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Abstract

In this paper we propose Differential Fault Attack (DFA) on two Fully Homomorphic En-
cryption (FHE) friendly stream ciphers Rasta and FiLIPDSM. Design criteria of Rasta rely on
affine layers and nonlinear layers, whereas FiLIPDSM relies on permutations and a nonlinear fil-
ter function. Here we show that the secret key of these two ciphers can be recovered by injecting
only 1 bit fault in the initial state. Our DFA on full round (# rounds = 6) Rasta with 219
block size requires only one block (i.e., 219 bits) of normal and faulty keystream bits. In the
case of our DFA on FiLIP-430 (one instance of FiLIPDSM), we need 30000 normal and faulty
keystream bits.
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1 Introduction

In recent time, it has been observed that symmetric key cipher with low multiplicative depth can
provide a significant amount of communication efficiency for protocols using Fully Homomorphic
Encryption (FHE). Due to which, developing adapted symmetric key ciphers, for example with
low multiplicative depth, became one of the recent trend in research. For this purpose, in 2015
Albrecht et al. [3] presented the first design of block cipher with very low multiplicative depth.
Consideration of FHE friendly stream ciphers started with the seminal work by Canteaut et al. [6].
They proposed the design of the first such cipher namely Kreyvium, inspired by the stream cipher
Trivium based on nonlinear feedback shift registers. In this article we will study two recent FHE
friendly stream ciphers, Rasta [11] and FiLIPDSM [20].

In 2018, Dobraunig et al. [11] introduced a new family of stream ciphers named Rasta. Rasta
belongs to the kind of stream ciphers which have low multiplicative depth and suits in multiparty
computation or FHE setup. The design of Rasta family differs significantly from the other stream
ciphers, borrowing some ideas from block cipher designs. This family of stream ciphers is based
on applying rounds combining an affine layer and a nonlinear layer, where the affine layers are
pseudorandom and publicly derived independently of the key. For an r-round Rasta we apply an
affine layer (r + 1) times and a nonlinear layer r times on the secret key in an iterative way. The
final output is further xor’ed with the secret key for generating a block of keystream bits.
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The design of Rasta has attracted a lot of attention, and since then various ciphers reusing parts
of the design have been proposed, such as Masta, Dasta, Pasta, and Fasta. On the cryptanalysis
side, recently in Asiacrypt 2021, Liu et al. [15] have proposed an algebraic attack on Rasta. They
have used linearization technique and exploited the low degree expression of the inverse nonlinear
layer of Rasta for their attack. It results in smaller complexities that the one considered by the
authors for algebraic attacks by linearization. For most of the parameters studied it allows to attack
one more round than the analysis given in [11]. For example, the instance of Rasta with block size
219, the linearization attack considered by the authors could attack only 2 rounds, instead of 3
with the recent attack, over the 6 rounds advocated for 80-bit security.

In 2019 Méaux et al. [20] introduced a new family of stream ciphers called FiLIPDSM. The
design of FiLIPDSM tracks back to the family of stream ciphers FLIP [21] which follows the filter
permutator paradigm. This paradigm introduced in 2016 for FHE applications differ significantly
from other stream cipher designs. It consists of a key register, a Pseudorandom Generator (PRG),
and a filter which is a Boolean function f . Each keystream bit is obtained by applying f to a
wire-cross permutation of the key, the permutation being publicly derived from the PRG. FiLIP
is the stream cipher family coming from the improved filter permutator paradigm. The difference
from the initial paradigm is the use of two different sizes of register and more objects publicly
derived from the PRG. In FiLIP, the key size is N and the filter acts on n < N variables. For
each keystream bit a n-out-of-N subset of the key register is taken, permuted, and added to a
pseudorandom binary vector of size n, before applying f . The subscript in FiLIPDSM refers to the
family of functions used for the filter. Here DSM holds for Direct Sum of Monomials.

The design of FLIP and FiLIPDSM grasped a lot of attention in the crypto research community
due to their uncommon design and performance for FHE. In the FHE context the first family
FiLIPDSM has been used in [20] and [14], and lately another family FiLIPXOR-THR in [14]. Recently,
the improved filter permutator paradigm has been generalized to groups rather than bits [10]. On
the cryptanalysis side, a preliminary instance of FLIP [19] has been attacked by Duval et al. [12].
Thereafter multiple articles [8, 9, 16, 17, 23] have analysed the design of FLIP. The cryptographic
parameters of the filter functions used in FiLIPDSM are analyzed in [7].

The Differential Fault Attack (DFA) on stream ciphers has been introduced by Hoch and
Shamir [13]. DFA is a known plaintext attack technique where the attacker is allowed to inject a
fault into the state of the cipher at one clock during the keystream generation phase of the cipher.
Whereas in the case of classical differential attack [5] we assume that the attacker can introduce a
difference in the public parameter of the cipher (for a stream cipher the public parameter is usually
the initialization vector). It can be noticed that DFA is an attack model which is stronger than the
classical differential attack as we are assuming that the attacker can introduce differences into the
state of the cipher during the keystream generation phase. As the difference is introduced during
the keystream generation phase of the cipher, the attacker can notice a distinguishable impact of
the introduced difference in the generated keystream bits. In DFA the attacker first collects the re-
quired number of normal keystream bits corresponding to one unknown key. After that the attacker
injects a fault at a random location of the state of the cipher and collects the required number of
fault affected keystream bits. As the location of the injected fault is not known to the attacker, the
attacker can perform statistical tests on the keystream bits to identify the location of the injected
fault. One such statistical test is available in the literature, which is known as signature based
fault identification. Interested readers can refer to [4, 18, 23, 24, 25] to understand the signature
based fault identification technique in detail. For our work we have not followed any statistical
technique for identifying the location of the injected fault as the required statistical data looks
random in nature. If the location of the injected fault cannot be identified using any technique
then the attacker will guess the location of the injected fault and performs the DFA. Guessing the

2



location of the injected fault will be practical if the number of required fault is minimal and the
state size of the cipher is small.

In 2021, Roy et al. [23] have proposed DFA on two FHE friendly stream ciphers Kreyvium
and FLIP. They have shown that the secret key of both Kreyvium and FLIP can be recovered
respectively by injecting 3 and 1 bit fault in the state of these two ciphers in practical time. In
the case of DFA on Kreyvium, Roy et al. used the signature based fault identification technique to
identify the location of the injected fault. For the DFA on FLIP the identification of the location of
the fault was not possible using the signature based fault identification technique. As the number
of required fault was only one, the authors have guessed the location of the injected fault for
performing a DFA on FLIP.

1.1 Our Contribution and Organization of the Article

In this article we consider two recent FHE friendly stream ciphers Rasta & FiLIPDSM and perform
detailed security analysis relatively to DFA. Our major contributions in this article are as follows:

- We first propose a DFA on Rasta in Section 2. There we show that the secret key of Rasta
can be recovered by injecting a single bit fault into the initial state of the cipher. Along with
the generic technique of DFA on Rasta we provide an experimental verification of our attack
on one instance of the Rasta family of ciphers. We show that a single bit fault reveals the
secret key of Rasta with block size n = 219, r = 6 rounds in approximately 95 hours on a
laptop with a processor of 2.80 GHZ clock and 16 GB RAM, assuming the fault location. For
our experiment we need only one block of keystream bits i.e., 219 bits.

- In Section 3 of our article we propose a DFA on FiLIPDSM. In the case of FiLIPDSM the
secret key of the cipher can be recovered by injecting 1 bit fault. For an experimental
attack we consider an instance of FiLIPDSM which provides 80-bit security. We consider
an instance of FiLIPDSM where N = 1792, n = 430 and the nonlinear filter function is
mF = [80, 40, 15, 15, 15, 15]. Experimentally, assuming the fault location, we show that the
secret key of the considered instance can be recovered on a laptop with a processor of 2.80
GHZ clock and 16 GB RAM in approximately 751 hours.

Table 1: Summary of Our Work

Cipher Parameters # Faults # Keystreams Time (in hrs)

Rasta n = 219, 1 219 bits 95
r = 6

FiLIPDSM N = 1792, 1 30000 bits 751
n = 430

1.2 Design Specification of Rasta

Rasta [11] is a FHE friendly family of stream ciphers. Rasta is based on few important parameters
namely block size n and block counter i. To generate an n block keystream bits corresponding to
block counter i, the cipher first generates a pseudorandom permutation πN,i using nonce N and
block counter i. The permutation πN,i takes secret key K (of size n) as input and produces a
block of size n. This block is further xor’ed with K to generate keystream bits KN,i of size n. The
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pictorial representation of the keystream block generation process is given in Figure 1. Each time
a fresh nonce N and block counter i are used to generate a new block of keystream bits.

For an r round Rasta, the permutation πN,i is a composition of (r + 1) affine layers Aj,N,i

(j = 0, . . . , r) and r nonlinear layer S. Here one can note that each affine layer Aj,N,i depends on
the nonce N and block counter i. For an r round Rasta the mathematical form of πN,i will be as
per the Equation (1).

πN,i = Ar,N,i ◦ S ◦Ar−1,N,i ◦ S ◦ · · · ◦A1,N,i ◦ S ◦A0,N,i. (1)

The affine layer Aj,N,i is a mapping from n bits to n bits and the algebraic form is as per Equa-
tion (2).

Aj,N,i(x) = Mj,N,i · x+ Cj,N,i. (2)

Here Mj,N,i is a pseudorandom n×n invertible binary matrix and Cj,N,i is an n× 1 pseudorandom
binary matrix. These matrices are generated using an eXtendable-Output Function (XOF) which
takes nonce N and block counter i as input. The nonlinear layer S is also a mapping from n bits
to n bits whose algebraic form is described in Equation (3).

S(x0, . . . , xn−1) = (y0, . . . , yn−1)

yi = xi + xi+2 (mod n) + xi+1 (mod n)xi+2 (mod n);

for i = 0, . . . , n− 1. (3)

XOF

A0,N,i S A1,N,i S S Ar,N,i
. . . 

. . . 

N,i

K KN,i

Public

Key dependent

Figure 1: Design Specification of Rasta

1.2.1 Pseudorandom Invertible Matrix Generation Technique of Rasta

Here we describe the algorithmic sketch of the invertible pseudorandom binary matrix generation
technique which is used in the main article of Rasta [11]. This algorithm (Algorithm 1) is proposed
by Randall in 1993 [22]. Algorithm 1 starts with one n × 1 matrix where all the entries are filled
with 1 and two n×n zero matrices T,A. The algorithm returns an invertible binary square matrix
M = (mij)n×n. In this algorithm we have used one function random(0, 1) which returns either
0 or 1 randomly. For our experiment we have used Algorithm 1 for generation of pseudorandom
invertible binary matrices.

Liu et al. [15] have used a different algorithm for generating invertible matrix in their imple-
mentation 1 to attack Rasta. Their technique of invertible matrix generation is not efficient. The

1https://github.com/LFKOKAMI/AlgebraicAttackOnRasta.git
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Algorithm 1: Random Invertible n× n Matrix Generation Algorithm [22]

1 index = (1)1×n;
2 T = A = (0)n×n;
3 for i = 0 to n− 1 do
4 f = n− i ;
5 while (f = n− i) do
6 for f = 0 to n− i do
7 if (random(0, 1) == 1) then

8 end

9 end

10 end
11 r = 0;
12 c = 0;
13 for r = 0 to n− 1 do
14 if (index[r] == 1) then
15 c = c+ 1
16 end
17 if (f + 1 == c) then
18 index[r] = 0 ;
19 T [r][r] = 1 ;
20 A[i][r] = 1 ;

21 end

22 end
23 j = r + 1 ;
24 while (j < n) do
25 if (index[j] == 1) then
26 T [j][r] = random(0, 1);
27 end
28 j = j + 1;

29 end
30 j = i+ 1;
31 while (j < n) do
32 A[j][r] = random(0, 1);
33 j = j + 1;

34 end

35 end
36 M = A× T ;
37 return M

authors have randomly filled 0 or 1 in an n × n matrix and if the determinant of the matrix is
equal to 1 then their algorithm returns an invertible matrix. This process of generation of invertible
matrix is not efficient, as every time we need to check the determinant of the matrix for deciding
whether the matrix is invertible or not. Checking determinant every time is the most inefficient
part of their algorithm. This is not the case for Algorithm 1. We have also experimentally verified
that the matrix generation process of Liu et al. [15] takes much higher time than the Algorithm 1 for
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higher values of n (e.g., for n = 219, Algorithm 1 took approx 2.1 seconds, where as Liu et al. [15]
took 50.9 seconds). Due to this fact we have used Algorithm 1 for the generation of pseudorandom
invertible matrices for our experiment.

1.3 Design Specification of FiLIPDSM

FiLIPDSM [20] is a new family of stream ciphers which was proposed in Indocrypt 2019 which is
adapted to FHE evaluation. The FiLIPDSM family of stream ciphers are designed via tweaking
the design principle of FLIP family of stream ciphers [21]. FiLIPDSM is the first family of stream
ciphers which is based on improved filter permutators. The design principle of FiLIP family of
stream ciphers is simple and appealing. This family of ciphers suits in FHE setup because of their
simple design and low noise growth.

Key register K
PRNG

Subset

Perm.
Generator

F

Si

IV

πi

ωi

zim i ci

Figure 2: Design of FiLIPDSM

FiLIPDSM [20] is based on one key register, one pseudorandom number generator (PRNG) and
one nonlinear filter function. The key register takes the N bits secret key K as input. Here the
weight of K must be N

2 (i.e., the number of 1’s in K is N
2 ). Let the secret key K be denoted by

(k1, . . . , kN ). The PRNG takes the public parameter IV (initialization vector) as an input and it
produces the followings at i-th clocking:

1. A subset Si from {k1, . . . , kN} with |Si| = n. Here n is fixed and n ≤ N for a particular
instance of FiLIPDSM.

2. One pseudorandom permutation πi on {1, . . . , n}.

3. One pseudorandom n bit string ωi (called whitening).

In every clock (say i-th), firstly a subset Si of {k1, . . . , kN} with |Si| = n is selected. After that one
pseudorandom permutation π on {1, . . . , n} is generated by the PRNG. The permutation permutes
the position of the elements of Si and produces a new n bit tuple. This tuple is further bitwise
xor’ed with ωi to generate a new n bit string which is considered as an input to the nonlinear filter
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function F . Upon getting the n bit input string the nonlinear filter function produces keystream
bit zi. The pictorial sketch of FiLIPDSM can be found in Figure 2.

The nonlinear filter function F is a d degree Boolean function involving n number of variables
with zero as the constant term. The algebraic normal form of F is a direct sum of certain number
of monomials (each monomial involves different set of variables) of different degree ≤ d. Here F is
represented as mF = [m1,m2, . . . ,md], where each mi denotes the number of monomials of degree

i. It means n =
d∑

i=1
imi. For example if F is [1, 1, 2] then F = x1 + x2x3 + x4x5x6 + x7x8x9. For

different instances of N,n, and mF different models of FiLIPDSM can be created (see [20] for such
instances). One such instance is N = 1792, n = 430, mF = [80, 40, 15, 15, 15, 15] which provides
80 bit security. In this paper, we consider the same instance and show that FiLIPDSM is prone to
DFA.

1.4 Underlying Assumptions for DFA

Here we provide the underlying assumptions of our DFA. This attack model relies on the following
assumptions.

1. The attacker can restart the cipher with the same key and the same other public parameters
as input.

2. The attacker can inject fault at a specific moment during the keystream generation of the
cipher.

3. The attacker has the required tool (such as laser shots, clock glitches etc.) for the injection
of fault.

4. The number of fault injections has to be minimal.

After the injection of the fault the attacker works as follows to recover the secret key.

1. If possible identify the location of the injected fault. If the identification of the location of
the fault is not possible then guess the location.

2. Construct a system of equations involving the state bits as unknown from the normal and
faulty keystream bits.

3. Solve the system to find the unknown state bits.

4. Find the secret key from the state bits.

2 DFA on Rasta

This section describes our DFA on Rasta [11]. Rasta is based on r rounds. Each round is composed
of two layers, one is an affine layer and the other one is a nonlinear layer. The affine layer is
controlled by the XOF function. The XOF function takes IV as input to generate r + 1 random
looking binary matrices and binary vectors. The pseudorandom binary matrices have size n×n and
they are invertible. The pseudorandom binary vectors have length n, where n denotes the block
size of Rasta. The secret key of length n-bit is considered as input to the first affine layer then the
output is further processed into the nonlinear layer. The pictorial representation of this process is
described in Figure 1.
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For mounting the DFA on Rasta the attacker injects a single bit fault in the key K. The injected
location of the fault is unknown to the attacker. From the design specification of Rasta one can
observe that many pseudorandom binary matrices are involved in the keystream bits generation
process. Due to which the fault propagates through the different layers to the keystream in a
random looking manner. This process of fault propagation cannot be controlled by any attacker
as these matrices are generated using a XOF. Due to this we cannot identify the location of the
injected fault by computing the signature. The signature becomes random looking in nature. The
same difficulty occurred in Roy et al.’s DFA on FLIP [23]. To overcome this problem, the authors
have exhaustively tried for all possible fault location and mounted a successful DFA on FLIP.

In the case of Rasta, we considered a similar approach as a first experiment. First we injected
one bit fault and generated a system of equations for each possible fault locations. For our initial
experiments we have considered Rasta with block size n = 219, round r = 6 which provides 80-bit
security (for more detail see [11]). We injected a single bit fault (say at the first bit of K), then
collected the normal and faulty keystream bits z and z̃ for one block. Using these keystream bits
we generated normal keystream bits equations and faulty keystream bits equations in SageMath
9.1 [2]. These equations were further fed to a SAT solver to find a possible solution for K. In this
first experiment the SAT solver did not return any solution in feasible amount of time. Thus, we
looked for a different technique for mounting a DFA on Rasta which we elaborate shortly.

We first see how the injected fault will propagate into the state of the cipher after the injection of
the fault. We assume the fault is at one bit, say in the first bit of the secret key K. Corresponding
to this difference, we define ∆0 = (1, 0, . . . , 0) i.e., 1 is at the first location and 0 at the other
locations. Let K̃ denotes the fault affected key i.e., K̃ = K +∆0. After the application of the first

affine layer the expression of the difference (∆
(1)
1 ) between normal and faulty state will be

∆
(1)
1 = A0,N,i(K) +A0,N,i(K̃)

= (M0,N,i ·K + C0,N,i) + (M0,N,i · K̃ + C0,N,i)

= M0,N,i ·K +M0,N,i · K̃
= M0,N,i · (K + K̃)

= M0,N,i ·∆0. (4)

After the application of an affine layer the output will enter into the nonlinear layer S. The

∆
(1)
1 = (δ

(1)
1 , . . . , δ

(1)
n ) is the input difference for the nonlinear layer S. Let X1 = (x

(1)
1 , . . . , x

(1)
n )

and X̃1 be the normal and fault affected states respectively. Here X̃1 = (x̃1
(1), . . . , x̃n

(1)) with

x̃i
(1) = (x

(1)
i + δ

(1)
i ) for i = 1, . . . , n. If ∆

(2)
1 = (δ

(2)
1 , . . . , δ

(2)
n ) denotes the output difference after the

application of the nonlinear layer then the expression of each δ
(2)
i will be as follows.

δ
(2)
i = S(xi) + S(xi + δ

(1)
i )

= (x
(1)
i + x

(1)
(i+2) (mod n) + x

(1)
(i+1) (mod n)x

(1)
(i+2) (mod n))

+
(
x
(1)
i + δ

(1)
i + x

(1)
(i+2) (mod n) + δ

(1)
(i+2) (mod n)

+(x
(1)
(i+1) (mod n) + δ

(1)
(i+1) (mod n))

(x
(1)
(i+2) (mod n) + δ

(1)
(i+2) (mod n))

)
= δ

(1)
i + δ

(1)
(i+2) (mod n) + x

(1)
(i+1) (mod n)δ

(1)
(i+2) (mod n)

+x
(1)
(i+2) (mod n)δ

(1)
(i+1) (mod n) (5)

+δ
(1)
(i+1) (mod n)δ

(1)
(i+2) (mod n).
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Using the mathematical formulae derived in Equations (4) and (5) we can determine the state
difference expression after any number of iterations of affine and nonlinear layers of Rasta with

the knowledge of ∆0 even though we do not know the secret key. That means if ∆
(2)
l denotes

the state difference after l number of iterations of affine and nonlinear layers then after one more

round the difference expression will be ∆
(1)
l+1 = Ml,N,i · ∆

(2)
l and ∆

(2)
l+1 = (δ

(l+1)
1 , . . . , δ

(l+1)
n ) where

the expression of δ
(l+1)
i will be as per Equation (7).

∆
(1)
l+1 = Ml,N,i ·∆

(2)
l (6)

∆
(2)
l+1 = (δ

(l+1)
1 , . . . , δ(l+1)

n ) (7)

δ
(l+1)
i = δ

(l)
i + δ

(l)
(i+2) (mod n)

+x
(l)
(i+1) (mod n)δ

(l)
(i+2) (mod n)

+x
(l)
(i+2) (mod n)δ

(l)
(i+1) (mod n)

+δ
(l)
(i+1) (mod n)δ

(l)
(i+2) (mod n).

Here x
(l)
(i+1)( mod n) denotes the normal state bit variable of the (i+ 1)-th location after the appli-

cation of the affine layer in the (l+1)-th round. We will be using these mathematical formulae for
our experiments.

We are now in a position for describing our DFA on Rasta. As per the standard rule of DFA we
first collect the normal keystream bits zi; i = 0, . . . , n− 1, for an unknown key K. After collecting
the normal keystream bits we inject one bit fault at a random location of the key register of Rasta.
Here the location of the injected fault is unknown to us. After injecting the fault we collect one block
of the fault affected keystream bits z̃i; i = 0, . . . , n−1. Using these keystream bits we move towards
the offline phase of our attack. We first construct equations corresponding to the normal keystream
bits where the secret key corresponds to the n unknown binary variables. We use Algorithm 2 for
the construction of the equations corresponding to normal keystream bits. In Algorithm 2 we have
considered n block keystream bits which are known to us and the n bit unknown variable which
compose the secret key K. During the process of keystream generation, in each round there is an
application of a nonlinear layer (S) just after the application of a linear layer where each output bit
is a 2 degree function of the input bits (see Equation (3)). Thus, the degree of each state bit will

increase rapidly. To tackle this we introduce new variables y
(j+1)
l corresponding to each degree-two

expression and we incorporate new equations of the form y
(j+1)
l + the degree-two expression in the

set of equation Sys. This optimization helps us to generate the keystream bit equations efficiently.
Now we move forward to generate equations corresponding to the difference between normal

and faulty keystream bits. To construct such equations we consider the difference propagation

equations corresponding to ∆
(1)
l+1 and ∆

(2)
l+1 derived in Equations (6) and (7). We describe this

process of difference equations generation in Algorithm 3. We start the equation generation process
with the information of normal and faulty keystream bits. As we have already mentioned that the
location of the injected fault is not known to us, we generate a system of equations for each possible
fault location and recover the correct key via solving each system. In Algorithm 3 we assume that
the fault is injected at the i-th location of the key register (i can be any integer from 1 to n).
We consider the initial difference ∆0 = (0, . . . , 1, . . . , 0), where 1 is at the i-th position and other
locations are having 0. If the initial state is K and fault affected state is K̃ then K̃ = K+∆0. From
the Equations (6) and (7) we already noticed the form of the state differences after application of the

affine layer and nonlinear layer. In Algorithm 3 we introduce new variables (δy
(j+1)
l ) corresponding
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Algorithm 2: Normal Keystream Bits Equations Generation for Rasta with r Rounds

1 Normal Keystream Bits z = (z1, . . . , zn);
2 Unknown K = (k1, . . . , kn) ;
3 X0 = K ;
4 Sys = {} ;
5 for j = 0 to r − 1 do
6 Xj+1 = Aj,N,i(Xj);

/* The invertible matrix is generated using Algorithm 1. */

7 for l = 1 to n do

8 Eq : y
(j+1)
l + x

(j+1)
l + x

(j+1)
(l+2) (mod n) + x

(j+1)
(l+1) (mod n)x

(j+1)
(l+2) (mod n) = 0 ;

/* Here x
(j+1)
i is the i-th element of Xj+1. */

9 Sys = Sys ∪ {Eq} ;

10 end

11 Xj+1 = (y
(j+1)
1 , . . . , y

(j+1)
n );

12 end
13 Xr+1 = Ar,N,i(Xr) ;
14 Z = Xr+1 +K + z;
15 Sys = Sys ∪ {Z};
16 return Sys

to each nonlinear layer computation on the difference. Related to each δy
(j+1)
l we incorporate a

new equation as described in line 10 of Algorithm 3 (this technique is similar to the one used
in Algorithm 2). The introduction of new variable corresponding to each nonlinear layer helps
significantly in finding the expression of difference between normal and faulty keystream bits in
terms of the secret key K.

After generating the system of equations (Sys and Sysd) using Algorithm 2 and Algorithm 3,
we pass these two systems to the SAT solver for finding the solution corresponding to the secret
key K. If the SAT solver returns a solution corresponding to the considered fault location i then
we put the solution in the set of possible keys. Using each possible key we generate a few keystream
bits and match with the previously collected keystream bits corresponding to the unknown key. In
this way we can filter out the correct key from the list of possible keys. We simulate this process
on one instance of Rasta with 219 block size and 6 rounds, the experimental result is described
below.

DFA on Rasta (n = 219, r = 6, 80 bit security). We have simulated our DFA technique on
Rasta with block size n = 219 and it has r = 6 rounds. As per the designer’s claim this instance
provides 80-bit security. We first collect one block of keystream bits (i.e., 219 bits) z. Further
we inject a single bit fault at a random location of the key register. After that we collect one
block of faulty keystream bits z̃. Further we generate equations involving the unknown secret key
K for the normal keystream bits using Algorithm 2. We use Algorithm 3 for the generation of
equations involving secret key for the difference between normal and faulty keystream bits. We
have used SageMath 9.1 [2] software for the generation of these equations. After the generation of
both these systems of equations we have used SAT solver for finding the solution for the key. The
SAT solver returns a unique solution for the correct fault location in approximately 1555 seconds.
The complete experiment has been performed in a laptop with a processor of 2.80GHz clock, 16 GB
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Algorithm 3: Keystream Bits Difference Equations Generation for Rasta with r Rounds

1 Normal Keystream Bits z = (z1, . . . , zn);
2 Faulty Keystream Bits z̃ = (z̃1, . . . , z̃n);
3 Unknown K = (k1, . . . , kn) ;
4 ∆0 = (0, . . . , 1, . . . , 0), i-th bit is 1 and rest are 0;

5 K̃ = K +∆0;
6 X0 = K ;

7 ∆
(1)
0 = ∆0;

8 for j = 0 to r − 1 do

9 ∆
(1)
j+1 = Mj,N,i ·∆(1)

j ;

/* Here Mj,N,i is the same matrix which is used in line 6 of Algorithm 2.

*/

10 for l = 1 to n do

11 Eq : δy
(j+1)
l + δ

(l)
i + δ

(l)
(i+2) (mod n) + x

(l)
(i+1) (mod n)δ

(l)
(i+2) (mod n) +

x
(l)
(i+2) (mod n)δ

(l)
(i+1) (mod n) + δ

(l)
(i+1) (mod n)δ

(l)
(i+2) (mod n) = 0;

/* Here x
(l)
m is the normal state bit as per the Algorithm 2 and δ

(l)
i is

the i-th bit of ∆
(1)
j+1. */

12 Sysd = Sysd ∪ {Eq} ;

13 end

14 ∆
(2)
j+1 = (δy

(j+1)
1 , . . . , δy

(j+1)
n );

15 end

16 ∆
(1)
r+1 = Mr,N,i(∆

(2)
r ) ;

17 Eq : ∆
(1)
r+1 +∆0 + z + zf = 0;

18 Sysd = Sysd ∪ {Eq};
19 return Sysd

RAM and Linux (Ubuntu 22.04) environment. As the location of the injected fault is not known
to us, we need to simulate this process for all 219 possible locations of fault. Since checking the
consistency of the keystream generated by a candidate key requires negligible time relatively to the
SAT solver. The entire attack on Rasta will take approximately 219× 1555 seconds ≈ 95 hours in
our specified laptop.

3 DFA on FiLIPDSM

In this section we demonstrate our DFA on FiLIPDSM [20]. From the design specification of
FiLIPDSM it can be noticed that this cipher is quite different from the other standardized stream
ciphers [1]. The state of the cipher is updated via random selection of n bits fromN bits, pseudoran-
dom wire-cross permutation and addition of a pseudorandom n-bit length vector. The keystream
bit is generated using these n length pseudorandom bit string. All these design rationals make
FiLIPDSM different from other feedback oriented stream ciphers.

Usually, the first step of DFA has two stages on (feedback oriented) stream ciphers. The first
stage is the injection of a fault in the state of the cipher, and then the identification of the location
of the injected fault. If we inject a fault in the state of a feedback oriented stream cipher then that
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injected fault starts affecting the other state bits via the feedback as the feedback bit is computed
using a deterministic function. This helps the attacker to get a pattern in the keystream bits
(for most of the ciphers) which is thereafter used to identify the location of the injected fault. For
FiLIPDSM, the state of the cipher is updated via random selection of n out of N key bits and further
these n bits are permuted using a pseudorandom permutation. Thus, we obtain an unpredictable
movement of the fault in the state. Due to which we do not get any pattern in the keystream bits
after injecting fault in the state of the cipher. Therefore finding the location of the injected fault is
difficult for FiLIPDSM even if the number of faults remains constant for all the clocks. Moreover,
there is another issue in FiLIPDSM, the fault affected bit may not be involved in every keystream
bit computation, since n many bits are selected randomly from the N length key register for the
keystream bit computation. Now to tackle these issues we follow a different technique which we
discuss in the next paragraph.

In the first step of our DFA on FiLIPDSM we inject a single bit fault in the key register of length
N . As the detection strategy for the location of the fault does not apply for FiLIPDSM, we directly
go for the equation generation part of the DFA. Here we generate a system of equations for all
possible (i.e., N) locations of the fault. For each system we will apply the same procedure, solving
the system of equations for recovering the key K = (k1, . . . , kN ) of weight N

2 . For an unknown key
K we will first collect l many normal keystream bits. These bits are denoted by z1, . . . , zl. After the
injection of a single bit fault (location is not known) we collect l many faulty keystream bits. These
faulty keystream bits are denoted by z̃1, . . . , z̃l. For every possible fault location r (r = 1, . . . , N)
we need to prepare the corresponding system of equations, which will be done offline. For simplicity
of our discussion, we consider r = 1 i.e., we discuss the scenario for k1 (fault is at first bit of the
key register) and the same will be followed for all other values of r. As the secret key K is loaded
in the key register and the state of the register is not updated, the fault will remain fixed at k1
only. Among the N bits of the key register, n bits are selected randomly in every clock. These n
bits will be involved in the keystream bit computation for this clock. If the faulty bit k1 is a part
of the selected bits then it will affect the keystream bit computation of that clock, otherwise the
corresponding keystream bit will be fault free. Thereafter, the question is with what probability
the bit k1 will be selected from K = (k1, . . . , kN ) during the selection of n out of N bits. Here
we detail the expression of that probability. We can select n bits from N bits in

(
N
n

)
number

of ways. Among these
(
N
n

)
many selections there will be

(
N−1
n−1

)
number of possibilities where k1

will be present. Thus, the probability that the selected n bits from the key register contains k1 is

p =
(N−1
n−1)
(Nn)

= n
N . We know that when the faulty bit k1 is present in the selected subset of n bits from

the key register then the keystream bit is affected by the injected fault, otherwise the keystream
bit is fault free which does not help us in mounting the DFA on FiLIPDSM. As the selection of
subsets of bits from the key register is done using the public parameter IV, we take those clockings
where the considered fault location bit (here k1) is selected for the keystream bit computation.

The design specification of FiLIPDSM says that the nonlinear filter function F is a direct sum of
certain monomials involving different number of variables. If the nonlinear filter function F has the
representation mF = [m1, . . . ,md] then F will have m1 number of linear monomials, m2 number of
degree 2 monomials, m3 number of degree 3 monomials and so on till degree d, with each variable
appearing in only one monomial. In the generic sense F has mi number of monomials of degree
i. In the following we assume that the faulty bit is selected for the keystream bit computation for
t-th clock. Let zt and z̃t denote the normal and faulty keystream bits respectively. If the faulty bit
is involved in a linear monomial in the keystream bit computation then zt + z̃t = 1. These kind
of equations do not involve any key variable thus they are discarded immediately. If the faulty
bit is involved in any degree two term of the keystream bit then zt + z̃t will be a single monomial
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of degree 1. More generally, if the faulty bit is involved in any degree i term of the keystream
bit computation then zt + z̃t will be a single monomial of degree (i− 1). After constructing these
equations using l many normal and faulty keystream bits we use a SAT solver to find a solution
for K. If the SAT solver returns a solution whose weight is N

2 then we consider that solution as a
possible key and put in a set I. We generate a few keystream bits using all possible key Ki from
the set I and match it with the known keystream bits for the unknown key K. If there is a match
then Ki is the correct key. As the location of the fault is not known to us, we repeat the same
process for all possible values of r ∈ {1, . . . , N} until we recover the unknown key K. If we assume
that the SAT solver takes in average T seconds to find a solution, then the total time for recovering
the secret key is ≈ NT

p , where p is the probability that the faulty bit is selected in the keystream
bit computation.

DFA on FiLIP-430 (N = 1792, n = 430, 80-bit security). We consider an instance of FiLIPDSM,
i.e., FiLIP-430 to experimentally verify our DFA. At first we inject a single bit fault at the key
register of length 1792. Since the fault detection technique does not apply, we try all possible fault
locations for our attack. Thus without loss of generality we can assume that fault is injected at
the first bit (k1) of the key register. According to the defined parameters of FiLIP-430, a subset
of bits with cardinal 430 will be selected randomly. These 430 bits are going to be involved in
the keystream bit computation. As this selection is probabilistic, the probability that k1 will be

selected for keystream bit computation is
(1791429 )
(1792430 )

= 430
1792 ≈ 0.24. As these selection of subsets of

size 430 is done using IV, for our attack we are going to consider only those cases where the faulty
bit is selected for the keystream bit computation. With these considerations we collect normal (z)
and faulty keystream bits (z̃) for the unknown key K. Now we compute the corresponding normal
and faulty keystream bit expressions where the secret key bits are the unknown variables. These
expressions are further xor’ed (say the xor’ed expression is E) to create an equation of the form
E = z + z̃. After forming the system of equations involving the unknown variables, we pass the
entire system to the SAT solver for finding a solution. By doing the experiment we observed that
for small number of equations we get multiple solutions for the system. A system with average
30000 equations provides a unique solution which is also valid i.e., the SAT solver returns a solution
whose Hamming weight is 896. In practice, checking the Hamming weight of a candidate key and
verifying the consistency of the keystream generated by the candidate key requires negligible time
relatively to the SAT solver. The entire process took approximately 362 seconds on a laptop with
processor of 2.80GHz clock, 16 GB RAM and Linux (Ubuntu 22.04) environment. This average
time is based on the assumptions that the fault location is correct and the faulty bit is selected
every time. If we incorporate all these metrics then the actual required time for a successful DFA
on FiLIP-430 is approximately ≈ (362×1792

0.24 ) seconds ≈ 751 hours on our specified laptop.

4 Conclusion

In this paper we have proposed DFA on two most recent stream ciphers designed for FHE, namely
Rasta and FiLIPDSM. We have shown that the secret key of both the ciphers can easily be recovered
in practical time just by injecting a single bit fault into the key register of the cipher. From our
analysis on these two stream ciphers designed for FHE we strongly believe that FHE supported
stream ciphers are vulnerable under DFA and the design criteria of these kinds of ciphers need
attention.
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[8] C. Carlet, P. Méaux and Y. Rotella. Boolean Functions with Restricted Input and their Ro-
bustness; Application to the FLIP Cipher. IACR Trans. Symmetric Cryptology, vol. 3 (2017),
pp. 192–227, 2017.

[9] B. Cogliati, and T. Tanguy. T. Multi-user Security Bound for Filter Permutators in the Random
Oracle Model. Designs, Codes and Cryptography, vol. 87, pp. 1621–1638, Springer, 2019.
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