
Modelling Delay-based Physically Unclonable Functions through
Particle Swarm Optimization

Nimish Mishra

neelam.nimish@gmail.com

Indian Institute of Technology

Kharagpur, West Bengal, India

Kuheli Pratihar

its.kuheli96@gmail.com

Indian Institute of Technology

Kharagpur, West Bengal, India

Anirban Chakraborty

ch.anirban00727@gmail.com

Indian Institute of Technology

Kharagpur, West Bengal, India

Debdeep Mukhopadhyay

debdeep.mukhopadhyay@gmail.com

Indian Institute of Technology

Kharagpur, West Bengal, India

ABSTRACT
Recent advancements in low-cost cryptography have converged

upon the use of nanoscale level structural variances as sources of en-

tropy that is unique to each device. Consequently, such delay-based

Physically Unclonable Functions or (PUFs) have gained traction

for several cryptographic applications. In light of recent machine

learning (ML) attacks on delay-based PUFs, the common trend

among PUF designers is to either introduce non-linearity using

XORs or input transformations applied on the challenges in order

to harden the security of delay-based PUFs. Such approaches make

machine learning modelling attacks hard by destroying the linear

relationship between challenge-response pairs of a PUF. However,

we propose to perceive PUFs, which are fundamentally viewed as

Boolean functional mapping, as a set of delay parameters drawn

from normal distribution. Using this newfound perception, we pro-

pose an alternative attack strategy in this paper. We show that

instead of trying to learn the exact functional relationship between

challenge-response pairs from a PUF, one can search through the

search space of all PUFs to find alternative PUF delay parameter set

that exhibits “similar” behaviour as the target PUF. The core intu-

ition behind this strategy is that one can consider a PUF as a set of

stages wherein, depending on the corresponding input challenge bit,

one of the several signals within a PUF’s stage win a race condition.
To utilize this idea, we develop a novel Particle Swarm Optimization

based framework inspired by the biomimicry of amoebic reproduc-

tion. The proposed algorithm, called CalyPSO, avoids the pitfalls
of textbook Genetic Algorithms and demonstrates complete break

of existing delay-based PUFs which are based on arbiter chains.

More specifically, we are able to model higher-rder 𝑘-XOR PUF

variants which are resistant to all-known ML modelling techniques,

including 𝑘 = 13, 15 and 20, without the knowledge of reliability

values. In addition to that, we also model PUFs that incorporate

input transformation, like variants of IPUF and LP-PUF. Further-

more, we take forward this idea across different search spaces in

order to learn a higher order PUF using a lower order (and simpler)

PUF architecture. This allows us to explore a novel class of attacks,

including modelling a 𝑘-XOR PUF using a (𝑘 − 1)-XOR PUF as well
as bypassing input transformations based PUF designs.

1 INTRODUCTION
1.1 Physically Unclonable Functions
The advent of ubiquitous computing and its tremendous growth

and pervasiveness in the last couple of decades has opened new

arenas and challenges for the security and integrity of resource-

constrained devices. Being deployed in-the-wild as edge devices,

they are susceptible to a multitude of attack surfaces and possibili-

ties, including physical and side-channel attacks [18, 21]. In such

scenarios, classical cryptography, which builds its security claims

by assuming the non-availability of secret key to the attacker, does

not fulfil the practical requirements in presence of such strong

adversarial threat models. In this context, Physically Unclonable
Functions (PUFs) [9, 30] have shown great promise and received

interest from the security research community due to their inher-

ent feature of being “keyless”, thereby circumventing the threat of

physical attacks that could leak the key. A PUF can be viewed as a

physical system that relies on intrinsic hardware randomness as

the source of entropy. Given a challenge c as external stimulus, a

PUF is essentially an activated hardware component that depends

on nanoscale structural variances like multiplexer delays [9, 16, 30],

ring oscillators [15], start-up values of an static random access

memory (SRAM) [3, 38] and so on, to produce output as response 𝑟 .

1.2 Modelling attacks on PUFs
Although PUFs, by design, are supposed to be unclonable, there

have been modelling attacks on them. In this section, we briefly

explain the reason behind the same. PUFs have been subjected to

modelling attacks where an adversary tries to create an algorithmic

model which can predict PUF’s response to arbitrary challenges

with high probability. Traditionally, machine learning (ML) tech-

niques have been used in literature as a tool for such modelling

attacks. We begin with the simplest of delay-based PUFs: an Ar-

biter PUF (APUF)
1
An APUF takes as input a single challenge

𝑐 = (𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑛) ∈ {−1, 1}𝑛 where 𝑛 is the challenge length,

and outputs a single bit response 𝑟 ∈ {−1, 1}. The algebraic repre-
sentation of 1 and −1 corresponds to the 0 (LOW) and 1 (HIGH) states
in digital logic respectively. The additive delay model forms the

following relationship:

1
We only consider APUF-based designs as it is the most commonly used PUF architec-

ture that forms the basis of several constructions in the literature. Some other PUF

architectures like PAPUF [16] and BR-PUFs [4] also exist in the literature but have

simpler delay model when compared to an APUF.

1

Nimish Mishra, Kuheli Pratihar, Anirban Chakraborty, and Debdeep Mukhopadhyay

Δ =

𝑛∑︁
𝑖=1

©­«𝛿 (𝑖)𝑐𝑖

𝑛∏
𝑗=𝑖

𝑐 𝑗
ª®¬ (1)

wherein Δ controls the value 𝑟 takes, i.e. G (Δ) = 𝑟 with G being

the 𝑠𝑖𝑔𝑛 function. In this model, 𝛿
(𝑖)
1
, 𝛿
(𝑖)
−1 represents 𝑖-th delay

parameter in case of c𝑖 = 1, c𝑖 = −1 respectively. Note that 𝛿

is an encapsulation of how the 𝑖-th stage is excited by the input

challenge bit 𝑐𝑖 . It can therefore be decomposed into its constituent

parameters, through which it is possible to linearize this equation

wrt. Φ𝑖 =
∏𝑛

𝑗=𝑖 𝑐 𝑗 by introducing a new variable 𝜔 [35].

Δ =

𝑛∑︁
𝑖=1

𝜔𝑖Φ𝑖 (2)

where𝜔𝑖 = 1

2
(𝛿𝑖−1+𝛿

𝑖
1
−𝛿𝑖−1−1 +𝛿

𝑖−1
−1). Note thatΦ is the parity vector

which is derived from the input challenge c. Hence, a modelling

attack has to successfullymodel𝝎 in order to successfullymodel the

target PUF. This objective can be easily achieved by any machine

learning algorithm that relies upon the successful separation of

linearly separable inputs.

1.3 Defences against ML attacks on PUFs
A successful defence against PUF modelling attacks would involve

de-linearizing Δ =
𝑛∑
𝑖=1

𝜔𝑖Φ𝑖 , i.e. breaking the linear relationship

of Δ with 𝝎, making it harder for machine learning to learn a

polynomialy separable decision boundary on G (Δ).
One method to de-linearize the aforementioned equation is to

explicitly introduce non-linearity without changing the underlying

APUF model [20]. This is typically achieved by introducing several

APUF chains and combining them with an XOR. A 𝑘-XOR PUF

consists of 𝑘 arbiter chains and computes the XOR of 𝑘 individual

responses. Each of the APUFs are given an input challenge 𝑐 =

(𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑛) ∈ {−1, 1}𝑛 and the XORed output is response 𝑟 .

Representing a 𝑘-XOR PUF in terms of the functional mapping G
gives us the following equation:

𝑟 = G(Δ1) ⊕ G(Δ2) ⊕ G(Δ3) ⊕ · · · ⊕ G(Δ𝑘) (3)

where each APUF is represented using a mapping G and respective

Δ and therefore can be further expanded using Eqn. 1 into:

𝑟 = G ©­«
𝑛∑︁
𝑖=1

©­«(𝛿1) (𝑖)𝑐𝑖

𝑛∏
𝑗=𝑖

𝑐 𝑗
ª®¬ª®¬ ⊕ · · · ⊕ G ©­«

𝑛∑︁
𝑖=1

©­«(𝛿𝑘) (𝑖)𝑐𝑖

𝑛∏
𝑗=𝑖

𝑐𝑖
ª®¬ª®¬ (4)

In a 𝑘-XOR APUF, 𝑘 different APUF chains are XORed together to

generate one bit of response. Any arbitrary APUF chain has its own

delay parameter set 𝛿𝑖 , 1 ≤ 𝑖 ≤ 𝑘 . A modelling attack tries to learn

this non-linearity as well, which is a far more difficult problem.

One other way of achieving the same objective is to borrow de-

sign principles of block ciphers to hide the otherwise publicly avail-
able challenge bits by introducing input transformations [17, 25, 34].

Concretely, given a challenge c = {𝑐1, 𝑐2, · · · , 𝑐𝑛}, such defences

implement a one-way function 𝑓𝑠 (c) parameterized by some secret

𝑠 such c is converted into a private challenge c
′
= {𝑐 ′

1
, 𝑐
′
2
, 𝑐
′
3
, ..., 𝑐

′
𝑛},

which is then passed as input to the PUF. Formally, we write a

generic 𝑘-XOR equation in presence of input transformations as

follows:

𝑟 = G(
𝑛∑︁

𝑥=1

(𝛿1) (𝑥)𝑓𝑠 (𝑐)𝑥

𝑛∏
𝑦=𝑥

𝑓𝑠 (𝑐)𝑦) ⊕

... ⊕ G(
𝑛∑︁

𝑥=1

(𝛿𝑘)
(𝑥)
𝑓𝑠 (𝑐)𝑥

𝑛∏
𝑦=𝑥

𝑓𝑠 (𝑐)𝑦)
(5)

Any modelling attack on such PUFs implementing input transfor-

mations has to learn both 𝑓𝑠 as well as the non-linear XOR.

1.4 Motivation
The cat and mouse game between PUF designers and attackers has

led to the development of higher order complexity PUFs such as

𝑘-XOR PUFs and LP-PUFs that are fundamentally variants of APUF.

While the attackers attempted to use different ML techniques to

learn the challenge to response mapping by learning the delay

model, the designers focused on increasing the non-linearity and

diffusion of challenges. In short, the attack strategy can be summa-

rized as the following observation.

✓ O1. For an arbitrary PUF specification, challenge set C ∈ U𝐶 ,

and original response setR ∈ U𝑅 , a machine learning algorithm

dwells on a search space of functions P : U𝐶 → U𝑅 . Here,U
represents the universal set notation.

The observation O1 helps explain the motivation behind the two

design approaches undertaken to counter ML attacks (as discussed

in Sec. 1.3). Since a machine learning algorithm fundamentally

searches for a specific function in the search space of functions P,
mapping the set of challenges U𝐶 to the set of responses U𝑅 , if

this mapping P is obfuscated by breaking the linear relationship of

Δ =
𝑛∑
𝑖=1

𝜔𝑖Φ𝑖 , the searching process would not be able to converge

successfully. This happens since machine learning can no longer

find a linear separation between the two kinds of output responses

(1 and −1). Therefore, the “tug-of-war” between the attacker and

designer communities focussed mainly on the perceived hardness

of the problem of finding the mapping P : U𝐶 → U𝑅 by de-
linearization. However, one might be curious to ponder if there

exists a more efficient way of attacking delay-based PUFs other

than directly learning theU𝐶 → U𝑅 mapping through ML.

We note that the nanoscale structural variances of a delay-based

PUF can be modelled by a normal distribution with suitable vari-

ance. This includes the inherent delays of CMOS circuitry [12] as

well as additional noise that arises in hardware [6]. In this work,

we utilize this information to form a new perspective towards the

modelling of delay-based PUFs. In other words, we express PUFs

as a Boolean function composed of a set of normal random vari-

ables 𝜹 = {𝛿1, 𝛿2, 𝛿3, ..., 𝛿𝑛} where 𝛿𝑖 ∼ N(0, 𝜎2) ∀ 1 ≤ 𝑖 ≤ 𝑛 for

standard deviation 𝜎 . We note that every delay-based PUF, includ-

ing APUF, generates responses depending not on individual stage
delays, but rather on the combined effect of those delays. Formally,

this combined effect phenomenon can be expressed as 𝑟 = G(Δ),
where Δ is the delay model signifying the conbined effect of all

delay parameters {𝛿1, 𝛿2, 𝛿3, ..., 𝛿𝑛}. This observation constitutes

the basis of our attack strategy that we propose in this paper.

2

Modelling Delay-based Physically Unclonable Functions through Particle Swarm Optimization

✓ O2. A successful strategy to model a PUF would require ap-

proximating the combined effect Δ by constructing another set

of normal variables 𝜹
′

= {𝛿 ′
1
, 𝛿
′
2
, 𝛿
′
3
, ..., 𝛿

′
𝑛} such that 𝛿

′
𝑖
∼

N(0, 𝜎2) ∀ 1 ≤ 𝑖 ≤ 𝑛, it can construct another combined ef-
fect function G′ corresponding to the modelled combined delay
Δ
′
such that 𝑟 = G(Δ) = G′ (Δ′).

A logical inference of observation O2 allows the adversary to

claim that G′ is a model of the G, thereby allowing a successful

model of the target PUF. Therefore, instead of searching over a

function space P : U𝐶 → U𝑅 , we search over the space of PUFs

parameterized by the normal distribution N(0, 𝜎2). Furthermore,

we can formalize the successful modelling of a PUF by establishing

a sufficiently small threshold 𝜖 such that following equation holds:

| Δ − Δ
′
| ≤ 𝜖

Moreover, treating the problem of modelling PUFs as a search

problem allows us to launch novel downgrade attacks (c.f. Sec. 5
for details). This happens because the specific search space to work

upon depends on the underlying PUF architecture being targeted.

The foundation of our downgrade attacks look to approximate a

target delay Δ by searching in a search space belonging to simpler
PUF. In this work, we classify such attacks into two types:

• Degrees of freedom reduction attack: wherein we reduce the

security of a 𝑘-XOR PUF into a (𝑘 − 1)-XOR PUF.
• Input transformation bypass attack: wherein we reduce the

security of PUFs implementing input transformations to equiva-

lent 𝑘-XOR PUFs without any input transformations.

Both types of downgrade attacks are possible because our per-

spective of looking at PUF modellings from the viewpoint of a

search problem on delay parameter set 𝛿 allows a richer search

space. For instance, Degrees of freedom reduction attack relies

upon the event of searching over a (𝑘 − 1)-XOR PUF search space,

and finding some (𝑘 − 1)-XOR instance with delay Δ
′
that behaves

similar to a target 𝑘-XOR instance with delay Δ.

1.5 Contributions
In this work, we make the following contributions:

1 We introduce a new model of attacking delay-based PUFs by fo-

cusing not on learning the challenge-response functional mapping,

but rather by learning the delay parameters themselves. This allows

us to reason out failures of machine learning into certain kinds of

APUF variants, prompting our study of evolutionary algorithms in

the context of PUFs.

2 We look into prior works using textbook genetic algorithms

(GA), develop a bound on the probability of success of textbook

genetic algorithm and show how certain properties of a textbook

GA are unsuitable in the context of our attack vectors.

3 Motivated by our observations on the reasons of failures of

textbook genetic algorithm, we develop a novel variant of Particle

Swarm Optimization algorithm inspired by the natural process of

amoebic asexual reproduction.

4 Our proposed algorithm, to the best of our knowledge, is the

first attempt to model higher order 𝑘-XOR PUFs (as high as 20-XOR
PUFs) using far less number of challenge-response pairs.

5 Our proposed algorithm, to the best of our knowledge, is also

the first attempt to attack delay-based PUFs deriving their security

from input transformations. One prime example is LP-PUF, which

has been successfully modelled yet.

6 We also introduce a novel circuit composition of a 𝑘-XOR PUF
that allows us to reduce its security to a (𝑘 − 1)-XOR PUF.
7 We additionally put forward a novel attack strategy allowing

us to 1○ reduce the security of a higher order 𝑘-XOR PUF variant

to a lower order (𝑘 − 1)-XOR PUF, and 2○ bypass complex input

transformations like substitution permutation networks (as is the

case with LP-PUF) allowing us to successfully model LP-PUF.

Organization: In Sec. 2, we introduce background information

about PUFs and prior attacks on them, provide an overview of

evolutionary algorithms (EA) which we build upon later. In Sec. 3,

we note prior attempts to use EAs to attack PUFs and provide a

mathematical reasoning for their failure. In Sec. 4, we then pro-

pose a novel algorithm to attack PUFs, based on Particle Swarm

Optimization. Furthermore, in Sec. 5, we provide novel insights

allowing cross-architectural modelling attacks on PUFs, which cou-

pled with the majority voting rationale presented in Sec. 6 speeds

up convergence. We then present experimental results in Sec. 7 and

compare them with prior attacks in Sec. 8. Finally, we conclude

with future research directions in Sec. 9.

2 PRELIMINARIES
2.1 Arbiter PUF and its XOR composition
Arbiter PUF (APUF) is themost popularly used delay-based PUF [10].

The architecture of an APUF consists of two branches, the delay of

which are determined based on the given challenges (c.f. Fig. 1a).

An arbiter, in the end, compares the delay of two branches and

evaluates the response. An APUF takes as input a single challenge

c = (𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑛) ∈ {−1, 1}𝑛 where 𝑛 is the challenge length,

and outputs a single bit response 𝑟 ∈ {−1, 1}. The algebraic repre-
sentation of 1,−1 corresponds to the 0, 1 (LOW,HIGH) states in digital

logic. The APUF consists of path swapping switches which leads

to the delay difference Δ being proportional to the dot-product

between weight vector 𝝎 and parity vector Φ.

Φ𝑗 =

𝑛∏
𝑖=𝑗

c𝑗 ;Δ = ⟨𝝎,Φ⟩; 𝑟 = 𝑠𝑖𝑔𝑛(Δ) (6)

The linear representation of APUF makes it vulnerable to modelling

attacks, therefore complex compositions such as XOR-APUFs and

LP-PUFs were proposed.

2.1.1 XOR-APUF. One method to de-linearize APUFs is by ex-

plicitly introducing non-linearity without changing the underlying

APUF model, by introducing several APUF chains and combining

them with a XOR as shown in Fig. 1c. The relationship between

challenge and response is described by:

𝑟 =

𝑘∏
𝑡=1

𝑠𝑖𝑔𝑛 (⟨𝝎𝑡 ,Φ⟩) (7)

Each arbitrary APUF chain P𝑡∀1 ≤ 𝑡 ≤ 𝑘 has its own delay pa-

rameter set 𝜔𝑡 . A successful modelling attack needs to learn the

non-linearity induced due to XORs in addition to of all the delays as

shown in Eq. 7, which is a far more difficult problem. Machine learn-

ing based modelling attacks need to de-linearize Δ, as the decision
boundary would no longer to polynomially separable.

3

Nimish Mishra, Kuheli Pratihar, Anirban Chakraborty, and Debdeep Mukhopadhyay

...

...

r

c1=1 c2=0 cn=1

D Q

CLK

(a) APUF

APUF-1 APUF-m

c

...

...

1 1 1

n

n

1

m m m

c1...cn/m cn/m+1...c2n/m

rk-XOR APUF

APUF-2

Mixing Layer

cn(m-1)/m+1...cn

(b) LP-PUF

...

...

r

...

...

...

...

..
.

..
.

..
.

..
.

c1=1 c2=0 cn=1

k-XORs

D Q

CLK

D Q

CLK

D Q

CLK

(c) XOR-APUF

Figure 1: PUF Architectures for (a) APUF (b) LP-APUF (c) XOR-APUF

However, increasing number of APUFs in XOR-APUF negatively

impacts the PUF reliability at the cost of high security. Other tech-

niques to boost up the security of APUF include challenge obfusca-

tion with random data such as in LP-PUFs.

2.2 LP-PUF
LP-PUF [34] takes advantage of Substitution-Permutation networks

(SPNs), a technique used for the design of block ciphers. Formally,

given a one-way SPN function 𝑓𝑠 (c) parameterized by some secret

𝑠 , we get a scrambled output c𝑠 which is provided as an input to

the 𝑘-XOR PUF. LP-PUF generates responses as:

𝑟 =

𝑘∏
𝑡=1

𝑠𝑖𝑔𝑛 (⟨𝝎𝑡 ,Φ𝑠 ⟩) (8)

where Φ𝑠 is the parity vector of the scrambled challenge.

The architecture of LP-PUF consists of three layers, namely

an Arbiter layer, a mixing layer and an XOR layer (see Fig. 1b).

The APUFs in the first stage are of length 𝑛/𝑚 which generate𝑚

random bits. The hardware dependent random bits prevent any

circular dependency problem during scrambling. In the layer 2 each

bit of the input challenge c is XORed with a randomly selected set of

𝑚/2 APUF outputs out of the𝑚 available outputs of the first stage.

This XOR operation at the Layer-2 encodes each of the individual

challenge bits based on selection of random bits. The final output

of LP-PUF is that of a k-XOR Arbiter PUF.

The security of the LP-PUF depends on the challenge obfuscation

at the input of the Layer-3. Any modelling attack on LP-PUF thus

has to learn both SPN and the non-linear XOR.

Evaluation Metrics: The commonly used metrics to evaluate

PUFs are:

(1) Uniformity: It estimates the distribution of responses corre-

sponding to a challenge set and is calculated with the Hamming

Weight in the responses to 50% (ideal value).

(2) Uniqueness: This property describes the difference in responses

obtained when an identical challenge set is given as input to a

pair of PUF instances (ideally 50%).

(3) Reliability: A PUF is said to be reliable when the responses are

reproducible for an identical challenge over time and operat-

ing conditions. The ideal value is 100%. However, a maximum

error rate of 5% is tolerable and can be corrected using Error-

Correcting Codes (ECC) [27].

2.3 Modelling and reliability attacks
Recent works on PUF modelling use machine learning techniques

such as logistic regression [28] and neural networks [20, 29, 37].

ML attacks are black box attacks which try to find a relationship

between the challenge response pairs. The attacks are performed

by creating training and test datasets from the largely collected

uniform random challenges and their corresponding responses.

However, the success of the ML attack depends on nature of the hy-

perplane separating the +1/-1 responses. Logistic regression easily

learns APUFs due to the presence of a linear hyperplane which sep-

arates the -1/1 responses. But, XOR-APUFs and LP-PUF de-linearize

the challenge response pair relationship thereby, making it chal-

lenging for ML model to learn the PUF behaviour.

Furthermore, PUF reliability can be used to attack APUFs, XOR

APUFs [2, 31] and Interpose-PUFs [31]. For an APUF, the response

is termed unreliable, if the delay difference between two branches is

less than a threshold. Evolution Strategies (ES) such as CMA-ES [2]

find the best estimate of 𝝎 by maximizing the correlation between

the measured reliability ℎ𝑖 and hypothetical reliability ℎ̃𝑖 computed

from a PUF model. A stronger version of the CMA-ES based reliabil-

ity attack was proposed in [31] which used gradient decent based

approach. Composite PUF such as IPUFs were attacked by this

approach but, reliability based attacks haven’t been demonstrated

for complex PUFs such as LP-PUFs.

2.4 Evolutionary algorithms
Evolutionary algorithms (EA) are a class of algorithms that solve

a variety of computational problems that have well defined search
space [1, 22, 39]. Theoretically, assuming infinite computational

resources, it is possible to search through the entire search space

for optimal solution through either a brute force strategy or a ran-

domized search strategy. However, evolutionary algorithms make

4

Modelling Delay-based Physically Unclonable Functions through Particle Swarm Optimization

intelligent search choices that allow them to reach a solution with-

out the need to search through the entire search space. To do so,

each EA takes a well defined fitness function that formalizes how

good the search is progressing, with respect to some global op-

timum. Each evolutionary algorithm handles the following two

opposing forces in balance in order to streamline its search [33]:

• Exploration: This property defines how much search space has

been explored by the EA. Too low exploration can cause the EA

to fit into local optimum. Too large exploration is no different

from a completely random search.

• Exploitation: This property defines convergence towards the

global optimum. Too large exploitation risks the EA getting

caught in global optimum. While too low exploitation is simi-

lar to a large exploration strategy, which is no different from a

completely randomized search of the search space.

EAs are further classified based on how exactly they evolve. We

mention two textbook algorithms derived from natural processes:

1○ genetic algorithms, derived from biology of gene evolution, and

2○ swarm algorithms, derived from social behaviour of swarms like

ants, honey bees, birds, and so on.

2.4.1 Genetic Algorithms. Genetic algorithms are inspired from

the evolution in genes. The core philosophy is to mimic nature’s sur-
vival of the fittest strategy. Every genetic algorithm is a composition

of the following four sub-parts [7]:

• Genotype: Genotype encapsulates the genetic encoding of the
problem under observation.

• Selection operator: This operator chooses which members of

the population shall reproduce in a certain generation.

• Crossover operator: This operator controls how to mix two

genotypes of a population. This operator mainly controls the

exploitation phase of the genetic algorithms.

• Mutation operator: This operator controls the random muta-

tions that come into the population as it evolves. This operator

controls the exploration phase of genetic algorithms.

Refer Fig. 2 for a pictorial depiction of these concepts. The 𝛿

values capture the exact genotype in the context of PUFs. The

selection phase selects two random parents from the population,

which (by action of the crossover operator) split their genotypes

into two and swap them. Finally, the mutation operator adds a small

noise to the genotype of one genotype.

2.4.2 Swarm Algorithms. Swarm algorithms [24] draw upon the

efficiency of various available swarms in the animal kingdom that

allow them to achieve an objective of collective interest. One such

example of Particle Swarm Optimization (PSO), which is inspired

by the behaviour of a swarm of birds foraging for food. PSO works

upon a swarm of particles in a search space with a single food

source. The exploration phase of the algorithm allows the par-

ticles to move randomly (or heuristically) in the search space. As

soon as a path to the food source is expected to be discovered, the

swarm/exploitative behaviour kicks in wherein other particles in

the search space also try to move along the newly discovered path

in order to get a better convergence to the global optimum.

3 EVOLUTIONARY SEARCH (ES) STRATEGY
In Sec. 1.4, we elaborated a new perspective of conceiving the prob-

lem of modelling PUFs by searching for an approximation to delay

Δ instead of trying to learn the mapping P : U𝐶 → U𝑅 . Usu-

ally, in literature, search problems are attacked by evolutionary

strategies. In this context, prior works [14, 32] have done some

investigation into the problem of modelling PUFs by using evo-

lutionary algorithms. However, their search strategy still focused

on using evolutionary algorithms to exlore the search space of the

mapping P : U𝐶 → U𝑅 . To the best of our knowledge, no prior
work has been done to investigate the applicability of evolutionary
algorithms to search for an approximation to delay Δ.

In this section, as a consequence, we first discuss why prior

attempts of using textbook evolutionary algorithms in the context

of PUFs have been unsuccessful. We note pitfalls of such algorithms,

and use these insights to propose a variant of the Particle Swarm

Optimization algorithm based on a PUF’s internal architecture.

3.1 Failures of prior ES attacks on PUFs
The prior works on classical evolutionary algorithms for PUFs use

genetic algorithm to attack a class of delay-based PUFs including

APUF, XOR-APUF, feed forward APUFs and analog PUFs [14, 32].

The standard genetic algorithms (cf. Sec. 2.4) are a combination

of three generic operators tuned to specific applications: selection,

crossover, and mutation. It is derived from the idea of human evo-

lution, coupled with Darwinian concept of survival of the fittest,
ensuring that the human population gets fitter over sufficient num-

ber of generations. Specifically, given two DNA sequences, human

evolution creates a new DNA sequence by intermixing parent genes

as well as by occasional mutation. Genetic algorithm mathemati-

cally implements the evolution of the population parameter.

Application of a genetic algorithm in the case of PUFs requires

the knowledge of the following:

• Genotype representation: PUF representation used by genetic

algorithm.

• Hyperparameters: parameters for selection, crossover and mu-

tation.

Previous works [14, 32] on standard genetic algorithms choose

the hyperparameters based on the default settings of genetic algo-

rithms. It is the genotype representation that needs deliberation

from the perspective of a PUF. In [14, 32], this representation is a

set of table entries used by the PUF. However, while [14] does not

move beyond feed-forward APUF into XOR designs, [32] explicitly

claims the failure of genetic algorithms in breaking PUFs.

In this work, we come up with a better genotype representation

for PUFs. We have noted that a PUF’s security is enhanced us-

ing de-linearization defences and input challenge transformations.

However, even in the presence of such defences, the functionality

of any delay-based PUF is determined by 𝝎 vector which is used

to evaluate Δ. To the best of our knowledge, this is the first work

to directly estimate Δ, and therefore, model the PUF. Formally, our

ES algorithm’s genotype representation is a normally distributed

delay parameter set 𝜹 = {𝛿1, 𝛿2, 𝛿3, · · · , 𝛿𝑛}, and the objective of

the search is to converge towards 𝝎.

Why genetic algorithm is still not suitable? One could argue

that the genetic algorithm strategies discussed in [32] could still

5

Nimish Mishra, Kuheli Pratihar, Anirban Chakraborty, and Debdeep Mukhopadhyay

...

...

1

a
 2

a


a
n/2

a
n/2 1 +

a
n 1 −

a
n 1

b
 2

b


b
n/2

b
n/2 1 +

b
n 1 −

b
n

1

a
 2

a


a
n/2 b

n/2 1 +
b
n 1 −

b
n 1

b
 2

b


b
n/2

a
n/2 1 +

a
n 1 −

a
n

......
1

b
 2

b


b
n/2

a
n/2 1 +

a
n 1 −

a
n

Selection

Mutation

Crossover

Population

Figure 2: A sample iteration of the genetic algorithm on the
genotype suggested in this work.
be potentially applicable with this new genotype representation 𝜹 .
However, we show this is not the case. A standard genetic algorithm

cannot be applied in the context of PUFs without verifying the

correctness of a genotype crossover between parent PUFs producing

a valid child PUF. Let us consider the case of a simple APUF, as all

delay-based PUFs can be derived from APUF.

Δ =

𝑛∑︁
𝑥=1

(𝛿 (𝑥)𝑐𝑥

𝑛∏
𝑦=𝑥

𝑐𝑦)

From observation O2 (c.f. Sec. 1.4), we understand that although

the individual stage delay set 𝜹 can take different values, it is their

combined effect Δ that has the final control over generated responses.

It is this combined effect Δ that makes genetic algorithm difficult to

apply in the context of PUFs, which we show next. Without loss of

generality, let us consider one iteration of a standard genetic algo-

rithm for one challenge-response pair with the following genetic

algorithm’s operator descriptions:

• Optimization function: Accuracy of PUF responses

• Selection: Roulette selection
• Crossover: Single-point crossover with rate 80% [32].

• Mutation: Real-valued normal mutation with mutation rate

√
𝜏 ,

where 𝜏 is the length of genotype representation [32].

Fig. 2 pictorially summarizes one iteration of the algorithm. Out

of a population of several candidates, two candidates are chosen by

the algorithm’s selection operator. Let these candidates’ genotype

be described by the parameter set 𝜹𝑎 = {𝛿𝑎
1
, 𝛿𝑎

2
, · · · , 𝛿𝑎𝑛 } and 𝜹𝑏 =

{𝛿𝑏
1
, 𝛿𝑏

2
, · · · , 𝛿𝑏𝑛}. Then, the crossover operator creates a central split

and combines halves of 𝜹𝑎 and 𝜹𝑏 to create two children (say 𝜹𝑐

and 𝜹𝑑). Finally, the mutation operator randomly changes 𝛿𝑏
2
(the

second element from 𝜹𝑏).We now formalize this experimental setup

and establish theoretical bounds on the probability of 𝜹𝑐 and 𝜹𝑑

being fitter than 𝜹𝑎 and 𝜹𝑏 , thereby highlighting the shortcomings

of standard genetic algorithm used for PUFs.

To do so, let us consider a probabilistic-polynomial time adver-

saryA and a challenger C . C encapsulates two oraclesOU andOP .

Upon each query made byA, C flips an unbiased coin, chooses one

oracle, and returns its response to A. This constitutes one iteration

of the genetic algorithm. The oracles behave as follows after being

queried by A:

• OU returns a randomly sampled vector {𝛿𝑈
1
, 𝛿𝑈

2
, ..., 𝛿𝑈𝑛 } where

each of the variables are normally distributed with mean 0 and

standard deviation 0.5.

• OP returns 𝜹𝑐 without loss of generality. The analysis is un-

changed even if 𝜹𝑑 is returned in this stage.

... ...
1

a
 2

a


a
n/2

a
n/2 1 +

a
n 1 −

a
n

...

...

Race winning path

Figure 3: An example of conversion of genotype into PUF
delays. Each 𝛿𝑎

𝑖
affects the 𝑖-th stage. The combined effect Δ

is obtained by the combined effects of each of 𝛿𝑖 which allow
one path to win the race.

Under this model, we claim the following. Here, 𝜖 (𝑛) is a negli-
gible function.

Lemma 1 (Indistinguishability of combined effect Δ). Let EOU
denote the event where the adversary correctly guesses that C chooses
OU to answer A’s query. Likewise, let EOP be the the event where
the adversary correctly guesses that OP was used. Finally, let PA be
the probability that the adversary wins. Then, the following holds:

PA [EOU = 1] = 1 − PA [EOP = 1] = 1

2

+ 𝜖 (𝑛)

Proof of a "loose" bound on PA. The delay Δ𝑎 for the PUF

parameterized by 𝜹𝑎 is given by:

Δ𝑎 =

𝑛∑︁
𝑖=1

(𝛿𝑎𝑖 Φ𝑖)

Each stage 𝑖 is parameterized by delay value 𝛿𝑖 that chooses one

of the two possible paths at that stage as shown in Fig. 3.

This leads us to the following observation: in order for 𝜹𝑐 =

{𝛿𝑎
1
, 𝛿𝑎

2
, ..., 𝛿𝑎𝑛

2

, 𝛿𝑏𝑛
2
+1, ..., 𝛿

𝑏
𝑛} to be at least as fit (using accuracy of

responses as the fitness function) as 𝜹𝑎 , the behaviour of each of

{𝛿𝑏𝑛
2
+1, 𝛿

𝑏
𝑛
2
+2, ..., 𝛿

𝑏
𝑛} should be comparable to that of {𝛿𝑎𝑛

2
+1, 𝛿

𝑎
𝑛
2
+2, ..., 𝛿

𝑎
𝑛 }.

Formally, for 𝜹𝑐 to be at least as fit as 𝜹𝑎 , the combined effect Δ𝑐

should be similar to the combined effect Δ𝑎 , allowing 𝜹𝑐 to cor-

rectly predict no less responses than what 𝜹𝑎 does. Now we know

that every element in the parameter set 𝜹𝑎 translates to a either

a cross or straight path (c.f. Fig. 3). For 𝜹𝑐 to be as least as fit
as 𝜹𝑎 , the {𝛿𝑏𝑛

2
+1, 𝛿

𝑏
𝑛
2
+2, ..., 𝛿

𝑏
𝑛} parameters should allow the same

cross/straight path wins which {𝛿𝑎𝑛
2
+1, 𝛿

𝑎
𝑛
2
+2, ..., 𝛿

𝑎
𝑛 } allowed, in or-

der for 𝜹𝑐 to win races exactly or better than 𝜹𝑎 .
However, there is a catch here. The evolutionary algorithm learnt

values {𝛿𝑏𝑛
2
+1, ..., 𝛿

𝑏
𝑛} in the genotype 𝜹𝑏 , implies𝜹𝑐 = {𝛿𝑎

1
, 𝛿𝑎

2
, ..., 𝛿𝑎𝑛

2

,

𝛿𝑏𝑛
2
+1, ..., 𝛿

𝑏
𝑛} is a fit combination if and only if the first 𝑛

2
positions of

𝜹𝑐 allow the same cross/straight path wins as {𝛿𝑏
1
, 𝛿𝑏

2
, ..., 𝛿𝑏𝑛

2

}. With-

out any further assumption on the algorithm, an arbitrary stage 𝛿𝑎
𝑖

for 1 ≤ 𝑖 ≤ 𝑛
2
has probability

1

2
of performing the same behaviour

(i.e. allowing either the cross or the straight path to win) as 𝛿𝑏
𝑖
did.

Thus, the probability of 𝜹𝑐 being at least as fit as 𝜹𝑎 is (1
2
)
𝑛
2 ≤

𝜖 (𝑛), which is a negligible function in 𝑛 (the number of stages in

the PUF chain). Note that this is indistinguishable from a randomly

6

Modelling Delay-based Physically Unclonable Functions through Particle Swarm Optimization

sampled PUF {𝛿𝑎
1
, 𝛿𝑎

2
, 𝛿𝑎

3
, ..., 𝛿𝑎𝑛

2

, 𝛿𝑈𝑛
2
+1, 𝛿

𝑈
𝑛
2
+2, ..., 𝛿

𝑈
𝑛 }, where each of

𝛿𝑈
𝑖

for
𝑛
2
+ 1 ≤ 𝑖 ≤ 𝑛 is a randomly sampled parameter and has a

loose upper bound of 1

2
of matching the same behaviour (i.e. letting

either the criss-cross or the straight path winning) as 𝛿𝑎
𝑖
, amounting

the total probability to (1
2
)
𝑛
2 .

The main takeaway is that a genetic algorithm’s combination of

two PUF parameters to create new PUF parameters has a negligible

(< 𝜖 (𝑛)) probability of being fitter than the previous population.

In light of this, we need to devise a better evolutionary strategy to

this end. We take inspiration from the generic design of particle

swarm optimizations (briefed in Sec. 2.4) that we discuss next.

4 AMOEBIC SWARM OPTIMIZATION
In this section, we introduce a novel Particle Swarm Optimization

algorithm inspired by the biomimicry of amoebic reproduction. Any

evolutionary search strategy needs to delicately balance between

two equally important yet competing strategies: 1○ exploration,

and 2○ exploitation. Exploration controls how much the algorithm

explores for new solutions in the search space. Exploitation, on the

other hand, focuses on developing on previously found solutions in

order to make them even better. Too much of either is disastrous for

the convergence of the algorithm. Overdoing exploration shall be

no better than a blind random search. And overdoing exploitation

risks being caught in local extremums.

4.1 Algorithm design intuition
Let us consider the PUF’s parameters 𝜹𝑎 = {𝛿𝑎

1
, 𝛿𝑎

2
, 𝛿𝑎

3
, · · · , 𝛿𝑎𝑛 }

learned over a period of several generations of the evolutionary

learning algorithm. However, unlike the changes a genetic algo-

rithm does, we do not want to throw away half of the param-

eters learnt and replace them with parameters of another PUF

(which is a bad design decision since no two PUFs are comparable).

Rather, we want to perturb a small set 𝑆 ⊆ 𝜹𝑎 in-place. Based
on the idea of race between cross/straight paths (c.f. Fig. 3), this

perturbation may cause the behaviour of few stages of the PUF to

change. For example, perturbing 𝛿𝑎
𝑖
to (𝛿 ′)𝑎

𝑖
(for a specific 𝑖 where

1 ≤ 𝑖 ≤ 𝑛) may cause the originally winning criss-cross path to

now lose the race to straight path, leading to a change in perfor-

mance/accuracy on target response set. The new PUF genotype

shall then be (𝜹 ′)𝑎 = {𝛿𝑎
1
, 𝛿𝑎

2
, 𝛿𝑎

3
, · · · , (𝛿 ′)𝑎

𝑖
· · · , 𝛿𝑎𝑛 }. If (𝜹

′)𝑎 im-

proves upon the performance of 𝜹𝑎 , then all future generations will

now build upon (𝜹 ′)𝑎 instead of 𝜹𝑎 to improve even further.

The major difference between this approach and the genetic

algorithm approach is that by choosing to update 𝛿𝑎
𝑖
and evaluating

the correctness of the newly generated PUF, the algorithm allows

(𝛿 ′)𝑎
𝑖
to be affected by all other (already present) parameters, while

also focusing on improving overall performance/accuracy on target

response set. This allows the algorithm to evaluate the effect on

Δ =
𝑛∑
𝑖=1
(𝛿𝑎
𝑖
Φ𝑖) by changing 𝛿𝑎

𝑖
to (𝛿 ′)𝑎

𝑖
and preserving all other

parameters, thereby allowing a mode of convergence towards the

optimal solution. Over time, the algorithm converges to approxi-

mate the correct behaviour of each stage (i.e. winning either the

cross or the straight race) that is reminiscent of the stage-wise

behaviour of the target PUF.

Food source Amoebic population

Low height Medium height Peak

Figure 4: Initial amoebic population with a food source in
the landscape defined by contours. It is assumed that the
food source is at the highest peak in the landscape. Arrows
indicate the directions in which the population advances.

4.2 Algorithm design decisions
In this work, we develop a variant of the generic Particle Swarm

Optimization procedure named Amoebic Swarm Optimization
or CalyPSO. The motivation of the algorithm lies in the following

problem in nature: how does a population of amoeba move towards a
food source (i.e. an objective)? Consider Fig. 4. There is a landscape
with hills and valleys of varying heights. The objective (i.e. the food

source) is the highest peak of the landscape. Initially, we have a

population of amoebas randomly scattered in the landscape. Based

on the fitness of each member of the population (i.e. the remaining

distance from the food source), eachmember of the population takes

one step towards the direction which takes that member closer to

the food source. Intuitively, the higher the peak is in the landscape,

the more fit an amoeba becomes when it reaches there.

However, each member of the population does not have the

complete view of the landscape. Hence, every step an amoeba takes

is according to the local best decision it can make. Hence, we have

our first challenge C1 that the algorithm needs to solve:

• C1. Ensure the amoebic population escapes local ex-

tremums, over a sufficient iterations of the algorithm.

Secondly, a generic Particle Swarm Optimization would involve

swarm behaviour, in which a single amoeba, as soon as it finds a

new optimal path to the food source, will broadcast this information

to other members of the population. Henceforth, other population

members can use the findings of one member to their advantage.

However, as discussed in Sec. 3.1, in the context of PUFs, this broad-

cast is not of much use. Every member of the population will find

its own path to the global optimum. Mixing different solutions in

the context of PUFs is likely to be no better than a random search.

Thus, we have a second challenge:

• C2. According to Lemma 1, mixing states of two PUFs into

one solution is no better than a random guess. Thereby,

a generic particle swarm optimization procedure is not

much helpful in this context, since we cannot use one PUF

instance to evolve another PUF instance.

4.2.1 Solving C1: Landscape evolution. We note that the generic

landscape depicted in Fig. 4 is constructed by the specific data input

to the algorithm, which is inspired by the particular problem being

7

Nimish Mishra, Kuheli Pratihar, Anirban Chakraborty, and Debdeep Mukhopadhyay

Food source Amoebic population Low height Medium height Peak

Landscape

 Evolution

Figure 5: An example of landscape evolution. Note how the
contours change as the landscape evolves.

solved. In our context, this landscape is the target PUF mapping

P (c.f. Sec. 3.1). A landscape described by a huge amount of data

extracted from P is bound to create a smooth landscape wherein

the particles can converge upon the final objective. However, in

practice, the amount of data available to the algorithm is limited.

Solution to C1. Given limited data from P, construct partial
landscapes from subsets of the overall data. Over a sufficient num-

ber of generations, the false optimums will smooth out, leaving the

global optimum visible for convergence. Consider the illustration

in Fig. 5. Because of using a subset of total data available, false
contours may spring up. However, when the landscape is evolved

over the course of the algorithm, these false contours can not occur

in every sampled subset. Thereby, over sufficient runs of the algo-

rithm, the members of the population stuck in false contours will
also start converging towards the global optimum. Thereby, using

landscape evolution as an essential portion of the algorithm allows

it to prevent from being caught up in local extremums.

4.2.2 Solving C2: Mixing amoebic reproduction with Particle Swarm
Optimization procedure. In a generic (PSO), the following two or-

thogonal forces balance out the convergence:

• Search space exploration: This is captured by the particle be-
haviour of the PSO. Given a member of the population, the algo-

rithm will attempt to move it in a random direction and check

how close the member moved towards the global extremum.

• Search space exploitation: Once a path to the global extremum

is found, the swarm behaviour kicks in. Every member then fol-

lows closely the discovered optimal path to the global extremum.

However, as challengeC2 points out, we cannot utilize the swarm
behaviour of a generic PSO because that would require mixing

genotypes from two members of the population (which, according

to Lemma 1), is no better than a random genotype sample. This

means that search space exploration is no longer possible: every

member of the population will simply keep on doing a random

search in their own specific directions. To mitigate this, we merge

the generic concept of a PSO with amoebic reproduction. It is worth
mentioning that, to the best of our knowledge, merger of an amoebic

reproductive step to the evolution of a swarm in PSO has not been

attempted before in literature.

Solution to C2: Since the generic swarm behaviour of a PSO

is not relevant in the context of PUFs, in order to ensure sufficient

exploration of the search space, we merge the concept of amoebic
reproduction to PSO. We get two advantages from this design. 1○
Amoebic reproduction, being asexual, prevents the need to merge

two PUF solutions into one (as genetic algorithm does), thereby

Food source Amoebic population

Low height Medium height Peak

Figure 6: An example of amoebic reproduction applied in the
algorithm.

avoiding the pitfalls that genetic algorithm has in the context of

PUFs (c.f. Sec. 3.1). And, 2○ it is able to reproduce progressively

fitter amoebas because the parents themselves are getting fitter

by each generation. Point 2○ is in stark contrast with a genetic

algorithm’s reproduction step, which has no control on where in

the landscape the populated children with spawn (because the chil-

dren are produced by intermixing two parent genotypes), thereby

risking bad solutions in the search process. Consider Fig. 6. Every

iteration of the algorithm, in addition to moving in the locally op-

timal direction, also (asexually) reproduces to generate a progeny

population. This population inherits the same representation as the

parent, but takes its own path across the landscape.

4.3 Algorithm description
We summarize CalyPSO in Algo. 1. The algorithm assumes challenge-

response tuple (𝐶, 𝑅) and target_puf_arch as input. The parame-

ter target_puf_arch abstracts the details of the architecture of the
target PUF. Likewise, the tuple (𝐶, 𝑅) is fetched from the target PUF,

and used to evaluate fitness function. Intuitively, fitness quantifies
how close a member of the population is to the target PUF. The

algorithm then initializes a population of size population_size
in the function INITIALIZE_POPULATION. Each member is of the

same architecture as target_puf_arch and has randomly sampled

delay parameter set 𝛿 .

Post that, the algorithm enters into an infinite loop of a set

of sequential processes that allows convergence. Firstly, fitness is

computed for each member of the population in function

COMPUTE_POPULATION_FITNESS. The fitness function used in our

algorithm is 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑎𝑐𝑐 − 𝑏𝑖𝑎𝑠 . Here, accuracy 𝑎𝑐𝑐 abstracts
the number of responses being correctly predicted. While the bias

abstracts the property of a PUF to probabilistically generate one

kind of responses more than others. For instance, a bias value close

to 1 means the PUF is highly likely to generate more number of 1.

Similarly, a bias value close to −1 means the PUF is highly likely to

generate more number of −1.
The function STEP abstracts the method with which the popula-

tion evolves over time and closely follows the approach detailed in

Sec. 4 (refer to Sec. 7 for exact implementation specifics). Likewise,

AMOEBIC_REPRODUCTION implements the solution to challenge C2
by spawning amoebic children, who carry out the search in a com-

pletely independent manner than their respective parents. More-

over, le_parameter controls the frequency of landscape evolution

8

Modelling Delay-based Physically Unclonable Functions through Particle Swarm Optimization

(solution to challenge C1) by resetting the training data (𝐶, 𝑅) ev-
ery few generations. Finally, sort() and trim() functions ensure

survival of the fittest members of the population, while keeping

the population size capped at population_size.
We note that the algorithm described so far tries to model a target

PUF using all its delay parameters. Hence, as the complexity of the

target PUF increases (for example, the number of Arbiter chains

in the XOR PUF increases), the algorithm takes longer to converge.

As a consequence, in the next section, we introduce novel attack

strategies that allow modelling a higher order PUF using a lower

order and simpler variant, allowing for faster convergence as well

as interesting theoretical results regarding the security of PUFs.

Algorithm 1 CalyPSO: Amoebic Swarm Optimization algorithm

1: procedure initialize_population(target_puf_arch)
2: set population_size← 500

3: set population_list← NULL

4: while population_list.size() != population_size do
5: /* Randomly generate an instance of target_puf_arch*/

6: population_list.append(RANDOM(target_puf_arch))

7: return population_list

8: procedure compute_population_fitness(C, R, population_list)
9: for member in population_list do
10: predicted_responses = member.evaluate(C)
11: member.fitness = /*compare similarity between R and pre-

dicted_responses*/

12: return
13: procedure amoebic_reproduction(population_list)
14: population_list.append(CLONE(population_list))

15: procedure step(population_list, delay_param)

16: for member in population_list do
17: /*Add normal noise to each member’s delay parameters con-

tained in the list delay_param*/

18: procedure attack_wrapper

19: set GENERATION← 0

20: (C, R)← challenge-response tuple of the target PUF

21: set target_puf_arch
22: le_parameter← landscape evolution hyperparameter

23: set delay_param← 1 ⊲ delays to perturb in one generation.

24: population_list← initialize_population(target_puf_arch)

25: while True do
26: call compute_population_fitness(C, R, population_list)
27: population_list.sort() ⊲ Sort based on fitness

28: population_list.trim() ⊲ Trim population to size 500

29: call amoebic_reproduction(population_list)

30: call step(population_list, delay_param)

31: if not GENERATION % le_parameter then
32: /*randomly sample a new challlenge set C

′
*/

33: R← target PUF response on C
′

5 DOWNGRADE ATTACK: REDUCING
ORIGINAL SECURITY GUARANTEES

So far, the algorithm CalyPSO, detailed in Sec. 4, allows exact repli-
cation of a target PUF architecture. For instance, given 𝑘-XOR PUF

with challenge length 𝑛 as the target, the algorithm allows learn-

ing a suitable delay parameter set of size 𝑛 × 𝑘 that approximates

Δ. However, the perspective of viewing the problem of modelling

PUFs as a search problem allows another kind of cross-architecture

modelling attacks using the algorithm described in Sec. 4. We detail

two such attacks here: 1○ attacks allowing bypassing the transfor-

mations on input challenge set (as in LP-PUF), and 2○ allowing a

cross-architecture learnability attack on 𝑘-XOR PUFs.

5.1 Degrees of freedom reduction attack
We propose a degree of freedom reduction attack wherein we reduce

the security of a 𝑘-XOR PUF to a (𝑘 − 1) XOR PUF using the

idea of FORMULA-SATISFIABILITY of Boolean functions. XOR PUFs

achieves de-linearization by increasing the number of XORs thereby,

increasing the non-linearity in modern PUF designs (c.f. Sec 1.3).

In order to reduce degrees of freedom, we model the problem of

learning a 𝑘-XOR PUF as a FORMULA-SATISFIABILITY problem.

Referring to Fig. 1c, a 𝑘-XOR PUF can be algebraically modelled

by Eq. 7 as a product of the sign function of 𝑘 Arbiter PUFs. At

the hardware level 𝑘 APUF outputs (0,1) are XORed, which can be

represented by the function:

𝑅 = 𝑓1 (C, 𝜹1) ⊕ 𝑓2 (C, 𝜹2) ⊕ · · · ⊕ 𝑓𝑘 (C, 𝜹𝑘) (9)

whereC is the input challenge and individual arbiter chains are rep-

resented by 𝜹1, 𝜹2, . . . , 𝜹𝑘 delay vectors and 𝑓𝑖 functions generating

the response 𝑅.

Eqn. 9 comprises of a commutative/associative operation with 𝑘

variables, each of which can be represented by a Boolean function

implemented using AND andOR gates. In the case of PUFs, since the

adversary has access to 𝑅, this equation in 𝑘 variables has actually

just 𝑘 − 1 degrees of freedom. Formally, eqn. 9 can be re-written as:

𝑅 = 𝑓1 (C, 𝜹1) ⊕ 𝑓2 (C, 𝜹2) ⊕ . . . 𝑓𝑘−1 (C, 𝜹𝑘−1) ⊕ 𝑏 (10)

where the final bit 𝑏 is a deterministic constant ∈ {0, 1} that can
be evaluated from the other variables. Therefore, given a response

set 𝑅, Eq. 10 reduces the effect of the last Arbiter chain to a deter-

ministic bit. From the point of an adversary, it no longer needs to

learn the behaviour of the last Arbiter chain. Hence, we draw the

following observation:

✓ O3. Any 𝑘-XOR PUF fulfils the FORMULA-SATISFIABILITY equa-
tion in 𝑘 variables and 𝑘 − 1 degrees of freedom. In the context

of our algorithm, an adversary only needs to learn 𝑘 − 1 arbiter
chains. The contribution of the final 𝑘-th arbiter change can be

evaluated from the final response, thereby allowing us to reduce

the security of a 𝑘-XOR PUF to a (𝑘 − 1)-XOR PUF.

5.2 Input transformation bypass attack
By viewingmodelling of PUFs as not learning the challenge-response

mapping, but rather approximating Δ, we allow ourselves an im-

portant freedom, which becomes the basis of this bypass attack. We

exemplify this by exploiting LP-PUF’s input transformation that

depends upon substitution-permutation networks (SPN) like dif-

fusion. Recalling our discussion in Sec. 2.2, LP-PUF is delay-based

PUF that relies upon a SPN to transform the input challenge set

𝐶 to 𝐶
′
, before providing 𝐶

′
to a standard 𝑘-XOR PUF. The SPN is

parameterized by secret bits, which are again generated by a series

of 𝑘 APUFs, thereby tying the SPN’s security to the hardware itself.

Because of this, to the best of our knowledge, there has been no

machine learning attack or evolutionary algorithm based attack

on LP-PUF because mapping 𝐶 directly to the response set 𝑅 is

equivalent to learning the SPN without knowledge of 𝐶
′
, which

9

Nimish Mishra, Kuheli Pratihar, Anirban Chakraborty, and Debdeep Mukhopadhyay

is a difficult problem. However, the algorithm reported in Sec. 4 is

able to attack LP-PUF’s SPN because it considers the SPN’s struc-

ture also as a part of its genotype, thereby allowing the swarm to

converge upon a solution that models both 1○ SPN, as well as 2○
𝑘-XOR PUF components of LP-PUF.

However, we reason out that it is possible to attack PUFs in-

volving input transformations from another perspective, using our

algorithm. We give an intuitive understanding here. We again build

upon the same ideas of combined effect Δ introduced in earlier

sections, albeit in a slightly different way. We make the following

observation:

✓ O4. Any input transformation based PUF (like LP-PUF) places

a layer of input transformation before the actual PUF (like a

𝑘-XOR PUF). This implies the PUF functions not on the actual

input (𝐶, 𝑅) but rather on the transformed tuple (𝐶 ′ , 𝑅). The
Input transformation bypass attack aims not to learn both

1○ 𝐶 → 𝐶
′
mapping as well as 2○ the 𝑘-XOR mapping 𝐶

′ → 𝑅,

but rather randomly sample the input transformation function

(i.e. derive a 𝐶 → 𝐶
′′
) and learn a 𝑘-XOR mapping 𝐶

′′ → 𝑅.

In other words, instead of asking the algorithm in Sec. 4 to learn

the mapping and then the PUF itself, we let the spawned members

of the population implement their own unlearned transformation

(i.e. 𝐶 → 𝐶
′′
) and then learn some other 𝑘-XOR mapping from 𝐶

′′

to 𝑅. Note that, given a random𝐶
′′
, it is not always possible to find

such a mapping, our empirical results show that for sufficient size

of input data, the probability of this event is negligible. Therefore,

our algorithm (which launches an exploration in the search space

of all PUFs of a given architecture) is able to find some PUF which
maps 𝐶

′′
to 𝑅, and by extension models the target PUF.

6 OPTIMIZATION BY MAJORITY VOTING
Any evolutionary algorithm tries to evolve its population in a way

that makes the population fitter over time. Often, this results in

longer run-times than usual machine learning attacks. In light of

the same, the following observation can help.

✓ O5. So far, CalyPSO uses the fittest member of the entire popula-

tion in order to report accuracy. However, the algorithm exhibits

swarm behaviour, which means all members of the population

are moving towards the final objective in their own trajectory. As

such, instead of throwing away the learning done by all members

in the population and considering only the fittest, amajority vote
based prediction strategy gives better empirical performance and

faster convergence.

Here, it is sufficient to show: 1○ the majority voting over the

entire population is expected to perform better than the fittest
member, and 2○ the probabilistic bound of a wrong majority vote

is negligible for a sufficient size of the population. To do so, we

consider a population of size 𝜁 . For a single challenge-response pair

(𝑐, 𝑟), we can, therefore, define a set of identically and independently
distributed (i.i.d) random variables {Z1,Z2,Z3, ...,Z𝜁 } such that

for any arbitrary Z𝑖 , the following holds:

• Z𝑖 = 1 iff the 𝑖-th member of the population correctly

predicts response 𝑟 for challenge 𝑐 .

• Z𝑖 = 0 otherwise.

Assume that the average fitness of the population is 𝑓𝑎𝑣𝑔 . We

now define another random variable that captures the combined

action of the entire population.

Z = Z1 + Z2 + ... + Z𝜁

By linearity of expectation, we can express the overall expected

majority vote as 𝐸 [Z] =
𝜁∑

𝑥=1
𝐸 [Z𝑖] = 𝜁 × 𝑓𝑎𝑣𝑔 . On similar lines of

argument, the majority vote Z fails if less than
𝜁
2
members of the

population vote in favour of the correct response bit. Combining

both 𝐸 [Z] and Z gives us the bound for amplification of success

in case of majority voting [11]:

𝐸 [Z] − Z ≥ 𝜁 × (𝑓𝑎𝑣𝑔 −
1

2

) =⇒ 𝐸 [Z] − Z ≥ 0 (11)

This result clearly achieves objective 1○: as the population gets

fitter (i.e. 𝑓𝑎𝑣𝑔 increases), majority voting is expected to perform

better than the individual members of the population. Moreover,

choosing a high 𝜁 , although causes longer run-time, also allows for

a larger accuracy amplification when using majority vote to predict

a PUF’s response. Furthermore, to achieve objective 2○, we upper

bound the probability of failure of majority voting by invoking

Chernoff-Hoeffding theorem [11]:

𝑃𝑟 [Z ≤ 𝜁

2

] ≤ 𝑒−2((𝑓𝑎𝑣𝑔−0.5)×
√
𝜁)2

(12)

which is a negligible function in the size of the population as well

as the overall fitness. More precisely, the probability that a majority

vote over a large population will fail is negligible, as the population

gets fitter over time.

7 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present the experimental details and results.

Experimental Setup and Hyperparameter tuning. Our exper-
iments include simulations on PyPUF [36] as well as validation

on actual hardware data. As the procedure in CalyPSO (Algo. 1)

depicts, we start by providing a challenge-response set (which

may originate from either PyPUF’s challenge generator or may

come from actual hardware runs) as input. We divide this set into

training and validation sets, with the latter never being used in

COMPUTE_POPULATION_FITNESS at any point in the run of the al-

gorithm.

The next important function in the algorithm is the STEP func-
tion, which is responsible tomove the population towards the global

optimum. We implement the STEP function by a round-robin upda-
tion scheme. For instance, if target_puf_arch is a 4 XOR PUF and

the size of challenges is 64 bits, then we have 256 learnable delay

parameters 𝛿 = {𝛿1, 𝛿2, 𝛿3, 𝛿4, ..., 𝛿256}. For one GENERATION, STEP
will randomly pop one parameter 𝛿𝑖 from this list, and add a normal

noise N(0, 1
4
). Further generations will repeat this process, but

on the parameter set 𝛿
′
= {𝛿1, 𝛿2, 𝛿3, 𝛿4, ..., 𝛿𝑖−1, 𝛿𝑖+1 ..., 𝛿256}. This

strategy allows all delay parameters of 𝛿 to get an equal chance

at evolution. Next important hyper-parameter is le_parameter
that controls landscape evolution (c.f. Sec 4.2.1). Too low value of

le_parameterwill change (𝐶, 𝑅) too fast for the algorithm to learn

anything useful. And too high a value of le_parameter risks the
population getting caught in a local optimum. Through empirical

10

Modelling Delay-based Physically Unclonable Functions through Particle Swarm Optimization

Table 1: Experimental results for different PUF architectures from simulations on PyPUF. Here 𝐾 = 10
3 and𝑀 = 10

6. The table
captures three different independent experiments.

PUF arch Train Time taken Run 1 Acc. #generations Run 2 Acc. #generations Run 3 Acc. #generations

CRPs Time taken (Run 1) (Run 2) (Run 3)

APUF 5K ∼ 15 min. 99.13 % 363 98.86 % 462 99.36 % 638

2 XOR 30K ∼ 1 hour 97.81 % 2043 97.13 % 2714 98.05 % 1953

3 XOR 30K ∼ 3 hours 98.38 % 8953 97.42 % 9373 96.63 % 8737

4 XOR 100K ∼ 8 hours 94.50 % 17213 94.62 % 17742 96.37 % 18253

5 XOR 100K ∼ 8 hours 98.21 % 16843 99.42 % 18935 95.83 % 14948

6 XOR 300K ∼ 17 hours 74.38 % 3736 71.52 % 4828 76.42 % 5836

8 XOR 200K ∼ 1.5 days 92.61 % 24253 89.63 % 27284 94.61 % 28352

10 XOR 2M ∼ 2 days 76.22 % 2575 68.35 % 4156 71.25 % 5831

13 XOR 2M ∼ 2 days 78.10 % 2118 72.52 % 2418 75.35 % 2527

15 XOR 2M ∼ 2 days 77.13 % 1898 75.12 % 2073 74.72 % 2462

20 XOR 2M ∼ 2 days 78.80 % 1548 79.71 % 1824 80.42 % 1743

3-3 IPUF 500K ∼ 4 hours 94.27 % 10057 91.42 % 9734 97.21 % 13152

1 LP-PUF 50K ∼ 6 hours 97.42 % 9935 96.62 % 12157 98.24 % 9731

2 LP-PUF 100K ∼ 5 hours 74.36 % 3842 78.52 % 3616 76.53 % 5623

Table 2: Results of the downgrade attack. A 𝑥 → 𝑦 entry means the results for an experiment where a PUF architecture 𝑥 was
modelled with architecture 𝑦 (downgrade attack). Here, 𝐾 = 10

3 and𝑀 = 10
6.

PUF arch Train Time taken Run 1 Acc. #generations Run 2 Acc. #generations Run 3 Acc. #generations

CRPs Time taken (Run 1) (Run 2) (Run 3)

2 XOR→ 1 XOR 50K ∼ 6 hours 78.42 % 7630 73.25 % 7261 75.45 % 7541

1 LP-PUF→ APUF 50K ∼ 3 hours 75.97 % 8701 69.47 % 8159 73.72 % 8562

2 LP-PUF→ 2 XOR 100K ∼ 9 hours 82.74 % 2767 81.35 % 2525 84.25 % 2953

4 LP-PUF→ 4 XOR 2M ∼ 3 days 66.03 % 29284 59.21 % 27361 63.74 % 31527

evidence, we placed the value of this parameter’s value at 50 gener-

ations. That is, if the algorithm fails to find a new solution for 50

consecutive generations, we invoke landscape evolution and give

new paths to the global optimum by changing (𝐶, 𝑅).

Simulations on PyPUF. For simulation of underlying PUFs, we

used PyPUF [36] (which is a python based package for analysis

of PUFs). Our implementation is thus written to be compatible

with Python3. Each experiment was spread across 4 physical cores

through Python’s multiprocessing.Pool. Rest of the implementa-

tion has no dependence on any high-level evolutionary algorithm

Python3 package. All our experiments were conducted on Intel(R)

Xeon(R) Gold 6226 CPU @ 2.70 GHz with 96 cores, 2 threads per

core, 12 cores per socket and 256𝐺𝐵 DRAM.

Tab. 1 summarizes our results on PyPUF simulations of actual

PUF architectures, while Tab. 2 summarizes the results of down-

grade attacks. Each experiment’s accuracy is reported on a test set

of 1 million challenge-response pairs from the target PUF. Note that

this test set is newly sampled every time CalyPSO finds a new fittest

member in the population; the table captures the latest captured

accuracy. This allows a better evaluation of CalyPSO’s convergence
since a newly sampled test set prevents an overly optimistic view

of CalyPSO’s ability because of a fixed test set.

One point to note is that in all cases, the simulations were noise-

less. This means all PUF instances created by PyPUF had 100% reli-

ability and 50% uniqueness/uniformity. This is because we wanted

to evaluate CalyPSO’s ability without having any aid from external

sources. For example, in the case of noisy simulations, PyPUF might

generate target PUF instances having a significant deviation from

50% uniformity, making it easier to model

Validations on hardware data. . We also performed validations

of our approach on hardware data, collected from both in-house

constructions of PUFs. In addition to that, our in-house PUF con-

structions involved recreating a 4 XOR PUF in four instances on

four different Nexys 4 DDR boards. The challenges were randomly

sampled from within PyPUF and fed to each Nexys board in turn.

This process was repeated 15 times, and the final response set was

generated from the temporal majority voting over all measurements.

The metrics of the created hardware are summarized in Tab. 3. As

evident, all Nexys instances are behaving like PUFs. Our valida-

tions on challenge-response data from these hardware boards as

well as with publicly available PUF datasets [19] correlate with the

successful convergence of our algorithm (c.f. Tab. 1).

On average, we observed accuracy as high as 97.43% in, on aver-

age, 3000 generations. Note that this convergence is much faster

than the convergence of 4-XOR PUF sampled from PyPUF. This is
expected. All PyPUF simulations are overly idealistic. For noise-

less simulations, the reliability value reported by PyPUF is 100 %,

while uniqueness and uniformity are almost 50%. We also validated

CalyPSO’s convergence on publicly available hardware datasets

[19, 26]. The results for the same are summarized in Tab. 4.

11

Nimish Mishra, Kuheli Pratihar, Anirban Chakraborty, and Debdeep Mukhopadhyay

Table 3: Performance metrics of in-house generated 4-XOR
PUF hardware used to validate practicality of our algorithm’s
convergence. The number of CRPs is same as considered in
Tab. 1.

Instance Uniformity Uniqueness Reliability Accuracy

1 50.332 % 89.15 % 93.13 %

2 49.798 % 50.13 % 87.79 % 95.12 %

3 50.814 % 89.43 % 92.35 %

4 49.946 % 88.90 % 90.13 %

Table 4: Performance metrics of publicly available hardware
data from [19, 26].

PUF arch Accuracy #generations Time taken

1-XOR 96.13 % 215 ∼ 24 mins

2-XOR 93.63 % 1475 ∼ 42 mins

3-XOR 94.13 % 4739 ∼ 1 hour

4-XOR 93.85 % 15396 ∼ 4 hours

5-XOR 89.41 % 14262 ∼ 6 hours

8 COMPARISONWITH STATE-OF-THE-ART
ATTACKS

In Tab. 5, we compare the PUF modelling accuracy and required

number of training challenge-response pairs (CRPs) for our pro-

posed attack with existing neural networks (NNs) and reliability

based attacks. It can be seen that our amoebic swarm optimiza-

tion attack strategy requires a lower number of CRPs to perform

a successful attack in contrast to reliability based attack requiring

multiple measurements and NN attack striving to learn all the PUF

representational parameters. Therefore, our proposed approach

can be applied for approximating the delay parameters even on

higher complexity XOR-PUFs with 𝑘 > 11, which hasn’t been

demonstrated before in the literature. Furthermore, we also success-

fully attack (3-3) I-PUFs despite its increased non-linearity with

respect to (1-4) I-PUF which have been demonstrated to break using

reliability attacks [2, 31]. One must note that we do not use the

PUF reliability information in our attacks and yet achieve a high

modelling accuracy.

Lastly, in regard to the much coveted LP-PUF
2
construction

that claims to have high security [34], we see that our proposed

downgrade attack strategy obtains an accuracy of 75.97%, 82.74%

and 66.03% for 1, 2 and 4 LP-PUF construction respectively. This

is due to the fact that our attack strategy successfully nullifies the

impact of input transformation in the case of LP-PUFs and thereby

achieves better than random prediction for LP-PUFs.

9 IMPLICATION OF THE RESULTS AND
FUTURE OF PUFS

The analysis in the paper shows very powerful tools which can

annihilate the present day delay based PUFs by modeling the chal-

lenge response behaviors of the known designs. The work also

brings in evolutionary algorithms as a powerful attack vector, at

2
It is to be noted that LP-PUFs are secure against the recently proposed cryptanalytic

attack strategies [13] due to the hardware derived randomness induced in the challenge

transformation). Therefore, such techniques do not apply to LP-PUF directly.

Table 5: Comparison Table for Modelling Accuracy across
several PUF designs

Accuracy (%) CRPs (×1000)
Attack Type NN Reliability Proposed NN Reliability Proposed

[34, 37] [2, 31] [34, 37] [2, 31]

APUF 99.9 98.3 99.36 18.0.5 160 5

k=4 97 90 96.37 150 120 100

k=5 97.3 - 99.42 200 - 100

k=6 97.5 85 76.42 2000 240 300

XOR-APUF k=8 95.5 82 94.61 600 360 200

k=10 97.9 78 76.22 119000 1200 2000

k=13 - - 78.10 - - 2000

k=15 - - 77.13 - - 2000

k=20 - - 80.42 - - 2000

I-PUF (3-3) - - 97.21 - - 500

(1-4) - 93 - - 160 -

k=1 - - 75.97 - - 50

LP-PUF k=2 80 - 84.25 500 - 100

k=4 - - 66.03 - - 2000

par and in fact much stronger than conventional machine learning

based attacks. The fact that 20-XOR PUFs and the recently proposed

LP-PUFs can be modeled using these methods raise the question:

How should we design the next generation delay PUFs? A prudent

approach would be to study the information acquisition done in the

evolutionary learning process and develop PUF instances which

ensure that the fitness of the evolution does not grow beyond a

threshold [8]. The work also motivates and in fact compels to search

for compositions of PUFs which are not closed in its set. This would

imply that when two PUFs are composed together the resultant

PUF would never realize Boolean mappings which would belong

to the set of Boolean functions realized by the individual PUFs.

Such kinds of questions have been addressed in the literature of

block ciphers [5, 23], while defining compositions, we need to read-

dress them in the literature of PUFs intended to be resilient against

modeling. We leave that as exciting future directions of research.

10 CONCLUSION AND FUTURE DIRECTIONS

In this work, we presented a new perspective of modelling delay-

based Physically Unclonable Functions (or PUFs). Instead of learn-

ing the challenge-response functional mapping as machine learning

does, we formulated the problem of modelling a PUF by estimating

the individual delay parameters belonging to the PUF. We ana-

lyzed the textbook evolutionary algorithms and established failure

probabilities for textbook genetic algorithms. Consequently, we

developed a novel variant of Particle Swarm Optimization suited

to the context of PUFs. Through this algorithm, we were able to

attack higher order 𝑘-XOR PUFs (as high as 20-XOR PUF) as well as

LP-PUF instances (on which no prior attack has been reported). Ad-

ditionally, we also provide a new class of attacks wherein we allow

cross-architectural modelling of target PUF. We give mathematical

proofs of two kinds of downgrade attacks: 1○ reducing the security

of a 𝑘-XOR PUF to a (𝑘 − 1)-XOR PUF, and 2○ input transformation

bypass attack wherein we entirely bypass learnability of the input

transformation and target the underlying PUF itself. To the best of

our knowledge, this work is the first of its kind to model delay-based
PUFs in this particular way, and propose a new class of modelling
attacks on delay-based PUFs.

So far, this particular attack vector focuses sorely on delay-based

PUFs. There are other classes of PUFs like optical PUFs and weak

12

Modelling Delay-based Physically Unclonable Functions through Particle Swarm Optimization

PUFs wherein the response of input challenge is not typically ex-

posed. Moreover, a precise mathematical modelling for such PUFs

is usually not created. An interesting direction of future work shall

be to extend the current attack vector on delay-based PUFs onto

other kinds of PUFs.

REFERENCES
[1] Thomas Bäck and Hans-Paul Schwefel. 1993. An overview of evolutionary

algorithms for parameter optimization. Evolutionary computation 1, 1 (1993),

1–23.

[2] Georg T Becker. 2015. The gap between promise and reality: On the insecurity

of XOR arbiter PUFs. In International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 535–555.

[3] Christoph Böhm,MaximilianHofer, andWolfgang Pribyl. 2011. Amicrocontroller

SRAM-PUF. In 2011 5th International Conference on Network and System Security.
269–273. https://doi.org/10.1109/ICNSS.2011.6060013

[4] Qingqing Chen, György Csaba, Paolo Lugli, Ulf Schlichtmann, and Ulrich

Rührmair. 2011. The bistable ring PUF: A new architecture for strong physical un-

clonable functions. In 2011 IEEE International Symposium on Hardware-Oriented
Security and Trust. IEEE, 134–141.

[5] Joan Daemen and Vincent Rijmen. 2002. The design of Rijndael. Vol. 2. Springer.
[6] Jeroen Delvaux and Ingrid Verbauwhede. 2013. Side channel modeling attacks

on 65nm arbiter PUFs exploiting CMOS device noise. In 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 137–142.

[7] Stephanie Forrest. 1996. Genetic algorithms. ACM Computing Surveys (CSUR)
28, 1 (1996), 77–80.

[8] Stephanie Forrest and Melanie Mitchell. 1993. What makes a problem hard for

a genetic algorithm? Some anomalous results and their explanation. Machine
Learning 13, 2 (1993), 285–319.

[9] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. 2002. Controlled physical

random functions. In 18th Annual Computer Security Applications Conference,
2002. Proceedings. 149–160. https://doi.org/10.1109/CSAC.2002.1176287

[10] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten Van Dijk, and Srinivas De-

vadas. 2004. Identification and authentication of integrated circuits. Concurrency
and Computation: Practice and Experience 16, 11 (2004), 1077–1098.

[11] Boyapally Harishma, Paulson Mathew, Sikhar Patranabis, Urbi Chatterjee,

Umang Agarwal, Manu Maheshwari, Soumyajit Dey, and Debdeep Mukhopad-

hyay. 2020. Safe is the new smart: PUF-based authentication for loadmodification-

resistant smart meters. IEEE Transactions on Dependable and Secure Computing
19, 1 (2020), 663–680.

[12] Hector Hung and Vladislav Adzic. 2006. Monte carlo simulation of device

variations and mismatch in analog integrated circuits. Proc. NCUR 2006 (2006),
1–8.

[13] Liliya Kraleva,MohammadMahzoun, Raluca Posteuca, Dilara Toprakhisar, Tomer

Ashur, and Ingrid Verbauwhede. 2022. Cryptanalysis of Strong Physically Un-

clonable Functions. IEEE Open Journal of the Solid-State Circuits Society (2022).

[14] Raghavan Kumar and Wayne Burleson. 2015. Side-channel assisted modeling

attacks on feed-forward arbiter PUFs using silicon data. In InternationalWorkshop
on Radio Frequency Identification: Security and Privacy Issues. Springer, 53–67.

[15] Abhranil Maiti, Jeff Casarona, Luke McHale, and Patrick Schaumont. 2010. A

large scale characterization of RO-PUF. In 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST). IEEE, 94–99.

[16] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. 2010. FPGA PUF

using programmable delay lines. In 2010 IEEE International Workshop on Infor-
mation Forensics and Security. 1–6. https://doi.org/10.1109/WIFS.2010.5711471

[17] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. 2008. Light-

weight secure PUFs. In 2008 IEEE/ACM International Conference on Computer-
Aided Design. 670–673. https://doi.org/10.1109/ICCAD.2008.4681648

[18] DebdeepMukhopadhyay and Rajat Subhra Chakraborty. 2014. Hardware security:
design, threats, and safeguards. CRC Press.

[19] Khalid T Mursi, Bipana Thapaliya, Yu Zhuang, Ahmad O Aseeri, and Mo-

hammed Saeed Alkatheiri. 2020. A fast deep learning method for security

vulnerability study of XOR PUFs. Electronics 9, 10 (2020), 1715.
[20] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood, Ulrich

Rührmair, and Marten van Dijk. 2018. The interpose PUF: Secure PUF design

against state-of-the-art machine learning attacks. Cryptology ePrint Archive
(2018).

[21] Sikhar Patranabis and Debdeep Mukhopadhyay. 2018. Fault tolerant architectures
for cryptography and hardware security. Springer.

[22] Alain Pétrowski and Sana Ben-Hamida. 2017. Evolutionary algorithms. John
Wiley & Sons.

[23] Josef Pieprzyk, Thomas Hardjono, and Jennifer Seberry. 2013. Fundamentals of
computer security. Springer Science & Business Media.

[24] Riccardo Poli, James Kennedy, and Tim Blackwell. 2007. Particle swarm opti-

mization. Swarm intelligence 1, 1 (2007), 33–57.

[25] Kuheli Pratihar, Urbi Chatterjee, Manaar Alam, Rajat Subhra Chakraborty, and

Debdeep Mukhopadhyay. 2022. Birds of the Same Feather Flock Together: A

Dual-Mode Circuit Candidate for Strong PUF-TRNG Functionalities. IEEE Trans.
Comput. (2022), 1–14. https://doi.org/10.1109/TC.2022.3218986

[26] pyPUF. [n. d.]. pyPUF data. https://pypuf.readthedocs.io/en/latest/data/datasets.

html

[27] Vladimir Rožić, Bohan Yang, Jo Vliegen, Nele Mentens, and Ingrid Verbauwhede.

2017. The Monte Carlo PUF. In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). 1–6. https://doi.org/10.23919/FPL.

2017.8056780

[28] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and

Jürgen Schmidhuber. 2010. Modeling attacks on physical unclonable functions.

In Proceedings of the 17th ACM conference on Computer and communications
security. 237–249.

[29] Pranesh Santikellur, Aritra Bhattacharyay, and Rajat Subhra Chakraborty. 2019.

Deep learning based model building attacks on arbiter PUF compositions. Cryp-
tology ePrint Archive (2019).

[30] G Edward Suh and Srinivas Devadas. 2007. Physical unclonable functions for

device authentication and secret key generation. In 2007 44th ACM/IEEE Design
Automation Conference. IEEE, 9–14.

[31] Johannes Tobisch, Anita Aghaie, and Georg T Becker. 2021. Combining Opti-

mization Objectives: New Modeling Attacks on Strong PUFs. IACR Transactions
on Cryptographic Hardware and Embedded Systems (2021), 357–389.

[32] Arunkumar Vijayakumar, Vinay C Patil, Charles B Prado, and Sandip Kundu.

2016. Machine learning resistant strong PUF: Possible or a pipe dream?. In 2016
IEEE international symposium on hardware oriented security and trust (HOST).
IEEE, 19–24.

[33] Darrell Whitley. 2001. An overview of evolutionary algorithms: practical issues

and common pitfalls. Information and software technology 43, 14 (2001), 817–831.

[34] Nils Wisiol. 2021. Towards Attack Resilient Arbiter PUF-Based Strong PUFs.

Cryptology ePrint Archive (2021).
[35] Nils Wisiol, Christoph Graebnitz, Marian Margraf, Manuel Oswald, Tudor AA

Soroceanu, and Benjamin Zengin. 2017. Why attackers lose: Design and security

analysis of arbitrarily large XOR arbiter PUFs. Cryptology ePrint Archive (2017).
[36] Nils Wisiol, Christoph Gräbnitz, Christopher Mühl, Benjamin Zengin, Tudor

Soroceanu, Niklas Pirnay, Khalid T. Mursi, and Adomas Baliuka. 2021. pypuf:
Cryptanalysis of Physically Unclonable Functions. https://doi.org/10.5281/zenodo.

3901410

[37] NilsWisiol, Bipana Thapaliya, Khalid TMursi, Jean-Pierre Seifert, and Yu Zhuang.

2022. Neural network modeling attacks on arbiter-PUF-based designs. IEEE
Transactions on Information Forensics and Security 17 (2022), 2719–2731.

[38] Kan Xiao, Md Tauhidur Rahman, Domenic Forte, Yu Huang, Mei Su, and Mo-

hammad Tehranipoor. 2014. Bit selection algorithm suitable for high-volume

production of SRAM-PUF. In 2014 IEEE international symposium on hardware-
oriented security and trust (HOST). IEEE, 101–106.

[39] Xinjie Yu and Mitsuo Gen. 2010. Introduction to evolutionary algorithms. Springer
Science & Business Media.

13

https://doi.org/10.1109/ICNSS.2011.6060013
https://doi.org/10.1109/CSAC.2002.1176287
https://doi.org/10.1109/WIFS.2010.5711471
https://doi.org/10.1109/ICCAD.2008.4681648
https://doi.org/10.1109/TC.2022.3218986
https://pypuf.readthedocs.io/en/latest/data/datasets.html
https://pypuf.readthedocs.io/en/latest/data/datasets.html
https://doi.org/10.23919/FPL.2017.8056780
https://doi.org/10.23919/FPL.2017.8056780
https://doi.org/10.5281/zenodo.3901410
https://doi.org/10.5281/zenodo.3901410

	Abstract
	1 Introduction
	1.1 Physically Unclonable Functions
	1.2 Modelling attacks on PUFs
	1.3 Defences against ML attacks on PUFs
	1.4 Motivation
	1.5 Contributions

	2 Preliminaries
	2.1 Arbiter PUF and its XOR composition
	2.2 LP-PUF
	2.3 Modelling and reliability attacks
	2.4 Evolutionary algorithms

	3 Evolutionary Search (ES) strategy
	3.1 Failures of prior ES attacks on PUFs

	4 Amoebic Swarm Optimization
	4.1 Algorithm design intuition
	4.2 Algorithm design decisions
	4.3 Algorithm description

	5 Downgrade attack: Reducing Original Security Guarantees
	5.1 Degrees of freedom reduction attack
	5.2 Input transformation bypass attack

	6 Optimization by majority voting
	7 Experimental results and analysis
	8 Comparison with State-of-the-art attacks
	9 Implication of the results and Future of PUFs
	10 Conclusion and Future Directions
	References

