
SCA-LDPC: A Code-Based Framework for
Key-Recovery Side-Channel Attacks on

Post-Quantum Encryption Schemes

Qian Guo1, Denis Nabokov1, Alexander Nilsson1,2, and Thomas Johansson1

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{qian.guo,denis.nabokov,alexander.nilsson,thomas.johansson}@eit.lth.se

2 Advenica AB, Malmö, Sweden

Abstract. Whereas theoretical attacks on standardized crypto primi-
tives rarely lead to actual practical attacks, the situation is different for
side-channel attacks. Improvements in the performance of side-channel
attacks are of utmost importance.
In this paper, we propose a framework to be used in key-recovery side-
channel attacks on CCA-secure post-quantum encryption schemes. The
basic idea is to construct chosen ciphertext queries to a plaintext check-
ing oracle that collects information on a set of secret variables in a single
query. Then a large number of such queries is considered, each related to
a different set of secret variables, and they are modeled as a low-density
parity-check code (LDPC code). Secret variables are finally determined
through efficient iterative decoding methods, such as belief propagation,
using soft information. The utilization of LDPC codes offers efficient
decoding, source compression, and error correction benefits. It has been
demonstrated that this approach provides significant improvements com-
pared to previous work by reducing the required number of queries, such
as the number of traces in a power attack.
The framework is demonstrated and implemented in two different cases.
On one hand, we attack implementations of HQC in a timing attack,
lowering the number of required traces considerably compared to attacks
in previous work. On the other hand, we describe and implement a full
attack on a masked implementation of Kyber using power analysis. Using
the ChipWhisperer evaluation platform, our real-world attacks recover
the long-term secret key of a first-order masked implementation of Kyber-
768 with an average of only 12 power traces.

Keywords: Lattice-based cryptography, code-based cryptography, side-
channel attacks, NIST post-quantum cryptography standardization, low-
density parity-check codes.

1 Introduction

NIST [1] is running a standardization process (referred to as the NIST PQ
project) for post-quantum public-key cryptographic algorithms (PQC schemes),
which are supposed to be secure even against attacks from quantum computers.

This is not the case for most public-key algorithms in use today [42]. The project
started in 2017 and just recently the first choices for standardization were an-
nounced. The project is ongoing and round 4 will involve a further examination
of additional schemes. All of the schemes in the NIST PQ project are based on
a variety of hard problems that are believed to be intractable for quantum com-
puters, and many of them can be categorized as either Public-key Encryption
(PKE) or Key Encapsulation Mechanisms (KEMs). These PKE/KEM schemes
are based on either the Learning with Errors (LWE) problem as introduced by
Regev [36] in 2005 or on code-based problems, initiated in [27].

Two such schemes will be considered in this paper. One is CRYSTALS-Kyber
[40], selected by NIST as the candidate for standardization for KEMs. The secu-
rity of Kyber is based on the Module LWE problem and has strong confidence
in its theoretical security, while also offering a good performance. The other
scheme is HQC [2], a code-based round 4 candidate. Other code-based round 4
candidates are BIKE [4] and Classic McEliece [3]. NIST has stated that one of
the schemes HQC or BIKE may be standardized.

LWE- or code-based PKE/KEMs are usually built to be secure against chosen
plaintext attacks (IND-CPA secure) and then transformed to be secure against
adaptive chosen ciphertext attacks (IND-CCA secure) by applying some CCA
conversion method, such as the Fujisaki-Okamoto (FO) transform. The FO trans-
form involves a re-encryption after decryption, which enables the detection of
invalid ciphertexts and correspondingly return failure. Invalid chosen ciphertexts
that are not proper encryptions of a message will almost always be rejected by
the decryption/decapsulation.

Side-Channel Attacks (SCA) were introduced by Kocher [26] and are a sep-
arate area of research today. For PQC schemes, it is a major concern and NIST
also in the later rounds encouraged more research on the security of PQC schemes
against side-channel cryptanalysis. In relation to this, there has been great re-
search interest in developing new side-channel attacks on all relevant NIST can-
didates as well as studying efficient side-channel protection techniques.

There are many different approaches to SCA on PQC schemes. Following
previous work, we may roughly classify attacks into two main categories. The
first category includes attacks that require either a single trace or at least only
few traces to perform key recovery or message recovery and targets very precise
leakages in an implementation. The second category includes attacks of a more
generic type, exploiting arbitrary leakages in the implementation of the algo-
rithm, but typically requiring the collection of many traces in the attack phase.
These more generic attacks are modeled by instantiating a side-channel oracle
for chosen ciphertexts. The oracle is explained in more detail in the following.

1.1 Related works

Key-recovery chosen-ciphertext side-channel attacks (KR-CCA-SCA) are attacks
where the adversary recovers the secret key in the scheme by using chosen cipher-
text calls to the decryption or decapsulation algorithm and getting measurement
data from some side-channel.

2

KR-CCA-SCA attacks on PQC encryption schemes are a well-established re-
search field, as evidenced by numerous publications [10, 35, 29, 45, 18, 16, 21, 17,
39, 15, 33, 41]. These attacks can be classified depending on where the informa-
tion leakages are detected. The first type of KR-CCA-SCAs [18, 16, 35] exploits
leakages from the two added procedures, the re-encryption and ciphertext com-
parison, of the FO transform, since these two components in the FO transform
depend on the decrypted message vector. There are also KR-CCA-SCAs [29, 21,
17, 39, 15] that exploit side-channel leakages from the CPA-secure decryption,
where parts of the decryption procedure will directly use the secret key.

In [34], Ravi et al. classified side-channel-assisted CCA attacks on lattice-
based KEMs into three main categories, plaintext-checking (PC) oracle based at-
tacks [10, 35], decryption-failure (DF) oracle based attacks [18], and full-domain
(FD) oracle based attacks [29, 45]. The classification depends on what kind of
answer the oracle gives. In a DF oracle, the oracle answer is simply whether
the chosen ciphertext decodes/decrypts to a valid message or not. On the other
hand, a PC oracle and an FD oracle require message recovery before key recovery
can take place. In a PC oracle, the response of the oracle is whether the chosen
ciphertext results in a specific given message upon decryption. In an FD Oracle,
the oracle returns the full message that has been decrypted. As a result, in a
PC oracle based attack, it is possible to recover a maximum of one bit of secret
information from a single side-channel measurement; however, if the message is
of m-bit length (where m is 256 for Kyber), it is possible to recover m bits of
secret information with a FD oracle based attack.

Recently, Tanaka et al. in [43] and Rajendran et al. in [32] have independently
proposed a new type of oracle called multi-values PC oracle. This oracle can
extract 8-12 bits of information from a single decapsulation oracle call through
multi-class classification. The multi-values PC oracle can be considered as a
compromise between the PC oracle and the FD oracle, although it is still much
less efficient than the latter.

For general PQC schemes, Ueno et al. [44] have shown that all round-3 NIST
KEM candidates except for Classic McEliece are vulnerable to KR-CCA-SCAs.
However, it was later established in [39] that the attack detailed in [44] is only
applicable to earlier versions of the HQC proposal and not to the recent Reed-
Muller-Reed-Solomon (RMRS) version. Schamberger et al. in [39] and Goy et
al. in [15] very recently proposed new power side-channel attacks on the RMRS
version of the HQC scheme, but their attack only applied to power analysis with
leakages from the CPA decryption. In [16] a generic PC oracle based attack
on the RMRS version of the HQC scheme has been proposed, presented in the
format of timing attacks.

One central problem in KR-CCA-SCAs is identifying a generic approach to
optimize the selection of chosen ciphertexts, in order to efficiently extract in-
formation from side-channel measurements. The main obstacles arise from two
primary sources: (1) the inaccuracies that may occur in the construction of or-
acles, particularly with the most powerful FD oracles, and (2) the non-uniform
distribution from which secret symbols are generated. To overcome these chal-

3

lenges, it is necessary to incorporate concepts from coding theory, particularly
in the areas of source coding and error correction. Several early research ef-
forts are made to address these challenges, as documented in [29, 31, 41]. But
the existing solutions are limited in scope, either because they are restricted
to a specific oracle or because they are applicable only to particular types of
side-channel leakages. Finally, there is ample room for improvement in terms of
attack efficiency.

1.2 Contributions

In this paper, we propose a framework named SCA-LDPC to improve the key-
recovery side-channel attacks on CCA-secure PQC encryption schemes. The ba-
sic idea is to construct chosen ciphertext queries to an oracle that collects in-
formation on a set of secret variables in a single query. Then a large number of
such queries are considered, each related to a different set of secret variables, and
they are modeled as a low-density parity-check code (LDPC code). The secret
variables are then determined through efficient iterative decoding methods, such
as belief propagation (BP), using soft information.

New concepts. The concept of designing chosen-ciphertexts to gather side-channel
information in a linear parity check is a fresh and innovative approach. This ap-
proach has the potential to provide both source compression and error correction
simultaneously. The reason for this is that the combination of multiple secret en-
tries is typically more closely aligned with the uniform distribution, which allows
for more effective extraction of information from a single side-channel measure-
ment. This source compression gain can result in a substantial improvement for
HQC where secret symbols have an extremely low entropy, as well as a notice-
able improvement for lattice-based schemes. The error correction gain is realized
through the utilization of linear parity checks, which enable the utilization of
correctly recovered coefficients to rectify incorrect decisions. The implementa-
tion of these linear checks in the form of an LDPC code was selected due to
its efficient decoding capabilities and its well-known near-optimal performance
from an information-theoretical perspective.

The new framework has significantly transformed the design philosophy of
prior methods for source compression and error correction, as documented in [29,
31, 41]. The previously proposed methods aimed to achieve full key recovery with
higher accuracy by introducing additional measurements for each individual se-
cret symbol, thereby increasing the success rate of symbol recovery. The new
framework, however, proposes a novel approach by allowing for fewer measure-
ments on the secret symbols, leading to a higher level of symbol-level errors,
which are subsequently corrected by the specially designed LDPC codes through
inter-symbol parity checks.

We emphasize that the framework is generic in nature and can be applied
to both code-based and lattice-based schemes, across adaptive and non-adaptive
attack models, and in a multitude of side-channel leakage scenarios, including
timing, cache-timing, power, and electromagnetic leakages. To demonstrate the

4

applicability of the framework, we have instantiated it in two relevant applica-
tions: an adaptive timing attack on an HQC implementation with PC oracles,
and a non-adaptive power attack on a Kyber implementation with FD oracles.
The choice of Kyber and HQC as the primary targets was motivated by their
significance, with Kyber being selected as the primary KEM/PKE algorithm for
standardization by NIST and HQC still being considered for standardization at
the end of round-4.

New results. We list the contributions of the paper in the following.

– We introduce a code design method in designing capacity-approaching LDPC
/QC-LDPC codes over binary and non-binary alphabets. Our method es-
tablishes a relationship between oracle calls and parity checks in the LDPC
code, leading to substantial improvements over previous methods in both
noiseless and noisy real-world scenarios. The prior improvement is primarily
attributed to source compression, while the latter improvement is the result
of a combination of source compression and error correction.

– We simulate the performance with different noise levels and characterize
the performance of the new approach through a simulation method. The
simulated gains are substantial. For example, when the oracle accuracy is
100%, as is the case for the key misuse oracle or an oracle constructed from
highly reliable side-channels such as cache-timing leaks on an Intel-SGX
platform [24], we can recover the secret key of hqc-128 with approximately
9,000 traces in the PC oracle. Using the same oracle setting as the ideal oracle
in [16], we have achieved an improvement factor of 86.6, as we only need
about 10,000 traces, compared to the 866,000 traces reported in [16]. This
significant improvement is due to the fact that the HQC secret entries are
sampled from a distribution with extremely low entropy and the previously
known methods (e.g., in [16]) ignore the potential source compression gain.
In the scenario of perfect FD oracles, the number of traces required to recover
Kyber-768 is only 7, which meets the Shannon lower bound.

– We perform actual attacks on two target algorithms, Kyber and HQC, in
real-world scenarios. The results of our study demonstrate a close alignment,
or even an improvement, of the real attack performance when compared to
the simulation results. The first attack is a full power analysis on a masked
implementation of Kyber-768. The attack was carried out using the Chip-
Whisperer framework on the open-source mkm4 library in [22] with the pro-
filing and attack phases performed on two distinct boards, both equipped
with ARM-Cortex-M4 CPUs. In the real-world scenario, we obtained FD
oracles with varying accuracy levels based on their positions. The average
accuracy was estimated to be approximately 95%. The full secret key was
successfully recovered with an average of 12 traces. In comparison, the sim-
ulation required roughly 17 traces for the same oracle accuracy. The better
performance in the real-world scenario can be attributed to the availability
of soft information and the possibility of some secret symbols having a high
accuracy since they are related to a high-accuracy oracle, which in turn helps

5

in the correct decoding of other positions through the parity checks of the
specially designed LDPC codes.
The second attack is a full timing attack simulation on HQC, validated with
a real-world timing oracle. The real-life attack performance highly depends
on the targeted platform. On our laptop with an Intel Core i5 CPU, we can
achieve full key recovery against hqc-128 with 218 decapsulation calls.

– The software for attack and simulation will be made open-source.3

It is important to note that, in accordance with previous research, our ap-
proach focuses on recovering the entire secret vector through side-channel leak-
ages. The sample complexity can be reduced by performing additional post-
processing procedures, such as information set decoding and lattice reduction [8],
to recover a portion of the secret entries. The specific reduction in the number of
traces depends on the permissible amount of computation for post-processing.

Comparison with previous studies in [29, 31, 41]. In [31], Qin et al. presented an
efficient PC oracle based attack on lattice-based schemes by adaptively choosing
a new ciphertext for decryption based on the side-channel information obtained
from previous power/electromagnetic measurements. Their approach is similar to
the well-known Huffman coding method and can result in a source compression
gain. Shen et al. in [41] further extended this work by proposing a detection
coding method to identify incorrectly recovered positions and to send additional
measurements for those secret positions. Note that these studies are limited to
PC oracle based attacks on lattice-based schemes and operate in adaptive mode,
resulting in a more restrictive attack model and lower efficiency compared to
other attacks based on more powerful oracles. For example, when the oracle
accuracy is 95%, it was reported in [41] that 3874 traces are required to attack the
Kyber-512 scheme; in contrast, the new attack based on the FD oracle presented
in this paper only requires 12 traces in a real attack (or 17 traces in simulation)
to attack the Kyber-768 scheme. Furthermore, from a viewpoint of information
theory, LDPC codes are attractive due to their near-optimal performance. As a
result, they are expected to provide improved performance in scenarios where
the oracle accuracy is low, compared to the detection codes proposed in [41].

A relevant study [29] has proposed the extended Hamming coding method
to enhance the FD oracle based power attack on the masked Saber, a round-
3 NIST PQ KEM candidate, in the non-adaptive attack model. However, this
approach does not provide any source coding gain and its error correction is
limited to an inner-symbol style, resulting in a lack of inter-symbol connections
and a less potent error correction mechanism. A more detailed comparison of
our work with [29] can be found in Section 6.3.

1.3 Relations to very recent work

The first draft of the work was finalized in October 2022. In December 2022,
two relevant studies [5, 11] on the topic of FD-oracle based attacks on masked
3 https://github.com/atneit/SCA-LDPC

6

implementations of Kyber were made available on the IACR ePrint website.
These works extend the applications of the method proposed in [29], and as
such, differ from the direction taken by our framework in its design towards a
more efficient information extraction. These two works offer no source compres-
sion gains and the error correction approach is similar to that proposed in [29].
For example, in [5], the authors constructed a masked and shuffled implemen-
tation based on the first-order masked implementation in [22] and reported a
minimum required number of traces of 38016. While our reported number is 12,
a direct comparison between these two attack instances is invalid as the targeted
implementations differ. In [11], Dubrova et al. presented a high probability of
success in the recovery of message bits from a masked implementation of Kyber
up to the fifth order. Their results suggest that our SCA-LDPC attack frame-
work may perform effectively even against masked implementations with a much
higher order. Additionally, the authors identified stronger leakage points from
the function masked_poly_frommsg compared to masked_poly_tomsg found in
the initial version of our paper. As a result, we have revised our approach to
utilize the new leakage points reported in [11] for a more efficient attack.

In January 2023, Huang et al. presented the first KR-CCA-SCA in the con-
text of cache timing attacks in [24]. Their results include a novel approach for
using a PC oracle for the KR-CCA-SCA attack on the RMRS version of the
HQC scheme. The accuracy of the PC oracle in the cache scenario is high, with
a reported rate of almost 100%. However, their method does not offer any source
compression or error correction gains and requires a significantly higher number
of oracle calls compared to our SCA-LDPC framework (i.e., 53857 vs. 9000).
The potential to integrate their attack concept with our SCA-LDPC framework
for source compression and error correction is an area of future investigation.

1.4 Organization

The remaining parts of the paper are organized as follows. In Section 2, we
present the necessary background information. In Section 3, we present a gen-
eral description of the new attacking framework. We apply the new attack ideas
towards Kyber and HQC, in Section 4 and Section 5, respectively. Then, we
present the extensive computer simulation results and real-world attacks in Sec-
tion 6. We finally conclude the paper and present future directions in Section 7.

2 Preliminaries

We present the necessary background in this section. We first provide the em-
ployed notations and terminology in coding theory, followed by a description of
the two KEM candidates, Kyber and HQC. Finally, we conclude this section by
outlining the threat model.

7

2.1 Notations and coding terminology

Notation. For a finite set I, the symbol #{I} denotes the number of elements in
I. Let Fq be the finite field of size q, ⌈x⌋ the rounding function, and H, G, and K
three cryptographic hash functions. The central binomial distribution Bµ outputs∑µ

i=1(ai − bi), where ai and bi are independently and uniformly randomly sam-
pled from {0, 1}. The Bernoulli distribution Berη defines a random variable from
{0, 1}, which is 1 with probability η and 0 otherwise. The notation a

$← U denotes
that the entries in a are randomly sampled from the distribution U, where a is a
vector or polynomial. For a set I, a $← I means that the entries in a are uniformly
sampled from the set I at random. For a vector or polynomial a, a[i] refers to
the coefficient of a at the index i. The Shannon’s binary entropy function of a
random variable X is defined as H(X) = −

∑
x∈X Pr [X = x] log2 Pr [X = x] .

Linear codes. The Hamming weight of a vector x is its number of non-zero ele-
ments, denoted by wH (x). We define an [n, k, d]q linear code C as a linear sub-
space over Fq of length n, dimension k, and minimum distance d. Here minimum
distance is defined as the minimum Hamming weight of its non-zero elements.
Since a linear code C is a subspace, we can define it as the image of a matrix
G, called a generator matrix. We can also define the code C as the kernel of a
matrix H ∈ F(n−k)×n

q . Here H is called a parity-check matrix of C.

LDPC codes. Low-density parity-check (LDPC) codes are linear codes with a
sparse parity-check matrix first introduced in [14]. LDPC codes can be consid-
ered sparse graph codes because they can be decoded efficiently using iterative
decoding (such as belief propagation [30]) on the Tanner graph, a bipartite graph
with edges corresponding to non-zero elements in the parity-check matrix H.

Concatenated codes. Forney [12] in 1965 firstly proposed the concatenated code
construction approach of combining two simple codes called an inner code and
an outer code, respectively, to achieve good error-correcting capability with rea-
sonable decoding complexity. Let the inner code Cin : Ak → An, the outer
code Cout : BK → BN , and #{B} = #{A}k. The concatenated code is a code
Ccon : AkK → AnN . The key of the concatenated code construction method is
that the decoding can be done sequentially by passing first the inner code de-
coder and then the outer code decoder. Typically in the inner code decoding, one
can use a maximum-likelihood decoding approach, while the outer code allows
efficient decoding in polynomial time (e.g. by employing an LDPC code).

2.2 Kyber

Kyber [40], the KEM version of the Cryptographic Suite for Algebraic Lattices
(CRYSTALS), is based on the module Learning with Errors (MLWE) problem
and has been solicited as the KEM/PKE standard in the NIST PQ project.

Kyber achieves the IND-CCA security through a tweaked Fujisaki-Okamoto
transform [13] transforming an IND-CPA-secure PKE Kyber.CPAPKE to an

8

Table 1: Parameter sets for Kyber [40]
nmod d q µ1 µ2 (du, dv)

Kyber-512 256 2 3329 3 2 (10,4)
Kyber-768 256 3 3329 2 2 (10,4)
Kyber-1024 256 4 3329 2 2 (11,5)

IND-CCA-secure KEM Kyber.CCAKEM. The description algorithms of Ky-
ber.CPAPKE and Kyber.CCAKEM can be found in [40]. We include a simplified
description in Figure A.1 and Figure A.2 for completeness, where the implemen-
tation details with the Number Theoretical Transform (NTT) are omitted.

In the following, we define the compression function and the decompression
function, i.e., Compq(x, d) and Decompq(x, d), respectively.

Definition 1. The Compression function is defined as: Zq → Z2d

Compq(x, d) =

⌈
2d

q
· x

⌋
(mod 2d). (1)

Definition 2. The Decompression function is defined as: Z2d → Zq

Decompq(x, d) =
⌈ q

2d
· x

⌋
. (2)

The compression and decompression function can be done coefficient-wise if
the input is a polynomial or a vector of polynomials x ∈ Rd

q . The procedure
KDF(·) denotes a key-derivation function.

The security parameter sets for the three versions of Kyber, Kyber-512, Kyber-
768, and Kyber-1024 are shown in Table 1. In Kyber q is a prime 3329. Let Rq be
a polynomial ring Fq[x]/(x

256+1). Let H0 be a negacyclic matrix from a vector
h0, i.e. the first row is h0, subsequent rows are cyclically shifted, when the value
is moved from the last column to the first one, it is multiplied by -1. Let d
denote the rank of the module, set to be 2, 3, and 4, respectively, for Kyber-512,
Kyber-768, and Kyber-1024. When sampling from central binomial distribution
Bµ, Kyber also has two parameters (µ1, µ2), set to be (3, 2) for Kyber-512 and
(2, 2) for Kyber-768 and Kyber-1024.

2.3 HQC

HQC (Hamming Quasi-Cyclic) [2] is one of the main code-based IND-CCA-
secure KEMs in the NIST PQ project, which has advanced to the fourth round.
Its security is based on the hardness of decoding a random quasi-cyclic code in the
Hamming metric. In HQC, the base field is F2 and R2 denotes the polynomial
ring F2[x]/(x

n − 1). The multiplication of two polynomials u,v ∈ R2 can be

9

represented as a vector and a circulant matrix, induced from a vector in Fn
2 .

Given y = (y1, y2, . . . , yn) ∈ Fn
2 , its corresponding circulant matrix is defined as

rot(y) =


y1 yn · · · y2
y2 y1 · · · y3
...

...
. . .

...
yn yn−1 · · · y1

 .

We can write the multiplication of uv as u·rot(v)T or v ·rot(u)T. The transpose
of the circulant matrix is the counterpart of the negacyclic matrix.

The detailed description of the IND-CPA-secure PKE version of HQC and
the IND-CCA-secure KEM version can be found in the HQC reference docu-
ment [2]. We also list them in Figure A.3 and Figure A.4 for completeness. The
procedure KeyGen(·) randomly generates two private vectors x,y ∈ R2 with a
low Hamming weight w as the private key. It also generates a random public
vector h ∈ R2, computes s = x + h · y, and returns (h, s) as the public key.
The scheme employs a linear code C with a generator matrix G and generates
noise e, r1, r2 ∈ R2 with low Hamming weight in the encryption. The encryption
function computes u = r1 +h · r2 and v = mG+ s · r2 + e and returns (u,v) as
the ciphertext. In decryption, the secret vector y is an input and it computes

v − u · y = mG+ s · r2 − u · y + e︸ ︷︷ ︸
ê

. (3)

Since wH (ê) is small, the decryption function inputs v− u · y to the decoder of
C and can succeed with high probability.

The parameter sets of HQC are shown in Table 2. In the recent version
published in June 2021, HQC employs a concatenation of outer [n1, k1, n1−k1+
1]256 Reed-Solomon (RS) codes and inner duplicated Reed-Muller (RM) codes
built from the first-order [128, 8, 64]2 Reed-Muller code. The encoding procedure
first encodes a message m ∈ F8k1

2 to a codeword m̂ ∈ Fn1

28 of the employed
shortened Reed-Solomon codes. It then maps each byte of m̂ to a codeword of
the first-order RM and repeats the RM codeword for 3 or 5 times depending on
the security level to obtain a duplicated RM codeword in Fn2

2 . In summary, we
employ a linear code mG ∈ Fn1n2

2 . The HQC proposal makes all computations
in the ambient space Fn

2 and truncates the remaining n− n1n2 useless bits.
The IND-CCA security of the KEM version of HQC is achieved by the

Hofheinz-Hövelmanns-Kiltz (HHK) transform [23].

2.4 Threat model

We consider a side-channel-assisted chosen-ciphertext attack on a KEM’s decap-
sulation algorithm, where the attacker selects ciphertexts and observes specific
side-channel data, such as timing [18], cache-timing [24], or power/electromag-
netic leakages [35], from the targeted device, which can be a high-end CPU,
low-end CPU (e.g., ARM cortex-M4), or hardware device.

10

Table 2: The HQC parameter sets [2]. The inner code is the duplicated Reed-
Muller code defined by the first-order [128, 8, 64]2 Reed-Muller code.

RS-S Duplicated RM

Instance n1 k1 dRS Mult. n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17 664 17 669 66 75
hqc-192 56 24 33 5 640 320 35 840 35 851 100 114
hqc-256 90 32 49 5 640 320 57 600 57 637 131 149

Specifically, we assume that a communication party Alice is using her device
for key establishment. An adversary called Malory sends selected ciphertexts to
Alice to recover Alice’s long-term secret key. Alice runs the decapsulation al-
gorithm and Malory will fail if the used KEM algorithm is IND-CCA secure.
However, the designed side-channel-assisted CCAs can make the attack success-
ful after a few such attempts, using the observed side-channel leakages.

This side-channel-assisted CCA attack model is well-established – it is stated
in [44] that all the NIST round-3 KEM candidates except for Classic McEliece are
vulnerable to such attacks exploring leakages from FO transform. The basic idea
is to construct a plaintext-checking(PC) oracle outputting whether Dec(c′)

?
= m,

where c′ is the chosen ciphertext and m is a message vector.
Finally, the attacker recovers the long-term secret keys based on the output of

the PC oracle. Since the PC oracle is generally built from measurements of side-
channel leakages, it cannot be 100% correct, in practice. We denote the accuracy
of the constructed PC oracle ρ, i.e., the oracle outputs the right decision with
probability ρ and the wrong one with probability 1− ρ.

Note that we are discussing general methods for near-optimal CCA SCAs.
This new coding-theoretical approach for reduced sample (trace) complexity can
be applied in various side-channel attacks on various platforms, while the starting
oracle accuracy ρ can be different. A PC oracle with 100% correctness (ρ = 1)
can also be connected to a key misuse attack model, as described in [31].

Profiled power/EM attacks. Specific to power/EM attacks, we mainly consider a
profiled setting that the adversary has a similar but different device to perform
training activities. Though the adversary has no access to the secret key in
the targeted device, the secret key in the training device can be freely set. We
can also apply the new idea to non-profiled attacks that can build the required
abstract oracles online, but the sample complexity analysis will be different.

Comparison with the adaptive model in power/EM attacks. The studies [31, 32,
41] proposed efficient adaptive KR-CCA-SCAs on lattice-based proposals. This
attack model allows the adversary to select a new chosen ciphertext based on in-
formation obtained from previous power/EM traces, which can be employed for
source coding on secret coefficients. This approach can result in reduced sample
complexity close to the lower Huffman or Shannon bounds. However, this attack

11

model is strong for many practical (say IoT) applications since the adversary
needs to have good connections with the device measuring the power/EM leak-
ages and good computation capability to instantly process the obtained traces.
We highlight that our new SCA-LDPC attack framework eliminates the require-
ment and offers source coding gain in a non-adaptive attack model.

3 General Description of the SCA-LDPC Attack
Framework

This section presents a new idea of incorporating LDPC codes and soft informa-
tion to design chosen ciphertexts and improve previously established KR-CCA-
SCAs for CCA-secure post-quantum Key Encapsulation Mechanisms (KEMs)
and encryption schemes. We propose a novel technique to extract, from a single
side-channel measurement, information regarding a low-weight parity check of
the secret coefficients, as opposed to information regarding a single coefficient
in previous methods. The sparse system is then solved using iterative decoding
methods, such as belief propagation. This new approach enables the attainment
of both source compression benefits and error correction advantages. This is due
to the combination of several secret coefficients, which leads to a more uniform
extraction of information from a single trace. Additionally, the correct recov-
ery of coefficients facilitates the correction of erroneous decisions through spare
parity-check relations. The adoption of this new method significantly reduces
the number of necessary side-channel measurements. We call the new attack
strategy a framework as it is generic and can be applied to both code-based and
lattice-based schemes, in a multitude of side-channel leakage scenarios including
timing, cache-timing, power, and electromagnetic leakages.

We start this section by assuming the availability of a well-designed LDPC
code with specific dimensions and proceed to explain its utilization for improved
side-channel information extraction. We then in Section 3.2 present a simple
method for constructing such linear codes, the effectiveness of which will be
demonstrated through experiments in Section 6. In addition, we broaden the
framework by introducing a concatenated construction, where the LDPC codes
are utilized as the outer code. This construction is particularly efficient for
lattice-based schemes that feature a large alphabet size or for scenarios where the
accuracy of the oracle constructed from side-channel measurements is limited.

3.1 New attack idea

Given a good linear code with a sparse parity-check matrix Hr×n, there are
k = n − r secret positions to recover. In lattice-based and code-based KEM
proposals, the value k is usually divided into b blocks, each of which has the size
of k/b. We add the constraint that H should have the form of

H =
[
Hr×k| − Ir×r

]
.

12

s1 s2 s3 s4 s5 s6 c7 c8 c9 c10
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

+

C1

+

C2

+

C3

+

C4

Fig. 1: The Tanner graph explanation.

Our goal is to recover the first k secret entries si. One parity-check equation, i.e.,
one row in the parity-check matrix H, will introduce one check variable ci for
i ∈ {k+1, . . . , k+r}. We can rewrite each parity-check equation as ci =

∑
j∈I sj

and the size of #{I} is small since the matrix H is of low density.
The secret entries si are typically generated according to a certain secret dis-

tribution. For example, in the lattice-based scheme Kyber, the secret entries are
generated from the central binomial distribution Bµ; in the code-based scheme
HQC, the secret vector is very sparse and each secret entry can be viewed as a
Bernoulli variable Berη, where η is a small positive number. The secret distribu-
tion can be utilized as the prior information for si. Moreover, additional informa-
tion can be obtained through the implementation of side-channel measurements
of si, which subsequently updates the relevant distribution. This approach is par-
ticularly beneficial in lattice-based scenarios. We then design new ciphertexts to
obtain side-channel leakages of sparse linear combination ci of sj for j ∈ I. The
side channel information could reveal an empirical probability of ci. The prob-
lem of recovering all si for i ∈ {1, . . . , k} is transformed into a coding problem
through a noisy discrete channel. Note that the design method for ciphertexts
that can reveal partial information of ci, is unique to each proposed scheme and
differs between lattice-based and code-based schemes. This ciphertext design is
one main technical challenge in the proposed attack framework.

Explanation. The attack idea is illustrated in Figure 1. We assume that 6 secret
coefficients or variables si for 1 ≤ i ≤ 6 need to be recovered. For each si, we
can use the a priori distribution (e.g., in the HQC case), or we have more traces
or oracle calls to get a better knowledge of its distribution (e.g., in the Kyber
case). We show 4 parity checks in this example, and each check connects to a new
variable vi. From side-channel measurements or oracle calls, we got additional
information about these variables. Thus, we could assign the corresponding dis-
tribution to these variables and build a Tanner graph as in Figure 1. With this
sparse bipartite Tanner graph, we perform iterative decoding to recover the de-
sired secret coefficients si for 1 ≤ i ≤ 6.

The gain of using LDPC codes. It is essential to select a sparse graph code that
facilitates efficient decoding and renders the key recovery procedure computa-
tionally feasible. Therefore, it is natural to examine LDPC codes that have favor-

13

able characteristics from an information-theoretic point of view. We introduce
the variables ci, which are sparse linear combinations of the secret coefficients
sj , thereby facilitating a more efficient extraction of information from a single
side-channel measurement. This is due to the fact that the distribution of ci is
typically closer to a uniform distribution compared to the distribution of si, re-
sulting in substantial source compression gains, particularly in the case of HQC
and to a significant extent in Kyber. Further discussions regarding these source
compression gains will be presented in Section 6. Finally, LDPC codes can offer
close to optimal error correction performance, rendering the attack framework
efficient in terms of the number of side-channel measurements required, even
when the oracle constructed from side-channel leakages is highly inaccurate.

Example 1 (The source compression gain for hqc-128). In hqc-128, the length
of y is n = 17669 and the Hamming weight of y is wH (y) = 66. Hence, we
can approximate each position of y as a Bernoulli distribution Berη, where η ≈
0.0037. Assume that we have a perfect oracle to inform us of the value of one
position from one oracle call. If we try to recover a bit in y by one oracle call,
with Shannon’s binary entropy function, the obtained information is bounded by
0.0352 bit. If we xor 50 i.i.d. secret positions (as we did later in Section 6) and try
to recover the new random bit from one oracle call, then we can instead obtain
0.6255 bit of information. Thus, from an information-theoretical perspective, the
new framework is much more advantageous.

3.2 Code generation

It has been demonstrated in previous research [38] that random sparse linear
codes exhibit superior decoding performance and specific classes of Low-Density
Parity-Check (LDPC) codes, such as [37], can attain error-correction capabilities
that approach the Shannon capacity. In this work, we present a straightforward
code construction method that has shown remarkable results in our experiments.

We first borrow the concept of distance spectrum from [19].

Definition 3 (Distance Spectrum [19]). For a binary vector h ∈ Fn0
2 , we

define its distance spectrum D(h) as

D(h) = {d : 1 ≤ d ≤ ⌊n0/2⌋, d classified as existing in h},

where "existing in h" means there are two ones in h with distance d or (n0− d)
inbetween. A distance d can appear many times in the distance spectrum of a
given bit pattern h. We call this number the multiplicity of d.

In our new attack, we first generate QC-LDPC codes with mb blocks of the
parity-check matrix

Hini =

H11 · · · H1b

...
. . .

...
Hm1 · · · Hmb

 ,

14

where Hij is the circulant matrix (or the negacyclic matrix in the q-ary case)
generated from a binary vector hij for 1 ≤ i ≤ m, 1 ≤ j ≤ b with a low
Hamming weight. We generate the vectors hij randomly with the constraint
that only distances of multiplicity 1 are allowed in its distance spectrum. This
can be done with high probability since the constructed LDPC codes are sparse.
The key point in the design is that a length-4 cycle occurs in the associated
Tanner graph if the multiplicity of a distance in the distance spectrum is larger
than 2. By avoiding such patterns in a block, we can avoid many length-4 cycles;
such attempts can improve the decoding performance as length-4 cycles can
substantially hurt the decoding performance.

We select r rows of Hini (randomly or according to certain rules) to form a
sub-matrix H′ and append −Ir×r, where Ir×r is the identity matrix. Thus, the
parity-check matrix of the final generated code is

H =
[
H′

r×n0b
| − Ir×r

]
(4)

Concatenated code construction. The LDPC codes generated from the above sim-
ple approach can serve as the outer code in the concatenated construction. The
inner code can be any linear code such as a repetition code, the extended Ham-
ming codes, and a further concatenation of the extended Hamming codes and
repetition codes in [29]. Moreover, we can include a soft-input-soft-output de-
coder (e.g., in [25]) to utilize the soft-information. Note that in the soft-decoding
procedure (e.g., the BP algorithm) of the outer code, only a distribution of each
secret coefficient random variable is required; we could thus employ a code with
an efficient maximum likelihood decoding procedure as the inner code allowing
an efficient calculation of the soft output of the coefficient distribution.

In summary, such concatenated code construction enhances decoding capa-
bility and also balances decoding complexity, as the decoding of both outer and
inner codes is efficient. This construction is particularly effective for lattice-based
proposals or when the side-channel oracle exhibits a low level of accuracy.

4 Application to Kyber

In this section, we outline the details of how the new SCA-LDPC framework
can be applied to Kyber. The attack is more effective for Kyber if we have
side-channel leakages for both si and cj . We demonstrate how to obtain these
leakages, construct inner codes for them, and apply the outer LDPC decoder.

4.1 Basic key recovery attack

In the following, we explain the basic attack to obtain side-channel informa-
tion about secret coefficients si. We focus on Kyber-768 mostly because the
new protected implementation [22] that we target supports only this set of pa-
rameters. For Kyber-768, the secret key is s = (s0, s1, s2), a ciphertext is a
pair (u′,v′). To decrypt a ciphertext, one computes m = Compq(v − sTu, 1),

15

where u = Decompq(u
′, du) = (u0,u1,u2), v = Decompq(v

′, dv). The com-
mon practice [35] is to choose a ciphertext that leads to m = (0, 0, . . . , 0) or
m = (1, 0, . . . , 0). In other words, all bits of the message are fixed to 0 except
the first one. This can be done, for example, by setting u0 = (ku, 0, . . . , 0),
u1 = u2 = 0 and v = (kv, 0, . . . , 0), where ku, kv are some numbers modulo q.
In this case, the message bits are subject to the following equation.

m[i] =

{
Compq(kv − ku · s0[0], 1), i = 0

Compq(ku · s0[i], 1), i ≥ 1
(5)

By choosing appropriate values for ku and kv, it is possible to force m[i] to
always be zero for i ≥ 1, while the value of m[0] depends on the first secret
coefficient s0[0]. Since secret coefficients for Kyber-768 are taken from the range
[−2, . . . , 2], some of the coefficients are encoded as 0, while others are encoded as
1. We can use several such ciphertexts with (possibly) different kv and/or ku to
get an inner code of longer length. This way, using an oracle that distinguishes
message (1, 0, . . . , 0) from (0, 0, . . . , 0), the attacker can get the distribution of a
secret coefficient closer to the real value the more ciphertexts he uses.

There are restrictions for the values ku and kv: (1) these values are taken from
the image of Decompq; (2) ku is chosen in a way such that Compq(ku ·s, 1) = 0
for any secret coefficient s (follows from Equation (5)). Thus, one cannot use
any code; even though it is possible to encode each secret coefficient with only
⌈log2(5)⌉ = 3 bits, for any fixed in-advance combination of 3 ciphertexts one
cannot fully determine an arbitrary secret coefficient even with perfect oracle.

One way to solve this problem [41] is to choose ciphertexts adaptively based
on the output of the oracle, but we take a different approach. Consider an FD
oracle based attack, i.e., assume that we have a set of oracles (Oi)i∈(0..n−1),
where n is the length of the message. Given a ciphertext, the oracle Oi says if
m[i] = 1 or not. Essentially, the attacker calls all of these oracles at once, giving
them the same ciphertext, this way he can get information about the whole
message to be decrypted, the scenario is the same as in [29]. The attacker can
create a ciphertext in the following way, set u0 = (ku, 0, . . . , 0), u1 = u2 = 0,
and v = (kv, kv, . . . , kv), then

m[i] = Compq(kv − ku · s0[i], 1), (6)

i.e., ith bit of the message depends on s0[i]. Thus, from one ciphertext the in-
formation about the block of 256 coefficients s0 can be obtained. Since there is
no more restriction on m[i] = 0 for i ≥ 1, the amount of possible inner codes
increases greatly. Table 3 shows an inner code from three ciphertexts built from
(k′u, k

′
v) pairs, this code can be used to fully determine 256 secret coefficients

with perfect oracles. Note that to create an actual ciphertext (u′,v′) we need
a pair (k′u, k

′
v) that maps to (ku, kv) with coefficient-wise function Decompq.

The next block of secret coefficients s1 can be retrieved by setting u0 = 0,
u1 = (ku, 0, . . . , 0), u2 = 0 and so on. Note that the attacker could choose dif-
ferent values in v, this way different encodings can be used for different message

16

Table 3: Example of an inner code for the secret coefficients. Each value from
the range [−2, . . . , 2] is encoded with 3 bits (columns of the table), therefore, the
secret coefficient could be fully determined with just 3 oracle calls given that the
oracle is perfect.

(k′u, k
′
v)

Secret coefficient
-2 -1 0 1 2

(630, 14) 0 1 0 1 1
(706, 6) 0 0 1 1 0
(706, 10) 0 1 1 0 0

bits (although all those encodings should have the same ku) and this potentially
opens up the possibility of the adaptive attack. However, such an attack is more
complicated since the set of allowed encodings given the fixed ku is quite limited,
and the attacker has to choose the same ku for all 256 coefficients. We leave it
as a potential follow-up work and focus on the situation where for all message
bits there is a fixed in-advance encoding to be used.

The common approach in the literature is to use just an inner code for secret
coefficients (without outer code) that makes the probability of getting the wrong
coefficient to be very small (with real imperfect oracles), such that the probability
to get all secret coefficients correctly is close to 1. In our approach, however,
we use a shorter inner code that is not sufficient by itself, for example in our
real attack from Section 6.1 we encode each secret coefficient with only 2 bits
and encode the values −2 and 2 the same way, i.e., with only inner code it is
impossible to differentiate between these values.

How to choose inner code. For the fixed in-advance code length ℓ we want
to create an inner code Cℓ that maximizes the information we get from the
oracles with accuracy ρ. We solve this problem by considering the entropy of
secret coefficients. Initially, each of them is distributed according to Bµ, whose
entropy is H(Bµ) ≈ 2.03, for µ = 2. Each value s ∈ Bµ is encoded as Cℓ(s) –
a binary string of length ℓ. Given an output string y of length ℓ from an oracle
(note that y can be different from every Cℓ(s), s ∈ Bµ), consider the probability
Pr [Bµ = s | y] for each s ∈ Bµ. As an example from Table 3, Pr [Bµ = 0 | 011] =
1 for the perfect oracle, but it is less than 1 for an oracle with ρ < 1 since we
could have reached this y from another coefficient.

To avoid ambiguity, we denote yρ as the output of the oracle with the
accuracy ρ. The conditional distribution Bµ|yρ can be naturally defined as
Pr [(Bµ|yρ) = s] = Pr [Bµ = s|yρ]. Now, the difference between the entropy val-
ues H(Bµ) − H(Bµ|yρ) shows how much information the output yρ gives. To
assess how good the code is, we can compute the expectation of this information
as

I(Cℓ) =
∑

yρ∈{0,1}ℓ

(H(Bµ)−H(Bµ|yρ)) ·Pr [Y = yρ] ,

17

where Y is a random variable that describes the output of an oracle with accuracy
ρ on a random secret coefficient. The probability of the specific oracle’s output
is computed as follows.

Pr [Y = yρ] =
∑

x∈supp(Bµ)

ρd(yρ,Cℓ(x))(1− ρ)ℓ−d(yρ,Cℓ(x))Pr [Bµ = x] ,

where d(·, ·) is the Hamming distance. To decode a received word yρ, one com-
putes conditional probability Bµ|yρ of secret coefficient, i.e. we use maximum-
likelihood decoding approach.

4.2 Improving the attack using LDPC

The basic attack allows us to compute the conditional distribution for each secret
coefficient using the inner code. Now, following our framework, we create an outer
LDPC code. For it to work, we also need a way to get information about parity
checks ci. Let us describe how to create a ciphertext corresponding to a parity
check. Consider an example: Let u1,u2 and v be as above, but u0 = ku+ kux

2,
then

sTu = ku
(
(s0[0]− s0[n− 2]) + (s0[1]− s0[n− 1])x+ (s0[2] + s0[0])x

2 + . . .
)
.

Looking at the first message bit

m[0] = Compq(kv − ku · (s0[0]− s0[n− 2]), 1)

and comparing it to Equation (6), one can recover c0 ← s0[0] − s0[n − 2] using
a similar approach as in recovering s0[0] with O0. However, c0 lies in the range
[−4, . . . , 4], therefore the recovery process is more complicated. However, we still
use several different ciphertexts to get an inner code for the check variables. In
other words, there are two inner codes: one for secret coefficients, and another one
for check variables. Each of them helps us to compute conditional distributions,
which we use with outer LDPC code.

Now, let us represent c0 as a vector h0 with values from {−1, 0, 1} such that
c0 = hT

0 (s0[0], . . . , s0[n−1]). In general, if u0 = ku ·
∑w

j=1 x
ij , then h0 is a vector

with w nonzero entries at the positions (−ij) mod n, where the entry is 1 if and
only if ij = 0. Let H0 be a negacyclic matrix of the vector h0. With this cipher-
text, the ith message bit is connected to the ith row of H0(s0[0], . . . , s0[n− 1])T.
Note that, unlike in Section 3.1, ci is the sum of secret coefficients, possibly mul-
tiplied by -1. However, this does not significantly affect the result since from the
distribution of the coefficient it is trivial to obtain the distribution of the negative
coefficient and vice versa. Thus, we still call ci the sum of secret coefficients.

Let ur = ku ·
∑w

j=1 x
i
(r)
j , r ∈ {0, 1, 2}. Ciphertext (u,v) with the help of

oracles Oi reveals information about 256 parity checks. The parity-check matrix
of the outer LDPC code in this case is of the form

Hini =
[
H0|H1|H2

]
,

18

where Hj is the negacyclic matrix obtained from the vector connecting c0 and
sj . Due to the FD oracle, parity checks c1, . . . , cn−1 must be negacyclic shifts
of c0. We only demonstrated the parity-check matrix for the outer LDPC code
consisting of block of 256 checks, but there could be several such blocks. Note
that in general, the polynomials ur do not have to use the same w.

There are three main ways to increase the success probability of the attack.

1. Increase the length of the inner code for the secret coefficients. Querying
oracles as in Section 4.1 leads to a more accurate distribution for each coef-
ficient.

2. Similarly, increase the length of the inner code for the check variables, i.e.,
fix the indexes i

(r)
j and use different (ku, kv).

3. Increase the number of check blocks. The resulting parity-check matrix of
the LDPC code Hini consists of 3 ×m blocks of negacyclic matrices, where
m is the number of “unique” parity checks c0, cn, c2n, . . .

Creating the best inner code for the check variables that maximizes the
amount of information is a challenging task. An educated guess would be the
most accurate way to describe our approach to tackling this problem.

5 Application to HQC

In this section, we describe the detailed attack on HQC. OHQC denotes a general
side-channel-based PC oracle for HQC, referenced prior-art assumes timing leak-
age, but this is not required. We treat a key-misuse oracle as a chosen-ciphertext
side-channel oracle with 100% oracle accuracy.

5.1 Key-recovery attack with OHQC

In [16] the authors presented a plaintext checking (PC) oracle based on timing
information due to the use of rejection sampling. In this section, we describe
how the PC attack works and then explain how we can improve it by using our
new SCA-LDPC framework, which is based on coding theory.

Currently, HQC makes use of so-called rejection sampling in the CPA secure
encryption function [2, 16]. The rejection sampling algorithm is used to construct
random vectors with a specific Hamming weight ω. It works by random sampling
of bit positions in the vector, and if some positions are sampled twice, they are
rejected. Straight-forwardly implemented, this algorithm leaks timing informa-
tion due to the inherently random number of rejections that occur. The HQC
implementations tested in [16] leak timing information mainly through the use of
so-called “seedexpander” calls. The output of the seedexpander function is deter-
ministic pseudo-randomness given by an eXtendable Output Function (XOF).
The rejection sampling algorithm uses the seedexpander function to generate rel-
atively large blocks of randomness, at a time. The timing distribution, therefore,
is highly dependent on the number of seedexpander calls needed. The minimum
number of seedexpander calls occurs when there are no rejections in the rejection

19

sampling algorithm. In practice, we classify timing measurements based on the
number of additional seedexpander calls. They are each related to one of the
four4 distributions S0,S1,S2,S3, listed in increasing order of rarity.

Prior to the publication of the referenced work, it was believed that this
randomness was only dependent on values known to the attacker, in this case,
the plaintext m. The assumption then was that constant time implementation
was not needed for the rejection sampling algorithm. Certainly, it was shown
in [16] that this assumption is problematic. Although m is indeed known to the
attacker, the result of the implicitly carried out comparison m′ ?

= m is not. Here
m′ = decode(c+ e′) and e′ is a extra noise supplied by the attacker.

The authors showed a key-recovery attack where, by using the timing infor-
mation due to rejection sampling, knowledge of m′ ?

= m is leaked. The attack
required 866,000 so-called “idealized oracle” (Oideal

HQC) queries for the 128-bit secu-
rity setting. The idealized oracle assumes a noise-free environment where a single
timing measurement is sufficient to determine the membership of Sj (where j = 3
in [16]). Unfortunately, this is not sufficient for a 100% correct oracle, due to
reasons explained in the following paragraph.

What follows is a high-level summary of the referenced attack; A plaintext m
is selected according to some criteria useful for the distinguisher. In the case of
timing leakage, the distinguishing property is such that the selected m results
in the timing distribution S3, since it is the one most easily distinguished. The
probability of for any random m′, where m′ ̸= m, resulting in the same S3
timing distribution is low (0.58% per [16]). In other words, m′ ?

= m can be
distinguished with a high, yet-not-complete, advantage.

A ciphertext c′ = (u,v) is crafted in the next step such that r1 is 1 ∈ R and
r2 and e is 0 ∈ R. By Equation (3) this results in

v − u · y = mG+ s · r2 + e− (r1 + h · r2) · y = mG− r1 · y = mG− y (7)

which makes y the only remaining error for the decoder to correct. Note too
that by knowledge of −y = y it is a simple computation to find the rest of the
private key, since x = s−h ·y. Calculating x is quite unnecessary, however, since
it is not used in decapsulation.

Plainly, this crafted ciphertext is invalid and will be rejected in the ciphertext
comparison step of the decapsulation. However, a valid ciphertext is not required
due to the timing leakage in the XOF via the non-constant time rejection sam-
pling algorithm. The reencryption step immediately preceding the comparison
derives the values of r1, r2 and e from the XOF seeded by m. The single bit
information m′ ?

= m leaks prior to the ciphertext comparison step.
Hall et al. proposed in [20] a way to recover y; An additional error vector e′ is

added to c′. e′ is of just sufficient weight to cause a decoding failure (i.e. m′ ̸= m
is leaked). The basic attack then simply iterates through each bit 0 ≤ i ≤ N

4 Strictly, there is no upper bound, but the practical benefit of finding a value for S≥4

is not worth the exponential effort required [16].

20

of e′ not already flipped to find those positions that if flipped would result in a
decoding success. If this is the case for any value of i this indicates that the bit
was already flipped in y in the ciphertext.

However, this technique alone is not sufficient to provide decisions on all
bits in the ciphertext. The reason is twofold. First, unflipping a bit in the error
pattern given to the RMRS decoder does not guarantee a decoding success,
and secondly due to the possibility that both m′ and m result in the timing
distribution S3, even though m′ ̸= m. This is modeled by Oideal

HQC, the idealized
oracle from [16], which though noise-free, is not 100% correct.

The first problem is solved by using many different error patterns e′. The
second was solved by majority voting, i.e. by gathering three or more decisions
for every bit. Both of these solutions drive up the number of required oracle
calls, even in the ideal timing leakage setting. For the 128-bit security level, this
number adds up to 866,000 oracle calls [16].

5.2 New improved attack using LDPC codes.

What follows is a description of the new attack listed in Figure 2, a PC oracle
OHQC is assumed. Like in the original attack [16] we select a plaintext with good
side-channel detection properties (in the original case this is a timing property).

The next step is to construct a N × N regular cyclic LDPC parity-check
matrix Hini without cycles of length 4, with a good decoding performance. Hini
has a row-weight of W . This construction is detailed in Section 3.2, with (m =
1, b = 1). The first row of Hini is the vector hini.

We craft a special ciphertext c′ where r2 = 0, e = 0 and r1 = hini. Similarly
to the case given by Equation (7) above, this results in

v − u · y = . . . = mG− r1 · y = mG− hiniy (8)

which makes the added noise that the decoder has to correct equal to hiniy. In
other words, each bit position i in c′ correspond to the result of a parity-check
equation over y, given by hini >> i (cyclic shift by i steps) due to the cyclic
nature of our LDPC code.

The Reed-Muller (RM) and Reed-Solomon (RS) concatenated (RMRS) de-
coder, used in HQC, can be attacked in two stages. First we select (dRS − 1)/2
outer RM blocks (each RM block decodes to one RS symbol) to flip in c′ (by
XOR with e′). This results in a state where if one more block is flipped it will
result in a decoding error in the RS decoder. A decoding failure such as that
would be detected by OHQC. We randomly select another block which we denote
B.

The next stage is to find which bits IBe′ to flip in the block B that results in
a decoding failure. We do this by flipping bits i ∈ IBe′ such that e′[i] = 1 in block
B until a RM decoding failure occurs. This propagates as a failure symbol to
the RS decoder which is already on the brink of being overwhelmed. This results
in a state where c′ + e′ fails to decode due to too much additional noise in the
block B partition of e′.

21

Input: OHQC, public key
Output: y
1: Select plaintext m ▷ With good side channel distinguishing properties
2: Generate sparse vector hini ▷ According to Section 3.2
3: Construct Hini ▷ From hini by cyclic shifts
4: Craft c′ with r2 = 0, e = 0 and r1 = hini
5: µ← 0N ▷ Initialize message
6: loop
7: e′ ← 0N ,
8: B′ ← random subset of size (dRS − 1)/2 from {0, . . . , n1 − 1}
9: for each B′ ∈ B′ do ▷ Flip (dRS − 1)/2 RM-blocks

10: Flip block B′ in e′

11: end for
12: B

$← {0, . . . , n1} \ B′ ▷ Select a random unflipped block
13: IB ← {Bn2, . . . , B(n2 + 1)− 1}
14: IBe′ , IB0 , IB1 ,← ∅, ∅, ∅,
15: while O0=repeat

HQC (c′ + e′) do ▷ Find an initial error pattern for block B

16: IBe′ ← IBe′ ∪ {i}, where i
$← IB

17: e′[i]← 1
18: end while
19: for each i ∈ IBe′ do ▷ Minimize the error pattern
20: e′[i]← 0 ▷ Unflip bit in error pattern
21: if O1=repeat

HQC (c′ + e′) then
22: IB0 ← IB0 ∪ {i} ▷ Satisfied parity check, add i to IB0
23: e′[i]← 1 ▷ Restore bit in error pattern
24: end if
25: end for
26: for each i ∈

(
IB \ IBe′

)
do ▷ Find unsatisfied parity checks

27: if OHQC (c′ + e′) then
28: IB1 ← IB1 ∪ {i} ▷ If found, store in IB1
29: end if
30: end for
31: Select rows i ∈ (IB0 ∪ IB1) from Hini and add to H′

32: Construct H = [H′|I]
33: µ← µ | 0#{IB

0 } | 1#{IB
1 }

34: y← DecodeH(µ)[0..n] ▷ Decoder returns the error vector
35: if y correct then ▷ Try to decrypt a valid message
36: return y
37: end if
38: end loop

Fig. 2: HQC new attack algorithm. O0=repeat
HQC denotes a PC oracle which is re-

peated as necessary (determined by empirical study) to achieve better than
nominal error rate in the case of decoding failure; decoding successes are never
repeated. O1=repeat

HQC works in a similar but opposite fashion.

22

An aside on oracle accuracy. The LDPC code helps with recovery from bad
oracle decisions. However, the stateful nature of the new algorithm can cause
certain poor oracle decisions to propagate and result in the algorithm ending
up in a bad state. Such errors occur naturally more often for less accurate ora-
cles. We compensate for these effects by introducing extra confirmation calls to
those oracle decisions which are most sensitive. These are denoted in Figure 2
by Or=repeat

HQC , where r ∈ {0, 1} indicates which Oracle outputs are repeated for
confirmation. O0=repeat

HQC means decoding failures are confirmed but decoding suc-
cesses are not. The number of repeated oracle calls is determined by empirical
study.

After finding an error pattern resulting in decoding failure, the next step is
to reduce the number of flipped bits, in block B. The goal is to find the minimal
pattern that still results in a decoding failure. We do this by unflipping each of
the flipped bits i ∈ IBe′ in block B. This results in one of two cases:

1. If we get a decoding success we record it in IB0 for later use, undo the flip
and then move on to select another bit i ∈ IBe′ .

2. If we still get a decoding failure we try again with another flipped bit i ∈ IBe′ .

Once we have run out of flipped bits in IBe′ to check, we have achieved a
minimal bit pattern in IB0 for block B that results in decoding failure. That
is, the set IB0 contains those bits that result in a decoding success if any are
unflipped. Conversely, when flipped, they have been unambiguously shown to
increase the noise for the RMRS decoder. All bits in IB0 can therefore reliably
be assumed to correspond to a satisfied parity check. So, for each bit i ∈ IB0 we
construct5 our sub matrix H′ by the selection of row i of Hini.

Working from the minimal decoding failure pattern (e′[i] = 1 ∀ i ∈ IB0 and
e′[i] = 0 ∀ i /∈ IB0) for RM block B we can now flip bits that so far have been
left untouched (i /∈ IBe′), one at a time. For each flip, if it results in a decoding
success, then we record it in IB1 . Such a bit must mean that by flipping it we
reduce the noise that the RMRS decoder has to handle. Therefore, this bit can
be reliably assumed to correspond to an unsatisfied parity-check equation, or a
’1’ in the vector hiniy. When all bits have been tested we extend our sub matrix
H′ by the selection of all rows i ∈ IB1 of Hini.

At this time in the algorithm, r number of parity-check equations have been
collected in H′. The remaining step is to construct parity-check matrix H =[
H′

r×n|Ir×r

]
and a message vector

µ =
[
0n|0#{IB0

0 }|1#{IB0

1 } . . . |0#{IBt

0 }|1#{IBt

1 }
]

(9)

in such a way that we have n zeroes, each representing an unknown bit-value
of y to be recovered. The message is appended by the following redundancies: a
single 0 for each satisfied parity-check equation hitherto selected (i ∈ IB0) and a
1 for each unsatisfied parity check (i ∈ IB1). We do this for all t blocks B that
have so far been selected.
5 or extend if this is not the first selected block/iteration of the algorithm

23

We try to decode the message µ and recover y from the first n bits. We
use H as input and a suitable decoder such as sum-product or the min-sum
approximation.

If the decoding is not successful we unflip all bits in block B and unflip all
other blocks. Then we restart the algorithm (using the same ciphertext) and
select another block. The old IB0 and IB1 are saved and re-used in the next
decoding attempt. We continue until successful.

In some cases (for less accurate oracles) one might still fail to decode even
after all outer RM blocks have been exhausted. In such cases, one can simply
save µ and H′ and continue extending them by restarting the algorithm.

6 Experiments

In this section, we show the results of simulations and real-world experiments
for Kyber and HQC.

6.1 Masked Kyber

Software simulations We introduce software simulations, where we fix the
accuracy ρ of each oracle Oi to be the same.

The attack improves as the weight of the rows in the parity matrix increases.
However, the decoding time increases exponentially with it. In the course of
experiments, we found that the value w = 2 works best, i.e., the parity-check
matrix consists of negacyclic matrices with row weight 2. For Kyber-768, this
means that each check variable is the sum of 6 secret coefficients.

The three main parameters of the attack are m0, m1 and m2, where m0

and m2 are the lengths of the inner code for the secret coefficients and the check
variables, resp., m1 is the number of blocks of check variables. Recall that Kyber-
768 has 3 blocks of 256 secret coefficients, and we assume that from one power
trace we get information about all 256 message bits. This means that we need
3m0 and m1 ·m2 traces to get the distributions for secret coefficients and check
variables, respectively. The interested reader is referred to Tables A.1 and A.2
for the actual codes used in the simulation and in the real attack.

We evaluate our methodology against the majority voting technique, a con-
ceptually simple coding approach that can be considered as a repetition code.
Majority voting is a typical approach to ensure that a single secret coefficient
can be recovered with high accuracy. This approach has been selected as the
baseline attack method due to its relevance as the most frequently used coding
scheme for attacking Kyber in previous literature (e.g., in [41]). For majority
voting, we choose the code as in Table 3 and use t votes, i.e., the actual code is
repeated t times. We run 1000 tests and compute the average number of wrong
secret coefficients, the attack is considered successful if this number is less than
1. For our approach, we choose m0, m1, and m2 such that the total number of
traces is minimized and the average number of errors is close to majority voting.
We run 100 tests, and all tests are done with randomly generated secret keys.
The results for a wide range of accuracy levels are shown in Table 4.

24

Table 4: Comparison with the majority voting for full-key recovery. t is the
number of votes cast, values in the brackets are m0, m1 and m2, resp.
ρ = 0.995 Number of traces Average number of errors
Majority Voting (t = 3) 27 (ref) 0.21/768
Our Method (2, 1, 4) 10 (−63%) 0.37/768

ρ = 0.95 Number of traces Average number of errors
Majority Voting (t = 7) 63 (ref) 0.47/768
Our Method (3, 4, 2) 17 (−73%) 0.16/768

ρ = 0.9 Number of traces Average number of errors
Majority Voting (t = 11) 99 (ref) 0.67/768
Our Method (4, 3, 4) 24 (−75.8%) 0.46/768

Real-world experiments We conduct our experiments in the ChipWhisperer
toolkit, including the ChipWhisperer-Lite board, the CW308 UFO board, and
the CW308T-STM32F4 target board with a 32-bit ARM Cortex-M4 CPU. We
target the mkm4 library6 in [22] implementing a first-order masked version of Ky-
ber. The library is compiled using the -O3 optimization level, which is typically
harder to attack [41, 29]. The target board is run at 24 MHz, and the traces are
sampled at 24 MHz.

masked_poly_frommsg(uint16_t poly[2][256], uint8_t msg[2][32])
1: ... /* initialization */
2: for i = 0 to 31 do
3: for j = 0 to 7 do
4: mask = -((msg[0][i] >> j) & 1)
5: poly[0][8*i+j] += mask & ((KYBER_Q+1)/2)
6: end for
7: end for
8: for i = 0 to 31 do
9: for j = 0 to 7 do

10: mask = -((msg[1][i] >> j) & 1)
11: poly[1][8*i+j] += mask & ((KYBER_Q+1)/2)
12: end for
13: end for
14: . . .

Fig. 3: The attacked function in Kyber.CPAPKE.Enc() (from [22])

We attacked the function masked_poly_tomsg in the first draft of the work
and it was the first power analysis attack on an open-source masked imple-
mentation of Kyber, as far as we know. Then we switched to the function
6 https://github.com/masked-kyber-m4/mkm4

25

Table 5: Accuracy of recovering particular bit for models. Device D1 is the pro-
filing device, and D2 is the device to be attacked.
Device ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7
D1 0.9651 0.9986 0.9985 0.9985 0.9992 0.9995 1.0000 1.0000
D2 0.9390 0.9811 0.9923 0.9023 0.9654 0.8940 0.9404 0.9873

Table 6: Real-world attack results on the first-order masked Kyber-768. We per-
formed 100 runs of the attack with a random secret key for each run.

Number of traces Average number of errors
Majority Voting (t = 11) 99 0.34/768
Our Method (2, 2, 3) 12 0.82/768

masked_poly_frommsg similarly to [11]. With this approach, real oracles from
side-channel leakages have better accuracy, leading to a lower amount of traces.

The function masked_poly_frommsg (shown in Figure 3) maps each masked
polynomial coefficient to a corresponding message bit during decapsulation. In
one loop the function works on the message bits XORed with random bits; on
the other loop it works with these random bits themselves. Obtaining a power
trace for these two loops allows us to retrieve information about all message bits
and implement the FD oracles Oi.

The attack scenario is the same as in [29]. First, there is the profiling stage
during which, using the profiling device D1, we collect 100,000 power traces of
the function masked_poly_frommsg. It is done by generating a random message
which is encrypted using the device’s public key, the resulting ciphertext is passed
to the measured by the ChipWhisperer decapsulation function. Each byte of the
message is computed in the same way, and the power traces corresponding to
each byte are similar. Thus, we can train only 8 neural network models, one for
each bit of the byte. Models are trained for up to 100 epochs. The interested
reader is referred to Table A.3 for the architecture of the model.

Each of the 8 models simulates the 32 oracles Oi+8j , j = 0, . . . , 31, with some
accuracy ρi. The oracle behaves like a binary symmetric channel with success
probability ρi, but the model provides soft values, which can be treated as the
probabilities of output being 1 or 0 from the model’s perspective. Thus, the
real-world attack is more powerful since there is more information we can work
with.

After the profiling stage, there is the attacking stage. The assumption is that
the attacker has access for a (relatively) short period of time to a similar device
D2. After collecting power traces for decapsulation on chosen ciphertexts, the
attacker’s goal is to recover the key using the trained models. The Table 5 shows
the accuracy ρi of recovering ith bit for devices D1 and D2.

The experimental results (shown in Table 6) with the average oracle accuracy
of 0.9502 are better than the simulation results with an accuracy of 0.95. There
are two reasons for this: (1) real models provide soft values, making the attack

26

more powerful; (2) In the simulation, the accuracy of each bit is the same, but
for our LDPC approach, it is more beneficial for some bits to be more reliable
than others.

On the other hand, the success of majority voting approach depends on the
worst bit position. In other words, in the real world majority voting works worse
since the bottleneck is the worst bit. The real attack with accuracy from Table 5
uses t = 11 votes, i.e. in total we need 99 traces (instead of 63 as in Table 4). In
this case, our framework uses 86% fewer traces.

6.2 HQC

In order to test the new attack strategy against HQC it is advantageous to make
as close to an apples-to-apples comparison as possible against the results of [16].
To this end, we model the PC oracle as follows; The success probability for an
oracle query is determined by ρ0 and ρ1, which are the probabilities of correctly
classifying decoding failures and decoding successes, respectively. For the case of
the ideal HQC timing oracle used in [16] these values are listed in Table 7 and
correspond to ρ0 = ρf and ρ1 = ρs. We label the ideal oracle Oideal

HQC.

Table 7: Ideal HQC timing oracle, Oideal
HQC, as modelled with ρf and ρs.

Real
Reported as decoding failure decoding success

decoding failure ρf = 0.9942 1− ρf = 0.0058
decoding success 1− ρs = 0 ρs = 1.0

Simulating real-world attacks with noisy measurements can be done by se-
lecting other values of ρ0 and ρ1. For simplicity, we introduce ρ as a single
representative value of PC oracle accuracy, where ρ = ρ0 = ρ1. We label the
corresponding oracle Oρ

HQC.
By empirical study (see Figure A.5) we have selected a row weight of W = 50

in the constructed LDPC code (for hqc-128). This is close to the upper limit of
our code generation algorithm. Using a bigger W would occasionally require a
more advanced algorithm with backtracking of the random walk. Regardless, the
decoding appears to suffer in reliability for values W > 50. Smaller values of W
require more parity checks and thus make the attack slower.

Some interesting ρ values, corresponding to real attacks, are {1.0, 0.995, 0.95,
0.9}. In Figure 4 we show the results of simulations using the various oracle
models we have described so far. The results for Oideal

HQC indicate an 86.6 times
improvement over the original attack [16].

We have validated our attack by running a real timing oracle on a Ubuntu
20.04 LTS laptop with Intel Core i5-7200@2.50GHz. Measurement noise was
reduced by turning of hyper-threading and by running in recovery mode. We
used 218 measurements to generate a profile, first of a decoding success and

27

20000 40000 60000 80000 100000 120000

Oracle calls

O0.9
HQC

O0.95
HQC

O0.995
HQC

Oideal
HQC

O1.0
HQC

Fig. 4: Experiment for hqc-128. The median number of oracle calls for successful
key recovery, are 59500, 35250, 18000, 10000, and 9000 respectively for the listed
oracles. For each oracle model, 100 key-recovery simulations ran to completion.

again of a decoding failure. Measuring 8 decapsulations resulted in an oracle
accuracy of ρOreal

HQC
= 0.951 as determined by 1000 trials. The simulated results

for O0.95
HQC indicate a real-life key recovery attack of hqc-128 can be done by

measuring 23 × 35250 ≈ 218 decapsulation calls.

6.3 Discussions

In this section, we present discussions on the performance of the new SCA-LDPC
framework, including its information-theoretical advantages and limitations. Fur-
thermore, we compare the SCA-LDPC framework with the inner-symbol error
correction method proposed in [29] and highlight the advantages of the former.

A non-rigorous information theoretical bound. Assuming that a single side-
channel measurement provides a certain amount of information (denoted by I
bits), and considering the fact that there are k secret symbols that are inde-
pendently generated from a distribution with entropy E bits, it is possible to
calculate a lower bound for the number of measurements required. This can
be accomplished by dividing k · E by I. Estimation of I can be performed by
considering each recovered message bit as a Bernoulli variable, with a specified
probability ρi of being correct. It is noteworthy that the value of ρi may vary
for different secret positions. This information-theoretical estimation is approx-
imate in nature. It is subject to limitations arising from the simplicity of the
Bernoulli model. Additionally, perfect source coding and perfect channel coding
are required to match the derived lower bound. Notwithstanding these limita-
tions, the estimation suggests the possibility of improvement, though the extent
of such improvement may be constrained.

The aforementioned lower bound is equivalent to the well-known Shannon
source coding bound when the accuracy of the oracle is 100%, which can be
used to characterize the source compression gain. The results obtained from the

28

FD oracle based attack on the scheme Kyber-768 exactly meet the lower bound
of 7 traces. Conversely, for the PC oracle based attack on hqc-128, 1324 parity
checks were required, a factor of 2.1 times the lower bound of 628 checks.

It has been observed that the difference between the simulated results and
the lower bound increases as the oracle accuracy decreases. For example, in the
case of the PC oracle based attack on hqc-128, when the oracle accuracy drops
to 0.95, the ratio of the simulated parity checks to the lower bound increases to
approximately 2.7, as calculated by 2396/880. For the FD oracle based real-world
attack on Kyber-768, based on the message recovery accuracy data presented in
the second row of Table 5, the lower bound was determined to be 9, which is
slightly lower than the 12 traces utilized in the actual attack.

Limitations. Despite the remarkable reduction of necessary side-channel mea-
surements, a gap remains between actual performance and our non-rigorous
information-theoretical lower bound. This gap may be attributed to the require-
ment of an extremely long codeword, potentially in the range of tens of millions
of bits, for the LDPC codes to approach optimality. Additionally, it may be a
result of the simplicity and inadequacy of our current code-construction method.
More sophisticated LDPC code construction techniques could further reduce the
required number of measurements.

Our method vs. inner-symbol error correction. The new SCA-LDPC framework
utilizes a system of sparse parity checks to interconnect all the secret symbols.
As a result, accurately determined symbols can be utilized to rectify incorrectly
determined symbols, categorizing this method as inter-symbol error correction.
On the other hand, the method presented in [29] falls under the category of
inner-symbol error correction, as the utilization of extended Hamming codes
increases the possibility of recovering individual secret symbols, which all must
be recovered independently.

Both methods can be applied to the FD oracle based attack on lattice-based
schemes in a non-adaptive attack model. However, the inner-symbol error correc-
tion method presented in [29] offers no source compression gain and has inferior
error correction capabilities. For instance, it is demonstrated in [29] that for a
platform with an average message bit recovery rate of 0.972, 216 traces, or 9×24,
are required to recover the long-term secret key of a masked Saber implemen-
tation. We utilize the detailed message bit recovery rates recorded in Table 20
of [29] to calculate the corresponding lower bound, which is determined to be
10 traces. This demonstrates a significant gap of 21.6 between the actual perfor-
mance in a real-world scenario and the calculated lower bound. While there is
no guarantee that the non-rigorous lower bound will always be attainable, the
small ratio of 1.33, or 12/9, for our SCA-LDPC attack on Kyber, illustrates the
superior efficiency of our method in terms of the required number of traces.

The substantial improvement of the new SCA-LDPC framework can be at-
tributed to various factors, such as the utilization of soft information in the
real-world attack that we conducted. The dominant reason is that all the secret

29

symbols are interconnected and correlated, and redundant symbols are intro-
duced, allowing for the effective handling of a significant number of symbol-level
errors. On the contrary, in the inner-symbol error correction method, all the
symbols (e.g., 768 symbols in the Saber case) are independent and needs to be
successfully recovered, thus precluding the tolerance of any symbol-level errors.
Last, in a real-world attack scenario, several secret positions typically have a
higher chance of containing errors, which can be effectively corrected through
the inter-symbol approach, but may prove to be a bottleneck for the inner-symbol
method where all symbols must be correctly identified independently.

7 Concluding Remarks and Future Work

From coding theory, we have presented a generic framework for key-recovery side-
channel attacks on CCA-secure post-quantum encryption/KEM schemes. Our
design philosophy is to employ randomly generated LDPC codes with efficient
decoding to connect secret coefficients, which introduces additional benefits of
source compression and error correction. We presented simulation results and
real-world experiments on the main lattice-based KEM Kyber and the code-
based KEM HQC. The new attack framework can significantly improve the state-
of-the-art in terms of the required number of side-channel measurements. An
explanation for the substantial improvements is that LDPC codes are considered
to have near-optimal performance from an information-theoretic standpoint.

The sample complexity of the new attack framework can be improved further
by (i) employing a more advanced code-construction method with improved
decoding performance or by (ii) heavy post-processing such as lattice-reduction
or information-set decoding. An intriguing area of study is to utilize sophisticated
coding-theoretical methods [38], such as density evolution or EXIT charts, to
carry out efficient and precise security assessments against proposed attacks.

The new attack framework can be easily applied to several other important
KEM candidates in the NIST PQ project such as FrodoKEM [28] and Saber [9].
It is interesting to investigate its further applications in NTRU [7] and NTRU
prime [6]. Last, the new attack framework shows the need for countermeasures
such as constant-time implementations or higher-order masked implementations.
Our next step is to evaluate the security of higher-order masked implementa-
tions for Kyber, as Kyber is a future NIST standard. The very recent work [11]
demonstrated a high probability of success in recovering message bits from a
masked Kyber implementation of up to the fifth order. In conjunction with our
simulation results, this suggests higher-order masked implementations may still
be highly susceptible to the present attack framework.

Acknowledgement

This work was supported by the Swedish Research Council (grant numbers 2019-
04166 and 2021-04602); the Swedish Civil Contingencies Agency (grant number

30

2020-11632); the Swedish Foundation for Strategic Research (Grant No. RIT17-
0005); and the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation. The computa-
tions and simulations were partly enabled by resources provided by LUNARC.

References

1. Nist post-quantum cryptography standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization, accessed: 2018-09-24

2. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Persichetti, E., Zémor, G., Bos, J.: HQC. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

3. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T.,
Maram, V., von Maurich, I., Misoczki, R., Niederhagen, R., Paterson, K.G., Per-
sichetti, E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai, C.J., Tom-
linson, M., Wang, W.: Classic McEliece. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

4. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Ga-
borit, P., Gueron, S., Guneysu, T., Aguilar Melchor, C., Misoczki, R., Persichetti,
E., Sendrier, N., Tillich, J.P., Zémor, G., Vasseur, V., Ghosh, S.: BIKE. Tech. rep.,
National Institute of Standards and Technology (2020), available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions

5. Backlund, L., Ngo, K., Gärtner, J., Dubrova, E.: Secret key recovery attacks on
masked and shuffled implementations of crystals-kyber and saber. Cryptology
ePrint Archive, Paper 2022/1692 (2022), https://eprint.iacr.org/2022/1692,
https://eprint.iacr.org/2022/1692

6. Bernstein, D.J., Brumley, B.B., Chen, M.S., Chuengsatiansup, C., Lange, T.,
Marotzke, A., Peng, B.Y., Tuveri, N., van Vredendaal, C., Yang, B.Y.: NTRU
Prime. Tech. rep., National Institute of Standards and Technology (2020),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

7. Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z., Saito, T., Yamakawa, T., Xagawa, K.:
NTRU. Tech. rep., National Institute of Standards and Technology (2020),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

8. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 329–358. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56880-1_12

9. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F., Mera, J.M.B., Beiren-
donck, M.V., Basso, A.: SABER. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

10. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum secure schemes. IACR Cryptology ePrint
Archive 2019, 292 (2019)

31

11. Dubrova, E., Ngo, K., Gärtner, J.: Breaking a fifth-order masked implementation of
crystals-kyber by copy-paste. Cryptology ePrint Archive, Paper 2022/1713 (2022),
https://eprint.iacr.org/2022/1713

12. Forney, G.D.: Concatenated codes. Technical Report 440, MIT (1965)
13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-

tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1_34

14. Gallager, R.: Low-density parity-check codes. IRE Transactions on information
theory 8(1), 21–28 (1962)

15. Goy, G., Loiseau, A., Gaborit, P.: A new key recovery side-channel attack on hqc
with chosen ciphertext. In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryp-
tography. pp. 353–371. Springer International Publishing, Cham (2022)

16. Guo, Q., Hlauschek, C., Johansson, T., Lahr, N., Nilsson, A., Schröder, R.L.:
Don’t reject this: Key-recovery timing attacks due to rejection-sampling in
HQC and BIKE. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(3), 223–
263 (2022). https://doi.org/10.46586/tches.v2022.i3.223-263, https://doi.org/
10.46586/tches.v2022.i3.223-263

17. Guo, Q., Johansson, A., Johansson, T.: A key-recovery side-channel attack on
classic mceliece implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2022(4), 800–827 (2022), https://doi.org/10.46586/tches.v2022.i4.800-827

18. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its applica-
tion on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020,
Part II. LNCS, vol. 12171, pp. 359–386. Springer, Heidelberg (Aug 2020).
https://doi.org/10.1007/978-3-030-56880-1_13

19. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53887-6_29

20. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystems. In: Varadharajan, V., Mu, Y. (eds.) ICICS 99. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (Nov 1999)

21. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger,
T., Streit, S., Strieder, E., van Vredendaal, C.: Chosen ciphertext k-
trace attacks on masked CCA2 secure kyber. IACR TCHES 2021(4), 88–
113 (2021). https://doi.org/10.46586/tches.v2021.i4.88-113, https://tches.iacr.
org/index.php/TCHES/article/view/9061

22. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked kyber on arm cortex-m4. Cryptology ePrint Archive, Paper
2022/058 (2022), https://eprint.iacr.org/2022/058

23. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the
Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part I. LNCS, vol. 10677, pp. 341–371. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70500-2_12

24. Huang, S., Sim, R.Q., Chuengsatiansup, C., Guo, Q., Johansson, T.: Cache-timing
attack against hqc. Cryptology ePrint Archive, Paper 2023/102 (2023), https:
//eprint.iacr.org/2023/102, https://eprint.iacr.org/2023/102

25. Johansson, T., Zigangirov, K.S.: A simple one-sweep algorithm for optimal APP
symbol decoding of linear block codes. IEEE Trans. Inf. Theory 44(7), 3124–3129
(1998), https://doi.org/10.1109/18.737541

32

26. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/3-540-68697-5_9

27. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report 42-44, 114–116 (1978)

28. Naehrig, M., Alkim, E., Bos, J., Ducas, L., Easterbrook, K., LaMacchia, B.,
Longa, P., Mironov, I., Nikolaenko, V., Peikert, C., Raghunathan, A., Stebila, D.:
FrodoKEM. Tech. rep., National Institute of Standards and Technology (2020),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

29. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a
masked IND-CCA secure saber KEM implementation. IACR TCHES 2021(4),
676–707 (2021). https://doi.org/10.46586/tches.v2021.i4.676-707, https://tches.
iacr.org/index.php/TCHES/article/view/9079

30. Pearl, J.: Reverend bayes on inference engines: A distributed hierarchical approach.
In: AAAI (1982)

31. Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A systematic approach
and analysis of key mismatch attacks on lattice-based NIST candidate KEMs. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093,
pp. 92–121. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-
92068-5_4

32. Rajendran, G., Ravi, P., D’Anvers, J.P., Bhasin, S., Chattopadhyay, A.: Pushing
the limits of generic side-channel attacks on lwe-based kems - parallel pc oracle
attacks on kyber kem and beyond. Cryptology ePrint Archive, Paper 2022/931
(2022), https://eprint.iacr.org/2022/931

33. Ravi, P., Ezerman, M.F., Bhasin, S., Chattopadhyay, A., Roy, S.S.: Will you cross
the threshold for me? generic side-channel assisted chosen-ciphertext attacks on
ntru-based kems. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 722–
761 (2022). https://doi.org/10.46586/tches.v2022.i1.722-761, https://doi.org/
10.46586/tches.v2022.i1.722-761

34. Ravi, P., Roy, S.S.: Side-channel analysis of lattice-based pqc candidates.
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/
documents/round-3/seminars/mar-2021-ravi-sujoy-presentation.pdf, ac-
cessed: 2022-09-29

35. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel at-
tacks on CCA-secure lattice-based PKE and KEMs. IACR TCHES 2020(3),
307–335 (2020). https://doi.org/10.13154/tches.v2020.i3.307-335, https://tches.
iacr.org/index.php/TCHES/article/view/8592

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

37. Richardson, T., Shokrollahi, M., Urbanke, R.: Design of capacity-approaching ir-
regular low-density parity-check codes. IEEE Transactions on Information Theory
47(2), 619–637 (2001). https://doi.org/10.1109/18.910578

38. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press,
USA (2008)

39. Schamberger, T., Holzbaur, L., Renner, J., Wachter-Zeh, A., Sigl, G.: A power side-
channel attack on the reed-muller reed-solomon version of the hqc cryptosystem.
Cryptology ePrint Archive, Paper 2022/724 (2022), https://eprint.iacr.org/
2022/724

33

40. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D.: CRYSTALS-KYBER. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

41. Shen, M., Cheng, C., Zhang, X., Guo, Q., Jiang, T.: Find the bad apples: An
efficient method for perfect key recovery under imperfect SCA oracles - A case
study of Kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 89–
112 (2023). https://doi.org/10.46586/tches.v2023.i1.89-112, https://doi.org/10.
46586/tches.v2023.i1.89-112

42. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700

43. Tanaka, Y., Ueno, R., Xagawa, K., Ito, A., Takahashi, J., Homma, N.: Multiple-
valued plaintext-checking side-channel attacks on post-quantum kems. Cryptology
ePrint Archive, Paper 2022/940 (2022), https://eprint.iacr.org/2022/940

44. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of
re-encryption: A generic power/em analysis on post-quantum kems. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022(1), 296–322 (2022), https://doi.org/10.
46586/tches.v2022.i1.296-322

45. Xu, Z., Pemberton, O., Roy, S.S., Oswald, D., Yao, W., Zheng, Z.: Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: The
case study of kyber. IEEE Transactions on Computers 71(9), 2163–2176 (2022).
https://doi.org/10.1109/TC.2021.3122997

34

Auxiliary Supporting Material
A Supporting Figures and Tables

Input:
Output: sk, pk
A

$← Rd×d
q

s
$← Bd

µ1
, where s ∈ Rd

q

e
$← Bd

µ1
, where e ∈ Rd

q

sk
def
= s

pk
def
= As+ e

(a) Kyber.CPAPKE.KeyGen()

Input: sk, c = (c1, c2)
Output: m
u = Decompq(c1, du)
v = Decompq(c2, dv)
m = Compq(v − sTu, 1)

(b) Kyber.CPAPKE.Dec()

Input: pk, m, r
Output: c = (c1, c2)

Generate A ∈ Rd×d
q from pk

p = pk

r
$← Bd

µ1
, where r ∈ Rd

q

e1
$← Bd

µ2
, where e1 ∈ Rd

q

e2
$← Bµ2 , where e2 ∈ Rq

u = ATr+ e1
v = pTr+ e2 + Decompq(m, 1)

c1
def
= Compq(u, du)

c2
def
= Compq(v, dv)

c
def
= (c1, c2)

(c) Kyber.CPAPKE.Enc()

Fig. A.1: Kyber.CPAPKE (simplified version)

35

Input:
Output: sk, pk

Generate a pseudo-random coin z

(pk, sk′) def
= Ky-

ber.CPAPKE.KeyGen()
sk

def
= (sk′, pk,H(pk), z)

(a) Kyber.CCAKEM.KeyGen()

Input: pk
Output: c,K

m
$← {0, 1}256

m = H(m)
(K̄, r) = G(m,H(pk))
c = Kyber.CPAPKE.Enc(pk,m, r)
K = KDF(K̄,H(c))

(b) Kyber.CCAKEM.Encaps()

Input: sk, c
Output: K
m′ = Kyber.CPAPKE.Dec(sk, c)
(K̄ ′, r′) = G(m′,H(pk))
c′ = Kyber.CPAPKE.Enc(pk,m′, r′)
if c = c′ then

K = KDF(K̄ ′,H(c))
else

K = KDF(z,H(c))
end if

(c) Kyber.CCAKEM.Decaps()

Fig. A.2: Kyber.CCAKEM

– Setup(1λ): generates the global parameters param = (n, k, δ, ω, ωr, ωe).

– KeyGen(param): sample h
$← R2, the generator matrix G ∈ Fk×n

2 of C, sk
= (x,y)

$← R2
2 such that ω(x) = ω(y) = ω, sets pk = (h, s = x + h · y),

and returns (pk, sk).

– Encrypt(pk, m): generates e $← R2, r = (r1, r2)
$← R2

2 such that ω(e) = ωe

and ω(r1) = ω(r2) = ωr, sets u = r1 + h · r2 and v = mG + s · r2 + e,
returns c = (u,v).

– Decrypt(sk, c): returns C.Decode(v − u · y).

Fig. A.3: Description of the proposal HQC.PKE [2].

36

– Setup(1λ): generates the global parameters param = (n, k, δ, ω, ωr, ωe).

– KeyGen(param): exactly as in HQC.PKE.

– Encapsulate(pk): generate m
$← Fk

2 , which will serve as the seed to derive
the shared key. Derive the randomness θ $← G(m). Generate the ciphertext
c ← (u,v) = E .Encrypt(pk,m, θ), and derive the symmetric key K ←
K(m, c). Let d← H(m), and send (c,d).

– Decapsulate(sk,c, d): decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′),
and (re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c ̸= c′ or d ̸=
H(m′) then abort. Otherwise, derive the shared key K ← K(m, c).

Fig. A.4: Description of the proposal HQC.KEM [2].

1000 2000 3000 4000 5000 6000

parity checks

10
20
30
40
50
60co

lu
m

n
w

ei
gh

t

Fig. A.5: Experimental results of varying the column weight of the generated
LDPC code. Weight of 50 appears to require the fewest amount of parity checks
for successful key recovery.

Table A.1: The best inner codes for secret coefficients for given accuracy level ρ.

ρ m0 (k′u, k
′
v)

Secret coefficient
-2 -1 0 1 2

0.995, 0.95 2
(630, 0) 0 1 0 1 0
(706, 6) 0 0 1 1 0

1, 0.95 3

(630, 14) 0 1 0 1 1
(706, 6) 0 0 1 1 0
(706, 10) 0 1 1 0 0

0.9 4

(630, 14) 0 1 0 1 1
(706, 6) 0 0 1 1 0
(706, 10) 0 1 1 0 0
(630, 10) 0 0 1 0 1

37

Table A.2: “Reasonable” inner codes for check variables. We assume that each
check variable is the sum of 6 secret coefficients.

m2 (k′u, k
′
v) Coefficients for check variable, [−12, . . . , 12]

2
(180, 0) 0001100011100011100011000
(423, 14) 0101001010110101001010110

3

(401, 1) 0101001010010110101101001
(630, 11) 0100101001011010010100101
(483, 7) 0101011010101010101010100

4

(636, 5) 0010110100101101001011010
(486, 1) 0101010101010101010110101
(139, 2) 0111000011110001111000011
(630, 9) 0110101101001011010110100

Table A.3: The architecture of the neural network used for the real-world attack
on Kyber.

Layer type (Input, output) shape # Parameters
Batch Normalization 1 (64, 64) 256
Dense 1 (64, 64) 4160
Batch Normalization 2 (64, 64) 256
ReLU (64, 64) 0
Dense 2 (64, 32) 2080
Batch Normalization 3 (32, 32) 128
ReLU (32, 32) 0
Dense 3 (32, 16) 528
Batch Normalization 3 (16, 16) 64
ReLU (16, 16) 0
Dense 4 (16, 1) 17
Sigmoid (1, 1) 0

Table A.4: HQC number of required parity checks for successful decoding
ρ weight count mean std min 25% 50% 75% max
O0.9

HQC 50 103 3222.33 873.57 1100 2700 3000 3600 6600
O0.95

HQC 50 100 2396 629.40 900 2175 2400 2700 4900
O0.995

HQC 50 100 1623 546.40 1000 1200 1400 1800 3500
Oideal

HQC 50 110 1365.45 261.41 900 1200 1300 1500 2100
O1.0

HQC 50 100 1324 208.47 900 1200 1300 1400 1900

38

1000 2000 3000 4000 5000 6000

Parity checks

O0.9
HQC

O0.95
HQC

O0.995
HQC

Oideal
HQC

O1.0
HQC

Fig. A.6: Boxplot of the previous table

39

