of a broader context of complexity theoretic
study within cryptography, whose aim is to understand connections between primitives and
their relative power. We also view the study of UWMs/CWMs as adding to the understanding
of “functional compression” as a fundamental cryptographic feature. For example, functional
compression plays a central role in obfuscation, where we can define variants (e.g., XiO vs
iO [13]) depending on the level of compression provided. And (perhaps a bit further off), the
complexity of computing Kolmogorov complexity, which is also about functional compression,
is deeply related to the existence of one-way functions [14].

We now discuss each of our results, relating CWMs with various levels of compression to
other cryptographic objects and to each other.

Relating UWMs and witness PRFs. At its most compact end, witness maps take the form of
UWMs. We show several results tightly relating flavors of UWMs and flavors of witness PRFs.

First, we show that UWMs imply witness PRFs [19], which lie somewhere between witness
encryption and iO, but are believed to be strictly stronger than witness encryption. In particu-
lar, they were shown to imply multi-party key exchange without trusted setup, polynomially-
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Fig. 1. A summary of the implications established (under standard cryptographic assumptions). The dotted lines
correspond to trivial implications, and the dashed line are results from [4].

many hardcore bits for any one-way function, and several other applications that are otherwise
only known from iO, but not from witness encryption.

In a witness PRF, just like a standard PRF, there is a secret function key fk that allows the
holder to evaluate the function on any input x. However, there is also a public evaluation key
ek, that allows one to evaluate the function on any input x belonging to some NP language L,
provided the evaluator also has the corresponding witness w. The basic security notion says
that for any x ̸∈ L, the output of the function looks uniform even given the public evaluation
key. A stronger interactive security variant says that the above should hold even if the adver-
sary can query the function on arbitrary other inputs x ̸∈ L. It is trivial to construct witness
encryption from witness PRFs (with basic security), but the other direction is not known.

We show that UWM and one-way functions imply witness PRFs. In fact, we show that wit-
ness PRFs are equivalent to a weaker form of designated-verifier UWMs (dv-UWMs), where
the public CRS is generated together with a secret verification key needed to verify proofs.
In this case we can define two flavors of soundness: A basic soundness guarantee when the
adversarial prover does not get any information about the secret verification key, beyond see-
ing the CRS, and a reusable soundness guarantee for dv-UWMs, where the adversarial prover
can make verification queries to check whether purported proofs for various (true or false)
statements x would be accepted using the verification key. We show that all four notions are
equivalent in terms of feasibility (assuming one-way functions): witness PRFs with interactive
security imply reusable dv-UWMs, which imply basic dv-UWMs, which imply basic witness
PRFs, which then imply interactive witness PRFs. In particular, the last result shows that it is
possible to generically upgrade witness PRFs with basic security to interactive security.

The above results place UWMs on the map somewhere between witness PRFs (which are
equivalent to dv-UWMs) and iO. We also believe that UWMs are likely stronger than wit-
ness PRFs and dv-UWMs, mainly since we do not know of any way to generically go from
the designated verifier setting to public verifiablity. Moreover, we show that UWMs imply
non-interactive zero-knowledge (NIZKs) with a deterministic prover, which are currently only
known from iO, but not from witness PRFs.

Extreme Compactness implies Pseudo-Uniqueness. Next, we consider CWMs with “extreme
compactness” α = O(log κ) for security parameter κ. In other words, while we do not require
the proofs to be unique, we require that the witness map can produce at most 2α = poly(κ)
many possible proofs for each statement x ∈ L. We show that such extreme compactness
is almost as good as uniqueness. In particular, we show that one can generically transform
an extremely compact CWM into a pseudo-unique witness map (pseudo-UWM), where the
pseudo-uniqueness property says the following. For any statement x ∈ L and any two wit-
nesses w1, w2 for x, both witnesses will map to the same “pseudo-unique” proof w∗ with high
1−1/p(κ) probability over the choice of the CRS, where we can choose p(κ) to be an arbitrarily
large polynomial.
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We note that a pseudo-UWM remains a powerful primitive. It can be used instead of UWM
in applications where the “error” (i.e., non-uniqueness) can be “corrected.” In particular, it
implies witness encryption. Indeed, in the construction of witness encryption using a UWM
(from [4], or alternately, from a WPRF which is in turn constructed from a UWM as shown
here), if we simply replace the UWM with a pseudo-UWM, it results in a small decryption er-
ror probability. This error probability can be made exponentially low by repeating the encryp-
tion process multiple times using independent keys and randomnes, and during decryption,
outputting the majority.

To show that extremely compact WMs imply pseudo-UWM, we solve an abstract problem
of potentially independent interest that we refer to as pseudo-deterministic sampling. Consider a
sampler that has oracle access to some arbitrary distribution D whose support has polynomial
size. The sampler can call the oracle polynomially many times and each call outputs a fresh
random sample x ← D. At the end, the sampler has to output some value x∗ in the support
of the distribution D. Moreover, we want the sample x∗ to be unique; if we run the sampler
twice, with the oracle producing random/independent samples from D in each run, the sam-
pler should output the same value x∗ in both executions with high 1 − 1/p(κ) probability.
This guarantee is similar to pseudo-deterministic algorithms [7, 9], which are randomized al-
gorithms that nevertheless output a unique value independent of their randomness with high
probability. We show how to solve the pseudo-deterministic sampling problem in the CRS
model. The sample x∗ that the sampler outputs may depend on the CRS but, with high prob-
ability, should be the same for every execution of the sampler with the given CRS, no matter
what samples it receives from its oracle.

Mild Compactness implies NIZKs. We then turn our attention to CWMs with “mild compact-
ness” where α = p(κ) for some fixed polynomial p, independent of the statement size |x| or the
witness size |w|. Such CWMs are implied by succinct non-interactive arguments (SNARGs) for
NP, which are computationally sound proofs where the proof size is bounded by some fixed
polynomial p(κ), and independent of |x| or |w|. The mild compactness of CWMs can be seen as
a relaxation of the succinctness requirement for SNARGs, where the latter requires the proof
to have small size p(κ), while the former only requires the number of possible proofs that the
prover outputs to be bounded by 2p(κ) but allows the size of the proofs to be arbitrarily large.
Although mildly compact CWMs are weaker than SNARGs, we show that they nevertheless
imply non-interactive zero knowledge (NIZK) proofs. We generalize the recent work of [12],
who showed how to construct NIZKs from SNARGs, by showing that the same result holds if
we replace SNARGs by mildly compact CWMs. The above shows that mildly compact CWMs
lie somewhere between NIZKs and SNARGs.

UWMs with Statistical Soundness and UP. Lastly, we ask whether we can get UWMs with
statistical/perfect soundness. This appears highly unlikely since it would imply a construc-
tion of witness PRFs (and hence witness encryption) from one-way functions. But can we rule
out this possibility under some well-studied complexity assumption? Interestingly, we do not
know the answer to this question. Intuitively, we’d like to say that perfectly sound UWMs for
NP would imply NP = UP, where UP is the class of languages where every statement x has a
unique witness w∗. However, a perfectly sound UWM only guarantees that the prover outputs
a unique proof and that the verifier never accepts a proof for a false statement, but it may still
be possible for the verifier to accept many possible proofs besides the one that the prover out-
puts. We define the stronger notion of verifier-unique witness maps (VUWM) where we also
guarantee that the verifier only accepts a unique proof w∗ for each x, and show that perfectly
sound VUWMs for NP imply NP = UP.
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1.2 Technical overview

1.2.1 dv-UWM is equivalent to witness PRFs. To show the equivalence between dv-UWM
and witness PRF wPRF, we first show that wPRF implies dv-UWM.

Witness PRF implies dv-UWM: This direction is rather straightforward and follows from the
definition of wPRF. In particular, the dv-UWM proof w∗ is computed by running the public
evaluation algorithm using the evaluation key ek. The verification algorithm of dv-UWM is
obtained by running the secret evaluation algorithm of wPRF using the secret function key fk
and checking if the proof w∗ is equal to the output of this algorithm. The correctness of the
construction follows from the fact that the values computed in both the modes of wPRF are
equal. Uniqueness is guaranteed since the private evaluation algorithm does not depend on
the witness w and deterministically maps x to a unique output value. Finally, the soundness of
dv-UWM follows from the interactive security of wPRF.

dv-UWM implies witness PRF: We show this result in two steps – (i) First, we show that a
construction of non-interactive witness PRF for NP from any non-reusably sound dv-UWM
for NP, (ii) next, we show a generic transformation from any non-interactive witness PRF for
NP to an interactive witness PRF for NP additionally using one way function.

Non-reusably sound UWM implies non-interactive witness PRF: To construct a non-interactive
wPRF from a (non-reusable) dv-UWM, the key generation algorithm wPRF.Gen of wPRF sam-
ples a random seed z for a (length-doubling) pseudorandom generator G and sets y = G(z).
It then runs the setup algorithm of DV-UWM, i.e., dv.setup to obtain ((K,VK)). It then sets the
evaluation key as ek = (K,VK, y) and the function key as fk = z. To compute the function
F(fk, ·) on input x ∈ L, the evaluator uses DV-UWM to get a representative witness w∗ for the
statement x̂ stating that “either x is true or y is pseudorandom”, using z as the witness. It then
outputs a hardcore bit (e.g., the Goldreich-Levin (GL) hardcore bit) of w∗ as the pseudoran-
dom bit b. In the public evaluation mode, on input (x,w) the algorithm wPRF.Eval uses the
UWM to map the witness w for x into the unique witness w∗ for the statement x̂. It can then
compute the pseudorandom bit b using the GL predicate. Intuitively, if an adversary can break
wPRF security, then it can distinguish the bit 0 and 1 with non-negligible probability even if
x is a false statement. This means that, using GL decoding, it can compute the correct value
w∗ given y with non-negligible probability. Furthermore this value w∗ is a valid representative
witness for the statement x̂. Since the adversary cannot break the PRG, it must also compute a
valid representative witness for x̂ if we switch y to false. But this contradicts the soundness of
dv-UWM.

Generic transformation from non-interactive to interactive witness PRF: To construct interactive wit-
ness PRF from non-interactive witness PRF (nI-wPRF) we need to carefully define the relation
for the underlying nI-wPRF. In particular, the key generation algorithm of the interactive wit-
ness PRF wPRF runs the key generation algorithm of the non-interactive witness PRF nI-wPRF
to obtain (êk, f̂k). It then uses a statistically binding commitment scheme to commit to a mes-
sage 0 (using randomness r) such that 0 is not a valid statement of the underlying NP relation
R for wPRF to obtain commitment c. In other words, 0 /∈ X , where X is the statement space
of R. It then sets the evaluation key as ek = (êk, c) and the function key as fk = (f̂k, r). To
compute the function F(fk, ·) on input x ∈ L, the evaluator uses nI-wPRF to get a value y for
the statement x̂ stating that “either x is true or c is a commitment to some message x′ such that
x ̸= x′”. In the public evaluation mode, on input (x,w) the algorithm wPRF.Eval uses the pub-
lic evaluation key of the underlying nI-wPRF to map the witness w for x into the value y for the
statement x̂. In the proof, when the adversary commits to a challenge x∗ /∈ L, we switch from
a commitment to 0 to a commitment c∗ to x∗. Hence, we have that the statement x̂ = (x∗, c∗)
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is now false. The hiding property of the commitment allows us to make such a switch. On the
other hand, for all other statement xi ̸= x∗, the statement (xi, c∗) is still true, and hence we can
simulate the queries of the wPRF adversary using the function nI-wPRF.F(f̂k, ·).

1.2.2 Extremely Compact WM implies Pseudo-Unique WM. As mentioned above, to con-
struct a Pseudo-UWM from an extremely compact WM, we solve the abstract problem of
pseudo-deterministic sampling from a distribution with polynomial-sized support. We briefly
sketch our solution to the pseudo-deterministic sampling problem.

Solving Pseudo-Deterministic Sampling. As a first attempt, consider obtaining N samples
from the distribution for a value N that is much larger than the size of the distribution’s sup-
port, and then taking the lexicographically smallest one. This would indeed work if we could
ensure that every element in the support gets sampled at least once. Unfortunately, this does
not hold true for arbitrary distributions. For instance, if the lexicographically smallest element
in the support has a probability 1/N , then there is a constant probability for it to get sampled
as well as to not get sampled. As a second attempt, one may consider using a hash function
to define the lexicographic ordering to prevent the distribution from adversarially assigning
such a probability to the smallest element; however, this does not help either, if a large frac-
tion of the elements in the support have probability 1/N . One may note that the difficulty here
arises from (moderately) low probability elements; so to avoid such elements, we could try to
pick a high probability element, which is guaranteed to occur many times in the sample. How-
ever neither picking the most frequent element (e.g., when there are multiple elements which
have the maximum probability), nor picking the lexicographically smallest one from among
a selected subset of frequent elements (e.g., when there are elements with probabilities that
place them near the threshold used for selection) is sufficient to guarantee uniqueness. Our
final solution combines ideas from all of these approaches: it obtains N samples and would
choose one with the smallest hash value, but the hash is computed on the element concatenated
with a counter. That is, if an element x occurs k times in the sample, then the hashes of all of
x∥1, x∥2, . . . , x∥k are considered. This has the effect of picking an element from among the
more frequent elements, but without creating a threshold for being considered frequent. Us-
ing elementary concentration bounds we show that the probability of two executions of this
process yielding different outcomes (when using a N -wise independent hash function) goes
down polynomially with 1/N .

Pseudo-UWM from Pseudo-Deterministic Sampling. To reduce pseudo-UWM to pseudo-
deterministic sampling, first we need to create a distribution over proofs that remains (essen-
tially) the same for all witnesses. We achieve this using a Non-Interactive Witness Indistin-
guishable proof system (NIWI). Then we map this NIWI proof using the extremely compact
WM (for the relation corresponding to NIWI verification) into a polynomial-sized support. The
soundness of this proof depends on the fact that for any false statement, there should not exist
a NIWI proof that gets accepted; this is guaranteed by using a statistically sound NIWI. At this
point, we have a proof system that is sound, compact, and witness-indistinguishable. Now,
pseudo-deterministic sampling from this distribution would result in a pseudo-UWM.

1.2.3 Mildly CWM implies NIZK. We show that CWM with compactness level α = poly(κ)
for some fixed polynomial poly(·), independent of the statement size |x| or the witness size |w|
implies the existence of NIZK argument system. Our construction generalizes the recent work
of [12] who constructed NIZKs from SNARG by replacing SNARG with CWM with the above
compactness level. [12] shows how to compile any NIZK in the hidden-bits model (HBM) to
NIZK in the CRS model using a primitive called hidden-bits generator with subset-dependent proofs
(SDP-HBG). Then they they show how to construct such a SDP-HBG from any SNARG and
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bounded-leakage weak PRF (BLR-wPRF)4. Below we sketch the main idea of the construction
and the proof of [12]. We then show how to modify their construction and proof technique
when using CWM instead of SNARG. A SDP-HBG consists of the following algorithms:

• HBGsdp.Setup(1κ, 1n) generates a CRS crs where n denotes the length of hidden-bits to be
generated.
• HBGsdp.GenBits(crs) generates “hidden-bits” r ∈ {0, 1}n and a state st.
• HBGsdp.Prove(st, I) generates a proof π that certifies the sub-string rI .
• HBGsdp.Verify(crs, I, rI , π) verifies the proof π to ensure that the substring of r on the posi-

tions corresponding to subset I is indeed rI .

The SDP-HBG is required to satisfy the following properties – (i) Somewhat Computational
Binding, which requires that exists a “sparse” subset Vcrs ∈ {0, 1}n of size much smaller than
2n such that no PPT malicious prover can generate a proof for bits that are not consistent with
any element of Vcrs, (ii) Hiding, which requires that for any subset I ⊆ [n], no PPT adversary
given can distinguish rĪ from a uniformly random string r′

Ī
, where rĪ denotes the substring

of r on the positions corresponding to Ī = [n] \ I . To construct SDP-HBG, the setup algorithm
HBGsdp.Setup(1κ, 1n) samples x⃗ = (x1, · · · , xn) ∈ {0, 1}m×n and sets crs = x⃗. The algorithm
HBGsdp.GenBits(crs) derives the hidden bits r⃗ = (r1, · · · , rn) ∈ {0, 1}n as ri = FK(xi), where
FK : {0, 1}m → {0, 1} is a λ-BLR-wPRF and K ∈ {0, 1}k for some polynomial k = k(κ, λ),
where κ is the security parameter. The algorithm HBGsdp.Prove(st, I) then uses the SNARG to
generate a proof π for the statement that the values ri for all i ∈ [I] are correctly computed,
using K as the witness. The verification then consists of verifying the SNARG proof.

The somewhat computational binding property of SDP-HBG easily follows from the sound-
ness of SNARG as long as k ≪ n (where k is the size of the PRF key K and n is the length of
the hidden bit string). The hiding property is easy to reduce to security of the underlying BLR-
wPRF as long as |π| ≤ λ. In particular, the proof π corresponds to the subset I which does not
depend on xĪ (the bits of x in the positions [n]\ I), and thus we can think of xĪ as the challenge
inputs and π as the leakage.
Using CWM instead of SNARG. Our construction follows the same blueprint from [12], except
that we use a α-CWM for α = poly(κ) instead of a SNARG to generate the proof π and use
a entropic leakage-resilient weak PRF5 to generate the hidden bits r ∈ {0, 1}n, instead of a
bounded leakage-resilient weak PRF. This is because, unlike SNARG the size of our CWM
proofs π are not guaranteed to be succinct. However, we have the guarantee that the proof π
is α-compact, for some α = poly(κ), where poly(κ) is independent of n. This means the size of
the CWM image is at most 2α. Hence, as long as the underlying wPRF is resilient to λ-entropic
leakage, where α ≤ λ, we can rely on the (entropic) leakage-resilience of ELR-wPRF to argue
hiding of the SDP-HBG. We can then set the parameters appropriately to satisfy these two
inequalities.

1.2.4 UWM implies Deterministic-prover NIZK. We show that UWM implies deterministic
prover NIZK arguments systems (DP-NIZK), where the prover and verifier are deterministic. In
fact, we can achieve perfect zero-knowledge property. The main idea of our construction is sim-
ilar to the construction of non-interactive witness PRF from dv-UWM. In particular, the setup

4 Informally, a λ-BLR-wPRF FK(·) guarantees pseudorandomness of the output of the PRF when evaluated on
uniformly random inputs, even when the adversary can leak up to λ bits on K. [11] showed how to construct
such BLR-wPRF from any OWF.

5 Informally, a λ-entropic leakage-resilient PRF FK(·) guarantees pseudorandomness of the output of the PRF
when evaluated on uniformly random inputs, even when the adversary can get λ-entropic leakage on K.
Roughly this means that the PRF key K still has k − λ bits of average min-entropy, even conditioned on the
leakage from K. [11] showed how to construct such entropic LR-wPRF from any OWF.
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algorithm of DP-NIZK chooses a pseudorandom string y = G(z), where G is a length-doubling
PRG. The CRS crs of DP-NIZK consists of the CRS K of UWM and the value y. The prover of
DP-NIZK on input some (x,w) in the relation runs the UWM prover to get a representative
witness w∗ for the statement x̂ stating that “either x is true or y is pseudorandom”, using w as
the witness. Note that the prover is deterministic. The verification of DP-NIZK simply uses the
UWM verifier. To prove the soundness of this construction, we sample y uniformly at random
and hence with very high probability there does not exist any valid preimage of y with respect
to G. Hence, if x /∈ L, the statement x̂ = (x, y) is also not in the (augmented) language with
overwhelming probability. The soundness of the construction now follows from the soundness
of UWM. To prove zero-knowledge property, the simulator uses the trapdoor z as the witness
to simulate proofs of statements xi ∈ L queried by the adversary (note that z is a valid witness
for the statements (xi, y)). The uniqueness property of UWM guarantees that proofs computed
by either of the witnesses result in the same proof. Hence, the zero-knowledge property fol-
lows. Finally, note that, we can achieve the stronger notion of perfect ZK since the CRS in both
the real world and the simulation are identically distributed (both are computed by sampling
the CRS K of UWM and the string y pseudorandomly).

1.2.5 Perfectly Sound Verifier UWM implies NP = UP. Recall that a verifier UWM (VUWM)
is similar to an UWM with the additional guarantee that the verifier also accepts a unique
proof for each statement x. The complexity class UP consists of problems that are accepted by
an unambiguous Turing machine with at most one accepting path for each input. It is easy to
see that the verifier of a perfectly sound VUWM acts as a UP relation. Also, since we require
the VUWM to be perfectly sound it does not require as setup. Hence, it shows that NP ⊆ UP.
The other direction is trivial and hence this shows that NP = UP.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] = {1, 2, · · · , n}. If x is a string, we denote |x| as the length of x. For
a distribution or random variable X , we denote x ← X the action of sampling an element x
according to X . When A is an algorithm, we write y ← A(x) to denote a run of A on input
x and output y; if A is randomized, then y is a random variable and A(x; r) denotes a run
of A on input x and randomness r. An algorithm A is probabilistic polynomial-time (PPT) if
A is randomized and for any input x, r ∈ {0, 1}∗; the computation of A(x; r) terminates in
at most poly(|x|) steps. For a set S, we let US denote the uniform distribution over S. For an
integer α ∈ N, let Uα denote the uniform distribution over {0, 1}α, the bit strings of length α.
Throughout this paper, we denote the security parameter by κ.

2.2 Basic Tools in Information Theory

Here we collect some basic definitions and results related to probability and information theory
used in the formal proofs of some of our theorems.

Definition 1. (Min-Entropy). The min-entropy of a random variable X , denoted as H∞(X) is defined

as H∞(X)
def
= − log(maxx Pr[X = x]). This is a standard notion of entropy used in cryptography, since

it measures the worst-case predictability of X .

A distribution supported on {0, 1}n with min-entropy k is said to be an (n, k)-source.
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Definition 2. (Average Conditional Min-Entropy) [6]. The average-conditional min-entropy of a
random variable X conditioned on a (possibly) correlated variable Z, denoted as H̃∞(X|Z) is defined as

H̃∞(X|Z) = − log
(
Ez←Z [max

x
Pr[X = x|Z = z]

)
= − log

(
Ez←Z [2H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a correlated
variable Z.

We will make use of the following properties of average min-entropy.

Lemma 1. Let A,B,C be random variables. Then for any δ > 0, the conditional entropy H∞(A|B =

b) is at least H̃∞(A|B)− log(1δ ) with probability at least 1− δ over the choice of b.

Lemma 2. [6] For any random variable X, Y and Z, if Y takes on values in {0, 1}ℓ, then

H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− ℓ and H̃∞(X|Y ) ≥ H̃∞(X)− ℓ.

We shall use the following form of the Chernoff-Hoeffding inequality.

Lemma 3. Let SN be the sum of N independent samples of a Bernoulli random variable, which is 1

with probability p and 0 otherwise. Then Pr[|SN −Np| > t] < e−t
2/N . In particular, Pr[|SN −Np| >

N2/3] < e−N
1/3 .

k-wise Independent Hash Functions Let H = {h1, · · ·ht} be a family of hash functions such
that hi : D → R where D is the domain and R is the range. For any distinct x1, · · ·xk ∈ D and
any y1, · · · yk ∈ Rwe have the following guarantee:

Pr[h(x1) = y1, · · ·h(xk) = yk : h
$←− H] ≤ 1

|R|k

2.3 Cryptographic Primitives

Next we summarize some of the cryptographic primitives from literature that we rely on.

2.3.1 Witness PRFs A witness PRF [19] consists of triple of algorithms wPRF = (wPRF.Gen,F,
wPRF.Eval) as follows:

1. wPRF.Gen(κ,R) : This is a randomized algorithm that takes as input the security parameter
1κ and the description of a circuit R : X ×W → {0, 1} and outputs a function secret key fk
along with a public evaluation key ek.

2. F(fk, x) : The private evaluation algorithm F is a deterministic algorithm that takes as input
the function secret key fk and an input x ∈ X and produces some output y ∈ Y for some set
Y .

3. wPRF.Eval(ek, x, w) : The public evaluation algorithm wPRF.Eval is also a deterministic al-
gorithm that takes as input the public evaluation key ek, an input x ∈ X and a witness
w ∈ W to produce an output y ∈ Y or ⊥.

* Correctness. The correctness of wPRF requires that for all x ∈ X and w ∈ W , the following
holds:

wPRF.Eval(ek, x, w) =

{
F(fk, x) if R(x,w) = 1

⊥ if R(x,w) = 0

* Security. We recall the adaptive instance interactive security notion for witness PRFs from [19].
Consider the following experiment ExpRA(κ, b) between an adversary A and a challenger C,
parameterized by a relation R : X ×W → {0, 1}, a bit b and security parameter κ.
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• The challenger C runs (fk, ek)← wPRF.Gen(κ,R), and gives ek to A.
• A can adaptively make queries on instances xi ∈ X and receives the values F(fk, xi) from C.
• At any point in the game, A can make a challenge query x∗ ∈ X . The challenger computes

y0 ← F(fk, x∗) and y1
$←− Y . It then returns yb to A.

• A can make additional queries to F and finally A outputs a bit b′. The challenger C checks
that x∗ /∈ {xi} and that x∗ /∈ LR

6. If either check fails, C outputs a random bit. Otherwise, it
outputs b′.

Let Wb be the event that the challenger in experiment ExpRA(κ, b) outputs 1. Define the advan-
tage of A as wPRF.AdvRA(κ) = |Pr[W0]− Pr[W1]|.

Definition 3 (Adaptive instance Interactive security). wPRF = (wPRF.Gen,F,wPRF.Eval) is
adaptive instance interactively secure for a NP relation R if for all PPT adversaries A, the advantage
wPRF.AdvRA of A is negligible in the security parameter κ.

One can also define non-interactive security for witness PRFs, where the adversary A in the
above experiment is not allowed to make any F queries.

Definition 4 (Adaptive instance Non-Interactive security). wPRF = (wPRF.Gen,F,wPRF.Eval)
is adaptive instance non-interactively secure for a NP relation R if for all PPT adversaries A, the ad-
vantage wPRF.AdvRA ofA is negligible in the security parameter κ, and additionally the adversaryA is
not allowed to make any F queries in the above experiment.

Finally, one can also define a weaker notion of security, called the static instance interac-
tive (non-interactive) security, where the adversary needs to commit to the challenge x∗ before
seeing ek or before making any queries to the oracle F. We note that one can convert any static-
instance interactive (resp. non-interactive) witness PRF to an adaptive instance one by relying
on complexity leveraging when appropriate.

2.3.2 Generalized Goldreich-Levin Theorem. For our construction of witness PRF from wit-
ness maps we will need to use a generalized version of the Goldreich-Levin (GL) theorem [8],
as stated below.
Lemma 4 (Generalized Goldreich-Levin Theorem). There exists a PPT inverter A′ and a non-
zero polynomial q(·) such that, for any PPT algorithm A and any (α, β) ∈ {0, 1}k × {0, 1}ℓ such that

p(α) := Pr[A(α, r) = ⟨β, r⟩ : r $←− {0, 1}ℓ] (where ⟨·, ·⟩ denotes the inner product over the binary
field), then Pr[A′A(α,·)(1ℓ, α) = β] ≥ q(p

(
α)− 1

2

)
.

2.3.3 Leakage-resilient weak PRF. A standard weak PRF (wPRF) requires that given arbi-
trarily many uniformly random inputs x1, · · · , xq, the outputs of the wPRF y1, · · · , yq look
pseudorandom. A leakage-resilient wPRF (LR-wPRF) requires wPRF security to hold even if
the attacker can leak some information about the secret key. In particular, we will consider
the entropy-bounded leakage model [3, 5]. Following [5], we first recall the notion of λ-leaky
functions.

Definition 5 (λ-leaky function). A probabilistic function h : {0, 1}∗ → {0, 1}∗ is λ-leaky if, for all
n ∈ N we have H̃∞(Un|h(Un)) ≥ n− λ, where Un is the uniform distribution over {0, 1}n.

As shown in [5], if a function is λ-leaky (decreases the entropy of the uniform distribution
by at most λ bits), then it decreases the entropy of every distribution by at most λ bits. More-
over, the definition composes nicely and an adversary that adaptively chooses several λi-leaky
functions, only learns

∑
i λi bits of information.

6 Note that, the language LR := {x | ∃w, (x,w) ∈ R}
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Informally, we say a functionFK($) is a λ(κ)-leakage-resilient weak PRF in the entropy-bounded
leakage model, if the weak PRF security guarantee is maintained, even if the adversary can
learn the output of a λ-leaky function on the key K.

Definition 6 (Leakage-Resilient weak PRF (LR-wPRF)). Let X , Y , K be some efficient ensembles
and let F = {FK : X → Y}K∈K be some efficient function family. We say that F is a λ(κ)-leakage-
resilient weak PRF in the entropy-bounded leakage model if, for all PPT attackers A the advantage of A
is negligible in the following game:

• Initialization: The challenger chooses a random key K ← K and the game proceeds as follow.
• Learning Phase. The attacker AOλ

K(·),FK($) gets access to the leakage oracle OλK(·)7 and also the
wPRF oracle FK($) which does not take any input and, on each invocation, choose a freshly random
X ← X and outputs (X,FK(X)).
• Challenge Phase. The challenger chooses a random bit b ∈ {0, 1} and a random input X∗ ← X . If
b = 0, it sets Y ∗ := FK(X∗) and if b = 1 it chooses Y ∗ ← Y . The challenger gives (X∗, Y ∗) to A
who then outputs a bit b′.

We define the advantage of the attacker A as AdvA(κ) = |Pr[b′ = b]− 1
2 |.

We note that, the above definition of LR-wPRF security also implies a multi-challenge variant
where, during the challenge phase, the attacker is given many tuples (X∗1 , Y

∗
1 ), · · · , (X∗q , Y ∗q )

which are either all pseudorandom or all are truly random, depending on the bit b. Thus fol-
lows by a simple hybrid argument.

Theorem 1 ( [11]). If there exists a OWF, then there exists a λ-entropic LR-wPRF with key length
λ · poly(κ), input length λ · poly(κ), and output length 1.

2.3.4 Statistically sound Non-Interactive Witness Indistinguishable Proof Systems A (statistically-
sound) non-interactive witness-indistinguishable proof system (SNIWI) for a NP language LR
associated with relation R consists of three (probabilistic) polynomial-time algorithm (CRSgen,
Prove,Verify). The Common Reference String (CRS) generation algorithm CRSgen takes as in-
put the security parameter κ, and outputs CRS crs. The prover algorithm Prove takes as input
crs, and a pair (x,w) ∈ R, and outputs a proof π. The verifier algorithm Verify takes as input
crs, a statement x and a purported proof π, and outputs a decision bit b ∈ {0, 1}, indicating
whether the proof π with respect to statement x is accepted or not (with 0 indicating reject, else
accept). A SNIWI argument system must satisfy the following properties:

1. Perfect Completeness: We say that (CRSgen,Prove,Verify) satisfies perfect completeness if
for all adversaries Awe have:

Pr
[
crs← CRSgen(κ); (x,w)← A(crs);π ← Prove(crs, x, w) :

Verify(crs, x, π) = 1 if (x,w) ∈ R
]
= 1

7 The adversary can query this oracle with functions hi which are λi-leaky provided it learns at most
∑

i λi = λ
bits of information about K.
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2. Statistical Soundness: We say that (CRSgen,Prove,Verify) satisfies statistical soundness if
for all (unbounded) provers Prove∗ we have:

Pr
[
crs← CRSgen(κ); (x, π)← Prove∗(crs) : Verify(crs, x, π) = 0 if x /∈ LR

]
> 1− negl(κ)

for some negligible function negl(κ).
3. Witness-Indistinguishability: We say (CRSgen,Prove,Verify) is witness-indistinguishable,

if there is a PPT simulator S , such that for all (non-uniform) PPT adversaries Awe have:

(a) Pr
[
crs← CRSgen(κ) : A(crs) = 1

]
≈c Pr

[
crsf ← S(κ) : A(crs) = 1

]
,

(b) Pr
[
crsf ← S(κ); (x,w,w′)← A(crsf );π ← Prove(crsf , x, w) : A(π) = 1

]
≈c Pr

[
crsf ← S(κ); (x,w,w′)← A(crsf );π ← Prove(crsf , x, w

′) : A(π) = 1
]

where we require (x,w), (x,w′) ∈ LR.

We note that the construction of Groth, Ostrovsky and Sahai [10] already implies the construc-
tion of SNIWI argument system for NP.

3 Different notions of Witness Maps and their definitions.

In this section, we present the definition of compact witness map from [4]. We then present
different variations of their definition, namely designated-verifier witness maps and verifier-
compact witness maps, which we introduce in this work. We start by recalling the definition
of compact witness map (CWM) from [4].

3.1 Compact Witness Maps.

We say that R ⊆ {0, 1}∗ × {0, 1}∗ is said to be an NP relation if membership in it can be
computed in time polynomial in the length of the first input. Given an NP relation R, we define
the NP language LR := {x | ∃w, (x,w) ∈ R}. When referring to (x,w) ∈ R, where R is a given
NP relation, x is called the statement and w the witness. It will be convenient for us to consider
NP relations parametrized with their input length: Below we let Rℓ := R ∩ {0, 1}ℓ × {0, 1}∗.

Definition 7 (Compact Witness Map (CWM)). For α ≥ 0, an α-CWM for an NP relation R is a
triple CWM = (setup,map, check) where setup is a PPT algorithm and the other two are deterministic
polynomial time algorithms such that:

• setup(κ, ℓ) outputs a string K of length polynomial in the security parameter κ and ℓ, where ℓ = ℓ(κ)
is an upper bound on the length of the statements supported by CWM.
• Completeness: For any polynomial ℓ, ∀(x,w) ∈ Rℓ(κ), ∀K← setup(κ, ℓ(κ)),

check(K, x,map(K, x, w)) = 1.

• Compactness: For any polynomial ℓ, ∀K← setup(κ, ℓ(κ)), ∀x ∈ {0, 1}ℓ(κ),

|{map(K, x, w) | (x,w) ∈ Rℓ(κ)}| ≤ 2α.

• Soundness: For any polynomial ℓ and any PPT adversary A, AdvCWM
A (κ) defined below is negligible:

Pr
K←setup(κ,ℓ(κ))
(x∗,w∗)←A(K)

[check(K, x∗, w∗) = 1, x∗ ̸∈ LR ].
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A 0-CWM is also called a Unique Witness Map (UWM).

The above definition has perfect security in the sense that the completeness and compact-
ness conditions hold for every possible K that CWM.setup can output with positive probability. A
statistical version, where this needs to hold with all but negligible probability over the choice
of K will suffice for all our applications. But for simplicity, we shall use the perfect version
above.

3.2 Designated-Verifier Witness Maps.

In this section, we define (reusable/non-reusable) designated-verifier compact witness maps
(dv-CWM).

Definition 8 (Reusable/Non-Reusable dv-CWM). For α ≥ 0, a reusable (resp. non-reusable)
α-dv-CWM for an NP relation R is a triple DV-CWM = (setup,map, check) where setup is a PPT
algorithm that on input the security parameter κ and the statement length ℓ, outputs a pair of strings
(K,VK), and the other two are deterministic polynomial time algorithms that satisfy the completeness,
compactness and reusable soundness (resp. non-reusable soundness) conditions below.

• Completeness: For any polynomial ℓ, ∀(x,w) ∈ Rℓ(κ), ∀(K,VK)← setup(κ, ℓ(κ)),

check(VK, x,map(K, x, w)) = 1.

• Compactness: For any polynomial ℓ, ∀(K,VK)← setup(κ, ℓ(κ)), ∀x ∈ {0, 1}ℓ(κ),

|{map(K, x, w) | (x,w) ∈ Rℓ(κ)}| ≤ 2α.

• Reusable/Non-Reusable Soundness: Reusable soundness requires that the advantage AdvDV-CWM
A (κ)

defined below is negligible for every polynomial ℓ and every PPT adversary A with oracle access to
check(VK, ·, ·).

AdvDV-CWM
A (κ) = Pr

(K,VK)←setup(κ,ℓ(κ))

(x∗,w∗)←Acheck(VK,·,·)(K)

[check(VK, x∗, w∗) = 1 ∧ x∗ ̸∈ LR ].

Non-reusable soundness requires that AdvDV-CWM
A (κ) is negligible for every polynomial ℓ and every

PPT adversary A which does not access its oracle.

A 0-dv-CWM is also called a Designated-verifier UWM (dv-UWM).
Similar to CWM, one can also define a weaker notion of selective reusable (resp. non-reusable)

soundness, in which the adversary is required to generate x∗ first (given κ, ℓ) before it gets K
and access to the verification oracle check(VK, ·, ·).

3.3 Verifier-Compact Witness Maps.

Definition 9 (Verifier-Compact Witness Maps (VCWM)). For α ≥ 0, an α-VCWM (setup,map, check)
for an NP relation R is a CWM for R satisfying the following additional condition:

• Verifier-Compactness: For any polynomial ℓ, ∀K← setup(κ, ℓ(κ)), ∀x ∈ {0, 1}ℓ(κ),∣∣{w∗ | check(K, x, w∗) = 1
}∣∣ ≤ 2α.

A 0-VCWM is also called a verifier-unique witness map (VUWM).
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Selective Soundness. The soundness condition for CWM and its variants (dv-CWM and
VCWM) can be relaxed to obtain a selectively sound variant of the corresponding primitive.
In the soundness conditions above, we considered an adversary A which outputs a statement
x∗ and a purported proof w∗ at the end of the experiment. For selective soundness, we require
A to output x∗ at the beginning (given only κ, ℓ), before setup is executed. This level of sound-
ness suffices for some applications (e.g., construction of a witness encryption scheme from a
UWM), as shown in [4]. It also provides an intermediate target for constructions, as one can
convert a selectively sound CWM to a standard CWM by relying on complexity leveraging.

4 Equivalence of Witness PRFs and dv-UWM

In this section, we explore the relationship between witness PRF (wPRF) and unique witness
maps. In particular, we show that witness PRF and designated-verifier UWM (dv-UWM) are
equivalent for NP. For these implications, we consider the static security variant of witness
PRF and selective soundness of dv-UWM. Our implications can be adapted to the adaptive
security variants of both these notions via complexity leveraging.

4.1 Witness PRF imply dv-UWM
In this section, we present the construction of our (selective reusable sound) dv-UWM for any
NP relation R. The main building block of our construction is a (static-instance secure) witness
PRF for R.
Construction. Let wPRF = (wPRF.Gen,F,wPRF.Eval) be a static-instance interactively secure wit-
ness PRF for any NP relation R parametrized by statements of length at most ℓ(κ), where κ is
the security parameter and ℓ is an arbitrary (but fixed) polynomial in the security parameter.
We construct a (selective) reusable dv-UWM DV-UWM = (dv.setup, dv.map, dv.check) for R as
follows:

• dv.setup(κ, ℓ) : Run (fk, ek)← wPRF.Gen(κ,R). Set K = ek and VK = fk.
• dv.map(K, x, w) : Parse K as ek. Run y = wPRF.Eval(ek, x, w). Output w∗ = y

• dv.check(VK, x, w∗) : Parse VK as fk and compute y′ = F(fk, x) and check if w∗ ?
= y′. If the

check is satisfied, output 1; else output ⊥.

Theorem 2. Let wPRF be an static-instance interactively secure witness PRF for NP with super-
polynomial range |Y| = κω(1). Then the above construction of dv-UWM for NP satisfies selective
reusable soundness.

Proof. Firstly, we note that DV-UWM satisfies perfect completeness (assuming wPRF is perfectly
correct). Also, it satisfies uniqueness, since (x,w) is deterministically mapped to the output of
wPRF, regardless of the witness w. In particular, the correctness of wPRF guarantees that for all
(x,w) ∈ R, wPRF.Eval(ek, x, w) = F(fk, x). The later function (i.e., F(fk, ·)) does not depend on
w and deterministically maps x to a unique output value y ∈ Y . Below, we shall prove that the
construction satisfies selective reusable soundness as well.

Consider an adversaryA in the definition of AdvDV-UWM
A (κ) (see Def. 8). Note that, in the (se-

lective) reusable soundness experiment the adversary A first commits to the challenge x∗ and
then gets access to the public parameter K and the verification oracle, namely dv.check(VK, ·, ·).
The oracle takes as input tuples of the form (xi, w

∗
i ) and outputs either 1 or 0. We show how to

construct another adversary B breaking the static-instance interactive security of wPRF using
A in a black-box way. The adversary B simulates the environment of A as follows:

1. The adversary B first commits to a challenge x∗ such that x∗ /∈ LR. The adversary A for-
wards x∗ to its own challenger and receives a value y∗ ∈ Y , which it stores in its memory.
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2. The adversary B then receives ek from its challenger and sets K = ek. It gives K to A.
3. When A queries a tuple (xi, w

∗
i ) to dv.check(K,VK, ·, ·), the adversary B does the following:

• Query the oracle F(fk, ·) on input xi to receive some output yi.
• Checks if w∗i

?
= yi. If so, it outputs 1 to A’ else it outputs 0.

4. Finally, at some point A outputs w∗ corresponding to the challenge x∗ (which it committed

to before). The adversary A then retrieves the value y∗ from its memory and checks if y∗ ?
=

w∗. If the check passes, B outputs 0; else it outputs 1.

This completes the description of simulation of A′s environment by B. Let us assume that
A makes a total of q = q(κ) queries to the verification oracle dv.check(VK, ·, ·) (including the
challenge query). Since A has some non-negligible advantage (say ϵ) in breaking the selective
reusable soundness of DV-UWM, it must hold that dv.check(VK, x∗, w∗) = 1 holds with prob-
ability ϵ. According to the construction, the above check passes whenever w∗ = F(fk, x∗). If
the value y∗ received by B from its challenger was computed using the function F(fk, ·), then
it always holds that y∗ = w∗. However, if y∗ was randomly sampled, the probability that w∗

is equal to y∗ is 1
|Y| , which is negligible. Hence, the advantage of B in breaking the adaptive-

instance interactive security of wPRF is ϵ − q
|Y| , which is non-negligible, thereby contradicting

the security of wPRF.

4.2 dv-UWM implies Witness PRF

Now, we present our implication in the other direction, namely that dv-UWM for NP implies
witness PRF for NP. We split our transformation into two phases. First, we present a construc-
tion of a (static) non-interactive witness PRF for NP from any (selective) non-reusably sound
dv-UWM for NP. Next, we show a generic transformation from any (static) non-interactive
witness PRF for NP to an (static) interactive witness PRF for NP additionally using any one
way function.

4.2.1 dv-UWM implies Non-interactive Witness PRF. In this section, we show our first
transformation from any (selective) non-reusably sound dv-UWM for NP to a (static-instance)
non-interactive witness PRF for NP. The construction is shown in Figure 2.

Theorem 3. If DV-UWM is a selective non-reusably sound dv-UWM for the NP relation ℜ (defined in
Figure 2), then the construction shown in Figure 2 is a static-instance non-interactively secure witness
PRF for the NP relation R.

Proof. We show that any adversary Awprf breaking the static-instance non-interactive security
of wPRF with a noticeable advantage can be transformed into an adversary Adv-uwm break-
ing the selective non-reusable soundness of DV-UWM. Note that, in the static-instance non-
interactive security game of wPRF the adversary commits to the challenge x∗ before seeing the
evaluation key ek. At first, we show that the adversaryAwprf breaking the security of wPRF can
be converted into a predictorAGL for the generalized Goldreich-Levin theorem. In more details,
let the adversaryAwprf can predict the bit b in the security experiment of wPRF on the challenge
instance x∗ /∈ LR with non-negligible probability. Let, α = (K, y), and β = w∗ from the gen-
eralized GL theorem (see Lemma 4). This implies that we can construct a distinguisher A that
on input

(
α = (K, y), r

)
can distinguish the bit b (in the above construction) from a random bit

with non-negligible probability. Hence, by Lemma 4, we can use this distinguisher A to con-
struct a predictor A′, who given α = (K, y) can predict the pre-image w∗ with non-negligible
probability. This implies that the predictor outputs w∗ such that w∗ = dv.map

(
K, (x, y), (⊥, z)

)
with non-negligible probability. At this point, instead of computing y = G(z), we sample a ran-
dom y ← {0, 1}2κ. The security of the PRG G ensures that this switch is indistinguishable toA′.
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Let R be a NP relation, and LR be the corresponding NP language defined as LR := {x | ∃w : (x,w) ∈ R}.
Let R′ be another NP relation defined as (y, z) ∈ R′ if and only if y = G(z), where G : {0, 1}κ → {0, 1}2κ is
a length-doubling pseudo-random generator. Also, let LR′ be the corresponding NP language defined as LR′ :=
{y | ∃z : (y, z) ∈ R′}. Further, we assume that R and R′ are parameterized with their input lengths. Define the
following derived NP relation ℜ and language Lℜ as:

ℜ
(
(x, y), (w, z)

)
= 1 ⇐⇒ R(x,w) = 1 ∨ R′(y, z) = 1, and

Lℜ = {(x, y) | ∃(w, z), ((x, y), (w, z)) ∈ ℜ}.
Note that, the relation ℜ is parameterized with statements of length at most ℓ′ = ℓ+ 2κ.

(a) Let DV-UWM = (dv.setup, dv.map, dv.check) be a (selectively) sound dv-UWM for the language Lℜ. Further,
let the length of the representative w∗ of DV-UWM be p(κ) bits, for some polynomial p(·).

(b) Let GL(π, r) denote the Goldreich-Levin (GL) hardcore bit [8] of π using randomness r. Recall that, the GL
predicate is the bit-wise inner product of π and r.

1. wPRF.Gen(κ,R) : Takes as input an NP relation R (parametrized by its input length ℓ) as defined above. Run
(K,VK) ← dv.setup(κ, ℓ′), where ℓ′ is defined as above. Sample z ← {0, 1}κ and r ← {0, 1}p(κ) uniformly at
random, and compute y = G(z). Set ek = (K, y, r) and fk = z.

2. F(fk, x) : Takes as input an instance x ∈ LR. It does the following:

• Computes the representative witness w∗ = dv.map(K, (x, y), (⊥, z)), using (⊥, z) as witness. Note that,
(x, y) ∈ Lℜ.

• Compute the GL hardcore bit b = GL(w∗, r).

3. wPRF.Eval(ek, x, w) : Takes as input an instance x ∈ LR. It does the following:

• Computes a representative witness w∗ = dv.map(K, (x, y), (w,⊥)), using (w,⊥) as witness. Note that, (x, y) ∈
Lℜ.

• Compute the GL hardcore bit b = GL(w∗, r).

Fig. 2. Construction of Non-Interactive Witness PRF wPRF from DV-UWM

Hence the probability thatA′ outputs a “valid” w∗ (w∗ such that dv.check(K,VK, (x, y), w∗) = 1)
continues to hold, except with a negligible probability. However, note that, with very high
probability it holds that (x, y) /∈ ℜ. This contradicts the selective non-reusable soundness prop-
erty of dv-UWM, since the adversary A′ outputs a valid representative witness corresponding
to a false statement (x, y) /∈ ℜ.

4.2.2 Equivalence of Non-Interactive and Interactive Witness PRF. In this section, we show
that any (static-instance) non-interactive witness PRF for NP can be generically transformed
to a (static-instance) interactive witness PRF for NP. The construction is given in Figure 3.

Theorem 4. Let nI-wPRF be a static-instance non-interactively secure witness PRF for the NP rela-
tion Ψ (defined in Figure 3), and (Com,Open) be a statistically binding commitment scheme. Then the
construction shown in Figure 3 is a static-instance interactively secure witness PRF for the NP relation
R.

Proof. We show that any adversary Awprf breaking the static-instance interactive security of
wPRF with a noticeable advantage can be transformed into either an adversary Aniwprf break-
ing the static-instance non-interactive security of nI-wPRF or an adversary ACom breaking the
security of the underlying commitment scheme Com. Note that, in the static-instance inter-
active security game of wPRF the adversary Awprf commits to the challenge x∗ before seeing
the evaluation key ek and in addition gets access to the evaluation oracle F(fk, ·) on instances
xi ̸= x∗. W.l.o.g, we assume that the adversary queries an instance xi at most once to the eval-
uation oracle. Our security proof proceeds via a sequence of the following hybrid arguments:
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LetR : X ×W → {0, 1} be an NP relation restricted to inputs in X = {0, 1}ℓ(κ), and LR be the corresponding NP
language defined as LR := {x | ∃w, (x,w) ∈ R}. LetR′ be another NP relation defined as:(

(x, c), (x′, r)
)
∈ R′ ⇐⇒

(
c = Com(x′; r) ∧ (x ̸= x′)

)
,

where Com is a polynomial-time statistically binding commitment scheme over a message space X ∪ {0}, where
0 /∈ X . Also, let LR′ be the corresponding NP language. Finally, let us define the following NP relation Ψ and
language LΨ as: (

(x, c), (w, x′, r)
)
∈ Ψ ⇐⇒ (x,w) ∈ R ∨ ((x, c), (x′, r)) ∈ R′ and

LΨ = {(x, c) | ∃(w, x′, r) s.t.
(
(x, c), (w, x′, r)

)
∈ Ψ}.

Note that, the relation Ψ is parameterized with the input length ℓ′ = ℓ+ |c|.

• Let nI-wPRF = (nI-wPRF.Gen, nI-wPRF.F, nI-wPRF.Eval) be a static-instance non-interactive witness PRF for the
NP relation Ψ defined above.

We construct a static-instance interactively secure witness PRF wPRF = (wPRF.Gen,F,wPRF.Eval) as follows:

1. wPRF.Gen(κ,R) : Takes as input the NP relation R defined above. Run (êk, f̂k) ← nI-wPRF.Gen(κ, Ψ), where
the relation Ψ is defined as above. Sample a random tape r for the commitment scheme Com, and compute
c = Com(0; r). Set ek = (êk, c) and fk = (f̂k, r).

2. F(fk, x) : Parse fk as (f̂k, r), compute the commitment c = Com(0; r) and output y = nI-wPRF.F(f̂k, (x, c)).

3. wPRF.Eval(ek, x, w) : Takes as input an instance-witness pair (x,w) ∈ R and does the following: Parse ek as
(êk, c) and output nI-wPRF.Eval(êk, (x, c), (w,⊥,⊥)). Note that (x, c) ∈ LΨ .

Fig. 3. Construction of an interactive wPRF wPRF from a non-interactive wPRF nI-wPRF

Game0 : This game corresponds to the original experiment for static-instance interactive wit-
ness PRF. The challenge simulates the environment for Awprf as follows:

• The adversary Awprf first commits to a challenge x∗ such that x∗ /∈ LR. The challenger sam-
ples a random string r∗ ∈ {0, 1}q(κ) and computes c∗ = Com(0; r∗). It generates the keys
ek = (êk, c∗) and fk = (f̂k, r∗) as in the original construction. It then forwards ek to the adver-
sary Awprf .
• When Awprf queries an instance xi ∈ X to the evaluation oracle F(fk, ·), the challenger com-

putes yi = nI-wPRF.F(f̂k, (xi, c∗)) using the function key fk = (f̂k, r∗) and returns yi to Awprf .
Note that, (xi, c∗) ∈ LΨ , regardless of whether xi ∈ LR or xi /∈ LR. This is because c∗ is a
commitment to 0 under randomness r∗ and xi ̸= 0; hence

(
(xi, c

∗), (0, r∗)
)
∈ R′.

• Finally, at some point Awprf outputs a bit b′ as a guess for the bit that was used to compute
y∗ (corresponding to x∗ which it committed before).

Game1 : This game is similar to Game0, except how we generate the keys ek and fk and re-
spond to the test query. In particular, when Awprf commits to the challenge x∗, the challenger
samples r∗ uniformly at random from {0, 1}q(κ) and computes c∗ = Com(x∗; r∗), instead of
computing c∗ = Com(0; r∗) as in the previous game. Note that, now (x∗, c∗) /∈ Lψ, since(
(x∗, c∗), (x∗, r∗)

)
/∈ R′. WhenAwprf queries an instance xi ∈ X to the evaluation oracle F(fk, ·),

the challenger computes yi = nI-wPRF.F(f̂k, (xi, c∗)) using the function key fk = (f̂k, r∗) and
returns yi to Awprf . Note that, (xi, c∗) ∈ LΨ since xi ̸= x∗ and hence

(
(xi, c

∗), (x∗, r∗)
)
∈ R′.

It is easy to see any adversary D0,1 who can distinguish between Game 0 and Game 1 can
be used to break the (computational) hiding property of the commitment scheme Com. The
only difference between the Game 0 and Game 1 is how the commitment c∗ is generated. Note
that, the randomness r∗ is not used anywhere while computing the evaluation queries. Hence,
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the binding property of the commitment scheme Com implies that Game 0 and Game 1 are
indistinguishable.
Game2 : This game is similar to Game1, except that the evaluation (PRF) queries made by the
adversary Awprf are answered by the challenger using the public evaluation mode, instead of
computing them using the function key f̂k. In particular, when the adversary Awprf queries an
instance xi ∈ X to the evaluation oracle F(fk, ·), the challenger computes yi = nI-wPRF.Eval(êk,
(xi, c

∗), (⊥, x∗, r∗)) using (⊥, x∗, r∗) as the witness and returns yi to Awprf . Note that, since
(xi, c

∗) ∈ LΨ , the correctness of nI-wPRF stipulates that the value yi computed using nI-wPRF.F(f̂k, ·)
and nI-wPRF.Eval(êk, ·, ·) are equal. Hence Game1 and Game2 are identically distributed.

Finally, we can show that the advantage of the adversaryAwprf in Game2 is negligible. More
formally, if the advantage of the adversaryAwprf in guessing the bit b is noticeable, then we can
construct an adversary Aniwprf against the static non-interactive security of nI-wPRF that also
has the same advantage asAwprf . The adversaryAniwprf simulates the environment forAwprf as
follows:

1. The adversary Awprf commits to a string x∗ /∈ LR. The adversary Aniwprf samples a random
string r∗ ∈ {0, 1}q(κ) and computes c∗ = Com(x∗; r∗). It then forwards the tuple (x∗, c∗) to
its own challenger and receives as response (êk, y∗). It then sets ek = (êk, c∗) and stores the
string r∗ in memory. The adversary Aniwprf then returns the tuple (ek, y∗) to Awprf .

2. When Awprf queries an instance xi ∈ X to the evaluation oracle F(fk, ·), the adversary
Aniwprf simulates the response as follows: It retrieves r∗ from memory and computes yi =

nI-wPRF.Eval(êk, (xi, c∗), (⊥, x∗, r∗)) and returns yi to Awprf . Note that, since (xi, c
∗) ∈ LΨ ,

the output of nI-wPRF.Eval and nI-wPRF.F are identical.
3. Finally, at some point Awprf outputs a bit b′ as a guess for the bit that was used to compute

y∗ (corresponding to x∗ which it committed before). The adversaryAniwprf then returns b′ to
its own challenger.

The above presents a proper simulation of the environment for Awprf . Note that, the state-
ment (x∗, c∗) /∈ LΨ , and hence the advantage of Aniwprf is same as the advantage of Awprf in
guessing the bit b. This completes the proof of the above theorem.

5 Extremely Compact WM implies Pseudo-UWM

In this section, we show that an extremely compact WM – i.e., a CWM with polynomial-sized
image – implies a Pseudo-UWM (p-UWM) where the uniqueness may not hold with an inverse
polynomial probability (that can be made arbitrarily small). In other words, we show that a α-
CWM for α = O(log κ) for security parameter κ implies a p-UWM as defined below.
Definition 10 (Pseudo Unique Witness Map (p-UWM)). A Pseudo-UWM (p-UWM) for an NP
relation R is a triple CWM = (setup,map, check) where setup is a PPT algorithm, and map and check
are deterministic polynomial time algorithms such that:
• setup(κ, ℓ, ϵ) outputs a string K of length polynomial in κ, ℓ and 1/ϵ.
• Completeness: For any polynomials ℓ, 1/ϵ, ∀(x,w) ∈ Rℓ(κ),

Pr
K←setup(κ,ℓ(κ),ϵ(κ))
w∗←map(K,x,w)

[check(K, x, w∗) = 1] = 1.

• Pseudo-Uniqueness: For any polynomial ℓ, ∀x ∈ {0, 1}ℓ(κ), ∀w1, w2 such that (x,w1), (x,w2) ∈
Rℓ(κ) (possibly w1 = w2),

Pr
K←setup(κ,ℓ(κ),ϵ(κ))
w∗

1←map(K,x,w1)
w∗

2←map(K,x,w2)

[w∗1 ̸= w∗2] ≤ ϵ(κ)

18



• Soundness: For any polynomials ℓ, 1/ϵ, and any PPT adversary A, AdvCWM
A (κ) defined below is

negligible:
Pr

K←setup(κ,ℓ(κ),ϵ(κ))
(x∗,w∗)←A(K)

[check(K, x∗, w∗) = 1, x∗ ̸∈ LR ].

We now present the construction below. The main building block of our construction is
a statistically-sound NIWI (SNIWI) argument system NIWI. Before proceeding with the con-
struction, let us try to solve a seemingly unrelated algorithmic problem, which we call the
pseudo-deterministic sampling (PDS) problem over a polynomial-sized domain. We will later see
how to use a solution for the PDS problem in our construction of p-UWM from CWM.

Pseudo-Deterministic Sampling for Small Domains. Let D be an arbitrary distribution over
some set X with a support of size n. Our goal is to design an algorithm PDS.sam that is
polynomial-time in n and with only sampling access to D, can pseudo-deterministically out-
put an element from the support of D. PDS.sam takes a reference string crs, and the pseudo-
determinism is required to hold with high probability over the choice of crs. More formally,
(PDS.setup,PDS.sam) is said to be a PDS scheme if:

1. PDS.setup(n, ℓ, δ), with inputs the security parameter κ, a bound n on the support size of
distributions over {0, 1}ℓ that are to be handled, and a probability δ > 0, outputs a common
reference string crs of length polynomial in n, ℓ and 1/δ.

2. PDS.samD(crs) : Given an input crs and sampling access to a distribution D over {0, 1}ℓ, the
algorithm PDS.sam gets a polynomial number of samples from D (polynomial in |crs|) and
outputs an element in the support of D, such that the following holds:

• Pseudo-determinism: For all distributions D over {0, 1}ℓ with support size at most n,

Pr
crs←PDS.setup(n,ℓ,δ)

c1←PDS.samD(crs),c2←PDS.samD(crs)

[c1 ̸= c2] ≤ δ

where the probability is over the choice of crs as well as the samples from D.

We refer to an (n, ℓ, δ)-PDS as a PDS scheme setup with those parameters.
We now present a construction of a PDS scheme in Figure 4.

Let D be an arbitrary distribution over {0, 1}ℓ with a support of size at most n.

1. PDS.setup(n, ℓ, δ) : Let H = {Hκ}κ∈N be a family of 2N -wise independent hash functions for N = (2n/δ)3.

Sample a hash function H
$←− H, where H : {0, 1}ℓ+logN → {0, 1}κ, κ is the security parameter. Set crs = H .

2. PDS.samD(crs) :
(a) Obtain a multi-set S of N samples from D.
(b) Define the set Y = {x||i | i > 0 and x has multiplicity at least i in S}.
(c) Let H = {H(y) | y ∈ Y }, where each h ∈ H is a bit string of length κ.
(d) Return the lexicographically smallest element of H.

Fig. 4. A pseudo-deterministic sampling algorithm for a small support

Lemma 5. (PDS.setup,PDS.sam) (Figure 4) is a PDS scheme.

19



Proof. Since PDS.sam satisfies the efficiency requirements, and always outputs an element in
the support of D, it remains to show that it satisfies the pseudo-determinism requirement.

Consider two independent runs of PDS.sam using the same H . Let Si, Yi denote the multi-
set of samples and the set of count-appended samples in the two executions.

First, fix the sets Y1 and Y2. Note that if the lexicographically smallest element in {H(y) |
y ∈ Y1 ∪ Y2} is an element H(y) for y ∈ Y1 ∩ Y2, then PDS.sam outputs the same value in both
runs. Now, since H is 2N -wise independent, H behaves identical to a random function over
Y1 ∪ Y2. Hence, over the choice of H , the probability of error – i.e., that the outputs of PDS.sam
are different – is upper bounded by |Y1∆Y2||Y1∪Y2| ≤

|Y1∆Y2|
N .

Now we define the following “Good” event for the choice of (S1, S2) over the samples from
D (independent of H): For all x the support of D, the multiplicity of x in S1 and in S2 are both
in the range [Np−N2/3, Np+N2/3], where p is the probability assigned to x by D. When this
condition holds, |Y1∆Y2| ≤ n · 2N2/3, where n is an upper bound on the size of the support of

D. Hence, conditioned on the Good event, the probability of error is at most |n·2N
2/3|

2N .
Finally, by Lemma 3 and union bound (for each x in the support of D, and each of Y1, Y2),

the probability of the Good event not occurring is at most 2ne−N
1/3

. Hence the probability of
error is at most 2ne−N

1/3
+ nN−1/3. Letting N = (2n/δ)3, this is at most δ.

Now we present the p-UWM scheme for an NP relation R. For simplicity, first we present
a randomized map, and then point out how to derandomize it using the CRS.
1. The p-UWM setup outputs crs = (crsNIWI, crsCWM, crsPDS.sam), which consists of the setup

for a statistically sound NIWI proof system for the relation R, an α-CWM for the relation
corresponding to the NIWI verifier, and a (2α, ℓ, ϵ/2)-PDS scheme (as given above).

2. The p-UWM, on input (x,w) ∈ R, defines the distribution Dx,w as the distribution of
map(NIWI(x,w; crsNIWI); crsCWM). Then it outputs PDS.samDx,w .

3. The p-UWM verifier is the same as check.

Completeness is easy to see. The soundness of this proof depends on the fact that for any
false statement, there does not exist a NIWI proof that gets accepted (except with negligible
probability, over the choice of crsNIWI), and that CWM is (computationally) sound. For pseudo-
uniqueness, first consider two runs of p-UWM (with the same setup) using the same witness w.
In this case, from the compactness of CWM and the pseudo-determinism of the PDS scheme,
the probability of the outputs differing is at most ϵ/2. In the general case, when two different
witnesses w1, w2 are used, we note that the distributions Dx,w1 and Dx,w2 are computationally
indistinguishable from each other, thanks to the witness indistinguishability property of NIWI.
Since PDS.sam is computationally efficient, this implies that the probability of the outputs dif-
fering given access to Dx,w1 and Dx,w2 (rather than two copies of Dx,w1) can only be negligibly
more than ϵ/2. Hence for any inverse polynomial ϵ, this error probability is bounded by ϵ, as
required.

Finally, we address the fact the p-UWM mapping algorithm above was defined to be ran-
domized, to carry out the implementation of (N samples from) Dx,w, given (x,w). Since the
definition of pseudo-uniqueness involves only two runs of the mapping algorithm, it is enough
to include a pairwise independent hash function in the CRS which would be used to derive
the required amount of randomness as a function of its input (x,w).

6 Mildly Compact WM implies NIZK

In this section, we show that a mildly compact WM - i.e., a CWM with compactness level
α = poly(κ) for some fixed polynomial poly(·), independent of the statement size |x| or the wit-
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ness size |w| implies the existence of NIZK argument system. As mentioned in in the introduc-
tion, we generalize the recent work of [12] who constructed NIZKs from SNARG by replacing
SNARG with CWM with the above compactness level. In particular, we show a construction
of hidden-bits generator with subset-dependent proofs (SDP-HBG) from α-CWM. This result, along
with the compiler of [12] that transforms any NIZK in the hidden-bits model (HBM-NIZK) to
NIZK in the CRS model using SDP-HBG implies a construction of NIZK from any α-CWM as
long as α = poly(κ) as defined above. Following [12] we first provide the definition of SDP-
HBG.

6.1 Hidden-Bits Generator with Subset-Dependent Proofs

Following [12], we recall the notion of hidden-bits generator with subset-dependent proofs
(SDP-HBG).
Definition 11 (SDP-HBG). A hidden-bits generator with subset-dependent proofs (SDP-HBG)
consists of four PPT algorithms (HBGsdp.Setup, HBGsdp.
GenBits, HBGsdp.Prove, HBGsdp.Verify) defined as follows:

1. HBGsdp.Setup(1κ, 1n) : The setup algorithm takes the security parameter 1κ and the length
parameter 1n as input, and outputs a CRS crs.

2. HBGsdp.GenBits(crs) : The bits generation algorithm takes a CRS crs as input, and outputs a

string r
$←− {0, 1}n and a state st.

3. HBGsdp.Prove(st, I) : The proving algorithm takes a state st and a subset I ⊆ [n] as input,
and outputs a proof π.

4. HBGsdp.Verify(crs, I, rI , π) : The verification algorithm takes a CRS crs, a subset I ⊆ [n], a
string rI ∈ {0, 1}|I| and a proof π as input, and outputs either 1 or 0 indicating acceptance
or rejection respectively.

A SDP-HBG is required to satisfy the following properties:

• Correctness. For any natural number n and I ⊆ [n], we have:

Pr

 crs← HBGsdp.Setup(1κ, 1n);

HBGsdp.Verify(crs, I, rI , π) = 1 : (r, st)← HBGsdp.GenBits(crs);

π ← HBGsdp.Prove(st, I)

 = 1

• Somewhat Computational Binding. There exists a constant γ < 1 such that (1) for any
polynomial n = n(κ) and for all
crs ← HBGsdp.Setup(1κ, 1n), there exists a subset Vcrs ⊆ {0, 1}n such that |Vcrs| ≤ 2n

γpoly(κ)

holds, and (2) for any PPT adversary A, we have:
Pr

crs←HBGsdp.Setup(1κ,1n)

[
rI /∈ VcrsI ∧ HBGsdp.Verify(crs, I, rI , π) = 1 :

(I, rI , π)← A(crs)
]
= negl(κ).

where VcrsI = {rI : r ∈ Vcrs}
• Computational Hiding. For any polynomial n = n(κ), I ⊆ [n], any PPT adversary A, we

have: ∣∣∣Pr [A(crs, I, rI , π, rĪ) = 1]− Pr
[
A(crs, I, rI , π, r′Ī) = 1

] ∣∣∣
where r′

Ī
denotes the substring of r on the positions corresponding to Ī = [n] \ I .

A SDP-HBG is a weaker primitive than HBG, and [12] showed how to construct a SDP-
HBG generically starting from any HBG.
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6.2 Construction of SDP-HBG.

In this section, we show how to construct a SDP-HBG from CWM and OWF. Our construction
requires the following ingredients:

• An λ-entropic leakage-resilient weak PRF (λ-LR-wPRF)F = {FK : {0, 1}m → {0, 1}}K∈{0,1}k
(see Section 2.3.3), with key length k = k(κ, λ) = λ · poly(κ), input length m = m(κ, λ) =
λ · poly(κ), and output length 1 bit. Here λ denotes the leakage parameter of the ELR-wPRF
F .
• A α-CWM CWM = (setup,map, check) for α = poly(κ) for an arbitrary polynomial poly(κ)

(independent of the length of the statement or witness) for the language L associated with
the following relation R:(

(k′, {xi}i∈[k′], {ri}i∈[k′]),K)
)
∈ R ⇐⇒ ri = FK(xi) ∀i ∈ [k′]

We now proceed to describe our construction.

1. HBGsdp.Setup(1κ, 1n) : Do the following:
(a) Run K← setup(κ, ℓ), where ℓ is the length of the statement mentioned in the relation

above.
(b) For all i ∈ [n], sample xi

$←− {0, 1}m.
Return crs = (K, {xi}i∈[n]).

2. HBGsdp.GenBits(crs) : Do the following:
(a) Parse the CRS as crs = (K, {xi}i∈[n]).
(b) Sample key K

$←− {0, 1}k, and compute ri = FK(xi) for all i ∈ [n].
Return (r = {ri}i∈[n], st = (crs,K, r)).

3. HBGsdp.Prove(st, I) : Parse st = (crs,K, r) and crs = ((K, {xi}i∈[n]). Then compute w∗ ←
map

(
K, (|I|, xI , rI),K

)
and return π := w∗.

4. HBGsdp.Verify(crs, I, rI , π) : Parse crs = ((K, {xi}i∈[n]) and π as w∗. Return the output
check

(
K, (|I|, xI , rI), w∗

)
.

Theorem 5. Let κ be the security parameter. If there exist a λ-entropic leakage-resilient weak PRF and a
α-CWM for all NP languages for α = poly(κ) (where poly(κ) is some polynomial) such that α ≤ λ and
that satisfies adaptive soundness, then there exists an SDP-HBG that satisfies somewhat computational
binding and computational hiding.

Proof. We start by proving somewhat computational binding, followed by computational hid-
ing.
Somewhat Computational Binding. To prove somewhat computational binding, we need
to describe the set Vcrs, where the CRS crs = (K, {xi}i∈[n]. We define the set Vcrs as Vcrs =

{(FK(x1), · · · , FK(xn))|K ∈ {0, 1}k}. Then, since |K| = k = nγpoly(κ), we have |Vcrs| ≤
2n

γpoly(κ). The soundness of CWM implies that no PPT adversary can generate a valid proof
for (I, rI) that is inconsistent with any element of V . In more details, given crs = (K, {xi}i∈[n]
if any PPT adversary can come up with a tuple (I, rI , π) such that check

(
K, (|I|, xI , rI), π

)
= 1

and rI /∈ Vcrs, this implies that (|I|, xI , rI) /∈ L. Hence, this breaks the adaptive soundness of
the CWM.
Computational Hiding. The computational binding property can be reduced to the security
of the underlying entropic LR-wPRF with leakage parameter λ, by noting that the leakage
from K is at most α bits (since the CWM is α-compact). In more details, given any polynomial
n = n(κ), I ⊆ [n], and PPT adversary A, we build another PPT adversary B that breaks the
security of λ-entropic leakage-resilient wPRF as follows:
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• Learning Phase. The adversary B has access to the oracles OλK(·) and FK($). It makes |I|
queries to FK($), and regards the returned values from the oracle as {(xi, ri = FK(Xi))}i∈[I].
Next, B runs K ← setup(κ, ℓ) (where ℓ is an upper bound on the length of the statement
of UWM defined above). The attacker B then produces a description of a λ-leaky function
h : {0, 1}k → {0, 1}∗ on the key K such that h(·) := map(K, (|I|, xI , rI), ·). Then B submits
the description of h(·) to the leakage oracle OλK(·), and receives the representative witness
w∗.

• Challenge Phase. B submits n−|I| queries to the challenge oracle, and regards the returned
values from the oracle as {(xi, ri)}i∈Ī . Note that, if b = 0 then ri = FK(xi); else if b = 1,

then ri
$←− {0, 1}, where b is the challenge bit. Now B sets crs = (K, {xi}i∈[n]) and runs

A(crs, I, rI , π, rĪ). When A terminates with bit b′, B returns b′ and terminates.

Note that, if the bit b = 0, then the pairs {(xi, ri)}i∈Ī that B receives from the oracle sat-
isfy ri := FK(xi) and hence they correspond to the computational hiding experiment where
the randomness rĪ is generated by HBGsdp.GenBits(crs). On the other hand, if b = 1, then the
bits {ri}i∈[Ī] are sampled uniformly at random from {0, 1}, and hence they correspond to the
computational hiding experiment where the randomness rĪ corresponds to uniformly random
bits. Moreover, the leakage h(·) is λ-leaky and hence B is compliant with the rule of λ-entropic
LR-wPRF. Hence, the advantage of B is breaking the security of the underlying λ-entropic LR-
wPRF is exactly the same as A’s advantage in breaking the computational hiding property of
SDP-HBG. The proof of the theorem thus follows.

Parameters. Finally, we show how to set the parameters for our SDP-HBG construction. The
α-compactness of CWM implies that the size of the CWM image is upper bounded 2α. For
our construction, we set α = poly(κ), where poly(κ) does not depend on n. Then we can set
λ = poly′(κ) such that α ≤ λ. According to this choice of λ, k = poly′(κ) is determined. Thus,
for sufficiently large (polynomial) n, we have that k << n, as desired.

7 UWM implies Deterministic-Prover NIZK

In this section we show that UWM implies deterministic-prover NIZK argument system (DP-NIZK)
satisfying perfect zero-knowledge. Before this, we knew how to construct such a DP-NIZK ar-
gument system only from iO. Below we briefly sketch the construction and then give the de-
tails of the construction and proof.

A DP-NIZK argument system is NIZK argument system where the prover and verifier are
both deterministic. Apart from completeness and soundness we require perfect zero-knowledge
property to hold, i.e., the simulated proofs are identically distributed to the real proofs. The
setup algorithm of our DP-NIZK chooses a random seed z for a length-doubling pseudorandom
generator G and sets y = G(z). The CRS crs of DP-NIZK consists of the CRS K of UWM and the
value y. The prover of DP-NIZK on input some (x,w) in the relation runs the UWM prover
to get a representative witness w∗ for the statement x̂ stating that “either x is true or y is
pseudorandom”, using w as the witness. Note that the prover is deterministic. In the proof
of soundness, we sample y uniformly at random, so that y is not in the image of G, except with
negligible probability. At this point the soundness of DP-NIZK follows from the soundness of
UWM. To prove ZK, the simulator uses the witness z to simulate the proofs. The uniqueness
property of UWM guarantees that proofs computed by either of the witnesses result in the
same proof. Hence, the zero-knowledge property follows.
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7.1 Deterministic-Prover NIZK.

A deterministic-prover NIZK (DP-NIZK) argument system for a NP language LR associated
with relation R consists of three polynomial-time algorithms (CRSgen,Prove,Verify), the last
two being deterministic. The Common Reference String (CRS) generation algorithm CRSgen
takes as input the security parameter κ and the maximum length of the statements ℓ sup-
ported by the scheme, and outputs CRS crs. The prover algorithm Prove takes as input crs, and
a pair (x,w) ∈ R, and outputs a proof π. We stress that Prove is deterministic. The verifier algo-
rithm Verify takes as input crs, a statement x and a purported proof π, and outputs a decision
bit b ∈ {0, 1}, indicating whether the proof π with respect to statement x is accepted or not
(with 0 indicating reject, else accept). A DP-NIZK argument system must satisfy the following
properties:

1. Perfect Completeness: We say that (CRSgen,Prove,Verify) satisfies perfect completeness if
for all adversaries Awe have:

Pr
[
crs← CRSgen(ℓ, κ); (x,w)← A(crs);π ← Prove(crs, x, w) :

Verify(crs, x, π) = 1 if (x,w) ∈ R
]
= 1

2. Selective Soundness: We say that (CRSgen,Prove,Verify) satisfies selective soundness with
respect to all PPT (malicious) provers Prove∗ and x∗ /∈ LR, if we have:

Pr[crs ← CRSgen(ℓ, κ), π∗ ← Prove∗(crs, x∗) : Verify(crs, x∗, π∗) = 1] < negl(κ).

One can also define adaptive soundness, where the prover Prove∗ after receiving the CRS
crs can produce a pair (x∗, π∗) as forgery.

3. (Perfect) Zero-Knowledge: We say (CRSgen,Prove,Verify) is a non-interactive zero-knowledge
argument system forR satisfying perfect zero-knowledge, if there exists a polynomial-time
simulator S = (S1,S2) such that for all adversaries Awe have:

Pr
[
crs← CRSgen(ℓ, κ) : AProve(crs,·,·)(crs) = 1

]
=

Pr
[
(crs, td)← S1(ℓ, κ) : AS

′(crs,td,·,·)(crs) = 1
]
.

where S ′(crs, td, x, w) = S2(crs, td, x) for (x,w) ∈ R and outputs ⊥ if (x,w) /∈ R.

7.2 Construction of DP-NIZK from UWM.

In this section, we show how to construct a DP-NIZK argument system satisfying perfect zero-
knowledge from a unique witness map (UWM).
Theorem 6. If UWM is a selective sound sound UWM for the NP relation ℜ (defined in Figure 5),
then the construction of DP-NIZK shown in Figure 5 is deterministic-prover NIZK argument system
for the NP relation R satisfying perfect zero-knowledge.

Proof. The completeness of the above construction of DP-NIZK follows in a straightforward
manner from the correctness of UWM.

The (selective) soundness of DP-NIZK follows by switching y uniformly at random (instead
of computing it using the PRG G) and then relying on the selective soundness of UWM. In more
detail, we first sample y ∈ {0, 1}2κ uniformly at random and set crs = (K, y). Since y is sampled
uniformly at random, with overwhelming probability it is not in the image of the PRG G (since
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Let R be a NP relation, and LR be the corresponding NP language. Let R′ be another NP relation defined as
(y, z) ∈ R′ if and only if y = G(z), where G : {0, 1}κ → {0, 1}2κ is a length-doubling pseudo-random generator.
Also, let LR′ be the corresponding NP language. Further, we assume that R and R′ are parameterized with their
input lengths. Define the following derived NP relation ℜ and language Lℜ as:

ℜ
(
(x, y), (w, z)

)
= 1 ⇐⇒ R(x,w) = 1 ∨ R′(y, z) = 1, and

Lℜ = {(x, y) | ∃(w, z), ((x, y), (w, z)) ∈ ℜ}.
Note that, the relation ℜ is parameterized with the input length ℓ′ = ℓ+ 2κ.

Let UWM = (setup,map, check) be a (selectively) sound UWM for the language Lℜ. We construct DP-NIZK =
(CRSgen,Prove,Verify) as follows:

1. CRSgen(ℓ, κ) : Run K← setup(κ, ℓ′), where ℓ′ is defined as above. Sample z ← {0, 1}κ uniformly at random and
compute y = G(z). Set crs = (K, y).

2. Prove(crs, x, w) : Takes as input (x,w) ∈ R. Parse the CRS as crs = (K, y) and compute the representative
witness w∗ = map(K, (x, y), (w,⊥)), using (w,⊥) as witness. Set π := w∗.

3. Verify(crs, x, π) : Parse the CRS as crs = (K, y) and output check(K, (x, y), π).

Fig. 5. Construction of DP-NIZK argument system DP-NIZK from UWM

G is length-doubling). Hence, if x∗ /∈ LR, then with overwhelming probability (x∗, y) /∈ Lℜ,
where x∗ is the statement given by the malicious prover Prove∗ at the beginning of the protocol
(in the selective soundness game). Hence, we can rely on the (selective) soundness of UWM to
argue (selective) soundness of DP-NIZK.

We now proceed to prove the perfect zero-knowledge property of DP-NIZK as follows:
The simulator S1 runs K ← setup(κ, ℓ′). Then it samples z ← {0, 1}κ uniformly at random

and then computes y = G(z), as in the original construction. It sets crs = (K, y), and td =
z. When A queries with a tuple of the form (xi, wi) ∈ R, the simulator S2 computes w∗i =
map(K, (xi, y), (⊥, z)), using (⊥, z) as witness. It sets πi := w∗i and returns it to A. It is easy to
see that the proof πi computed by the simulator S2 is exactly the same as the proof computed
by the honest prover (using witness wi), since the output of UWM is unique. Hence the perfect
zero-knowledge property follows.

8 Perfectly Sound Verifier UWM implies NP = UP

In this section, we show that if a perfect sound verifier unique witness map (VUWM) exists (see
Definition 9) then the complexity class NP will be equal to the complexity class UP, where UP
stands for unambiguous non-deterministic polynomial-time. Informally, the class UP is the
complexity class of decision problems solvable in polynomial time on an unambiguous Turing
machine with at most one accepting path for each input. Hence it is easy to see that UP contains
the class P and is contained in NP. In the following we shall prove that NP ⊆ UP, assuming
perfect sound VUWM. Let us first formally define the class UP.

Definition 12 (Complexity class UP). A language L ∈ UP if there exists a two-input polynomial-
time algorithm R and a constant c such that

• If x ∈ L, then there exists a unique certificate w with |w| = O(|x|)c such that R(x,w) = 1.
• If x /∈ L, there is no certificate w with |w| = O(|x|)c such that R(x,w) = 1.

Valiant and Vazirani [18] showed that NP ⊆ RPpromise-UP, which means that that there is a
randomized reduction from any problem in NP to a problem in Promise-UP.

Theorem 7. If perfectly-sound VUWM exists for an NP relation R, then LR ∈ UP. In particular, if
perfectly-sound VUWM exists for every NP relation, then NP = UP.
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Proof. Let VUWM = (setup,map, check) be a perfectly-sound verifier UWM for an NP-relation
R. Then we claim that the language LR ∈ UP. Firstly, note that for a perfectly sound VUWM,
soundness is required to hold for every output of setup. Hence, w.l.o.g., we may consider this
setup to be absent (i.e., fixed to a particular value, hardwired into map and check).

To show that L ∈ UP, we need to describe a UP relation R′ such that LR = LR′ . We
define the relation R′ to be simply check. Now, for x ∈ LR, there exists a witness w such
that R(x,w) = 1, and by the completeness requirement of VUWM, R′(x,map(x,w)) = 1. On
the other hand, since VUWM is perfectly sound, it holds that if x /∈ L, then for any proof
w∗, R′(x,w∗) = 0. Finally, the verifier-uniqueness property of VUWM implies that R′ is a UP
relation – i.e., for any x, it accepts at most one witness. This implies that LR ∈ UP. Since,
UP ⊆ NP, the second part of the claim follows.

References

1. Richard Beigel. On the relativized power of additional accepting paths. In Proceedings: Fourth Annual Structure
in Complexity Theory Conference, University of Oregon, Eugene, Oregon, USA, June 19-22, 1989, pages 216–224. IEEE
Computer Society, 1989.

2. Richard Beigel, Harry Buhrman, and Lance Fortnow. NP might not be as easy as detecting unique solutions. In
Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 203–208. ACM, 1998.

3. Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 89–108. Springer, Heidelberg, May 2011.

4. Suvradip Chakraborty, Manoj Prabhakaran, and Daniel Wichs. Witness maps and applications. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of
LNCS, pages 220–246. Springer, Heidelberg, May 2020.
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