
Randomized Half-Ideal Cipher on Groups
with applications to UC (a)PAKE

Bruno Freitas Dos Santos[0009−0009−5474−0008], Yanqi Gu[0000−0001−6577−2704],
and Stanislaw Jarecki[0000−0002−5055−2407]

University of California, Irvine. Email: {brunof,yanqig1,sjarecki}@uci.edu

Abstract. An Ideal Cipher (IC) is a cipher where each key defines a
random permutation on the domain. Ideal Cipher on a group has many
attractive applications, e.g., the Encrypted Key Exchange (EKE)
protocol for Password Authenticated Key Exchange (PAKE) [10], or
asymmetric PAKE (aPAKE) [41, 37]. However, known constructions
for IC on a group domain all have drawbacks, including key leakage
from timing information [15], requiring 4 hash-onto-group operations if
IC is an 8-round Feistel [27], and limiting the domain to half the group
[12] or using variable-time encoding [57, 49] if IC is implemented via
(quasi-) bijections from groups to bitstrings [41].
We propose an IC relaxation called a (Randomized) Half-Ideal Cipher
(HIC), and we show that HIC on a group can be realized by a modified
2-round Feistel (m2F), at a cost of 1 hash-onto-group operation, which
beats existing IC constructions in versatility and computational cost.
HIC weakens IC properties by letting part of the ciphertext be
non-random, but we exemplify that it can be used as a drop-in
replacement for IC by showing that EKE [10] and aPAKE of [41] realize
respectively UC PAKE and UC aPAKE even if they use HIC instead of
IC. The m2F construction can also serve as IC domain extension,
because m2F constructs HIC on domain D from an RO-indifferentiable
hash onto D and an IC on 2κ-bit strings, for κ a security parameter.
One application of such extender is a modular lattice-based UC PAKE
using EKE instantiated with HIC and anonymous lattice-based KEM.

1 Introduction

The Ideal Cipher Model (ICM) dates back to the work of Shannon [56], and
it models a block cipher as an Ideal Cipher (IC) oracle, where every key, even
chosen by the attacker, defines an independent random permutation.1 Formally,
an efficient adversary who evaluates a block cipher on any key k of its choice
cannot distinguish computing the cipher on that key in the forward and backward
direction from an interaction with oracles Ek(·) and E−1

k (·), where {Ei} is a
family of random permutations on the cipher domain. The Ideal Cipher Model
has seen a variety of applications in cryptographic analysis, e.g. [58, 54, 34, 55,

1 This is an extended version of a paper which appears in Eurocrypt’23 [36].

48, 29, 16, 45], e.g. the analysis of the Davies-Meyer construction of a collision-
resistant hash [55, 16], of the Even-Mansour construction of a cipher from a
public pseudorandom permutation [34], or of the DESX method for key-length
extension for block ciphers [48]. A series of works [32, 23, 44, 24, 27] shows
that ICM is equivalent to the Random Oracle Model (ROM) [9]. Specifically,
these papers show that n-round Feistel, where each round function is a Random
Oracle (RO), implements IC for some n, and the result of Dai and Steinberger
[27] shows that n = 8 is both sufficient and necessary. Other IC constructions
include iterated Even-Mansour and key alternating ciphers [26, 5, 33], wide-input
(public) random permutations [14, 13, 25], and domain extension mechanisms,
e.g. [22, 42], constructions based on

Ideal Ciphers on Groups: Applications. All the IC applications above
consider IC on a domain of fixed-length bitstrings. However, there are also
attractive applications of IC whose domain is a group. A prominent example is
a Password Authenticated Key Exchange (PAKE) protocol called Encrypted
Key Exchange (EKE), due to Bellovin and Meritt [10]. EKE is a compiler from
plain key exchange (KE) whose messages are pseudorandom in some domain
D, and it implements a secure PAKE if parties use an IC on domain D to
password-encrypt KE messages.2 The EKE solution to PAKE is attractive
because it realizes UC PAKE given any key-private (a.k.a. anonymous) KEM
[7], or KE with a mild “random message” property, at a cost which is the same
as the underlying KE(M) if the cost of IC on KE(M) message domain(s) is
negligible compared to the cost of KE(M) itself. However, instantiating EKE
with e.g. Diffie-Hellman KE (DH-KE) [30] requires an IC on a group because
DH-KE messages are random group elements.

Recently Gu et al. [41] and Freitas et al. [37] extended the EKE paradigm
to cost-minimal compilers which create UC asymmetric PAKE (aPAKE), i.e.
PAKE for the client-server setting where one party holds a one-way hash of the
password instead of a password itself, from any key-hiding Authenticated Key
Exchange (AKE). The AKE-to-aPAKE compilers of [41, 37] are similar to the
“EKE” KE-to-PAKE compiler of [10] in that they also require IC-encryption
of KE-related values, but they use IC to password-encrypt a KEM public key
rather than KE protocol messages. The key-hiding AKE’s exemplified in [41, 37],
namely HMQV [50] and 3DH [52], are variants and generalizations of DH-KE
where public keys are group elements, hence the AKE-to-aPAKE compilers of
[41, 37] instantiated this way also require IC on a group.

Ideal Ciphers on Groups: Existing Constructions. The above motivates
searching for efficient constructions of IC on a domain of an arbitrary group.
Note first that a standard block cipher on a bitstring domain does not work.
The elements of any group G can be encoded as bitstrings of some fixed length

2 Bellare et al. [8] showed that EKE+IC is a game-based secure PAKE, then Abdalla
et al. [2] showed that EKE variant with explicit key confirmation realizes UC PAKE,
and recently McQuoid et al. [53] showed that a round-minimal EKE variant realizes
UC PAKE as well (however, see more on their analysis below).

2

n, but unless these encodings cover almost all n-bit strings, i.e. unless (1−|G|/2n)
is negligible, encrypting G elements under a password using IC on n-bit strings
exposes a scheme to an offline dictionary attack, because the adversary can
decrypt a ciphertext under any password candidate and test if the decrypted
plaintext encodes a G element.

Black and Rogaway [15] showed an elegant black-box solution for an IC on G
given an IC on n-bit strings provided that c = (2n/|G|) is a constant: To encrypt
element x ∈ G under key k, use the underlying n-bit IC in a loop, i.e. set x0 to
the n-bit encoding of x, and xi+1 = IC.Enck(xi) for each i≥ 0, and output as the
ciphertext the first xi for i≥ 1 s.t. xi encodes an element of group G. (Decryption
works the same way but using IC.Dec.) This procedure takes expected c uses of
IC.Enc, but timing measurement of either encryption or decryption leaks roughly
log c bits of information on key k per each usage, because given the ciphertext
one can eliminate all keys which form decryption cycles whose length does not
match the length implied by the timing data.

To the best of our knowledge there are only two other types of constructions
of IC on a group. First, the work of [32, 23, 44, 24, 27] shows that n-round Feistel
network implements an IC for n ≥ 8. Although not stated explicitly, these results
imply a (randomized) IC on a group, where one Feistel wire holds group elements,
the xor gates on that wire are replaced by group operations, and hashes onto
that wire are implemented as RO hashes onto the group. However, since n = 8
rounds is minimal [27], this construction incurs four RO hashes onto a group
per cipher operation. Whereas there is progress regarding RO-indifferentiable
hashing on Elliptic Curve (EC) groups, see e.g. [35], current implementations
report an RO hash costs in the ballpark of 25% of scalar multiplication. Hence,
far from being negligible, the cost of IC on group implemented in this way would
roughly equal the DH-KE cost in the EKE compiler. The second construction of
(randomized) IC combines any (randomized) quasi-bijective encoding of group
elements as bitstrings with an IC on the resulting bitstrings [41]. However, we
know of only two quasi-bijective encodings for Elliptic Curve groups, Elligator2
of Bernstein et al. [12] and Elligator2 of Tibouchi et al. [57, 49], and both have
some practical disadvantages. Elligator2 works for only some elliptic curves, and
it can encode only half the group elements, which means that any application
has to re-generate group elements until it finds one in the domain of Elligator2.
Elligator2 works for a larger class of curves, but its encoding procedure is non-
constant time and it appears to be significantly more expensive than one RO hash
onto a curve. Elligator2 also encodes each EC element as a pair of underlying
field elements, effectively doubling the size of the EC element representation.

IC Alternative: Programmable-Once Public Function. An alternative
path was recently charted by McQuoid et al. [53], who showed that a 2-round
Feistel, with one wire holding group elements, implements a randomized cipher
on a group which has some IC-like properties, which [53] captured in a notion
of Programmable Once Public Function (POPF). Moreover, they argue that
POPF can replace IC in several applications, exemplifying it with an argument
that EKE realizes UC PAKE if password encryption is implemented with a

3

POPF in place of IC. This would be very attractive because if 2-round Feistel
can indeed function as an IC replacement in applications like the PAKE of
[10] or the aPAKE’s of [41, 37], this would form the most efficient and flexible
implementation option for these protocols, because it works for any group which
admits RO-indifferentiable hash, and it uses just one such hash-onto-group per
cipher operation.

However, it seems difficult to use the POPF abstraction of [53] as a
replacement for IC in the above applications because the POPF notion
captures 2-round Feistel properties with game-based properties which appear
not to address non-malleability. For that reason we doubt that it can be proven
that UC PAKE is realized by EKE with IC replaced by POPF as defined in
[53]. (See below for more details.) The fact that the POPF abstraction appears
insufficient does not preclude that UC PAKE can be realized by EKE with
encryption implemented as 2-round Feistel, but such argument would not be
modular. Moreover, each application which uses 2-round Feistel in place of IC
would require a separate non-modular proof. Alternatively, one could search for
a “POPF+” abstraction, realized by a 2-round Feistel, which captures
sufficient non-malleability properties to be useful as an IC replacement in
PAKE applications, but in this work we chose a different route.

Our Results: Modified 2-Feistel as (Randomized) Half-Ideal Cipher.
Instead of trying to work with 2-Feistel itself, we show that adding a block
cipher BC to one wire in 2-Feistel makes this transformation non-malleable, and
we capture the properties of this construction in the form of a UC notion we call
a (Randomized) Half-Ideal Cipher (HIC). In Figure 1 we show a simple pictorial
comparison of 2-Feistel, denoted 2F, and our modification, denoted m2F. The
modified 2-Feistel has the same efficiency and versatility as the 2-Feistel used
by McQuoid et al. [53]: It works for any group with an RO-indifferentiable hash
onto a group, it runs in fixed time, and it requires only one RO hash onto a
group per cipher operation.

One drawback of m2F is that the ciphertext is longer than the plaintext
by 2κ bits, where κ is a security parameter. However, that is less than any IC
implementation above (including POPF, which does not realize IC) except for
Elligator2: IC results from n-round Feistel have loose security bounds, hence
they need significantly longer randomness to achieve the same provable security;
Elligator2 adds κ bits for general moduli, due to encoding of field elements as
random bitstrings; Elligator2 uses an additional field element, which adds at
least 2κ bits, plus another κ bits for the field-onto-bits encoding; Finally, 2-
Feistel requires at least 3κ bits of randomness when used in EKE [53].

The UC HIC notion is a relaxation of an Ideal Cipher notion, but it does
not prevent applicability in protocols like [10, 41, 37], which we exemplify by
showing that the following protocols remain secure with (any realization of) IC
replaced by (any realization of) HIC:

(I) UC PAKE is realized by an EKE variant with IC replaced by HIC, using
round-minimal KE with a random-message property;

4

Hpw ·

+ H′pw

r ∈ {0, 1}n M ∈ G

s ∈ {0, 1}n T ∈ G

Hpw ·

BC H′pw

r ∈ {0, 1}n M ∈ G

k ∈ {0, 1}µ

s ∈ {0, 1}n T ∈ G

Fig. 1: Left: two-round Feistel (2F) used in McQuoid et al. [53]; Right: our circuit
m2F. The change from 2F to m2F is small: If k = H ′(pw , T), then 2F sets
s = k ⊕ r, whereas m2F sets s = BC.Enc(k, r), where BC is a block cipher.

(II) UC PAKE is realized by an EKE variant with IC replaced by HIC, using
anonymous KEM with a uniform public keys property;

(III) UC aPAKE is realized by KHAPE [41] with IC replaced by HIC, using key-
hiding AKE.

Regarding the first two proofs, we are not aware of full proofs exhibited
for the corresponding statements where these EKE variants use IC instead of
HIC, but the third proof follows the blueprint of the proof given in [41] for the
KHAPE protocol using IC, and it exemplifies how little such proof changes if IC
is replaced by HIC.

Half-Ideal Cipher. The first difference between IC on group G and HIC on
group G is that the latter is a cipher on an extended domain D = R × G
where R = {0, 1}n is the randomness space, for n ≥ 2κ where κ is the security
parameter. In the decryption direction, HIC acts exactly like IC on domain D,
i.e. unless ciphertext c ∈ D is already associated with some plaintext in the
permutation table defined by key k, an adversarial decryption of c under key
k returns a random plaintext m, chosen by the HIC functionality with uniform
distribution over those elements in domain D which are not yet assigned to
any ciphertext in the permutation table for key k. However, in the encryption
direction HIC is only half-ideal in the following sense: If plaintext m is not yet
associated with any ciphertext in the permutation table for key k then encryption
of m under key k returns a ciphertext c = (s, T) ∈ D = R × G s.t. the T ∈ G
part of c can be freely specified by the adversary, and the s ∈ R part of c is then
chosen by the HIC functionality at random with uniform distribution over s’s s.t.
c = (s, T) is not yet assigned to any plaintext in the permutation table for key
k. In short, HIC decryption on any (k, c) returns a random plaintext m (subject

5

to the constraint that HIC(k, ·) is a permutation on D), but HIC encryption on
any (k,m) returns c = (s, T) s.t. T can be correlated with other values in an
arbitrary way, which is modeled by allowing the adversary to choose it, but s is
random (subject to the constraint that HIC(k, ·) is a permutation).3

Intuitively, the reason the adversarial ability to manipulate part of IC
ciphertext does not affect typical IC applications is that these applications
typically rely on the following properties of IC: (1) that decryption of a
ciphertext on any other key from the one used in encryption outputs a random
plaintext, (2) that any change to a ciphertext implies that the corresponding
plaintext is random and hence uncorrelated to the plaintext in the original
ciphertext, and (3) that no two encryption operations can output the same
ciphertext, regardless of the keys used, and moreover that the simulator can
straight-line extract the unique key used in a ciphertext formed in the forward
direction. Only properties (2) and (3) could be affected by the adversarial
ability to choose the T part of a ciphertext in encryption, but the fact that the
s part is still random, and that |s| ≥ 2κ, means that just like in IC, except for
negligible probability each encryption outputs a ciphertext which is different
from all previously used ones. Consequently, just like in IC, a HIC ciphertext
commits the adversary to (at most) a single key used to create that ciphertext
in a forward direction, the simulator can straight-line extract that key, and the
decryption of this ciphertext under any other key samples random elements in
the domain.

Further Applications: IC domain extension, LWE-based UC PAKE.
The modified 2-Feistel construction can also be used as a domain extender for
(randomized) IC on bitstrings. Given an RO hash onto {0, 1}t and an IC on
{0, 1}2κ, the m2F construction creates a HIC on {0, 1}t, for any t = poly(κ).
The modified 2-Feistel is simpler than other IC domain extenders, e.g. [22, 42],
and it has better exact security bounds, hence it is an attractive alternative in
applications where HIC can securely substitute for IC on a large bitstring
domain. For example, by our result (II) above, m2F on long bitstrings can be
used to implement UC PAKE from any lattice-based IND-secure and
anonymous KEM. This includes several post-quantum LWE-based KEM
proposals in the NIST competition, including Saber [28], Kyber [17],
McEliece [3], NTRU [43], Frodo [4], and possibly others.4 Such UC PAKE
construction would add only 3κ bits in bandwidth to the underlying KEM, and
its computational overhead over the underlying KEM operations would be
negligible, i.e. the LWE-based UC PAKE would have essentially exactly the

3 This describes only the adversarial interface to the HIC functionality. Honest parties’
interface is as in IC in both directions, except that it hides encryption randomness,
i.e. encryption takes only input M ∈ G and decryption outputs only the M ∈ G part
of the “extended” HIC plaintext m ∈ D.

4 Two recent papers [51, 59] investigate anonymity of several CCA-secure LWE-based
KEMs achieved via variants of the Fujisaki-Okamoto transform [38] applied to the
IND-secure versions of these KEM’s. However, the underlying IND-secure KEM’s
are all anonymous, see e.g. [51, 59] and the references therein.

6

same cost as the LWE-based unauthenticated Key Exchange, i.e. an
IND-secure KEM. We show a concrete construction of UC PAKE from Saber
KEM in Appendix E.

Half-Ideal Cipher versus POPF. Our modified 2-Feistel construction and
the UC HIC abstraction we use to capture its properties can be thought of as a
“non-malleability upgrade” to the 2-Feistel, and to the game-based POPF
abstraction used by McQuoid et al. [53] to capture its properties. One reason
why the UC HIC notion is an improvement over the POPF notion is that a UC
tool is easier to use in protocol applications than a game-based abstraction.
More specifically, the danger of game-based properties is that they often fail to
adequately capture non-malleability properties needed in protocol applications,
e.g. in the EKE protocol, where the man-in-the-middle attacker can modify the
ciphertexts exchanged between Alice and Bob.5 Indeed, POPF properties seem
not to capture ciphertext non-malleability. As defined in [53], POPF has two
security properties, honest simulation and uncontrollable outputs. The first one
says that if ciphertext c is output by a simulator on behalf of an honest party,
then decrypting it under any key results in a random element in group G,
except for the (key,plaintext) pair, denoted (x∗, y∗) in [53], which was
programmed into this ciphertext by the simulator. The second property says
that any ciphertext c∗ output by an adversary decrypts to random elements in
group G for all keys except for key k∗, denoted x∗ in [53], which was used by
the adversary to create c∗ in the forward direction, and which can be
straight-line extracted by the simulator.6 However, these properties do not say
that the (key,plaintext) pairs behind the adversary’s ciphertext c∗ cannot bear
any relation to the (key,plaintext) pairs behind the simulator’s ciphertext c.

Note that non-malleability is necessary in a protocol application like EKE,
and for that reason we think that it is unlikely that EKE can provably realize
UC PAKE based on the POPF properties alone. Consider a cipher Enc on a
multiplicative group s.t. there is an efficient algorithm A s.t. if c = Enc(k,M)
and c∗ = A(c) then M∗ = Dec(k, c∗) satisfies relation M∗ = M2 if lsb(k) = 0,
and m∗ = m3 if lsb(k) = 1. If this cipher is used in EKE for password-encryption
of DH-KE messages then the attacker would learn lsb of password pw used by
Alice and Bob: If the attacker passes Alice’s message cA = Enc(pw , gx) to Bob,
but replaces Bob’s message cB = Enc(pw , gy) by sending a modified message
c∗B = A(cB) to Alice, then c∗B = Enc(pw , gy·(2+b)) where b = lsb(pw), hence
an attacker who sees Alice’s output kA = gxy·(2+b) and Bob’s output kB =
gxy, can learn bit b by testing if kA = (kB)(2+b). More generally, any attack A
which transforms ciphertext c = Enc(k,M) to ciphertext c∗ = Enc(k∗,M∗) s.t.
(k,M, k∗,M∗) are in some non-trivial relation, is a potential danger for EKE.

5 A potential benefit of a game-based notion over a UC notion is that the former
could be easier to state and use, but this does not seem to be the case for the POPF
properties of [53], because they are quite involved and subtle.

6 Technically [53] state this property as pseudorandomness of outputs of any weak-
PRF on the decryptions of c∗ for any k 6= k∗, and not the pseudorandomness of the
decrypted plaintexts themselves.

7

We do not believe that 2-Feistel is subject to such attacks, but POPF properties
defined in [53] do not seem to forbid them.

If one uses 2-Feistel directly rather than the POPF abstraction then it
might still be possible to prove that EKE with 2-Feistel realizes UC PAKE. We
note that 2-Feistel is subject to the following restricted form of “key-dependent
malleability”, which appears not to have been observed in [53] and which
would have to be accounted for in such proof. Namely, consider an adversary
who given ciphertext c = (s, T) outputs ciphertext c∗ = (s∗, T ∗) for any T ∗ and
s∗ s.t. s∗ ⊕ H′(pw∗, T ∗) = s ⊕ H′(pw∗, T). Note that this adversary is not
performing a decryption of c under pw∗, because it is not querying H(pw∗, r)
for r = s ⊕ H′(pw∗, T), but plaintexts M∗ = Dec(pw , c∗) and M = Dec(pw , c)
satisfy a non-trivial relation M∗/M = T ∗/T if pw = pw∗ and not otherwise.
On the other hand, since this adversarial behavior seems to implement just a
different form of an online attack using a unique password guess pw∗, it is still
possible that EKE realizes UC PAKE even when password encryption is
implemented as 2-Feistel. However, rather than considering such non-modular
direct proofs for each application of IC on a group, in this paper we show that
a small change in the 2-Feistel circuit implies realizing a HIC relaxation of the
IC model, and this HIC relaxation is as easy to use as IC in the security proofs
for protocols like EKE [10] or aPAKE’s of Gu et al. [41, 37].

Finally, we note that an extension of the above attack shows that 2-Feistel
itself, without our modification, cannot realize the HIC abstraction. Observe that
if the adversary computes t hashes Zi = H(pw , ri) for some pw and r1, ..., rt and
then t hashes kj = H′(pw , Tj) for some T1, ..., Tt, then it can combine them to
form t2 valid (plaintext, ciphertext) pairs (Mij , cij) under key pw where Mij =
Zi · Tj and cij = (ri⊕kj , Tj). Note that the t2 plaintexts are formed using just
2t group elements (Z1, T1), ..., (Zt, Tt), so they are correlated. For example, the
value of quotient Mij/Mi′j is the same for every j. Creating such correlations
on plaintexts is impossible in the UC HIC, hence 2-Feistel by itself, without our
modification, does not realize it.

Roadmap. In Section 2, we recall the syntax and properties of Key Exchange
(KE) and Key Encapsulation Mechanism (KEM). In Section 3 we define the UC
notion of Half-Ideal Cipher (HIC). In Section 4 we present the modified 2-Feistel
construction, and we show that it realizes UC HIC. In Section 5 we define two
variants of the EKE protocol, denoted EKE and EKE-KEM, based on respectively
KE and KEM, with password encryption implemented as HIC, and we show that
both variants realizes UC PAKE.

Because of space constraints we defer some parts to the Appendix.
Appendix A and Appendix B contain the details of game changes used in the
security proofs of the above two results, i.e. that modified 2-Feistel realizes UC
RIC and that EKE with encryption using HIC realizes UC PAKE. Appendix C
contains the security proof of the EKE-KEM protocol. Appendix D shows that
the KHAPE protocol of [41] realizes UC aPAKE with IC encryption replaced
by HIC. In Appendix E we illustrate an instantiation of EKE-KEM protocol
with Saber KEM [28], and we compare the resulting protocol to prior

8

lattice-based PAKEs. Finally in Appendix F we include the standard UC
PAKE and UC aPAKE functionalities for reference.

2 Preliminaries

We focus our treatment of the EKE protocol to instantiations that use Key
Exchange (KE) with either a single simultaneous flow or 2 flows. Since a 2-flow
KE is equivalent to a key encapsulation mechanism (KEM), we will use “KE” to
refer to a single-round key exchange, and “KEM” to a KEM and to a two-flow
key exchange implied by it.

2.1 Single-round Key Exchange (KE) Scheme

A (single-round) KE scheme is a pair of algorithms KA = (msg, key), where:

– msg, on input a security parameter κ, generates message M and state x;
– key, on input state x and incoming message M ′, generates session key K .

The correctness requirement is that if two parties exchange honestly generated
messages then they both output the same session key, i.e. if
(x1,M1) ← msg(1κ) and (x2,M2) ← msg(1κ) then key(x1,M2) = key(x2,M1).
The KE security requirement is that a KE transcript hides the session key, but
as noted by Bellare et al. [8], the EKE protocol requires an additional property
of KE called a random-message property, namely that messages output by msg
are indistinguishable from values sampled from a uniform distribution over
some domain M. (In the security analysis of EKE by [8], the EKE employs an
Ideal Cipher on domain M for password-encryption of KE protocol messages.)

Definition 1. KE scheme (msg, key) is secure if distributions {(M1,M2,K)}
and {(M1,M2,K

∗)} are computationally indistinguishable, where (x1,M1) ←
msg(1κ), (x2,M2)← msg(1κ), K ← key(x1,M2), and K ∗

r←− {0, 1}κ.

Definition 2. KE scheme (msg, key) has the random-message property on
domain M, indexed by sec. par. κ, if the distribution {M | (x,M) ← msg(1κ)}
is computationally indistinguishable from uniform over set M[κ].

2.2 Key Encapsulation Mechanism (KEM)

A KEM scheme is a tuple of efficient algorithms KEM = (kg, enc, dec), where:

– kg, on input secpar κ, generates public and private keys pk and sk ;
– enc, on input a public key pk , generates ciphertext e and session key K ;
– dec, on input a private key sk and a ciphertext e, outputs a session key K .

The correctness requirement is that if (sk , pk) ← kg(1κ) and (e,K) ← enc(pk)
then dec(sk , e) = K . Note that KEM models any 2-flow key exchange scheme,
where the public key pk is the initiator’s message, and the ciphertext e is the
responder’s message. We require IND security of KEM, and two additional

9

randomness/anonymity properties: First, public keys must be uniform in the
sense that their distribution must be indistinguishable from a uniform
distribution over some set PK. Secondly, KEM must be anonymous [7], i.e.
ciphertexts must be unlinkable to public keys. Note that these are slightly
weaker properties than we asked of KA. Since a key exchange implied by KEM
takes 2 flows, the EKE variant using KEM, see Figure 10 in Section 5.1, can
use the (randomized) ideal cipher only for the first flow, i.e. the public key,
while the second flow, i.e. the KEM ciphertext, can be sent as is, as long as the
responder attaches to it a key confirmation message. Consequently, the second
message must be unlinkable to the first, but it does not have to be
indistinguishable from a random element in a domain of an ideal cipher.

Definition 3. KEM scheme is IND secure if distributions {(pk , e,K)} and
{(pk , e,K ∗)} are computationally indistinguishable, where (sk , pk)

r←− kg(1κ),
(e,K)

r←− enc(pk) and K ∗
r←− {0, 1}κ.

Definition 4. KEM scheme has uniform public keys for domain PK, indexed
by the security parameter κ, if the distribution {pk | (sk , pk)

r←− kg(1κ)} is
computationally indistinguishable from uniform over set PK[κ]

Definition 5. KEM scheme is anonymous if distributions {(pk0, pk1, e0)} and
{(pk0, pk1, e1)} are computationally indistinguishable, where (sk0, pk0)

r←−
kg(1κ), (sk1, pk1)

r←− kg(1κ), (e0,K0)
r←− enc(pk0), and (e1,K1)

r←− enc(pk1).

Note that the last two properties are trivially achieved by the Diffie-Hellman
KEM, where both the public keys and ciphertexts are random group elements.
However, both properties are also achieved by several lattice-based KEM’s, as
discussed in Section 1.

3 Universally Composable Half-Ideal Cipher

We define a new functionality FHIC in the UC framework ([19]), called a
(Randomized) Half-Ideal Cipher (HIC), where the ‘half’ in the name refers to
the fact that only half of the ciphertext is random to the adversary during
encryption, as we explain below.

UC HIC is a weakening of the UC Ideal Cipher notion. Intuitively, we allow
adversaries to predict or control part of the output of the cipher while the
remainder is indistinguishable from random just as in the case of IC. Formally,
we can interpret this as allowing the adversary to embed some tuples in the
table that the functionality uses - but in a very controlled manner. We define
the UC notion of Half-Ideal Cipher via functionality FHIC defined in Figure 2.7

Notes on FHIC interfaces. A half-ideal cipher functionality FHIC is
parametrized by the (randomized) cipher domain D = R × G, where the first

7 In Figure 2 we use pw to denote keys used in the HIC cipher because we use
variables k and K for other keys in the later sections. Moreover, in PAKE and
aPAKE applications the role of a HIC key is played by a password.

10

Notation: Functionality FHIC is parametrized by domain D = R × G, and it is
indexed by a session identifier sid which is a global constant, hence we omit it
from notation. We denote HIC keys as passwords pw to conform to the usage of
FHIC in PAKE and aPAKE applications, but keys pw are arbitrary bitstrings.

Initialization: For all pw ∈ {0, 1}∗, initialize THICpw as an empty table.

Interfaces for Honest Parties P:

on query (Enc, pw ,M) from party P, for M ∈ G:

r
r←− R

if ∃c s.t. ((r,M), c) ∈ THICpw then return c to P, else do:
c

r←− {ĉ ∈ D : @m s.t. (m, ĉ) ∈ THICpw}
add ((r,M), c) to THICpw and return c to P

on query (Dec, pw , c) from party P, for c ∈ D:

query (r,M)← FHIC.AdvDec(pw , c) and return M to P

Interfaces for Adversary A (or corrupt parties):

on query (AdvEnc, pw , (r,M), T) from adversary A, for (r,M) ∈ D and T ∈ G:

if ∃c s.t. ((r,M), c) ∈ THICpw then return c to A, else do:
s

r←− {ŝ ∈ R : @m̂ s.t. (m̂, (ŝ, T)) ∈ THICpw}
set c← (s, T), add ((r,M), c) to THICpw , and return c to A

on query (AdvDec, pw , c) from adversary A, for c ∈ D:

if ∃m s.t. (m, c) ∈ THICpw then return m to A, else do:
m

r←− {m̂ ∈ D : @ĉ s.t. (m̂, ĉ) ∈ THICpw}
add (m, c) to THICpw and return m to A

Fig. 2: Ideal functionality FHIC for (Randomized) Half-Ideal Cipher on D = R×G

component is the randomness and the second is the plaintext. Figure 2
separates between FHIC interfaces Enc and Dec which are used by honest
parties, and the adversarial interfaces AdvEnc and AdvDec. Interfaces Enc and
Dec model honest-party’s usage of HIC, i.e. a real-world implementation of
HIC will consists of two algorithms, Enc and Dec, where Enc on input key pw
and plaintext M ∈ G outputs a ciphertext c ∈ D and Dec on input key pw and
ciphertext c ∈ D outputs a plaintext M ∈ G. Our target realization of these
procedures is a randomized cipher, i.e. a family of functions Πpw s.t. for each
pw ∈ {0, 1}∗, Πpw is a permutation on D, and both Πpw and Π−1

pw are
efficiently evaluable given pw . Given cipher Π, algorithm Enc(pw ,M) picks
r

r←− R and outputs c ← Πpw (m) for m = (r,M), while Dec(pw , c) computes
m← Π−1

pw (c) and output M for (r,M) = m.

Functionality walk-through. Functionality FHIC reflects honest user’s
interfaces to randomized encryption: When an honest party P encrypts a
message it specifies only M ∈ G and delegates the choice of randomness r

r←− R

11

to the functionality. Similarly, when an honest party decrypts a ciphertext, the
functionality discards the randomness r and reveals only M to the application.
This implies that honest parties must use fresh randomness at each encryption
and must discard it (or at least not use it) at decryption. By contrast, an
adversary A has stronger interfaces than honest parties (for notational
simplicity we assume corrupt parties interact to FHIC via A), namely: (1)
When A encrypts it can choose randomness r at will; (2) When A decrypts it
learns the randomness r and does not have to discard it; (3) A can manipulate
the (plaintext, ciphertext) table of each permutation Πpw in the following way:
If we denote ciphertexts as c = (s, T) ∈ R × G, the adversary has no control of
the s component of the ciphertext at encryption, i.e. it is random in R (up to
the fact that the map has to remain a permutation), but the adversary can
freely choose the T component. Items (1) and (2) are consequences of the fact
that HIC is a randomized cipher, but item (3) is what makes this cipher
Half-Ideal, because the adversary can control part of the value c = Enc(pw ,m)
during encryption, namely its G component.

The above relaxations of Ideal Cipher (IC) properties are imposed by the
modified 2-Feistel construction, which in Section 4 we show realizes this model.
However, this relaxation is harmless for many IC applications the following
reason: In a typical IC application the benefit of ciphertext randomness is that
it (1) hides the plaintext, and (2) it prevents the adversary from creating the
same ciphertext as an encryption of two different plaintexts under two different
keys. For both purposes randomness in the s ∈ R component of the ciphertext
suffices as long as R is large enough to prevent ever encountering collisions.

The adversarial interfaces AdvEnc and AdvDec of FHIC reflect the above, and
give more powers than the honest party’s interfaces Enc and Dec. In encryption
query AdvEnc, the adversary is allowed to pick its own randomness r and the
T ∈ G part of the resulting ciphertext, while its s part is chosen at random in R.
In decryption AdvDec, the adversary can decrypt any ciphertext c = (s, T) and
it learns the full plaintext m = (r,M), but FHIC chooses the whole plaintext m
at random. (This is another motivation for the monicker ‘half-ideal’: FHIC lets
the adversary have some control over ciphertexts in encryption but it does not
let the adversary have any control over plaintexts in decryption.)

Our goal when designing FHIC was to keep all IC properties which are useful
in applications while allowing for efficient concrete instantiation of FHIC for a
group domain G. Most importantly, ciphertext collisions in encryption can occur
only with negligible probability, which is crucial in our HIC applications: An
adversarial ciphertext c commits the adversary to a single key pw on which the
adversary could have computed c as an encryption of some message of its choice.
Secondly, just as with an ideal cipher, the adversary cannot learn any information
on encrypted plaintexts except via decryption with correct decryption key.

12

4 Half-Ideal Cipher Construction: Modified 2-Feistel

We modify the two-round Feistel construction of the Programmable Once Public
Functions (POPF) of McQuoid et al. [53] by replacing the xor operation in the
second round by an application of an ideal block cipher BC on bitstrings, with
keys and plaintext block both of size 2κ where κ is the security parameter.
We call this construction a modified 2-Feistel, denoted m2F. This construction
takes (1) an ideal cipher BC on bitstrings, i.e. an ideal cipher whose domain
is {0, 1}n and key space is {0, 1}µ, (2) a random oracle hash H′ with range
{0, 1}µ, and (3) a random oracle hash H whose range is an arbitrary group G,
and creates a (Randomized) Half-Ideal Cipher (HIC) over domain D = R × G
where R = {0, 1}n. In essence, we combine a random oracle hash onto a group
and a bitwise ideal cipher to create a half-ideal cipher over a group. The exact
security analysis of the m2F construction shows that µ and n can both be set to
2κ for this construction to realize UC HIC.

For each key pw , function m2Fpw is pictorially shown in Figure 1. Here we
define it by the algorithms which compute m2Fpw and m2F−1

pw . (Throughout the
paper we denote group G operation as a multiplication, but this is purely a
notational choice, and the construction applies to additive groups as well.)

m2Fpw : {0, 1}n ×G → {0, 1}n ×G (1)

where:
m2Fpw (r,M):

1. T ←M/H(pw , r)
2. k ← H′(pw , T)
3. s← BC.Enc(k, r)
4. Output (s, T)

m2F−1
pw (s, T):

1. k ← H′(pw , T)
2. r ← BC.Dec(k, s)
3. M ← H(pw , r) · T
4. Output (r,M)

The following theorem captures the security of the m2F construction:

Theorem 1. Construction m2F realizes functionality FHIC in the domain R×G
for R = {0, 1}n if H : {0, 1}∗ × {0, 1}n → G, H′ : {0, 1}∗ × G → {0, 1}µ are
random oracles, BC : {0, 1}µ × {0, 1}n → {0, 1}n is an ideal cipher, and µ and
n are both Ω(κ).

Proof. The proof for Theorem 1 must exhibit a simulator algorithm SIM, which
plays a role of an ideal-world adversary interacting with functionality FHIC, and
then show that no efficient environment Z can distinguish, except for negligible
probability, between (1) a real-world game, i.e. an interaction with (1a) honest
parties who execute Z’s encryption and decryption queries using Enc and Dec
implemented with circuit m2F (see Section 3), and (1b) RO/IC oracles H, H′, BC,
BC−1, and (2) an ideal-world game, i.e. an interaction with (2a) parties P who
execute Z’s encryption and decryption using interfaces Enc,Dec of FHIC, and
(2b) simulator SIM, who services Z’s calls to H, H′, BC, BC−1 using interfaces
AdvEnc and AdvDec of FHIC.

13

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

on adversary’s query H(pw , r)

if @h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on adversary’s query H′(pw , T)

if @k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

if ∃(p̂w , T̂) s.t. (p̂w , T̂ , k) ∈ TH′ then abort
(col.abort)

if ∃(r̂, ŝ) s.t. (k, r̂, ŝ) ∈ TBC then abort
(bckey.abort)

add (pw , T, k) to TH′

return k

on adversary’s query BC.Enc(k, r)

if @s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T)a:

M ← H(pw , r) · T
(s, T̂)← FHIC.AdvEnc(pw , (r,M), T)

if T̂ 6= T then abort (advenc.abort)
else:
s

r←− {s ∈ {0, 1}n : @r̂ s.t. (k, r̂, s) ∈ TBC}
add (k, r, s) to TBC

return s

a
If it exists, we denote by TH′(pw , T) the
(unique) k s.t. (pw , T, k) ∈ TH′

on adversary’s query BC.Dec(k, s)

if @r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

(r,M)← FHIC.AdvDec(pw , (s, T))
if ∃ŝ s.t. (k, r, ŝ) ∈ TBC then abort

(advdec.abort)
if ∃h s.t. (pw , r, h) ∈ TH then abort

(rcol.abort)

add (pw , r,M · T−1) to TH
else:
r

r←− {r ∈ {0, 1}n : @ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

return r

Fig. 3: Simulator SIM for the proof of Theorem 1

We start by describing the simulator algorithm SIM, shown in Figure 3. Note
that SIM interacts with an adversarial environment algorithm Z by servicing
Z’s queries to the RO and IC oracles H,H′,BC,BC−1. Intuitively, SIM populates
input, output tables for these functions, TH,TH′ and TBC, in the same way as
these idealized oracles would, except when SIM detects a possible encryption or
decryption computation of the modified 2-Feistel circuit. In case SIM decides
that these queries form either computation of m2F or m2F−1 on new input, SIM
detects that input, invokes the adversarial interfaces AdvEnc or AdvDec of FHIC

to find the corresponding output, and it embeds proper values into these tables
to emulate the circuit leading to the computation of this output. The detection of
m2F and m2F−1 evaluation is relatively straightforward: First, SIM treats every
BC.Dec query (k, s) as a possible m2F−1 evaluation on key pw and ciphertext
c = (s, T) for T s.t. k = H′(pw , T). If it is, SIM queries FHIC.AdvDec on (pw , c)
to get m = (r,M). Since this is a random sample from the HIC domain, with
overwhelming probability H was not queried on r so SIM can set H(pw , r) to
M/T . Second, SIM treats every BC.Enc query (k, r) as possible m2F evaluation
on (r,M) s.t. M = H(pw , r) · T for T s.t. k = H′(pw , T). However, here is where
the difference between IC and HIC shows up: The FHIC.AdvEnc query fixes the

14

encryption of m = (r,M) to c = (s, T), and whereas s can be random (and
SIM can set BC.Enc(k, r) := s for any c = (s, T) returned by FHIC.AdvEnc as
encryption of m under key pw), value T was fixed by H′ output k (except for
the negligible probability of finding collisions in H′). This is why our FHIC model
must allow the simulator, i.e. the ideal-world adversary, to fix the T part of the
ciphertext in the adversarial encryption query AdvEnc.

Proof Overview. The proof must show that for any environment Z, its view
of the real-world game defined by algorithms Enc,Dec which use the
randomized cipher m2F, and the ideal-world game defined by functionality
FHIC and simulator SIM of Figure 3. The proof starts from the ideal-world
view, which we denote as Game 0, and via a sequence of games, each of which
we show is indistinguishable from the next, it reaches the real-world view,
which we denote as Game 9. For space-constraint reasons we include the
details of the game changes and reductions to Appendix A, but we show the
code of all successive games in Figures 4, 5, and 6. Figure 4 describes the
ideal-world Game 0 and its mild modification Game 1. All these games,
starting from Game 0 in Figure 4, interact with an adversarial environment Z,
and each game provides two types of interfaces corresponding two types of Z’s
queries: (a) the honest party’s interfaces Enc,Dec, which Z can query via any
honest party, and (b) RO/IC oracles H,H′,BC,BC−1, which Z can query via
its “real-world adversary” interface. Figure 4 defines two sub-procedures,
FHIC.AdvEnc and FHIC.AdvDec, whose code matches exactly the corresponding
interfaces of FHIC. These subprocedures are used internally by Game 0: They
are invoked by the code that services Z’s queries BC.Enc and BC.Dec, because
Game 0 follows SIM’s code on these queries, and AdvDec is also invoked by
Dec, because this is how FHIC implements Dec.

Figures 5 and 6 describe the modifications created by all subsequent games,
except for the last one, the real-world game denoted Game 9, which is very
similar to Game 8, which is the last game shown in Figure 6. By the arguments
for indistinguishability of successive games shown in Appendix A, the total
distinguishing advantage of environment Z between the real-world and the
ideal-world interaction is upper-bounded by the following expression, which
sums up the bounds given by equations (3) to (7) in Appendix A:

|P0 − P9| ≤ q2

(
10

2n
+

4

2n · |G|
+

6

2µ

)
≤ q2

(
14

2n
+

6

2µ

)
Since this quantity is negligible, this implies Theorem 1

Notes on Exact Security. By the above equation, the distinguishability
advantage implies by our proof can be upper-bounded as O(q2/2n) +O(q2/2µ).
We assert that both of these factors are unavoidable for our m2F construction.
First, while in the FHIC functionality we allow the T component of two AdvEnc
adversarial calls to be completely independent, this is not the case in our
modified two-round Feistel encryption: reuse of a (pw , r) pair implies relations
between the T component of different encryption calls that are not seen in

15

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

For each pw ∈ {0, 1}∗, initialize empty sets THICpw and usedRpw .

define FHIC.AdvEnc(pw , (r,M), T):

if @c s.t. ((r,M), c) ∈ THICpw :

s
r←− {ŝ ∈ {0, 1}n : (∗, (ŝ, T)) 6∈ THICpw}

c← (s, T)
add ((r,M), c) to THICpw

return c

define FHIC.AdvDec(pw , (s, T)):

if @(r,M) s.t. ((r,M), (s, T)) ∈ THICpw :

(r,M)
r←− D

if ∃ĉ s.t. ((r,M), ĉ) ∈ THICpw then abort

abort if r ∈ usedRpw else add r with tag m2F

add ((r,M), (s, T)) to THICpw

return M

on query Enc(pw ,M):

r
r←− {0, 1}n

abort if r ∈ usedRpw , else add r with tag m2F

if @c s.t. ((r,M), c) ∈ THICpw :

c
r←− {ĉ : @m̂ s.t. (m̂, ĉ) ∈ THICpw}

add ((r,M), c) to THICpw

return c

on query Dec(pw , c):

(r,M)← FHIC.AdvDec(pw , c)
return M

on query H(pw , r)

abort if r ∈ usedRpw tagged m2F, else add r

if @h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on query H′(pw , T)

if @k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

if ∃ (p̂w , T̂) s.t. (p̂w , T̂ , k) ∈ TH′ then abort
(col.abort)

if ∃ (r̂, ŝ) s.t. (k, r̂, ŝ) ∈ TBC then abort
(bckey.abort)

add (pw , T, k) to TH′

return k

on query BC.Enc(k, r)

if k = TH′(pw , T):

if r ∈ usedRpw is tagged m2F then abort

else add r to usedRpw

if @s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

M ← H(pw , r) · T
(s, T̂)← FHIC.AdvEnc(pw , (r,M), T)

if T̂ 6= T then abort (advenc.abort)
else:
s

r←− {s ∈ {0, 1}n : @r̂ s.t. (k, r̂, s) ∈ TBC}
add (k, r, s) to TBC

return s

on query BC.Dec(k, s)

if @r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

(r,M)← FHIC.AdvDec(pw , (s, T))
if ∃ŝ s.t. (k, r, ŝ) ∈ TBC then abort

(advdec.abort)
if ∃ h s.t. (pw , r, h) ∈ TH then abort

(rcol.abort)

add (pw , r,M · T−1) to TH
else:
r

r←− {r ∈ {0, 1}n : @ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

if k = TH′(pw , T):

remove tag m2F from record r ∈ usedRpw

return r

Fig. 4: The ideal-world Game 0, and its modification Game 1 (text in gray)

16

Game 2: replacing decryption by circuit

on query m2F.Dec(pw , (s, T)):

k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
if m2F.Dec query was fresh, add tag m2F to r ∈
usedRpw

return M

Game 3: Enc calls AdvDec

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it with tag
m2F
if @c s.t. ((r,M), c) ∈ THICpw :

T
r←− G

c← FHIC.AdvEnc(pw , (r,M), T)
return c

Game 4: replacing encryption by circuit

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

if r ∈ usedRpw abort
T ←M/H(pw , r)
k ← H′(pw , T)
s← BC.Enc(k, r)
assign tag m2F to r in the set usedRpw

return (s, T)

Game 5: H is a random oracle

FHIC.AdvDec not used anymore

on query BC.Dec(k, s):

if @ r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
h← H(pw , r)
M ← h · T
if ∃ĉ s.t. ((r,M), ĉ) ∈ THICpw then abort
add ((r,M), (s, T)) to THICpw

else:
r

r←− {r ∈ {0, 1}n : @ŝ s.t. (k, r, ŝ) ∈ TBC
add (k, r, s) to TBC

remove tag m2F from record r ∈ usedRpw if k =
TH′(pw , T)
return r

Game 6: simplifying parameters

define FHIC.AdvEnc(pw , r, T):

if @s s.t. (r, (s, T)) ∈ THICpw :

s
r←− {ŝ ∈ {0, 1}n : @r̂ s.t. (r̂, (ŝ, T)) ∈

THICpw}
add (r, (s, T)) to THICpw

return s

on query BC.Dec(k, s):

if @r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
query H(pw , r) and discard the output
if ∃ĉ s.t. (r, ĉ) ∈ THICpw then abort
add (r, (s, T)) to THICpw

else:
r

r←− {r ∈ {0, 1}n : @ŝ s.t. (k, r, ŝ) ∈ TBC
add (k, r, s) to TBC

remove tag m2F from record r ∈ usedRpw if k =
TH′(pw , T)
return r

on query BC.Enc(k, r):

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F then abort

else add r to usedRpw

if @s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

query H(pw , r) and discard the output
s← FHIC.AdvEnc(pw , r, T)

else:
s

r←− {s ∈ {0, 1}n : @r̂ s.t. (k, r̂, s) ∈ TBC}
add (k, r, s) to TBC

return s

Game 7: using k

Initialization: ∀ k initialize empty THICk

define FHIC.AdvEnc(k, r):

if @s s.t. (r, s) ∈ THICk:

s
r←− {ŝ ∈ {0, 1}n : @r̂ s.t. (r̂, ŝ) ∈ THICk}

add (r, s) to THICk
return s

on query BC.Dec(k, s):

if @r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
if ∃ŝ s.t. (r, ŝ) ∈ THICk then abort
add (r, s) to THICk

else:
r

r←− {r ∈ {0, 1}n : @ŝ s.t. (k, r, ŝ) ∈ TBC
add (k, r, s) to TBC

remove tag m2F from r ∈ usedRpw if k =
TH′(pw , T)
return r

on query BC.Enc(k, r):

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F then abort

else add r to usedRpw

if @s s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

s← FHIC.AdvEnc(k, r)
else:
s

r←− {s ∈ {0, 1}n : @r̂ s.t. (k, r̂, s) ∈ TBC}
add (k, r, s) to TBC

return s

Fig. 5: Game-changes (part 1) in the proof of Theorem 1

17

Game 8: THIC is redundant

Initialization: Drop THIC usage.

FHIC.AdvEnc not used anymore

on query BC.Enc(k, r):

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F, abort, else add

r ∈ usedRpw

if @s s.t. (k, r, s) ∈ TBC:

s
r←− {s ∈ {0, 1}n : @r̂ s.t. (k, r̂, s) ∈ TBC}

add (k, r, s) to TBC
return s

on query BC.Dec(k, s):

if @r s.t. (k, r, s) ∈ TBC:
if ∃(pw , T) s.t. (pw , T, k) ∈ TH′:

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
else:
r

r←− {r ∈ {0, 1}n : @ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

remove tag m2F from record r ∈ usedRpw if k =
TH′(pw , T)
return r

Fig. 6: Game-changes (part 2) in the proof of Theorem 1

FHIC. Hence we must avoid r collisions in Enc calls, irrespective of how our
proof is structured, and asymptotically this gives a q2/2n factor in the
distinguishing advantage.

Secondly, we need to avoid H′ collisions. Indeed, if H′(pw , T) = H′(p̂w , T̂)
then m2F’s decryptions using (pw , T) and (p̂w , T̂) create the same s 7→ r map,
which would be in stark contrast to our functionality’s ideal-cipher like
decryption behavior. We conclude that the q2/2µ term also can’t be avoided.
Notice that these two terms dominate the probability of the environment
distinguishing m2F from our functionality FHIC. In particular, they do not
involve |G|, i.e., the size of the message space of our FHIC.

5 Encrypted Key Exchange with Half-Ideal Cipher

We show that the Encrypted Key Exchange (EKE) protocol of Bellovin and
Meritt [10] is a universally composable PAKE if the password encryption is
implemented with a (Randomized) Half-Ideal Cipher on the domain of messages
output by the key exchange scheme, provided that the key exchange scheme has
the random-message property (see Section 2). As discussed in the introduction,
the same statement was argued by Rosulek et al. [53] with regards to password-
encryption implemented using a Programmable Once Public Function (POPF)
notion defined therein, which can also be thought of as a weak form of ideal
cipher. However, since as we explain in the introduction, the POPF notion is
unlikely to suffice in an EKE application, so we need to verify that the notion
of UC (Randomized) Half-Ideal Cipherdoes suffice in such application.

In Figure 7 we show the Encrypted Key Exchange protocol EKE, specialized
to use a Half-Ideal Cipher for the password-encryption of the message flows of
the underlying Key Agreement scheme KA. In Figure 7 we assume that KA is a
single-round scheme. In Section 5.1 we extend this to the case of two-flow KA,
i.e. to EKE protocol instantiated with a KEM scheme. We note that these two
treatments are incomparable because in the case of single-flow KA we start from
a more restricted KA scheme and we argue security of a single-flow version of

18

EKE, whereas in the case of two-flow KA, i.e. if KA = KEM, we start from a more
general KA scheme but we argue security of a two-flow version of EKE.

The EKE instantiation shown in Figure 7 assumes that the Half-Ideal Cipher
HIC works on domain D = R × M where M is the message domain of the
scheme KA. The “randomness” set R is arbitrary, but its size influences the
security bound we show for such EKE instantiations. In particular we require
that log(|R|) ≥ 2κ. If HIC is instantiated with the modified 2-Feistel construction
m2F of Section 4, one can set R = {0, 1}2κ, and this instantiation of EKE will
send messages whose sizes match those of the underlying KA scheme extended
by 2κ bits of randomness due to the Half-Ideal Cipher encryption.

In Figure 7 for presentation clarity we assume that party identifiers P0,P1 are
lexicographically ordered. The full protocol will use two helper functions order
and bit, defined as order(sid,P,CP) = (sid,P,CP) and bit(P,CP) = 0 if P <lex CP,
and order(sid,P,CP) = (sid,CP,P) and bit(P,CP) = 1 if CP <lex P 8. Party P
on input (NewSession, sid,P,CP, pw) will then set fullsid← order(sid,P,CP) and
b ← bit(P,CP) and it will use HIC.Enc on key p̂w b = (fullsid, b, pw) to encrypt
its outgoing message, and it will use HIC.Dec on key p̂w¬b = (fullsid,¬b, pw) to
decrypt its incoming message.

• Single-round Key Exchange KA = (msg, key) with message space M
• Half-Ideal Cipher HIC on domain R×M for R = {0, 1}Ω(κ)

P0 on NewSession(sid,P0,P1, pw0) P1 on NewSession(sid,P1,P0, pw1)

(Assume P0 <lex P1 and let fullsid = (sid,P0,P1))

(x0,M0)
r←− KA.msg (x1,M1)

r←− KA.msg
c0 ← HIC.Enc((fullsid, 0, pw0),M0) c1 ← HIC.Enc((fullsid, 1, pw1),M1)

-c0 �c1

M̂1 ← HIC.Dec((fullsid, 1, pw0), c1) M̂0 ← HIC.Dec((fullsid, 0, pw1), c0)

output K0 ← KA.key(x0, M̂1) output K1 ← KA.key(x1, M̂0)

Fig. 7: EKE: Encrypted Key Exchange with Half-Ideal Cipher

In Theorem 2 below we show that protocol EKE realizes the (multi-session
version of) the PAKE functionality of Canetti et al. [20], denoted FpwKE

(included in Figure 23 in Appendix F). The reason we target the multi-session
version of PAKE functionality directly, rather than targeting its single-session
version and then resorting to Canetti’s composition theorem [19] to imply the
security of an arbitrary (and concurrent) number of EKE instances, is that for
the latter to work we would need the underlying UC HIC to be instantiated
separately for each EKE session identifier sid. Our UC HIC notion of Section 3
is a “global” functionality, i.e. it does not natively support separate instances
indexed by session identifiers. The modified 2-Feistel construction could

8 We assume that no honest P ever executes (NewSession, sid,P,CP, ·) for CP = P.

19

support such independent instances of HIC by prepending sid to the inputs of
all its building block functions H,H′,BC, where in the last case value sid would
have to be prepended to the key of the (ideal) block-cipher BC. However, this
implies longer inputs for each of these blocks, which is especially problematic
in case of the block cipher, so it is preferable not to rely on it and show
security for a protocol variant where each EKE instance accesses a single HIC
functionality, and hence can be implemented with the same instantiation of the
modified 2-Feistel HIC construction.

Theorem 2. If KA is a secure key-exchange scheme with the random-message
property on domain M and HIC is a UC Half-Ideal Cipher over domain R×M,
then protocol EKE, Figure 7, realizes the UC PAKE functionality FpwKE.

Proof. Let Z be an arbitrary efficient environment. In the rest of the proof we
will assume that the real-world adversary A is an interface of Z. In Figure 8
we show the construction of a simulator algorithm SIM, which together with
functionality FpwKE defines the ideal-world view of Z. As is standard, the role
of SIM is to emulate actions of honest parties executing protocol EKE given the
information revealed by functionality FpwKE, and to convert the actions of the
real-world adversary into queries to FpwKE. (In Figure 8 we use Psid to denote
P’s session indexed by sid which is emulated by SIM.) The proof then consists
of a sequence of games, shown in Figure 9, starting from the real-world game,
Game 0, where Z interacts with the honest parties running protocol EKE, and
ending with the ideal-world game, Game 7, where Z interacts via dummy honest
parties with functionality FpwKE which in turn interacts with simulator SIM.
(This last game is not shown in Figure 9 because its code can be derived from
the code of simulator SIM, Figure 8, and functionality FpwKE, see Figure 23 in

Appendix F.) We note that in each game in Figure 9 we write output [...] for

output of queries that service Z’s interaction with EKEinstances, and we write
“return [...]” for output of queries that service Z’s interaction with FHIC.

At each step we prove that the two consecutive games are indistinguishable,
which implies the claim by transitivity of computational indistinguishability.
Note that we argue security of EKE in the FHIC-hybrid model. Specifically,
algorithm SIM emulates a “global” FHIC functionality which services any
number of EKE protocol instances. Note that Z or A can call FHIC on keys
which correspond to all strings p̂w = (fullsid, b, pw) including for fullsid
corresponding to sessions which were not (yet) started by Z. Indeed, algorithm
SIM treats queries pertaining to any key p̂w equally, and embeds random
ciphertext c in response to Enc queries, random partial ciphertext s in response
to AdvEnc queries, and random KA message M in response to AdvDec and Dec
queries, saving the corresponding KA local state in (backdoor, . . .) records.
Since Dec is a wrapper over AdvDec we assume that the adversary uses only
interface AdvDec, and we implement the EKE code of Psid using AdvDec as well.

The intuition for the simulation is that it sends an outgoing EKE message
on behalf of Psid at random, since this is how HIC encryptions are formed. SIM

20

SIM interacts with environment Z’s interface A and with functionality FpwKE.
W.l.o.g. we assume that A uses AdvDec to implement Dec queries to FHIC.

Initialization: Set Cset = {}, set THICp̂w as an empty table and c2pw[c] := ⊥ for
all values p̂w and c.

Notation (used in all security games in Figure 9)

Let THICp̂w .s[T] be a shortcut for set {s ∈ R : @m̂ s.t. (m̂, (s, T)) ∈ THICp̂w}.
Let THICp̂w .c be a shortcut for set {c ∈ D : @m̂ s.t. (m̂, c) ∈ THICp̂w}.
Let THICp̂w .m be a shortcut for set {m ∈ D : @ĉ s.t. (m, ĉ) ∈ THICp̂w}.

On query (NewSession, sid,P,CP) from FpwKE:

Set fullsid ← order(sid,P,CP), b ← bit(P,CP), c
r←− D (abort if c ∈ Cset), add c to

Cset, record (sid,P,CP, fullsid, b, c), return c.

Emulating functionality FHIC:

• On A’s query (Enc, p̂w ,M) to FHIC: Set r
r←− R, m ← (r,M). If (m, c) ∈

THICp̂w return c; Else pick c
r←− THICp̂w .c (abort if c ∈ Cset), set c2pw[c]← p̂w ,

add c to Cset and (m, c) to THICp̂w , return c.

• On A’s query (AdvEnc, p̂w ,m, T) to FHIC: If (m, c) ∈ THICp̂w return c; Else
pick s

r←− THICp̂w .s[T], set c ← (s, T) (abort if c ∈ Cset), set c2pw[c] ← p̂w ,
add c to Cset and (m, c) to THICp̂w , return c.

• On A’s query (AdvDec, p̂w , c) to FHIC: If (m, c) ∈ THICp̂w return m; Else pick
r

r←− R and (x,M)
r←− KA.msg, set m ← (r,M), add (m, c) to THICp̂w (abort

if ∃ ĉ 6= c s.t. (m, ĉ) ∈ THICp̂w), save (backdoor, c, p̂w , x), return m.

On A’s message ĉ to session Psid: (accept only the first such message)

Retrieve record (sid,P,CP, fullsid, b, c) and do:

1. If there is record (sid,CP,P, fullsid,¬b, ĉ): send (NewKey, sid,P,⊥) to FpwKE;
2. Otherwise set p̂w ← c2pw[ĉ] and do the following:

(a) If p̂w = ⊥ or p̂w = (ˆfullsid, b̂, ·) for (ˆfullsid, b̂) 6= (fullsid,¬b), send
(TestPwd, sid,P,⊥) and (NewKey, sid,P,⊥) to FpwKE;

(b) If p̂w = (fullsid,¬b, pw∗) retrieve ((r̂, M̂), ĉ) from THICp̂w and:
i. service FHIC’s query (AdvDec, (fullsid, b, pw∗), c), retrieve

(backdoor, c, (fullsid, b, pw∗), x);
ii. set K ← KA.key(x, M̂), send (TestPwd, sid,P, pw∗) and

(NewKey, sid,P,K) to FpwKE.

Fig. 8: Simulator SIM for the proof of Theorem 2

21

services HIC encryption queries as FHIC does except that it collects the
ciphertexts created by any encryption query and the ciphertexts chosen for
every honest session in set Cset, and aborts if either process regenerates a
ciphertext in Cset. Here we use the fact that even though an adversary can set
the T part of the ciphertext c = (s, T) resulting from an adversarial encryption
query AdvEnc, the s part of c is chosen at random, and this prevents ciphertext
collisions (except with negligible probability) if |R| ≥ 22κ. Hence, assuming
that R is big enough, we have that (1) each adversarial ciphertext can be
matched to (at most) one password on which it decrypts to a non-random
value in space M, and (2) the simulator can extract this unique password and
retrieve the corresponding plaintext (SIM stores the key p̂w which was used to
create ciphertext c in the c2pw table by setting c2pw[c]← p̂w). Moreover, since
by the same collision-resistant property of FHIC ciphertexts the adversary
cannot “hit” any honest session Psid’s ciphertext c via an encryption query, the
decryption of Psid’s ciphertext on each password is also a random value in M.
By the message-randomness property of KA, simulator SIM can embed
messages of fresh KA instances into each decryption query, and combining this
with fact (1) above allows for a reduction of EKE instances corresponding to
“wrong” password guesses to the KA’s security.

Let qIC be the bound on the number of queries Z makes to the interfaces of
the (randomized) ideal cipher FHIC, and let qP be the upper-bound on the number
of honest EKE sessions Psid which Z invokes for any identifiers P, sid. 9 Let
εKA.sec and εKA.rand be the upper-bounds on the distinguishing advantage against,
respectively, the security and the random-message properties of the key exchange
scheme KA (see Section 2) of an adversary whose computational resources are
roughly those of an environment Z extended by execution of qIC + qP instances
of the key exchange scheme KA.10

For space-constraint reasons we defer the details of the game changes and
reductions to Appendix B, but we show the code of all successive games in
Figure 9. By the arguments for indistinguishability of successive games, the total
distinguishing advantage of environment Z between the real-world and the ideal-
world interaction is upper-bounded by the following expression, which sums up
the bounds given by equations (8), (9), (10), (11) in Appendix B:

(qIC + qP)

[
1

|R|
·
{

2qP + qIC + 2 · qIC + qP
|M|

}
+ εKA.rand + qP · εKA.sec

]
(2)

Since this quantity is negligible if R = {0, 1}n for n = O(κ), it implies
Theorem 2.

Notes on Exact Security. The dominating factors are (qIC + qP)2/|R| and
(qIC + qP) · (εKA.rand + qP · εKA.sec). The first factor is due to possible collisions
in Half-Ideal Cipher, and it is unavoidable using an arbitrary HIC realization

9 We assume that Z invokes at most two sessions for any fixed identifier sid.
10 This bound involves qIC + qP instead of qP key exchange instances because our

reductions to KA security run KA.msg for each adversarial AdvDec query to FHIC.

22

Game 0: real-world interaction

initialization

Initialize Cset = {} and ∀ p̂w empty THICp̂w

on (NewSession, sid,P,CP, pw) to P:

fullsid ← order(sid,P,CP), b ← bit(P,CP), p̂w ←
(fullsid, b, pw)

(x,M)
r←− KA.msg

c← FHIC.Enc(p̂w ,M)

save (sid,P,CP, fullsid, b, pw , x, c,⊥), output c

on message ĉ to session Psid (accept only one):

if ∃ record (sid,P,CP, fullsid, b, pw , x, ·,⊥):

(r̂, M̂)← FHIC.AdvDec((fullsid,¬b, pw), ĉ)

K ← KA.key(x, M̂) and output (sid,P,K)

on query FHIC.Enc(p̂w ,M):

r
r←− R, set m← (r,M)

If ∃ c s.t. (m, c) ∈ THICp̂w :
return c

else:
pick c

r←− THICp̂w .c,
add c to Cset and (m, c) to THICp̂w

return c

on query FHIC.AdvEnc(p̂w ,m, T):

if ∃ c s.t. (m, c) ∈ THICp̂w :
return c

else:
s

r←− THICp̂w .s[T], set c← (s, T),
add c to Cset and (m, c) to THICp̂w

return c

on query FHIC.AdvDec(p̂w , c):

if ∃ m s.t. (m, c) ∈ THICp̂w :
return m

else:
m

r←− THICp̂w .m, add (m, c) to THICp̂w

return m

Game 1: randomizing protocol
communication

on (NewSession, sid,P,CP, pw) to P:

set (fullsid, b, p̂w) as in Game 0

(x,M)
r←− KA.msg, r

r←− R, c
r←− D

abort if ((r,M), ∗) ∈ THICp̂w or c ∈ Cset

add ((r,M), c) to THICp̂w

save (sid,P,CP, fullsid, b, pw , x, c,⊥), output c

Game 2: binding adversarial ciphertexts
to passwords

on FHIC.Enc(p̂w ,M) or FHIC.AdvEnc(p̂w ,m, T):

Before adding c to Cset, do the following:
abort if c ∈ Cset
set c2pw[c]← p̂w

Game 3: adding trapdoors to decryption

on query FHIC.AdvDec(p̂w , c):

if ∃m s.t. (m, c) ∈ THICp̂w return m, otherwise:

(x,M)
r←− KA.msg(1κ), r

r←− R, m← (r,M)
abort if (m, ∗) ∈ THICp̂w

add (m, c) to THICp̂w

save (backdoor, c, p̂w , x), return m

Game 4: KA messages via AdvDec

on (NewSession, sid,P,CP, pw) to P:

set (fullsid, b, p̂w) as in Game 0

c
r←− D, abort if c ∈ Cset, otherwise add c to Cset

query FHIC.AdvDec(p̂w , c)
retrieve (backdoor, c, p̂w , x)

save (sid,P,CP, fullsid, b, pw , x, c,⊥), output c

Game 5: extracting passwords

on message ĉ to session Psid:

if ∃ record rec = (sid,P,CP, fullsid, b, pw , x, c,⊥):

if ∃ record (sid,CP,P, fullsid,¬b, pw , ·, ĉ, K̂)

s.t. Z sent c to CPsid:
K ← K̂

else:
p̂w ← c2pw[ĉ]
if p̂w = (fullsid,¬b, pw):

retrieve ((r̂, M̂), ĉ) from THICp̂w ,

set K ← KA.key(x, M̂)
else:

K
r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, b, pw , x, c,K)

output (sid,P,K)

Game 6: delaying password usage

on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP)

c
r←− D, abort if c ∈ Cset, otherwise add c to Cset

save (sid,P,CP, fullsid, b, pw ,⊥, c,⊥), output c

on message ĉ to session Psid:

if ∃ record (sid,P,CP, fullsid, b, pw ,⊥, c,⊥):

if ∃ record (sid,CP,P, fullsid,¬b, pw ,⊥, ĉ, K̂):

K ← K̂
else:

p̂w ← c2pw[ĉ]
if p̂w = (fullsid,¬b, pw):

query FHIC.AdvDec((fullsid, b, pw), c),
retrieve (backdoor, c, ·, x)

retrieve ((r̂, M̂), ĉ) from THICp̂w ,

set K ← KA.key(x, M̂)
else:

K
r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, b, pw , x, c,K)

output (sid,P,K)

Fig. 9: Game changes for the proof of Theorem 2 (compare Fig. 8 for notation)

23

because it is the probability of generating the same ciphertext c as an
encryption of two different KA instances under two different passwords, which
would also form an explicit attack on the security of EKE (the adversary would
effectively make two password guesses in one on-line interaction). However,
whereas the bound (qIC)2/|R| is tight if the encryption is modeled as a
Half-Ideal Cipher, we do not know if it is tight in relation to the specific
modified 2-Feistel instantiation of Half-Ideal Cipher, because we do not know
how to stage an explicit attack on EKE using modified 2-Feistel along these
lines. This relates to the fact that whereas the modified 2-Feistel realizes
functionality FHIC, this functionality allows more freedom to the adversary
than the modified 2-Feistel construction. Namely, whereas FHIC allows the
adversary to encrypt any messages M using a ciphertext c = (s, T) where T
can be freely set, the same is not true about the modified 2-Feistel
construction, where for any fixed M the adversary can choose T from the set of
values of the form T = M/H(pw, r) for some r.

The second factor is due to reductions to KA security properties. Note that
some KA schemes, e.g. Diffie-Hellman, have perfect message-randomness, i.e.
εKA.rand = 0. Further, if the KA scheme is random self-reducible, as is Diffie-
Hellman, then this factor can be reduced to εKA.sec because a reduction to KA
security for the transition between Games 4 and 5, see Appendix B, can then
be modified so that it deals with all honest sessions at once instead of staging a
hybrid argument over all sessions, and it embeds randomized versions of the KA
challenge into each decryption query rather than guessing a target query.

5.1 EKE with Half-Ideal Cipher: the KEM version

In Figure 10 we show protocol EKE-KEM, which is a KEM version of the EKE
protocol using a Half-Ideal Cipher. In the 1-flow protocol EKE considered in
Figure 7, the message flows are generated by a single-round KA scheme, whereas
here we consider an EKE variant which is built from any two-flow key exchange,
i.e. KEM, see Section 2.2. The drawback is that it is 2-flow instead of 1-flow, but
the benefits are that the HIC can be used only for one message, so if KEM is
instantiated with Diffie-Hellman and HIC is implemented using m2F, this implies
a single RO hash onto a group per party instead of two such hashes. Moreover,
this version of EKE can use any CPA-secure KEM as a black box, as long as the
KEM satisfies the anonymity and uniform public keys properties, which implies,
e.g., lattice-based UC PAKE given any lattice-based KEM with these properties.

Note that in the protocol of Fig. 10 party P0 outputs a random session key
if the key confirmation message τ fails to verify. This is done only so that the
protocol conforms to the implicit-authentication functionality FpwKE. In practice
P0 could output ⊥ in this case, and this would implement explicit authentication
in the P1-to-P0 direction.

Theorem 3. If KEM is IND secure, anonymous, and has uniform public keys
in domain PK (see Section 2.2), HIC is a UC Half-Ideal Cipher in domain
R×PK, and H is an RO hash, then protocol EKE-KEM realizes the UC PAKE
functionality FpwKE.

24

• KEM scheme KEM = (kg, enc, dec) with public key space PK
• Half-Ideal Cipher HIC on domain R×PK for R = {0, 1}Ω(κ)

• Random oracle hash H onto {0, 1}κ

P0 on NewSession(sid,P0,P1, pw0) P1 on NewSession(sid,P1,P0, pw1)

(Assume P0 ≤lex P1 and let fullsid = (sid,P0,P1))

(sk , pk)
r←− kg

c← HIC.Enc((fullsid, pw0), pk) -c
pk ′ ← HIC.Dec((fullsid, pw1), c)

(e,K)← enc(pk ′),
τ ← H(K , pk ′)

K ← dec(sk , e) � e, τ
output K1 ← H(K)

if τ = H(K , pk) output K0 ← H(K), else K0
r←− {0, 1}κ

Fig. 10: EKE-KEM: Encrypted Key Exchange with Half-Ideal Cipher (KEM version)

The proof of Theorem 3 is deferred to Appendix C. It follows the same
blueprint as the proof of Theorem 2. The most important intuition needed for
the adaptation of the proof of Theorem 2 to the proof of Theorem 3 is why
it works for KEMs that satisfy the anonymity property: The key issue is that
we need anonymity of the KEM ciphertext e only for honest keys pk and not
for adversarial ones, and the reason for this is that the only non-random pk
under which an honest party encrypts is the key pk decrypted under a unique
password guess pw∗ used in the adversarial ciphertext c this party receives. If
pw∗ equals to P1’s password pw then this session is already successfully attacked,
so the non-randomness of P1’s ciphertext is not an issue. But if pw∗ 6= pw
then KEM ciphertext e is effectively encrypted under key pk ′ = AdvDec(pw , c)
which is random, and the key confirmation works as a commitment to the KEM
key pk decrypted from HIC ciphertext c, hence also to the password used in
that decryption. This commitment is also effectively encrypted under the KEM
session key K , hence it can be verified only by a party which created pk and
HIC-encrypted it under the right pw . Here we again rely on the property of HIC,
which just like IC assures that decryption under any password except for the
unique password committed in the ciphertext results in a random plaintext, i.e.
a random KEM public key pk , which makes the KEM session key K encrypted
under such pk hidden to the adversary by KEM security.

We note that the key confirmation could involve directly pw instead of pk ,
but pk is a commitment to pw unless the adversary creates a collision in HIC
plaintext, and using pk instead of pw lets P0 erase pw after sending its first
message. This way an adaptive compromise on party P0 during protocol
execution allows for offline dictionary attack on the password, but does not
leak it straight away. (Note that adaptive party compromise is not part of our
security model.) We note also that RO hash H can probably be replaced by a
key derivation function which is both a CRH (because it needs to commit to
pk) and a PRF (because it must encrypt this commitment under K), but since

25

HIC implies RO hash (and indeed our m2Fuses it) we opt for the simpler
option of RO hash to compute the authenticator.

6 Applications of Half-Ideal Cipher to aPAKE

Gu et al. [41] proposed an asymmetric PAKE protocol called KHAPE which is
a generic compiler from any UC key-hiding Authenticated Key Exchange
(AKE), using an Ideal Cipher on the domain formed by (private, public) key
pairs of the AKE. We show that KHAPE realizes UC aPAKE if IC is replaced
by HIC. For lack of space the proof of the following Theorem is deferred to
Appendix D. For reference, for AKE functionality FkhAKE see e.g., [41], and for
aPAKE functionality FaPAKE see Figure 24 in Appendix F.

Theorem 4. Protocol KHAPE of [41] realizes the UC aPAKE functionality
FaPAKE if the AKE protocol realizes the Key-Hiding AKE functionality FkhAKE

assuming that kdf is a secure PRF and HIC is a half-ideal cipher over message
space of private and public key pairs in AKE.

We note that Freitas et al. [37] showed a UC aPAKE which improves upon
protocol KHAPE of [41] in round complexity. The aPAKE of [37] relies on IC in
a similar way as protocol KHAPE, and the proof therein should also generalize
to the case when IC is replaced by HIC.

References

1. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.:
Universally composable relaxed password authenticated key exchange. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol.
12170, pp. 278–307. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/
978-3-030-56784-2_10

2. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party
password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (Apr 2008).
https://doi.org/10.1007/978-3-540-79263-5_22

3. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram,
V., von Maurich, I., Misoczki, R., Niederhagen, R., Paterson, K.G., Persichetti,
E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai, C.J., Tomlinson, M.,
Wang, W.: Classic mceliece: Nist round 3 submission, https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-3-submissions (2021)

4. Alkim, .E., Bos, J.W., Ducas, L., Longa, P., Mironov, I., Naehrig, M.,
Nikolaenko, V., Peikert, C., Raghunathan, A., Stebil, D.: Frodokem: Nist round
3 submission, https://csrc.nist.gov/Projects/post-quantum-cryptography/

round-3-submissions (2021)
5. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the

indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (Aug
2013). https://doi.org/10.1007/978-3-642-40041-4_29

26

https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-540-79263-5_22
https://doi.org/10.1007/978-3-540-79263-5_22
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-40041-4_29
https://doi.org/10.1007/978-3-642-40041-4_29

6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT
2012. pp. 719–737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

7. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1_33

8. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Advances in Cryptology – EUROCRYPT 2000. pp.
139–155. Springer (2000)

9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

10. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: IEEE Computer Society Symposium on
Research in Security and Privacy – S&P 1992. pp. 72–84. IEEE (1992)

11. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices
revisited. In: Public-Key Cryptography – PKC 2018. Public-Key Cryptography –
PKC 2018, vol. 10770, pp. 644–674. Springer (2018). https://doi.org/10.1007/
978-3-319-76581-5_22

12. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013. pp. 967–980. ACM Press (Nov 2013).
https://doi.org/10.1145/2508859.2516734

13. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz, K.,
Schneider, T., Schwabe, P., Standaert, F.X., Todo, Y., Viguier, B.: Gimli: a cross-
platform permutation. Cryptology ePrint Archive, Report 2017/630 (2017), http:
//eprint.iacr.org/2017/630

14. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (May 2013). https://doi.org/10.1007/978-3-642-38348-9_19

15. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (Feb 2002).
https://doi.org/10.1007/3-540-45760-7_9

16. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (Aug 2002). https://doi.org/10.

1007/3-540-45708-9_21

17. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: Crystals - kyber: A cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (EuroS
P). pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

18. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (May 2000). https://doi.org/10.
1007/3-540-45539-6_12

19. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science – FOCS 2001.
pp. 136–145. IEEE (2001)

27

https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
http://eprint.iacr.org/2017/630
http://eprint.iacr.org/2017/630
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12

20. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Advances in Cryptology – EUROCRYPT 2005.
pp. 404–421. Springer (2005)

21. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. Cryptology ePrint Archive, Report 2005/196 (2005),
http://eprint.iacr.org/2005/196

22. Coron, J.S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (Feb 2010). https://doi.org/10.1007/978-3-642-11799-2_17

23. Coron, J.S., Patarin, J., Seurin, Y.: The random oracle model and the ideal
cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 1–20. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/
978-3-540-85174-5_1

24. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is
indifferentiable from an ideal cipher. In: Fischlin, M., Coron, J.S. (eds.)
EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg
(May 2016). https://doi.org/10.1007/978-3-662-49896-5_23

25. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff.
IACR Trans. Symm. Cryptol. 2018(4), 1–38 (2018). https://doi.org/10.13154/
tosc.v2018.i4.1-38

26. Dai, Y., Seurin, Y., Steinberger, J.P., Thiruvengadam, A.: Indifferentiability of
iterated Even-Mansour ciphers with non-idealized key-schedules: Five rounds are
necessary and sufficient. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III.
LNCS, vol. 10403, pp. 524–555. Springer, Heidelberg (Aug 2017). https://doi.
org/10.1007/978-3-319-63697-9_18

27. Dai, Y., Steinberger, J.P.: Indifferentiability of 8-round Feistel networks. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814,
pp. 95–120. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/

978-3-662-53018-4_4

28. D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. In: Joux, A., Nitaj,
A., Rachidi, T. (eds.) Progress in Cryptology – AFRICACRYPT 2018. pp. 282–
305. Springer International Publishing, Cham (2018)

29. Desai, A.: The security of all-or-nothing encryption: Protecting against exhaustive
key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 359–375.
Springer, Heidelberg (Aug 2000). https://doi.org/10.1007/3-540-44598-6_23

30. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

31. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure password
authenticated key exchange based on rlwe for the post-quantum world. In:
Handschuh, H. (ed.) Topics in Cryptology – CT-RSA 2017. pp. 183–204. Springer
International Publishing, Cham (2017)

32. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(May 2007). https://doi.org/10.1007/978-3-540-72540-4_31

33. Dodis, Y., Stam, M., Steinberger, J.P., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II.
LNCS, vol. 9666, pp. 679–704. Springer, Heidelberg (May 2016). https://doi.org/
10.1007/978-3-662-49896-5_24

28

http://eprint.iacr.org/2005/196
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24

34. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT’91.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (Nov 1993). https://doi.org/
10.1007/3-540-57332-1_17

35. Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., Wood, C.: Hashing
to elliptic curves, irft-cfrg active draft, https://datatracker.ietf.org/doc/

draft-irtf-cfrg-hash-to-curve/ (2022)
36. Freitas Dos Santos, B., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on

groups with applications to UC (a)PAKE. In: EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer (2023)

37. Freitas Dos Santos, B., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE
with low computation and communication. In: EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer (2022)

38. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666,
pp. 537–554. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/

3-540-48405-1_34

39. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based key
exchange resilient to server compromise. In: Advances in Cryptology – CRYPTO
2006. pp. 142–159. Springer (2006)

40. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security. p. 516–525. CCS ’10, Association for Computing
Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1866307.

1866365, https://doi.org/10.1145/1866307.1866365
41. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: Asymmetric PAKE from key-hiding

key exchange. In: Advances in Cryptology - Crypto 2021. pp. 701–730 (2021),
https://ia.cr/2021/873

42. Guo, C., Lin, D.: Improved domain extender for the ideal cipher.
Cryptography Commun. 7(4), 509–533 (dec 2015). https://doi.org/10.

1007/s12095-015-0128-7, https://doi.org/10.1007/s12095-015-0128-7
43. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key

cryptosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. pp. 267–288.
Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

44. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC. pp. 89–98. ACM Press (Jun 2011). https://doi.org/10.1145/
1993636.1993650

45. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (Feb 2002).
https://doi.org/10.1007/3-540-45661-9_19

46. Jiang, S., Gong, G., He, J., Nguyen, K., Wang, H.: Pakes: New framework, new
techniques and more efficient lattice-based constructions in the standard model. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography
– PKC 2020. pp. 396–427. Springer International Publishing, Cham (2020)

47. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices (2009)

29

https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1145/1866307.1866365
https://doi.org/10.1145/1866307.1866365
https://doi.org/10.1145/1866307.1866365
https://doi.org/10.1145/1866307.1866365
https://doi.org/10.1145/1866307.1866365
https://ia.cr/2021/873
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1007/3-540-45661-9_19
https://doi.org/10.1007/3-540-45661-9_19

48. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 252–267. Springer, Heidelberg
(Aug 1996). https://doi.org/10.1007/3-540-68697-5_20

49. Kim, T., Tibouchi, M.: Invalid curve attacks in a GLS setting. In: Tanaka, K.,
Suga, Y. (eds.) IWSEC 15. LNCS, vol. 9241, pp. 41–55. Springer, Heidelberg (Aug
2015). https://doi.org/10.1007/978-3-319-22425-1_3

50. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(Aug 2005). https://doi.org/10.1007/11535218_33

51. Maram, V., Grubbs, P., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: EUROCRYPT 2022 - 41st Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer (2022)

52. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol, https://signal.
org/docs/specifications/x3dh/ (2016)

53. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n
OT from programmable-once public functions. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020. (2020).
https://doi.org/10.1145/3372297.3417870, https://eprint.iacr.org/2020/

1043

54. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (Aug 1990).
https://doi.org/10.1007/0-387-34805-0_40

55. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block
ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS,
vol. 773, pp. 368–378. Springer, Heidelberg (Aug 1994). https://doi.org/10.

1007/3-540-48329-2_31

56. Shannon, C.E.: Communication theory of secrecy systems. The Bell System
Technical Journal 28(4), 656–715 (1949). https://doi.org/10.1002/j.

1538-7305.1949.tb00928.x

57. Tibouchi, M.: Elligator squared: Uniform points on elliptic curves of prime order as
uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 139–156. Springer, Heidelberg (Mar 2014). https://doi.org/10.

1007/978-3-662-45472-5_10

58. Winternitz, R.S.: Producing a one-way hash function from DES. In: Chaum, D.
(ed.) CRYPTO’83. pp. 203–207. Plenum Press, New York, USA (1983)

59. Xagawa, K.: Anonymity of nist pqc round 3 kems. In: EUROCRYPT 2022 - 41st
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer (2022)

60. Zhang, J., Yu, Y.: Two-round pake from approximate sph and instantiations from
lattices. In: ASIACRYPT (3). pp. 37–67. Springer (2017). https://doi.org/10.
1007/978-3-319-70700-6_2

A Game changes for Theorem 1

In this section we present the game changes used in our proof of Theorem 1. We
refer the reader to Section 4 for the notation, and to Figures 4 and 5 for the
specification of all successive games.

30

https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/978-3-319-22425-1_3
https://doi.org/10.1007/978-3-319-22425-1_3
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1145/3372297.3417870
https://doi.org/10.1145/3372297.3417870
https://eprint.iacr.org/2020/1043
https://eprint.iacr.org/2020/1043
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2

Let Pi be the probability that the environment Z outputs 1 when interacting
with the i-th game. We will show that |Pi − Pi+1| is negligible for every i.

Game 0 (ideal world): This is the ideal-world game played between Z and
SIM. We describe it formally in Figure 4, except that Game 0 omits the gray
boxes and AdvDec is answered just as in our FHIC construction: (r,M)

r←− {m ∈
{0, 1}n ×G : 6 ∃ĉ s.t. (m̂, ĉ) ∈ THICpw}.

Game 1 (adding usedR and randomizing AdvDec): In this first game change
we start by randomizing AdvDec and then adding aborts for certain accesses to
the randomness r used by m2F, see Figure 4. We randomize AdvDec(pw , (s, T))
by picking (r,M)

r←− D and then aborting if this pair ((r,M), (s, T)) happens to
be in the table THICpw . This is clearly a negligible change, in fact, as long as this
negligible abort (which happens with probability at most |THICpw |/(2n · |G|))
does not happen then the games are the same.

Moreover, we want to avoid distinct (fresh)11 calls to Enc and Dec reusing the
same r (or them being called after TH(pw , r) has been set). This is motivated
by the fact that the Feistel circuit would impose, for a plaintext-ciphertext pair
((r,M), (s, T)) ∈ THICpw , the relation M/T = H(pw , r). If the same (pw , r) pair
were used for multiple calls, then we can’t expect M/T to be the same except
with negligible probability, and thus we wouldn’t be able to embed the correct
value (since there are multiple) into TH. Similarly, if the r used by m2F is already
at TH, the adversary could notice the discrepancy to the relation in the Feistel
circuit. In fact, in the current game a direct call to m2F by the environment has
no relationship to the other oracle tables, and in particular we need to disallow
the adversary to query TH(pw , r) right after such a m2F invocation. This is
a valid game change (i.e. the adversary can’t force such an abort except with
negligible probability) since the r used is not leaked, neither for a Dec nor an Enc
call. The exception is when Z does run the decryption circuit (hence learning
r through the BC.Dec call that is part of it) after the m2F call. To avoid this
we introduce a flag denoted m2F for such calls before the decryption circuit is
attempted.

Now it is clear that the size
∑
r |usedRpw | of the set of used r is bound by

qm2F + qBC. Hence no usedR abort happens except with (negligible) probability
(qm2F + qBC) · (qm2F + qBC + qH)/2n.

Therefore this game change is indistinguishable except with probability

|P0 − P1| ≤
(qm2F + qBC)2

2n · |G|
+

(qm2F + qBC) · (qm2F + qBC + qH)

2n
≤ 2 · q

2

2n
(3)

Game 2 (replacing decryption m2F.Dec by circuit): We replace queries to
m2F.Dec by the circuit of our construction. First we argue that this is a valid
change for a fresh m2F.Dec query, see Fig. 11.

11 In this paragraph, and henceforth, a call usually, but not always, implicitly means
a fresh call, i.e., this call is not a simple table lookup.

31

In this simplified case the BC.Dec call is also fresh, in either the current
game or the previous. This implies that it calls a fresh AdvDec itself, fixing
the H table so that the output M is the same as in Game 1, namely it comes
from an AdvDec query. Suppose instead that (k, r, s) ∈ TBC for some r. Then
this triple was added to the table by either a BC.Enc or BC.Dec query. The
latter cannot happen since such a query would have inputs (k, s) and therefore
its AdvDec(pw , (s, T)) call would have populated THICpw - note that we are
using the fact that bckey.col abort was not reached. Similarly, a BC.Enc(k, r)
that returns s would have run (s, T) ← FHIC.AdvEnc(pw , (r,M), T) so that the
m2F.Dec query couldn’t be fresh either. We conclude that the newly introduced
BC.Dec calls are fresh, and that these queries make fresh calls to FHIC.AdvDec.

But then the internal AdvDec call is generating (r,M) uniformly, so r is
uniform. There are only two side effect of this game change in the environment’s
view: 1) h ← TH(pw , r) now satisfies h = M/T , while in the previous game
this is not true right after the m2F.Dec query (an H(pw , r) query would return
an independent, uniform value) and 2) (k, r, s) is added to TBC where k =
H′(pw , T). But we added r to usedR with flag m2F and our usedR aborts in Game
1 guarantee that there is no call H(pw , r) or TBC(k, r) before the adversary itself
runs the decryption circuit, i.e. BC.Dec(k, s). But this call would embed the same
relationship in the TH and TBC table since bckey.abort does not happen, so this
change is not visible to the adversary.

We do need to take into consideration the new aborts that are possible by
this game change. The H′ query that is now implicitly called by m2F.Dec can
only abort if it is fresh and there is a collision with the H′ table or TBC table
(see definition of H′ queries in Figure 3). This happens with probability at most
(|TH′|+|TBC|)/2µ for each added H′ call. The BC.Dec procedure, which if fresh is
executing its innermost if, will only abort if either AdvDec aborts, advdec.abort
is reached or rcol.abort happens. As we argued in the previous paragraph, r is
uniform hence we obtain the negligible probability bound |THICpw |/(2n×|G|)+
|usedRpw |/2n + |TBCk|/2n + |THpw |/2n ≤ 4 · q/2n.

Finally, looking at our argument above, we see that even if BC.Dec(k, s)
was not a fresh query during a (necessarily non fresh) m2F.Dec call, the r paired
with (k, s) in the table TBC satisfies (r,TH(pw , r) ·T) = FHIC.AdvDec(pw , (s, T))
where k = TH′(pw , T) . As we saw above this follows from how both BC.Enc and
BC.Dec are defined. We conclude that the change to the circuit is valid even for
non fresh AdvDec queries and we get

|P2 − P1| ≤ q2 ·
{

2

2µ
+

4

2n

}
(4)

Game 3 (using AdvEnc to answer Enc queries): We replace m2F.Enc(pw ,M)
by a call to FHIC.AdvEnc(pw , (r,M), T) using uniform T . The goal is to link the
AdvEnc queries done in BC.Enc with the way m2F.Enc is computed - this will
help with our next goal of changing Enc to match the circuit. This modification
skews the distribution of THICpw , but the statistical difference this introduces
is negligible. The difference is that in Game 2 (s, T) is chosen uniformly from

32

on query m2F.Dec(pw , (s, T)):

if 6 ∃(r,M) s.t. ((r,M), (s, T)) ∈ THICpw :
k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
add tag m2F to r ∈ usedRpw

return M

Fig. 11: Fresh queries to m2F.Dec are replaced by the circuit

set {c ∈ {0, 1}n × G : 6 ∃m̂ s.t. (m̂, c) ∈ THICpw}, while in Game 3 first T is
chosen uniformly in G and then s is chosen uniformly from set {s ∈ {0, 1}n :
6 ∃m̂ s.t. (m̂, (s, T)) ∈ THICpw}. Since there are at most q elements in table
THICpw , the skew this introduces on the distribution of a chosen pair (s, T) is at
most 4q/(2n · |G|) per encryption query, leading to the following upper bound:

|P3 − P2| ≤
4 · q · qEnc
2n · |G|

≤ 4 · q2

2n · |G|
(5)

Game 4 (m2F.Enc can also be replaced by the two-round Feistel circuit): We
now assert that replacing Enc from the previous game by the m2F encryption
circuit is also a valid game change.

Since we check r 6∈ usedRpw , the r that is picked by Enc does not appear in
the H table and thus T ←M/H(pw , r) will assign an uniform value to T just as
Game 3 does. The s ← BC.Enc(k, r) call, much like our BC.Dec query in Game
2, will in turn call AdvEnc indirectly for m2F.Enc making the output of the latter
the same as in the previous game. As in Game 2, the side effect of modifying Enc
in this way is that now we have certain relationships between the table values.
But since r is by definition not leaked by Enc this is a negligible change just
as before. In fact, looking at the newly introduced aborts, we see that the only
possible ones (note we may assume r 6∈ usedRpw) are the ones inside the H′

query. This leads us to the bound

|P4 − P3| ≤
2q2

2µ
(6)

Game 5 (H is a random oracle): If we are to reach the real-world game
described in Figure 9, we need to show that H is indistinguishable from a random
oracle. Currently, the only obstacle in the way of this proof is that TH is not
only modified in response to a (direct or indirect) H query, but it is also changed
during a BC.Dec call. In this game we drop AdvDec usage in BC.Dec and make
clearer that this modification to TH is still uniform. We start this process by
expanding BC.Dec, see Figure 12.

33

on query BC.Dec(k, s)

if 6 ∃ r s.t. (k, r, s) ∈ TBC:
if k = TH′(pw , T):

if 6 ∃m s.t. (m, (s, T)) ∈ THICpw :

(r, h)
r←− D

if r ∈ usedRpw abort, else add r to it with tag m2F
M ← h · T
if ∃ĉ s.t. ((r,M), ĉ) ∈ THICpw then abort
add ((r,M), (s, T)) to THICpw

else:
let ((r,M), (s, T)) ∈ THICpw

h←M · T−1

if ∃ŝ s.t. (k, r, ŝ) ∈ TBC then abort (advdec.abort)

if ∃ĥ s.t. (pw , r, ĥ) ∈ TH then abort (rcol.abort)
add (pw , r, h) to TH

else:
r

r←− {r ∈ {0, 1}n : 6 ∃ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

remove tag m2F from record r ∈ usedRpw if k = TH′(pw , T)
return r

Fig. 12: Expanding BC.Dec

In fact, if we look thoroughly at the current game, we notice that the
innermost else in this figure of the expanded BC.Dec query will never be
reached. Namely, say a (necessarily fresh) BC.Dec query reaches this line in the
execution. Then there is m such that (m, (s, T)) is in THICpw . But since we
removed direct AdvEnc and AdvDec queries from m2F invocations, this tuple
((r,M), (s, T)) must have been added to THICpw by a BC query. The only
BC.Dec query that could have caused ((·, ·), (s, T)) to have been added to
THICpw is one with (k, s) as input, which would make the current query not
fresh (i.e. a contradiction). Similarly, a BC.Enc query couldn’t have added
((·, ·), (s, T)) to THICpw since this implies that (k, ·, s) would have been added
to TBC - which again would contradict the freshness of the current BC.Dec
query.

Moreover, considering the above we can conclude that if either ∃ĥ s.t.
(pw , r, ĥ) ∈ TH or ∃ŝ s.t. (k, r, ŝ) ∈ TBC with k = TH′(pw , T) is true, then
r ∈ usedRpw . In particular, if the latter is not the case then a call to H(pw , r)
returns an uniform h. So we can let a H query in BC.Dec pick h by itself,
instead of doing (r, h)

r←− D ourselves. We can also assume that (k, r) is
available in the TBC table, so that we are allowed to drop this abort in BC.Dec
as it is already caught by the usedRpw abort.

The above remarks allows us to simplify BC.Dec considerably for Game 5
while not changing the view of the environment: P5 = P4.

Game 6 (simplifying parameters): With our previous game changes THICpw

is now only accessed/modified by (possibly indirect) BC.Enc and BC.Dec queries.
It is clear from their definition that any call to FHIC.AdvEnc uses the correct T ,
namely these calls return T̂ = T . So there is no need to return T̂ and we can

34

drop this component of the output. Similarly, any tuple ((r,M), (s, T)) ∈ THICpw

satisfies M = TH(pw , r) · T hence we can remove this component of the table
THICpw , i.e., we now use triples (r, (s, T)) and recover M with this equation
when needed. As these are just synctactic changes, the games are the same:
P6 = P5.

Game 7 (replacing (pw , T) by its H′ output): Since there are no collisions
in the H′ table, every (pw , T) pair that appears in a call to FHIC.AdvEnc, or a
modification to THICpw in BC.Dec, corresponds to a unique k s.t.
k := H′(pw , T)12. So we can switch the parameters of the table THIC (and
consequently FHIC.AdvEnc) from (pw , r, T) to (k, r). Besides this, the H queries
in BC.Enc and BC.Dec can be delayed indefinitely until the adversary actually
queries these tables, so we drop these extraneous calls from the definition of
BC.

Once again, since we are avoiding our aborts this game change is immaterial
and we get P7 = P6.

Game 8 (THIC is redundant): We drop THIC altogether, since in the previous
game it is always copied over to TBC. To be precise, if THICk is not empty - which
at this point implies that there exists (a unique) (pw , T) with TH′(pw , T) = k -
then all subsequent (resp. past) accesses and modifications to TBC(k, ·) are (resp.
were) done through invoking FHIC, that is, using THICk. This follows since we
are avoiding bckey.abort.

The resulting FHIC.AdvEnc using TBC directly is presented in Figure 13. As
these queries are now only made during a BC.Enc call, we can actually drop
AdvEnc usage altogether and expand its definition directly in BC.Enc. The result
is that BC.Enc is simplified into the usual idealized block cipher encryption
definition. Likewise, BC.Dec is also simplified but it is not yet the idealized block-
cipher decryption (see next game). Note that for BC.Dec, the check r 6∈ usedRpw

implies that there is no ŝ s.t. (k, r, ŝ) ∈ TBC. As in the previous games, this is
just a syntactic change and P8 = P7.

define FHIC.AdvEnc(k, r)

if 6 ∃s s.t. (k, r, s) ∈ TBC:
s

r←− {ŝ ∈ {0, 1}n : 6 ∃r̂ s.t. (k, r̂, ŝ) ∈ TBC}
add (k, r, s) to TBC

return s

Fig. 13: Replacing usage of THIC by direct access to TBC

The current full game is given in Figure 14.

12 i.e., we could invert such k by k 7→ (pw , T) where (pw , T, k) ∈ TH′.

35

Game 9 (real-world): In Figure 15 we present the real-world game between
the environment and our m2F circuit. This game change consists of dropping the
aborts and changing how r is picked in BC.Dec so as to make TBC consistent
with the standard definition of an ideal-cipher. We refer the reader to Figures
14 and 15.

We start by removing the H′ aborts. As before we can bound |TH′| and |TBC|
by q so that these aborts happen with probability ≤ 2q/2µ. H′ now matches the
real-world definition of Game 9. Then, we modify BC.Dec. We drop the r ∈
usedRpw abort in the innermost if and replace the “remove tag m2F...” line with
“add r to usedRpw ; if it is flagged m2F, remove the flag”. We can do so as long as
this abort does not happen - i.e. except with probability ≤ |usedRpw |/2n ≤ q/2n.
Finally, we compute r as is done in an ideal-cipher even when k = TH′(pw , T)
just as in the real-world. This last change is valid except when our uniform choice
of r in Game 8 collides with another (k, r, ŝ) ∈ TBC. This gives us the bound
|TBC|/2n ≤ q/2n. BC.Dec now matches the real-world in Figure 15 except that
we have the usedRpw line above.

Now, we are at the real-world game except that we have usedRpw aborts in
m2F.Enc, H and BC.Enc. The probability of the first one is trivially bound by
another |usedRpw |/2n ≤ q/2n factor. The last two, much like in our argument for
the change from Game 0 to Game 1, do not happen except when the adversary
is lucky enough to completely guess r since r tagged m2F is never leaked to
the environment. This gives us the following overall bound, which completes the
proof:

|P9 − P8| ≤ q2

{
2

2µ
+

4

2n

}
(7)

B Game changes for Theorem 2

In this section we present the game changes used in our proof of Theorem 2.
We refer the reader to Section 5 for the notation used and to Figure 9 for an
algorithmic description of the games.

Game 0 (real-world game): This is the real world where parties follow the
protocol. Technically, it is an hybrid world where the half-ideal cipher is
replaced by functionality FHIC, and the adversary can query FHIC through
interfaces Enc,AdvEnc,AdvDec.

Game 1 (randomizing protocol communication): We change the game so
ciphertext c sent by Psid is purely random, except the game aborts if plaintext
(r,M) occurred in table THICp̂w or ciphertext c was output by any encryption.
An upper bound on the probability of these aborts is given by

|P0 − P1| ≤ qP (qIC + qP)

(
1

|R|
+

1

|R| · |M|

)
≈ qP (qIC + qP)

|R|
(8)

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

if r ∈ usedRpw abort
T ←M/H(pw , r)
k ← H′(pw , T)
s← BC.Enc(k, r)
assign tag m2F to r in the set usedRpw

return (s, T)

on query m2F.Dec(pw , (s, T)):

k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
if m2F.Dec query was fresh, add tag m2F to r ∈

usedRpw

return M

on query H(pw , r)

if r ∈ usedRpw is tagged m2F, abort, else add r to
usedRpw

if 6 ∃h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on query H′(pw , T)

if 6 ∃k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

if ∃ (p̂w , T̂) s.t. (p̂w , T̂ , k) ∈ TH′ then abort
(col.abort)

if ∃ (r̂, ŝ) s.t. (k, r̂, ŝ) ∈ TBC then abort
(bckey.abort)

add (pw , T, k) to TH′

return k

on query BC.Enc(k, r)

if k = TH′(pw , T):
if r ∈ usedRpw is tagged m2F, abort, else add

r ∈ usedRpw

if 6 ∃ s s.t. (k, r, s) ∈ TBC:

s
r←− {s ∈ {0, 1}n :6 ∃r̂ s.t. (k, r̂, s) ∈ TBC}

add (k, r, s) to TBC
return s

on query BC.Dec(k, s)

if 6 ∃ r s.t. (k, r, s) ∈ TBC:
if ∃ (pw , T) s.t. (pw , T, k) ∈ TH′:

r
r←− {0, 1}n

if r ∈ usedRpw abort, else add r to it
else:
r

r←− {r ∈ {0, 1}n : 6 ∃ŝ s.t. (k, r, ŝ) ∈ TBC}
add (k, r, s) to TBC

remove tag m2F from record r ∈ usedRpw if k =
TH′(pw , T)

return r

Fig. 14: Full description of Game 8: one step away from the real-world

37

Initialization

Let TH be a set of tuples in {0, 1}∗ × {0, 1}n × G,
TH′ be a set of tuples in {0, 1}∗ × G× {0, 1}µ,
and TBC be a set of triples in {0, 1}µ × {0, 1}n × {0, 1}n.

on query m2F.Enc(pw ,M):

r
r←− {0, 1}n

T ←M/H(pw , r)
k ← H′(pw, T)
s← BC.Enc(k, r)
return (s, T)

on query m2F.Dec(pw , (s, T)):

k ← H′(pw, T)
r ← BC.Dec(k, s)
M ← H(pw , r) · T
return M

on query H(pw , r)

if 6 ∃h s.t. (pw , r, h) ∈ TH:

h
r←− G

add (pw , r, h) to TH
return h

on query H′(pw , T)

if 6 ∃k s.t. (pw , T, k) ∈ TH′:

k
r←− {0, 1}µ

add (pw , T, k) to TH′

return k

on query BC.Enc(k, r)

if 6 ∃s s.t. (k, r, s) ∈ TBC:

s
r←− {ŝ ∈ {0, 1}n :6 ∃r̂ s.t. (k, r̂, ŝ) ∈ TBC}

add (k, r, s) to TBC
return s

on query BC.Dec(k, s)

if 6 ∃r s.t. (k, r, s) ∈ TBC:

r
r←− {r̂ ∈ {0, 1}n :6 ∃ŝ s.t. (k, r̂, ŝ) ∈ TBC}

add (k, r, s) to TBC
return r

Fig. 15: Game 9: the real-world interaction between Z and m2F

Game 2 (binding adversarial ciphertexts to passwords): We add two changes
in the processing of both Enc and AdvEnc queries for any key p̂w : If the game
responds to either query by picking a new ciphertext c, it (1) aborts if this
ciphertext is already in set Cset, (2) otherwise it proceeds but also sets c2pw[c]←
p̂w . (Initially c2pw[c] = ⊥ for all inputs.) The second change is purely syntactic,
but the first one introduces a difference upper-bounded by the probability of
encountering such collisions. Since Enc picks ciphertext c at random in the space
of c’s not used for a given key p̂w , while AdvEnc picks only the s part of the
ciphertext c at random from the space of unused s for a given T and key p̂w ,
the upper-bound on these collisions comes from AdvEnc queries which implies

|P1 − P2| ≤
(qIC + qP)2

|R|
(9)

Game 3 (embedding KA messages in decryption queries): In this game we
embed KA messages into every (fresh) adversarial decryption query
AdvDec(p̂w , c) to FHIC, and we save the local state generated with this KA
message associated with (c, p̂w). This change can be thought of as done in two
sub-steps: First we change the decryption so it picks (r,M) at random in
R×G and aborts if ((r,M), ∗) is in table THIC. (Note that before a decryption
query picks (r,M) according to THICp̂w .m, i.e. among pairs which are not yet
in the table.) The difference this introduces is the probability of encountering

38

this abort, which can be upper-bounded as (qIC + qP)2/(|R| · |M|). The second
sub-step is that we pick M according to KA message generation algorithm
KA.msg, and we save local state x generated together with M in record
(backdoor, c, p̂w , x). This second change can be reduced to an attack on the
random-message property of scheme KA. The argument hybridizes over all
decryption queries, where each consecutive hybrid differs by one more
decryption query on which M is generated via KA.msg instead of uniform in G.
By a reduction to the random-message property of our scheme KA the total
difference this change introduces can be upper-bound as (qIC + qP) · εKA.rand.
We conclude that:

|P2 − P3| ≤
(qIC + qP)2

|R| · |M|
+ (qIC + qP) · εKA.rand (10)

Game 4 (delegating KA message generation to AdvDec): We make a
syntactic change in processing NewSession: Rather than picking a random KA
message M , random r, a random ciphertext c, and defining ((r,M), c) as an IC
pair for key p̂w , we pick only random c and define M via a decryption query
FHIC.AdvDec(p̂w , c). Since in Game 3 a decryption query sets (r,M) in the
same way this is only a syntactic change, hence P3 = P4.

Game 5 (extracting passwords and randomizing session keys on “wrong”
passwords): We change how Psid reacts to a received ciphertext ĉ. First of all we
introduce a special processing in case ĉ is sent by a matching session CPsid (i.e. a
session that uses the same sid, same pw , and matching P,CP values) that received
the honest message c sent out by Psid. In this case we short-cut all processing and
simply set the session key output by Psid to the one which was output by CPsid.
Note this corresponds to the case where the environment does not interfere in
the communication between Psid and CPsid. This introduces no change because
such sessions compute the same session keys in all previous games. Secondly, for
all other ĉ cases, instead of using FHIC to decrypt ĉ under stored p̂w , and using
the decrypted plaintext M̂ to compute the session key as K ← KA.key(x, M̂), we
set p̂w = c2pw[ĉ] and consider two cases: If p̂w = (fullsid,¬b, pw) then Game 5
computes K in the same way as in Game 4, except that we render the decryption
query as a retrieval from table THIC ˆ̂pw instead of as a query to FHIC.AdvDec,
but this is only a notational change; In any other case, Game 5 shortcuts this
decryption and key-computation process and outputs a random key K

r←− {0, 1}κ.
The argument that Game 4 is indistinguishable from Game 5 is a hybrid

argument which changes the view in qP substeps, for each FpwKE session Psid

invoked by Z. Note that the only case where there is a difference between the
two games is the last one we described, i.e. if c2pw[ĉ] contains an entry
p̂w 6= (fullsid,¬b, pw).13 This corresponds to two sub-cases: (a) ĉ was created
via an adversarial encryption query on some key p̂w which does not match the
decryption key (fullsid,¬b, pw) that Psid would use in Game 4 to decrypt this
ciphertext (note that this p̂w is unique because of an abort in the case two

13 This includes the case of p̂w = ⊥.

39

encryption queries ever create the same ciphertext); and (b) ĉ was not created
in any encryption query. In either of these two sub-cases Game 4 would
compute K ← KA.key(x, M̂) for M̂ ← FHIC.AdvDec((fullsid,¬b, pw), ĉ), and
since in either case ĉ was not inserted in table THIC(fullsid,¬b,pw) via an
encryption query, this AdvDec query will embed a random KA message into the
decrypted plaintext M̂ .

We will argue that the existence of an adversary who distinguishes with
non-negligible advantage between Games 4 and 5 implies an attack on the
security property of the key exchange scheme KA. Since message M created by
Psid is a random KA message, and we argued above that
M̂ = FHIC.AdvDec((fullsid,¬b, pw), ĉ) is a random KA message as well, the
session key K which Psid outputs in this case in Game 4 is a KA output on an
exchange involving two random KA messages, M and M̂ . It can thus be
replaced by a random string by a reduction to KA security done separately for
each sid, in two sub-steps corresponding to the (at most) two sessions Psid and
CPsid which run on this particular sid. Consider the argument for a fixed session
Psid with corresponding counterparty session CPsid and b ← bit(P,CP): Given
the KA security challenge (M,M̂,K), the reduction does the following: First, it
uses challenge value M when computing the outgoing message c of Psid, i.e. it
uses M from the challenge when processing query (NewSession, sid,P,CP, pw)
in Game 4. Second, it guesses an index i

r←− [1, ..., qIC + qP] of a query to
FHIC.AdvDec using key (fullsid,¬b, pw) and embeds challenge value M̂ into the
decrypted plaintext. (Note that by Game 4 each NewSession query also uses
AdvDec. Notice also that ĉ in this AdvDec query could be equal to ciphertext c′

generated by session CPsid, this corresponds to the adversary passively
connecting two sessions Psid and CPsid which run on matching inputs). Third, if
the guess is right and the adversary sends ciphertext ĉ used in this i-th query
to Psid, the reduction embeds the K challenge value into the session key output
by Psid (if the guess is not right the reduction aborts). If the guess is right and
case (b) occurs, the reduction reproduces how Psid acts in Game 4 if K is the
real key corresponding to KA instance (M, M̂), and it reproduces how Psid acts
in Game 5 if K is random. Since the right guess occurs with probability
1/(qIC + qP) and the identity of the index i does not affect the view the
reduction produces before the abort, and the argument goes by a hybrid over
all honest party sessions, we arrive at the following upper-bound:

|P4 − P5| ≤
(qIC + qP)2

|R| · |M|
+ qP (qIC + qP) · εKA.sec (11)

Game 6 (delaying password usage): In this game we delay using the
password pw of session Psid to decrypt (and consequently embed the backdoor
into) its honest outgoing message c to the moment Psid receives an incoming
message ĉ. Moreover, we perform this decryption only in the case adversary
created ĉ via encryption under key (fullsid,¬b, pw). Since Game 5 does not use
the decrypted value M and the associated trapdoor x until this exact situation
occurs, postponing this decryption does not matter as long as item (∗, c) is not

40

written into table THIC(fullsid,b,pw) via an encryption query. However, the latter
cannot happen in Game 5 because each NewSession and each encryption
queries generate disjoint ciphertexts (a collision in the ciphertexts created by
any of these queries leads to an abort), which implies that P5 = P6.

Game 7 (ideal-world game implied by FpwKE and SIM): This is the ideal-
world game induced by functionality FpwKE interacting with simulator SIM of
Figure 8. In that interaction FpwKE creates a session record with password pw in
it, but FpwKE does not pass pw to SIM. However, SIM picks Psid’s c at random and
aborts if c ∈ Cset, which is how NewSession processing is done in Game 6. Note
also that SIM replies to Enc or AdvEnc queries in a way which matches processing
of these queries starting from Game 2, and that it replies to AdvDec queries in
a way which matches processing of these queries starting from Game 3. Finally,
when the environment sends ĉ to session Psid, we have the following cases:

1. Message ĉ was sent by counterparty session CPsid which matches session Psid

in session identifier sid and party identifiers (P,CP). This case is detected by
the simulator SIM who can check if identifiers (sid,P,CP) of the two sessions
match, and it corresponds to step 1 in SIM’s processing of ĉ. In this case SIM
sends (NewKey, sid,P,⊥) to FpwKE in which case FpwKE, since this NewKey
was not proceeded by a TestPwd so session Psid is marked fresh, does either
of the following two things: (case 1) if the two sessions run on the same
password and CPsid completed while marked fresh, which happens only if the
adversary sent (to CPsid) the unmodified ciphertext c output by Psid, then
FpwKE makes key K output by Psid equal to key K̂ output by CPsid; and (case
2) in any other case FpwKE picks key K output by Psid at random.
Note that this is exactly how Game 6 processes delivery of ĉ output by
CPsid as well. Case 1 corresponds to the first check performed by ĉ-delivery
processing code of Game 6 which assigns K ← K̂ if all inputs of Psid and
CPsid match and the adversary delivered the ciphertext output by Psid to
CPsid. Case 2 means that the ĉ-delivery processing code of Game 6 will
recover p̂w ← c2pw[ĉ] and check if p̂w = (fullsid,¬b, pw). In case 2, where ĉ
is output by CPsid value c2pw[ĉ] is guaranteed to be ⊥ because Game 6, just
like the ideal-world interaction, does not allow collisions between ciphertexts
output by honest sessions and ciphertexts output via Enc or AdvEnc queries.
Therefore ĉ-delivery processing code of Game 6 will jump to the second
“else” clause and set K

r←− {0, 1}κ, matching the behavior of the ideal-world
interaction.

2. If message ĉ was not sent by counterparty session CPsid which matches session
Psid in its session+party identifiers inputs, i.e. if ĉ is a ciphertext created by
the adversary (or output by any other session than the intended counterparty
of Psid), this corresponds to 2. in SIM’s definition of its processing of ĉ, which
has two sub-cases based on the value p̂w ← c2pw[ĉ]:
(a) In (a) SIM processes the case when p̂w = ⊥ or p̂w 6= ⊥ but p̂w does not

have the form (fullsid,¬b, pw∗) for any password pw∗ (which means
that p̂w is guaranteed not to match the key Psid would use to decrypt ĉ
regardless of the password Psid uses). In that case SIM sends

41

(TestPwd, sid,P,⊥) to FpwKE before sending (NewKey, sid,P,⊥), which
means that FpwKE marks this session as interrupted and sets its key as
K

r←− {0, 1}κ.
Observe that in this case Game 6 will set K in the same way as in
the above SIM+FpwKE interaction, because p̂w 6= (fullsid,¬b, pw∗) for
any pw∗ including pw held by Psid, so the ĉ-delivery processing code of
Game 6 will go to the second “else” clause and set K

r←− {0, 1}κ.
(b) In (b) SIM processes the case when p̂w = (fullsid,¬b, pw∗) for some

pw∗, which might or might not be equal to the password input pw of
Psid. In this case SIM retrieves ((r̂, M̂), ĉ) from THICp̂w , services query
(AdvDec, (fullsid, b, pw∗), c), retrieves (backdoor, c, (fullsid, b, pw∗), x),
sets K ← KA.key(x, M̂), and sends (TestPwd, sid,P, pw∗) and
(NewKey, sid,P,K) to FpwKE. Consider two sub-cases depending on
Psid’s input pw :

i. If pw∗ 6= pw then FpwKE will mark session Psid as interrupted in
response to the above TestPwd query, and consequently FpwKE will
ignore the value K which SIM sends in the NewKey query, and it will
pick the session key output by Psid uniformly from {0, 1}κ.
This is also how Game 6 ĉ-delivery code will process this case,
because it corresponds to the case when p̂w retrieved from c2pw[ĉ]
is not equal to (fullsid,¬b, pw).

ii. If pw∗ = pw then FpwKE will mark session Psid as compromised in
response to TestPwd and in response to NewKey it will make Psid

output the key K computed by SIM.
This is also how Game 6 will behave in this case, because it
corresponds to the case p̂w = (fullsid,¬b, pw), in which case
Game 6 retrieves backdoor x as the KA state corresponding to the
decryption of c under key (fullsid, b, pw), and it sets Psid’s output as
K ← KA.key(x, M̂) for ((r̂, M̂), ĉ) retrieved from THICp̂w , exactly
like SIM does above.

Since Game 6 matches the ideal-world interaction of Game 7 exactly we conclude
that P6 = P7, which completes the proof of Theorem 2.

C Security Proof for protocol EKE-KEM of Section 5.1

In this section we prove Theorem 3 from Section 5.1, i.e. the EKE-KEM
protocol shown in Figure 10 is a UC PAKE. Following the blueprint of EKE
proof in Section 5, we argue security of EKE-KEM in the FHIC-hybrid model.
We adopt definitions of qIC , qP in EKE proof, and additionally let εKEM.sec be
the upper-bound on the distinguishing advantage against the security property
of KEM, let εKEM.randpk and εKEM.anonymity be the upper-bounds on the
distinguishing advantage against the uniform public keys and anonymity
properties of KEM, respectively. Also we let εprf be the upper-bound of
distinguishing advantage against pseudorandomness of prf. We define notation

42

c[pk∗] as a shortcut for generating e from (e,K ∗) ← KEM.enc(pk∗), where pk∗

is a random public key.14

Proof. Game 0 (real-world game): This is the real world constructed by parties
following the protocol, functionality FHIC, and the adversary who can query FHIC

through interfaces Enc,AdvEnc,AdvDec. We also record all generated ciphertexts
in set Cset which is syntactic.

Game 1 (randomizing first message): We change the ciphertext c sent by Psid

to be purely random, and abort if the corresponding plaintext (r,M) occurred
in table THICp̂w or ciphertext c was output by any encryption. As in the case of
EKE proof:

|P0 − P1| ≤
qP (qIC + qP)

|R|
(12)

Game 2 (binding adversarial ciphertexts to passwords): We add a change in
any processing of ciphertext generation, where we abort if any new generation
is already in Cset. This includes ciphertexts generated (for any key p̂w) by Enc,
AdvEnc queries, and by Psid mentioned in Game 1. We also add a syntactic change
where we record c2pw[c] ← p̂w in Enc or AdvEnc queries. As in EKE proof we
have:

|P1 − P2| ≤
(qIC + qP)2

|R|
(13)

Game 3 (embedding public key in decryption queries): In this game we
embed public key into every fresh adversarial AdvDec(p̂w , c) query to FHIC, and
we save the corresponding sk associated with (c, p̂w). This change can be done
in two sub-steps: First we change the decryption so it picks (r, pk) randomly in
R × PK, and aborts if ((r, pk), ∗) is in table THICp̂w , whereas before, a
decryption query picks (r, pk) according to THICp̂w .m, i.e. among pairs which
are not yet in the table. The probability of encountering this abort can be
upper-bounded by (qIC + qP)2/(|R| · |PK|). The second sub-step is that we
generate key pair (sk , pk) according to KEM key generation algorithm kg, and
we save sk in record (backdoor, c, p̂w , sk). This second change can be reduced
to an attack on the uniform public keys property 4 of KEM. The argument
hybridizes over all decryption queries, where each consecutive hybrid differs by
one more decryption query on which pk is generated via kg instead of uniform
in PK. By a reduction to the uniform public keys property of KEM the total
difference this change introduces can be upper-bound as
(qIC + qP) · εKEM.randpk. We conclude that:

|P2 − P3| ≤
(qIC + qP)2

|R| · |PK|
+ (qIC + qP) · εKEM.randpk (14)

14 The proof below assumes a version of the protocol which uses prf(K , ·) to derive
the authenticator τ and the session key, and the authenticator computation does
not take the KEM public key pk as an input. This version of the protocol requires
an additional assumption on KEM. We will update the proof shortly to reflect the
modified protocol and get rid of the additional assumption.

43

SIM interacts with environment Z’s “adversary” interface A, and with PAKE
functionality FpwKE. Let PK be the public key space and C be the ciphertext space
of KEM, and let D = R × PK be the domain of Half-Ideal Cipher HIC. Let prf
be a pseudorandom function. Without loss of generality we assume that A uses
AdvDec interface to implement a Dec query to FHIC.

Initialization: Setup Cset = {}, set THICp̂w and TH as empty table, and c2pw[c] :=
⊥ for all fullsid, pw , c. Pick a random pk∗

r←− PK.

Notation:

Let THICp̂w .s[T] be a shortcut for set {s ∈ R : 6 ∃m̂ s.t. (m̂, (s, T)) ∈ THICp̂w}.
Let THICp̂w .c be a shortcut for set {c ∈ D : 6 ∃m̂ s.t. (m̂, c) ∈ THICp̂w}.
Let c[pk∗] be a shortcut for generating e from (e,K ∗)← KEM.enc(pk∗).
On query (NewSession, sid,P,CP) from FpwKE:
Set fullsid← order(sid,P,CP), b← bit(P,CP).

1. If b = 0, pick c
r←− D(abort if c ∈ Cset), add c to Cset, send c to A as a message

from Psid and record (sid,P,CP, 0, fullsid, c).
2. If b = 1, record (sid,P,CP, 1, fullsid,⊥,⊥,⊥).

Emulating FHIC (for fullsid = order(sid,P,CP) for any P,CP)

• On A’s query (Enc, p̂w ,M) to FHIC: Set r
r←− R, m ← (r,M). If (m, c) ∈

THICp̂w return c; Else pick c
r←− THICp̂w .c(abort if c ∈ Cset), set c2pw[c]← p̂w ,

add c to Cset and (m, c) to THICp̂w , return c.

• On A’s query (AdvEnc, p̂w ,m, T) to FHIC: If (m, c) ∈ THICp̂w return c; Else
pick s

r←− THICp̂w .s[T], set c ← (s, T)(abort if c ∈ Cset), c2pw[c] ← p̂w , add c
to Cset and (m, c) to THICp̂w , return c.

• On A’s query (AdvDec, p̂w , c) to FHIC: If (m, c) ∈ THICp̂w return m; Else pick
r

r←− R and (pk , sk)
r←− KEM.kg, set m← (r, pk), add (m, c) to THICp̂w (abort

if ∃ ĉ 6= c s.t. (m, ĉ) ∈ THICp̂w), save (backdoor, c, p̂w , sk), return m.

On A’s message ĉ to session Psid: (accept only one such message)
Retrieve record (sid,P,CP, 1, fullsid,⊥,⊥,⊥) and:

• If there is record (sid,CP,P, 0, fullsid, ĉ) then set e ← c[pk∗], τ
r←−

{0, 1}κ. Update record (sid,P,CP, 1, fullsid, ĉ, e, τ) and send (e, τ) to A. Send
(NewKey, sid,P,⊥) to FpwKE.

• Otherwise set p̂w ← c2pw[ĉ] and do the following:
1. If p̂w = ⊥ or p̂w = (fullsid′, ·) for fullsid′ 6= fullsid: send (TestPwd, sid,P,⊥)

and (NewKey, sid,P,⊥) to FpwKE; pick e ← c[pk∗], τ
r←− {0, 1}κ and send

(e, τ) to A
2. If p̂w = (fullsid, pw∗), send (TestPwd, sid,P, pw∗) and:

(a) if answer is “incorrect” then set e
r←− c[pk∗], τ

r←− {0, 1}κ, send (e, τ)
to A, send (NewKey, sid,P,⊥) to FpwKE

(b) if answer is “correct” then service FHIC’s query (AdvDec, p̂w , ĉ),
retrieve ((r̂, p̂k), ĉ) from THICp̂w , set (e,K ∗) ← KEM.enc(p̂k), τ ←
prf(K ∗, 1), send (e, τ) to A, send (NewKey, sid,P, prf(K ∗, 2)) to FpwKE

Update record (sid,P,CP, 1, fullsid, ĉ, e, τ)

On A’s message (ê, τ̂) to session Psid: (accept only one such message)
Retrieve record (sid,P,CP, 0, fullsid, c) and:

• If there is record (sid,CP,P, 1, fullsid, c, ê, τ̂), send (NewKey, sid,P,⊥) to FpwKE.
• Else if ∃ pw∗ s.t. ∃(backdoor, c, (fullsid, pw∗), sk) and τ̂ = prf(K ∗, 1) for

K ∗ ← KEM.dec(sk , ê)(abort if find multiple pw∗ satisfy above), send
(TestPwd, sid,P, pw∗) and (NewKey, sid,P, prf(K ∗, 2)) to FpwKE

• Otherwise send (TestPwd, sid,P,⊥) and (NewKey, sid,P,⊥) to FpwKE
On H query (fullsid,K , pk) :
if ∃〈(fullsid,K , pk), τ〉 in TH then output τ
else pick τ

r←− {0, 1}κ, add 〈(fullsid,K , pk), τ〉 to TH, and output τ

Fig. 16: Simulator SIM for the proof of Theorem 3, Section 5.1

44

Game 4 (delegating key generation to IC.Dec): We make a syntactic change
in processing NewSession for the party who sends out message c: Rather than
generating a random key pair (sk , pk), random r, a random ciphertext c, and
defining ((r, pk), c) as an IC pair for key p̂w , we pick only random c and define
(sk , pk) via a decryption query FHIC.AdvDec(p̂w , c). Since in Game 3 a decryption
query sets (r, pk) in the same way, this is only a syntactic change, hence P3 = P4.

Game 5 (randomizing second message and session keys in passive cases):

As in the EKE proof, we change how honest parties react to received messages.
First we change the passive case, where Psid receives the ciphertext ĉ sent by a
matching session CPsid. In this case we shortcut all processing and simply let
Psid output e as a random element in its space, and output τ and session key K
as random elements in {0, 1}κ. Furthermore, if CPsid receives this (e, τ) then we
shortcut and set the session key of CPsid to K output by Psid.

Recall that Game 4 would compute pk by querying
FHIC.AdvDec((fullsid, pw), c), and then compute (e,K∗) ← enc(pk),
τ ← prf(K∗, 1) and K ← prf(K∗, 2). The change in passive cases can be done
in 3 substeps: Firstly we randomize K ∗ from KEM.enc(pk) output, and further
generate τ and session key by running prf on this random K ∗. Meanwhile if
CPsid receives this (e, τ) passively passed by A, we shortcut KEM
decapsulation and set K ∗ as the one Psid generates, the other parts are exact
same as Game 4. We argue that an adversary who distinguishes this change
with non-negligible advantage implies an attack on the security property of the
KEM scheme. Consider the argument for session Psid, with the other session is
denoted CPsid: Given the KEM security challenge (pk∗, e∗,K ∗), the reduction
does the following: it guesses an index i

r←− [1, ..., qIC + qP] of a query to
FHIC.AdvDec using key (fullsid, pw) and embeds challenge value pk∗ into the
decrypted plaintext.

Note that by Game 4 each NewSession query also uses AdvDec and ĉ in this
AdvDec query could be equal to ciphertext c generated by session CPsid, which
corresponds to the adversary passively connecting two sessions Psid and CPsid

which run on matching inputs. If the guess is right and the adversary sends
ciphertext ĉ used in this i-th query to Psid, the reduction embeds the (e∗,K ∗)
challenge value into the KEM.enc output by Psid. (If the guess is not right the
reduction aborts.) If the guess is right, the reduction reproduces how Psid acts
in Game 4 if K ∗ is the real key corresponding to KEM instance (pk∗, e∗,K ∗),
and it reproduces how Psid acts in Game 5 if K ∗ is random. Since the right
guess occurs with probability 1/(qIC + qP) and the identity of the index i does
not affect the view the reduction produces before the abort, and the argument
goes by a hybrid over all honest party sessions, this change is upper-bounded by
qP /(qIC + qP) · εKEM.sec.

Secondly we remove the usage of H and prf and directly generate τ,K as
random bitstrings. The change on session keys introduces no difference because
such sessions compute same session keys in all previous games. The change on
τ can be reduced to the security of prf and is bounded by qP · εprf .

45

Thirdly, we change e to be generated via a KEM encapsulation on a random
public key, instead of via the public key output by decryption query. This change
can be reduced to an attack on the anonymity property 5 of KEM. The argument
is hybrid and changes in qP substeps, for each FpwKE session Psid who received
this passive ĉ. Each consecutive differs by one more e generation, where e is
picked via KEM.enc(pk∗) for a random pk∗ picked by SIM, instead of generated
via KEM.enc(pk) for pk ← FHIC(p̂w , c) where p̂w refers to the pw which Psid

holds. By a reduction to the anonymity property of KEM, the total difference
introduced by this change can be upper-bounded as (qIC + qP) · εKEM.anonymity.

46

Game 0: real-world interaction

Initialize Cset = {} and empty table THICp̂w for all p̂w ;
on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP), p̂w ← (fullsid, pw)

if b = 0: (sk , pk)
r←− kg, c← FHIC.Enc(p̂w , pk)

save (sid,P,CP, fullsid, 0, pw , sk , c,⊥)

output c

if b = 1: save (sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥,⊥)

on message ĉ to session Psid (accept only one):

if ∃ record (sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥,⊥):

(r̂, p̂k)← FHIC.AdvDec((fullsid, pw), ĉ)

(e,K∗)← KEM.enc(p̂k), τ ← prf(K∗, 1)
K ← prf(K∗, 2)
reset Rec← (sid,P,CP, fullsid, 1, pw , ĉ, e, τ,K)

output (e, τ) and (sid,P,K)

on message (ê, τ̂) to session Psid (accept only one):

if ∃ record (sid,P,CP, fullsid, 0, pw , sk , c,⊥):
K∗ ← KEM.dec(sk , ê)

if τ = prf(K∗, 1) then set K ′ ← prf(K∗, 2) and

output (sid,P,K ′)

else output K ′
r←− {0, 1}κ

on query FHIC.Enc(p̂w ,M) (assuming M ∈ PK):

r
r←− R, set m← (r,M)

If ∃ c s.t. (m, c) ∈ THICp̂w :
return c

else:
pick c

r←− THICp̂w .c, add (m, c) to THICp̂w and c to Cset
return c

on query FHIC.AdvEnc(p̂w ,m, T): (assuming m ∈ R × PK
and T ∈ PK):
if ∃ c s.t. (m, c) ∈ THICp̂w :

return c
else:

s
r←− THICp̂w .s[T], set c ← (s, T), add (m, c) to THICp̂w

and c to Cset
return c

on query FHIC.AdvDec(p̂w , c) (assuming c ∈ R× PK):

if ∃ m s.t. (m, c) ∈ THICp̂w :
return m

else:
m

r←− THICp̂w .m, add (m, c) to THICp̂w

return m

Game 1: randomizing first message

on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP), p̂w ← (fullsid, pw)
if b = 0:

set (sk , pk)
r←− kg, r

r←− R, m← (r, pk), c
r←− D

abort if (m, ∗) ∈ THICp̂w or c ∈ Cset
add (m, c) to THICp̂w

save (sid,P,CP, fullsid, 0, pw , sk , c,⊥)

output c

Game 2: binding adversarial ciphertexts to
passwords

on FHIC.Enc(p̂w ,M) or FHIC.AdvEnc(p̂w ,m, T):

Before either process adds c to Cset, do the following:
abort if c ∈ Cset
set c2pw[c]← p̂w

Game 3: embedding public key in decryption queries

on query FHIC.AdvDec(p̂w , c):

if ∃m s.t. (m, c) ∈ THICp̂w return m, otherwise:

set (sk , pk)
r←− kg, r

r←− R, m← (r, pk)
abort if (m, ∗) ∈ THICp̂w

add (m, c) to THICp̂w , save (backdoor, c, p̂w , sk), return
(r, pk)

Game 4: delegating key generation to IC.Dec

on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP), p̂w ← (fullsid, pw)

if b = 0: c
r←− D, abort if c ∈ Cset, otherwise add c to Cset

query FHIC.AdvDec(p̂w , c), retrieve (backdoor, c, p̂w , sk)

save (sid,P,CP, fullsid, b, pw , sk , c,⊥) and output c

Game 5: randomizing second message and session
keys

on message ĉ to session Psid:

if ∃ record rec = (sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥):
if ∃ record (sid,CP,P, fullsid, 0, pw , sk , ĉ,⊥):

pick e ← c[pk∗], τ
r←− {0, 1}κ, K ← {0, 1}κ

else:
p̂w ← c2pw[ĉ]

if p̂w = (fullsid, pw) then retrieve ((r̂, p̂k), ĉ) from
THICp̂w and

set (e,K∗) ← KEM.enc(p̂k), τ ← prf(K∗, 1),K ←
prf(K∗, 2)

else:
pick e ← c[pk∗], τ

r←− {0, 1}κ, K
r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, 1, pw , ĉ, e, τ,K)

output (e, τ), (sid,P,K)

on message (ê, τ̂) to session Psid:

if ∃ record (sid,P,CP, fullsid, 0, pw , sk , c,⊥):
if ∃ record (sid,CP,P, fullsid, 1, pw , c, ê, τ̂ ,K) then set

K ′ ← K ,

output (sid,P,K ′)

else:
set K∗ ← KEM.dec(sk , ê)

if τ̂ = prf(K∗, 1) then set K ′ ← prf(K∗, 2) and

output (sid,P,K ′)

otherwise output K ′
r←− {0, 1}κ

Game 6: delaying password usage

on (NewSession, sid,P,CP, pw) to P:

fullsid← order(sid,P,CP), b← bit(P,CP)

if b = 0: c
r←− D, abort if c ∈ Cset, otherwise add c to Cset

save (sid,P,CP, fullsid, b, pw ,⊥, c,⊥) and output c

on message ĉ to session Psid:

if ∃ record (sid,P,CP, fullsid, 1, pw ,⊥,⊥,⊥,⊥):
if ∃ record (sid,CP,P, fullsid, 0, pw ,⊥, ĉ,⊥):

pick e ← c[pk∗], τ
r←− {0, 1}κ, K

r←− {0, 1}κ
else:

p̂w ← c2pw[ĉ]
if p̂w = (fullsid, pw):

query FHIC.AdvDec((fullsid, pw), ĉ), retrieve

((r̂, p̂k), ĉ) from THICp̂w

set (e,K∗)← KEM.enc(p̂k), τ ← prf(K∗, 1),K ←
prf(K∗, 2)

else:
pick e ← c[pk∗], τ

r←− {0, 1}κ, K
r←− {0, 1}κ

reset rec← (sid,P,CP, fullsid, 1, pw , ĉ, e, τ,K)

output (e, τ) and (sid,P,K)

on message (ê, τ̂) to session Psid:

if ∃ record (sid,P,CP, fullsid, 0, pw ,⊥, c,⊥):
if ∃ record (sid,CP,P, fullsid, 1, pw , c, ê, τ̂ ,K) then set

K ′ ← K , and output (sid,P,K ′)

else if ∃ pw s.t. ∃ (backdoor, c, (fullsid, pw), sk)
set K∗ ← KEM.dec(sk , ê)

if τ̂ = prf(K∗, 1) then set K ′ ← prf(K∗, 2) and

output (sid,P,K ′)

otherwise output K ′
r←− {0, 1}κ

Fig. 17: Game changes for the proof of Theorem 3

47

Now that e, τ,K are independent of pk , we can remove the usage of pk and
the corresponding decryption query to FHIC(p̂w , c) in passive case.

Next we change how Psid reacts for all other ĉ cases: instead of querying
FHIC(p̂w , ĉ) to get p̂k and generate corresponding e, τ and K , we set p̂w = c2pw[ĉ]
and consider two cases: If p̂w = (fullsid, pw) (case 1) then Game 5 computes K in
the same way as in Game 4, except we render the decryption query as retrieval
from table THIC ˆ̂pw , which is just a notational change; In any other case (case

2), Game 5 shortcuts the decryption and key-computation process and outputs
a random e, with τ , K as random elements in {0, 1}κ. On the other side, CPsid

in Game 5 computes K in the same way as in Game 4.
We argue that the change introduced in case 2 is negligible, i.e. if c2pw[ĉ]

contains an entry p̂w 6= (fullsid, pw), including p̂w = ⊥. The argument is hybrid
and changes the view in qP substeps, for each FpwKE session Psid invoked by Z.
We consider two sub-cases, (case 2a) where ĉ was created via an adversarial
encryption query on some key p̂w , which does not match the decryption key
(fullsid, pw) that Psid would use in Game 4 to decrypt this ciphertext (note that
this p̂w is unique because of an abort in the case two encryption queries ever
create the same ciphertext), and (case 2b) where ĉ was not created in any
encryption query. In either of these two sub-cases Game 4 would compute
K ← prf(K∗, 2) for (r̂, p̂k) ← FHIC.AdvDec((fullsid, pw), ĉ) and

(e,K∗) ← enc(p̂k), and since in either case ĉ was not inserted in table
THIC(fullsid,pw) via an encryption query, this AdvDec query will embed a
random pk into the decrypted plaintext. We make same change as in the
passive case. i.e. randomize K∗ from KEM.enc(pk), remove usage of prf, change
e to be generated via a random public key picked by SIM, and remove query to
FHIC. Note that process on CPsid side remains unchanged in case 2, where the τ
checking always fails and CPsid always outputs a random session key as in the
previous game. We conclude that:

|P4−P5| ≤ 2(qIC + qP) · εKEM.anonymity + 2qP · εprf + qP /(qIC + qP) · εKEM.sec (15)

Game 6 (delaying password usage): In this game we delay using the password
pw of session Psid to decrypt its outgoing message c to the moment when Psid

receives an incoming message (ê, τ̂) in the case of an active attack, where A
made a decryption query on c using correct password. In this case Psid will go
through the list of backdoor records based on pw and c to retrieve sk for KEM
decapsulation, whereas Game 5 retrieves sk from Psid’s record. This is just a
notational change. We also change how CPsid reacts to an incoming message
ĉ, and we perform the decryption query only in the case adversary created ĉ
via encryption under correct key (fullsid, pw). Since Game 5 does not use the
decrypted value (r, pk) and the associated trapdoor sk until the exact same case
occurs, postponing this decryption does not matter as long as item (∗, c) is not
written into table THIC(fullsid,pw) via an encryption query. However, the latter
cannot happen in Game 5 because each NewSession and each encryption queries
generate disjoint ciphertexts (a collision in the ciphertexts created by any of
these queries leads to an abort). Both cases imply that P5 = P6.

48

Game 7 (ideal-world game implied by FpwKE and SIM): This is the ideal-
world game induced by functionality FpwKE interacting with simulator SIM of
Figure 16. Since Game 6 matches the ideal-world interaction of Game 7 exactly
we conclude that P6 = P7, which completes the proof.

D Security Proof for Theorem 4

KHAPE[41] is an aPAKE protocol which gives a generic compiler from any ”UC
key-hiding AKE”. In [41] the key-hiding AKE is realized by several efficient
single-flow protocols including 3DH, HMQV, and SKEME. In the case of HMQV
it requires only 2 exponentiations per party, the resulting aPAKE has 4 flows and
it is minimal in computational cost because it matches the ”2 exponentiations”
cost of unauthenticated Diffie-Hellman key exchange (see [41]).

• Half-Ideal Cipher HIC = (Enc,Dec) on space of private and public keys

• pseudorandom function kdf

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S generates two AKE key pairs (a,A) and (b,B), sets e ← HIC .Enc(pw , (a,B)),
stores file[uid,S]← (e, (b,A)), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

(a,B)← HIC .Dec(pw , e) � e
(e, (b,A))← file[uid,S]

-(sid,C,S, a,B) � (sid,S,C, b,A)

Key-Hiding AKE

� k1 -k2

τ ← kdf(k1, 1) -τ
γ ← ⊥ if τ 6= kdf(k2, 1)

else γ ← kdf(k2, 2)
� γ

K1 ← ⊥ if γ 6= kdf(k1, 2) K2 ← ⊥ if τ 6= kdf(k2, 1)
else K1 ← kdf(k1, 0) else K2 ← kdf(k2, 0)
output K1 output K2

Fig. 18: aPAKE protocol KHAPE using Half-Ideal Cipher (changes from [41] marked
so)

49

Here we claim that KHAPE remains a UC aPAKE15 if the Ideal Cipher used
to encrypt the private and public AKE keys in protocol KHAPE is replaced by a
Half-Ideal Cipher. The benefit of replacing IC∗ implementation of the ideal cipher
on a group in [41] with a HIC is that, as we show with the m2F construction
of HIC, the latter can be implemented over any group which admits an RO-
indifferentiable random oracle hash onto a group, requires only one such hash
to both encrypt and decrypt, and it has bandwidth overhead of 2κ bits. By
contrast, the IC∗ implementations of an ideal cipher on a group suggested in [41]
work only for restricted elliptic curve groups and/or require more bandwidth
and more computation in encryption and decryption. The same change can also
benefit protocol OKAPE[37], which improves the round efficiency of KHAPE, and
the change should be done similarly to KHAPE.

We show the KHAPE protocol using Half-Ideal Cipher for
password-encryption of keys in Figure 18. Intuitively Half-Ideal Cipher works
because: in KHAPE the attacker can attack client by sending an arbitrary
ciphertext of his choice, but with the credential encryption implemented using
an ideal cipher, the ciphertext commits the attacker to only one choice of
key/password, for which he can decide the plaintext. And for all other keys the
decrypted plaintext will be random, i.e. there are two requirements: (1)
ciphertext c = Enc(k,m) is an encryption of some unique (k,m). HIC satisfies
since for every (k,m) HIC.Enc and HIC.AdvEnc outputs c = (s, T) which has no
collisions on s part; (2) Dec(k′, c) for k′ 6= k outputs random M , which is
defined as in HIC.AdvDec and HIC.Dec.

Proof. We describe how the security proof for KHAPE should be adapted to
the case using HIC. We specify how we deal with the HIC-specific differences
when they occur and mark them in gray . We show that the environment’s
view of the real-world security game, denoted Game 0, i.e. an interaction
between the real-world adversary and honest parties who follow protocol
KHAPE, is indistinguishable from the environment’s view of the ideal-world
game, denoted Game 7, i.e. an interaction between simulator SIM16 of Figures
20 and functionality FaPAKE24. As before, we use Gi to denote the event that Z
outputs 1 while interacting with Game i, and the theorem follows if
|Pr[G0] − Pr[G7]| is negligible. For a fixed environment Z, let qpw, qHIC , and

qses be the upper-bounds on the number of resp. password files, HIC queries,
and online S or C aPAKE sessions. Let εZkdf(SIMAKE) and εZake(SIMAKE) be the
advantages of an environment who uses the resources of Z plus
O(qHIC + qses + qpw) exponentiations in G in resp. breaking the PRF security of
kdf, and in distinguishing between the real-world AKE protocol and its
ideal-world emulation of SIMAKE interacting with FkhAKE.

Let X ′ = Y = R× G be the domain and range of the Half-Ideal Cipher HIC

15 The UC asymmetric PAKE functionality, adapted to the case of explicit C-to-S
authentication implemented by protocol KHAPE, is shown in Section F.

16 here we only attach part of the simulator since the rest, i.e. the “Respodning to
AKE messages” part, is same as in [41]

50

Initialize empty table THIC; (Notation THICp̂w .X
′, THICp̂w .Y and THICp̂w .s[T]

as in Fig. 20)

• On (StorePwdFile, uid, pwuid
S) to S: Generate keys (a,A), (b,B), set euid

S ←
Enc(pwuid

S , (a,B)), and file[uid, S]← (euid
S , b, A)

• On new (pw , x) to Enc: pick r
r←− R, set x′ ← (r, x) , output y

r←− Y \
THICp̂w .Y , add (pw , x′, y) to THIC

• On new (pw , x′, T) to AdvEnc: pick s
r←− THICp̂w .s[T], y ← (s, T), add

(pw , x′, y) to THIC, and output y

• On new (pw , y) to AdvDec: Output x′
r←− X ′ \ THICp̂w .X

′, add (pw , x′, y) to
THIC

• On new (pw , y) to Dec: Query (r, x)← AdvDec(pw , y), output x

• On (StealPwdFile,S, uid): Output file[uid, S]

• On (SvrSession, sid,C, uid) to S: Set (euid
S , (b, A)) ← file[uid, S], send euid

S and
start AKE session Ssid on (sid, S,C, b, A), set k2 to Ssid output;
If Z sends τ ′ = kdf(k2, 1) to Ssid, set K2, γ as kdf(k2, 0), kdf(k2, 2), else as ⊥,⊥

• On (CltSession, sid, S, pw) and message e ′ to C: Set (a,B) ← (Dec(pw , e ′)),
and start AKE session Csid on (sid,C, S, a, B), set k1 to Csid output, send τ =
kdf(k1, 1) to Z;
If Z sends γ′ = kdf(k1, 2) to Csid, set K1 = kdf(k1, 0) else K1 = ⊥

Fig. 19: Game 0: Z’s interaction with real-world protocol KHAPE

used, let X be the domain of (private,public) keys in AKE(e.g. for both 3DH
and HMQV we have X = Zp ×G where G is a group of order p). Whereas [41]
defined a mapping from groups to bitstrings and used a “bitstring” IC on the
result, here we directly show a (randomized) IC on groups, precisely so that it
can be used directly for public key systems where public keys live in groups17,
which is the case for all public keys we give as our examples (either DH-based
or Lattice-based).

Game 0 (real world): This is the interaction, shown in Figure 19, of
environment Z with the real-world protocol KHAPE, except that the
symmetric encryption scheme is idealized as a Half-Ideal Cipher oracle.
(Technically, this is a hybrid world where each party has access to the

Half-Ideal Cipher functionality FHIC .)

Game 1 (embedding random keys in FHIC.AdvDec outputs): We modify

processing of Z’s query (pw , y) to AdvDec 18 for any y 6∈ THICp̂w .Y , i.e. y for

which AdvDec(pw , y) has not been yet defined. On such query Game 1

pick a random r, generates fresh key pairs (a,A) and (b, B),

17 the secret keys in our cases are either Zp elements or bitstrings which are in groups
18 all the Enc,AdvEnc,AdvDec notation refers to oracles defined by FHIC

51

Initialization

Initialize simulator SIMAKE, an empty table THIC , empty lists CPK ,PK C,PK S

Notation: THICp̂w .X
′ ={x′ | ∃y (pw , x′, y) ∈

THIC}, THICp̂w .Y ={y | ∃x′ (pw , x′, y) ∈ THIC} Let THICp̂w .s[T] be a

shortcut for set {s ∈ R : 6 ∃m̂ s.t. (m̂, (s, T)) ∈ THICp̂w}.
Convention: First call to SvrSession or StealPwdFile for (S, uid) sets
euid
S

r←− Y .Without loss of generality we assume that A uses AdvDec interface to
implement a Dec query to FHIC

Half-Ideal Cipher queries

• On query (Enc, pw , x) to FHIC, send back y if (pw , (r, x), y) ∈ THIC for some

r, otherwise pick r
r←− R, y

r←− Y \THICp̂w .Y , add (pw , (r, x), y) to THIC, send

back y

• On query (AdvEnc, pw , x′, T) to FHIC , send back y if (pw , x′, y) ∈ THIC,

otherwise pick s
r←− THICp̂w .s[T], y ← (s, T), add (pw , x′, y) to THIC, and

send back y
• On query (AdvDec, pw , y) to FHIC, send back x′ if (pw , x′, y) ∈ THIC, otherwise

do:
1. If y 6= euid

S for any (S, uid) then pick x′
r←− X ′ \ THICp̂w .X

′

2. If y = euid
S for some (S, uid) send (OfflineTestPwd, S, uid, pw) to FaPAKE and:

(a) If FaPAKE sends “correct guess” then set (r, A,B)← (ruidS ,Auid
S ,Buid

S)
(b) Otherwise pick r

r←− R, initialize keys A and B via two Init calls to
SIMAKE, add A to PK C and B to PK S

Set pkuid
S (pw) ← (r, A,B), send query (Compromise, A) to SIMAKE, define

a as SIMAKE’s response, add A to CPK , set x′ ← (r, (a,B))

In either case add (pw , x′, y) to THIC and send back x′

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE. If FaPAKE sends
“no password file,” pass it to A, otherwise declare (S, uid) compromised and:

1. If FaPAKE returns no value then pick r
r←− R, initialize keys A and B via two

Init calls to SIMAKE, add A to PK C and B to PK S

2. If FaPAKE returns pw then set (r,A,B)← pkuid
S (pw)

Send (Compromise, B) to SIMAKE, define b as SIMAKE’s response, add B to CPK ,
set (ruidS ,Auid

S ,Buid
S)← (r, A,B), return file[uid, S]← (euid

S , b, A) to A.
Starting AKE sessions

On (SvrSession, sid,S,C, uid) from FaPAKE, initialize random function Rsid
S :

({0, 1}∗)3 → {0, 1}κ, set flag(Ssid)← hbc, send euid
S to A as a message from Ssid,

and send (NewSession, sid, S,C) to SIMAKE.

On (CltSession, sid,C, S) from FaPAKE and message e ′ sent by A to Csid, initialize
random function Rsid

C : ({0, 1}∗)3 → {0, 1}κ, and:

1. If e ′ = euid
S set flag(Csid)← hbcuidS , send (NewSession, sid,C, S) to SIMAKE

2. If e ′ 6= euid
S check if e ′ was output by

FHIC.Enc on some (pw , x) or FHIC.AdvEnc on some (pw , (r, x)) , and:

(a) If there is no such query then send (TestPwd, sid,C,⊥) to FaPAKE, set
flag(Csid)← rnd, and send (NewSession, sid,C,S) to SIMAKE

(b) Otherwise define (pw , x) (resp.(pw , (r, x))) as the first such query(abort

others) which outputted e ′, send (TestPwd, sid,C, pw) to FaPAKE, and:
i. If FaPAKE returns “wrong guess” then set flag(Csid)← rnd and send

(NewSession, sid,C, S) to SIMAKE

ii. If FaPAKE returns “correct guess” then set (a,B)← x and run the

AKE protocol on behalf of Csid on inputs (sid,C,S, a, B); When
Csid terminates with key k then send τ ← kdf(k , 1) to A and
(NewKey, sid,C, kdf(k , 0)) to FaPAKE

Fig. 20: Simulator SIM showing that protocol KHAPE realizes FaPAKE

52

sets x′ ← (r, (a,B)) , and if x′ 6∈ THICp̂w .X
′ then it sets AdvDec(pw , y)← x′. If

x′ ∈ THICp̂w .X
′, i.e. x′ is already generated by AdvEnc(pw , ·, ·) or Enc(pw , ·),

Game 1 aborts. If y = euid
S for some (S, uid) then the game also sets

pkuid
S (pw)← (r,A,B).

The divergence this game introduces is due to the probability (qHIC)2/2n of

ever encountering an abort 19, which leads to |Pr[G1]− Pr[G0]| ≤ (qHIC)2/2n.

Game 2 (random euid
S in the password file): We change StorePwdFile

processing by picking ciphertext euid
S as a random element

in {0, 1}n ×G instead of via query to Enc, then we pick two key pairs (a,A),

(b, B), pick a random r and define (ruidS ,Auid
S ,Buid

S) ← (r,A,B), set

x′ ← (r, (a,B)). If euid
S ∈ THICp̂w .Y for any pw , not necessarily pwuid

S , the game
aborts. The game also aborts if x′ ∈ THICp̂w .X

′ for pw = pwuid
S . Otherwise the

game sets AdvDec(pwuid
S , euid

S) ← x′ and pkuid
S (pwuid

S) ← (r,A,B). The
divergence this game introduces is due to the probability of abort occuring in
either case, which leads to |Pr[G2]− Pr[G1]| ≤ 2qpwqHIC/2

n.

Game 3 (abort on ambiguous ciphertexts): In[41] to eliminate the possibility
of ambiguous ciphertexts we introduce an abort if IC.Enc oracle picks the same
ciphertext for any two queries containing pair (pw1, x1) and (pw2, x2). Now this
ambiguous case is already considered and avoided in definition of Enc and AdvEnc

in FHIC. so we have Pr[G3] = Pr[G2] .

Taking stock of the game. Let us review how Game 3 operates: The
initialization of password file file[uid,S] on password pwuid

S picks a random r
and fresh keys (a,A), (b, B), keeps them as
pkuid

S (pwuid
S) = (ruidS ,Auid

S ,Buid
S) = (r,A,B), picks euid

S as a random string, and
programs AdvDec(pwuid

S , euid
S) to (r, (a,B)). Oracle AdvDec on inputs (pw ′, y)

for which decryption is undefined, picks some random r′ and fresh key pairs
(a′, A′) and (b′, B′), and programs AdvDec(pw ′, y) to (r′, (a′, B′)). In addition,
if y = euid

S then it assigns pkuid
S (pw ′) ← (r′, (a′, B′)). Finally, encryption is now

unambiguous, i.e. every ciphertext e can be output by Enc or AdvEnc on only
one pair (pw , x′).

This is already very close to how simulator SIM operates as well. The
crucial difference between the ideal-world interaction and Game 3, is that in
Game 3, ruidS and keys (Auid

S ,Buid
S) are generated at the time of password file

initialization, and AdvDec(pwuid
S , euid

S) is set to (ruidS , (auid
S ,Buid

S)) at the same
time. In the ideal-world game these values are undefined until password
compromise, and AdvDec(pwuid

S , euid
S) is set only after offline dictionary attack

succeeds in finding pwuid
S . This delayed generation of the keys in file[uid,S] is

possible because AKE sessions which S and C run on these keys can be
simulated without knowledge of these keys, a key-hiding AKE functionality
allows precisely for such simulation, as we show
next. Delayed r generation is also okay because it’s not used in AKE sessions.
19 the probability of collission comes from the n-bit string ris is at most (qHIC)2/2n

53

Initialize simulator SIMAKE, empty table THIC and THICp̂w .s[T], and lists
CPK ,PK C,PK S.

• On (StorePwdFile, uid, pwuid
S) to S: Pick euid

S
r←− Y , mark pwuid

S as fresh

• On new(!) (pw , x) to Enc : Pick r
r←− R, set x′ ← (r, x), output y

r←− Y \
THICp̂w .Y , add (pw , x′, y) to THIC

• On new(!) (pw , x′, T) to AdvEnc : Pick s
r←− THICp̂w .s[T], y ← (s, T), add

(pw , x′, y) to THIC, and output y

• On new(!) (pw , y) to AdvDec:
1. If y 6= euid

S for any (S, uid) then pick x′
r←− X ′ \ THICp̂w .X

′

2. If y = euid
S for some (S, uid) then:

(a) If pwuid
S is fresh or pw 6= pwuid

S then record

〈offline,S, uid, pw〉, pick r
r←− R , initialize A and B via Init calls

to SIMAKE, add A to PK C and B to PK S

(b) If pwuid
S is compromised&pw = pwuid

S , set (r,A,B)← (ruidS ,Auid
S ,Buid

S)

In both cases (a) and (b), set pkuid
S (pw)← (r, A,B), define a as SIMAKE’s

response to (Compromise, A), add A to CPK , and set x′ ← (r, (a,B))
Add (pw , x′, y) to THIC and send back x′

• On (StealPwdFile, S, uid): mark pwuid
S compromised and:

If ∃ record 〈offline, S, uid, pwuid
S 〉 then set (r, A,B)← pkuid

S (pwuid
S);

Else pick r
r←− R, initialize A and B via Init calls to SIMAKE, add A to PK C

and B to PK S;

In either case, set (ruidS ,Auid
S ,Buid

S)← (r,A,B) , define b as SIMAKE’s response

to (Compromise, B), add B to CPK , output file[uid, S]← (euid
S , b, A)

• On (SvrSession, sid,C, uid) to S: Initialize function Rsid
S , set flag(Ssid) ← hbc,

output euid
S and send (NewSession, sid, S,C) to SIMAKE

• On (CltSession, sid, S, pw) and e ′ to C: Initialize function Rsid
C and:

1. If e ′ = euid
S then: (1) set flag(Csid) ← hbcuidS if pw = pwuid

S , otherwise set
flag(Csid)← rnd; (2) send (NewSession, sid,C, S) to SIMAKE

2. If e ′ 6= euid
S then:

(a) If e ′ was not output by Enc or AdvEnc or it was output on (pw ′, ·) for
pw ′ 6= pw , then set flag(Csid) ← rnd and send (NewSession, sid,C, S)
to SIMAKE

(b) If e ′ was output by Enc on (pw , x) or AdvEnc on (pw , (·, x), ·) then set
(a,B) ← x, run Csid of AKE on (sid, S, a, B); If Csid terminates with
k , output τ ← kdf(k , 1) and K1 ← kdf(k , 0)

Responding to AKE messages:

• On (Interfere, sid, S): set flag(Ssid)← act

• On (Interfere, sid,C): if flag(Csid) = hbcuidS then flag(Csid) ← actuidS if pwuid
S is

compromised, otherwise flag(Csid)← rnd

• On (NewKey, sid,C, α):
1. If flag(Csid) = actuidS set k1 ← Rsid

C (Auid
S ,Buid

S , α), output τ ← kdf(k1, 1)
2. Otherwise output τ

r←− {0, 1}κ

• On (NewKey, sid,S, α) and τ ′ to Ssid:
1. If flag(Ssid) = act and τ ′ = kdf(k2, 1) for k2 = Rsid

S (B,A, α) where
(·, (A,B)) = pkuid

S (pwuid
S), then output (K2, γ)← (kdf(k2, 0), kdf(k2, 2))

2. If flag(Ssid) = hbc and τ ′ was generated by Csid where flag(Csid) = hbcuidS ,
then output K2

r←− {0, 1}κ and γ
r←− {0, 1}κ

3. In all other cases output (K2, γ)← (⊥,⊥)

• On γ′ to Csid:
1. If flag(Csid) = actuidS and γ′ = kdf(k1, 2), output K1 ← kdf(k1, 0))
2. If flag(Csid) = hbcuidS and γ′ was generated by Ssid for Ssid s.t. flag(Ssid) =

hbc, output K1 equal to the key K2 output by Ssid

3. In all other cases output K1 ← ⊥
• On (ComputeKey, sid,P, pk , pk ′, α): send Rsid

P (pk , pk ′, α) if pk∈PK P, pk ′∈CPK

Fig. 21: KHAPE: Z’s view of ideal-world interaction (Game 7)

54

Game 4 (Using SIMAKE for AKE’s on honestly-generated keys): In Game 4
we modify Game 3 by replacing all honest parties that run AKE instances on
keys A,B generated either in password file initialization or by oracle AdvDec,
with a simulation of these AKE instances via simulator SIMAKE. For notational
brevity we say that query (pw , x) to Enc(resp. (pw , x′, T) to AdvEnc) or (pw , y)
to AdvDec are new(!) as a shortcut for saying that table THIC includes no prior
tuple corresponding to these inputs. If such tuple exists then Enc, AdvEnc and
AdvDec oracles use the retrieved (key,input,output) tuple to answer the according
query. We also omit the possibilities of the game aborts, because such aborts
happen only with negligible probability. These aborts occur in three places, all
marked (∗): (1) When euid

S is chosen in StorePwdFile the game aborts if euid
S ∈

THICp̂w .Y for any pw (not necessarily pw = pwuid
S); (2) When x′ is then set

as x′ ← (r, (a,B)), the game aborts if x′ ∈ THICp̂w .X
′ for pw = pwuid

S ; (3)
When x′ ← (r, (a,B)) is set in AdvDec query (pw , y) the game aborts also if
x′ ∈ THICp̂w .X

′.

Game 4 operates like Game 3, except that it outsources AKE key
generation in StorePwdFile and AdvDec to SIMAKE, and whenever Ssid or Csid

runs AKE on such keys these executions are outsourced to SIMAKE, while the
game emulates what FkhAKE would do in response to SIMAKE’s actions. In
particular, Game 4 initializes random function Rsid

P for every AKE session Psid

invoked by emulated FkhAKE. Whenever C and S run an AKE instance under
keys generated by AKE key generation the game, playing FkhAKE, triggers
SIMAKE with messages resp. (NewSession, sid,C,S) and (NewSession, sid,S,C).
When SIMAKE translates the real-world adversary’s behavior into Interfere
actions on these sessions, the game emulates FkhAKE by marking these sessions
as actively attacked. If SIMAKE sends (NewKey, sid,P, α) on activey attacked
session, its output key k is set to Rsid

P (pkP, pkCP, α) where (pkP, pkCP) are the
keys this session runs under, which are (Buid

S ,Auid
S) for S, and keys (A,B)

defined by AdvDec(pw , e ′) for C. The game must also emulate ComputeKey
interface of FkhAKE and let SIMAKE evaluate Rsid

P (pk , pk ′, α) for any pk ∈ PK P

and any pk ′ ∈ CPK . (Note that all sessions emulated by SIMAKE run on public
keys pk ′ which are created by the Init interface.) Set PK S contains only one
key, Buid

S , while set PK C contains Auid
S and all keys A′ created by AdvDec

queries. Set CPK consists of Auid
S ,Buid

S , because these were compromised in
file[uid,S] initialization, which used the corresponding private keys, and all
client-side keys A′ generated in AdvDec queries, because each AdvDec query
creates and immediately compromises key A′, since it needs to embed the
corresponding private key a′ into AdvDec output. Finally, if SIMAKE sends
NewKey on non-attacked session, the game emulates FkhAKE by issuing random
keys to such sessions except if Csid runs under key pair (A′, B′) = (Auid

S ,Buid
S),

which matches the key pair used by Ssid, in which case the game copies the key
output by the session which terminates first into the key output by the session
which terminates second. The rest of the code is as in Game 3: C uses its key
k1 to compute authenticator τ = kdf(k1, 1) and its local output K1 = kdf(k1, 0),

55

while S uses its key k2 to verify the incoming authenticator τ ′ and outputs
K2 = kdf(k2, 0) if τ ′ = kdf(k2, 1) and K2 = ⊥ otherwise.

The one case where a party might not run AKE on keys generated via a
call to SIMAKE is client session C which receives e ′ which was output by

Enc(pw , x) or AdvEnc(pw , (·, x), ·) for some x and pw matching the password

input to Csid. In this case Csid runs AKE on (a,B) = x, and since wlog these
keys are chosen by the adversary and not by SIMAKE, we cannot outsource that
execution to SIMAKE. As we said above, functionality FkhAKE does not admit
honest parties running AKE on arbitrary private keys a, hence SIMAKE does
not have an interface to simulate such executions. In Game 4 such AKE
instances are executed as in Game 3.

Since Game 4 and Game 3 are identical except for replacing real-world
AKE executions with the game emulating functionality FkhAKE interacting with
SIMAKE, it follows that |Pr[G4]− Pr[G3]| ≤ εZake(SIMAKE)

Game 5 (delay ruidS ,Auid
S ,Buid

S generation until password compromise): In

Game 4, ruidS and keys Auid
S ,Buid

S are initialized and compromised in
StorePwdFile, in Game 5 we postpone these steps until password compromise.
This change can be done in several steps.
Denote first step as Game 5(a), we remove compromising Buid

S , adding it to
CPK and setting file[uid,S] in StorePwdFile, and delay them to StealPwdFile. Z
cannot notice this change because in Game 4, only StealPwdFile will need
file[uid,S], and compromising Buid

S to get buid
S is not needed anywhere else

except when generating file[uid,S].
In Game 5(b) we make a change in AdvDec, that if y 6= euid

S then set
x′

r←− X ′ \ THICp̂w .X
′, while in Game 4 we set x′ ← (r, (a,B)) for randomly

initialized (r, (a,B)), with restriction that this x′ hasn’t been set before. This
is just a notational change.
Then in Game 5(c) we remove compromising Auid

S , adding it to CPK , setting x′

and adding (pwuid
S , x′, euid

S) to THIC in StorePwdFile, and delay them to
new(!) (pw , y) to AdvDec. After this change, in StorePwdFile we now only
initialize ruidS and (Auid

S ,Buid
S), add them to PK and pick euid

S . Since
(pwuid

S , x′, euid
S) is no longer added to THIC in StorePwdFile, query (pwuid

S , euid
S)

is now new(!) to AdvDec, and we add that in this case AdvDec responds by
retrieving (ruidS ,Auid

S ,Buid
S), compromising Auid

S , setting corresponding x′ and
adding (pwuid

S , x′, euid
S) to THIC. For any other queries, AdvDec reacts same as

in Game 5(b). Game 5(c) and Game 5(b) is identical since we only postpone
executing those steps removed from StorePwdFile.
In Game 5(d) we further remove usage of (Auid

S ,Buid
S) when responding to AKE

messages, except for input to Rsid
P in actively attacked sessions. We change

hbc(A,B) in Game 5(c) to hbcuidS if (A,B) = (Auid
S ,Buid

S), and rnd otherwise.
Similarly we change act(A,B) in Game 5(c) to actuidS if (A,B) = (Auid

S ,Buid
S),

which corresponds to active attack, otherwise set to rnd and derive
corresponding k1 from random element of {0, 1}κ instead of Rsid

C (A,B , α), from
randomness of Rsid

C this change makes indistinguishable difference to Z. Since

56

these are only notational changes and Z cannot notice them, Game 5(d) and
Game 5(c) are identical to Z.
Finally, in Game 5(e) we remove steps of picking ruidS and initializing
(Auid

S ,Buid
S) via SIMAKE in StorePwdFile, and delay them to StealPwdFile or

AdvDec(pwuid
S , euid

S), depending on which happens first. In order to set
AdvDec(pwuid

S , euid
S) only after A finds pwuid

S via successful offline dictionary
attack, we first mark pwuid

S fresh in StorePwdFile, and mark it compromised
anytime A runs (StealPwdFile,S, uid).
If A first runs (StealPwdFile,S, uid), we pick ruidS

r←− R, initialize (Auid
S ,Buid

S) via
Init calls to SIMAKE, add Auid

S to PK C and Buid
S to PK S, and later upon query

AdvDec(pwuid
S , euid

S), if pwuid
S is already marked compromised, we simply retrieve

(ruidS ,Auid
S ,Buid

S), then compromise Auid
S and set x′ as in Game 5(d). In the other

case, if AdvDec(pwuid
S , euid

S) runs first, which means at this moment pwuid
S must

be fresh, we treat it same way as before, and just like any other pw 6= pwuid
S ,

where we pick ruidS
r←− R, init (Auid

S ,Buid
S) via SIMAKE, add them to PK and save

(ruidS ,Auid
S ,Buid

S) into pkuid
S (pwuid

S) for future retrieval. We also record
〈offline,S, uid, pwuid

S 〉, and later if A runs StealPwdFile and there exists record
〈offline,S, uid, pwuid

S 〉, then just directly retrieve (ruidS ,Auid
S ,Buid

S) from

pkuid
S (pwuid

S) and skip initialization. In addition we also record
〈offline,S, uid, pw〉 upon query AdvDec(pw , euid

S) even if pw 6= pwuid
S . Game 5(e)

is identical to Game 5(d) since we only postpone (ruidS ,Auid
S ,Buid

S) initialization.
Thus we conclude: G5 = G4

Game 6 (replace kdf output with random string in passive sessions): In
Game 5, in passive sessions, i.e. any sessions except actively attacked sessions,
τ, γ are all derived from kdf of k1 or k2. In Game 6 in these sessions we remove
usage of kdf and directly assign random elements of {0, 1}κ to these values.
Also we replace verifying τ ′, γ′ via checking τ ′ = kdf(k2, 1), γ′ = kdf(k1, 2) with
checking whether they’re generated by corresponding hbc parties, since these
two checking methods are actually equal. In addition, we further remove usage
of k1 and k2 in passive sessions, and instead set K2 ← {0, 1}κ, and in matching
sessions we copy K2 to K1, as Game 5 copy k1 to k2 or vice versa in such
sessions. Since there’re at most qses such sessions, and from security of kdf, the
difference between Game 5 and Game 6 is negligble to Z, i.e. |Pr[G6]−Pr[G5]| ≤
qsesε

Z
kdf(SIMAKE)

Game 7 (Ideal-world game): This is the ideal-world interaction, i.e. an
interaction of environment Z with simulator SIM and functionality FaPAKE,
shown in Figure 21.

Observe that Game 6 is identical to the ideal-world Game 7. This completes
the argument that the real-world and the ideal-world interactions are
indistinguishable to the environment, and hence completes the proof.

E Lattice-Based UC PAKE from EKE and Saber KEM

We argue that the CPA-secure Key Encapsulation Mechanism (KEM) at the
heart of the Saber [28] public key encryption, whose security is based on the

57

Module-LWR problem, achieves also the anonymity and uniform public
keysproperty, see Section 2, under the same Module-LWR assumption. In
Figure 22 we show the EKE-KEM construction, which is Figure 10 instantiated
with Saber KEM. Note that Theorem 3 implies that the resulting protocol is a
UC PAKE under the Module-LWR assumption.

Saber Cryptosystem. We define the notation needed to introduce Saber. Let
Zq be the ring of integers modulo q represented in [−q/2 + 1, q/2] and Rq a
polynomial ring Zq[X]/(Xn+1), where n is a power of 2 and a security parameter
(and a length of the session key output by Saber). Let Rl1×l2q be the ring of l1 by
l2 matrices over Rq. (Below we use uppercase bold font to denote matrices and
lowercase bold font to denote vectors.) Let U(Rq) be a uniform distribution over
Rq and let χµ(Rq) be a distribution where each polynomial coefficient is chosen
from a binomial distribution centered at 0 with parameter µ (and standard
deviation

√
µ/2). When these distributions are taken over a matrix space Rl1×l2q

instead of Rq, this stands for choosing each matrix entry (or vector if l2 = 1)
according to that distribution.

• Parameters l, µ, moduli q = 2εq , p = 2εp , T = 2εT , for εq > εp > (εT + 1)

• Half-Ideal Cipher HIC on domain R×PK for PK = Rl×1
p × {0, 1}256

• Random oracle hash H onto {0, 1}κ

P0 on NewSession(sid,P0,P1, pw0) P1 on NewSession(sid,P1,P0, pw1)

(Assume P0 ≤lex P1 & fullsid = (sid,P0,P1))

seedA
r←− {0, 1}256

A← genA(seedA) ∈ Rl×lq

s← χµ(Rl×1
q) s′ ← χµ(Rl×1

q)
b = bAT s + hcq→p

c← HIC.Enc((fullsid, pw0), (b, seedA))
-c

(b, seedA)← HIC.Dec((fullsid, pw1), c0)
A← genA(seedA)
b′ = bAs′ + hcq→p
v′ = bT [s′]p + h1

k′ = bv′cp→2

c = bv′cp→T mod T/2
v = b′T [s]p �(b

′, c), τ τ ← H(k′, (b, seedA))
k = bv − bccT→p + h2cp→2 output K1 ← H(k′)
if τ = H(k, (b, seedA)) then output K0 ← H(k)

else output K0
r←− {0, 1}κ

Fig. 22: Protocol EKE-KEM of Section 5.1 instantiated with Saber KEM

58

Denote b·c as flooring to the nearest lower integer and b·e as rounding to
the nearest integer. The operation b·cq→p takes an integer x ∈ Zq as input and
outputs bp/q · xc ∈ Zp , and similarly bxeq→p = bp/q · xe ∈ Zp . We use [·]p
to denote mod p operation. Saber uses moduli q = 2εq , p = 2εp , T = 2εT with
q > p > T , and the constants added in b·c in Figure 22 are set as h1 = q

2p ∈
Rp, h2 = p

4 −
p

2T + q
2p ∈ Rp and h = q

2p ∈ Rl×1
q . (Saber NIST proposal [28]

suggests parameters εq = 13, εp = 10, εT = 4.)
Security of Saber relies on the hardness of the Module Learning with

Rounding problem (Mod-LWR)[6], defined as a variant of the Learning with
Errors (LWE) problem where the error is implicitly generated by the integer
rounding operation. The advantage of a polynimal-time adversary A against
the generalized Mod-LWR problem is defined as follows for parameters
m, l, p, q, µ s.t. p < q:

AdvMod−LWR
m,l,q,p,µ (A) =

∣∣ Pr[1← A(A, bAseq→p) : s
r←− χµ(Rl×1

q); A
r←− U(Rm×lq)]

− Pr[1← A(A,u) : A
r←− U(Rm×lq); u← U(Rm×1

p)]
∣∣

EKE instantiated with Saber. In Figure 22 we show the EKE-KEM protocol
of Section 5.1 instantiated with Saber KEM. The resulting protocol is essentially
a Saber key exchange protocol but with the initiator’s public key encrypted
using Half-Ideal Cipher, and with the responder attaching a key-and-password
confirmation message.

The following theorem, proven in [28], states the CPA security of Saber under
the Mod-LWR assumption:

Theorem 5. Assuming genA to be a random oracle. For any adversary A, there
exists two adversaries B1 and B2, such that:

AdvIND-CPA
Saber (A) ≤ Advmod−lwr

l,l,µ,q,p (B1) + Advmod−lwr
l+1,l,µ,q,p(B2) if q/p ≤ p/T.

The two further KEM properties needed in the EKE-KEM protocol of
Section 5.1 are ciphertext anonymity and uniform public keys (see Section 2.2
for definition of these notions), but Saber satisfies these properties under the
same Mod-LWR assumption:

Theorem 6. Saber KEM satisfies the uniform public keys property on domain
PK and the anonymity property under Module-LWR assumption.

Proof. Below we sketch the proof of Theorem 6. The uniform public keys
property which requires the public key generated to be indistinguishable from
uniform, is by definition of Module-LWR problem and proved in Game 2 in the
same proof of Theorem 5, where b is replaced with a uniform value. The
anonymity property, which requires that given two different public keys and a
ciphertext (b′, c) generated by one of them, it’s computationally hard to
distinguish the correct key, is also satisfied by Saber since without information
about secret s′, LWR samples (A,b’) and (b, v′) are both indistinguishable
from random elements by definition of LWR. The full proof is given in [51].

59

Comparison with prior lattice-based PAKEs. We recall prior work on
lattice-based PAKE’s to compare it to the EKE-KEM(Saber) protocol shown in
Figure 22. The short summary is that EKE-KEM(Saber) appears to be the first
UC PAKE from lattice assumption, and it also forms a two-round PAKE which
has the smallest bandwidth among prior lattice-based PAKE proposals. Indeed,
its bandwidth is minimal because it adds only 3κ bits to the underlying (plain)
Key Exchange implemented by KEM.

The first lattice-based PAKE was shown by Katz and Vaikuntanathan [47],
where both parties send a CCA-encrypted ciphertext to each other, compute
Approximate Smooth Projective Hash (ASPH) values on ciphertexts, and
conduct a key reconciliation subprotocol to derive a session key. This protocol
needs three rounds and the underlying CCA-encrypted ciphertext actually
contains n CPA-encrypted ciphertexts, which is costly to compute. KV is
further optimized by Zhang and Yu [60], who proposed a 2-round PAKE with a
new ASPH based on a “splittable CCA-secure encryption”. Following the same
track, Benhamouda [11] adapts Groce and Katz [40] framework using KV’s
realization of ASPH and as result, gets new 3-round and 2-round PAKEs in
standard model, and they further optimize the protocol to one round, using the
same SS-NIZK approach as in [60]. However, construction of lattice-based
SS-NIZK in standard model appears to be still an open question. Moreover, all
of these works rely on standard-model CCA-secure encryption which appears
expensive to realize. We refer for more details to [46], who explain the effiency
challenges in this line of work.

[46] is the first to construct a lattice-based PAKE in the standard model
which only requires CPA-secure encryption, and it’s significantly more efficient
compared compared to the PAKEs which use CCA-secure lattice-based
encryption. Ding et al. [31] proposed a still much more efficient scheme
assuming ROM. Their scheme appears to be a lattice-based counterpart to the
PPK protocol of Boyko et al. [18], and thus also to EKE. The significant
difference, however, is that in PPK hashed password is used as a one-time
mask on the KE messages, wheres in EKE it is used as key that encrypts the
KE messages using an ideal cipher. Consequently, Ding et al. [31] analyze the
security of their PAKE in the “BMP” model of [18], whereas we analyze our
proposal in the UC PAKE model. (We note, however, that the BMP model for
PAKE is mostly likely equivalent to the recently proposed UC relaxed PAKE
model [1].) Apart of this difference in analysis, the fact that our analysis uses
KEM as a black-box allows instant reuse of efficiency improvements in
lattice-based KEMs. Indeed, Saber uses a much smaller field modulus q = 213

compared to 232 − 1 in [31], which reduces the size of both the KEM public key
and the ciphertext (and these sizes are further reduced by rounding
operations).20. We benchmark the bandwidth for the last three lattice PAKEs

20 Saber[28] authors argue that this more aggressive parameter suffices in their
construction, and while using large prime moduli can possibly adopt Number
Theoretic Transformation (NTT) to speedup polynomial multiplications, [28] using
power-of-two moduli has its own advantages including: (1) avoiding modular

60

discussed above, which seem to form the most efficient proposals. For security
parameter κ = 128, the total bandwidth is 207 KB for [46], 8.32 KB for [31]
and 1.376 KB for EKE-KEM(Saber).

Table E provides a detailed comparison on efficiency of these last three lattice
PAKEs.

Scheme Bndw (KB) Rounds Assum Security Model

JGHNW[46] 207 3 (R)LWE BPR Standard

Ding17[31] 8.320 2 (R)LWE Bokyo[18] ROM
PairWE

EKE-KEM 1.376 2 LWR UC ROM
(Saber)

Table 1: Comparison of lattice-based PAKE protocols based on bandwidth,
rounds, security assumptions, security claims, and security model

F PAKE and aPAKE functionalities

In Figure 23 we recall a symmetric PAKE functionality FpwKE of Canetti et
al[21], adapted to the multi-session setting. FpwKE is used in Section 5 to argue
that protocol EKE 7 and EKE-KEM 10 are UC-secure PAKE. In Figure 24 we
recall a asymmetric PAKE functionality FaPAKE of [39] adapted to the case of
explicit C-to-S authentication in [41]. FaPAKE is used in Section 6 to prove that
KHAPE remains a UC aPAKE after replacing IC with HIC.

reduction and rejection sampling; (2) the use of LWR halves the amount of
randomness required compared to LWE-based schemes, and thus reduces bandwidth;
(3) the module structure provides flexibility by reusing one core component for
multiple security levels. See more details in [28]

61

Notation: κ is the security parameter, P,P′ are arbitrary parties, A is the ideal-
world adversary

On query (NewSession, sid,P,P′, pw) from party P:

If this is the first NewSession query for this sid, or it is the second one and the
previous one was (sid,P′,P, pw ′), then record (sid,P,P′, pw) marked fresh and
forward (NewSession, sid,P,P′) to A.

On query (TestPwd, sid,P, pw∗) from adversary A:

If there is record (sid,P,P′, pw) marked fresh then:

• If pw∗ = pw then mark this record compromised and reply ”correct” to S
• If pw∗ 6= pw then mark this record interrupted and reply ”incorrect” to S

On query (NewKey, sid, P,K ∗) from adversary A:

If there is record (sid,P,P′, pw) marked flag 6= completed then:

• If flag = compromised then set K ← K ∗;
• If flag = fresh, there is a record (sid,P′,P, pw), and FpwKE sent (sid,K ′) to P′

when record (sid,P′,P, pw) was fresh, then set K ← K ′;
• In any other case set K

r←− {0, 1}κ.

Mark record (sid,P,P′, pw) as completed and send (sid,K) to P.

Fig. 23: FpwKE: UC symmetric PAKE functionality (multi-session version)

62

Password Registration

• On (StorePwdFile, uid, pw) from S create record 〈file, S, uid, pw〉 marked fresh.

Stealing Password Data

• On (StealPwdFile, S, uid) from A, if there is no record 〈file, S, uid, pw〉, return
“no password file”. Otherwise mark this record compromised, and if there is a
record 〈offline, S, uid, pw〉 then send pw to A.

• On (OfflineTestPwd, S, uid, pw∗) from A, then do:

• If ∃ record 〈file, S, uid, pw〉 marked compromised, do the following:
If pw∗ = pw then return “correct guess” to A else return “wrong guess.”

• Else record 〈offline, S, uid, pw∗〉

Password Authentication

• On (CltSession, sid, S, pw) from C, if there is no record 〈sid,C, ...〉 then record
〈sid,C, S, pw , 0〉 marked fresh and send (CltSession, sid,C, S) to A.

• On (SvrSession, sid,C, uid) from S, if there is no record 〈sid, S, ...〉 then retrieve
record 〈file, S, uid, pw〉, and if it exists then create record 〈sid, S,C, pw , 1〉
marked fresh and send (SvrSession, sid, S,C, uid) to A.

Active Session Attacks

• On (TestPwd, sid,P, pw∗) from A, if there is a record 〈sid,P,P′, pw , role〉
marked fresh, then do: If pw∗ = pw then mark it compromised and return
“correct guess” to A; else mark it interrupted and return “wrong guess.”

• On (Impersonate, sid,C, S, uid) from A, if there is a record 〈sid,C, S, pw , 0〉
marked fresh, then do: If there is a record 〈file,S, uid, pw〉 marked compromised
then mark 〈sid,C, S, pw , 0〉 compromised and return “correct guess” to A; else
mark it interrupted and return “wrong guess.”

Key Generation and Authentication

• On (NewKey, sid,P,K ∗) from A, if there is a record rec = 〈sid,P,P′, pw , role〉
not marked completed, then do:

• If rec is marked compromised set K ← K ∗;
• Else if role = 0, rec is fresh, there is record 〈sid,P′,P, pw , 1〉 s.t. FaPAKE

sent (sid,K ′) to P′ while that record was marked fresh, set K ← K ′;
• Else if role = 1, rec is fresh, there is record 〈sid,P′,P, pw , 0〉 which is

marked fresh, pick K
r←− {0, 1}`;

• Else set K ← ⊥.

Finally, mark rec as completed and send output (sid,K) to P.

Fig. 24: FaPAKE: UC asymmetric PAKE with explicit C-to-S authentication

63

	Randomized Half-Ideal Cipher on Groups with applications to UC (a)PAKE

