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Abstract. Guo and Johansson (ASIACRYPT 2021), and MATZOV
(tech. report 2022) have independently claimed improved attacks against
various NIST lattice candidate by adding a Fast Fourier Transform (FFT)
trick on top of the so-called Dual-Sieve attack. Recently, there was more
follow up work in this line adding new practical improvements.
However, from a theoretical perspective, all of these works are painfully
specific to Learning with Errors, while the principle of the Dual-Sieve
attack is more general (Laarhoven & Walter, CT-RSA 2021). More crit-
ically, all of these works are based on heuristics that have received very
little theoretical and experimental attention.
This work attempts to rectify the above deficiencies of the literature. We
first propose a generalization of the FFT trick by Guo and Johansson
to arbitrary Bounded Distance Decoding instances. This generalization
offers a new improvement to the attack.
We then theoretically explore the underlying heuristics and show that
these are in contradiction with formal, unconditional theorems in some
regimes, and with well-tested heuristics in other regimes. The specific
instantiations of the recent literature fall into this second regime.
We confirm these contradictions with experiments, documenting several
phenomena that are not predicted by the analysis, including a “waterfall-
floor” phenomenon, reminiscent of Low-Density Parity-Check decoding
failures.
We conclude that the success probability of the recent Dual-Sieve-FFT
attacks are presumably significantly overestimated. We further discuss
the adequate way forward towards fixing the attack and its analysis.

Keywords: Lattices, Cryptanalysis, Heuristics, Learning with Errors,
Dual Attack, Fast Fourier Transform

1 Introduction

The idea of using short dual vectors for distinguishing between points close to
or far from a lattice was put forward, in a complexity theoretic context, by
Aharonov and Regev [AR04], and can even be traced back in a pure geometric
context to earlier work by Håstad [Hås88]. The problem at hand here is coined
the decisional Bounded Distance Decoding problem (BDD). This idea is not
even limited to lattices, and was already implicit in the very construction of
Low-Density Parity-Check codes dating back to [Gal62].
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This idea made its way into cryptanalysis of cryptosystems based on the
Learning with Errors (LWE) problem in a survey of Micciancio and Regev [MR09].
Indeed, Learning with Errors is a special case of BDD, for a specific family of
random lattices. An attack on LWE (or BDD) using this idea is a so-called dual
attack, in contrast with the other type of attacks that operate solely in the primal
lattice. The best dual and primal attacks are then typically used by the lattice
cryptanalyst to instantiate LWE cryptosystems.

Since then, two fundamental developments have happened. The first, initially
suggested by Alkim, Ducas, Pöppelmann, and Schwabe [ADPS16], consisted of
exploiting the fact that lattice sieving [NV08,MV10,BDGL16] — a class of algo-
rithms for finding short lattice vectors — naturally provides not only the shortest
vector, but exponentially many short vectors. The hope is that the information
of these exponentially many short dual vectors can be leveraged to improve a
distinguisher, for example by summing a score function over them [LW21].

We refer to this style of attack as a Dual-Sieve attack. The concrete crypt-
analytic impact of this idea can be further improved by guessing multiple coor-
dinates of the secret rather than just one [Alb17,EJK20], and then finding the
right solution among these candidates rather than just a few.

The second development is also reminiscent from a cryptanalytic technique of
code-based cryptography by Levieil and Fouque [LF06]. The idea is to batch the
score evaluation of a large number of algebraically related candidates via a Fast
Fourier Transform. For carefully crafted parameters, the cost of getting all those
scores is barely larger than the cost of naïvely computing a single score. This
led Guo and Johansson [GJ21] to claim an improved attack on various NIST
post-quantum standardization candidates, followed quickly by an independent
technical report of MATZOV [MAT22]. We refer to this style of attack as a
Dual-Sieve-FFT attack. The latter has already been followed up upon, with a
quantum variant [AS22] and a coding-theoretic enhanced variant [CST22].

1.1 Contributions

Abstraction and Generalization of the FFT trick (Section 3). We note that the
original principle of the dual attack [AR04,Hås88] is general: it applies to the
bounded distance decoding problem (BDD) in arbitrary lattices. However, the
recent instances of the Dual-Sieve attack [ADPS16,Alb17,EJK20] and the Dual-
Sieve-FFT attacks [GJ21,MAT22,AS22,CST22] are described in a very special-
ized way to Learning with Errors. The only exception is the work of [LW21],
which we find geometrically enlightening, although their work is limited to the
Dual-Sieve attack.

Our first contribution (Section 3) is therefore to also generalize the FFT
trick of [GJ21] to the general setting. Beyond the theoretical satisfaction of
abstracting the technique to its mathematical core, this generalization also offers
further improvement over the work of [GJ21]: for the same algorithmic price,
we can further improve the shortness of the dual vectors and therefore their
distinguishing power.
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Contradictions from the Heuristic Analysis (Section 4). A second observation
regarding this literature is that the analysis of the Dual-Sieve attack (with or
without FFT) relies on one specific independence heuristic, which has received
essentially no attention so far. Namely, it is assumed that all the individual
scores, given by each dual vector, are mutually independent.

We approach the analysis of this heuristic by looking at the conclusions it
leads to. The geometric point of view offered by the work of Laarhoven and
Walter [LW21] is pivotal in that respect: judging the reasonability of a heuris-
tic conclusion is very much enabled by the language of geometry. In particular,
their work concludes with a heuristic algorithm that distinguishes a noisy lattice
point from random, even when the noise slightly exceeds the Gaussian Heuristic,
i.e. the expected minimal distance of a random lattice. This should raise sus-
picion, as even random points are not expected to be much further away from
the lattice than this minimal distance. This suspicion of invalidity becomes an
undeniable contradiction by considering a recent result of Debris, Ducas, Resch,
and Tillich [DADRT22], stating that the above task is statistically impossible,
even to an unbounded attacker.

The contradiction above is, however, limited to a rather theoretical regime
of the Dual-Sieve attack, which is not that of the recent concrete cryptanalytic
claims [EJK20,GJ21,MAT22,AS22,CST22]. In their context, the BDD error is
below the Gaussian Heuristic but the actual BDD sample needs to be discovered
among a large number T of uniform samples. We will show that this also leads
to a contradiction. Namely, for large T , we argue that many of those random
targets will lie closer to the lattice than the BDD target itself. The claim that
the BDD target can be successfully identified among so many random targets
contradicts the very principle of the attack, namely that the expected score of a
target increases with its closeness to the lattice. It turns out that the parameters
used in [GJ21,MAT22] specifically fall into that contradictory regime that uses
a large number T of targets.

Experiments (Section 5). To understand what is going on, we zoom in on the
distribution of scores for random targets and BDD targets. We ran extensive ex-
periments, and discovered that both distributions deviate from the predictions
made under the independence heuristic. First, the body of the distribution of
scores for random targets is properly predicted, but not its tail : after a pre-
dicted rapid decrease (visually, a waterfall), this distribution hits a floor. This
is perfectly in line with our second contradictory regime: some random targets
will be close to the lattice, and should therefore have a high score.

However, that is not all. The distribution of scores for BDD target is also
mispredicted, and this is no longer just a matter of the tail. Contrary to pre-
diction, this distribution is not gaussian-like. It is in fact not even symmetric
around its average, and its variance appears exponentially larger than predicted.
In particular, the probability of the score of a BDD target being low is higher
than predicted.

All of the code that is used for the experiments, as well as the results of the
experiments are publicly available at:
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https://github.com/ludopulles/DoesDualSieveWork.

These experiments are implemented in python using the G6K and FPyLLL
libraries [ADH+19, dt23], as well as a custom C library to accelerate the FFT
step.

1.2 Conclusion

Our theoretical contradictions and our experiments both demonstrate that the
underlying heuristic of the Dual-Sieve attack is invalid. Both phenomena un-
covered by the experiments point to the success probability of the Dual-Sieve
attack (with or without FFT) being presumably over-estimated by the current
heuristic, at least in certain regimes of interest.

In particular, the concrete cryptanalytic claims of numerous works [ADPS16,
EJK20,GJ21,MAT22,AS22,CST22] should be considered at least unsubstanti-
ated, as these are currently based on a flawed heuristic. Still, some of those claims
might not be that far from reality, but those of [GJ21,MAT22,AS22, CST22],
being so deep in the contradictory regime, are presumably significantly far away
from reality.

Afterthoughts (Section 6). We conclude our work with various discussions. First,
we mention the prior occurence of a similar waterfall-floor phenomenon in the
coding literature [Ric06,VCN14,ABH+22] and relate to it. We then reflect on
the source of the issue in the independence heuristic, and highlight the effect of
these dependencies with a toy example. We finally discuss a suitable way forward
in fixing the Dual-Sieve attack and its analysis.

Acknowledgments. We would like to thank Martin Albrecht, Qian Guo, Thomas
Johansson, Eamonn Postlethwaite, Yixin Shen, Michael Walter, Wessel van Wo-
erden for helpful discussion and feedback. Some of them might not endorse our
conclusions. Authors Léo Ducas and Ludo Pulles are supported by ERC Starting
Grant 947821 (ARTICULATE).

2 Preliminaries

In this paper, we will make clear which heuristics are used by referring to these
as Heuristics. Any statement that is derived using one or more heuristics will
be called a Heuristic Claim, which will be motivated by a Heuristic Justification
explaining why it is believed to be true.

Geometric objects. The n-dimensional (closed) ball of radius 1 is denoted by Bn;
the (n− 1)-dimensional sphere (residing in the n-dimensional ambient space) is
denoted by Sn−1. In particular the unit circle is denoted by S1 and is naturally
a subgroup of C∗.
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2.1 Probabilities and Distributions

Probabilities are denoted by P, expectations by E. The variance of a random
variable X is V[X] = E

[
X2
]
− (E [X])

2, and its standard deviation is σX =√
V[X]. The cumulative density function (CDF) at x ∈ R of a distribution D

is PX←D[X ≤ x], and the survival function (SF) of D is PX←D[X ≥ x] =
1− PX←D[X < x], where X is drawn from D.

The uniform distribution on a set X is denoted by U(X). The continuous
gaussian N (c, σ2) of average c ∈ R and standard deviation σ ∈ R>0 has a
probability density at x ∈ R proportional to ρc,σ(x) = exp

(
− (x−c)2

2σ2

)
.

The (gaussian) error function is erf and the complementary error function is
erfc(x) = 1− erf(x), for a random variable X ← N (c, σ2) we have for all x ∈ R

P[X < x] =
1

2

(
1 + erf

(
x− c
σ
√
2

))
. (1)

Lemma 1 ( [AS64, 7.1.23]). It holds that

erfc(x) = e−x
2 ·
(

1√
π · x +O

(
1

x3

))
as x→∞.

2.2 Lattices

A lattice Λ is a discrete subgroup of Rn, its rank is the dimension of its R-linear
span, and the volume of a full rank lattice is detΛ = Vol(Rn/Λ). For 1 ≤ k ≤ n,
a basis B ∈ Rn×k consisting of R-linearly independent column vectors b1, . . . ,bk
defines the rank-k lattice

L(B) = {v ∈ Rn | ∃c ∈ Zk : v = c1b1 + · · ·+ ckbk } ,

of volume
√
detBTB. For 1 ≤ ` ≤ r ≤ n, we use B[`,r] for the basis consisting

of vectors π`(b`), . . . , π`(br), where π` is the projection map that projects away
from b1, . . . ,b`−1. The length of a shortest nonzero vector of a lattice Λ ⊂ Rn
is denoted by λ1(Λ).

Duality. There are two ways to define the dual of a lattice, the first one being
geometric and specific to lattices, while the second is inherited from groups. In
the context of the FFT trick, it is useful to consider both definitions, and relate
them.

Definition 1. The dual lattice Λ∨ of a full rank lattice Λ ⊂ Rn is the set of all
w ∈ Rn such that 〈w, Λ〉 ⊆ Z.

Definition 2. For a full rank lattice Λ ⊂ Rn, let

Λ̂ =
{
χ : Rn/Λ→ S1

∣∣ χ continuous group hom.
}

denote the group of characters on the torus Rn/Λ.
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The following lemma shows that we may interchange these two notions of
duality, i.e. any dual vector defines a character and vice versa.

Lemma 2. The map from Λ∨ to Λ̂ that sends a dual vector w to the character

χw : t 7→ exp(2πi · 〈t,w〉) , (2)

is a group isomorphism.

Proof. Well-definedness: this follows directly from the definition of Λ∨.
Injectivity: (∀t ∈ Rn : χw(t) = 1) ⇐⇒ 〈w,Rn〉 ⊆ Z ⇐⇒ w = 0.
Surjectivity: note that for any character χ : Rn/Λ → S1, by continuity,

there is an open ball U ⊆ Rn centred at 0 such that we have χ(U + Λ) ⊆
{ z ∈ S1 | Re(z) > 0 }. On this ball, we can find a linear map ϕ : U → (− 1

2 ,
1
2 )

such that χ(x + Λ) = exp(2πiϕ(x)) holds for all x ∈ U as there is exactly one
value for ϕ(x) that is valid. The character χ is completely determined by its
values on U , i.e. for any x ∈ Rn there exists m ∈ Z≥1 such that x/m ∈ U
so χ(x) = χ(x/m)

m. We can now extend ϕ linearly to a function ϕ : Rn → R,
which will satisfy χ(x + Λ) = exp(2πiϕ(x)) for all x ∈ Rn. Now there exists
some w ∈ Rn such that ϕ = 〈−,w〉 as any linear map is of this form. Note that
〈w, Λ〉 ⊂ Z, i.e. w ∈ Λ∨ because χ(Λ) = 1 and therefore χ = χw.

For a finite abelian group G, the dual group Ĝ is the group of the homo-
morphisms χ : G→ S1. For a sublattice Λ′ ⊂ Λ, the dual of Λ/Λ′ has a natural
connection to the dual lattices of Λ′ and Λ by the following lemma.

Lemma 3. For two full rank lattices Λ1 ⊂ Λ2 ⊂ Rn, there is a canonical group
isomorphism of abelian groups,

Λ̂1/Λ̂2 → Λ̂2/Λ1,

given by restricting a character χ : Rn/Λ1 → S1 (modulo Λ̂2) to Λ2/Λ1.

Proof. Well-definedness: any Λ1-periodic character χ can be multiplied by a
Λ2-periodic character ψ ∈ Λ̂2 as the function stays the same on Λ2/Λ1.

Injectivity: any character χ : Rn/Λ̂1 that is 1 on Λ2/Λ1 is coming from a
function Rn → S1 that is Λ2-periodic, i.e. a character from Λ̂2.

Surjectivity: left hand side has size
∣∣∣Λ̂1/Λ̂2

∣∣∣ = ∣∣Λ1
∨/Λ2

∨∣∣ = |Λ2/Λ1| and
right hand side has size

∣∣∣Λ̂2/Λ1

∣∣∣ = |Λ2/Λ1| where we use that a finite abelian
group G is isomorphic to its dual.

Dual basis and dual blocks. Given a basis B of the primal lattice Λ, one can
construct an associated dual basis B∨ = B · (BT ·B)

−1 of the dual lattice
Λ∨. Consider the reversed dual basis ∨B = [b∨n, . . . ,b

∨
1] in which the order-

ing of the basis vectors is reversed. A basis for the dual of L
(
B[`,r]

)
is given by

τ(b∨r), . . . , τ(b
∨
` ) where τ is the map projecting away from b∨r+1, . . . ,b

∨
n, denoted

by (∨B)[n+1−r,n+1−`]. Informally, this shows that projecting in the primal lattice
corresponds to sectioning in the dual lattice. More details on dual bases can be
found in the course of Micciancio [Mic14].

https://orcid.org/0000-0003-2510-4829
https://orcid.org/0000-0002-8014-9221


Does the Dual-Sieve Attack on Learning with Errors even Work? 7

Fourier Transforms. For any set S let CS be the group of sequences (xs)s∈S
having complex coefficients xs, where the group operation is given by pointwise
addition. The Discrete Fourier Transform (DFT) of a sequence (xg)g∈G ⊂ C is
the C-linear map

DFTG : CG → CĜ,

(xg)g∈G 7→
(∑
g∈G

xg · χ(g)
)
χ∈Ĝ

. (3)

Them-dimensional Fast Fourier Transform (FFT) is an algorithm that, upon
input a group G, given as n1, . . . , nm ∈ Z≥2 such that G ∼=

⊕m
j=1(Z/njZ),

and (xg)g∈G, outputs DFTG

(
(xg)g∈G

)
in time O(|G| log |G|). There are various

FFTs known for any finite group G (even when an ni is a large prime) [Rad68,
DV90]. When the group G is not cyclic, the algorithm is often referred to
as a multi-dimensional FFT. When G ∼= (Z/2Z)k, the algorithm is a Walsh–
Hadamard Transform (WHT), which is more efficient in practice. For a finite
group G, the inverse of DFTG is given by

DFT−1G

(
(yχ)χ∈Ĝ

)
=

1

|G| ·
(∑
χ∈Ĝ

yχχ(g)
)
g∈G

.

Identifying an element g ∈ G with the evaluation map evg : χ 7→ χ(g) gives

the canonical isomorphism G ∼= ̂̂
G, so an inverse DFT is basically a DFT, up to

some reordering.

Gaussian Heuristic. The Gaussian Heuristic states that the number of lattice
points in a measurable set S ⊂ Rn is approximately Vol(S) / detΛ. This leads
to the following heuristic on the length of a shortest vector.

Heuristic 1 (Gaussian Heuristic) Given a random lattice Λ ⊂ Rn of volume
1, then λ1(Λ) is approximately

GH(n) := Vol(Bn)−1/n =
Γ (1 + n

2 )
1/n

√
π

≈
√

n

2πe
· (πn)1/n,

where we use Stirling’s formula in the approximation step.

Note that Minkowski’s theorem states λ1(Λ) ≤ 2 ·GH(n).

Heuristic 2 Given a random lattice Λ ⊂ Rn of volume 1, for r > 1 we have

|{ v ∈ Λ | ‖v‖ ≤ r ·GH(n) }| ≈ rn.

In particular, the ith shortest lattice point v has length ‖v‖ ≈ GH(n) n
√
i.
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Bounded Distance Decoding. The following computational problems are consid-
ered hard for specific parameters, on which the security of LWE cryptosystems
is based.

Problem 1 (BDD, Lattice Form). For r > 0, Bounded Distance Decoding (BDDr)
is the task of, given a lattice Λ and a target t ∈ Rn with the promise that there
exists a nearby lattice point v ∈ Λ at distance at most rλ1(Λ) away from t,
finding the point v ∈ Λ.

By considering t modulo the lattice and demanding t− v as a result, we get
the syndrome form.

Problem 2 (BDD, Syndrome Form). For r > 0, (syndrome) Bounded Distance
Decoding (BDDr) is the task of, given a lattice Λ and target t ∈ Rn/Λ in the
torus with the promise that there exists e ∈ t such that ‖e‖ < rλ1(Λ), finding
this error e.

Concretely, to solve a BDD instance, one is given some basis B of the lat-
tice together with the target t being expressed in terms of the basis B with
coefficients in the interval [0, 1).

When BDD is instantiated with r < 1
2 , it is guaranteed that there is only

one lattice point close enough to t. For random lattices, there is still one lattice
point close enough with high probability when you move up to r < 1 by the
following heuristic.

Heuristic Claim 1 Let Λ be a random lattice of volume 1, r ∈ (0, 1). The
probability that a target t ← U(RBn) is at a distance of at most R from some
nonzero lattice point v ∈ Λ is at most O(n

√
n)rn, where R = rGH(n).

This Heuristic can be justified with the Gaussian Heuristic and an upper
bound on spherical domes, cf. [MV10, Lem. 4.1].

Heuristic Justification. Note that only lattice points v ∈ Λ\{0 } are relevant
with ‖v‖ ≤ 2R = 2rGH(n) by the triangle inequality. For such a v ∈ Λ \ {0 },
we are interested in Vol(RBn ∩ (v +RBn)), which is twice the volume of the
spherical dome { t ∈ RBn | 〈t,v〉 ≥ 1

2 ‖v‖
2 }. This spherical dome is contained

in a cylinder with base R
√
1− α2 · Bn−1 and height R(1 − α), which has vol-

ume at most Rn(1− α2)
n/2

Vol
(
Bn−1

)
, where α = ‖v‖ /2R. One can show

that Vol
(
Bn−1

)
≤
√
en
2 Vol(Bn) holds, which implies Vol(RBn ∩ (v +RBn)) ≤

O(
√
n)rn

(
1− α2

)n/2
.

The Gaussian Heuristic predicts approximately `n lattice points in a ball of
radius `GH(n). By using this estimate for ` ∈ (1, 2r), the volume of all the
spherical domes is roughly∫ 2r

1

n`n−1 ·O(
√
n)rn

(
1− `2

4r2

)n/2
d` ≤ O(n

√
n)rn

∫ 2r

1

(
`2 − `4

4r2

)n/2
d`. (4)

The integrand reaches the maximum rn at ` =
√
2r so Equation (4) is at

most O(n
√
n)r2n(2r − 1). For the desired probability, we consider the ratio of

volumes, which is at most O(n
√
n)r2n/Vol(RBn) = O(n

√
n)rn.
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2.3 Dual Distinguishing

The idea of using short dual vectors for distinguishing between BDD samples and
random samples can be traced back at least to [AR04] in the lattice literature,
and can be viewed as a lattice analog to an old decoding technique [Gal62,Jab01,
Ove06]. Given a BDD sample t = v+ e with v ∈ Λ, for any dual vector w ∈ Λ∨
one has,

〈t,w〉 = 〈v,w〉+ 〈e,w〉 ≡ 〈e,w〉 (mod 1). (5)

In particular, if the error e and the dual vector w are of small enough `2
norm, 〈t,w〉 should be close to an integer. Moreover, 〈t,w〉 (mod 1) is thus
well-defined for any t ∈ Rn/Λ. A natural score to consider, as some indication
that the target t is close to the lattice Λ, is therefore given by,

fw(t) :=
χw(t) + χ−w(t)

2
= cos(2π · 〈t,w〉). (6)

If t is indeed close to the lattice, fw(t) should be close to 1, but the converse
does not need to be true. To boost one’s confidence in the fidelity of this score,
one may naturally consider the total score over many dual vectorsW ⊂ Λ∨ given
by,

fW(t) :=
∑
w∈W

fw(t). (7)

This function is referred to as the simple decoder fsimple by Laarhoven and
Walter [LW21], and resembles the Aharonov-Regev [AR04] decoder closely which
is given by fAR

w (t) := ρ1/σ(w)fw(t).
In carefully crafted circumstances, in particular regarding the construction

of the set of short dual vectors W, this approach can give a provable worst-case
distinguisher [AR04] or certificate [Hås88].

More recent works [LW21,GJ21,MAT22] have reused this idea more heuris-
tically, in a context where W simply is the set of all the dual vectors smaller
than a certain radius (typically given by running a sieve algorithm [BDGL16]),
and for a random error e.

The Analysis of [LW21]. First, Laarhoven and Walter analyze in [LW21, Lem. 6]
the distribution of the score fw(t) of BDD targets t with a distance of exactly
r to the primal lattice. In the derivation, they approximate this distribution by
targets sampled from a continuous gaussian with σ = r/

√
n.

Lemma 4 (cf. [LW21, Lemma 6]). Let Λ ⊂ Rn be a full rank lattice and
w ∈ Λ∨ be a dual vector.

(a) If t← U(Rn/Λ), then E [fw(t)] = 0, and V [fw(t)] = 1/2,
(b) If t← N (0, σ2)

n
(mod Λ) with σ ∈ R>0, then

E [fw(t)] = e−2π
2σ2‖w‖2 , and V [fw(t)] =

1

2
−Θ

(
e−4π

2σ2‖w‖2
)
. (8)
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Proof. For the variance, we will use fw(t)
2
= 1

2+
1
2 cos (4π 〈w, t〉) = 1

2+
1
2f2w(t).

(a) Integrating over a fundamental region B · [0, 1]n shows E [fw(t)] = 0 since∫ 1

0
cos(α+2πkx) = 0 for all k ∈ Z and α ∈ R. Then by the above, it readily

follows,

V [fw(t)] =
1

2
+

1

2
E [f2w(t)] =

1

2
.

(b) Because a gaussian is a radial distribution,

E [fw (t)] = E
x←N (0,σ2)

[cos (2πx ‖w‖)] = exp
(
−2π2σ2 ‖w‖2

)
,

and V [fw (t)] = 1
2 + 1

2 E [f2w (t)] − E [fw (t)]
2
= 1

2 + 1
2ε

4 − ε2, where ε =

exp(−2π2σ2 ‖w‖2) ∈ (0, 1).

However, to conclude on the behavior of the total score, one must resort to
the following heuristic.

Heuristic 3 (Independence Heuristic) For any fixed set W ⊂ Λ∨ and any
distribution for t considered in Lemma 4, the random variables (〈w, t〉 mod 1)w∈W
are mutually independent.

We will refer to this heuristic as the Independence Heuristic.
By combining the above heuristic with a central limit approximation — which

is fair, given the exponential size ofW in the context of interest — one can model
the total score fW(t) of each type of sample as a gaussian of center |W| ·E and
variance |W| · V , where E and V are the expectation and variance given by the
above Lemma 4.

One may then deduce the distinguishing advantage of the score function using
the following lemma.

Lemma 5. Let X ← N (EX , VX) and Y ← N (EY , VY ) be independent gaussian
random variables. Then

P[X > Y ] =
1

2

[
1 + erf

(
EX − EY√
2(VX + VY )

)]
(9)

Proof. Consider the variable Z = X − Y , which is also gaussian, specifically
Z ∼ N (EZ , VZ) where EZ = EX − EY and VZ = VX + VY . Conclude noting
that the event X > Y is equivalent to Z > 0.

This lemma leads Laarhoven and Walter to roughly the following claim.

Heuristic Claim 2 (cf. [LW21, Lem. 9]) Let Λ ⊂ Rn be a random lattice of
volume 1, r > 0 and W ⊂ Λ∨ a set consisting of the αn shortest vectors of Λ∨,
where α = min{β | e2 ln(β) = β2r2}. Then, we have

P [fW(tBDD) > fW(tunif)] ≥
1

2
+

1

2
erf

(
1√
2

)
≈ 0.84,

where tunif ← U(Rn/Λ) and tBDD ← U
(
rGH(n)Sn−1

)
are sampled indepen-

dently.
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Heuristic Justification. First, we approximate the uniform distribution of
BDD samples tBDD ← U

(
rGH(n)Sn−1

)
by a gaussian distribution with σ =

rGH(n) /
√
n. According to the Gaussian Heuristic, the lengths of the vectors

in W are concentrated around α · GH(n). By the Independence Heuristic and
Lemma 4, the score function for the BDD sample follows a gaussian distribution
N (EX , VX), where

EX = αn exp

(
−2π2α2r2 ·GH(n)

4

n

)
= αn exp

(
−α

2r2 · n
2e2

)
= αn/2,

by construction of α. The variance is VX ≈ 1
2 · αn.

On the other hand, uniform samples give a score distribution Y following a
gaussian distribution N (EY , VY ) where EY = 0 and VY = αn/2 by case (a) of
Lemma 4.

Hence by Lemma 5, the probability of having X > Y equals

1

2
+

1

2
erf

(
αn/2√
2 · αn

)
≈ 0.84.

The analysis of [GJ21] and [MAT22]. The analysis proposed by Guo–Johansson [GJ21]
is somewhat less explicit. Instead of analyzing the score directly, they consider
the statistical distance between the distribution of 〈t,w〉 mod 1 for t uniform
and gaussian.

Using the same Independence Heuristic, they then conclude on the statisti-
cal distance between the tuples (〈t,w〉 mod 1)w∈W for t uniform and gaussian.
While there exist optimal distinguishers (introduced in [LW21] using a lemma
dating back to Neyman-Pearson [NP33]), it differs from the score function fW ,
but they seem to assume that the scoring function is not that far from optimal.
An argument for such a statement is given by Laarhoven and Walter [LW21,
Corollary 2], but it is not mentioned by Guo and Johansson [GJ21].

The analysis of MATZOV [MAT22] is on the contrary quite explicit on com-
puting the distribution of scores, while taking into account the severe technical
complications introduced by their modulus switching. Namely, they increase the
number of dual vectors with a factor Dround in [MAT22, Section 5] to account
for the effect of rounding the Fourier coefficients after performing a modulus
switch. Another factor Darg is also introduced, but we view it as dubious (see
Appendix A.4).

In any case, we can essentially recover the key claims of [GJ21, MAT22]
directly from the above analysis as well, using the following lemma. Note that
we express the result more generally in terms of BDD in an arbitrary lattice
rather than a specific LWE instance.

Lemma 6. Let X ← N (EX , VX) and Yi ← N (EY , VY ) be independent gaussian
random variables for i ∈ { 1, . . . , T }. Then

P
[
X > max

i∈{ 1,...,T }
(Yi)

]
≥ 1− T

2
erfc

(
EX − EY√
2 · (VX + VY )

)
(10)
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Proof. Follows directly from a union bound on the complementary events with
Lemma 5.

This leads to the following heuristic claim, underlying the work of [GJ21,
MAT22]. Note that we state this key claim here for a projected sublattice with
renormalization of the volume, where the dual vectors are in the dual of this pro-
jected sublattice. Indeed, the general setting of the Dual-Sieve attack [ADPS16,
EJK20,GJ21,MAT22] first applies BKZ on the dual of a lattice of dimension d,
obtaining a reversed dual basis ∨B. Then the set W is obtained by running a
sieve in dimension βsieve on the first dual block, that is the βsieve-dimension dual
sublattice Λ∨ ⊂ ΛLWE

∨ generated by the partial reversed dual basis (∨B)[1,βsieve]
.

This is the dual of the projected sublattice generated by B[d+1−βsieve,d] of the
full primal lattice ΛLWE.

Heuristic Claim 3 (Key claim of [GJ21,MAT22], reconstructed) Let Λ ⊂
Rn be a random lattice of volume 1, W ⊂ Λ∨ the set consisting of the (4/3)

n/2

shortest vectors of Λ∨. For some σ > 0 and T ∈ Z≥1, consider tBDD ← N (0, σ2)
n

and i.i.d. t(i)unif ← U(Rn/Λ) where i ∈ {1, . . . , T}. Set ` =
√

4/3 · GH(n) and
ε = exp(−2π2σ2`2). If lnT ≤ |W| ε2, we have

P
[
∀i ∈ { 1, . . . , T } : fW (tBDD) > fW(t

(i)
unif)

]
≥ 1−O

(
1√
lnT

)
.

Heuristic Justification. Similar to the Heuristic Justification of Heuristic
Claim 2, the score distribution for tBDD is approximatelyX ∼ N

(
ε · |W| , 12 |W|

)
,

as lengths of vectors in W are concentrated around ` =
√
4/3 · GH(n) by

the Gaussian Heuristic. The uniform samples t
(i)
unif each give a score distribu-

tion that is approximately Yi ∼ N (0, 12 |W|).
Thus by Lemma 6, the probability that fW (tBDD) is bigger than every score

of the uniform errors equals

1− T

2
erfc

(
|W| · ε√
|W|

)
≥ 1− T

2
erfc

(√
lnT

)
.

Hence, with Lemma 1 we conclude,

P
[
X > max

i∈{ 1,...,T }
(Yi)

]
≥ 1− 1

2
√
π lnT

(
1 +O

(
1

lnT

))
≥ 1−O

(
1√
lnT

)
.

3 Dual-Sieve-FFT Distinguishing, Generalized

As established by the literature [Hås88, AR04, LW21], scoring target points to
obtain information about their distance to a primal lattice Λ using short dual
vectors is very general, and not limited to LWE lattices.

In this section, we will show that this is also the case of the extra FFT trick
as proposed in recent work of Guo and Johansson [GJ21]. We further show in
Section 3.4 that the version of MATZOV [MAT22] can be understood in two
seperate steps, the second step fitting our formalization of the FFT trick as well.
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3.1 Abstracting the Dual-Sieve-FFT Attack of Guo–Johansson

The general idea is as follows. Given a lattice Λ, one first crafts a sparsification
Λ′ of Λ, i.e. a sublattice Λ′ ⊂ Λ of finite index. This gives rise to a finite abelian
group of cosets G := Λ/Λ′. Now, to solve BDD for a target t ∈ Rn/Λ on the
lattice Λ, one solves BDD for the target t on all the cosets Λ′+g, or equivalently,
solve BDD for all the targets t − g with g + Λ′ ∈ G on the sublattice Λ′. For
the correct choice of coset g + Λ′, the distance to t is the same as in the initial
BDD problem, but the sublattice is sparser, making this BDD problem easier
than the original one. However, we now have |G| instances to consider.

With the help of the DFT, the score function fW can be computed for all
targets t − g in a batch. That is, applying the DFTG in Equation (3) on a
sequence (χw′(g − t))g∈G for some w′ ∈ (Λ′)∨ gives another sequence that at
index χw ∈ Ĝ has a value of,∑

g∈G
χw′(g − t)χw (g) = χw′(−t) ·

∑
g∈G

χw′(g)

χw(g)
, (11)

where w+Λ∨ ∈ (Λ′)∨/Λ∨ as Ĝ is isomorphic to (Λ′)∨/Λ∨ by Lemmata 2 and 3.
Note that χw′(g) is well defined for g ∈ Λ/Λ′ as χw′ is Λ′-periodic. By the
orthogonality of characters, note that∑

g∈G

χw′(g)

χw(g)
=

{
|G| , if w′ ∈ w + Λ∨,
0, otherwise.

Hence, Equation (11) is zero everywhere except at index χw′ , where it is equal
to |G| · χw′(−t).

By C-linearity of the DFT, one can obtain an expression for the DFT of
fW(g − t) for any finite set of dual vectors W ⊂ (Λ′)∨. More specifically, if for
all w ∈ W we have −w ∈ W, i.e. it is symmetric, we have

DFTG

((
fW(t− g)

)
g∈G

)
= |G| ·

( ∑
w′∈W∩(w+Λ∨)

fw′(t)
)
w+Λ∨∈Ĝ

.

Neglecting this scalar |G|, we therefore construct a batch of score functions, by
performing an inverse FFT on the sequence

∑
w′∈w+Λ∨ fw′(−t) for all (dual)

cosets w+Λ∨ ∈ (Λ′)∨/Λ∨. Then, the entry with g+Λ′ ∈ G that has the highest
score is most likely the coset g + Λ′ containing the lattice point in Λ that is
closest to t.

3.2 Implementation of the General Dual-Sieve-FFT Attack

In this section, we will give a concrete implementation of an algorithm that
performs the general Dual-Sieve-FFT attack on a lattice Λ.

Concretely, the lattice Λ is specified by a basis B = [b1, . . . ,bn], and one
can take a simple sparsification such as Λ′ = L ([d1b1, . . . , dnbn]) for suitable
d1, . . . , dn ∈ N.
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In fact, any sparsification is, after a basis change, of this shape. When the
sublattice Λ′ = B′ ·Zn ⊂ B ·Zn = Λ is described by a matrix B′, we can express
the basis B′ in terms of B, i.e. find the matrix A ∈ Zn×n such that B′ = B ·A.

Then, putA in the Smith Normal Form, i.e. find matrices S,T ∈ GLn(Z) and
a diagonal matrix D such that A = SDT and thus, we have B′T−1 = (BS) ·D.
As A was full rank, D is full rank (i.e. invertible over Q), so here Λ′ is described
by the basis [d1b′1, . . . , dnb′n], where diag(d1, . . . , dn) = D andBS = [b′1, . . . ,b

′
n]

is a basis for Λ.
Hence, without loss of generality, we have a sparsification Λ′ ⊂ Λ, where B

is a basis for Λ and B′ = [d1b1, . . . , dnbn] is a basis for Λ′. Then Algorithm 1
will find the coset of Λ′ containing the closest lattice vector to some target t.

Algorithm 1 DualFFT(B,B′,W, t)

Require:
1: A basis B of a full rank lattice Λ ⊂ Rn,
2: A basis B′ = B · diag(d1, . . . , dn) of Λ′ ⊂ Λ,
3: A set of short dual vectors W ⊂ (Λ′)

∨,
4: A target t ∈ Rn/Λ′

Ensure:
5: A lattice coset g ∈ Λ/Λ′ closest to t
6:
7: Initialize a table T with zeros of dimension d1 × d2 × · · · × dn
8: for w ∈ W do
9: Write w ≡ j1

d1
b∨1 + · · ·+ jn

dn
b∨n (mod Λ∨), where 0 ≤ ji < di

10: T[j1, j2, . . . , jn]← T[j1, j2, . . . , jn] + cos(2π 〈w, t〉)
11: end for
12: S = DFT−1

Z/d1Z×···×Z/dnZ (T)

13: (j1, j2, · · · , jn)← argmax
k1,k2,··· ,kn

0≤ki<di

{ S[k1, k2, · · · , kn] }

14: return j1b1 + · · ·+ jnbn

Structure of the Quotient Group. From a geometric perspective, concerning the
length of the vectors in W, the structure of the group G = Λ/Λ′ does not
appear to matter at all, only its size does. On the other hand, while asymp-
totically all group structures allow to compute DFTG in time O(|G| log |G|),
the structure of the group matters quite a lot in practice and the case G =
(Z/2Z)k, i.e. the Walsh–Hadamard Transform, should definitely be the best
choice. That is, one should construct the sublattice Λ′ as generated by B′ =
[2b1, . . . , 2bk,bk+1, . . . ,bn], which has index 2k in Λ.

Randomized Sparsification. Note that the analysis of the length of the vectors in
W requires applying Gaussian Heuristic to the densification of the dual, induced
by the sparsification of the primal.

https://orcid.org/0000-0003-2510-4829
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This might require care. Indeed, if the basis is well reduced before we apply
the dual densification diag

(
1
d1
, . . . , 1

dn

)
, this might create a dual lattice which

is not random-looking; in particular it might contain a few vectors shorter than
predicted by Gaussian Heuristic, with an unclear impact on the rest of W.

We do not expect this to be an issue if the basis B is adequately randomized
before constructing the sparsification.

3.3 Advantages of the Generalization

Not only is it theoretically more satisfying to apply the FFT trick to the gen-
eral decoding problem rather than to the specific LWE problem, it also makes
recursion more straightforward.

Shorter Dual Vectors. The algorithm of Guo and Johansson [GJ21] seems to
perfectly fit this formalization, where the basis B is the standard basis associated
with the q-ary representation of the lattice, and B′ = B · diag(γ, . . . , γ, 1, . . . 1)
(with k many γ’s). The set of short dual vectors is obtained by first running
BKZ-reduction with block size βBKZ on the dual of B′, and then sieving in the
sublattice generated by the first βsieve vectors of this reduced dual basis. The
impact of the sparsification B′ = B · diag(γ, . . . , γ, 1, . . . 1) on the length of the
vectors in W is to shorten them by a factor γk/n. That is, the sparsification has
been diluted over n many dimension.

Instead, consider first applying dual-BKZ-reduction with block size βBKZ on
B, and then takingB′ = B·diag(1, . . . 1, γ, . . . , γ). In this way, the densification of
the reversed dual basis is given by ∨(B′) = ∨B · diag

(
1
γ , . . . ,

1
γ , 1, . . . 1

)
remains

concentrated on the k first dual vectors!1 Therefore, its effect is now to shorten
the length of the vectors in W by a factor γk/βsieve (assuming k < βsieve).

We leave the concrete exploitation of this improvement to future work, given
that the next section of this work will invalidate the current success probability
analysis of the dual attack as a whole. Before the improved concrete cryptanalysis
claims are made, the attack should first be convincingly fixed!

Open Question 1 Produce estimates of the gain of the above improvement of
the Dual-Sieve-FFT attack on relevant concrete lattice-based schemes, once the
general analysis of Dual-Sieve attacks has been fixed (cf. Open Question 2).

3.4 What about the Version of MATZOV?

The algorithm of MATZOV [MAT22] differs a bit from that of Guo–Johansson [GJ21]
by resorting to a modulus switching technique, and it is claimed that this tech-
nique allows to decrease dimension at the cost of some extra error. We note
however, that it does not appear to sparsify the primal by a factor |G|. Indeed,
1 The warning on randomized sparsification from Section 3.2 still applies here; the
basis randomization should be applied to the block B[n−βsieve+1,n].
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the volume of the dual lattice in [MAT22] is a power of the LWE modulus q,
unrelated to the modulus p underlying the FFT group structure G ∼= (Z/pZ)k.

In this section, we explain that the algorithm of MATZOV [MAT22] is best
understood as split into two steps: the first step is a purely geometric transforma-
tion of the BDD instance, trading dimension for a densification of the lattice and
distortion of the error, and the second step is equivalent to the Dual-Sieve-FFT
described above. In the parametrization of MATZOV [MAT22], the densifica-
tion and sparsification cancel out exactly. This view may allow to decorrelate
those two steps, offering a larger parametrization space; in particular one may
in principle choose G ∼= (Z/2Z)k to exploit the advantages of the WHT without
having to give up on the dimension-reduction technique of MATZOV.

Consider an n-dimensional lattice Λ with basis B, and some dimension r < n.
Now consider the orthogonal projection π onto the span of B[1,r], as well as the
lattice Λ0 generated by B[1,r]. In general, π(Λ) is not a lattice; it is still a
group in a subspace of dimension r, but it is not always a discrete. However, it
can be a lattice in special cases. If it is the case that p · π(bi) ∈ Λ0 for every
i ∈ {r+ 1, . . . , n}, then π(Λ) is a lattice, and more precisely it is a densification
of Λ0 of index |π(Λ)/Λ0| ≤ pn−r.

Hence, in that case, solving the initial BDD instance t in Λ can be related
to solving the BDD instance π(t) in π(Λ). That is, we have restricted the BDD
problem in dimension n to BDD in dimension r. Now we are not working in the
sublattice Λ0, but in a densification of it.

The modulus switching of MATZOV should be understood as applying a
carefully crafted linear transformation T so that p · π(T · bi) ∈ Λ0 does holds
for every i ∈ {r + 1, . . . , n}, to construct a distorted lattice ΛT generated by
[b1, . . .br,Tbr+1, . . . ,Tbn]. Then, one may attempt to solve the BDD problem
on π(t) in the densified lattice π(ΛT ) of Λ0, hoping that T does not increase
the error too much. But applying the FFT trick with the group G = π(ΛT )/Λ0

precisely cancels out this densification.
We do not claim that T would be necessarily easy to construct in the general

BDD setting. The purpose of this subsection is more about making geometric
sense of the variant of MATZOV, than about generalizing it.

Remark. We remain rather circumspect regarding the perceived superiority of
the variant of MATZOV [MAT22] over that of Guo–Johansson [GJ21]. We dis-
cuss this point in Appendix A.6.

4 Contradictions from the Heuristic Analysis

In the following, we will show two regimes where the analyses of [LW21,GJ21,
MAT22] give rise to absurd conclusions.

The first one is concerned with distinguishing a target from a single uni-
form sample, when its expected distance to the lattice exceeds the Gaussian
Heuristic, a task that was recently proven statistically impossible in a random
lattice [DADRT22].
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The second one is concerned with the case of finding a planted solution
among many candidates. For certain parameters, the analysis of [GJ21,MAT22]
predicts a successful guess of the desired target, despite the existence of many
other candidates that are even closer to the lattice than the planted solution.
We would like to stress that this contradiction is independent of whether or not
one uses the FFT trick, but merely arises from the large number of candidates
that is used.

Recall that in this section, as in [LW21], we implicitly renormalize the lattice
Λ to have volume 1.

0.5 1 1.5 2 2.5

−2

2

4

6

8

(e1/2, e2/2)

y = e2 ln(x)

y = x2r2, with r <
√
e/2

y = x2r2 with r =
√
e/2

y = x2r2 with r >
√
e/2

Fig. 1. The equation e2 ln(x) = x2r2 for various r.

4.1 Distinguishing the Indistinguishable

Set Up. Recall that the main result of Laarhoven and Walter [LW21, Lem. 9],
reformulated as Heuristic Claim 2, provides an algorithm to distinguish a BDD
instance at distance r ·GH(n) from a uniform target modulo the lattice. After a
precomputation depending solely on the lattice Λ, this algorithm has exponential
complexity αn where e2 ln(α) = α2r2, and the heuristic analysis claims that it
is succesful with probability ≈ 0.84, that is, with constant advantage.

Lemma 7. The equation e2 ln(x) = x2r2 admits a real solution in x if and only
if r2 ≤ e/2.

Proof. The statement and its proof is illustrated by Figure 1. First, note that
x 7→ e2 ln(x) is concave, while x 7→ x2r2 is convex for any r ∈ R. We discuss
three cases.
Case 1: r2 = e/2. The parabola y = r2x2 intersects tangentially the curve
y = e2 lnx at (x, y) = (

√
e, 12e

2), with slope dy
dx

∣∣∣
x=
√
e
= e3/2. By convexity, we

have e2 ln(x) < x2r2 for any x 6= √e.
Case 2: r2 > e/2. Note that r2x2 is strictly increasing in r2 for any x. Reusing
Case 1, we see that e2 ln(x) < x2r2 for all x: there are no solution in that case.
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Case 3: r2 < e/2. We have e2 ln(x) > x2r2 at x =
√
e. We also have e2 ln(x) <

x2r2 when x = 1. The Intermediate Value Theorem then tells there is a solution
with x ∈ (1,

√
e).

Note that
√
e/2 ≈ 1.1658 > 1. The fact that the algorithm is supposed to

work beyond r > 1 raises suspicion: the average number of points at distance
at most r ·GH(n) for a uniform target is exactly rn by the Gaussian Heuristic.
More formally, it is a theorem2 that for any measurable set V ⊂ Rn, it holds
that

E
t←U(Rn/Λ)

[(V + t) ∩ Λ] = Vol(V )

detΛ
.

Still, one could imagine a scenario where with small probability a target has
few close vectors, but most likely it will not, making distinguishing statistically
possible.

The Contradiction. It has been shown recently by Debris et al. [DADRT22] that
the above scenario does not occur with random lattices. More specifically, for a
formally defined notion of random lattices, it is proven that for errors from a
uniform distribution on the ball of radius rGH(n) (r > 1), the statistical distance
between the error modulo the lattice and U(Rn/Λ) is exponentially small as a
function of the dimension [DADRT22, Prop. 4.3].

That is, for all r > 1, no algorithm, whatever its complexity, can even succeed
with probability greater than 1

2+O(1)·r−n/2. Yet, [LW21, Lem. 9] (reformulated
as Heuristic Claim 2) claims a constant advantage. E

Discussion. One could counter-argue that the claim [LW21, Lem. 9] is given
for uniform distributions over a sphere, a case not contradicted by Debris et
al. [DADRT22]. However, the actual analysis in [LW21] is done for a Gaussian
distribution, a case which is also covered by Debris et al. [DADRT22, Theorem
4.6].

The Suspect Heuristic. We note that this counter-argument applies only to the
(heuristic) [LW21, Lem. 9], that is given a single sample, and not to [LW21,
Lem. 8]. Indeed, in the context of the (heuristic) [LW21, Lem. 8] where expo-
nentially many samples, either all uniform or all BDD, are given, the exponen-
tially small statistical distance can be compensated for with a large number of
samples, as discussed between both Lemmata.

We note in particular that [LW21, Lem. 8] does not require the Indepen-
dence Heuristic, as it uses only one dual vector. In fact, after close inspection
of the reasoning behind [LW21, Lem. 8], we could not identify any step that
should be too hard to make formally provable, up to minor conditions and small
losses in the concrete efficiency of the distinguisher. Indeed, with enough effort,
it appears that all the other heuristics and approximations could be dealt with
formally.
2 The difference with the Gaussian Heuristic being the presence of a uniform random
shift t← U(Rn/Λ).
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This sets the Independence Heuristic as the prime suspect leading to the
erroneous [LW21, Lem. 9].

4.2 Candidates Closer than the Solution (Asymptotic)

Set Up. Recall that the key claim of [GJ21] and [MAT22], reconstructed as
Heuristic Claim 3 considers the case where the set of dual vectors comes from a
lattice sieve [NV08,MV10,BDGL16], that is, it consists of N = (4/3)

n/2 vectors
of length ` =

√
4/3 · GH(n). Given one BDD instance with the error sampled

from a gaussian with parameter σ and T uniform samples, the claim is made
that the BDD sample can be detected with probability close to 1, whenever
lnT ≤ Nε2 where ε = exp(−2π2σ2`2).

Let us consider the constraint the other way around, that is, how large can
one take σ for a given number of targets T? The condition translates to 1

ε ≤√
N/ lnT , and this constrains σ to satisfy

σ ≤
√

ln(1/ε)

2π2`2
=

√
lnN − ln lnT

4π2`2
=

1

2π
√

4
3 ·GH(n)

·
√
n

2
ln

4

3
− ln lnT .

With GH(n) ≈
√

n
2πe , one then arrives at σ ≤

√
C − C′ ln lnT

n for some constants

C = 3e ln(4/3)
16π ≈ 0.047 and C ′ = 3e

8π ≈ 0.32. This means that Heuristic Claim 3
supposedly still finds a BDD sample at expected distance

√
C · n ≈ 0.89GH(n),

even among a number of random candidates as large as doubly-exponential T =
exp(exp(n.99)).

The Contradiction (Asymptotic). We will show that the above claim leads to
a contradiction, already for a single-exponential T = 2.05n number of random
candidates.

Lemma 8. Let Λ be a lattice of volume 1, and r > 0 such that r < λ1(Λ)
2GH(n) .

Then, for a target t uniform in Rn/Λ, it holds with probability rn that t is at
distance at most rGH(n) from the lattice.

Proof. Note that the volume of the ball of radius r · GH(n) is exactly rn by
definition of GH(n). Furthermore, because r ·GH(n) < λ1(Λ)/2, all translations
of this ball by points in Λ are disjoint. Said otherwise, this ball does not intersect
itself modulo the lattice. More formally, its projection onto the torus Rn/Λ is
injective. Hence, the ball modulo the lattice also has volume rn in Rn/Λ. The
probability of t falling into that ball is therefore rn/Vol(Rn/Λ) = rn/ detΛ = rn.

Let us use this lemma in the case of a random lattice of volume 1, or more
specifically, one where we expect λ1(Λ) ≈ GH(n). Using Lemma 8 with r = 0.49,
the probability that a uniform target lies in the ball of radius rGH(n) equals
rn. When taking T = 2.05n uniform samples, on expectation we have T · rn >
1.004n � 1 of the uniform samples to fall in this ball and therefore with high
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probability there will be one such target at most rGH(n) away from a lattice
point. More concretely, the probability that none of these targets lies in this ball
is (1− rn)T → e−1.004

n

(as n → ∞), so with overwhelming probability there is
a uniform target in the ball of radius rGH(n).

On the other hand, recall that the actual BDD target had an expected length
of σ
√
n ≈ 0.89GH(n) > rGH(n). We note that 0.89 > r, so we expect one

uniformly sampled candidate lying closer to the lattice than the solution we are
looking for. However, the score function fW is precisely meant to associate larger
score to closer targets, so we expect that this uniform sample will get a higher
score than the BDD sample and thus, the algorithm gives with overwheling
probability a wrong result. E

Discussion. One might counter-argue that fW only probabilistically classifies
vectors by their distance to the lattice and might somehow still give the partic-
ularly close uniform sample a lower score than the BDD sample. However, if we
consider super-exponential number of uniform samples, for example T = n2n,
with the same argument, for some constant probability, there exists a random
target t lying at distance 1

n2GH(n) = O(n−3/2) from the lattice. In this case
we have 〈t,w〉 ≤ O(1/n) for any w ∈ W output by a sieve, and approximating
the cosine we know the score of t will be fW(t) ≥ N(1 − O(1/n2)), which is
essentially maximal.

The Suspect Heuristic. The discussion above points to the same suspect as Sec-
tion 4.1, namely, the Independence Heuristic. Indeed, under independence the
probability of one uniform target reaching a constant fraction of the maximal
score N should decrease as fast as exp(−Θ(N)), but we have shown that this
probability is in fact at least exp(−Θ(n log n)). Independence can not hold for
such large choices of N = ω(n log n), and this should be visible in the tail of the
score distribution of uniform targets.

4.3 Candidates Closer than the Solution (Concrete)

Set Up. In the contradiction above, we have chosen T as large as 2.05n to be able
to invoke Lemma 8 to have a uniform sample at distance rGH(n) < 1

2λ1(Λ),
quantifying the probability that a random target in Rn/Λ falls close to the lattice.
This leads to an over-contradiction: we exhibited the existence of a random
target at distance 0.49GH(n) from the lattice, much closer than the planted
solution, at distance 0.89GH(n). However, even when there is a uniform sample
at distance e.g. 0.88GH(n) from the lattice, this sample can get a higher score
than the BDD sample resulting in an incorrect guess of which one the BDD
sample was.

To extend Lemma 8 up to radii r < 1, we will resort to a heuristic instead.
In this regime, translations of the ball by points in Λ may start to intersect.
In practice, however, the volume of this intersection remains rather small and
should not affect the volume so much.
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Fig. 2. Concrete Contradictory Regime: Maximum number of targets T before one is
expected to be closer to a random lattice of dimension d than the planted solution.
Obtained with script volumetric_contr.py.

Heuristic Claim 4 Let Λ be a random lattice of volume 1, and r ∈ (0, 1).
For a target t sampled uniformly in the torus Rn/Λ, we have a probability of
rn ·

(
1− nO(1)rn

)
that t is at distance at most rGH(n) from the lattice.

Heuristic Justification. Contrary to the proof of Lemma 8, we now have to
subtract from rn the probability that a target t has at least two lattice points
at distance less than rGH(n) away, which by Heuristic Claim 1 happens with
probability O(n

√
n)r2n.

The Contradiction. The idea now is that we end up at a contradiction whenever
we instantiate the claim from above with the smallest possible r such that it is
likely there is such a point among the T uniform samples.

For a given number of random samples T , we will pick σ for the BDD sample
as before, i.e. such that lnT = Nε2 where ε = exp(−2π2σ2`2). By the above
Heuristic Claim 4, among those T targets, with constant probability there exists
a target at distance at most r ·GH(n) from the lattice, where r = 1/ n

√
T . When

for a given T , the length rGH(n) is smaller than the expected length of the
BDD sample, i.e.

√
n · σ, this contradicts Heuristic Claim 3 and we say it is

in the contradictory regime. This concrete contradictory regime is depicted in
Figure 2. E

Contradictory Regime, in the Context of Concrete Attacks Against LWE. Above,
we have determined the contradictory regime when obtaining the set W by a
sieve over the full lattice, and assuming its volume was 1. It is not hard to see
that scaling the lattice up or down is not going to affect the conclusion: the
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gaussian heuristic of the primal, σ and r will scale with the lattice, while the
length ` of the dual vectors will scale inversely; this leaves ε and T unaffected.

In the context of the cryptanalytic literature [EJK20, GJ21, MAT22], the
set W does not come from the full dual lattice ΛLWE

∨ ⊂ Rn. Instead, the full
dual basis is first BKZ-reduced with blocksize βBKZ, and then a sieve is run
on the lattice Λ∨ ⊂ ΛLWE

∨ generated by the βsieve first basis vectors of that
BKZ-reduced basis. Effectively, this means that the dual distinguishing is not
performed with respect to the whole LWE lattice ΛLWE, but with respect to the
projected sublattice Λ of it. Indeed, let W ⊂ Rn be the βsieve-dimensional real
vector space spanned by W, and let πW denote the orthogonal projection onto
W . Then, for any w ∈ W, and any target t ∈ Rn/ΛLWE, it holds that

〈w, t〉 = 〈w, πW (t)〉 . (12)

Therefore, fW(t) = fW(πW (t)) for any target t ∈ Rn/ΛLWE. Note that πW (t)
now lies in the βsieve-dimensional torus W/πW (ΛLWE). Hence we are effectively
running the dual-distinguishing here over a projected sublattice of dimension
βsieve.

In this scenario, the contradictory regime is solely determined by βsieve and T ,
and not by other quantities such as the LWE parameters, βBKZ. Indeed the LWE
parameters and βBKZ are going to influence the volume of the lattice on which
we run the final sieve to obtain W, but if the parameters are tuned optimally,
we still have lnT ≈ Nε2 where ε = exp(−2π2σ2`2).

This might not perfectly be representative of the exact analysis of MAT-
ZOV [MAT22] in that we do not make a special analysis of the modulus switching
effect on the score distribution. Instead, this treats modulus switching as adding
an implicit error, increasing σ. This remains a strong signal on the credibility of
the heuristic analysis in that regime.

Another point raising discussion is the fact that our contradiction is estab-
lished in the case where the uniform targets t are independent. This is not
formally the case when those targets comes from a partial enumeration, though
such a heuristic has been used in the past, for example underlying the anal-
ysis of the hybrid attack [HG07]. More critically, we see no mention of such
dependence and how they would affect the algorithm in the existing analy-
sis [EJK20,GJ21,MAT22]. While we do not claim that it is impossible, we view
the notion that such dependences could fix the algorithm as quite doubtful, and
requiring specific substantiation with analysis and experiments.

In other word, while our contradiction does not formally disprove the recent
claims on the Dual-Sieve attack [EJK20,GJ21,MAT22], but it does invalidate
the reasoning leading to these claims. And in the absence of an obvious reason
why this or that detail would solve the issues raised here, it seems reasonable to
presume that these claims are indeed incorrect.
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The Parameters of Guo–Johansson and MATZOV. We now turn to the in-
stantiations from [GJ21] and [MAT22], focusing on the Kyber512 [ABD+19]
parameter set, in the “asymptotic model” for dimensions for free.3

In [GJ21, Table 5], we find a sieving dimension βsieve = 396 (where all the
dual vectors come from), a guessing dimension t1 = 20, and an FFT dimension
t = 78. The guessing part considers all 7 possible values {−3, . . . , 3} of each
coordinate, while the FFT is done with γ = 2, giving rise to T = 720 ·278 ≈ 2134.1

targets.
In [MAT22, Table 3], we find a sieving dimension βsieve = 380 (where all

the dual vectors come from), a guessing dimension kenum = 19, and an FFT
dimension kfft = 34. The guessing part enumerates over {−3, . . . , 3}enum in order
of decreasing probability from the used binomial distribution, while the FFT is
done with p = 5, giving rise to, according to [MAT22], T = 219·H(χs) ·534 ≈ 2123.3

many targets. Using an improved cost metric, they also give [MAT22, Table 5]
another set of parameter where β2 = 383 and T = 217·H(χs) · 533 ≈ 2116.3. 4

For both instantiations [GJ21,MAT22] the dual attack is used rather deep
in its contradictory regime, as depicted in Figure 2. E

Remark. At this point, we clarify that it would be a mistake to consider the anal-
ysis still valid whenever it is not in the contradictory regime. The existence of the
contradictory regime shows a fundamental flaw in the Independence Heuristic,
that may very well have an impact beyond the contradictory regime. If it does
not, this should be thoroughly substantiated with analysis and experiments.

5 Experiments

In this section, we provide further substantiation of the concrete contradiction
(Sec. 4.2) with experimental evidence. We hope that the experiments will provide
insight on what exactly goes wrong, and will show how the analysis can be fixed.
We focus our analysis on the case where W is the output of a full sieve, namely
it contains all the (4/3)n/2 vectors of length less than

√
4/3 ·GH(n).

We look at three distributions: the score of uniform targets, the score of
BDD targets with a gaussian error, and finally, the score of BDD targets with
a gaussian error and modulus switching. There are two plausible diagnoses for
how the contradictory regime appears: either the BDD scores are smaller than
predicted, or the uniform scores are higher than predicted.

Because the contradictory regime only kicks in for rather large values of T
(say 240 even in small dimension) these unpredicted high scores might be very
rare and we are interested in the tail of that distribution. Naïvely, it would
take a long time to run such large scale experiments, but the same FFT trick
from [GJ21] (cf. Section 3) makes it feasible to run experiments on this scale!
3 This is the optimistic estimate in [Duc18]. The other “G6K model” used in [GJ21,
MAT22] is debated in Appendix A.2.

4 We are not quite sure how this quantity was derived, and it seems incorrect. See
Appendix A.5.
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Legend: distribution of the scores on the x-axis and the logarithm (base 2) of the
survival function (SF) on the y-axis. Dashed blue line: prediction from the heuristic

analysis. Red line: experimental distribution. 245 samples per curve.

Fig. 3. The distribution of scores according to the prediction and determined ex-
perimentally. The experimental data is obtained with unif_scores.py and listed in
data/unif_scores_nX.csv of the auxiliary files.
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5.1 Implementation Details

We used the G6K software [ADH+19] for running the experiments, using Python
on a high-level but with a binding to some C code for computing the WHT. For
the uniform targets we wrote the script unif_scores.py, which computes scores
for many points sampled uniformly from (Z/qZ)n, where W is the output of a
full sieve on the dual of B · diag(2, . . . , 2, 1, . . . , 1) with the number of 2s equal
to the FFT dimension. This setup allowed us to get roughly 225 samples per
second per CPU core. The scores were stored in buckets of width 1 while the
exceptionally high scores were kept in a list. Here, we sieve using the dual mode
built into G6K which only works with the dual basis implicitly5.

In addition, the BDD scores are obtained with the script bdd_scores.py,
which computed the score function for a BDD sample that samples from a
gaussian of parameter σ = ghf GH(n) /

√
nq where ghf ∈ (0, 1) and √q is the

normalization factor for the LWE lattice.
Lastly, the modulus switching scores are obtained with the script mod_switch.py,

which performs the dual attack of [MAT22, Alg. 2]. In particular, it samples one
random q-ary lattice, and then computes the score for targets that are sampled
as in Kyber [ABD+19].

5.2 Distribution of Scores of Uniform Targets

We measured the score distribution for uniform targets over lattices of various
dimension, and plotted our result in Figure 3. On each of these curves, we see
a clear deviation from prediction for rare events: large scores are more likely to
occur than predicted. After following a waterfall shape, i.e. a quadratic decay in
logarithmic scale, the score probability seems to reach a floor, where it decays
much slower than a normal distribution predicts. This is perfectly in accordance
with the contradiction discussed in Sections 4.2 and 4.3: we start encountering
vectors that are quite close to the lattice, which should have a rather high score.

In this light, it seems insightful to compare the number of samples needed
to reach the floor in practice, to the number of samples where the contradictory
regime starts according to Section 4.3. For this, we first need to define precisely
when the distribution enters the floor region: we consider the floor to start when
the experimental SF of a score exceeds the predicted SF by an arbitrary factor
of 2. Graphically, this corresponds in Figure 3 to a vertical gap of 1 unit between
both curves. This comparison is depicted in Figure 4.

Conclusion. We notice in Figure 4 that in small dimensions, the floor begins quite
earlier than the contradictory regime, vindicating the notion that the analysis
might fail even in an earlier regime than our predicted contradiction. In larger
dimension both curves appear to converge, but at this point, one should not
extrapolate this behavior to higher dimensions without providing any theoret-
ical justification. Furthermore, as we will see in the next section 5.3, this floor
behaviour is not the only thing the analyses of [LW21,MAT22] mispredict.
5 cf. https://github.com/fplll/fplll/wiki/FPLLL-Days-5-Summary.
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Fig. 4. Comparison of the Floor of the score of uniform samples with the Frontier of
the contradictory regime of Section 4.3.

5.3 Distribution of Scores of BDD Targets

We measured the score distribution for BDD targets sampled from a gaussian
of parameter σ = 0.7 · GH(n) /

√
n, over lattices of various dimensions n, and

plotted our result in Figure 3. The predicted score distribution is based on the In-
dependence Heuristic, but also takes into account the exact lengths of each dual
vector in Equation (8), instead of approximating all the lengths to be equal to√
4/3 ·GH(n), to make the prediction more accurate.
The first thing one notices is that the distribution is significantly more spread

out than predicted. The variance is significantly higher. In fact, the ratio between
the actual and predicted variance appears to grow exponentially with the dimen-
sion, as visible on Table 1.

One might also want to consider the average. However, since the average is
linear, its prediction does not require the Independence Heuristic. And indeed,
the prediction is close to the measured average.

A more interesting statistic is the median. According to the standard anal-
ysis [LW21,MAT22] reconstructed in Section 2.3, the median is predicted to be
equal to the average. In practice, however, the median is noticeably lower. This
partially implies that the distribution is quite asymmetric around its average,
contrary to the analysis’ prediction.

Conclusion. All in all, it is fair to say that the standard analysis [LW21,MAT22],
reconstructed in Section 2.3 of the dual attack is completely off when it comes to
predicting the score of BDD targets. The distribution is definitely not gaussian,
nor even symmetric around its average, and its variance is hugely underesti-
mated.
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Fig. 5. The distribution of scores according to the prediction and the distribution
determined experimentally. The experimental data is obtained with bdd_scores.py
and listed in data/bdd_scores_nX.csv of the auxiliary files.
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Dimension n 40 50 60 70 80 90

predicted std. dev. 11.77 24.33 50.10 103.0 211.5 434.2
measured std. dev. 20.07 53.89 148.0 412.9 1159 3313
ratio meas./pred. 1.705 2.215 2.954 4.009 5.480 7.630

predicted average 30.97 83.02 222.50 595.11 1598.6 4295.1
measured average 31.10 83.94 223.75 600.91 1611.3 4341.4
ratio meas./pred. 1.00 1.01 1.01 1.01 1.01 1.01

measured average 31.10 83.94 223.75 600.91 1611.3 4341.4
measured median 29.43 76.59 198.21 515.87 1345.2 3521.3
ratio med./avg. 0.95 0.92 0.89 0.87 0.84 0.82

Table 1. Variance of the BDD score distribution

5.4 Distribution of Scores, with Modulus Switching

Lastly, we ran experiments on the score distribution when using modulus switch-
ing in [MAT22, Alg. 2]. We compare these experiments to the given bounds: a
lower bound for the average [MAT22, Lem. 5.4 and 5.5] and an upper bound
on the variance [MAT22, Lem. 5.7]. We also test asymmetry by comparing the
average and the median.

p 3 4 5 6 7

std. dev. upper bound 4317 4317 4317 4317 4317

measured 2.53 · 105 7.42 · 105 1.19 · 106 1.42 · 106 1.47 · 106

ratio meas./u.b. 58.60 171.9 275.7 328.9 340.5

average lower bound 8.08 · 104 4.26 · 105 1.61 · 106 3.15 · 106 4.66 · 106

measured average 9.46 · 104 6.81 · 105 1.89 · 106 3.36 · 106 4.79 · 106

ratio meas./l.b. 1.17 1.60 1.17 1.07 1.03

measured average 9.46 · 104 6.81 · 105 1.89 · 106 3.36 · 106 4.79 · 106

measured median 6.84 · 103 4.32 · 105 1.57 · 106 3.06 · 106 4.54 · 106

ratio med./avg. 0.0723 0.63 0.83 0.91 0.95

Table 2. Predicted vs. measured average, standard deviation and median for scores
using modulus switching. Used parameters: kenum = 0, kfft = 20, klat = 45, q = 3329,
η = 3 and 100 samples. A sieve ran in dimension 110 giving 13,393,776 dual vectors.

As in the case of BDD target without modulus switching (Table 1), we note
that the standard deviation is significantly underestimated: the given upper
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bound is significantly violated. Additionally, the upper bound is constant as
a function of p, but we see that the standard deviation increases with p for the
values listed in Table 2.

Regarding asymmetry, we see the experimental median is a bit lower than
the average for p ≥ 4, displaying the similar asymmetry than without modulus
switching. The case p = 3 stands out with an extreme asymmetry: here the
median is more than ten times smaller than the average. While the case p = 3
might not be of interest in practice, it appears as a good test case for a robust fix
of the prediction. One may further wonder whether this phenomenon for p = 3
might extend to larger p when changing other parameters.

Conclusion. The prediction for the distribution of scores of BDD targets with
modulus switching seems to naturally inherit the issues of the same prediction
without modulus switching (i.e. unpredicted asymmetry, underestimated vari-
ance), but seems to also raise new ones: an unpredicted growth of variance as p
increases, and a very extreme case of asymmetry for certain choices of p.

6 Afterthoughts

As shown in the experiments, the heuristic analysis underlying the dual attack
does not match practice. In order to get a precise cost on the dual attack, the
analysis has to be fixed, in a way that correctly predicts both distribution of
scores, for uniform and for BDD targets.

In this section, we propose a possible explanation of what is happening, while
mentioning a similar phenomenon in coding theory. Ultimately, there are some
fixes that need to be made to the dual attack and we mention some pitfalls to
look out for when fixing the attack.

6.1 A Similar Result from Coding Theory

The waterfall-floor phenomenon visible in Figure 4 is something coding theory
has encountered before in a rather similar context, namely the error failure prob-
ability when decoding Low-Density Parity-Check (LDPC) codes [Ric06,VCN14,
ABH+22]. We recall that the principle of LDPC decoding is to exploit the low-
weight from the parity check matrix, or, said otherwise, the shortness of some
vectors of the dual code. The analogy is striking.

6.2 The Origin of Correlation

Formally, the quantities 〈w, e〉 mod 1 for w ∈ W can only be independent if the
setW is linearly independent. Yet, it appears in Figure 6(a) that the “length” of
the linear relation matters when it comes to the impact of such dependencies on
the total score fW . Indeed, we see that a long relation w3 = 5w1 + 7w2 is not
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Fig. 6. Distribution of the total score fW(t) where|W| = 3, for a uniform t mod Λ
when the w’s are linearly independent versus related. Measured over 225 samples.

that far off from the linearly independent case. On the contrary, a short relation
w3 = w1 +w2 changes that distribution severely.

SinceW is taken as the output of a sieve [NV08,MV10,BDGL16], i.e. the set
of the (4/3)n/2 shortest vectors, we get many short relations. Namely, we expect
a constant fraction of vectors to belong to a triple of the form w3 = ±w1 ±w2.
For k ≥ 4, each vector will belong to an exponential amount of such k-tuple
wk = ±w1 ± w2 ± · · · ± wk−1, the precise quantity of such tuples should be
analyzable following the theory underlying tuple-sieves [BLS16,HK17].

We clarify that this discussion and experiments are only meant to illustrate
where the correlations come from. Fixing the analysis via this angle would require
understanding the much harder question of how these correlations compound,
and we are doubtful if this would be a tractable route.

6.3 Is the Dual Attack Fixable?

The theoretical analysis of Section 4 and the experiments of Section 5 unequiv-
ocally invalidate the standard analysis of the Dual-Sieve attack (with or with-
out FFT) as found in [LW21, GJ21, MAT22, AS22, CST22]. In the context of
the Dual-Sieve-FFT attack, as instantiated in [GJ21,MAT22,AS22,CST22], our
work point out a presumably large number of false positive, i.e. incorrect answers
having a higher score than that of the desired target.

However, if this number of false positives in the current parametrization is
reasonable, all might not be lost. Indeed, one may consider the Dual-Sieve-FFT
technique as a first filtering stage in an attack with multiple stages; the leftover
problem is still the problem of finding one BDD target among many candidates,
but in an easier lattice (smaller in dimension, and/or sparser). If the leftover
problem becomes sufficiently easier to accommodate all these targets, the Dual-
Sieve-FTT attack might be salvaged.

Nevertheless, to substantiate such a fix, one must first produce a new con-
vincing model for the score distribution of both BDD and random targets. This
should be backed both by theoretical arguments, and by experimental validation.
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We insist that pulling the parameters of the attack outside of the contradic-
tory regime is not a convincing way of substantiating a fix. We need a sound
analysis that precisely predicts the score behavior, and it should specifically be
tested on the regime where the prior analysis made mispredictions. That is, we
should have theoretically justified predictions that match with the experimental
behavior measured in Figures 3 and 5 and beyond.

In particular, we warn against a flawed argument for a fix, that would consist
of constructing the setW =W1∪W2 from two BKZ reductions and sieves instead
of just one. One might argue that the dual distinguishing is now happening in a
lattice of dimension 2β instead of β, which would push points of Figure 2 outside
of the contradictory regime. But considering the experiments of Section 5.2 in
Figure 3 we should see that this does not really fix the issue. Each half fWi

of the score distribution fW is going to hit its floor, and the sum of those two
distribution will also have a floor at essentially the same height. Indeed, it would
suffice to hit the floor of one of the functions, to hit the floor of the aggregate.

A more credible approach however is indeed to run two (or a few) BKZ reduc-
tion and sieves, obtaining two sets of short dual vectorsW1,W2 then considering
the aggregate score as the minimum of both scores f ′ = min(fW1 , fW2) rather
than its sum. To hit the floor of this new aggregate, a uniform sample would need
to hit both floors simultaneously. If fW1

, fW2
are sufficiently independent (an as-

sumption that would need substantiation), that should be much more unlikely
than hitting either floor.

Note however that taking such a minimum aggregate of scores might also
amplify the issues with low scores for BDD targets observed in Section 5.3. A
robust model for all the distributions at hand is therefore still required. Also
note that taking the smallest of both scores is conceptually not that far off from
the prior fix idea of first filtering with fW1

and then filtering the survivors again
with a new stage of the attack.

Open Question 2 Convincingly fix the analysis of the Dual-Sieve-FFT attack
with robust predictions for both score distributions, matching experiments from
Figure 3 and 5 and beyond. Then, consider if one of the suggested fixes above
allows to recover a complexity close to that of the original claims [LW21,GJ21,
MAT22,AS22,CST22].

We further invite future work to fix other minor oddities, listed in Appendix A.
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A Minor Oddities from the Literature

A.1 Length of Vectors After BKZ and Sieving

The work of Guo and Johansson [GJ21, Sec. 6.2] seems to assume that after
running BKZ of blocksize βBKZ and then a sieve of dimension βsieve of the first
block B[0,βsieve), then, one should obtain (4/3)

βsieve/2 vectors of length
√
4/3

times the predicted length of b1. The work of MATZOV [MAT22, Lem. 4.2]
makes exactly the same assumption.

Such a claim was made in [ADPS16] in the special case βBKZ = βsieve and
can be justified using the usual heuristics (including the Geometric Series As-
sumption, see [AD21] for example). On the contrary, the same heuristic would
lead to a different conclusion when βBKZ 6= βsieve, as used in [GJ21,MAT22].
Indeed, this should involve the Gaussian Heuristic of the whole block B[0,βsieve),
and only coincide with the predicted length of b1 when βBKZ = βsieve.

Given that βBKZ is in practice close to βsieve, the induced error on prediction
remains most likely mild.

A.2 The So-Called “G6K model” for Dimensions for Free

What is called the “G6K model” in [GJ21,MAT22] is asymptotically incorrect,
and was only meant as a local parametrization in the G6K implementation
in [ADH+19]. The work of [ADH+19] explicitly mark these best linear fits as
“unreliable for extrapolation”.

Furthermore, the extra “dimensions for free” obtained in [ADH+19] compared
to the prior work [Duc18] come from a technique called “on the fly lifting”, and
are not really for free: they save space, but barely any time [ADH+19, App. A].
Furthermore, the practical cheapness of “on the fly lifting” is rather tied to the
specific architecture at hand, and it is dubious whether it would transfer so
cheaply in the gate count cost model targeted in [GJ21,MAT22] via the software
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of [AGPS20]. It is a matter of relative cost between the two main operations:
floating points linear algebra, and xor-popcounts; modern architectures are
heavily focused on the former, but the latter is to be prefered in the gate-count
metric. That is, modern processors will process much more gates per cycle when
doing linear algebra than when counting bits. And on the fly lifting is essentially
floating point linear algebra.

A.3 Geometric Series Assumption vs. BKZ Simulation

We note that the claims of [GJ21,MAT22] are based on modeling basis reduction
according to the geometric series assumption (GSA), but it is costed using pro-
gressive sieving [ADH+19]. It has been pointed out on the NIST PQC-forum6

that this leads to noticable cost underestimation.
While such a simplification might be a reasonable considered in isolation, one

should be more careful when comparing concrete claims. In particular the anal-
ysis of the primal attack in the Kyber standardization document [ABD+19]
does use the more accurate simulation method. The cost comparison given
in [GJ21,MAT22] are therefore not apple-to-apple.

A.4 Real Scores

Note that we use cos(2π 〈w, t〉) on line 10 of Algorithm 1, and not the complex
character χw(t) because we can always make the set W symmetric. Indeed we
have the identity 2 cos(2π 〈w, t〉) = χw(t) + χ−w(t). It is customary in lattice
sieve algorithms [NV08,MV10,ADH+19] that a vector and its opposite is only
represented once in the databaseW. But this is merely a compression trick, and
the output should read as implicitly containing both.

In this light, we find ourselves quite confused by the attempt in [MAT22,
Sec 5.2] to exploit the phase of the character as part of the score, supposedly
inducing a reduction factor of Darg ≈ 1

2 on the required number of dual vectors.

A.5 Expected Number of Guesses for senum

In the analysis of MATZOV [MAT22, Thm. 5.1] it seems to be assumed that
enumerating possibilities in decreasing order of probability leads to guessing
the correct senum after an average of 2H(X) attempts, where H(X) denotes the
entropy of the distribution X at hand. There is no justification for this claim,
and it appears to be false.

For example, the geometric distribution Gp of parameter p, whose probabities
are in decreasing order by construction, we have a mean of 1/p, which does not
coincide with the exponential of its entropy,

H(Gp) = −
(1− p) log2(1− p) + p log2(p)

p
.

6 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/
BZFRC8hiAAAJ
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The uniform distribution over a set of size s is another counter-example, with
an average guessing time of (s+ 1)/2, but entropy log2 s.

In the two counter-examples above, the quantity 2H(X) is an overestimate
for the average guessing time. But it appears to be an underestimate in the case
of the Kyber parameters [ABD+19]. More specifically, with kenum = 17 and the
distribution as in Kyber512, we numerically computed an entropy of 39.66 bits,
but found a guessing time of 239.86 attempts using a script guess_time.py.

This underestimation factor of 20.2 may not be that big, but this factor
becomes more significant for larger parameter sets. Our script suggests that the
gap between these estimations keeps increasing for larger kenum. In particular,
for Kyber1024 (η = 2), their attack cost has an underestimation factor of
22.03, which is note-worthy considering the level of detail of the attack costs
in [MAT22].

This issue has already been noted by follow-up work [AS22], and specifically
studied in [BM23].

A.6 FFT in Guo–Johansson vs. FFT in MATZOV

At last, we would like to comment on the perceived superiority of the variant
of MATZOV [MAT22] over that of Guo–Johansson [GJ21]. Indeed, the former
claims better complexity, but it is unclear whether this is really due to modulus
switching, given other orthogonal differences in both analysis.

In particular, the used enumeration strategies, which is rather an orthogo-
nal question, differ significantly. That of Guo–Johansson is essentially unpruned:
it spends equal effort on the most and less likely candidates, and could easily
be improved with the enumeration strategy of MATZOV. This could equally
explain the gap in performance. Other optimization efforts may differ, as well
as the small oddities mentioned in this Appendix. Furthermore, the work of
MATZOV [MAT22] leads to a correction in the gate cost estimate for siev-
ing [AGPS20]; the same estimation was used before that correction in [GJ21].

We, however do not have the means to investigate these potential differences:
some data are not available, and the underlying scripts have not been made
public. And more crucially, this would also divert us from the higher level purpose
of this paper.
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