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Abstract. We give the first examples of public-key encryption schemes which can be proven to achieve
multi-challenge, multi-user CCA security via reductions that are tight in time, advantage, and memory.
Our constructions are obtained by applying the KEM-DEM paradigm to variants of Hashed ElGamal
and the Fujisaki-Okamoto transformation that are augmented by adding uniformly random strings to
their ciphertexts and/or keys.
The reductions carefully combine recent proof techniques introduced by Bhattacharyya’20 and Ghoshal-
Ghosal-Jaeger-Tessaro’22. Our proofs for the augmented ECIES version of Hashed-ElGamal make use
of a new computational Diffie-Hellman assumption wherein the adversary is given access to a pairing
to a random group, which we believe may be of independent interest.
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1 Introduction

Secure deployment of cryptography requires concrete analysis of schemes to understand how the success
probabilities of attackers grow with the amount of resources they employ to attack a system. The use of
reduction-based cryptography enables such analysis by using an attacker with running time t and success
probability ϵ to construct a related adversary with running time t1 and success probability ϵ1 against a
computational problem whose security is better understood. A gold standard for concrete security reductions
are tight reductions for which t1 « t and ϵ1 « ϵ. We refer to such a reduction as TA-tight (time-advantage-
tight) to distinguish from other notions of tightness.

Auerbach, Cash, Fersch, and Kiltz [ACFK17] argued that the memory usage of an attacker can be crucial
in determining its likelihood of success. This kicked of a line of works [WMHT18, TT18, JT19, Din20b,
Din20a, Bha20, GT20, GJT20, DTZ20, SOS20, DGJL21, GGJT22] on memory-aware cryptography which
accounts for the memory usage of attackers in security analyses. Auerbach, et al. focused in particular on
incorporating memory considerations into the study of reductions. We refer to a reduction as TAM-tight if
it is TA-tight and additionally s « s1 where these variables, respectively, denote the amount of memory used
by the original adversary and the reduction adversary.

In this work, we construct the first public-key encryption schemes with TAM-tight proofs of multi-
challenge (and multi-user) chosen-ciphertext attack (CCA) security. Our schemes are based on variants of
the Hashed ElGamal and Fujisaki-Okamoto transformation key encapsulation mechanisms. These variants
augment ciphertexts and/or keys with random strings that are included in hash function calls.

Multi-challenge Setting. As mentioned, our focus in this work is on multi-challenge and multi-user
security. This is simply motivated by the fact that encryption schemes get deployed across many different
users each of whom will encrypt many messages, so it is important to understand how the security of a
scheme degrades as the number of encryptions increase. In particular, the goal of tight proofs is to show that
security does not meaningfully degrade. Multiple papers [HJ12, LJYP14, GHKW16] have looked at this in
the non-memory-aware setting, providing schemes with TA-tight proofs of CCA security. However, extending
any of these proofs to the memory-aware setting is quite difficult.

Prior works on memory-tight CCA secure encryption have identified a primary difficulty in the multi-
challenge setting which lies in how the decryption oracle handles challenge ciphertexts. Simply decrypting a
challenge ciphertext would lead to trivial attacks against any scheme, so instead the decryption oracle has
to recognize these ciphertexts and respond to them in a special manner.1 This makes writing memory-tight
security proofs difficult because the reduction adversary must emulate this differing behavior on decryption
queries for challenge or non-challenge ciphertexts, but it is unclear how to go about identifying which are
challenge ciphertexts other than remembering and checking against all ciphertexts that were previously
returned to encryption queries. In the single-challenge setting this is a non-issue, because storing the single
challenge ciphertext requires minimal memory.

Memory-tightness of Hashed ElGamal. In recent years, several papers have discussed the challenge
of providing memory-tight security proofs for Hashed ElGamal. Auerbach, et al. [ACFK17] gave it at as an
example of a proof they considered the memory complexity of, but were unable to improve. Follow-up work
by Bhattacharyya [Bha20] and Ghoshal and Tessaro [GT20] analyzed this further, giving what might seem
at first to be contradictory results. Bhattacharyya gave a memory-tight proof for Hashed ElGamal in the
single-challenge setting while Ghoshal and Tessaro proved a lower-bound establishing that a memory-tight
proof for Hashed ElGamal was not possible.

Resolving this contradiction requires more precisely understanding each result. The lower bound applies
specifically for reductions to Strong Computational Diffie-Hellman (CDH) security [ABR01] which are “black-
box” in several ways, including that they do not depend on the particular group used. Ghoshal and Tessaro
note that Bhattacharyya’s result (for single-challenge security) avoids the lower bound by not being black-
box in this manner; it depends on the group having an efficient pairing. However, for efficiency it is preferable
to implement schemes using groups for which efficient pairings are believed not to exist.

1 An alternate definitional style would disallow the adversary from querying challenge ciphertexts to its decryption
oracle, but prior the works argue this is an inappropriate restriction in the memory-aware setting [GJT20, GGJT22].
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Augmented Twin ElGamal (aTWIN) CDH $CCA KEM ek, c

Transformation T CPA PKE Rigid OW-PCA PKE -

Transformation aV Rigid OW-PCA PKE Rigid OW-PCVA PKE ek

Transformation aUK Rigid OW-PCVA KEM or PKE CCA KEM ek, c

KEM/DEM (KD) $CCA KEM and SKE $CCA PKE -

Fig. 1. TAM-tight reductions we provide. Applying transformations T, aV, and aUK in sequence gives a “Fujisaki-
Okomoto-style” construction of a CCA secure KEM. Results are for multi-user, multi-challenge security. $CCA
security requires ciphertexts be indistinguishable from random ciphertext. Augmentation ek means a random string
is added to each encryption key and augmentation c means a random string is added to each ciphertext. These
random strings are included in every relevant random oracle query.

Our result for Hashed ElGamal is black-box in the sense of Ghoshal and Tessaro. We avoid the lower-
bound without requiring an efficient pairing by introducing and using an assumption (Pair CDH) which is
stronger than Strong CDH, but is reasonable to assume holds in typical groups based on elliptic curves.2 We
discuss this assumption in more detail momentarily. Indeed, Ghoshal and Tessaro say in their paper [GT20,
Sec. 3.1, p.42], “it appears much harder to extend our result to different types of oracles than [the Strong
CDH oracle], as our proof is tailored at this oracle.” Our new security notion gives an example of such an
oracle to which their result cannot be extended. The results in [GT20] complement ours in the sense that
any reduction from Pair CDH to Strong CDH is likely to incur the memory lower bound presented in [GT20]

1.1 Our Results

We summarize our results in Fig. 1. In short, we obtain three constructions of $CCA secure KEMs from
CDH assumptions (aECIES, aCS, and aTWIN) as well as one construction of a CCA secure KEM from a CPA
secure public encryption scheme (by applying T, aV, and aUK).

Hashed ElGamal. Our first results consider the security of Hashed ElGamal. Following Bhattacharyya,
we actually consider two variants which we refer to as the ECIES [ABR98] and the Cramer-Shoup [CS03]
variants. Additionally we will look at a “Twin ElGamal” construction by applying the ideas of Bhattacharyya
to a construction of Cash, Kiltz, and Shoup [CKS09]. The negative results of Ghoshal and Tessaro apply
only to the ECIES variant.

First we discuss ECIES and Cramer-Shoup. In both, the decapsulation key is a value x P Z˚
p and the

encapsulation key is X “ gx. Here g is a generator of a group of prime order p. For encapsulation, one

2 Technically, the lower bound also does not apply because we are considering an augmented scheme which differs
from the one analyzed by Ghoshal and Tessaro. However, the augmentation is not important for this comparison,
because in the single-challenge setting where the lower-bound was proven, Pair CDH TAM-tightly implies security
of the non-augmented scheme as well.
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samples a fresh y Ð$ Z˚
p and returns gy as the ciphertext. For ECIES the derived key is HpXyq, while for

Cramer-Shoup it is Hpgy, Xyq. Our main results concern “augmented” versions of both of these schemes
where the ciphertexts are instead pa,gyq. For the Cramer-Shoup version, the keys are also augmented and
are of the form pα, xq, pα,gxq. Here, a and α are uniformly random bitstrings used as additional input(s) to
the hash function. We model H as a random oracle.

To understand these results, let us discuss the high-level idea of proving security for ECIES. A standard,
single-challenge proof would work from the Strong CDH assumption in the random oracle model. In Strong
CDH an adversary is given X “ gx, Y “ gy, and an oracle O which on input B,C tells whether Bx “ C.
Its goal is to return Xy. The only way to distinguish HpXyq from random is to query H on input Xy. So
a reduction adversary gives X as the encapsulation key, Y as the challenge ciphertext, simulates random
oracle and decapsulation queries, and checks if any of the random oracle queries are Xy in which case it
returns that and wins its game. The oracle O is used for checking whether random oracle queries are Xy (for
a random oracle query Z, one queries OpY, Zq to check) and for maintaining consistency between random
oracle and decapsulation queries for non-challenge ciphertexts. A decapsulation query for Y and a random
oracle query for Y, Z should return the same result if Y x “ Z. The reduction can maintain this consistency
by remembering all of the queries made to both oracles and then using O to check for this consistency. This
is neither time- nor memory-tight.

Bhattacharyya was able to make this TAM-tight by introducing a new technique for this consistency
aspect. They simulate the random oracle HpCq by hpepg, Cqq where h is a random function and e is a
pairing. Then the output of a non-challenge decapsulation query B can be simulated as hpepX,Bqq. In our
proof we use a similar technique, but replace the requirement for a pairing-friendly group by using a new
variant of CDH we will discuss momentarily.

The first step in making the proof work in the multi-challenge setting is to use Diffie-Hellman rerandom-
ization techniques so we can have multiple Diffie-Hellman challenges. We let the u-th user’s public key beXxu

and the i-th ciphertext by Y yi . For memory-tightness, we pick xu and yi using a (pseudo-)random function.3

Then if the adversary makes a random oracle query HpCq where C “ Xxu¨y¨yi , we have C1{pxu¨yiq “ Xy. A
challenge here is to know which u and i to use for such a random oracle query. A reduction could check each
choice of u, i, but this would lose time-tightness. At the same time, for a decapsulation query B we must be
able to identify if B was a prior challenge query. Storing all prior challenge queries loses memory-tightness.

Both of these issues are solved by our addition of an auxiliary string a to each ciphertext and hash query.
The idea here is based on memory-tightness techniques of GGJT [GGJT22], in that we are going to hide
the pertinent information we need in a. Rather than sampling a at random, if the i-th challenge query is
made to user u then our reduction adversary picks a to be the “encryption” of pu, iq. Now on future random
oracle and decapsulation queries we can recover u, i by “decrypting” a. This allows us to properly simulate
the view of the adversary.

Cramer-Shoup and Twin Constructions. For the (unaugmented) Cramer-Shoup construction hash
queries have the form HpY, Zq. Bhattacharyya’s main technique for TAM-tightness with this construction
was to simulate the random oracle as hpY,gq if Z “ Xdlog Y and as hpY,Zq otherwise. Here h is random
function. The reduction adversary uses its Strong DH oracle to check if Z “ Xdlog Y holds.

There are two challenges in extending this to the multi-challenge, multi-user setting. The first is analogous
to the discussion above, that we want to be able to identify challenge queries forwarded to decryption. As
before, we use the auxiliary string included in each ciphertext for this. Namely, we select a as an “encryption”
of i for the i-th challenge.

The second challenge is that for the multi-user setting there are multiple encapsulation keys Xu – one
for each user. Thus, when simulating the random oracle we want to check whether Z “ Xdlog Y

u holds which
is ill-defined because its not clear which u should be used. This is where the second augmentation comes
in, namely the random string α included with each users’ encapsulation key. It acts as a domain separator
between each user’s queries to the random oracle. Moreover, in our proof our reduction adversary will sample
α as an “encryption” of u so that u can be recovered efficiently when simulating random oracle queries.

3 In the body, this is separated out as a proof that single-challenge CDH tightly implies multi-challenge CDH.
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In the Twin ElGamal construction, public keys are a pair pX “ gx,W “ gwq and the hash computed
in encapsulation is Hpgy, Xy,W yq. By augmenting this in the same way as the Cramer-Shoup we can use
basically the same proof, replacing Strong CDH with Strong Twin CDH. Note that Strong Twin CDH was
shown to be equivalent to plain CDH by Cash, Kiltz, and Shoup [CKS09].

Pair CDH Security.As we have been mentioning, we avoid the need for groups with pairing in our result
for ECIES by making use of a new computational assumption. This assumption, we refer to as Pair CDH
security, extends CDH security by giving the adversary access to an oracle which, on input A and B (with
discrete logarithms a and b) computes a and b then returns a random function applied to a ¨ b. This acts, in
essence, as a pairing from the group under consideration to a randomly chosen group. Our use of this in our
security proof for ECIES takes advantage of the fact that (i) the pairing is only needed for the proof, not in
the construction itself and (ii) the proof does not require the ability to efficiently perform group operations
with the output of the pairing. We think this notion may be of further interest if other proofs can be found
where better tightness can be achieved using a pairing only in the reduction.

To justify our new assumption we analyze how it compares to existing assumptions. Pair CDH security is
implied by CDH security if the group under consideration has an efficient pairing. This holds because we can
emulate the random pairing by first applying the efficient pairing and then applying a random function (which
may be pseudorandomly instantiated for efficiency). In turn, Pair CDH implies the Gap CDH assumption
because a pairing can be used to check whether given group elements form a Diffie-Hellman triple.

These results do not justify the use of Pair CDH security for typical groups based on elliptic curves which
do not have pairings. For this, we turn to non-standard models (i.e. algebraic or generic group models [Sho97,
Mau05, FKL18]). In these models, we are able to show that CDH and Pair CDH are equivalent because
learning anything from the oracle requires the ability to find non-trivial collisions in the pairing. The ability
to find such collisions can in turn be used to solve the discrete logarithm problem.

Fujisaki-Okamoto Transformation.The other KEMs we consider are those derived from the Fujisaki-
Okamoto style transformations which start with a CPA secure public key encryption scheme and apply
several random oracle based transformations to construct a CCA secure KEM. Hofheinz, Hövelmanns, and
Kiltz [HHK17] gave a nice modular approach for proving the security of several variants of this transformation.
Bhattacharyya showed how to make some of these proofs memory-tight in the single-challenge setting (in
some cases requiring one additional intermediate transformation). We extend these to the multi-challenge
setting, focusing on one particular sequence of transformations.

For two of the transforms, we need to consider augmented versions in which random strings are added to
the keys and to each ciphertext and incorporated into the hash queries. As with our CDH-based constructions,
our reduction samples these strings as the encryption of the pertinent information it would need to identify
challenge ciphertexts and responds to them appropriately.

For these results, we require that the starting CPA scheme have good multi-challenge security. This is a
significantly weaker starter point than multi-challenge CCA security because it avoids the issue of having to
be able to identify challenge ciphertexts for the decryption oracle.

Lifting to Public-key Encryption. The approaches described above are for key encapsulation mech-
anisms. This raises the question of whether these tight reductions can be applied to public-key encryption
via the KEM-DEM paradigm. It uses a KEM to generate a new symmetric key for a data encapsulation
mechanism to encrypt the actual message with. This was previously looked at by GGJT [GGJT22], who
gave a TAM-tight proof of security. However, because of their particular motivations, the proof assumed the
KEM was constructed from a public-key encryption scheme. We show that (with some modifications) the
proof works with generic KEMs as well.

1.2 Changes From Proceedings Version

A version of this article previously appeared at Asiacrypt 2022 [JK22]. This is a major revision of that article.
That version omitted the proof of most results. While preparing this article, we found bugs in some of the
omitted proofs and needed to change our constructions to fix these bugs. In the process of correcting these
issues, we decided to improve and extend some of the results being proven.
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Fixing Erroneous Claims.Theorems 2 and 5 in [JK22] are incorrect. They claim to provide TAM-tight
security results in the multi-user, multi-challenge setting for versions of the Cramer-Shoup and UK KEMs that
augment the ciphertexts, but not keys with random strings. We originally wrote single-user, multi-challenge
proofs for these constructions. When attempting to extend them to the multi-user setting we introduced
subtle flaws to the proofs which we unfortunately missed. The current article fixes these issues by defining
schemes aCS (Sec. 4.2) and aUK (Sec. 5) to augment the keys with random strings as well. Single-user,
multi-challenge security proofs for the schemes as defined in [JK22] are captured as a special case of the
proofs in this version by setting this key augmentation string to have length 0.

Improved/Extended Results. In the process of fixing the incorrect proofs we decided to strengthen our
results. First, we now consider a stronger version of security for encryption/encapsulation schemes that
allows attackers to repeat prior queries to the challenge oracle and be given the same ciphertext from the
previous time that query was made. When not considering memory, this change makes no difference as an
attacker can simply remember all prior queries. The attacker cannot do so in the memory-aware setting, so
requiring the game to store this information for the attacker strengthens the security definition. Second, we
add analysis of the Twin ElGamal construction aTWIN which was not present in the prior version. Third, we
also recast aUK as a transformation applied to a KEM, rather than a PKE scheme. This allows us to observe
that our security results for aCS and aTWIN can actually be viewed as specific instances of the security result
for aUK. By considering the canonical way of constructing a KEM from a PKE scheme (namely, picking the
input message at random and considering that to be the encapsulated key), we still capture the application
of aUK to PKE schemes. Finally, we now give two security theorems for the KEM/DEM construction, one
that achieves the standard version of $CCA security where the adversary is not allowed to repeat queries to
the challenge oracle and the other where the adversary is allowed to repeat queries to challenge oracle. The
proof of the latter is more involved and has a loss in concrete security, requiring longer ciphertexts.

2 Preliminaries

2.1 Notation

We recall basic notation and simple lemmas we will use in our paper.

Pseudocode. For our proofs, we use the code based framework of [BR06]. If A is an algorithm, then
x Ð AOpx1, x2, ...; rq denotes running A on inputs x1, x2, ... with coins r and having access to the set of
oracles O to produce output x. We use the notation Ð$ instead of Ð when not explicitly specifying the coins
r. If S is a set, |S| denotes its size, xÐ$ S denotes sampling x uniformly from S, and S‹ denotes SY t‹u. We
use the symbol K to indicate rejection. Sets are assumed not to include ‹ or K when not specified otherwise.
When not specified, tables are initialized empty, integers are initialized to 0, and booleans are initialized to
false. Code of the form pxp¨q, yp¨q, . . . q Ð$X initializes x, y, . . . as “lazily sampled” tables where xu, yu, . . .
are sampled by pxu, yu, . . . q Ð$X whenever one of them is first accessed. The code OUTPUTpx1, x2, . . . q
indicates that an adversary halts immediately with the output px1, x2, . . . q.

Security notions are defined with games such as the one in Fig. 3. The probability that the game G
outputs true is PrrGs. We sometimes use a sequence of “hybrid” games in one figure for our proofs. We use
comments of the form //Gri,jq to indicate that a line of code is included in games Gk for i ď k ă j. To

identify changes made to the kth hybrid, one looks for lines of code commented as //Gri,kq for code that is

no longer included in the kth hybrid and //Grk,jq for code that is new to the kth hybrid.

Complexity Measures.Following ACFK [ACFK17], we measure the local complexities of algorithms and
do not include the complexity of oracles that they interact with. We focus on the worst case runtimeTimepAq

and memory used for local computation MempAq of any algorithm A.

Functions and Ideal Models.We define FcspD,Rq (resp. InjpD,Rq) to be the set of all functions (resp. in-
jections) mapping from D to R. For f P InjpD,Rq, we define f´1 to be its inverse (with f´1pyq “ K if y has
no preimage). If Dt and Rt are sets for each t P T , then we define FcspT,D,Rq (resp. InjpT,D,Rq) to be the
set of functions f so that fpt, ¨q P FcspDt, Rtq (resp. fpt, ¨q P InjpDt, Rtq). We let ftp¨q “ fpt, ¨q.
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For f P InjpD,Rq we let f˘ denote the function defined by f˘p`, xq “ fpxq and f˘p´, xq “ f´1pxq. We
often write fpxq or f´1pxq in place of f˘p`, xq or f˘p´, xq. We let Inj˘pD,Rq “ tf˘ : f P InjpD,Rqu and
extend this to define Inj˘pT,D,Rq analogously.

Ideal models (e.g. the random oracle or ideal cipher model) are captured by having a scheme S specify a
set of functions S.IM. Then, at the beginning of a security game for S, a random H P S.IM is sampled. The
adversary and some algorithms of the scheme S are then given oracle access to H. The standard model is
captured by S.IM being a singleton set containing the identity function.

If F and G are sets of functions, then we define pF,Gq “ F ˆ G “ t f ˆ g : f P F, g P G u. Here, f ˆ g
is the function defined by f ˆ gp0, xq “ fpxq and f ˆ gp1, xq “ gpxq. In the code of an algorithm expecting
oracle access to f ˆ g P F ˆ G, we write fpxq or gpxq with the natural meaning. We extend this notation to
more than two sets of functions as well.

Switching Lemma.Our proofs make use of the indistinguishability of random functions and injections, as
captured by the following standard result.

Lemma 1 (Switching Lemma). Fix T , D, R and N “ mintPT |Rt|. For any adversary A making at most
q queries, it holds that |PrrAf ñ 1s ´ PrrAg ñ 1s| ď 0.5 ¨ qpq ´ 1q{N ď 0.5 ¨ q2{N , where the probability is
taken over the randomness of A, sampling f Ð$ FcspT,D,Rq, and sampling g Ð$ InjpT,D,Rq.

Simple Probability Bounding. At various points we will bound a probability by some fraction px ´

nq{py ´ nq. The following observation allow us a simple method for simplifying such fractions.

Lemma 2. px´ nq{py ´ nq ď x{y whenever y ě x and y ą n ě 0.

The second condition, y ą n ě 0, will always hold for us and if the first, y ě x, is false then x{y is a
vacuous bound for a probability anyway. As such, we will apply the bound px ´ nq{py ´ nq ď x{y as if it
were unconditional in our proofs.

2.2 Memory-tightness background

F-oracle Adversaries.We adopt GGJT’s [GGJT22] oracle adversary formulation for our proofs in the
memory-aware setting, i.e., we allow reductions to access uniformly random functions or invertible random
injections. Our reductions are of the form shown below for some set of functions F and algorithm B. We call
such an adversary A an F-oracle adversary.

Adversary AO(in)

f Ð$ F
out Ð$ BO,f (in)
Return out

The complexity of adversary A would include the (large) complexity of sampling, storing, and computing
f . However, as proposed in [GGJT22], we present theorems in terms of the reduced complexity of an oracle
aided adversary which is defined as

Time˚
pAq “ TimepBq and Mem˚

pAq “ MempBq.

We refer readers to Lemma 2 of [GGJT22] which bounds how much an adversary may be aided by a random
object by replacing it with a pseudorandom version of the object. Pseudorandom injections can typically be
instantiated by appropriately chosen encryption schemes.

There is a small issue when pseudorandomly instantiating a random function if the game A plays is ineffi-
cient. This is the case for some of our reduction adversaries playing CDH variants wherein they have access to
some inefficient oracle based on the group. Then the pseudorandomness reduction adversary from [GGJT22]
will be inefficient because it simulates the game that A is playing. However, we can simply use pseudoran-
dom schemes believed to be secure even against adversaries with access to the inefficient oracle. This seems
reasonable as we can choose a pseudorandom scheme which seems unrelated to the group.
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PKE Syntax

pek, dkq Ð$ PKE.K
c Ð$ PKE.EH

pek,mq

m Ð PKE.DH
pdk, cq

KEM Syntax

pek, dkq Ð$ KEM.K
pc,Kq Ð$ KEM.EH

pekq

K Ð KEM.DH
pdk, cq

SKE Syntax

K Ð$ SKE.K
c Ð$ SKE.EH

pK,mq

m Ð SKE.DH
pK, cq

Fig. 2. Syntax of a public key encryption scheme PKE, key encapsulation mechanism KEM, and symmetric key
encryption scheme SKE. The ideal model oracle is H.

Message Encoding Techniques.The message encoding technique proposed by GGJT in [GGJT22] pro-
grams randomness that a reduction provides to an adversary in a special way that stores retrievable state
information. This is achieved by generating randomness as the output of random injections. The reduction
may then invert randomness generated thusly to retrieve state information. For example, consider a key
encapsulation mechanism that outputs ciphertexts of the form pa, cq where a is uniformly random. Then a
reduction can simulate challenge ciphertexts by setting a “ fpiq where f is a random injection and i is some
pertinent information the reduction would want to know if the adversary later makes oracle queries for the
same ciphertext. Then the reduction can recover this information during future queries as i Ð f´1paq.

Map-Then-Random-Function.We describe the main proof technique of Bhattacharyya [Bha20], namely
“map-then-rf”.4 This technique allows the reduction to use the composition of an injection and a random
function to replace a random function. This relies on the simple fact that if h P InjpD,Sq, then sampling f
according to f Ð$ FcspD,Rq or g Ð$ FcspS,Rq; f Ð g ˝ h are equivalent, meaning, if g is a random function,
and h is any injection, then f Ð g ˝ h is a random function. This allows a reduction to compute the output
fpxq given hpxq, even if it does not know x.

2.3 Public Key Encryption

Syntax. A public key encryption scheme, PKE, specifies three algorithms - the key generation algorithm
(PKE.K) that returns a pair of keys (ek, dk) where ek is the encryption key and dk is the corresponding
decryption key, the encryption algorithm (PKE.E) that takes the encryption key ek and a message m and
returns ciphertext c, and the decryption algorithm (PKE.D) that takes the decryption key dk and a ciphertext
c and returns message m (or the special symbol K to indicate rejection). The syntax of these algorithms is
given in Fig. 2.

Perfect correctness requires PKE.DHpdk, cq “ m for all pek, dkq P rPKE.Ks, all m, all H P PKE.IM, and all
c P rPKE.EHpek,mqs. The weaker notion of δ-correctness requires that for all (not necessarily efficient) D,

PrrPKE.DHpdk,PKE.EHpek,mqq ‰ m : mÐ$ DHpek, dkqs ď δpqq

if q upper bounds the number ofH queriesD makes. The probability is over pek, dkq Ð$ PKE.K,H Ð$ PKE.IM,
and the coins of D and PKE.E. When not stated otherwise, schemes are assumed to be perfectly correct.

We define the encryption keyspace as PKE.Ek “ tek : pek, dkq P rPKE.Ksu and assume that for each
ek P PKE.Ek and allowed message length n, there exists a set PKE.Cpek, nq such that PKE.EHpek,mq P

PKE.Cpek, |m|q always holds. We assume this set is disjoint for distinct message lengths and let PKE.C´1pek, cq
return n such that c P PKE.Cpek, nq. Sometimes we assume that all messages to be encrypted are drawn from
a set PKE.M of equal length messages and then let PKE.C simply denote the set of all possible ciphertexts.
We let PKE.R denote the set from which PKE.E draws its randomness.

Suppose PKE.E is deterministic. Then we say PKE is rigid if PKE.DHpdk, cq “ m ‰ K implies that
c “ PKE.EHpek,mq for any pek, dkq output by PKE.K. Bernstein and Persichetti [BP18] introduced rigidity,
noting that (at the time) some results of [HHK17] analyzing Fujisaki-Okamoto-style transforms were incorrect

4 Bhattacharyya actually uses “map-then-prf”, as they were not using the oracle adversary formulation.
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for having omitted rigidity as an assumption.5 Bhattacharyya [Bha20] replaced rigidity with a property that
for every message there exists at most one ciphertext that decrypts to it, which they fold into their definition
of deterministic. In proofs, it can be combined with correctness to give a form of rigidity.6 As we are not aware
of any schemes of interest that do not achieve perfect rigidity, but do achieve this “uniqueness” property we
stick with rigidity in our proofs.

Indistinguishable From Random Security.We consider indistinguishable from random, chosen cipher-
text attack ($CCA) security as captured by Fig. 3. The definition is multi-user and multi-challenge (allowing
multiple challenges per user). It requires that ciphertexts output by the encryption scheme be indistinguish-
able from random, even when given access to a decryption oracle. In this game, the adversary obtains the
encryption key eku for user u (drawn from some set U) by querying Newpuq. It makes an encryption query
Encpu, i,mq to receive a challenge encryption of m by u and a decryption query Decpu, cq to have u decrypt
c. Here i is a “challenge identifier” drawn from some set I. The attacker can repeat a query Encpu, i,mq

to receive the same ciphertext that it was given the first time. At the end of this section, we discuss some
subtleties regarding the choice of U that are unique to the memory-aware setting and our decision to allow
repeated queries (Sec. 2.6).

The adversary needs to distinguish between the real world (b “ 1) in which a query to Encpu, i,mq

returns a real encryption of m and the ideal world (b “ 0) in which the same query returns a uniformly
random element of PKE.Cpeku, |m|q.

Table entry M ru, cs stores the message encrypted in user u’s challenge ciphertext c. If the adversary
queries Dec with a challenge ciphertext it returns M ru, cs rather than performing the decryption. Prior
works on memory-aware cryptography [GT20, GGJT22] considered other ways a decryption oracle might
respond to challenge ciphertexts and argued that this is the “correct” convention. The advantage of an
adversary A is Advmu-$cca

PKE pAq “ PrrGmu-$cca
PKE,1 pAqs ´ PrrGmu-$cca

PKE,0 pAqs.

CCA security is captured by the game Gmu-cca
PKE,b which is defined the same, except c0 is the encryption of

the all zeros string and CPA security is captured by restricting the CCA security adversary to not query its
decryption oracle. Their advantage functions Advmu-cca and Advmu-cpa are defined as above.

The general framework of capturing multi-user security by allowing the attacker to access separate in-
stances of oracles for each user with shared secret bit across them is originally due to Bellare, Boldyreva,
and Micali [BBM00] who provided a definition for CPA secure public-key encryption.

2.4 Key Encapsulation Mechanisms

Syntax.A key encapsulation mechanism, KEM, consists of three algorithms - the key generation algorithm
(KEM.K) that returns a pair of keys (ek, dk) where ek is the encapsulation key and dk is the corresponding
decapsulation key, the encapsulation algorithm (KEM.E) that takes the encapsulation key ek and returns
a ciphertext-key pair pc,Kq where K P KEM.K and the decapsulation algorithm KEM.D that takes the
decapsulation key dk and a ciphertext c and returns a key K (or K to indicate rejection). The syntax of
these algorithms is shown in Fig. 2.

Perfect correctness requires that KEM.DHpdk, cq “ K for all pek, dkq P rKEM.Ks, all H P KEM.IM, and
all pc,Kq P rKEM.EHpekqs. The weaker notion of δ-correctness requires that,

PrrKEM.DHpdk, cq ‰ K : pc,Kq Ð$ KEM.EHpekqs ď δ.

The probability is over pek, dkq Ð$ KEM.K, H Ð$ KEM.IM, and the coins of KEM.E. When not stated other-
wise, schemes are assumed to be perfectly correct.

5 The proofs in the ePrint version of [HHK17] have been updated to account for these bugs. Some proofs are corrected
further in [Höv21, Sec. 2.1-2.2] which adds missing advantage terms due to imperfect correctness of schemes. The
proofs of their Theorems 2.1.5 and 2.1.7 technically miscount the number of random oracle queries, but the proofs
can be written so this does not affect the bound.

6 Bhattacharyya’s definition originally required exactly one ciphertext rather than at most one, but with that notion
the schemes which they claim achieve this property do not necessarily do so.
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Game Gmu-$cca
PKE,b pAq

H Ð$ PKE.IM
pekp¨q, dkp¨qq Ð$ PKE.K
b1

Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Newpuq

Return eku

Encpu, i,mq

If Cru, i,ms ‰ K:
Return Cru, i,ms

c1 Ð$ PKE.EH
peku,mq

c0 Ð$ PKE.Cpeku, |m|q

M ru, cbs Ð m
Cru, i,ms Ð cb
Return cb

Decpu, cq

If M ru, cs ‰ K:
Return M ru, cs

m Ð PKE.DH
pdk, cq

Return m

Game Gmu-cca
PKE,b pAq

Same except:
c0 Ð$ PKE.EH

peku, 0
|m|

q

Game Gmu-$cca
KEM,b pAq

H Ð$ KEM.IM
pekp¨q, dkp¨qq Ð$ KEM.K
b1

Ð$ ANew,Encap,Decap,H

Return pb1
“ 1q

Newpuq

Return eku

Encappu, iq

If Cru, is ‰ K:
c Ð Cru, is
Return pc, T ru, cs)

pc1,K1q Ð$ KEM.EH
pekuq

c0 Ð$ KEM.Cpekuq

K0 Ð$ KEM.K
T ru, cbs Ð Kb

Cru, is Ð cb
Return pcb,Kbq

Decappu, cq

If T ru, cs ‰ K:
Return T ru, cs

K Ð KEM.DH
pdku, cq

Return K

Game Gmu-cca
KEM,b pAq

Same except:
c0 Ð c1

Game Gmu-$cca
SKE,b pAq

H Ð$ SKE.IM
Kp¨q Ð$ SKE.K
b1

Ð$ AEnc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

If Cru, i,ms ‰ K:
Return Cru, i,ms

c1 Ð$ SKE.EH
pKu,mq

c0 Ð$ t0, 1u
SKE.clp|m|q

M ru, cbs Ð m
Cru, i,ms Ð cb
Return cb

Decpu, cq

If M ru, cs ‰ K:
Return M ru, cs

m Ð SKE.DH
pKu, cq

Return m

Game Gmu-cca
KEM,b pAq

Same except:
c0 Ð$ SKE.EH

pKu, 0
|m|

q

Game Gmu-ow-w
Π pAq

H Ð$ Π.IM
pekp¨q, dkp¨qq Ð$ Π.K
O Ð K //w “ pasa
O Ð PC //w “ pca
O Ð pPC,CVq //w “ pcva
pm,u, iq Ð$ ANew,Chal,O,H

Return PCpu,m,Chalpu, iqq

Newpuq

Return eku

Chalpu, iq

If Cru, is ‰ K:
Return Cru, is

K Ð$ Π.M //Π “ PKE
c Ð$ Π.EH

peku,Kq //Π “ PKE
pc,Kq Ð$ Π.EH

pekuq //Π “ KEM
Cru, is Ð c
Return c

PCpu,K, cq

K 1
Ð Π.DH

pdku, cq

Return pK “ K 1
q

CVpu, cq

K 1
Ð Π.DH

pdku, cq

Return pK 1
‰ Kq

Fig. 3. (Left Three:) Games defining multi-user, multi-challenge $CCA security of a public key encryption scheme
PKE, a key encapsulation mechanism KEM, or a symmetric encryption scheme SKE. The bottom shows how to
change the sampling of ciphertext c0 for CCA security. For $CPA or CPA security the adversary is not given access
to decryption/decapsulation. (Far Right:) Games defining multi-user, multi-challenge one-wayness security of PKE
or KEM. The parameter w P tpasa, pca, pcvau determines which oracles the attacker is given.

We define encryption keyspace KEM.Ek “ tek : pek, dkq P rKEM.Ksu. For ek P KEM.Ek, we let KEM.Cpekq

denote the ciphertext set tc : pc,Kq P rKEM.Epekqsu and define |KEM.C| “ minekPKEM.Ek |KEM.Cpekq|. We
let KEM.R denote the set from which KEM.K draws it randomness. We say that KEM is ε-uniform if for all
ek P KEM.Ek, H P KEM.IM, and (not necessarily efficient) D it holds that

PrrDpcq “ 1 : cÐ$ KEM.Cpekqs ´ PrrDpcq “ 1 : pc, ¨q Ð$ KEM.EHpekqs ď ε.

Note that the key produced by KEM.E is not being given to D.
We define the min-entropy of KEM to be the largest real value H8pKEMq which satisfies

Prrc “ c˚ : pc, ¨q Ð$ KEM.EHpekqs ď 2´H8pKEMq

for all ek P KEM.Ek, H P KEM.IM, and c˚ P KEM.C.
Indistinguishable From Random Security. Our notion of $CCA security for KEMs is presented in
Fig. 3, which requires that keys and ciphertexts output by the scheme be indistinguishable from random.
The adversary is given a user instantiation oracle New, encapsulation oracle Encap, and a decapsulation
oracle Decap. Its goal is to distinguish between the real world (b “ 1) where Encap returns true outputs
from KEM.E and the ideal world (b “ 0) where it returns a pair pc,Kq chosen uniformly at random from
KEM.Cpekq ˆ KEM.K. As with the PKE games, users are identified by u P U and encapsulation queries use
i P I to allow repeated queries.
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The table T stores the keys corresponding to challenge ciphertexts output by the encapsulation oracle.
The decapsulation oracle uses T to respond to challenge queries. The advantage of an adversary A is defined
as Advmu-$cca

KEM pAq “ PrrGmu-$cca
KEM,1 pAqs ´ PrrGmu-$cca

KEM,0 pAqs. We also define CCA security (via Advmu-cca
KEM and

Gmu-cca
KEM,b ) analogously to $CCA security, except in the Encap oracle c0 is set to equal c1 rather than being

sampled at random.

We note that |Advmu-$cca
KEM pBKEMq ´ Advmu-cca

KEM pBKEMq| ď qEncap ¨ ε holds for all ε-uniform KEM and BKEM

making at most qEncap queries to Encap.

One-Wayness Security.We consider multi-user, multi-challenge variants of the one-wayness security def-
initions from [HHK17]. The security games are given in Fig. 3. We will use One-Wayness under Plain-
text Checking Attacks (OW-PCA) and One-Wayness under Plaintext and Validity Checking Attacks (OW-
PCVA), but have also included One-Wayness under Passive attacks for completeness (OW-PASA).7

The games are written to use either a KEM or a PKE scheme with messages sampled randomly from
PKE.M. In either case, the adversary is tasked with finding the decryption of a challenge ciphertext. The
difference between each variant w P tpasa, pca, pcvau is in the auxilliary oracle(s) O that the adversary is
given access to. In the game Gmu-ow-pca

Π , the adversary has access to the Plaintext Checking Oracle PC
which takes as input a message-ciphertext pair, and returns true if the message is a valid decryption of the
ciphertext and false otherwise. It is implicitly required that messages input to this oracle not be K. The
adversary has access to both oracles, PC and CV, in Gmu-ow-pcva

PKE where CV takes as input a ciphertext, and
returns true if the ciphertext decrypts to a valid message.

The attacker’s queries specify a particular user u P U and its challenge queries additionally specify a
challenge identifier i P I. It may re-query Chalpu, iq to get back the same ciphertext. For each variant, we
let Π denote either a KEM KEM or PKE scheme PKE and we define Advmu-ow-w

Π pAq “ PrrGmu-ow-w
Π s.

Using a PKE scheme PKE with a randomly chosen messagem P PKE.M can be viewed as a canonical way
of constructing a KEM. We denote this by CaKrPKEs where CaKrPKEs.IM “ PKE.IM, CaKrPKEs.K “ PKE.K,
CaKrPKEs.D “ PKE.D, and CaKrPKEs.EHpekq samples K Ð$ PKE.M; computes cÐ$ PKE.EHpek,Kq; and
returns pc,Kq. It is straightforward to see that Advmu-ow-w

PKE pAq “ Advmu-ow-w
CaKrPKEspAq, as the underlying games are

identical. If PKE is δ-correct then CaKrPKEs is δp0q-correct. The uniformity and min-entropy of CaKrPKEs

depend on how PKE behaves on random messages.

2.5 Symmetric Key Encryption

Syntax.A symmetric key encryption scheme, SKE, consists of three algorithms - the key generation algo-
rithm (SKE.K) that returns a keyK, the encryption algorithm (SKE.E) that takes the keyK and a messagem
and returns ciphertext c, and the decryption algorithm SKE.D that takes the keyK and a ciphertext c and re-
turns messagem (or K to indicate rejection). The syntax of these algorithms is given in Fig. 2. Perfect correct-
ness requires that SKE.DHpK, cq “ m for K P rSKE.Ks, all m, all H P SKE.IM, and all c P rSKE.EHpK,mqs.
We define the ciphertext, message, and expansion lengths of SKE by SKE.clp|m|q “ |SKE.EHpK,mq| (requir-
ing this to hold for all H,K,m), SKE.mlpSKE.clplqq “ l, and SKE.xl “ minl SKE.clplq ´ l respectively.

Indistinguishable From Random CCA Security. Our notion of $CCA security for SKE schemes is
captured by Fig. 3, which requires that ciphertexts output by the encryption scheme be indistinguishable
from ciphertexts chosen at random. In this game, the adversary is given access to an encryption oracle Enc
and a decryption oracle Dec. The adversary needs to distinguish between the real world (b “ 1), where
Enc returns an encryption of m under Ku and the ideal world (b “ 0) where the output of Enc is sampled
uniformly at random. As before u P U is used to identify users and i P I is used to identify challenges. The
advantage of an adversary A is defined as Advmu-$cca

SKE pAq “ PrrGmu-$cca
SKE,1 pAqs ´ PrrGmu-$cca

SKE,0 pAqs. We will only
need “one-time” security in which the adversary only makes one encryption query per user.

7 The last of these is commonly referred to as OW-CPA. We have chosen to use the “passive” nomenclature of [BP18].
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2.6 Modeling Details: Naming Users and Repeating Queries

Naming Users. Throughout this paper we provide multi-user definitions of security. In these definitions,
the attacker makes queries about a particular user with oracle queries of the form Opu, . . . q. Here u is acting
as an identifier for the user which is drawn from some set U . This raises a natural question: what choices of
U should be allowed? The challenge identifier drawn from set I can be considered analogously.

In one direction, for proving that some scheme satisfies our security notion is may be convenient to insist
that U “ t1, . . . , quu where qu is the total number of different users that A will make queries for. For proving
that our security notion suffices for proving the security of some higher-level protocol it may be desirable
to allow arbitrary identifiers so that reduction adversaries can reference them with semantically meaningful
strings. This motivates the most general choice of U “ t0, 1u˚.

A priori, it may seem that this is all a moot distinction, as all choices of U are equivalent as long as they
are large enough. Let us consider the natural proof approach for this fact. Suppose A is a multi-user attacker
for some security notion using U . We will construct A1 using U 1 such that AdvpAq “ AdvpA1q. Namely, U 1

will adaptively construct a mappingM from U to U 1. Adversary A1 runs A and whenever the latter makes an
oracle query of the form Opu, . . . q it checks if M rus is already defined. If not, it defines M rus to equal some
unused u1 P U 1. Then it queries OpM rus, . . . q and returns the result to A. In all of the games we consider,
the game is “agnostic” to what u looks like and so A1 will be perfectly simulating the view expecting by A,
giving the claimed result.

However, when we consider this from a concrete, memory-aware perspective we run into an issue. The
above proof required storing a mapping M of size equal to the number of different users queried by A. To
avoid this issue, we can think of hashing the elements of U into U 1. Let A1 be a FcspU ,U 1q-oracle adversary
which behaves as above except M rus is defined to equal fpuq for f Ð$ FcspU ,U 1q. As long as A never find
a collision in f , its simulated view is correct. For typical advantage functions, this gives us AdvpAq ď

AdvpA1q ` 0.5q2u{|U 1|.
One can similarly hash down from I to a smaller I 1. As we do not care about collisions “across users”

this would add a term 0.5quq
2
i {|I 1| to the advantage where qi upperbounds the number of distinct challenges

that any one users receives.

Repeating Queries. In our definitions we have made the choice that on repeat queries to encryption or
encapsulation the security game will return the same results from the previous query. A more traditional
definition would not allow this. This can be captured by restricting attention to “challenge-respecting”
adversaries that never repeat pu, iq’s. When considering such adversaries, we can without loss of generality
restrict attention to attackers which use a global counter for i which then increment after each query. In
a non-memory-aware setting, this change would be without loss of generality as an attacker could simply
remember all of its prior queries. In the memory-aware setting we cannot do so.

For the proof of higher-level primitives having the game remember such information for us can be useful.
Indeed, we switched to using this definitional style on realizing that the proof Theorem 4 (which proves CCA
security of a scheme under the assumption of OW-PCVA security) requires the ability to repeat queries in the
OW-PCVA game, even if we were using a version of CCA security that did not allow this. Moving backwards,
the schemes intended to be used “on the way” to this theorem (those of Theorem 5 and Theorem 6) must
also assume security notions where queries can be repeated. For our proof flows based on Diffie-Hellman
assumptions, we will explicitly prove that we can achieve such security notions.

We give two different quantitative results for the KEM-DEM paradigm depending on whether or not we
restrict our attention to challenge-respecting adversaries.

3 Diffie-Hellman Definitions

In this section, we introduce the Computational Diffie-Hellman (CDH) assumptions we need for our later
proofs. The first is a multi-user, multi-challenge variant of Strong CDH (which we need for one of our coming
KEM proofs). We verify this is TAM-tightly implied by its single-challenge variant. The second is a new
definition we introduce, Pair CDH, which gives the adversary oracle access to a pairing from the group
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Game Gx
GpAq

pg, p, ˝q Ð G
xp¨q Ð$ Z˚

p ; yp¨,¨q Ð$ Z˚
p

O Ð K //Gcdh

O Ð Strong //Gscdh

O Ð Gap //Ggcdh

O Ð Pair //Gpcdh

f Ð$ InjpZp,Zpq //Gpcdh

pu, i, Zq Ð$ ANew,Chal,O

Return pZ “ gxuyu,iq

Newpuq

Xu Ð gxu

Return Xu

Chalpu, iq

Yu,i Ð gyu,i

Return Yu,i

GappA,B,Cq

a Ð dlogpAq; b Ð dlogpBq

Return pC “ gab
q

Strongpu,B,Cq

Return Gappgxu , B,Cq

PairpA,Bq

a Ð dlogpAq; b Ð dlogpBq

Return fpabq

Fig. 4. Security games capturing several variants of the computational Diffie-Hellman problem, namely, CDH, Gap
CDH, Strong CDH, and Pair CDH. The last of these is a new notion we introduce which gives the attacker access to
a pairing from G to a random group.

under consideration to a random group. We provide several results to understand the plausibility of Pair
CDH security. We show that it always implies Gap CDH security and is {AM,TM}-tightly equivalent to
CDH in algebraic/generic group models [Sho97, Mau05, FKL18] or if the group has a pairing.

3.1 Group Syntax

A prime order group G is a tuple pg, p, ˝q where g is a group generator of prime order p under the group
operation ˝. In our definitions we will treat the group as a priori fixed. We typically omit writing the group
operation ˝ explicitly and instead write group operations using multiplicative notation. We let xgy “ t ga :
a P N u. The discrete log(arithm) of an element X P xgy is the value dlogpXq P Zp such that gdlogpXq “ X.
We let 1G “ g0 denote the identity element. A pairing from G “ pg, p, ˝q to G2 “ pg2, p2, ˝2q is a map
e : xgy ˆ xgy Ñ xg2y satisfying epgx,gyq “ gxy

2 . We let TimepGq and MempGq denote the time and memory
complexity of computing exponentiations or multiplications in xgy.

3.2 Computational Diffie-Hellman variants

In this paper we will make use of several variants of the Computational Diffie-Hellman assumption. These
security notions are defined by the game shown in Fig. 4. In each, the adversary is given access to a gx

and gy with the goal of producing gxy. For our later security proofs, it was useful to write “multi-user” and
“multi-challenge” version of these games. Thus rather than giving the adversary a single gx, we give it access
to an oracle New which on input a string u (which we think of as identifying a user) returns a fresh gxu .
Similarly, the adversary is given access to an oracle Chal which on inputs string u and i (which we think of
as identifying a challenge) returns a fresh gyu,i . For the memory-tightness of future proofs, it is important
that the attacker can repeat queries, obtaining the same result as before. The goal of the attacker is to return
gxuyu,i for any choice of u and i.

The different variants of CDH are captured by the games differing in what (if any) auxiliary oracle O
the adversary is given. The standard notion of CDH security is captured by the game Gcdh in which the
adversary is not given any auxiliary oracle, as expressed by the code O Ð K. Gap CDH security [OP01]
is captured by Ggcdh in which the adversary’s oracle Gap takes as input a tuple pA,B,Cq and outputs a
boolean indicating whether this is a valid Diffie-Hellman tuple (i.e. C “ gdlogpAq dlogpBq). The Strong CDH
game Gscdh [ABR01] is a weakened version of Gap CDH in which the oracle only allows tuples of the form
pgxu , B,Cq.

The final variant is a new security notion we introduce called Pair CDH. In this game Gpcdh, the adversary
is given access to the oracle Pair which on input pA,Bq returns fpabq where a, b are the discrete logs of A,B
and f is a random injection. This oracle can be thought of being a pairing to a random group G2 “ pg2, p, ˝2q
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Adversary BNew,Chal,O
x

pg, p, ˝q Ð G
g Ð$ FcspU ,Z˚

p q

h Ð$ FcspU ˆ I,Z˚
p q

X Ð Newp1q

Y Ð Chalp1, 1q

If x “ scdh then SimO Ð SimStrong
Else SimO Ð O
pu, i, Zq Ð$ ASimNew,SimChal,SimO

x1
u Ð gpuq; y1

u,i Ð hpu, iq

Return p1, 1, Z1{px1
uy1

u,iq
q

SimNewpuq

x1
u Ð gpuq

Return Xx1
u

SimChalpu, iq

y1
u,i Ð hpu, iq

Return Y y1
u,i

SimStrongpu,B,Cq

x1
u Ð gpuq

Return Op1, B,C1{x1
uq

Fig. 5. Adversary used for Lemma 3, proving that single-challenge CDH security TAM-tightly implies multi-challenge
CDH security.

where g2 “ Pairpg,gq and h ˝2 h
1 “ fpf´1phq ˝ f´1ph1qq. Note that A is not able to efficiently compute the

operation ˝2.

For x P tcdh, scdh, gcdh, pcdhu we define AdvxGpAq “ PrrGx
GpAqs. We sometimes need to restrict user

identifiers, u, to be from some fixed set U and challenge identifiers, i, to be a from a fixed set I.
Multi-challenge Security. Standard proofs use Diffie-Hellman rerandomization techniques to show that
single-challenge security TA-tightly implies multi-challenge security for most variants of Diffie-Hellman-based
security notions. The following lemma extends this to TAM-tightness for the notions considered in this paper.
The proof picks the values used for rerandomization as the output of a random function, rather than picking
them randomly and storing them.

Lemma 3 (Single-challenge ñ multi-challenge). Let G be a group and x P tcdh, scdh, gcdh, pcdhu. Let
A be an adversary for Gx

G with pqNew, qChal, qOq “ QuerypAq. Then we can construct a FcspU ,Z˚
p qˆFcspU ˆ

I,Z˚
p q-oracle adversary Bx (given in the proof) such that

AdvxGpAq “ AdvxGpBxq

QuerypBxq “ p1, 1, qOq

Time˚
pBxq “ OpTimepAq ` pqNew ` qChal ` qO ` 1qTimepGqq

Mem˚
pBxq “ OpMempAq ` 2MempGqq.

Proof (of Lemma 3). Consider the adversary Bx shown in Fig. 5. It makes a single query Newp1q to obtain a
group elementX and a single query Chalp1, 1q to obtain a group element Y . Then it runsA. Let x “ dlogpXq

and y “ dlogpY q.

It responds to SimNewpuq queries with Xx1
u for x1

u the output of its random function. Letting xu “ xx1
u,

note that Xx1
u “ gxu and xu is uniformly random because x1

u is. So this oracle has the correct distribution.

It responds to SimChal queries with Y y1
u,i for y1

u,i output by its random function. Letting yu,i “ yy1
u,i, note

that Y y1
u,i “ gyu,i and that yu,i is uniformly random because y1

u,i is.

For CDH, Gap CDH, or Pair CDH security Bx gives A direct access to O. For Strong CDH security
(x “ scdh), Bx simulates the oracle by replacing a query pu,B,Cq with a query p1, B,C1{x1

uq which has the
same behavior.

When A finally halts and outputs pu, i, Zq the adversary Bx halts and outputs p1, 1, Z1{px1
uy

1
u,iqq. We claim

that Bx wins whenever A would. To see this, note that if A wins then Z “ gxuyu,i “ gpxx1
uqpyy1

u,iq and so
Z1{px1

uy
1
u,iq “ gxy.

The claims on the efficiency of Bx are easy to verify. [\
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3.3 Studying Pair CDH

Pair CDH is a new computational assumption that we’ve introduced for this work. In this section we provide
a few results to give a sense of its difficulty. Namely, we note that Pair CDH security implies Gap CDH
security and that it is equivalent to CDH security in certain settings (if G has an efficient pairing to some
G2, in the algebraic model, and in the generic group model). Given Lemma 3, we focus on the case that the
adversary makes only single query each to New and Chal. For brevity, we sketch the relationships here.

Pair CDH ñ Gap CDH.To see that Pair CDH security implies Gap CDH security we need only note that
GappA,B,Cq “ true if and only if PairpA,Bq “ Pairpg, Cq. Hence a Pair CDH adversary can efficiently
simulate the view of a Gap CDH adversary.

CDH ` Pairing ñ Pair CDH. We claim that CDH security implies Pair CDH security if G has an
efficient pairing e to some group G2 with generator g2. We can achieve TAM-tightness in this implication
by using a Injpxg2y,Zpq-oracle adversary. Letting f 1 denote the random injection, our CDH adversary can
simulate Pair by responding to queries for pA,Bq with f 1pepA,Bqq. If a “ dlogpAq and b “ dlogpBq, then
f 1pepA,Bqq “ f 1pepg,gqabq. Note that F p¨q “ epg,gqp¨q is an injection and so fp¨q “ f 1pepg,gqp¨qq is a random
injection. Hence this perfectly emulates Pair.

CDH ` AGM/GGM ñ Pair CDH.We claimed that CDH security implies Pair CDH security in the alge-
braic group model. More precisely, we {AM,TM}-tightly show that CDH security implies Pair CDH security
using a FcspZ6

p,Zpq-oracle adversary. We show how to imperfectly simulate Pair for algebraic adversaries
such that distinguishing this from the real oracle requires the ability to solve the discrete log problem (given
gc for a random c, find c). Noting that CDH security implies discrete log security gives our claim.

Let X and Y denote the challenge group elements and let x “ dlogpXq and y “ dlogpY q. An algebraic
adversary, when making an oracle query pA,Bq to Pair is required to additionally provide “explanations”
pa1, a2, a3q and pb1, b2, b3q such that A “ ga1Xa2Y a3 and B “ gb1Xb2Y b3 . Then the true Pair would respond
with fppa1 ` a2x ` a3yq ¨ pb1 ` b2x ` b3yqq. Our CDH adversary will think of this input to f as a degree-
two polynomial PA,Bpx,yq P Zprx,ys whose coefficients it can compute given the explanations for A and
B. Letting pc1, c2, . . . , c6q denote these coefficients and f 1 P FcspZ6

p,Zpq, we simulate the output of Pair
as f 1pc1, c2, . . . , c6q. Distinguishing this from the true oracle requires finding pA,Bq and pA1, B1q such that
PA,B ‰ PA1,B1 (as polynomials), but PA,Bpx, yq “ PA1,B1 px, yq. Using analysis techniques from [BFL20], we
can use the ability to find such “colliding” polynomials to solve the discrete log problem. We provide details
of this analysis in Appendix A.

To achieve TM-tightness, the discrete log reduction picks two of the Pair oracle queries at random and
assumes that they give colliding polynomials. To achieve AM-tightness, we can check every pair of queries
for collisions using the memory-tight rewinding technique of Auerbach, et al [ACFK17]. Namely, when we
reach a new Pair oracle query while running the Pair CDH adversary, we pause and run an extra copy of
that adversary from the start using the same coins. While running this extra copy, each time it makes a Pair
oracle query we check if this gives a colliding polynomial with the query we paused at in the first adversary.
Ignoring memory tightness, A could remember all of the Pair oracle queries and check them at the end of
execution, but then it is not clear how to achieve better time efficiency than checking each pair of queries.

When working in a generic group model [Sho97, Mau05] we can use the same line of reasoning and then
information theoretically bound the probability that an adversary finds colliding polynomials by Opq2{pq

where q is the number of queries the Pair CDH adversary makes.

3.4 (Strong) Twin CDH Assumption

Now we recall the Strong Twin CDH Assumption and extend the proof of Cash, Kiltz, and Shoup [CKS09]
to show in the multi-user, multi-challenge setting it is TAM-tightly implied by CDH.

Consider the games shown in Fig. 6. Therein, the attack can make Newpuq queries to receive group
elements Wu, Xu and Chalpu, iq queries to receive Yu,i “ gyu,i . The attacks goal is to compute W

yu,i
u , X

yu,i
u

for some u, i. The basic notion of Twin CDH security is captured by the game Gtcdh in which the attacker
has no additional oracle. The Strong Twin CDH security notion is capture by Gstcdh in which the attacker’s
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Game Gx
GpAq

pg, p, ˝q Ð G
wp¨q Ð$ Z˚

p ; xp¨q Ð$ Z˚
p

yp¨,¨q Ð$ Z˚
p

O Ð K //Gtcdh

O Ð Strong //Gstcdh

pu, i, Z, Ψq Ð$ ANew,Chal,O

Return pZ “ gwuyu,iq and pΨ “ gxuyu,iq

Newpuq

Wu Ð gwu ; Xu Ð gxu

Return pWu, Xuq

Chalpu, iq

Yu,i Ð gyu,i ; Return Yu,i

Strongpu, Y, Z, Ψq

Return pZ “ Y wuq and pΨ “ Y xuq

Fig. 6. Security games capturing two variants of the twin computational Diffie-Hellman problem, namely Twin CDH
and Strong Twin CDH.

oracle Strong is a natural extension of the oracle from Strong CDH. Given pu, Y, Z, Ψq, the oracle tells the
attacker whether pWu, Y, Zq and pXu, Y, Ψq are both valid CDH tuples.

For x P ttcdh, stcdhu we define AdvxGpAq “ PrrGx
GpAqs. We assume that user identifiers, u, are drawn from

some fixed set U and challenge identifiers, i, are drawn from a fixed set I.
CDH ñ Strong Twin CDH. Next we show that CDH security TAM-tightly implies Strong Twin CDH
security. This is a relatively straightforward extension of Theorem 3 from [CKS09] to cover the multi-user,
multi-challenge setting and to take memory-tightness into account.8

Lemma 4 (CDH ñ Strong Twin CDH). Let G be a group and Astcdh be an adversary for Gstcdh
G with

pqNew, qChal, qOq “ QuerypAq. Then we can construct a FcspU ,ZpqˆFcspU ,Zpq-oracle adversary Bcdh (given
in the proof) such that

AdvstcdhG pAstcdhq ď AdvcdhG pBcdhq ` pqNew ` 2qO ` 1q{p

QuerypBcdhq “ pqNew, qChal, 0q

Time˚
pBcdhq “ TimepAstcdhq `OpqNew ` qOqTimepGq

Mem˚
pBcdhq “ MempAstcdhq `OpMempGqq.

The version of this theorem given in [CKS09] erroneously has an additional claim regarding the conditional
probability that (its version of) Bcdh succeeds given that it has not set the flag false.

The following lemma (taken from [CKS09] with minor modifications), gives a “trapdoor” method for
simulating the Strong Twin CDH Strong oracle for an algorithm allowed to pick the value of X. We will
implicitly use this in our proof of Lemma 4. To be self-contained we embed a proof of Lemma 5 into our
proof, rather than making explicit use of it.

Lemma 5 (Trapdoor Test, Thm. 2 from [CKS09]). Let G “ pg, p, ˝q be a group. Fix W P xgy and
suppose X, r, s are sampled by r Ð$ Zp, sÐ$ Zp, X Ð gsW´r. Further suppose that Y, Z, Ψ are random
variables taking values in xgy, which are defined as some function of W,X. Then we have:

(i) X is uniformly distributed in xgy;

(ii) W and X are independent;

(iii) If w “ dlogpW q and x “ dlogpXq, then the probability that the truth value of ZrΨ “ Y s does not agree
with the truth value of Z “ Y w ^Ψ “ Y x is at most 1{p. Moreover, if the latter is true, then the former
necessarily is.

8 We could alternatively have used the single challenge version of this result from CKS and then given a variation
on Lemma 3 to show the single challenge version of Strong Twin CDH implies the multi-challenge version.
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Adversary BNew,Chal,O
cdh

pg, p, ˝q Ð G
g Ð$ FcspU ,Zpq

h Ð$ FcspU ,Zpq

pu, i, Z, Ψq Ð$ ASimNew,Chal,SimStrong
stcdh

ru Ð gpuq; su Ð hpuq

If pZruΨ ‰ Y suq

fail Ð true
Return pu, i, Zq

SimNewpuq

Wu Ð Newpuq

ru Ð gpuq

su Ð hpuq

Xu Ð gsuW´ru

Return pWu, Xuq

SimStrongpu, Y, Z, Ψq

ru Ð gpuq

su Ð hpuq

Return pZruΨ “ Y suq

Hybrids Hκ for 0 ď κ ď 3

pg, p, ˝q Ð G
wp¨q Ð$ Z˚

p ; yp¨,¨q Ð$ Z˚
p

xp¨q Ð$ Zp //Hr0,3q

rp¨q Ð$ Zp //Hr1,3q

sp¨q Ð xp¨q ` rp¨q ¨ wp¨q //Hr1,3q

sp¨q Ð$ Zp; rp¨q Ð$ Zp //Hr3,8q

xp¨q Ð sp¨q ´ rp¨q ¨ wp¨q //Hr3,8q

pu, i, Z, Ψq Ð$ ANew,Chal,Strong

Return pZ “ gwuyu,iq and pΨ “ gxuyu,iq

Newpuq

Wu Ð gwu ; Xu Ð gxu

Return pWu, Xuq

Chalpu, iq

Yu,i Ð gyu,i ; Return Yu,i

Strongpu, Y, Z, Ψq

bool Ð ppZ “ Y wuq and pΨ “ Y xuqq

Return bool //Hr0,1q

If bool ‰ pZruΨ “ Y suq: //Hr1,8q

bad Ð true //Hr1,8q

Return bool //Hr1,2q

Return pZruΨ “ Y suq //Hr1,8q

Fig. 7. Adversary and hybrids used for proof of Lemma 4.

Proof (of Lemma 4). Consider the adversary Bcdh shown in Fig. 7. It runs Astcdh, giving it direct access to
Chal and simulating its New and Strong oracles. To simulate New it first queries its own oracle New
to obtain Wu and then locally picks its own ru, su, using random functions g, h, from which it derives Xu

in a manner mirroring the setup of Lemma 5. Then the trapdoor test from that lemma is used to simulate
Strong. Once Astcdh outputs pu, i, Z, Ψq, adversary Bcdh sets the flag fail if Z, Ψ fail the trapdoor test and
outputs pu, i, Zq as its final response. We do not make use of fail.

The claims about Bcdh’s efficiency are clear from its code. Adversary Bcdh perfectly simulates the expected
view of Astcdh except that Xu is uniform in xgy rather than xgy∖t1Gu and SimStrong will sometimes return
true on inputs for which Strong would have returned false.

Let H0 be a hybrid game which is identical to Gstcdh
G except each xu is sampled from Zp rather than

Z˚
p , as defined by Fig. 7. Then AdvstcdhG pAstcdhq “ PrrGstcdh

G pAstcdhqs ď PrrH0s ` pqNew ` qO ` 1q{p where
pqNew ` qO ` 1q is an upper bound on the total number of xu values used by the game.

Now consider H1, wherein variables rp¨q and sp¨q are introduced. In Strong, we attempt to return the
boolean pZruΨ “ Y suq in place of ppZ “ Y wuq and pΨ “ Y xuqq, but set a bad flag and return the latter if
these two differ. None of this changes the behavior of the game, so PrrH0s “ PrrH1s.

In H2, the Strong oracle always returns pZruΨ “ Y suq and so is identical to H1 unless bad is set, giving
PrrH2s ď PrrH1s ` PrrH1 sets bads. Note that the view of A is independent of rp¨q in H1. We will show that
each Strong query has a probability of 1{p of setting bad, giving an overall bound of PrrH1 sets bads ď qO{p.
For a given query let y “ dlogpY q, z “ dlogpZq, and ψ “ dlogpψq. Then we care about when the boolean
(a) pzru ` ψ “ ysuq differs from (b) ppz “ ywuq and pψ “ yxuqq, where these are following equations are
evaluated mod p. The following calculation establishes that (a) must hold if (b) does

zru ` ψ “ ywuru ` yxu “ ypwuru ` xuq “ ysu.
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The following calculation establishes that (a) must not hold if z “ ywu and ψ ‰ yxu

zru ` ψ “ ywuru ` ψ ‰ ywuru ` yxu “ ypwuru ` xuq “ ysu.

Now suppose that (a) holds, but z ‰ ywu or equivalently z´ ywu ‰ 0. Then zru `ψ “ ysu “ ypwuru ` xuq.
Solving this for ru gives

ru “ pyxu ´ ψq{pz ´ ywuq

which is well defined because z ´ ywu ‰ 0. As the view of A is independent of ru we can think of it being
sampled after A makes its query, in which case there is a 1{p chance it happens to equal pyxu ´ψq{pz´ywuq.

Finally, in H3 we switch from sp¨q being defined in terms of xp¨q to sp¨q being uniform and xp¨q defined in
terms of it. This is equivalent, so PrrH3s “ PrrH2s. Now the view Bcdh gives to Astcdh is identical to its view
in PrrH3s. Note its choice of Xu in SimNew implicitly sets xu “ dlogpXuq to have the desired value. If Astcdh

would win, then Z “ gwuyu,i and so Bcdh will win. Hence, PrrH3s ď AdvcdhG pBcdhq. [\

4 Hashed ElGamal KEMs

In this section we present the first example of KEMs with TAM-tight proofs in the multi-user, multi-challenge
setting. The KEMs we consider are variants of the ECIES and Cramer-Shoup Hashed ElGamal KEMs. These
variants augment the existing schemes by adding random strings to the ciphertexts and/or keys which are
subsequently included in random oracle queries. Our reductions make use of these strings to store pertinent
information that will be needed to answer later oracle queries.

4.1 Augmented ECIES

Augmented Version. We start with the ECIES [ABR98] variant of Hashed ElGamal. Our augmented
version of ECIES includes a random string a in the ciphertext. The augmented ECIES key encapsulation
mechanism aECIESrG,K, ls is parameterized by a group G “ pg, p, ˝q, key space K, and length of the random
string, l. The parameters G,K, and l are fixed for an instance of augmented ECIES, so we use aECIES and
aECIESrG,K, ls interchangeably. We define the scheme as follows with aECIES.K “ K and aECIES.IM “

Fcspt0, 1ul ˆ G,Kq. Its ciphertext set is defined by aECIES.Cpekq “ t0, 1ul ˆ pxgy ∖ t1Guq

aECIES.K

xÐ$ Z˚
p

ek Ð gx

dk Ð x
Return pek, dkq

aECIES.EHpekq

aÐ$ t0, 1ul

y Ð$ Z˚
p

Y Ð gy

Z Ð eky

K Ð Hpa, Zq

Return ppa, Y q,Kq

aECIES.DHpdk, pa, Y qq

Z Ð Y dk

K Ð Hpa, Zq

Return K

Overview of Existing Techniques and Associated Challenges. Bhattacharyya [Bha20] studied
ECIES in the memory-aware setting. They pointed out that the technique of simulating random oracles with
PRFs introduced in [ACFK17] cannot be used for this family of KEMs, as in general, decapsulation queries
cannot be simulated by the reduction. For example, if a PRF F is used as Fpk, Zq instead of the random
oracle HpZq, for a decapsulation query Y the reduction needs to return Fpk, Y dkq which it cannot compute.9

Bhattacharyya used the map-then-prf technique as a workaround for groups with pairings. In this tech-
nique, the input Z to the random oracle is first operated on by a bilinear map epg, Zq, and then by the PRF
F. Hence, the query HpZq is simulated as Fpk, epg, Zqq and a decapsulation query for Y can be simulated

9 We discuss the use of PRFs to match prior work, but we use random function oracles in our theorem instead,
following the oracle adversary framework.
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as Fpk, epek, Y qq for all non-challenge ciphertexts. The reduction remembers the challenge ciphertext and
responds appropriately when it is queried to Decap.

This does not scale to the multi-user, multi-challenge setting since it requires that the reduction re-
members all the challenge ciphertexts, incurring a memory overhead. Our solution for augmented ECIES
combines Ghoshal et al.’s message encoding technique [GGJT22] with the map-then-rf technique. We encode
the identifying information of challenge ciphertexts in a using a random injection so that this information
can be recovered when an appropriate oracle query is made. To avoid the need for an efficiently computable
pairing we make use of our new Pair CDH assumption. Our result is captured in Theorem 1.

Theorem 1 (Pair CDH ñ $CCA). Let aECIES “ aECIESrG,K, ls where G “ pg, p, ˝q is a prime order
group. Let A be an adversary with QuerypAq “ pqNew, qEncap, qDecap, qHq and assume 2l ě |U ˆ I|. Then
Fig. 9 gives a Fcspt0, 1ul ˆ Zp,Kq ˆ Inj˘pU ˆ I, t0, 1ulq-oracle adversary Bpcdh such that

Advmu-$cca
aECIES pAq ď AdvpcdhG pBpcdhq `

q2Encap
2l

`
2p|I| ` qEncapq ¨ qDecap

2lpp´ 1q

QuerypBpcdhq “ ppqNew ` qEncap ` qDecap ` qHq, pqEncap ` qDecap ` qHq, pqEncap ` 2qDecap ` 2qHqq

Time˚
pBpcdhq “ OpTimepAqq and Mem˚

pBpcdhq “ OpMempAqq.

Choosing the Auxiliary String Length.When instantiating this scheme one must choose the parameter
l which determines the length of a. Larger l incurs a communication cost, while too small of a l can harm
the concrete security results. We can expect the q2Encap{2l term to dominate the information theoretic part
of the bound. Suppose we consider 232 users receiving 232 ciphertexts each (e.g. |U | “ |I| « 232 and
qEncap “ qDecap « 264) with a group of size p « 2256. With a cautious choice of l “ 256, the size of the
ciphertext is not too significantly increased, we get q2Encap{2l « 2´128. If we aim for bounding the information
theoretic term to around 2´64, then we can pick l “ 192.

However, these estimates assumed that |U | and |I| were roughly equal to the number of users and
ciphertexts per user. As discussed in Sec. 2.6, the names for users/challenges might come from a set which
is much larger than the total number of users/challenge. At an extreme, one might have U “ I “ t0, 1u˚.
To resolve this we can consider the technique described in that section of hashing these identifiers down
to smaller sets U 1 and I 1, which will require larger choices for l. This adds advantage terms 0.5q2u{|U 1| and
0.5quq

2
i {|I 1| where qu and qi are, respectively, the number of distinct users and encryptions per user. Using

the parameter estimates from above (with qu “ qi « 232) we can get a bound around 2´64 by picking
|U 1| “ 2128 and |I 1| “ 2160 or a bound around 2´128 by picking |U 1| “ 2192 and |I 1| “ 2244. For the security
bound, l “ 192 or l “ 256 would suffice, however, we additionally require 2l ě |U ˆ I| so that the injection
is well-defined. Thus, in this case we would require l “ 288 or l “ 436.

Intuition. For each Encap query, our Pair CDH adversary programs the random string a as the output
of a random injection applied to user identity u and challenge identifier i and simulates the random oracle
Hpa, Zq as Hpa,Pairpg, Zqq. This allows us to simulate decapsulations because Pairpg,gxyq “ Pairpgx,gyq.

Our adversary simulates the i-th challenge ciphertext for u as Chalpu, iq. To determine if a decapsulation
query pu, a, Y q is for a challenge ciphertext, the reduction first inverts a to obtain pv, iq. If v “ u, it re-
queries Chalpu, iq to obtain the corresponding ciphertext Yu,i. If Y “ Yu,i, the reduction assumes this was
a challenge ciphertext. Finally, when the adversary A queries the oracle H with pa, Zq such that a´1 “ pu, iq
and Pairpg, Zq “ PairpNewpuq,Chalpu, iqq, the reduction outputs Z and wins the Pair CDH game.

Proof (of Theorem 1). We use a sequence of hybrids H1
0 through H1

3, H
2
0 through H2

1, and H3
0 through H3

1

presented in Fig. 8 where we establish the following claims that upper bound the advantage of A.

1. Advmu-$cca
aECIES pAq “ 2PrrH1

0s ´ 1
2. PrrH1

0s ď PrrH1
3s ` q2Encap{2l`1

3. PrrH1
3s “ PrrH2

1s

4. PrrH2
1s ď PrrH3

0s ` p|I| ` qEncapq ¨ qDecap{p2l ¨ pp´ 1qq

5. PrrH3
0s ď PrrH3

1s ` Prrb “ 0 ^ H3
1 sets bads

6. PrrH3
1s ď 1

2

7. Prrb “ 0 ^ H3
1 sets bads ď AdvpcdhG pBpcdhq{2
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Hybrids Hι
κ

b Ð$ t0, 1u

xp¨q Ð$ Z˚
p ; Xp¨q Ð gxp¨q

H1,H0 Ð$ aCS.IM
D1 Ð t0, 1u

l
ˆ Zp

H̃ Ð$ Fcspt0, 1u, D1,Kq

g˘
Ð$ Inj˘pU ˆ I, t0, 1u

l
q

h Ð$ FcspU ˆ I,Z˚
p q

q Ð$ InjpZp,Zpq

b1
Ð$ ANew,Encap,Decap,H

Return pb1
“ bq

Newpuq //H1,H2,H3

Return Xu

Encappu, iq //H1

If Cru, is ‰ K:
pa, Y q Ð Cru, is
Return ppa, Y q, T ru, a, Y sq

Irus Ð Irus Y tiu
a Ð t0, 1u

l //H1
r0,1q

a Ð gpu, iq //H1
r1,8q

y Ð$ Z˚
p //H1

r0,1q

y Ð hpu, iq //H1
r1,8q

Y Ð gy; Z Ð Xy
u

K1
Ð H1pa, Zq

K0
Ð$ K //H1

r0,2q

K0
Ð H0pa, Zq //H1

r2,8q

T ru, a, Y s Ð Kb

Cru, is Ð pa, Y q

Return ppa, Y q,Kb
q

Decappu, a, Y q //H1

pv, iq Ð g´1
paq //H1

r3,8q

If T ru, a, Y s ‰ K //H1
r0,3q

If v “ u and i P Irus and pa, Y q “ Cru, is: //H1
r3,8q

Return T ru, a, Y s

Z Ð Y xu

K Ð H1pa, Zq

Return K

Hpa, Zq //H1

Return H1pa, Zq

Encappu, iq //H2

If Cru, is ‰ K:
pa, Y q Ð Cru, is
Return ppa, Y q, T ru, a, Y sq

Irus Ð Irus Y tiu
a Ð gpu, iq
y Ð hpu, iq
Y Ð gy; Z Ð Xy

u

Kb
Ð H̃bpa,Pairpg, Zqq //H2

r0,1q

Kb
Ð H̃bpa,PairpXu, Y qq //H2

r1,8q

T ru, a, Y s Ð Kb

Cru, is Ð pa, Y q

Return ppa, Y q,Kb
q

Decappu, a, Y q //H2

pv, iq Ð g´1
paq

If i P Irus and pa, Y q “ Cru, is:
Return T ru, a, Y s

Return H̃bpa,PairpXu, Y qq //H2
r1,8q

Z Ð Y xu //H2
r0,1q

K Ð H̃1pa,Pairpg, Zqq //H2
r0,1q

K Ð H̃1pa,PairpXu, Y qq //H2
r1,8q

Return K

PairpX,Y q //Internal, H2

x Ð dlogpXq; y Ð dlogpY q

Return qpxyq

Hpa, Zq //H2

Return H̃1pa,Pairpg, Zqq

Encappu, iq //H3

a Ð gpu, iq
Y Ð ghpu,iq

Kb
Ð H̃bpa,PairpXu, Y qq

Return ppa, Y q,Kb
q

Decappu, a, Y q //H3

pv, iq Ð g´1
paq

If i ‰ K and a “ gpu, iq and Y “ ghpu,iq:
Return H̃bpa,PairpXu, Y qq

K Ð H̃1pa,PairpXu, Y qq

Return K

PairpX,Y q //Internal, H3

x Ð dlogpXq; y Ð dlogpY q

Return qpxyq

Hpa, Zq //H3

pu, iq Ð g´1
paq //H3

r1,8q

If pu, iq ‰ K: //H3
r1,8q

Y Ð ghpu,iq //H3
r1,8q

If Pairpg, Zq “ PairpXu, Y q: //H3
r1,8q

bad Ð true //H3
r1,8q

Return H̃bpa,Pairpg, Zqq //H3
r1,8q

Return H̃1pa,Pairpg, Zqq

Fig. 8. Hybrids games used in proof of Theorem 1. Note that New is shared between all hybrids. Oracles labelled
“internal” are not accessible to the adversary. Grey highlighting indicates changes from earlier games.
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Transition to H1
0.We claim that the view of A in H1

0 is identical to its view in Gmu-$cca
aECIES,b (Fig. 3) if b is chosen

uniformly. We obtained H1
0 by substituting the code of aECIES into Gmu-$cca and making some notational

changes. Note that H1
0’s final output is whether b

1 “ b, so standard conditional probability calculations give

that Advmu-$cca
aECIES pAq “ 2PrrH1

0s ´ 1.

Transition H1
0 to H1

3. First we transition to H1
1, where we use a random injection g to sample a and a

random function h to sample y. Since the inputs to g and h never repeat, the switching lemma gives us
PrrH1

0s ď PrrH1
1s ` q2Encap{p2 ¨ 2lq.

In H1
2 we switch from sampling K0 uniformly at random to assigning it the output of the random function

H0. As the input to H0 never repeats (in particular the a “ gpu, iq component), this does not change the
view of the adversary and PrrH1

1s “ PrrH1
2s.

In H1
3, we modify theDecap oracle where we switch the conditional from checking whether T ru, a, Y s ‰ K

to evaluating the boolean pv “ u and i P Irus and pa, Y q “ Cru, isq. Here Irus tracks the i values for which
Encappu, iq has been queried. The check pa, Y q “ Cru, is implicitly checks if u “ v because the first
component of Cru, is is gpu, iq, so in the next game transition we will drop the v “ u check. These conditions
are equivalent since T ru, a, Y s ‰ K iff the attacker queried Encappu, iq (i.e., i P Irus) which produced the
ciphertext pa, Y q (i.e., pa, Y q “ Cru, is “ pgpu, iq,ghpu,iqq). Hence, PrrH1

2s “ PrrH1
3s.

Transition H1
3 to H2

0 (map-then-rf). Next we transition to hybrid H2
0. We have highlighted the ways

in which H2
0 differs from H1

3. We have replaced the hash functions Hb with H̃b ˝ λ where λ is defined by
λpa, Zq “ pa,Pairpg, Zqq. Note that λ is an injection because Pairpg, ¨q is. As H̃ is a random function and
λ is an injection, their composition is a random function. Hence, PrrH1

3s “ PrrH2
0s.

Transition H2
0 to H2

1. In game H2
1, we use the bilinearity of Pair to compute Pairpg, Zq without knowing

Z in Encap and Decap. We use the Xu and Y from which Z was derived in a way that ensures dlogpZq “

dlogpXuq ¨ dlogpY q. We have PrrH2
0s “ PrrH2

1s.

Transition H2
1 to H3

0.Next we transition to the final set of hybrids H3, starting with H3
0. We highlighted

important ways in which H3
0 is different from H2

1. In H3
0, have removed the tables I, C, and T . Table T was

not being used anywhere. Where C was being used we instead recompute a “ gpu, iq and Y “ ghpu,iq. The
removal of I is the one place where our change modifies the behavior of the game. In Decap, the check if
i P Irus has been replaced with simply checking for i ‰ K. Hence, the games differ if the adversary makes a
query Decappu, a, Y q with a “ gpu, iq and Y “ ghpu,iq despite having not queried Encappu, iq.

We can information theoretically bound the probability of this. We analyze this probability in H2
1 where

the view of the adversary only depends on values of gpv, iq and hpv, iq for which i P Irvs. Consider some fixed
point in time when A makes a Decappu, a, Y q query with an a not previously returned by encapsulation.
Using this view, the adversary must guess some a “ gpu, iq such that i P I∖Irus along with the corresponding
Y “ ghpu,iq. There are |I| points in the image of gpu, ¨q, of which the adversary has seen |Irus| from Encap.
There are 2l points in the codomain of gp¨, ¨q, of which the adversary has seen |IrUs| from Encap, where
we define IrUs “ t pu, iq : i P Irus u. Thus we can bound the probability that the adversary picks such an
a P gpu, ¨q by

|gpu, Iq ∖ gpu, Irusq|

|t0, 1ul ∖ gpIrUsq|
“

|I| ´ |Irus|

2l ´ |IrUs|
ď

|I| ` |IrUs| ´ |Irus|

2l
ď

|I| ` qEncap
2l

.

In the last inequality we’ve used that |IrUs| ď qEncap. The adversary must additionally have guessed the
correct ghpu,iq, which it has an 1{pp´1q chance of having done (as h is a random function). Applying a union
bound across all Decap queries gives the bound PrrH2

1s ď PrrH3
0s ` p|I| ` qEncapq ¨ qDecap{p2l ¨ pp´ 1qq.

Transition H3
0 to H3

1. In H3
1, we have modified H to add a bad condition. In particular, if the attacker

every makes a Hpa, Zq query that could possibly correspond to the calculation of a key in Encap, then the
oracle uses H̃b instead of H̃1. Games H3

0 and H3
1 only differ when b “ 0 and the bad flag gets set. By the

fundamental lemma of game playing proofs, PrrH3
0s ď PrrH3

1s ` Prrb “ 0 ^ H3
1 sets bads.

Now in H3
1, the bit b is only used for determining which of H̃1 and H̃0 is to be used for hash evaluations

based on challenge ciphertexts inside of Encap, Decap, and H. Because this use is consistent between all
oracles, the adversary’s view is independent of the bit b and PrrH3

1s ď 1{2.
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Adversary BNew,Chal,Pair
pcdh

H̃ Ð$ Fcspt0, 1u
l

ˆ Zp,Kq

g Ð$ InjpU ˆ I, t0, 1u
l
q

b1
Ð$ ANew,SimEncap,SimDecap,SimH

Return K

SimEncappu, iq

a Ð gpu, iq
Xu Ð Newpuq

Y Ð Chalpu, iq
K Ð H̃pa,PairpXu, Y qq

Return ppa, Y q,Kb
q

SimDecappu, a, Y q

pv, iq Ð g´1
paq

Xu Ð Newpuq

Yu,i Ð Chalpu, iq
If i ‰ K and a “ gpu, iq and Y “ Yu,i:

Return H̃pa,PairpXu, Y qq

K Ð H̃pa,PairpXu, Y qq

Return K

SimHpa, Zq

pu, iq Ð g´1
paq

If pu, iq ‰ K:
Xu Ð Newpuq

Y Ð Chalpu, iq
If Pairpg, Zq “ PairpXu, Y q:

OUTPUTpu, i, Zq

Return H̃pa,Pairpg, Zqq

Fig. 9. Adversary Bpcdh for Theorem 1 proving the security of aECIES.

To bound Prrb “ 0^H3
1 sets bads, we construct an adversary Bpcdh given in Fig. 9 against the Pair CDH

security of G. It uses New for obtaining users’ public keys, Chal for simulating challenge ciphertexts, and
its oracle Pair wherever the internal Pair was used in H3

1 – perfectly simulating A’s view from H3
1 when

b “ 0. Following the argument above about H̃1 and H̃0 being indistinguishable in H3
1, the adversary simply

uses a single hash function H. Whenever the flag bad is set, Bpcdh outputs the corresponding pu, i, Zq and

wins the Pair CDH game. Therefore, PrrH3
1 sets bad|b “ 0s ď AdvpcdhG pBpcdhq. Clearly Prrb “ 0s “ 1{2. [\

4.2 Augmented Cramer-Shoup KEM

Augmented Version. In this section we present a memory-tight reduction for an augmented version of the
Cramer-Shoup KEM [CS03]. The augmented Cramer-Shoup key encapsulation mechanism aCSrG,K, l1, l2s

is parameterized by a group G “ pg, p, ˝q, key space K, and lengths of a random strings, l1, l2. We often think
of the parameters as fixed and use aCS in place of aCSrG,K, l1, l2s. We let aCS.IM “ Fcspt0, 1ul1`l2 ˆG2,Kq

and define the scheme as follows. Its keyspace is defined by aCS.K “ K and its ciphertext set by aCS.Cpekq “

t0, 1ul2 ˆ pxgy ∖ t1Guq.

aCS.K

α Ð$ t0, 1ul1

xÐ$ Z˚
p

ek Ð pα,gxq

dk Ð pα, xq

Return pek, dkq

aCS.EHppα,Xqq

aÐ$ t0, 1ul2

y Ð$ Z˚
p

Y Ð gy

Z Ð Xy

K Ð Hpα, a, Y, Zq

Return ppa, Y q,Kq

aCS.DHppα, xq, pa, Y qq

Z Ð Y x

K Ð Hpα, a, Y, Zq

Return K

Overview of Existing Techniques and Associated Challenges.A traditional security reduction for
the Cramer-Shoup KEM (i.e. aCS with l1 “ l2 “ 0) from the Strong CDH problem in the single-user, single-
challenge setting uses the lazy sampling technique to simulate H as a random oracle. The reduction maintains
a table T to store H queries and corresponding responses. When the adversary makes a decapsulation
query on Y , the reduction checks the table to see if an entry T rY,Zs exists such that GappX,Y, Zq “ true
where X “ gx is the public key. If the entry exists, it returns the corresponding value. Otherwise, the
reduction samples a new uniformly random element K from the key set K, stores T rY, s Ð K and returns
K. The second entry is filled in the table T when the adversary makes a hash query for pY,Zq such that
GappX,Y, Zq “ true. The reduction wins the Strong CDH game if it outputs a Z such that Z “ gxy,
which it does by waiting for the Cramer-Shoup adversary to query its hash oracle on inputs pY, Zq such that
GappX,Y, Zq “ true. Due to the use of the table T , this reduction is not memory- or time-tight.

22



Like with ECIES, the random oracle simulation using PRF technique cannot be used here as it is not
possible for the reduction to simulate decapsulation queries using the PRF. Bhattacharyya avoided this issue
by using the map-then-prf technique, defining HpY, Zq so that when Z “ Y dk, HpY, Zq is computable from
ek, Y . This allows properly responding to (all non-challenge) decapsulation queries when the reduction only
has access to Y and cannot compute Z “ Y dk. Since there is only one challenge ciphertext, the reduction
simply remembers the challenge ciphertext so it can respond correctly when the adversary forwards the
challenge ciphertext.

This proof breaks in the multi-user/multi-challenge setting because it is not clear how to identify and
respond to challenge ciphertexts without simply storing them all. Augmenting the scheme with random
strings α and a allows encoding the information needed to appropriately respond to queries. Our result is
captured by the following theorem.

Theorem 2 (Strong CDH ñ $CCA). Let G “ pg, p, ˝q be a group of prime order p. Let K, l1 and l2 be
fixed. Define aCS “ aCSrG,K, l1, l2s.

Let A be an adversary with QuerypAq “ pqNew, qEncap, qDecap, qHq. Assume that 2l1 ě |U | and 2l2 ě |I|.
We construct a Fcspt0, 1ul1`l2 ˆ G ˆ G‹,Kq ˆ Inj˘pU , t0, 1ul1q ˆ Inj˘pU , I, t0, 1ul2q-oracle adversary B such
that

Advmu-$cca
aCS pAq ď AdvscdhG pBq `

|U |p|U | ´ 1q

2l1
`
q2Encap
2l2

`
2qDecap|I|

2l2pp´ 1q

QuerypBq “ pqNew, pqEncap ` qDecap ` qHq, qHq

Time˚
pBq “ OpTimepAqq and Mem˚

pBq “ OpMempAqq.

The proof of this result is given in Appendix B. We will later observe that this result can be captured as
a special case of our Theorem 4.

The proceedings version of this work claimed security for a version of this scheme captured by setting
l1 “ 0. There was a bug in our proof of that result and we do not know how to TAM-tightly prove multi-user
security of that scheme. TAM-tight single-user, multi-challenge security is captured by the above with l1 “ 0
and |U | “ 1.

In the proof we observe that the bound could more precisely be written as

Advmu-$cca
aCS pAq ď AdvscdhG pBq `

qupqu ´ 1q

2l1
`
quq

2
i

2l2
`

2qDecap ¨ |I|

2l2`H8pKEMq

where qu is the number of distinct values of u that A queries to its New, Encap, and Decap oracles and qi
is the maximum number of distinct values of i that A queries to any user’s Encappu, ¨q oracle. Alternatively,
we could use q2u,i in place of quq

2
i , where qu,i is the number of distinct values of pu, iq that A queries to its

Encap oracle.

Intuition. In this proof, our Strong CDH adversary programs the random string α as the output of a random
injection f applied to user identity u and the random string a as the output of a tweakable random injection
gu (with the user identity u as the tweak) applied to challenge identifier i. It simulates the random oracle
Hpfpuq, a, Y, Zq as Hpfpuq, a, Y, ‹q when Strongpu, Y, Zq is true. This allows us to simulate decapsulations
because Strongpu, Y, Zq always holds in Decap.

The adversary simulates challenge ciphertexts using its own Chalpu, iq. To determine if a decapsulation
query pu, a, Y q is for a challenge ciphertext, the reduction first inverts a to obtain i. If i ‰ K, it re-queries
Chalpu, iq obtain the corresponding ciphertext Yu,i. If Y “ Yu,i, the reduction assumes this was a challenge
ciphertext. Finally, when the adversary A queries the oracle H with pα, a, Y, Zq such that f´1pαq “ u,
g´1
u paq “ i, Strongpu, Y, Zq “ true, and Y “ Chalpu, iq, the reduction outputs pu, i, Zq and wins the
Strong CDH game.

Removing Key Augmentation with Known Users. In aCS (and schemes to come) we augment the
keys with a string α which is included in each random oracle query. The proof uses this as a way to identify
which user a given random oracle query “belongs to”. In a setting where user identifiers are known (and in
particular can be included as an input to the algorithms of the KEM) one could omit refrain from augmenting
the keys and instead directly include u in each random oracle query.
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Choosing the Auxiliary String Length.We consider how the lengths l1 and l2 affect the tightness of
our result. Assume again 232 users receiving 232 ciphertexts each (so qu “ qi « 232 and qDecap « 264) and
aim for the information theoretic term of our bound to be in the ballpark of 2´64 or 2´128. For the setting
that |U | “ |I| « 232, we can use the alternate statement of the bound to derive that pl1, l2q « p128, 160q

gives 2´64 and pl1, l2q « p192, 224q gives 2´128. For the setting that |U | and |I| are large so we have to hash
down to U 1 and I 1, we derive that p|U 1|, |I 1|, l1, l2q « p2128, 2160, 128, 160q gives 2´64 and p|U 1|, |I 1|, l1, l2q «

p2192, 2224, 192, 224q gives 2´128.

4.3 Augmented Twin ElGamal KEM

Now we give a TAM-tight proof for an augmented version of the Twin ElGamal KEM from plain CDH
security. The original security proof for the Twin ElGamal KEM given by Cash, Kiltz, and Shoup [CKS09]
(CKS) closely mirrors the security proof for the Cramer-Shoup KEM based on Strong CDH. We modify our
proof for the security of the Cramer-Shoup KEM (Theorem 2) to use Strong Twin CDH to TAM-tightly
establish the security of the augmented Twin ElGamal KEM.

Augmented Version. In this section we present a memory-tight reduction for an augmented version of the
Twin ElGamal KEM [CKS09]. The augmented Twin ElGamal KEM aTWINrG,K, l1, l2s is parameterized
by a group G “ pg, p, ˝q, key space K, and lengths of the random strings, l1, l2. We treat the parameters
G,K,, l1, and l2 as constants and often write aTWIN in place of aTWINrG,K, l1, l2s. We set aTWIN.IM as
Fcspt0, 1ul1`l2 ˆ G3,Kq and define the scheme as follows. Its keyspace is defined by aTWIN.K “ K and its
ciphertext set by aTWIN.Cpekq “ t0, 1ul2 ˆ pxgy ∖ t1Guq ˆ pxgy ∖ t1Guq.

aTWIN.K

α Ð$ t0, 1ul1

w, xÐ$ Z˚
p

ek Ð pα,gw,gxq

dk Ð pα,w, xq

Return pek, dkq

aTWIN.EHppα,W,Xqq

aÐ$ t0, 1ul2

y Ð$ Z˚
p

Y Ð gy

Z Ð W y, Ψ Ð Xy

K Ð Hpα, a, Y, Z, Ψq

Return ppa, Y q,Kq

aTWIN.DHppα,w, xq, pa, Y qq

Z Ð Y w; Ψ Ð Y x

K Ð Hpα, a, Y, Z, Ψq

Return K

The following theorem captures our TAM-tight security result for this scheme.

Theorem 3 (Strong Twin CDH ñ $CCA). Let G “ pg, p, ˝q be a group of prime order p. Let K, l1,
and l2 be fixed. Define aTWIN “ aTWINrG,K, l1, l2s.

Let A be a adversary with QuerypAq “ pqNew, qEncap, qDecap, qHq. Assume that 2l1 ě |U | and 2l1 ě |I|.
We construct a Fcspt0, 1ul1`l2 ˆ G ˆ G2

‹,Kq ˆ Inj˘pU , t0, 1ul1q ˆ Inj˘pU , I, t0, 1ul2q-oracle adversary B as
defined in Fig. 15 such that

Advmu-$cca
aTWIN pAq ď AdvstcdhG pBq `

|U |p|U | ´ 1q

2l1
`
q2Encap
2l2

`
2qDecap|I|

2l2pp´ 1q

QuerypBq “ pqNew, pqEncap ` qDecap ` qHq, qHq

Time˚
pBq “ OpTimepAqq

Mem˚
pBq “ OpMempAqq.

The proof of this result is given in Appendix C. It is basically identical to the proof of Theorem 2, just
with the two group elements Z and Ψ wherever the prior proof had Z. Consequently, we explicitly write the
hybrids games and relationships between them, but leave the reader to read the explanations from the proof
of Theorem 2 to understand them. Again, we will later observe that this result can be captured as a special
case of our Theorem 4.
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5 Fujisaki-Okamoto Transformation

The Fujisaki-Okamoto [FO99, FO13] transformations use a random oracle to construct an CCA secure
KEM from a weakly (CPA) secure PKE scheme. Hofheinz, Hövelmanns, and Kiltz [HHK17] gave a modu-
lar treatment of several Fujisaki-Okamoto-style transformations by splitting them into modules that could
be analyzed individually. Bhattacharyya presented memory-tight reductions for several modules analyzed
in [HHK17] in the single-user, single-challenge setting [Bha20]. In our work, we present a general construc-
tion for CCA-secure KEMs from weakly secure KEM/PKE using Fujisaki-Okamoto-style transformation. We
use the message encoding technique along with the map-then-rf technique to prove memory-tight reductions
of the Fujisaki-Okamoto-style transformations in the multi-user, multi-challenge setting.

We divide this section into three subsections. First, we introduce the augmented transform aUK that
takes as input a weakly (OW-PCVA) secure KEM and transforms it to a CCA secure KEM by using a
random oracle. We then present a memory-tight proof for aUK in the multi-user, multi-challenge setting. We
show that two of the Hashed-ElGamal KEMs discussed in Sec. 4 can be obtained as instances of the aUK

transform. In the following subsections, we introduce the transforms T and aV that can be used in succession
to construct a OW-PCVA secure PKE scheme from a weakly (CPA) secure PKE scheme. After canonically
constructing a OW-PCVA secure KEM from the OW-PCVA secure PKE (see Sec. 2.4), we can apply the
aUK transform to obtain an augmented version of the scheme QFOK considered by [HHK17, Bha20]. We give
memory-tight proofs for T and aV.

5.1 Augmented Transformation aUK [OW-PCVA Ñ CCA]

The transformation aUK constructs a CCA secure key encapsulation mechanism aUEM “ aUKrKEM,K, l1, l2s

from a OW-PCVA secure key encapsulation mechanism KEM, where the key set K and lengths l1, l2 are
fixed parameters of aUEM. As done before, we use aUEM instead of aUEMrKEM,K, l1, l2s for notational
convenience. We define aUEM as follows where aUEM.IM “ Fcspt0, 1ul1`l2 ˆ KEM.K ˆ KEM.C, aUEM.Kq ˆ

KEM.IM.

aUEM.K

α Ð$ t0, 1ul1

pek, dkq Ð$ KEM.K
Return ppα, ekq, pα, dkqq

aUEM.EHˆH1

ppα, ekqq

aÐ$ t0, 1ul2

pc, kq Ð$ KEM.EH1

pekq

K Ð Hpα, a, c, kq

Return ppa, cq,Kq

aUEM.DHˆH1

ppα, dkq, pa, cqq

k Ð KEM.DH1

pdk, cq
If k “ K then return K

K Ð Hpα, a, c, kq

Return K

We note that aUEM is δ-correct and ε-uniform (for aUEM.Cpekq “ t0, 1ul2 ˆ KEM.Cpekq) if KEM is. It has
min-entropy H8paUEMq “ H8pKEMq.

We present a memory-tight reduction for the augmented transformation aUK in the multi-user, multi-
challenge setting. Our result is captured in the following theorem which we prove in Appendix D.

Theorem 4 (OW-PCVA ñ CCA). Let aUEM “ aUKrKEM,K, l1, l2s where KEM is δ-correct. Let A be
an adversary against aUEM with QuerypAq “ pqNew, qEncap, qDecap, qHq. Assume 2l1 ě |U | and 2l2 ě |I|. We
construct a Fcspt0, 1ul1`l2 ˆKEM.C ˆKEM.K‹,Kq ˆ Inj˘pU , t0, 1ul1q ˆ Inj˘pU , I, t0, 1ul1q-oracle adversary B
such that

Advmu-cca
aUEM pAq ď Advmu-ow-pcva

KEM pBq ` 2qEncap ¨ δ `
|U |p|U | ´ 1q

2l1
`
q2Encap
2l2

`
2qDecap ¨ |I|

2l2`H8pKEMq

QuerypBq “ pqNew, pqEncap ` qDecap ` qHq, qH, qDecap, qHq

Time˚
pBq “ OpTimepAqq and Mem˚

pBq “ OpMempAqq.

In the proof we observe that the bound could more precisely be written as

Advmu-cca
aUEM pAq ď Advmu-ow-pcva

KEM pBq ` 2qu,i ¨ δ `
qupqu ´ 1q

2l1
`
q2u,i
2l2

`
2qDecap ¨ |I|

2l2`H8pKEMq
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where qu is the number of distinct values of u that A queries to its New, Encap, and Decap oracles and
qu,i is the number of distinct values of pu, iq that A queries to its Encap oracle. Alternatively, we could use
quq

2
i in place of q2u,i, where qi is the maximum number of distinct values of i that A queries to any user’s

Encappu, ¨q oracle.
The proceedings version of this work claimed security for a version of this scheme captured by setting

l1 “ 0. There was a bug in our proof of that result and we do not know how to TAM-tightly prove multi-user
security of that scheme. TAM-tight single-user, multi-challenge security is captured by the above with l1 “ 0
and |U | “ 1.

Intuition. This proof is very similar to the proof of Theorem 2. Once again, our OW-PCVA adversary
programs the random string α to be the output of the injective function fpuq and the random string a to
be the output of the tweakable random injection gupiq. We use the map-then-rf technique to simulate the
oracle Hpα, a, c, kq as Hpα, a, c, ‹q when k is the decapsulation of c.

The adversary simulates the challenge i ciphertext for user u as Chalpu, iq. To determine if a decap-
sulation query pu, a, cq is for a challenge ciphertext, the reduction first inverts a to obtain i. If i ‰ K, it
queries Chalpu, iq and checks if this outputs c. To check for invalid ciphertexts in the simulation of Decap,
it uses its CV oracle. Finally, when the aUEM adversary queries the H oracle with a tuple pα, a, c, kq such
that PCpu, k, cq “ true and c “ Chalpu, iq where u “ f´1pαq, i “ g´1

u paq, the reduction outputs pu, i, kq and
wins its game.

Hashed ElGamal KEMs.The Hashed ElGamal KEMs aCS and aTWIN can be captured by applying the
transformation aUK to weakly (OW-PCA) secure key encapsulation mechanisms gKEM and tKEM defined
below for a group G of prime order p.

gKEM.K

xÐ$ Z˚
p

pek, dkq Ð pgx, xq

Return pek, dkq

gKEM.EpXq

y Ð$ Z˚
p

c Ð gy

k Ð Xy

Return pc, kq

gKEM.Dpx, cq

k Ð cx

Return k

tKEM.K

w, xÐ$ Z˚
p

ek Ð pgw,gxq

dk Ð pw, xq

Return pek, dkq

tKEM.EpW,Xq

y Ð$ Z˚
p

c Ð gy

k Ð pW y, Xyq

Return pc, kq

tKEM.Dppw, xq, cq

k Ð pcw, cxq

Return k

For these KEMs, the notions of OW-PCA and OW-PCVA security are equivalent because all c P G are
valid ciphertexts and we assume inclusion in the group can be efficiently checked. The OW-PCA security
of gKEM or tKEM is, respectively, equivalent to the Strong CDH or Strong Twin CDH of the underlying
group (with the strong oracle playing the role of the plaintext checking oracle). It is easy to see that
aCS “ aUKrgKEMs and aTWIN “ aUKrtKEMs. Both schemes are 0-uniform, are perfectly correct, and have
min-entropy log2pp´ 1q which allows us to recover Theorems 2 and 3 as special cases of Theorem 4.

5.2 Transformation T [CPA Ñ OW-PCA]

The transformation T constructs a deterministic OW-PCA secure public key encryption scheme TKE “

TrPKEs from a CPA secure public key encryption scheme PKE. We define TKE as follows with TKE.IM “

FcspPKE.M,PKE.Rq ˆ PKE.IM and TKE.M “ PKE.M.

TKE.K

pek, dkq Ð$ PKE.K
Return pek, pek, dkqq

TKE.EHˆH1

pek,mq

c Ð PKE.EH1

pek,m;Hpmqq

Return c

TKE.DHˆH1

ppek, dkq, cq

m Ð PKE.DH1

pdk, cq

If m “ K or PKE.EH1

pek,m;Hpmqq ‰ c:
Return K

Return m1

Note that the if statement in TKE.D ensures that TKE is rigid.
The following theorem gives a memory-tight reduction for T in the multi-user, multi-challenge setting

using the randomness programming technique.

Theorem 5 (CPA ñ OW-PCA). Let TKE “ TrPKEs. If PKE is δ-correct, then TKE is δ1-correct for
δ1pqq “ pq ` 1qδpqq. Let A be an adversary against TKE with QuerypAq “ pqNew, qChal, qPC, qHq. Assume
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PKE’s algorithms make at most qPKE oracle queries and define q˚ “ qH ` qChalpqPKE ` 1q ` qPCp2qPKE ` 1q.
Assume |PKE.M| ě U ˆ I. We construct an FcspPKE.M,PKE.Rq ˆ Inj˘pU ˆ I,PKE.Mq-oracle adversary
B such that

Advmu-ow-pca
TKE pAq ď Advmu-cpa

PKE pBq ` |U | ¨ δ1pq˚q `
0.5pqChal ` 1q2 ` |U | ¨ |I|pqH ` qPC ` 1q

|PKE.M|

QuerypBq “ pqNew ` qPC, qChal, qH ` qPC ¨ qPKEq

Time˚
pBq “ OpTimepAqq

Mem˚
pBq “ OpMempAqq.

The proof of this theorem is given in Appendix E. In the proof, we note that the correctness term could
more precisely be written as qu ¨ δ1pq˚q where qu is the number of distinct values of u that A queries to its
oracles or outputs at the end of execution.

Intuition. For this proof, our CPA adversary programs the random messages m to be the output of a
random injection gpu, iq. It simulates the challenge ciphertext i for user u by invoking its own encryption
oracle on gpu, iq. It simulates the plaintext checking oracle by seeing if the given message encrypts to the
given ciphertext. If any message that A queries to its random oracle or outputs at the end of execution is in
the image of g, then our reduction assumes it is in the real world and outputs 1. In the ideal world, the view
of A is independent of g so we can information theoretically bound the probability it finds such a message.

5.3 Augmented Transformation aV [OW-PCA Ñ OW-PCVA]

The augmented transformation aV constructs a deterministic OW-PCVA secure public key encryption scheme
VKE “ aVrTKEs from a deterministic OW-PCA secure scheme TKE. The unaugmented V transformation
was given (with a single-user, single-challenge memory-tight reduction) in [Bha20]. Our augmentation adds
a random string to the keys which is included with every hash function query. We define VKE as follows with
VKE.IM “ Fcspt0, 1ul ˆ TKE.M, t0, 1uγq ˆ TKE.IM and VKE.M “ TKE.M, where l and γ are fixed.

VKE.K

α Ð$ t0, 1ul

pek, dkq Ð$ TKE.K
Return ppα, ekq, pα, ek, dkqq

VKE.EHˆH1

ppα, ekq,mq

c1 Ð TKE.EH1

pek,mq

c2 Ð Hpα,mq

c Ð pc1, c2q

Return c

VKE.DHˆH1

ppα, ek, dkq, cq

pc1, c2q Ð c

m1 Ð TKE.DH1

pdk, c1q

If m1 “ K or Hpα,m1q ‰ c2 or TKE.EH1

pek,m1q ‰ c1:
Return K

Return m1

Note that aV is rigid and if TKE is rigid and δ1-correct, then aV is δ1-correct. If TKE is rigid, then the
re-encryption inside of VKE.D is superfluous.

We present a memory-tight reduction for aV in the multi-user, multi-challenge setting using the random-
ness programming technique.

Theorem 6 (OW-PCA ñ OW-PCVA). Let VKE “ aVrTKEs and suppose TKE is rigid and δ1-correct.
Let A be an adversary against VKE with QuerypAq “ pqU, qChal, qPC, qCV, qHq. Assume that 2l ě |U |. Assume
TKE’s algorithms make at most qTKE oracle queries and define q˚ “ qTKEp2qChal `2qH `qPC `qCV `1q `qH.
We construct an Fcspt0, 1ul ˆ TKE.M, t0, 1uγq ˆ FcspU ˆ TKE.C, t0, 1uγq ˆ Inj˘pU , t0, 1ulq-oracle adversary
B against TKE such that

Advmu-ow-pcva
VKE pAq ď Advmu-ow-pca

TKE pBq ` 2|U | ¨ δ1pq˚q `
|U |2

2l`1
`
qCV

2γ

QuerypBq “ pqNew, qChal, qPC, qH ¨ qTKEq

Time˚
pBq “ OpTimepAqq and Mem˚

pBq “ OpMempAqq.

The proof is given in Appendix F.
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Intuition.Our OW-PCA adversary for this proof programs the random string α as the output of the random
injection f applied to user identity u and simulates hash oracle queries Hpα,mq as H̃pu,VKE.EH1

peku,mqq

where u “ f´1pαq. To simulate challenge ciphertexts, our adversary queries its own Chal oracle to obtain
the first part of the ciphertext c1, and computes the hash H̃pu, c1q to obtain the second part c2. Similarly,
to simulate PC queries of the form PCpu,m, cq, it invokes its own PC oracle to check if the first part c1 of
the input ciphertext c decrypts to m and if so, it checks if the second part c2 equals H̃pu, c1q. To simulate
the CV oracle, our adversary simply verifies the second part of the ciphertext c2 by hashing the first part
c1. Finally, when the OW-PCVA adversary A outputs the tuple pm1, u, iq, our reduction outputs the same
and wins its game whenever A wins.

Fujisaki-Okamoto Construction. The public-key encryption scheme VKE obtained as a result of ap-
plying the T and aV transforms can be used to construct a CCA secure KEM using the aUK transform.
For this, we first convert VKE to a KEM as KEM “ CaKrVKEs. As noted in Sec. 2.4, Advmu-ow-pcva

VKE pAq “

Advmu-ow-pcva
CaKrVKEs

pAq for any A. Therefore, KEM is OW-PCVA secure, and can be used as an input to the

aUK transform to obtain a CCA secure KEM, aUEM. The construction aUEM “ aUKrCaKraVrTrPKEssss is
essentially an augmented version of the QFO transform in [HHK17, Bha20], which one could call aQFOK.

6 Memory-Tight Reduction for PKE Schemes (via KEM/DEM)

In this section, we provide a modified version of the TAM-tight security proof from [GGJS12] to show the
security of the KEM/DEM construction of public key encryption [CS03]. Thus, combining one of the KEMs
studied in the rest of the paper with an appropriate symmetric encryption scheme gives a PKE scheme with
a TAM-tight reduction in the multi-user, multi-challenge setting.

KEM/DEM Scheme. Let SKE be a symmetric key encryption scheme and KEM be a key encapsulation
mechanism. Then the KEM/DEM encryption scheme KD “ KDrKEM,SKEs is defined as follows, with
KD.IM “ KEM.IM “ SKE.IM. Assuming KEM and SKE use the same ideal model is without loss of gen-
erality as it could be the case that the set of functions is F ˆ G where KEM only actually queries F and SKE
only actually queries G. We assume that SKE.K outputs a uniformly random key from KEM.K.

KDrKEM,SKEs.K

pek, dkq Ð$ KEM.K
Return pek, dkq

KDrKEM,SKEs.EHpek,mq

pck,Kq Ð$ KEM.EHpekq

cd Ð$ SKE.EHpK,mq

Return pck, cdq

KDrKEM,SKEs.DHpdk, cq

pck, cdq Ð c
K Ð KEM.DHpdk, ckq

If K “ K then return K

Return SKE.DHpK, cdq

We will give two different theorems capturing the TAM-tight security of KD. The first, Theorem 7,
restricts attention to challenge respecting adversaries to cover the more typical notion of security in which
repeated queries to encryption are disallowed. The second, Theorem 8, is in the more general setting where
the attacker is allowed to repeat encryption queries, receiving back the same ciphertext from its original
query. The proof of the second is harder and results in worse concrete security, corresponding to a need for
the ciphertexts of the underlying schemes to be longer.

Theorem 7. Let SKE be a symmetric key encryption scheme, KEM be a δ-correct, ε-uniform key encapsu-
lation mechanism, and KD “ KDrSKE,KEMs. Let T “ U ˆ KEM.Ek, Dpu,ekq “ I and Rpu,ekq “ KEM.Cpekq.

Let T 1 “ U ˆ
Ť

ekPKEM.Ek KEM.Cpekq ˆ N, D1
pu,ck,lq “ t0, 1ul, and R1

pu,ck,lq “ t0, 1uSKE.clplq. Assume SKE’s

and KEM’s algorithms make at most q1 queries to the ideal model. Let A be a challenge-respecting adver-
sary against KD with QuerypAq “ pqNew, qEnc, qDec, qHq. Then we can construct an Inj˘pT 1, D1, R1q-oracle
adversary BKEM and FcspU ,KEM.Rq ˆ Inj˘pT,D,Rq-oracle adversary against BSKE such that

Advmu-$cca
KD pAq ď 2Advmu-$cca

KEM pBKEMq ` Advmu-$cca
SKE pBSKEq ` qEnc ¨ p2δ ` εq

`
2q2Enc ` 2qEncqDec

|KEM.C|
`
q2Enc ` 2qDec

2SKE.xl
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QuerypBKEMq “ pqNew, qEnc, qDec, qH ` pqEnc ` qDecqq1q

Time˚
pBKEMq “ OpTimepAqq

Mem˚
pBKEMq “ OpMempAqq

QuerypBSKEq “ pqEnc, qDec, qH ` 2qDecq
1q

Time˚
pBSKEq “ OpTimepAqq

Mem˚
pBSKEq “ OpMempAqq.

BKEM and BSKE are both challenge respecting and BSKE makes at most one encryption query per user.

The proof of this theorem is given in Appendix G. In the proof, we are able to make a number of
simplifying assumptions because the adversary is challenge respecting and so we do not have to worry about
maintaining consistency between repeated queries. The following theorem captures the more general case
when repeat queries are allowed, so we cannot make such simplifying assumptions. It differs from the prior
theorem in the oracles used by the adversaries and the information theoretic part of the bound.

Theorem 8. Let SKE be a symmetric key encryption scheme, KEM be a δ-correct, ε-uniform key encapsu-
lation mechanism, and KD “ KDrSKE,KEMs. Let T “ U ˆ KEM.Ek, Dpu,ekq “ I and Rpu,ekq “ KEM.Cpekq.

Let T 1 “ U ˆ
Ť

ekPKEM.Ek KEM.Cpekq ˆN, D1
pu,ck,lq “ t0, 1ul, and R1

pu,ck,lq “ t0, 1uSKE.clplq. Assume SKE’s and

KEM’s algorithms make at most q1 queries to the ideal model. Let A be an arbitrary adversary against KD
with QuerypAq “ pqNew, qEnc, qDec, qHq. Fix γ P N. Then we can construct an FcspU ˆI ˆ t0, 1u˚,SKE.Rq ˆ

Inj˘pT 1, D1, R1q-oracle adversary BKEM and FcspU ,KEM.Rq ˆ Inj˘pT,D ˆ t0, 1uγ , Rq ˆ Fcspt0, 1u˚, t0, 1uγq-
oracle adversary against BSKE such that

Advmu-$cca
KD pAq ď 2Advmu-$cca

KEM pBKEMq ` Advmu-$cca
SKE pBSKEq ` qEnc ¨ p2δ ` εq

`
2q2Enc ` 2qEncqDec

|KEM.C|
`
q2Enc ` 2qDec

2SKE.xl
`
q2Enc
2γ

`
2qDec ¨ |I| ¨ 2γ

|KEM.C|

QuerypBKEMq “ pqNew, qEnc, qDec, qH ` pqEnc ` qDecqq1q

Time˚
pBKEMq “ OpTimepAqq

Mem˚
pBKEMq “ OpMempAqq

QuerypBSKEq “ pqEnc, qDec, qH ` 2qDecq
1q

Time˚
pBSKEq “ OpTimepAqq

Mem˚
pBSKEq “ OpMempAqq.

BSKE may (with low probability) make multiple encryption queries to a user.

The proof of this result is in Appendix H. Unsurprisingly, much of the proof overlaps with that of
Theorem 7. Rather than repeat most of the logic, we give the explicit pseudocode for our hybrids and
reductions as well as the associated security bounds. Then we explain specially the places where the games
and analysis differs from the prior proof.

A primary difficulty in the proof comes from simulating the KEM ciphertext after it has been switched
to random. In the proof of Theorem 7 we are able to pick it as the output of a random injection tweaked
by the user u applied to the challenge identifier i. This allows us to try inverting the KEM ciphertext
during decryption to see if it could correspond to a challenge ciphertext and react appropriately if so. Doing
this in our proof of Theorem 8 would not work because it would result in two queries Encpu, i,mq and
Encpu, i,m1q for m ‰ m1 having the same KEM ciphertext when they should have ciphertexts that look
completely independent. So we need to make the KEM ciphertext depend on the message m. Using m as
a tweak does not work, as in decryption we would not know which m to use when using the inverse of the
inject. Using m as an input would be wholly unsatisfying as it would require the KEM ciphertext to be at
least as long as the message! We resolve this issue in our proof by hashing the message down to a shorter
string and including this as input to the injection. This works as long as the attacker does not find a collision
in the hash.

The proof includes a few other minor adjustments required to allow the correct behavior of repeating
ciphertexts when encryption queries repeat while giving seemingly independent outputs when they do not.

Instantiating KD.This result proves the multi-challenge, multi-user security of KD, but requires appropri-
ate choices of KEM and SKE. Naturally, one could choose the KEMs studied earlier in this work for the first
component. Note that aUK was only proven CCA secure, where we require $CCA security. Per an earlier
observation, this gap can be bridged for any ε-uniform KEM.
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For symmetric encryption, we need a scheme which achieves single-challenge, multi-user security. We are
not aware of any TAM-tight multi-user analysis of symmetric encryption scheme, so one instead needs to
pick a scheme whose multi-user, single challenge security is sufficiently strong against memory-unbounded
adversaries. Depending on the believed security of KEM, one reasonable option could be GCM with a random
nonce. In the ideal cipher model, Hoang, Tessaro, and Thiruvengadam [HTT18] showed a strong bound for
this setting which is essentially independent of the number of users.
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Game Gx
GpAq

pg, p, ˝q Ð G
x, y Ð$ Z˚

p

X Ð gx; Y Ð gy O Ð K //Gacdh

O Ð Pair //Gapcdh

f Ð$ InjpZp,Zpq //Gapcdh

rZsz⃗ Ð$ AO
pX,Y q

Return pZ “ gxy
q and pZ “ gz1Xz2Y z3q

PairprAsa⃗, rBs⃗bq

Require A “ ga1Xa2Y a3

Require B “ gb1Xb2Y b3

a Ð dlogpAq; b Ð dlogpBq

Return fpabq

Game Gdlog
G pAq

pg, p, ˝q Ð G
c Ð$ Zp

c1
Ð$ Apgc

q

Return pc “ c1
q

Fig. 10. Security games Gx for (single-user, single-challenge) PairCDH and CDH in the algebraic group model and
security game Gdlog for discrete log.

A Pair Diffie-Hellman in Ideal Models

We will show that in the algebraic group model CDH security and discrete log security together imply Pair
CDH security. As discrete log security is implied by CDH security in the algebraic group model, this implies
that CDH and Pair CDH are equivalent in the algebraic group model. (Indeed, discrete log security is known
to be equivalent to CDH security in the algebraic group model so all three notions are equivalent therein.)
We work with single-user, single-challenge variants of CDH security games as Lem. 3 extends readily to show
it TAM-tightly implies multi-user, multiple-challenge security in the algebraic group model.

In the algebraic group model, each time an adversary A outputs a group element (as an oracle query
or final output) it must additionally output a vector over Zp which “explains” how the group element can
be derived from g and all other group elements previously given to the adversary. Security games for Pair
CDH and CDH in the algebraic group model are given in Fig. 10. In these game we use the notation rAsa⃗

to denote a tuple pA, a1, a2, a2q for which ga1Xa2Y a3 “ A. We perform this check explicitly in the code.
In the same figure we give the security game for the standard notion of discrete log security in which

the adversary is given a random group element with the goal of producing its discrete logarithm. For x P

tacdh, apcdh,dlogu we define the advantage function AdvxGpAq “ PrrGx
GpAqs.

The following theorem captures our security result in the algebraic model.

Theorem 9. Let G be a group and A be an adversary for Gapcdh
G . Then we can construct FcspZ6

p,Zpq-oracle

adversaries B for Gacdh
G and C for Gdlog

G (both given in the proof) such that

AdvapcdhG pAq ď AdvacdhG pBq ` AdvdlogG pCq ` p0.5 ¨ q2Pair ` 4q{pp´ 1q

For the theorem we have simplified by not focusing on memory or time tightness. After the proof we describe
how to modify the adversary C to achieve {AM,TM}-tight tightness.

Proof. We start by considering the adversary B defined in Fig. 11. It uses a random function f 1 P FcspZ6
p,Zpq

to simulate the Pair oracle of A.
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Adversary BpX,Y q

f 1
Ð$ FcspZ6

p,Zpq

rZsz⃗ Ð$ ASimPair
pX,Y q

Return rZsz⃗

SimPairprAsa⃗, rBs⃗bq

Require A “ ga1Xa2Y a3

Require B “ gb1Xb2Y b3

c1 Ð a1b1
c2 Ð pa1b2 ` a2b1q

c3 Ð pa1b3 ` b1a3q

c4 Ð pa2b3 ` a3b2q

c5 Ð a2b2
c6 Ð a3b3
Return f 1

pc1, c2, c3, c4, c5, c6q

Adversary CpUq

f 1
Ð$ FcspZ6

p,Zpq

wx, wy Ð$ Z˚
p

vx, vy Ð$ Zp

X Ð Uwxgvx

Y Ð Uwygvy

P Ð H

prZsz⃗q Ð$ ASimPair
pX,Y q

For P, P 1
P P do

Q Ð rP ´ P 1
spwx ¨ u ` vx, wy ¨ u ` vhq

pu1, u2q Ð ZerospQq

If gu1 “ U then return u1

If gu2 “ U then return u2

Return 0

SimPairprAsa⃗, rBs⃗bq

Require A “ ga1Xa2Y a3

Require B “ gb1Xb2Y b3

P Ð P Y tPa⃗,⃗bu

c1 Ð a1b1
c2 Ð pa1b2 ` a2b1q

c3 Ð pa1b3 ` b1a3q

c4 Ð pa2b3 ` a3b2q

c5 Ð a2b2x
2

c6 Ð a3b3y
2

Return f 1
pc1, c2, c3, c4, c5, c6q

Fig. 11. Adversaries used for proof of Thm. 9. Polynomial Pa⃗,⃗b is defined in the text of the proof. Zeros computes
the (at most two) zeros of the quadratic polynomial Q.

The true Pair oracle uses a function f P InjpZp,Zpq and returns fpdlogpAq ¨dlogpBqq. Using the represen-
tations of A and B provided by A when querying this oracle, we can write this as fppa1`a2x`a3yqpb1`b2x`

b3yqq. We can expand that input to f as a1b1`pa1b2`a2b1qx`pa1b3`b1a3qy`pa2b3`a3b2qxy`a2b2x
2`a3b3y

2.
We think of this as a degree-two polynomial Pa⃗,⃗b P Zprx,ys evaluated at the point px,yq “ px, yq. Adversary

C computes the coefficients pc1, . . . , c6q of this polynomial and returns f 1pc1, . . . , c6q.
There are two ways that A could recognize the imperfection of this simulation, by detecting that C is using

a random function, rather than an injection or by detecting that C has changed the input to this function.
Letting H0 denote a hybrid game which is identical to Gapcdh

G pAq except that f is drawn from FcspZp,Zpq rather

than InjpZp,Zpq. By the switching lemma (Lemma 1), we have that PrrGapcdh
G pAqs ď PrrH0s ` 0.5 ¨ q2Pair{p.

Now let H1 denote a hybrid game in which the pair oracle is as simulated by C. The only way that H0

and H1 can be distinguished is if A makes oracle queries which give distinct polynomials that have the same
output on px, yq. Stated more formally, if A makes a pair queries with inputs prAsa⃗, rBs⃗bq and prA1sa⃗1 , rB

1sb⃗1 q

such that Pa⃗,⃗b ‰ Pa⃗1,b⃗1 , yet Pa⃗,⃗bpx, yq “ Pa⃗1,b⃗1 px, yq. Letting bad denote the event that this condition holds in

H1 for any pair of queries made by A, we have that PrrH0s ď PrrH1s ` Prrbads.
Let H1

1 denote a game which is identical to H1 except x, y are sampled from Zp, rather than Z˚
p and let

bad1 denote the probability of the bad event in this game. Then Prrbads ď Prrbad1
s ` 2{p.

So to complete the proof, we need only provide a bound on Prrbad1
s. We do so using the discrete

log adversary C shown in Fig. 11. Given a discrete log challenge U it samples its own wx, wy Ð$ Z˚
p and

vx, vy Ð$ Zp and defines X Ð Uwxgvx and Y Ð Uwygvy . It then runs A on input X,Y and simulates its
oracle exactly as B does, thus perfectly mirroring the view of A in H1

1.
While simulating the view of A, it uses a set P to store the polynomials Pa⃗,⃗b corresponding to each

of A’s oracle queries. If bad1 ever occurs, then P will contain polynomials P, P 1 for which P ‰ P 1, yet
P px, yq “ P 1px, yq. At the end of its execution, C iterates over all pairs of polynomials in P, hoping that the
above holds for some pair and trying to use them to solve for u.

Letting u “ dlogpUq, note that x “ uwx ` vx and y “ uwy ` vy. Let P, P
1 denote a pair of polynomials

satisfying the above conditions. When it reaches them in the loop, adversary C defines a new polynomial Q
by rP ´ P 1spwx ¨ u ` vx, wy ¨ u ` vhq. Thus Q is (at most) quadratic polynomial in the formal variable u.
Because P px, yq “ P 1px, yq, we have that Qpuq “ 0. Assuming Q is not the zero polynomial, it has at most
two zeros. So C can factor Q to obtain its zeros and check which is u. We use Zero in pseudocode to denote
this process (assuming it outputs u1 “ u2 “ 0 if Q “ 0).

It remains to bound the probability that Q “ 0 when P ‰ P 1. We can first think of Q as a polynomial
from pZprwx,vx,wy,vysqrus, i.e. treat wx, vx, wy, vy as formal variables so that Q is a polynomial of u with
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coefficients that are polynomials of wx,vx,wy,vy. From [BFL20, Lemma 2.1], the coefficient of Q of highest
degree is a polynomial of wx,wy with degree equal to that of P ´ P 1 (which is non-zero from our assumed
conditions on P, P 1). We can bound the probability that Q is zero by the probability this coefficient is zero.
For this, note that vx, vy act as “one-time pads”, so the view of A is independent of wx,wy. Thus we can use
the Schwartz-Zippel lemma to bound the probability Q is zero by 2{pp´ 1q. Putting this reasoning together

gives Prrbad1
s ď AdvdlogG pCq ` 2{pp´ 1q. [\

Achieving Limited Tightness.The result above is advantage-tight, but neither time- nor memory-tight
because C uses additional memory to store all of the polynomials and then iterates over all pairs of them at
the end of execution.

We could modify C to achieve TM-tightness by having it pick two of the Pair oracle queries at random
and assume that they give colliding polynomials. Storing only those to polynomials in P would make it use
only slightly more time and memory than A, but we would have only been able to show that Prrbad1

s ď

q2PairAdv
dlog
G pC˚q ` 2{pp´ 1q where C˚ is this modified version of C.

To achieve AM-tightness, we can check every pair of queries for collisions using the memory-tight rewind-
ing technique of Auerbach, et al [ACFK17]. Namely, we have C remember all the coins it uses by picking
them using a random function. Then each time A makes a new Pair oracle query, C pauses A and runs a
second copy of that adversary from the start of its execution until it reaches the same Pair query. While
running this second copy, each time it makes a Pair oracle query we try to solve for u using the polynomials
corresponding to this query and to the Pair query in the first copy of A that we paused at. If A makes q
oracle queries, then the runtime of this C should be Opq ¨ TimepAqq.

Extending to Generic Group Models. To obtain bound in a generic group model [Sho97, Mau05],
we can follow the same general line of reasoning as above. First, we use standard techniques to convert a
given generic adversary to an algebraic, generic adversary with the same advantage. Then we can bound its
advantage by the probability that B from above succeeds plus the probability that it causes bad to occur.
Using the typical Schwartz-Zippel type of analysis applied to the generic group model, we can bound both
these by Oppq2Op ` q2Pairq{pq, where qOp is the number of generic group operations the adversary performs
and qPair is the number of oracle queries it makes.

B Proof of Theorem 2 (Augmented Cramer-Shoup)

We prove the security of aCS through a sequence of hybrids presented in Fig. 12. In particular, we establish
the following claims that upper bound the advantage of adversary A as claimed in the theorem.

1. Advmu-$cca
aCS pAq “ 2PrrH1

0s ´ 1
2. PrrH1

0s ď PrrH1
4s ` |U |p|U | ´ 1q{2l1`1 ` q2Encap{2l2`1

3. PrrH1
4s “ PrrH2

1s

4. PrrH2
1s ď PrrH3

0s ` qDecap ¨ |I|{p2l2pp´ 1qq

5. PrrH3
0s ď PrrH3

1s ` Prrb “ 0 ^ H3
1 sets bads

6. PrrH3
1s ď 1{2

7. Prrb “ 0 ^ H3
1 sets bads ď AdvscdhG pBscdhq{2

Transition to H1
0. We claim that A’s view in H1

0 is identical to Gmu-$cca
aCS,b (from Fig. 3), if b is chosen

uniformly. The code of this game was obtained by plugging the code of aCS into Gmu-$cca, then making some
small notational simplifications in preparation for future hybrids.

Note that H1
0’s final output is whether b

1 “ b, so standard conditional probability calculations give that

Advmu-$cca
aCS pAq “ 2PrrH1

0s ´ 1.

Transition H1
0 to H1

3. To transition from H1
0 to H1

3, we first transition to H1
1. There each use of αu (in

Encap, Decap, or New) is chosen as the output of random injection f , rather than being sampled at
random. From the Switching Lemma we get that PrrH1

0s ď PrrH1
1s ` |U |p|U | ´ 1q{2l1`1. This term could

more precisely be written as qupqu ´ 1q{2l1`1 where qu is the number of distinct values of u that A queries
to its oracles.

Now in switching to H1
2, we use a tweakable random injection g to sample a and using a tweakable random

function h to sample yu,i in Encap. The inputs to g and h do not repeat so by the Switching Lemma we get
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Hybrids Hι
κ

b Ð$ t0, 1u

xp¨q Ð$ Z˚
p

H0,H1 Ð$ aCS.IM
D1 Ð t0, 1u

l1`l2 ˆ G ˆ G‹

H̃ Ð$ Fcspt0, 1u, D1,Kq

αp¨q Ð$ t0, 1u
l1

f˘
Ð$ Inj˘pU , t0, 1u

l1q

g˘
Ð$ Inj˘pU , I, t0, 1u

l2q

h Ð$ FcspU , I,Z˚
p q

b1
Ð$ ANew,Encap,Decap,H

Return pb1
“ bq

Encappu, iq //H1

If Cru, is ‰ K:
pa, Y q Ð Cru, is
Return ppa, Y q, T ru, a, Y sq

Irus Ð Irus Y tiu
a Ð$ t0, 1u

l2 //H1
r0,2q

a Ð gupiq //H1
r2,8q

y Ð$ Z˚
p //H1

r0,2q

y Ð hupiq //H1
r2,8q

Y Ð gy; Z Ð Y xu

K1
Ð H1pαu, a, Y, Zq //H1

r0,1q

K1
Ð H1pfpuq, a, Y, Zq //H1

r1,8q

K0
Ð$ K //H1

r0,3q

K0
Ð H0pfpuq, a, Y, Zq //H1

r3,8q

T ru, a, Y s Ð Kb

Cru, is Ð pa, Y q

Return ppa, Y q,Kb
q

Decappu, a, Y q //H1

i Ð g´1
u paq //H1

r4,8q

If i P Irus and pa, Y q “ Cru, is: //H1
r4,8q

If T ru, a, Y s ‰ K: //H1
r0,4q

Return T ru, a, Y s

Z Ð Y xu

Return H1pαu, a, Y, Zq //H1
r0,1q

Return H1pfpuq, a, Y, Zq //H1
r1,8q

Newpuq //H1

Return pαu,g
xuq //H1

r0,1q

Return pfpuq,gxuq //H1
r1,8q

Hpα, a, Y, Zq //H1

Return H1pα, a, Y, Zq

Encappu, iq //H2

If Cru, is ‰ K:
pa, Y q Ð Cru, is

Else
a Ð gupiq; y Ð hupiq
Y Ð gy

Irus Ð Irus Y tiu
Z Ð Y xu

Kb
Ð H̃bpλpfpuq, a, Y, Zqq //H2

r0,1q

Kb
Ð H̃bpfpuq, a, Y, ‹q //H2

r1,8q

T ru, a, Y s Ð Kb

Cru, is Ð pa, Y q

Return ppa, Y q,Kb
q

Decappu, a, Y q //H2

i Ð g´1
u paq

If i P Irus and pa, Y q “ Cru, is:
Return T ru, a, Y s //H2

r0,1q

Return H̃bpfpuq, a, Y, ‹q //H2
r1,8q

Z Ð Y xu

Return H̃1pλpfpuq, a, Y, Zqq //H2
r0,1q

Return H̃1pfpuq, a, Y, ‹q //H2
r1,8q

Newpuq //H2

Return pfpuq,gxuq

Hpα, a, Y, Zq //H2

Return H̃1pλpα, a, Y, Zqq //H2
r0,1q

u Ð f´1
pαq //H2

r1,8q

If u ‰ K and Z “ Y xu : //H2
r1,8q

Return H̃1pα, a, Y, ‹q //H2
r1,8q

Return H̃1pα, a, Y, Zq //H2
r1,8q

Injection λpα, a, Y, Zq //Internal, H2

u Ð f´1
pαq

If u ‰ K and Z “ Y xu :
Return pα, a, Y, ‹q

Return pα, a, Y, Zq

Encappu, iq //H3

a Ð gupiq
Y Ð ghupiq

Kb
Ð H̃bpfpuq, a, Y, ‹q

Return ppa, Y q,Kb
q

Decappu, a, Y q //H3

i Ð g´1
u paq; Yu,i Ð ghupiq

If i ‰ K and a “ gupiq and Y “ Yu,i:
Return H̃bpfpuq, a, Y, ‹q

Return H̃1pfpuq, a, Y, ‹q

Newpuq

Return pfpuq,gxuq

Hpα, a, Y, Zq //H3

u Ð f´1
pαq

If u ‰ K and Z “ Y xu

i Ð g´1
u paq //H3

r1,8q

If i ‰ K and Y “ ghupiq: //H3
r1,8q

bad Ð true //H3
r1,8q

Return H̃bpα, a, Y, ‹q //H3
r1,8q

Return H̃1pα, a, Y, ‹q

Return H̃1pα, a, Y, Zq

Fig. 12. Hybrids games used in proof of Theorem 2 (TAM-tight security of augmented Cramer-Shoup). Oracles
labelled “internal” are not accessible to the adversary. Grey highlighting indicates changes from earlier games.
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Adversary BNew,Chal,Strong
scdh

D1 Ð t0, 1u
l1`l2 ˆ G ˆ G‹

H̃ Ð$ FcspD1,Kq

f˘
Ð$ Inj˘pU , t0, 1u

l1q

g˘
Ð$ Inj˘pU , I, t0, 1u

l2q

b1
Ð$ ASimNew,SimEncap,SimDecap,SimH

Return K

SimNewpuq

Return pfpuq,Newpuqq

SimEncappu, iq

a Ð gupiq
Y Ð Chalpu, iq
K Ð H̃pfpuq, a, Y, ‹q

Return ppa, Y q,Kq

SimDecappu, a, Y q

i Ð g´1
u paq; Yu,i Ð Chalpu, iq

If i ‰ K and a “ gupiq and Y “ Yu,i:
Return H̃pfpuq, a, Y, ‹q

Return H̃pfpuq, a, Y, ‹q

SimHpα, a, Y, Zq

u Ð f´1
pαq

If u ‰ K and Strongpu, Y, Zq:
i Ð g´1

u paq

If i ‰ K and Y “ Chalpu, iq:
OUTPUTpu, i, Zq

Return H̃pα, a, Y, ‹q

Return H̃pα, a, Y, Zq

Fig. 13. Strong CDH adversary Bscdh used for proof Theorem 2 (TAM-tight security of augmented Cramer-Shoup).

that PrrH1
1s ď PrrH1

2s ` q2Encap{2l2`1. This term could more precisely be written as q2u,i{2
l2`1 or quq

2
i {2l2`1

where qu,i is the number of distinct values of pu, iq that A queries to its Encap oracle and qi is the maximum
number of distinct values of i that A queries to any user’s Encappu, ¨q oracle.

In H1
3, we switch from sampling K0 uniformly at random to assigning it the output of the random function

H0pfpuq, a, Y, Zq. Note that both f and gu are random injections and the condition at the beginning of Encap
ensures that the inputs to H0 do not repeat. Therfore, PrrH1

2s “ PrrH1
3s.

Finally, in the transition to H1
4 we replace the check T ru, a, Y s ‰ K with pi P Irus and pa, Y q “ Cru, isq,

where i “ g´1
u paq. Both of these booleans capture exactly whether pa, Y q was a challenge ciphertext returned

by an earlier query Encappu, iq and so are identical. Hence PrrH1
3s “ PrrH1

4s.

Transition H1
4 to H2

1 (Map-then-rf).Next we move to the hybrid H2
0. We have highlighted the interesting

ways in which H2
0 differs from H1

4. We’ve also reorganized Encap slightly. The main difference is that H hash
been replaced by H̃1 ˝ λ. Here λ is the defined by

λpα, a, Y, Zq “

#

pα, a, Y, ‹q, if Z “ Y x, where x “ xf´1pαq.

pα, a, Y, Zq, otherwise.

As H̃1 is random and λ is an injection, this is equivalent to using the random function H so PrrH1
3s “ PrrH2

0s.

In H2
1, we apply the logic of λ. In both Encap and Decap, the value Z was just defined as Y xu so we hit

the first case, getting λpfpuq, a, Y, Zq “ pfpuq, a, Y, ‹q. In H, we’ve directly added code to check if the first
or the second condition of λ holds. Therefore, this doesn’t change the adversary’s view.

Inside of Decap of H2
1, when T ru, a, Y s ‰ K we return H̃bpfpuq, a, Y, ‹q in place of T ru, a, Y s. In Encap,

we always assign the value H̃bpfpuq, a, Y, ‹q to T ru, a, Y s, so this is equivalent. Hence, PrrH2
0s “ PrrH2

1s.

Transition H2
1 to H3

0.Next we transition to the final set of hybrids H3, starting with H3
0. We highlighted

important ways in which H3
0 is different from H2

1. In H3
0, have removed the tables I, C, and T . Table T was

not being used anywhere. Where C was being used we instead recompute a “ gupiq and Y “ ghupiq. We could
have omitted this in the decapsulation oracle as by definition of i, the check a “ gupiq will necessarily hold
when i ‰ K. The removal of I is the one place where our change modifies the behavior of the game. In Decap,
checking if i P Irus has been replaced with checking for i ‰ K. Hence, the games differ if the adversary makes
a query Decappu, a, Y q with a “ gupiq and Y “ ghupiq despite having not queried Encappu, iq.

We can information theoretically bound the probability of this. We analyze this probability in H2
1 where

the view of the adversary only depends on values of gupiq and hupiq for which i P Irus. Consider a fixed
point in time when A makes a Decappu, a, Y q query with an a not previously returned by an encapsulation
query to u. Using this view, the adversary must guess some a “ gupiq such that i P I ∖ Irus along with the
corresponding Y “ ghupiq. There are |I| points in the image of gu and 2l2 points in its codomain, of which
the adversary has seen |Irus| from Encap. Thus we can bound the probability that the adversary picks such
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an a P gpIzIrusq by
|gupIq ∖ gupIrusq|

|t0, 1ul2 ∖ gupIrusq|
“

|I| ´ |Irus|

2l2 ´ |Irus|
ď

|I|

2l2
.

The adversary must additionally have guessed the correct ghupiq, which it has an a 1{pp ´ 1q chance of
having done (as h is a random function). Applying a union bound across all Decap queries gives the bound
PrrH2

1s ď PrrH3
0s ` qDecap ¨ |I|{p2l2pp´ 1qq.

Transition H3
0 to H3

1. Finally, in H3
1 the code of H has been modified to add an extra conditional. The

conditional checks if the hash query corresponds to any ciphertexts that could possibly be returned by
Encap. If so, the flag bad is set and the oracle returns H̃bpα, a, Y, ‹q. Note this only changes anything when
b “ 0. Thus H3

0 and H3
1 are identical-until-bad which implies that PrrH3

0s ď PrrH3
1s `Prrb “ 0^H3

1 sets bads.
Now in H3

1, the games only depends on b for determining which H̃b is used in Encap, Decap, and H.
In all cases this is for inputs on the form pfpuq, gupiq,ghupiq, ‹q. These oracles are always consistent in which
H̃b to use for such inputs so the view of A is independent of b and PrrH3

1s ď 1{2.

Probability of Bad.To conclude, we bound Prrb “ 0^H3
1 sets bads. When bad is set, the value Z is equal

to gxu¨yu,i where xu is a secret decryption key and yu,i is a secret exponent chosen inside an encapsulation
query Encappu, iq. We can then use the ability to set bad to win the Strong CDH game. This is captured by
the adversary Bscdh given in Fig. 13. It simulates the view of A in H3

1, using its own New oracle to produce
encryption keys of users, its Chal oracle to obtain gyu,i values, and Strong in simulating the hash function
to check when Z “ Y xu . Whenever bad would be set, Bscdh halts immediately. By comparing the code we
can see that Bscdh perfectly simulates the view of A (up until bad would be set)10 and it wins its own game
whenever bad would be set. Hence, PrrH3

1 sets bad|b “ 0s ď AdvscdhG pBscdhq. Clearly Prrb “ 0s “ 1{2. [\

C Proof of Theorem 3 (Augmented Twin ElGamal)

We prove Theorem 3 through a sequence of hybrids H1
0 through H1

4, H
2
0 through H2

1, and H3
0 through H3

1

presented in Fig. 14. The following claims hold and upper bound the advantage of adversary A as claimed
in the theorem.

1. Advmu-$cca
aTWIN pAq “ 2PrrH1

0s ´ 1
2. PrrH1

0s ď PrrH1
4s ` |U |p|U | ´ 1q{2l1`1 ` q2Encap{2l2`1

3. PrrH1
4s “ PrrH2

1s

4. PrrH2
1s ď PrrH3

0s ` qDecap ¨ |I|{p2l2pp´ 1qq

5. PrrH3
0s ď PrrH3

1s ` Prrb “ 0 ^ H3
1 sets bads

6. PrrH3
1s “ 1{2

7. Prrb “ 0 ^ H3
1 sets bads ď AdvstcdhG pBstcdhq{2

The sequence of hybrids is basically identical to those used in the previous section (Sec. B) to prove the
security of aCS. The only changes are that where those earlier hybrids used the group element Z, the new
hybrids now have both Z and Ψ . Because of this similarity, we do not provide individual descriptions to justify
the claimed bounds. The interested reader can understand each transition by reading the corresponding text
from the prior section while considering Figure 14. [\

D Proof of Theorem 4 (Augmented aUK Transform)

We prove Theorem 4 through a sequence of hybrids H1
0 through H1

4,H
2
0 through H2

1, and H3
0 through H3

1

presented in Fig. 16 where we establish the following claims that upper bound the advantage of adversary
A as stated in the theorem.

1. Advmu-cca
aUEM pAq “ 2PrrH1

0s ´ 1
2. PrrH1

0s ď PrrH1
4s ` |U |p|U | ´ 1q{2l1`1 ` q2Encap{2l2`1

3. PrrH1
4s “ PrrH2

0s

4. PrrH2
0s ď PrrH2

1s ` qEncap ¨ δ

5. PrrH2
1s ď PrrH3

0s ` qDecap ¨ |I|{2l2`H8pKEMq

7. PrrH3
0s ď PrrH3

1s ` Prrb “ 0 ^ H3
1 sets bads

8. PrrH3
1s ď 1{2

9. Prrb “ 0 ^ H3
1 sets bads ď Advmu-ow-pcva

KEM pBq{2

10 Note that Bscdh uses a single function H̃, rather than separate H̃1 and H̃0. This is undetectable by the same logic
used to establish that PrrH3

1s “ 1{2.
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Hybrids Hι
κ

b Ð$ t0, 1u

wp¨q, xp¨q Ð$ Z˚
p

H0,H1 Ð$ aTWIN.IM
D1 Ð t0, 1u

l1`l2 ˆ G ˆ pG‹q
2

H̃ Ð$ Fcspt0, 1u, D1,Kq

αp¨q Ð$ t0, 1u
l1

f˘
Ð$ Inj˘pU , t0, 1u

l1q

g˘
Ð$ Inj˘pU , I, t0, 1u

l2q

h Ð$ FcspU , I,Z˚
p q

b1
Ð$ ANew,Encap,Decap,H

Return pb1
“ bq

Encappu, iq //H1

If Cru, is ‰ K:
pa, Y q Ð Cru, is
Return ppa, Y q, T ru, a, Y sq

Irus Ð Irus Y tiu
a Ð$ t0, 1u

l2 //H1
r0,2q

a Ð gupiq //H1
r2,8q

y Ð$ Z˚
p //H1

r0,2q

y Ð hupiq //H1
r2,8q

Y Ð gy; Z Ð Y wu ; Ψ Ð Y xu

K1
Ð H1pαu, a, Y, Z, Ψq //H1

r0,1q

K1
Ð H1pfpuq, a, Y, Z, Ψq //H1

r1,8q

K0
Ð$ K //H1

r0,3q

K0
Ð$ H0pfpuq, a, Y, Z, Ψq //H1

r0,3q

T ru, a, Y s Ð Kb

Cru, is Ð pa, Y q

Return ppa, Y q,Kb
q

Decappu, a, Y q //H1

i Ð g´1
u paq //H1

r4,8q

If i P Irus and pa, Y q “ Cru, is://H1
r4,8q

If T ru, a, Y s ‰ K: //H1
r0,4q

Return T ru, a, Y s

Z Ð Y wu ;Ψ Ð Y xu

Return H1pαu, a, Y, Z, Ψq //H1
r0,1q

Return H1pfpuq, a, Y, Z, Ψq //H1
r1,8q

Newpuq //H1

Return pαu,g
wu ,gxuq //H1

r0,1q

Return pfpuq,gwu ,gxuq //H1
r1,8q

Hpα, a, Y, Z, Ψq //H1

Return H1pα, a, Y, Z, Ψq

Encappu, iq //H2

If Cru, is ‰ K:
pa, Y q Ð Cru, is

Else
a Ð gupiq; y Ð hupiq
Y Ð gy

Irus Ð Irus Y tiu
Z Ð Y wu ; Ψ Ð Y xu

Kb
Ð H̃bpλpfpuq, a, Y, Z, Ψqq //H2

r0,1q

Kb
Ð H̃bpfpuq, a, Y, ‹, ‹q //H2

r1,8q

T ru, a, Y s Ð Kb

Cru, is Ð pa, Y q

Return ppa, Y q,Kb
q

Injection λpα, a, Y, Z, Ψq //Internal, H2

u Ð f´1
pαq

If u ‰ K and Z “ Y wu and Ψ “ Y xu :
Return pα, a, Y, ‹, ‹q

Return pα, a, Y, Z, Ψq

Decappu, a, Y q //H2

i Ð g´1
u paq

If i P Irus and pa, Y q “ Cru, is:
Return T ru, a, Y s //H2

r0,1q

Return H̃bpfpuq, a, Y, ‹, ‹q //H2
r1,8q

Z Ð Y wu ;Ψ Ð Y xu

Return H̃1pλpfpuq, a, Y, Z, Ψqq //H2
r0,1q

Return H̃1pfpuq, a, Y, ‹, ‹q //H2
r1,8q

Newpuq //H2

Return pfpuq,gwu ,gxuq

Hpα, a, Y, Z, Ψq //H2

Return H̃1pλpα, a, Y, Z, Ψqq //H2
r0,1q

u Ð f´1
pαq //H2

r1,8q

If u ‰ K and Z “ Y wu and Ψ “ Y xu : //H2
r1,8q

Return H̃1pα, a, Y, ‹, ‹q //H2
r1,8q

Return H̃1pα, a, Y, Z, Ψq //H2
r1,8q

Encappu, iq //H3

a Ð gupiq
Y Ð ghupiq

Kb
Ð H̃bpfpuq, a, Y, ‹, ‹q

Return ppa, Y q,Kb
q

Decappu, a, Y q //H3

i Ð g´1
u paq; Yu,i Ð ghupiq

If i ‰ K and a “ gupiq and Y “ Yu,i:
Return H̃bpfpuq, a, Y, ‹, ‹q

Return H̃1pfpuq, a, Y, ‹, ‹q

Newpuq //H3

Return pfpuq,gwu ,gxuq

Hpα, a, Y, Z, Ψq //H3

u Ð f´1
pαq

If u ‰ K and Z “ Y wu and Ψ “ Y xu :
i Ð g´1

u paq //H3
r1,8q

If i ‰ K and Y “ ghupiq: //H3
r1,8q

bad Ð true //H3
r1,8q

Return H̃bpα, a, Y, ‹, ‹q //H3
r1,8q

Return H̃1pα, a, Y, ‹, ‹q

Return H̃1pα, a, Y, Z, Ψq

Fig. 14. Hybrids games used in proof of Theorem 3 (TAM-tight security of augmented Twin ElGamal). Oracles
labelled “internal” are not accessible to the adversary. Grey highlighting indicates changes from earlier games.
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Adversary BNew,Chal,Strong
stcdh

D1 Ð t0, 1u
l1`l2 ˆ G ˆ G2

‹

H̃ Ð$ FcspD1,Kq

f˘
Ð$ Inj˘pU , t0, 1u

l1q

g˘
Ð$ Inj˘pU , I, t0, 1u

l2q

b1
Ð$ ASimNew,SimEncap,SimDecap,SimH

Return K

SimNewpuq

Return pfpuq,Newpuqq

SimEncappu, iq

a Ð gupiq
Y Ð Chalpu, iq
K Ð H̃pfpuq, a, Y, ‹, ‹q

Return ppa, Y q,Kq

SimDecappu, a, Y q

i Ð g´1
u paq; Yu,i Ð Chalpu, iq

If i ‰ K and a “ gupiq and Y “ Yu,i:
Return H̃pfpuq, a, Y, ‹, ‹q

Return H̃pα, a, Y, ‹, ‹q

SimHpα, a, Y, Z, Ψq

u Ð f´1
pαq

If u ‰ K and Strongpu, Y, Z, Ψq:
i Ð g´1

u paq

If i ‰ K and Y “ Chalpu, iq:
OUTPUTpu, i, Z, Ψq

Return H̃pα, a, Y, ‹, ‹q

Return H̃pα, a, Y, Z, Ψq

Fig. 15. Adversary Bstcdh used for Theorem 3 (TAM-tight security of augmented Twin ElGamal).

Transition to H1
0. The hybrid H1

0 is obtained by substituting the code for aUEM into the game Gmu-cca
aUEM,b.

For notational convenience, we wrote KEM’s ideal model H1 as a separate oracle from the new random oracle
added by aUK. The bit b is chosen uniformly and H1

0 checks if b “ b1, so standard probability calculations
give Advmu-cca

aUEM pAq “ 2PrrH1
0s ´ 1.

Transitions H1
0 to H1

4. We first transition to H1
1, where instead of sampling the string α at random,

we assign it as the output of the random injection fpuq. Using the Switching Lemma, we have PrrH1
0s ď

PrrH1
1s ` |U |p|U | ´ 1q{2l1`1. This term could more precisely be written as qupqu ´ 1q{2l1`1 where qu is the

number of distinct values of u that A queries to its oracles.
In H1

2, we modify the Encap oracle where we switch from sampling a uniformly to assigning it the
output of a tweakable random injection gup¨q. As the input to gu does not repeat, the Switching Lemma
gives PrrH1

1s ď PrrH1
2s ` q2Encap{2l2`1. This term could more precisely be written as q2u,i{2

l2`1 or quq
2
i {2l2`1

where qu,i is the number of distinct values of pu, iq that A queries to its Encap oracle and qi is the maximum
number of distinct values of i that A queries to any user’s Encappu, ¨q oracle.

In hybrid H1
3, we switch from sampling K0 at random to assigning it the output of a random function

H0pfpuq, a, c, kq. Because f and gu are injections applied to u and i respectively, the inputs toH0 never repeat.
Therefore, sampling K0 at random is the same as computing it as the output of H0 and PrrH1

2s “ PrrH1
3s.

Finally, in the transition to H1
4, we modify the Decap oracle where we switch from checking if T ru, a, cs ‰

K to checking if pi P Irus and Cru, is “ pa, cqq where i “ g´1
u paq. These both check if pa, cq was returned by

Encap for some user u and are equivalent. Therefore, PrrH1
3s “ PrrH1

4s.

Transitions H2
0 to H2

1 (map-then-rf).We have highlighted the interesting differences between H1
4 and

H2
0 in grey. We have replaced all invocations of Hb with H̃b ˝ λ where λ is the injection

λpα, a, c, kq “

#

pα, a, c, ‹q, if PCpu, k, cq “ true where u “ f´1pαq

pα, a, c, kq, otherwise.

Here, H̃b are random functions and PC evaluates the boolean k “ KEM.DH1

pdku, cq. As the composition of
a random function and an injection is a random function, this does not change the behavior of the game.
We also re-organized Encap slightly so that the table T does not have to be read by the oracle. This does
not change the oracle’s behavior so, PrrH1

4s “ PrrH2
0s.

Next, we transition to H2
1 where we have replaced calls to λ with its output. At the end of Decap, k is

the decapsulation of c by definition so PCpu, k, cq will necessarily hold and λpfpuq, a, k, cq “ pfpuq, a, c, ‹q.
In H we have added code to check which of the cases of λ an input pα, a, c, kq corresponds to. In Encap,
c is the encapsulation of k. So, PCpu, k, cq is true unless we’ve found a correctness failure in KEM. The
probability of finding a correctness failures can clearly be bounded by qEncap ¨δ. In Decap we replace the use
of an entry in table T with the hash value we know will necessarily be stored it in if it is non-K Therefore,
PrrH2

0s ď PrrH2
1s ` qEncap ¨ δ. This term could more precisely be written as qu,i ¨ δ where qu,i is the number

of distinct values of pu, iq that A queries to its Encap oracle.
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Hybrids Hι
κ

b Ð$ t0, 1u

pekp¨q, dkp¨qq Ð$ KEM.K
H0,H1 Ð$ aUEM.IM
H1

Ð$ KEM.IM
K Ð KEM.K; C Ð KEM.C
D1 Ð t0, 1u

l1`l2 ˆ C ˆ K‹

H̃ Ð$ Fcspt0, 1u, D1, aUEM.Kq

αp¨q Ð$ t0, 1u
l1

f˘
Ð$ Inj˘pU , t0, 1u

l1q

g˘
Ð$ Inj˘pU , I, t0, 1u

l2q

b1
Ð$ ANew,Encap,Decap,H,H1

Return pb1
“ bq

Encappu, iq //H1

If Cru, is ‰ K:
pa, cq Ð Cru, is
Return ppa, cq, T ru, a, csq

Irus Ð Irus Y tiu
a Ð$ t0, 1u

l2 //H1
r0,2q

a Ð gupiq //H1
r2,8q

pc, kq Ð$ KEM.EH1

pekuq

K1
Ð H1pαu, a, c, kq //H1

r0,1q

K1
Ð H1pfpuq, a, c, kq //H1

r1,8q

K0
Ð$ K //H1

r0,3q

K0
Ð H0pfpuq, a, c, kq //H1

r3,8q

T ru, a, cs Ð Kb

Cru, is Ð pa, cq

Return ppa, cq,Kb
q

Decappu, a, cq //H1

i Ð g´1
u paq //H1

r4,8q

If i P Irus and pa, cq “ Cru, is://H1
r4,8q

If T ru, a, cs ‰ K: //H1
r0,4q

Return T ru, a, cs

k Ð KEM.DH1

pdku, cq

If k “ K then return K

Return H1pαu, a, c, kq //H1
r0,1q

Return H1pfpuq, a, c, kq //H1
r1,8q

Newpuq //H1

Return pαu, ekuq //H1
r0,1q

Return pfpuq, ekuq //H1
r1,8q

Hpα, a, c, kq //H1

Return H1pα, a, c, kq

Encappu, iq //H2

If Cru, is ‰ K:
pa, cq Ð Cru, is; k Ð Kru, is

Else
a Ð gupiq

pc, kq Ð$ KEM.EH1

pekuq

Irus Ð Irus Y tiu
Kb

Ð H̃bpλpfpuq, a, c, kqq //H2
r0,1q

Kb
Ð H̃bpfpuq, a, c, ‹q //H2

r1,8q

T ru, a, cs Ð Kb

Cru, is Ð pa, cq

Kru, is Ð k
Return ppa, cq,Kb

q

Decappu, a, cq //H2

i Ð g´1
u paq

If i P Irus and pa, cq “ Cru, is:
Return T ru, a, cs //H2

r0,1q

Return H̃bpfpuq, a, c, ‹q //H2
r1,8q

k Ð KEM.DH1

pdku, cq

If k “ K then return K

Return H̃1pλpfpuq, a, c, kqq //H2
r0,1q

Return H̃1pfpuq, a, c, ‹q //H2
r1,8q

Newpuq //H2

Return pfpuq, ekuq

Hpα, a, c, kq //H2

Return H̃1pλpα, a, c, kqq //H2
r0,1q

u Ð f´1
pαq //H2

r1,8q

If u ‰ K and PCpu, k, cq: //H2
r1,8q

Return H̃1pα, a, c, ‹q //H2
r1,8q

Return H̃1pα, a, c, kq //H2
r1,8q

Injection λpα, a, c, kq //Internal, H2

u Ð f´1
pαq

If u ‰ K and PCpu, k, cq:
Return pα, a, c, ‹q

Return pα, a, c, kq

Encappu, iq //H3

a Ð gupiq
c Ð Chalpu, iq
Kb

Ð H̃bpfpuq, a, c, ‹q

Return ppa, cq,Kb
q

Chalpu, iq //Internal, H3

If Cru, is “ K:

pc, kq Ð$ KEM.EH1

pekuq

Cru, is Ð c
Return Cru, is

Decappu, a, cq //H3

i Ð g´1
u paq

If i ‰ K and c “ Chalpu, iq:
Return H̃bpfpuq, a, c, ‹q

k Ð KEM.DH1

pdku, cq

If k “ K then return K

Return H̃1pfpuq, a, c, ‹q

Newpuq //H3

Return pfpuq, ekuq

Hpα, a, k, cq //H3

u Ð f´1
pαq

If u ‰ K and PCpu, k, cq:
i Ð g´1

u paq //H3
r1,8q

If i ‰ K and c “ Chalpu, iq: //H3
r1,8q

bad Ð true; Return H̃bpα, a, c, ‹q //H3
r1,8q

Return H̃1pα, a, c, ‹q

Return H̃1pα, a, c, kq

Fig. 16.Hybrids used in proof of Theorem 4 (TAM-tight security of aUK). Oracles labelled “internal” are not accessible
to the adversary. Grey highlighting indicates changes from earlier games. The code PCpu, k, cq is shorthand for the

boolean pk “ KEM.DH1

pdku, cqq.
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Adversary BNew,Chal,PC,CV,H1

mu-ow-pcva

D1 Ð t0, 1u
l1`l2 ˆ KEM.C ˆ KEM.K‹

H̃ Ð$ FcspD1, aUEM.Kq

f˘
Ð Inj˘pU , t0, 1u

l1q

g˘
Ð Inj˘pU , I, t0, 1u

l2q

b1
Ð ASimNew,SimEncap,SimDecap,SimH,H1

Return K

SimNewpuq

eku Ð Newpuq

Return pfpuq, ekuq

SimEncappu, iq

a Ð gupiq
c Ð Chalpu, iq
K Ð H̃pfpuq, a, c, ‹q

Return ppa, cq,Kq

SimDecappu, a, cq

i Ð g´1
u paq

If i ‰ K and c “ Chalpu, iq:
Return H̃pfpuq, a, c, ‹q

If CVpu, cq “ false then return K

Return H̃pfpuq, a, c, ‹q

SimHpα, a, c, kq

u Ð f´1
pαq

If u ‰ K and PCpu, k, cq:
i Ð g´1

u paq

If i ‰ K and c “ Chalpu, iq:
OUTPUTpu, i, kq

Return H̃pα, a, c, ‹q

Return H̃pα, a, c, kq

Fig. 17. Adversary used for Theorem 4 (TAM-tight security of aUK).

Transitions H3
0 to H3

1.We have highlighted the most interesting differences between H2
1 and H3

0 in grey.
In H3

0, we have abstracted out the part of code that computes the challenge ciphertext into the subroutine
Chal. Tables T and K are unused in H2

1 so have been removed. Table C is modified to only store c; the
auxiliary string a is always recomputed using g. The Encap oracles in H2

1 and H3
0 are equivalent.

In the Decap oracle, instead of using the table C to check whether the input ciphertext pa, cq was
previously returned by Encap, we use the subroutine Chal to perform the same check. The calculation of i
from a ensures we do not have to check that part of the ciphertext. Note that the comparison now looks at
if i ‰ K rather than i P Irus (indeed, the table I has been removed). These two checks can be distinguished
if an adversary queries Decap with a “challenge” ciphertext that it hasn’t yet seen from Encap. We can
information theoretically bound the probability that the adversary does so. We do so by analyzing this
probability in H2

1 where the adversary’s view only depends on “challenge” values a in the set gupIrusq. So,
to distinguish, the adversary must guess some a “ gupiq such that i P I ∖ Irus along with the corresponding
c such that pc, kq Ð$ KEMEH1

pekuq for some k would be calculated by Encappu, iq.
We can bound the probability that some a the adversary choses is contained in the set gupI ∖ Irusq by

|gpIq ∖ gpIrusq|

|t0, 1ul2 ∖ gupIrusq|
“

|I| ´ |Irus|

2l2 ´ |Irus|
ď

|I|

2l2
.

Conditioned on having guessed a valid a, the adversary must also guess the corresponding c. Since the output
of KEM.E is independent of a, this probability can be bounded by the min-entropy of KEM. Hence, the
probability that a particular Decap query can distinguish these two games is |I|{p2l2 ¨ 2H8pKEMqq. Applying
a union bound over all Decap queries, we get PrrH2

1s ď PrrH3
0s ` qDecap ¨ |I|{2l2`H8pKEMq.

In H3
1, we have added code to set the flag bad and use H̃b rather than H̃1 if the H oracle is queried on a

challenge ciphertext (and its decapsulation). Games H3
0 and H3

1 only differ under the event that the bad flag
gets set and b “ 0. By the fundamental lemma of game playing, PrrH3

0s ď PrrH3
1s ` Prrb “ 0 ^ H3

1 sets bads.
In H3

1, the only use of b is for determining whether H̃1 or H̃0 is used for challenge ciphertexts in Encap,
Decap, and H. The hash functions both receive inputs of the same form pfpuq, a, c, ‹q and are both random
functions so their outputs are indistinguishable to the adversary. The three oracles are consistent in which
of the two hash functions they use for such values. Therefore, the adversary’s view in H3

1 is independent of
the bit b. Hence, PrrH3

1s ď 1{2.

Probability of Bad. To bound Prrb “ 0 ^ H3
1 sets bads, we let B be the adversary Bmu-ow-pcva given in

Fig. 17 against the OW-PCVA security of KEM. Note that bad is set in H3
1 when PCpu, k, cq is true. Adversary

B can now use this to win its OW-PCVA game. We claim that B perfectly simulates H3
1 with b “ 0 for A.

It only uses a single hash function H̃ which is undetectable by the above arguments about A’s view being
independent of b in H3

1. It uses its own challenge oracle Chal to compute ciphertexts while simulating oracles,
its PC oracle to simulateH, and itsCV oracle to check the validity of the input ciphertext to simulateDecap.
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Hybrids Hκ for 0 ď κ ď 4

H ˆ H1
Ð$ TKE.IM

pekp¨q, dkp¨qq Ð$ TKE.K
g˘

Ð$ Inj˘pU ˆ I,PKE.Mq

H̃ Ð$ FcspU ˆ I,PKE.Rq //Hr2,4q

pm,u, iq Ð$ ANew,Chal,PC,H,H1

Return PCpu,m,Chalpu, iqq //Hr0,1q

Return m “ gpu, iq //Hr1,8q

Newpuq

Return eku

Hpmq

If g´1
pmq ‰ K: //Hr2,8q

Return H̃pg´1
pmqq //Hr2,3q

OUTPUTptrueq //Hr3,8q

Return Hpmq

Chalpu, iq

If Cru, is ‰ K then return Cru, is
m Ð gpu, iq //Hr0,4q

c Ð PKE.EH1

peku,m;Hpmqq //Hr0,2q

c Ð PKE.EH1

peku,m; H̃pu, iqq //Hr2,4q

c Ð$ PKE.EH1

peku, 0
|m|

q //Hr4,8q

Cru, is Ð c
Return c

PCpu,m, cq

m1
Ð TKE.DHˆH1

ppeku, dkuq, cq //Hr0,1q

Return (m “ m1) //Hr0,1q

Return pc “ TKE.EHˆH1

peku,mqq //Hr1,8q

Adversary BNew,Enc,H1

H Ð$ FcspPKE.M,PKE.Rq

g˘
Ð$ Inj˘pU ˆ I,PKE.Mq

pm,u, iq Ð$ ANew,SimChal,SimPC,SimH,H1

If pm “ gpu, iqq then return 1
Return 0

SimHpmq

If g´1
pmq ‰ K:

OUTPUTp1q

Return Hpmq

SimChalpu, iq

c Ð Encpu, i, gpu, iqq

Return c

SimPCpu,m, cq

Return pc “ TKE.ESimHˆH1

pNewpuq,mqq

Fig. 18. Hybrids Hκ and adversary B used for proof of Theorem 5 (TAM-tight security of T).

Whenever bad is set, B halts and wins its OW-PCVA game. Hence, PrrH3
1 sets bad|b “ 0s ď Advmu-ow-pcva

KEM pBq.
Clearly Prrb “ 0s “ 1{2. This completes the proof. [\

E Proof of Theorem 5 (T Transform)

For the correctness claim, consider an algorithm D that makes q oracle queries to its oracle HˆH1 P TKE.IM.
Speaking slightly informally, we can assume it “wins” and halts if makes an oracle query to H on an m such
that correctness fails for TKE on m. Then we can apply a “union” bound over all of D’s queries and its final
output to obtain the claimed correctness bound of pq ` 1qδpqq.

We prove Theorem 5 through a sequence of hybrids H0 through H4 presented in Fig. 18, where we establish
the following claims that upper bound the advantage of adversary A as claimed in the theorem.

1. Advmu-ow-pca
TKE pAq ď PrrH0s `

pqChal`1q
2

2¨|PKE.M|

2. PrrH0s ď PrrH1s ` |U | ¨ δ1pq˚q

3. PrrH1s “ PrrH2s

4. PrrH2s ď PrrH3s

5. PrrH3s ď PrrH4s ` Advmu-cpa
PKE pBq

6. PrrH4s ď pqH ` qPC ` 1q ¨
|U |¨|I|

|PKE.M|

Transition H0. Game H0 was created by plugging code of TKE into Gmu-ow-pca
TKE and then switching from

sampling the message m uniformly at random to assigning it as the output of a random injection g. The
inputs to g do not repeat so, Advmu-ow-pca

TKE pAq ď PrrH0s ` pqChal ` 1q2{p2 ¨ |PKE.M|q.

Transition H0 to H1. In game H1, the PC oracle is modified to check if c is the encryption of m, rather
than if m is the decryption of c. Additionally the end of the game directly checks if m “ gpu, iq, rather than
if m is the decryption of the encryption of m. In both places, causing the behavior of H0 and H1 to differ
gives a message for which the correctness of TKE breaks. Let PCκ denote PC as defined in Hκ. Because
TKE is rigid, it is not possible for PC0 to return true when PC1 would return false. If PC1 returns true
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when PC0 would return false, then m encrypts to c, but c decrypts to m1 ‰ m, a correctness break. The
end of game check in H0 is whether m “ TKE.DHˆH1

pdku,TKE.E
HˆH1

peku, gpu, iqqq and in H1 is whether
m “ gpu, iq. The only way for these to differ is if gpu, iq ‰ TKE.DHˆH1

pdku,TKE.E
HˆH1

peku, gpu, iqqq, a
correctness break.

Consider an algorithm D (a “δ1-correctness adversary”) that simulates H1 using its input keys as a random
user u’s keys and its oracles for the ideal model oracle. It checks if each PCpu, ¨, ¨q query gives a correctness
break, outputting m if so. If A halts and outputs pm,u, iq, then D outputs gpu, iq as a potential correctness
break. If A causes behavior that differentiates H0 and H1, there is a 1{|U | chance this is for the chosen u,
in which case D will. More formally, D can be written as follows to perfectly simulate H0. To save on oracle
queries, we omit having TKE.D recompute encryptions in the case that m ‰ m1.

Adversary DH,H1

pek˚, dk˚q

pekp¨q, dkp¨qq Ð$ TKE.K
u˚ Ð$ U
peku˚ , dku˚ q Ð pek˚, dk˚q

g˘ Ð$ Inj˘pU ˆ I,PKE.Mq

pm,u, iq Ð$ ASimNew,SimChal,SimPC,H,H1

OUTPUTpgpu, iqq

Newpuq

Return eku

Chalpu, iq

If Cru, is ‰ K then return Cru, is

Cru, is Ð PKE.EH1

peku, gpu, iq;Hpgpu, iqqq

Return Cru, is

PCpu,m, cq

m1 Ð PKE.DH1

pdku, cq

c1 Ð PKE.EH1

peku,m;Hpmqq

If c1 “ c and m1 “ m then return true
If u “ u˚ and c1 “ c and m1 ‰ m then OUTPUTpmq

Return false

The probability that D succeeds in finding a correctness break must be bounded by δ1pq˚q where q˚ “

qH ` qChalpqPKE ` 1q ` qPCp2qPKE ` 1q is the number of oracle queries to H or H1 made by D. This gives
PrrH0s ď PrrH1s`|U | ¨δ1pq˚q. This term could more precisely be written as qu ¨δ1pq˚q where qu is the number
of distinct values of u that A queries to its oracles or outputs at the end of execution. For this D would be
modified to select j Ð$ t1, 2, . . . , quu and use its input keys for the j-th user that A accesses.

Transition H1 to H2. In the next transition we redefine H on inputs m in the image of g to be H̃pg´1pmqq.
This redefinition is done for both queries to H and the direct use of H in Chal. As g´1 is an injection and
H̃ is random, this does not change the behavior of the game, giving PrrH1s “ PrrH2s.

Transition H2 to H3. In H3, we halt the game early and return true if H is ever queried (directly by the
adversary or through PC) with an m in the image of g. The game halting early and outputting true can only
increase the probability that true is returned so PrrH2s ď PrrH3s.

Transition H3 to H4. Note that in H3, the random function H̃ is only ever used inside of Chal to pick
the coins for encryption. Thus for each pu, iq, the message m “ gpu, iq is simply being encrypted by PKE
with fresh coins. We can apply the CPA security of PKE to replace this with an encryption of 0|m|. This
is captured by the adversary B shown in the same figure. It simulates the view of A, using its encryption
oracle for the encryptions in the challenge oracle. If A would cause its game to output true, then B outputs
1. Otherwise it outputs 0. When B’s oracle is real it correctly simulates H3 and when the oracle returns
encryptions of zeros, it correctly simulates H4. Thus, PrrH3s “ PrrH4s ` Advmu-cpa

PKE pBq.

Game H4. Finally we can information theoretically bound the probability that A succeeds in H4. To win
A must produce a m that is in the image of g as part of a query to H or PC, or as its final output. So
A gets qH ` qPC ` 1 “guesses” and its view is otherwise independent of g. A simple union bound give that
PrrH4s ď pqH ` qPC ` 1q ¨ |U | ¨ |I|{|PKE.M|. This term could more precisely be written with qH in place of
qH, where qH is the number of oracle queries that A makes to H. (Note that qH additionally includes queries
to H1.) For query restricting adversaries that use a global counter for i it would have sufficed for to replace
gpu, iq with gpiq, in which case |U | ¨ |I| could be replaced with qChal. [\
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F Proof of Theorem 6 (Augmented V Transform)

We prove Theorem 6 through a sequence of hybrids H1
0 through H1

2 and H2
0 through H2

3 presented in Fig. 19.
We establish the following claims that upper bound the advantage of adversary A as claimed in the theorem.

1. Advmu-ow-pcva
VKE pAq “ PrrH1

0s

2. PrrH1
0s ď PrrH1

1s ` |U |2{2l`1

3. PrrH1
1s ď PrrH1

2s ` |U | ¨ δ1pq1q

4. PrrH1
2s “ PrrH2

0s

5. PrrH2
0s “ PrrH2

1s

6. PrrH2
1s ď PrrH2

2s ` PrrH2
2 sets bads

7. PrrH2
2s ď Advmu-ow-pca

TKE pBq

8. PrrH2
2 sets bads ď |U | ¨ δ1pq2q ` qCV{2γ

Here q1 “ qTKEpqChal ` qH ` qPC ` qCV ` 1q ` qH and q2 “ qTKEp2qChal ` 2qH ` qPCq ` qH. Note that both
are less than q˚ “ qTKEp2qChal ` 2qH ` qPC ` qCV ` 1q ` qH.

Transitions H1
0 to H1

2.We start with the hybrid H1
0 which is obtained by plugging in the code for VKE

in the game Gmu-ow-pcva
VKE from Fig. 3. As TKE is tidy, we’ve omitted the re-encryption done by VKE.D in PC

and CV. Hence, Advmu-ow-pcva
VKE pAq “ PrrH1

0s.
Next we transition to H1

1. In H1
1, instead of sampling the random string α uniformly at random, we assign

it as the output of the random injection f . Using the switching lemma, we get PrrH1
0s ď PrrH1

1s ` 0.5|U |2{2l.
This term could more precisely be written as 0.5q2u{2l where qu is the number of distinct values of u that A
queries to its oracles.

In H1
2, the random function H is replaced with the random function H̃ according to the definition

Hpα,mq “ H̃pu,TKE.EH1

peku,mqq where u “ f´1pαq. When f´1pαq “ K, we still used H. Inside PC and
CV, the messages in question were obtained by decrypting a ciphertext c1. By rigidity we know the message
will re-encrypt to c1 so we use c1 directly, rather than re-encrypting. This change can only be detected is by
querying H on pfpuq,mq and pfpuq,m1q where m ‰ m1, but TKE.EH1

peku,mq “ TKE.EH1

peku,m
1q. Then at

least one of m and m1 must result in a correctness failure for TKE.
In Fig. 20, we design a correctness adversary D1 to bound the probability of this. We’ve used highlighting

to indicate the interesting differences between it and H1
2. In particular, it sets the keys of a random user u˚

to be the keys it was given as input. Any time it would make a query H̃pu˚, c1q where c1 is known to be an
encryption of m it queries its internal oracle Checkpm, cq. This oracle uses a table T to store a mapping
from ciphertexts that were queries to H̃ and the messages they were the encryptions of. If a collision in T
is ever found, there must have been correctness error. The oracle checks whether this was for m or T rcs and
outputs the result. Note that D1 makes q1 “ qTKEpqChal ` qH ` qPC ` qCV ` 1q ` qH queries to H1. Hence, it
establishes that PrrH1

1s ď PrrH1
2s ` |U | ¨ δ1pq1q.

Transition H1
2 to H2

0. The only change from game H1
2 to H2

0 is a slight reorganization of the code of PC
which can easily be seen not to change the behavior of that oracle. Hence, PrrH1

2s “ PrrH2
0s.

Transitions H2
0 to H2

2.The changes in this set of transitions are all to the CV oracle. In H2
1, we rearrange

the code of the CV oracle and set the bad flag whenever c2 “ c1
2 but c1 is an invalid ciphertext (i.e.,

attempting to decrypt it fails). Despite this reorganization, the oracle in H2
1 returns the same values as the

CV oracle in H2
0. Therefore, PrrH

2
0s “ PrrH2

1s.
The CV oracle in H2

2 is the same as that in H2
1 except when the flag bad is set at which point it returns

true, rather than false. By the fundamental lemma of game playing proofs, PrrH2
1s ď PrrH2

2s`PrrH2
2 sets bads.

To bound PrrH2
2s, we construct the adversary B against the mu-ow-pca security of the underlying scheme

TKE in Fig. 19. Adversary B can readily be seen to perfectly simulate game H2
2 for adversary A. Therefore,

PrrH2
2s ď Advmu-ow-pca

TKE pBq.
Now we analyze the event that the flag bad gets set in H2

2. We note from Fig. 19 that bad is set when
c2 “ c1

2 but m “ K where m “ TKE.DH1

pdku, c1q. We can define an additional hybrid H2
3 to be equivalent

to H2
2 except it halts execution immediately if Chal, H, or PC ever query H̃pu, c1q for some c1 such that

TKE.DH1

pdku, c1q “ K. Note that this is not possible in PC because it only queries H̃ when c1 decrypts to the
non-K message it was given as input. In Chal or H, the ciphertext c1 was obtained by encrypting a message
m so this can only happen if there was a correctness failure for TKE. In Fig. 20, we design a correctness
adversary D2 to bound the probability of this. We’ve used highlighting to indicate the interesting differences
between it and H2

2. In particular, it sets the keys of a random user u˚ to be the keys it was given as input.
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Hybrids Hι
κ

H ˆ H1
Ð$ VKE.IM

H̃ Ð$ FcspU ˆ TKE.C, t0, 1u
γ

q

pekp¨q, dkp¨qq Ð$ TKE.K
αp¨q Ð$ t0, 1u

l1

f˘
Ð$ Inj˘pU , t0, 1u

l
q

pm,u, iq Ð$ ANew,Chal,PC,CV,H,H1

Return PCpu,m,Chalpu, iqq

Newpuq //H1, H2

Return pαu, ekuq //H1
r0,1q

Return pfpuq, ekuq //H1
r1,8q, H

2
r0,8q

Chalpu, iq //H1

If Cru, is ‰ K:
Return Cru, is

m Ð$ VKE.M
c1 Ð TKE.EH1

peku,mq

c2 Ð Hpαu,mq //H1
r0,1q

c2 Ð Hpfpuq,mq //H1
r1,2q

c2 Ð H̃pu, c1q //H1
r2,8q

c Ð pc1, c2q

Cru, is Ð c
Return c

Hpα,mq //H1

If f´1
pαq ‰ K: //H1

r2,8q

u Ð f´1
pαq //H1

r2,8q

c1 Ð TKE.EH1

peku,mq //H1
r2,8q

Return H̃pu, c1q //H1
r2,8q

Return Hpα,mq

PCpu,m, cq //H1

pc1, c2q Ð c

m1
Ð TKE.DH1

pdku, c1q

If m1
“ K then return false

c1
2 Ð Hpαu,m

1
q //H1

r0,1q

c1
2 Ð Hpfpuq,m1

q //H1
r1,2q

c1
2 Ð H̃pu, c1q //H1

r2,8q

Return pm “ m1
q and pc2 “ c1

2q

CVpu, cq //H1

pc1, c2q Ð c

m Ð TKE.DH1

pdku, c1q

If m “ K then return false
c1
2 Ð Hpαu,mq //H1

r0,1q

c1
2 Ð Hpfpuq,mq //H1

r1,2q

c1
2 Ð H̃pu, c1q //H1

r2,8q

Return pm ‰ Kq and pc2 “ c1
2q

Chalpu, iq //H2

If Cru, is ‰ K:
Return Cru, is

m Ð$ VKE.M
c1 Ð TKE.EH1

peku,mq

c2 Ð H̃pu, c1q

c Ð pc1, c2q

Cru, is Ð c
Return c

Hpα,mq //H2

If f´1
pαq ‰ K:

u Ð f´1
pαq

c1 Ð TKE.EH1

peku,mq

Return H̃pu, c1q

Return Hpα,mq

PCpu,m, cq //H2

pc1, c2q Ð c

If m “ TKE.DH1

pdku, c1q:
c1
2 Ð H̃pu, c1q

Return pc2 “ c1
2q

Return false

CVpu, cq //H2

pc1, c2q Ð c

m Ð TKE.DH1

pdku, c1q //H2
r0,2q

c1
2 Ð H̃pu, c1q

If c2 “ c1
2: //H

2
r1,8q

If m “ K: //H2
r1,2q

bad Ð true //H2
r1,2q

Return false //H2
r1,2q

Return true //H2
r1,8q

Return pm ‰ Kq and pc2 “ c1
2q //H2

r0,1q

Return false //H2
r1,8q

Adversary BNew,Chal,PC,H1

H Ð$ Fcspt0, 1u
l
ˆTKE.M, t0, 1u

γ
q

H̃ Ð$ FcspU ˆ TKE.C, t0, 1u
γ

q

f˘
Ð$ Inj˘pU , t0, 1u

l
q

pm,u, iq Ð$ AO

Return pm,u, iq

SimNewpuq

Return pfpuq,Newpuqq

SimChalpu, iq

c1 Ð Chalpu, iq
c2 Ð H̃pu, c1q

c Ð pc1, c2q

Return c

SimHpα,mq

If f´1
pαq ‰ K:

u Ð f´1
pαq; ek Ð Newpuq

Return H̃pu,TKE.EH1

pek,mqq

Return Hpα,mq

SimPCpu,m, cq

pc1, c2q Ð c
If PCpu,m, c1q:

c1
2 Ð H̃pu, c1q

Return pc2 “ c1
2q

Return false

SimCVpu, cq

pc1, c2q Ð c
c1
2 Ð H̃pu, c1q

Return pc2 “ c1
2q

Fig. 19. Hybrid games and the adversary B used in proof of Theorem 6 (TAM-tight security of augmented V trans-
form). Grey highlighting indicates changes from earlier games.
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Adversary DH1

1 pek˚, dk˚
q

H Ð$ Fcspt0, 1u
l

ˆ TKE.M, t0, 1u
γ

q

H̃ Ð$ FcspU ˆ TKE.C, t0, 1u
γ

q

pekp¨q, dkp¨qq Ð$ TKE.K
u˚

Ð$ U
peku˚ , dku˚ q Ð pek˚, dk˚

q

f˘
Ð$ Inj˘pU , t0, 1u

l
q

pm,u, iq Ð$ ASimNew,SimChal,SimPC,SimCV,SimH,H1

Return OUTPUTpKq

SimNewpuq

Return pfpuq, ekuq

Checkpm, cq //Internal

If T rcs ‰ K and T rcs ‰ m:

m1
Ð TKE.DH1

pdk˚, cq

If m1
‰ m then OUTPUTpmq

OUTPUTpT rcsq

T rcs Ð m

SimChalpu, iq

If Cru, is ‰ K:
Return Cru, is

m Ð$ VKE.M
c1 Ð TKE.EH1

peku,mq

If u “ u˚ then Checkpm, c1q

c2 Ð H̃pu, c1q

c Ð pc1, c2q

Cru, is Ð c
Return c

SimHpα,mq

If f´1
pαq ‰ K:

u Ð f´1
pαq

c1 Ð TKE.EH1

peku,mq

If u “ u˚ then Checkpm, c1q

Return H̃pu, c1q

Return Hpα,mq

SimPCpu,m, cq

pc1, c2q Ð c

m1
Ð TKE.DH1

pdku, c1q

If m1
“ K then return false

If u “ u˚ then Checkpm1, c1q

c1
2 Ð H̃pu, c1q

Return pm “ m1
q and pc2 “ c1

2q

SimCVpu, cq

pc1, c2q Ð c

m Ð TKE.DH1

pdku, c1q

If m “ K then return false
If u “ u˚ then Checkpm, c1q

c1
2 Ð H̃pu, c1q

Return pm ‰ Kq and pc2 “ c1
2q

Adversary DH1

2 pek˚, dk˚
q

H Ð$ Fcspt0, 1u
l

ˆ TKE.M, t0, 1u
γ

q

H̃ Ð$ FcspU ˆ TKE.C, t0, 1u
γ

q

pekp¨q, dkp¨qq Ð$ TKE.K
u˚

Ð$ U
peku˚ , dku˚ q Ð pek˚, dk˚

q

f˘
Ð$ Inj˘pU , t0, 1u

l
q

pm,u, iq Ð$ ASimNew,SimChal,SimPC,SimCV,SimH,H1

Return OUTPUTpKq

SimNewpuq

Return pfpuq, ekuq

Checkpm, cq //Internal

m1
Ð TKE.DH1

pdk˚, cq

If m1
“ K then OUTPUTpmq

SimChalpu, iq

If Cru, is ‰ K:
Return Cru, is

m Ð$ VKE.M
c1 Ð TKE.EH1

peku,mq

If u “ u˚ then Checkpm, c1q

c2 Ð H̃pu, c1q

c Ð pc1, c2q

Cru, is Ð c
Return c

SimCVpu, cq

pc1, c2q Ð c
c1
2 Ð H̃pu, c1q

Return pc2 “ c1
2q

SimHpα,mq

If f´1
pαq ‰ K:

u Ð f´1
pαq

c1 Ð TKE.EH1

peku,mq

If u “ u˚ then Checkpm, c1q

Return H̃pu, c1q

Return Hpα,mq

SimPCpu,m, cq

pc1, c2q Ð c

If m “ TKE.DH1

pdku, c1q:
c1
2 Ð H̃pu, c1q

Return pc2 “ c1
2q

Return false

Fig. 20. Correctness adversaries used for proof of Theorem 6 (TAM-tight security of augmented V transform).

Any time it would make a query H̃pu˚, c1q in SimChal or SimH it queries its internal oracle Checkpm, c1q.
This oracle outputs m if c1 decrypts to K. Note that D2 makes q2 “ qTKEp2qChal ` 2qH ` qPCq ` qH queries
to H1. Hence, PrrH2

2 sets bads ď PrrH2
3 sets bads ` |U | ¨ δ1pq2q.

Now in H2
3 the only way the adversary’s view can depend on H̃pu, c1q for such c1 is by making queries

CVpu, pc1, c2qq and learning if H̃pu, c1q “ c2. So standard analysis gives PrrH2
3 sets bads ď qCV{2γ . This

completes the proof. [\

G Proof of Theorem 7 (KEM/DEM Construction, Challenge Respecting)

We prove Theorem 7 via a sequence of hybrid games shown in Fig. 21, 22, 23, and 24. We establish the
following bounds relating the different hybrids.
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Hybrids H1
κ for 0 ď κ ď 1

H Ð$ KD.IM
pekp¨q, dkp¨qq Ð$ KEM.K
b1

Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

pck,Kq Ð$ KEM.EH
pekuq //H1

r0,1q

ck Ð$ KEM.Cpekuq //H1
r1,8q

K Ð$ KEM.K //H1
r1,8q

cd Ð$ SKE.EH1

pK,mq

T ru, cks Ð K
Return pck, cdq

Decpu, cq

pck, cdq Ð c
If T ru, cks ‰ K

K Ð T ru, cks

Return SKE.DH
pK, cdq

K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

Return eku

Adversary BNew,Encap,Decap,H
0

d1
Ð$ ANew,SimEnc,SimDec,H

Return d1

SimEncpu, i,mq

pck,Kq Ð Encappu, iq
cd Ð$ SKE.EH

pK,mq

Return pck, cdq

SimDecpu, cq

pck, cdq Ð c
K Ð Decappu, ckq

If K “ K then return K

Return SKE.DH
pK, cdq

Fig. 21. Hybrids H1
κ (Left) and adversary B0 (Right) used for proof of Theorem 7.

1. PrrGmu-$cca
KD,1 pAqs ď PrrH1

0s ` qEnc ¨ δ

2. PrrH1
0s “ PrrH1

1s ` Advmu-$cca
KEM pB0q

3. PrrH1
1s ď PrrH2

0s ` 0.5q2Enc{|KEM.C|

4. PrrH2
0s “ PrrH2

1s “ PrrH2
2s

5. PrrH2
2s ď PrrH2

3s ` qEncqDec{|KEM.C|

6. PrrH2
3s “ PrrH2

4s ` Advmu-$cca
SKE pBSKEq

7. PrrH2
4s ď PrrH2

5s ` qEncqDec{|KEM.C|

8. PrrH2
5s “ PrrH3

0s “ PrrH3
1s

9. PrrH3
1s “ PrrH3

2s “ PrrH3
3s “ PrrH3

4s

10. PrrH3
4s ď PrrH3

5s ` 0.5q2Enc{|KEM.C|

11. PrrH3
5s ď PrrH4

0s ` 0.5q2Enc{|KEM.C| ` 0.5q2Enc{2SKE.xl

12. PrrH4
0s ď PrrH4

1s ` qDec{2SKE.xl

13. PrrH4
1s “ PrrH4

2s ` Advmu-$cca
KEM pB1q

14. PrrH4
2s ď PrrH4

3s ` qEnc ¨ δ
15. PrrH4

3s ď PrrH4
4s ` qEnc ¨ ε

16. PrrH4
4s ď PrrH4

5s ` qDec{2SKE.xl

17. PrrH4
5s ď PrrH4

6s ` 0.5q2Enc{|KEM.C| ` 0.5q2Enc{2SKE.xl

18. PrrH4
6s “ PrrGmu-$cca

KD,0 pAqs

Applying these in sequence to Advmu-$cca
KD pAq “ PrrGmu-$cca

KD,1 pAqs ´ PrrGmu-$cca
KD,0 pAqs gives

Advmu-$cca
KD pAq ďAdvmu-$cca

KEM pB0q ` Advmu-$cca
SKE pBSKEq ` Advmu-$cca

KEM pB1q ` qEnc ¨ p2δ ` εq

` p2q2Enc ` 2qEncqDecq{|KEM.C| ` pq2Enc ` 2qDecq{2SKE.xl.

The adversary BKEM considered in the theorem statement picks dÐ$ t0, 1u and then runs Bd. This gives

2Advmu-$cca
KEM pBKEMq “ Advmu-$cca

KEM pB0q ` Advmu-$cca
KEM pB1q. Statements about the adversaries’ complexity can be

verified by examining their code.

General summary.We can broadly view this proof as occurring in three phases, corresponding to the three
reductions we provide. The first phase (H1

0 Ñ H1
1) is fairly immediate and quick; we apply the security of

KEM to replace its ciphertexts with random. For the second phase (H2
0 Ñ H2

3), we want to apply the security
of SKE. Doing so in the naive way requires storing the encryption query that each randomly chosen KEM
ciphertext came from. To avoid this, we carefully re-arrange the game to pick these KEM ciphertexts as the
output of an injection applied to the information we need to remember, allowing us to make the reduction
to SKE TAM-tight.

A priori, it is surprising that a third phase (H2
4 Ñ H4

3) is needed at all. Haven’t we already applied
the two reductions needed to switch both components of the ciphertext with random? It turns out there is
a subtle technical issue with the decryption oracle. The desired behavior is to “automatically” return the
correct message for all challenge ciphertexts forwarded from encryption and to decrypt all other ciphertexts
with KD.D. However, our decryption oracle after the second phase does not do this. In particular, when
given a ciphertext whose KEM component is from a challenge ciphertext, but whose SKE component is fresh,
the decryption oracle will decrypt the SKE ciphertext with a random key when it should be using the key
encapsulated in the (random) KEM ciphertext. Switching this to the correct behavior requires a careful
reduction to the $CCA security of KEM. To perform this reduction in a memory-tight manner, again, we
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Hybrids H2
κ for 0 ď κ ď 5

H Ð$ KD.IM
Kp¨q Ð$ SKE.K
r Ð$ FcspU ,KEM.Rq

h˘
Ð$ Inj˘pT,D,Rq

b1
Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

Irus Ð Irus Y tiu //H2
r1,8q

peku, ¨q Ð KEM.Kprpuqq

ck Ð hu,ekupiq
cd Ð$ SKE.EH

pKi,mq //H2
r0,4q

cd Ð$ t0, 1u
SKE.clp|m|q //H2

r4,8q

T ru, cks Ð Ki

M ri, cds Ð m //H2
r2,8q

Return pck, cdq

Decpu, cq

pck, cdq Ð c
peku, dkuq Ð KEM.Kprpuqq

i Ð h´1
u,eku

pckq //H2
r1,8q

If T ru, cks ‰ K //H2
r0,1q

If i P Irus //H2
r1,3q, H

2
r5,8q

If i ‰ K //H2
r3,5q

If M ri, cds ‰ K //H2
r2,8q

Return M ri, cds //H2
r2,8q

Return SKE.DH
pT ru, cks, cdq //H2

r0,1q

Return SKE.DH
pKi, c

d
q //H2

r1,8q

K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

peku, ¨q Ð KEM.Kprpuqq

Return eku

Adversary BEnc,Dec,H
SKE

r Ð$ FcspU ,KEM.Rq

h˘
Ð$ Inj˘pT,D,Rq

b1
Ð$ ASimNew,SimEnc,SimDec,H

Return b1

SimNewpuq

peku, ¨q Ð KEM.Kprpuqq

Return eku

SimEncpu, i,mq

peku, ¨q Ð KEM.Kprpuqq

ck Ð hu,ekupiq
cd Ð Encpi, i,mq

Return pck, cdq

SimDecpu, cq

pck, cdq Ð c
peku, dkuq Ð KEM.Kprpuqq

i Ð h´1
u,eku

pckq

If i ‰ K

Return Decpi, cdq

K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Fig. 22. Hybrids H2
κ (Left) and adversary BSKE (Right) used for proof of Theorem 7. Adversary BSKE is used to

transition from H2
3 to H2

4. Recall that T “ U ˆ KEM.Ek, Dpu,ekq “ I “ rqEncs, and Rpu,ekq “ KEM.Cpekq.

need to first carefully re-write the game, this time to have the random SKE ciphertexts be the output of a
random injection applied to the message they are supposed to encrypt.

While we do not refer to it as its own phase, there are a few further small transitions (H4
4 Ñ H4

6) after
the last reduction which undo some of our memory-tightness tricks to reach the conclusion of the proof.

Transition to H1
0 (start phase 1).We compare the hybrid game H1

0 to the game Gmu-$cca
KD,1 defined in Fig. 3.

In both games, the encryption oracle returns “real” encryptions of the message. In Gmu-$cca
KD,1 , the messages

underlying challenge ciphertexts are stored in a table which is used to respond to decryption queries on these
ciphertexts. In H1

0, we instead use a table to store the key underlying the KEM component of the ciphertext.
This key is used for any decryption query involving that part of the ciphertext. The behavior of the game
only differs if there is a correctness error in any ciphertext produced by the encryption algorithm. We assume
δ-correctness of KEM and perfect correctness of SKE, so we get PrrGmu-$cca

KD,1 pAqs ď PrrH1
0s ` qEnc ¨ δ.

Transition from H1
0 to H1

1 (end phase 1). In game H1
1, we switch from using the real output of the

encapsulation algorithm to sampling the KEM ciphertext and generated key at random. To bound the
difference between the games H1

0 and H1
1 we use the security of KEM. We construct the adversary B0 in

Fig. 21. Adversary B0 perfectly simulates game H1
κ for adversary A when the bit in its game is 1 ´ κ.

Note that the table T in games H1
κ is the same as the table T used of the game played by B0. Therefore,

PrrH1
0s “ PrrH1

1s ` Advmu-$cca
KEM pB0q.

Transition from H1
1 to H2

0 (start phase 2).Now we start phase 2 of the proof where we move toward
using the security of SKE to replace its ciphertexts with random strings of the same length. We want to think
of the random key K used by SKE during an encryption query of the form pu, i, ¨q as belonging to an SKE
user whose identity is i. Here we are using the fact that A is challenge respecting so we know i will never
repeat across queries. To be able to properly make queries for user i in Dec, we will first have to transition
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Hybrids H3
κ for 0 ď κ ď 5

H Ð$ KD.IM
Kp¨q Ð$ SKE.K
pekp¨q, dkp¨qq Ð$ KEM.K
h˘

Ð$ Inj˘pT,D,Rq //H3
r0,5q

b1
Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

Irus Ð Irus Y tiu
ck Ð hu,ekupiq //H3

r0,5q

ck Ð$ KEM.Cpekuq //H3
r5,8q

cd Ð$ t0, 1u
SKE.clp|m|q

T ru, cks Ð Ki

M rlabpu, ckq, cds Ð m
Return pck, cdq

Label function lab

labpu, ckq “ h´1
u,eku

pckq //H3
r0,1q

labpu, ckq “ u, h´1
u,eku

pckq //H3
r1,3q

labpu, ckq “ u, ck //H3
r3,8q

Decpu, cq

pck, cdq Ð c
i Ð h´1

u,eku
pckq

If i P Irus and M rlabpu, ckq, cds ‰ K //H3
r0,2q

If M rlabpu, ckq, cds ‰ K //H3
r2,8q

Return M rlabpu, ckq, cds

If i P Irus then K Ð Ki //H
3
r0,4q

If T ru, cks ‰ K then K Ð T ru, cks //H3
r4,8q

Else K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

Return eku

Fig. 23. Hybrids H3
κ for proof of Theorem 7. Recall that T “ U ˆKEM.Ek, Dpu,ekq “ rqEncs and Rpu,ekq “ KEM.Cpekq.

to a hybrid where ck is chosen using an injection applied to i so that i can later be recovered when ck is
queried to Dec. This will occur over several game hops.

The ways in which game H2
0 (Fig. 22) differs from game H1

1 have been highlighted grey in H2
0. We summa-

rize the interesting changes. To succinctly remember peku, dkuq for each u we generate them as KEM.Kprpuqq

where r is a random function. We can then re-derive these keys whenever needed. We’ve removed the table
C. As A is challenge respecting, this table was unused.

The change which does affect its view is the switch from sampling the ciphertext ck at random to
assigning it as the output of a random injection hu,eku

p¨q from I “ rqEncs to KEM.Cpekuq. Because A is
challenge respecting, it never repeats i across queries to Enc and we can use the switching lemma to get
PrrH1

1s ď PrrH2
0s ` 0.5q2Enc{|KEM.C|.

Transitions from H2
0 through H2

3.Next we move toward adding a look-up table M to mirror the table
in Gmu-$cca

SKE,b . It will be indexed by a SKE user identifier i and challenge ciphertext cd and store the message
encrypted by that ciphertext.

In H2
1, we start by getting rid of the table T . We start storing sets Irus which contain i iff the i-th

encryption query was to user u. In Dec, the check whether T ru, cks is K is replaced with a check whether
i “ h´1

u,eku
pckq P Irus and if this check passes we directly use Ki rather than recovering it from T . If

T ru, cks ‰ K and ck “ hu,eku
piq then it must have been set by the i-th encryption query of the form

Encpu, i, ¨q, and so i P Irus. The same change of logic works in reverse, noting that this i-th encryption
query for user u would have picked ck “ hu,ekupiq. Hence, PrrH2

0s “ PrrH2
1s.

Next, in H2
2, we add the aforementioned table M to Enc and Dec. If i P Irus, then the i-th encryp-

tion query had the form p¨, cdq “ Encpu, i,mq. Then, by the perfect correctness of SKE, M ri, cds “ m “

SKE.DH1

pKi, c
dq, so the use of M does not change the behavior of the game. We get PrrH2

1s “ PrrH2
2s.

For H2
3, we make a modification that does change the behavior of the game. The check whether i P Irus

is replaced with a check whether i “ h´1
u,eku

pckq is non-K. This can cause misbehavior of the game, but the
only way to trigger the difference is if the i-th encryption query was not to user u (or has not occurred yet),
but A anyway manages to make a query Decpu, phu,eku

piq, ¨qq.
We bound this using a union bound over the decryption queries. In H2

2, the view of A can only depend
on hu,eku

applied to inputs in Irus. For a query Decpu, pck, ¨qq where ck R hu,eku
pIrusq we can bound the

probability of i ‰ K by

|hu,eku
prqEncapsq ∖ hu,eku

pIrusq|

|KEM.Cpekuq ∖ hu,ekupIrusq|
“

qEnc ´ |Irus|

|KEM.Cpekuq| ´ |Irus|
ď

qEnc
|KEM.C|

.

Thus we get PrrH2
2s ď PrrH2

3s ` qEncqDec{|KEM.C|.
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Transition from H2
3 to H2

4 (end phase 2). In game H2
4, we change Enc so that cd is sampled at random

rather than produced by SKE.E. To bound the difference between H2
3 and H2

4, we construct the adversary
BSKE in Fig. 22 against the security of SKE.

For encryption and decryption of cd, the reduction adversary invokes its own encryption and decryption
oracles. Because i is incremented with each encryption, BSKE is making at most one encryption query per
user as claimed in the theorem. The adversary uses the random function r to sample peku, dkuq and the
random injection h to sample ck while using little memory.

We claim that when interacting with Gmu-$cca
SKE,b , BSKE perfectly simulates game H2

4´b for A. These claims

were verified by manually plugging the code of Gmu-$cca
SKE,b into BSKE’s oracle queries to compare with H2

4´b.

Therefore, PrrH2
3s “ PrrH2

4s ` Advmu-$cca
SKE pBSKEq.

Transition from H2
4 to H2

5 (start phase 3).Phase 3 of the proof will begin in earnest with H3
0. Before

we get there we quickly switch back from Dec checking if i ‰ K to checking if i P Irus. Using analogous
analysis to when we switched the other way we get that PrrH2

4s ď PrrH2
5s ` qEncqDec{|KEM.C|.

Transition from H2
5 to H3

0.Now we move to H3
0 (Fig. 23) where grey highlighting has been used to indicate

differences from H2
5 that were made to set up for future modifications. First, we switched away from using r

to sample peku, dkuq. Second, we rewrote the indexing into table M to make use of a “label” function lab.
For the definition of lab in H3

0, this results in M being indexed no differently than it was before. Finally,
we re-organized the conditional logic in Dec. The initial nested if statements were split into two separate if
conditions, the first for when both of the nested if’s are true and the second for if just the outer if statement is
true. We rewrote the later part of Dec so there is a single invocation of SKE.D with proceeding code deciding
which key to use. The modifications do not change the behavior of the game and so PrrH2

5s “ PrrH3
0s

Transitions H3
0 through H3

4. In the next steps toward transitioning toward our game matching Gmu-$cca
KD,0 ,

we rewrite the behavior of our M table to match the table in that game which means that it should be
indexed by pu, ck, cdq. Moreover, we switch ck back to being sampled at random. These changes occur over
multiple transitions.

In these transitions we change the definition of the “label function” lab used to index into table M .
For the first transition, we add u to the output of the function and claim PrrH3

0s “ PrrH3
1s. This follows

because if the i-th encryption query is of the form Encpv, i, ¨q, then in H3
0 the table entries M ri, ¨s will only

be accessed in that encryption query and in decryption queries of the form Decpv, ¨q. It is clear that M ri, ¨s
is only written into during the i-th encryption query. To see that no Decpu, ¨q query with u ‰ v will read
from M ri, ¨s note that Dec only accesses M ri, ¨s after the check i P Irus succeeds and Irvs will be the only
set containing i. Hence, PrrH3

0s “ PrrH3
1s

For the transition to H3
2, the i P Irus check is removed from the first if statement in Dec. Note that

M ru, i, cds can only be assigned a non-K by the i-th Enc query being to u. This query would have added i
to Irus and so PrrH3

1s “ PrrH3
2s.

For the transition to H3
3, lab’s output u, h

´1
u,eku

pckq is changed to u, ck. Note that with u fixed, h´1
u,eku

is

an injection. Hence, indexing into the table with h´1
u,eku

pckq or ck is equivalent. This gives PrrH3
2s “ PrrH3

3s.

In H3
4, we switch from the conditional “If i P Irus then K Ð Ki” in Dec to “If T ru, cks ‰ K then

K Ð T ru, cks”. By examining Enc we can verify that i P Irus iff T ru, hu,eku
piqs “ Ki and otherwise

T ru, hu,eku
piqs is K. Hence PrrH3

3s “ PrrH3
4s.

Finally, moving to H3
5 we switch from using the injection h to pick ck to picking it uniformly at random

from KEM.C. By the switching lemma, PrrH3
4s ď PrrH3

5s ` 0.5q2Enc{|KEM.C|.

Transition from H3
5 to H4

0. It is tempting at this point to believe that we are done, as pck, cdq are
sampled at random and the table M ensures that decapsulation queries are properly responded to as in
Gmu-$cca
KD,0 . Unfortunately, there are some ciphertexts that Dec handles improperly.11 If the i-th encryption

query was of the form pck, cdq Ð Encpv, i,mq, then any decryption query Decpv, pck, c1qq for c1 ‰ cd will

11 This is a surprisingly subtle detail and easy to miss when not writing the proof with careful detail.
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Hybrids H4
κ for 0 ď κ ď 6

H Ð$ KD.IM
pekp¨q, dkp¨qq Ð$ KEM.K
g˘

Ð$ Inj˘pT 1, D1, R1
q

b1
Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

ck Ð$ KEM.Cpekuq //H4
r0,2q, H

4
r4,8q

K Ð$ KEM.K //H4
r0,2q

pck,Kq Ð$ KEM.EH
pekuq //H4

r2,4q

cd Ð gu,ck,|m|pmq //H4
r0,6q

cd Ð$ t0, 1u
SKE.clp|m|q //H4

r6,8q

T ru, cks Ð K //H4
r0,3q

M ru, ck, cds Ð m
Return pck, cdq

Decpu, cq

pck, cdq Ð c
If M ru, ck, cds ‰ K //H4

r0,1q, H
4
r5,8q

Return M ru, ck, cds //H4
r0,1q, H

4
r5,8q

m Ð g´1

u,ck,SKE.mlp|cd|q
pcdq //H4

r1,5q

If m ‰ K then return m //H4
r1,5q

If T ru, cks ‰ K then K Ð T ru, cks //H4
r0,3q

Else K Ð KEM.DH
pdku, c

k
q //H4

r0,3q

K Ð KEM.DH
pdku, c

k
q //H4

r3,8q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

Return eku

Adversary BNew,Encap,Decap,H
1

g˘
Ð$ Inj˘pT 1, D1, R1

q

b1
Ð$ ANew,SimEnc,SimDec,H

Return 1 ´ b1

SimEncpu, i,mq

pck, ¨q Ð Encappu, iq
cd Ð gu,ck,|m|pmq

Return pck, cdq

SimDecpu, cq

pck, cdq Ð c
m Ð g´1

u,ck,SKE.mlp|cd|q
pcdq

If m ‰ K then return m
K Ð Decappu, ckq

If K “ K then return K

Return SKE.DH
pK, cdq

Fig. 24. Hybrids H4
κ (Left) and adversary B1 (Right) used for proof of Theorem 7. Adversary B1 is used to transition

from H4
1 to H4

2. Recall that T 1
“ U ˆ

Ť

ekPKEM.Ek KEM.Cpekq ˆ N, D1

pu,ck,lq “ t0, 1u
l, and R1

pu,ck,lq “ t0, 1u
SKE.clplq.

decrypt cd using the randomly chosen key Ki because T ru, cks ‰ K.12 The decryption oracle in Gmu-$cca
KD,0

would instead decrypt cd using K “ KEM.DHpdku, c
kq.

To change this decryption behavior we are, perhaps surprisingly, going to again make use of the security
of KEM. For this reduction to be memory-tight we cannot store the table M , so our next game transitions
are aimed at allowing simulation of it in a memory-tight manner. In particular, we are going to switch to cd

being the output of an injection g applied to the message. Then in decryption we can use g´1 in place of M .
To start, we transition to H4

0 (Fig. 24), the first hybrid in our final set of hybrid games. We used
grey highlighting to indicate the changes. The only change which is not simple rewriting is the treatment of
cd which is now set to gu,ck,|m|pmq where g is an injection. Let us first consider an intermediate hybrid H4

´1

where instead g was a random function chosen as g Ð$ Fcs˘
pT 1, D1, R1q. The switch to this hybrid would be

detectable only if g is called with the same inputs twice, which requires the same random ck to be sampled
twice. This gives that PrrH3

5s ď PrrH4
´1s ` 0.5q2Enc{|KEM.C|.13 Now to move to H4

0 we apply the switching
lemma to use a random injection instead which gives PrrH4

´1s ď PrrH4
0s ` 0.5q2Enc{2SKE.xl.

Transition from H4
0 to H4

1. In H4
1, we replace the use of M ru, ck, cds in Dec with g´1

u,ck,SKE.mlp|cd|q
pcdq. Ex-

amining, Enc we can see that ifM ru, ck, cds ‰ K, then g´1
u,ck,SKE.mlp|cd|q

pcdq “ M ru, ck, cds.14 The other direc-

tion does not necessarily hold, so A can detect this game transition if it is able to queryDecpu, pck, cdqq where
pck, cdq was not an earlier response to an Encpu, ¨q query (so M ru, ck, cds “ K), yet g´1

u,ck,SKE.mlp|cd|q
pcdq ‰ K.

In H4
0, the view of A only depends on g through queries to Enc so we analyze the probability of this bad event

there, using a union bound over Dec queries. During a Decpu, pck, cdqq query where M ru, ck, cds “ K, let n
denote the number of earlier Encpu,mq queries with |m| “ SKE.mlp|cd|q which returned some ciphertext of
the form pck, ¨q. Then we can bound the probability of g´1

u,ck,SKE.mlp|cd|q
pcdq ‰ K by

2SKE.mlp|cd|q ´ n

2|cd| ´ n
ď

2SKE.mlp|cd|q

2|cd|
ď

1

2SKE.xl
.

Thus we get PrrH4
0s ď PrrH4

1s ` qDec{2SKE.xl.

12 Technically, ck may have been returned by multiple encryption queries. We refer to the most recent i.
13 With careful analysis we could combine this with the H3

4 to H3
5 transition to shave q2Enc{|KEM.C| off of our bound.

14 For simplicity we assume ciphertexts of all lengths are possible for SKE.
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Transition from H4
1 to H4

2 (end phase 3).Now we switch in Enc from pcd,Kq being randomly sampled
to them being the output of KEM.E. This is achieved using a reduction to the security of KEM. Consider the
adversary B1 shown in Fig. 24.

For encryption queries, it uses its Encap oracle to obtain ck while ignoring the output key and picks cd

using g. For decryption queries it first tries to “decrypt” cd with g. Failing that it queries Decap to obtain
a key it uses to decrypt cd. The table T used in H4 matches the corresponding table inside of Gmu-$cca

KEM,b .

By plugging the code of Gmu-$cca
KEM,b we verify that the view of A when run by BKEM in that game perfectly

matches its view in game H4
b`1. Note that BKEM flips the bit output by A. This give us that PrrH4

b`1s “

1 ´ PrrGmu-$cca
KEM,b pBKEMqs and so PrrH4

1s “ PrrH4
2s ` Advmu-$cca

KEM pBKEMq.

Transitions H4
2 through H4

7 (clean up). The rest of the proof is a matter of “cleaning up” various
changes we made for the above reduction. First, unless there is a correctness error in KEM, if T ru, cks ‰ K

then it has the value KEM.DHpdku, c
kq. Thus both branches of the if statement based on T in Dec are

equivalent when correctness errors do not occur so we simplify this is H4
3. Using δ-correctness, we bound

PrrH4
2s ď PrrH4

3s ` qEnc ¨ δ.
Now, we switch ck back from being generated by KEM.E to being randomly sampled. Note that K is

unused now that T has been removed. Hence, the ε-uniformity of KEM gives PrrH4
3s ď PrrH4

4s ` qEnc ¨ ε.
In H4

6, we undo the switch fromM ru, ck, cds to g´1
u,ck,SKE.mlp|cd|q

pcdq inDec. Then in H4
7, we undo the switch

from cd being random to being the output of g. By the same logic as before, PrrH4
4s ď PrrH4

5s ` qDec{2SKE.xl

and PrrH4
5s ď PrrH4

6s ` 0.5q2Enc{2SKE.xl ` 0.5q2Enc{|KEM.C|q.
Now we examine H4

7. In Enc it picks pck, cdq at random and stores the message in M ru, ck, cds. This
message is returned using M if a query Decpu, pck, cdqq is made. Otherwise, Dec honestly decrypts. This is
exactly the behavior of Gmu-$cca

KD,0 and so PrrH4
6s “ PrrGmu-$cca

KD,0 pAqs, concluding the proof. [\

H Proof of Theorem 8 (KEM/DEM Construction, Challenge Repeating)

We prove Theorem 8 via a sequence of hybrid games shown in Fig. 25, 25, 26, and 27. We establish the
following bounds relating the different hybrids.

1. PrrGmu-$cca
KD,1 pAqs ď PrrH1

0s ` qEnc ¨ δ

2. PrrH1
0s “ PrrH1

1s ` Advmu-$cca
KEM pB0q

3. PrrH1
1s ď PrrH2

0s ` q2Enc{2γ`1 ` q2Enc{p2|KEM.C|q

4. PrrH2
0s “ PrrH2

1s “ PrrH2
2s

5. PrrH2
2s ď PrrH2

3s ` qDec|I| ¨ 2γ{|KEM.C|

6. PrrH2
3s “ PrrH2

4s ` Advmu-$cca
SKE pBSKEq

7. PrrH2
4s ď PrrH2

5s ` qDec|I| ¨ 2γ{|KEM.C|

8. PrrH2
5s “ PrrH3

0s “ PrrH3
1s

9. PrrH3
1s “ PrrH3

2s “ PrrH3
3s “ PrrH3

4s

10. PrrH3
4s ď PrrH3

5s ` 0.5q2Enc{|KEM.C|

10.5 PrrH3
5s ď PrrH3

6s ` q2Enc{2γ`1

11. PrrH3
6s ď PrrH4

0s ` q2Enc{|KEM.C| ` q2Enc{2SKE.xl`1

12. PrrH4
0s ď PrrH4

1s ` qDec{2SKE.xl

13. PrrH4
1s “ PrrH4

2s ` Advmu-$cca
KEM pB1q

14. PrrH4
2s ď PrrH4

3s ` qEnc ¨ δ
15. PrrH4

3s ď PrrH4
4s ` qEnc ¨ ε

16. PrrH4
4s ď PrrH4

5s ` qDec{2SKE.xl

17. PrrH4
5s ď PrrH4

6s ` q2Enc{p2|KEM.C|q ` q2Enc{2SKE.xl`1

18. PrrH4
6s “ PrrGmu-$cca

KD,0 pAqs

The adversary BKEM is obtained by randomly choosing to run either B0 or B1. Combining these gives the
claimed bound. The claimed complexity of the attackers can be seen by considering their code.

These hybrids are largely based off of the hybrids used the prove Theorem 7 in Appendix G. The only
changes are because the prior proof considered a challenge-respecting adversary, whereas the proof in this
section allows the adversary to repeat queries to its Enc oracle. We have made an effort to make “matching”
games have the same name (at times adding games with negative indices or skipping some indices to enable
this). In the hybrids and adversary we use blue text to indicate specific places where the code differs in
our new hybrids. Rather than giving a self-contained proof of each of the probability claims above, we
emphasize only the places that the analysis differs from the earlier proof. The reader can understand skipped
explanations by referring to the corresponding text from the previous proof.
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Hybrids H1
κ for 0 ď κ ď 1

H Ð$ KD.IM
r̃ Ð$ FcspU ˆ I ˆ t0, 1u

˚, SKE.Rq

pekp¨q, dkp¨qq Ð$ KEM.K
b1

Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

If Cru, i,ms ‰ K

Return Cru, i,ms

pck,Kq Ð$ KEM.EH
pekuq //H1

r0,1q

ck Ð$ KEM.Cpekuq //H1
r1,8q

K Ð$ KEM.K //H1
r1,8q

cd Ð SKE.EH
pK,m; r̃pu, i,mqq

T ru, cks Ð K
Cru, i,ms Ð pck, cdq

Return pck, cdq

Decpu, cq

pck, cdq Ð c
If T ru, cks ‰ K

K Ð T ru, cks

Return SKE.DH
pK, cdq

K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

Return eku

Adversary BNew,Encap,Decap,H
0

r̃ Ð$ FcspU ˆ I ˆ t0, 1u
˚, SKE.Rq

d1
Ð$ ANew,SimEnc,SimDec,H

Return d1

SimEncpu, i,mq

pck,Kq Ð Encappu, pi,mqq

cd Ð$ SKE.EH
pK,mq

cd Ð SKE.EH
pK,m; r̃pu, i,mqq

Return pck, cdq

SimDecpu, cq

pck, cdq Ð c
K Ð Decappu, ckq

If K “ K then return K

Return SKE.DH
pK, cdq

Hybrids H2
κ for ´2 ď κ ď 5

H Ð$ KD.IM
r̃ Ð$ FcspU ˆ I ˆ t0, 1u

˚, SKE.Rq

Kp¨,¨,¨q Ð$ SKE.K
r Ð$ FcspU ,KEM.Rq

h Ð$ FcspT,Dˆt0, 1u
˚, Rq //H2

r´2,0q

t Ð I //H2
r´2,´1q

h˘
Ð$ Inj˘pT,Dˆt0, 1u

γ , Rq //H2
r´0,8q

t Ð$ Fcspt0, 1u
˚, t0, 1u

γ
q //H2

r´1,8q

g Ð$ FcspT 1, D1, R1
q

b1
Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

Irus Ð Irus Y tpi, tpmqqu //H2
r1,8q

peku, ¨q Ð KEM.Kprpuqq

ck Ð hu,ekupi, tpmqq

cd Ð SKE.EH
pKu,i,tpmq,m; r̃pu, i,mqq //H2

r´2,4q

cd Ð gu,ck,|m|pmq //H2
r4,8q

T ru, cks Ð Ku,i,tpmq

M rpu, i, tpmqq, cds Ð m //H2
r2,8q

Return pck, cdq

Decpu, cq

pck, cdq Ð c
peku, dkuq Ð KEM.Kprpuqq

pi, τq Ð h´1
u,eku

pckq //H2
r1,8q

If T ru, cks ‰ K //H2
r´2,1q

If pi, τq P Irus //H2
r1,3q, H

2
r5,8q

If pi, τq ‰ K //H2
r3,5q

If M rpu, i, τq, cds ‰ K //H2
r2,8q

Return M rpu, i, τq, cds //H2
r2,8q

Return SKE.DH
pT ru, cks, cdq //H2

r´2,1q

Return SKE.DH
pKu,i,τ , c

d
q //H2

r1,8q

K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

peku, ¨q Ð KEM.Kprpuqq

Return eku

Adversary BEnc,Dec,H
SKE

r Ð$ FcspU ,KEM.Rq

h˘
Ð$ Inj˘pT,Dˆt0, 1u

γ , Rq

t Ð$ Fcspt0, 1u
˚, t0, 1u

γ
q

b1
Ð$ ASimNew,SimEnc,SimDec,H

Return b1

SimNewpuq

peku, ¨q Ð KEM.Kprpuqq

Return eku

SimEncpu, i,mq

peku, ¨q Ð KEM.Kprpuqq

ck Ð hu,ekupi, tpmqq

cd Ð Encppu, i, tpmqq, 0,mq

Return pck, cdq

SimDecpu, cq

pck, cdq Ð c
peku, dkuq Ð KEM.Kprpuqq

pi, τq Ð h´1
u,eku

pckq

If pi, τq ‰ K

Return Decppu, i, τq, cdq

K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Fig. 25. Hybrids H1
κ (Top Left), adversary B0 (Top Right), hybrids H2

κ (Center), and adversary BSKE (Bottom)
used for proof of Theorem 8. Adversary BSKE is used to transition from H2

3 to H2
4. Recall that T “ U ˆ KEM.Ek,

Dpu,ekq “ I, and Rpu,ekq “ KEM.Cpekq. Recall that T 1
“ U ˆ

Ť

ekPKEM.Ek KEM.Cpekq ˆ N, D1

pu,ck,lq “ t0, 1u
l, and

R1

pu,ck,lq “ t0, 1u
SKE.clplq. By I we denote the identity function.
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Hybrids H3
κ for 1 ď κ ď 6

H Ð$ KD.IM
Kp¨,¨,¨q Ð$ SKE.K
pekp¨q, dkp¨qq Ð$ KEM.K
h˘

Ð$ Inj˘pT,Dˆt0, 1u
γ , Rq //H3

r1,5q

h Ð$ FcspT,Dˆt0, 1u
˚, Rq //H3

r5,8q

t Ð$ Fcspt0, 1u
˚, t0, 1u

γ
q //H3

r1,6q

t Ð I //H3
r6,8q

g Ð$ FcspT 1, D1, R1
q

b1
Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

Irus Ð Irus Y tpi, tpmqu

ck Ð hu,ekupi, tpmqq

cd Ð gu,ck,|m|pmq

T ru, cks Ð Ku,i,tpmq

M rlabpu, ckq, cds Ð m
Return pck, cdq

Decpu, cq

pck, cdq Ð c
pi, τq Ð h´1

u,eku
pckq //H3

r1,5q

If pi, τq P Irus and M rlabpu, ckq, cds ‰ K //H3
r1,2q

If M rlabpu, ckq, cds ‰ K //H3
r2,8q

Return M rlabpu, ckq, cds

If pi, τq P Irus then K Ð Ku,i,τ //H3
r1,4q

If T ru, cks ‰ K then K Ð T ru, cks //H3
r4,8q

Else K Ð KEM.DH
pdku, c

k
q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

Return eku

Defining label function lab

labpu, ckq “ u, h´1
u,eku

pckq //H3
r1,3q

labpu, ckq “ u, ck //H3
r3,8q

Fig. 26. Hybrids H3
κ for proof of Theorem 8. Recall that T “ U ˆ KEM.Ek, Dpu,ekq “ I and Rpu,ekq “ KEM.Cpekq.

Hybrids H1.We start with the H1 hybrids and corresponding adversary given in Fig. 25. The only difference
from the equivalents in Fig. 21 is the use of a random function r̃. In hybrid H1

0, the table C keeps track of
all queries to Enc and returns the same output as before if a query is repeated. The random function r̃ is
used to explicitly generate randomness for SKE.E. This serves as a way for B0 to return consistent results
for repeated queries without having to store C. As the inputs to r̃ only repeat on repeated queries, this
modification does not change the analysis.

Hybrids H2.Next we move to the H2 hybrids and corresponding adversary given in Fig. 25. These contain
more significant deviations from their equivalents in Fig. 22. In several places where the equivalent games
were able to reference different encryption queries with just the challenge value i (as it was guaranteed to
always differ) we instead use either pu, i, tpmqq or pi, tpmqq. We use the former for indexing per-encryption
symmetric keys and indexing into table M . We use the latter for storing in Irus and as input to h.

In H2
´2, we start with h being a random function and t being the identity function. This ensures proper

behavior of outputs from Enc such that outputs repeat when encryption queries repeat and seem independent
otherwise, giving PrrH1

1s “ PrrH2
´2s. In H2

´2, we switch to t being a random function. As tpmq is being used
only as input to the random function h and indexing into the tables K andM , this change is only detectable
if a collision in t is found. Hence, PrrH2

´2s ď PrrH2
´1s ` q2Enc{2γ`1. Finally, in switching to H2

0 we switch h
to being an injection, incurring the same switching lemma term PrrH2

´1s “ PrrH2
0s ` 0.5q2Enc{|KEM.C| from

the transition to the equivalent of H2
0 in Appendix G.

The next transition requiring new analysis is the transition to H2
3. This is the transition where we switch

from checking if pi, τq P Irus to checking if pi, τq “ K in Dec. This corresponds to the attacker guessing a
point in the imagine of h which they have not been shown through Enc. We calculate

|hu,eku
pI ˆ t0, 1uγq ∖ hu,eku

pIrusq|

|KEM.Cpekuq ∖ hu,eku
pIrusq|

“
|I| ¨ 2γ ´ |Irus|

|KEM.Cpekuq| ´ |Irus|
ď

|I| ¨ 2γ

|KEM.C|
.

PrrH2
2s ď PrrH2

3s ` qDec|I| ¨ 2γ{|KEM.C|. We incur the same loss between H2
4 and H2

5.

In H2
4, rather than picking cd uniformly at random for each query, we pick it as gu,ck,|m|pmq where g is

a random function. Note that ck is chosen such that when u is fixed, ck uniquely determines the challenge
value i. Hence cd repeats when pu, i,mq does, but is uniform and independent for otherwise, as desired.
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Hybrids H4
κ for 0 ď κ ď 6

H Ð$ KD.IM
r̃ Ð$ FcspU ˆ I ˆ t0, 1u

˚,KEM.Rq

Kp¨,¨,¨q Ð$ SKE.K
pekp¨q, dkp¨qq Ð$ KEM.K
h Ð$ FcspT,Dˆt0, 1u

˚, Rq

g˘
Ð$ Inj˘pT 1, D1, R1

q //H4
r0,6q

g Ð$ FcspT 1, D1, R1
q //H4

r6,8q

b1
Ð$ ANew,Enc,Dec,H

Return pb1
“ 1q

Encpu, i,mq

ck Ð hu,ekupi,mq //H4
r0,2q, H

4
r4,8q

K Ð Ku,i,m //H4
r0,2q

pck,Kq Ð KEM.EH
peku; r̃pu, i,mqq //H4

r2,4q

cd Ð gu,ck,|m|pmq

T ru, cks Ð K //H4
r0,3q

M ru, ck, cds Ð m
Return pck, cdq

Decpu, cq

pck, cdq Ð c
If M ru, ck, cds ‰ K //H4

r0,1q, H
4
r5,8q

Return M ru, ck, cds //H4
r0,1q, H

4
r5,8q

m Ð g´1

u,ck,SKE.mlp|cd|q
pcdq //H4

r1,5q

If m ‰ K then return m //H4
r1,5q

If T ru, cks ‰ K then K Ð T ru, cks //H4
r0,3q

Else K Ð KEM.DH
pdku, c

k
q //H4

r0,3q

K Ð KEM.DH
pdku, c

k
q //H4

r3,8q

If K “ K then return K

Return SKE.DH
pK, cdq

Newpuq

Return eku

Adversary BNew,Encap,Decap,H
1

g˘
Ð$ Inj˘pT 1, D1, R1

q

b1
Ð$ ANew,SimEnc,SimDec,H

Return 1 ´ b1

SimEncpu, i,mq

pck, ¨q Ð Encappu, iq
cd Ð gu,ck,|m|pmq

Return pck, cdq

SimDecpu, cq

pck, cdq Ð c
m Ð g´1

u,ck,SKE.mlp|cd|q
pcdq

If m ‰ K then return m
K Ð Decappu, ckq

If K “ K then return K

Return SKE.DH
pK, cdq

Fig. 27. Hybrids H4
κ (Left) and adversary B1 (Right) used for proof of Theorem 8. Adversary B1 is used to transition

from H4
1 to H4

2. Recall that T 1
“ U ˆ

Ť

ekPKEM.Ek KEM.Cpekq ˆ N, D1

pu,ck,lq “ t0, 1u
l, and R1

pu,ck,lq “ t0, 1u
SKE.clplq.

Hybrids H3. Next we move to the H3 hybrids given in Fig. 26. Their deviation from their equivalents in
Fig. 23 are generally inherited from the earlier games.

We can skip the hybrid H3
0 as we have already been using u when indexing into M . At the end of the

H3 hybrids we switch h to being a random function (consistent with its equivalent in Appendix G switching
to picking the output of h uniformly). In H3

5, we switch h to being a random function where the equivalent
game got rid of h entirely. We require using h still to maintain the proper consistency between queries. In
the extra hybrid H3

6, we switch t from being a random function to the identity function. This incurs the loss
of PrrH3

5s ď PrrH3
6s ` q2Enc{2γ`1.

Hybrids H4.Finally we consider the H3 hybrids and corresponding adversary given in Fig. 27. Their deviation
from their equivalents in Fig. 24 are generally straightforward. The ciphertext ck is picked via random function
h when the equivalent game sampled it at random. A random function r̃ is introduced to gives random coins
to KEM that are consistent for repeated queries. The injection g is replaced with a random function rather
than being replaced with random sampling. These modifications ensure the behavior of repeating when
encryption queries do, but looking independent otherwise. We again have PrrH4

6s “ PrrGmu-$cca
KD,0 pAqs. [\
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