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Abstract

We introduce the notion of a quantum trapdoor function. This is an efficiently computable unitary
that takes as input a “public” quantum state and a classical string x, and outputs a quantum state.
This map is such that (i) it is hard to invert, in the sense that it is hard to recover x given the output
state (and many copies of the public state), and (ii) there is a classical trapdoor that allows efficient
inversion. We show that a quantum trapdoor function can be constructed from any quantum-secure
one-way function. A direct consequence of this result is that, assuming just the existence of quantum-
secure one-way functions, there exist: (i) a public-key encryption scheme with a quantum public key, and
(ii) a two-message key-exchange protocol, assuming an appropriate notion of a quantum authenticated
channel.
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1 Introduction
One-way functions and trapdoor functions are two of the most well-studied cryptographic primitives. The
former are functions that are easy to compute but hard to invert on average. The latter satisfy the same
property with the additional feature that there exists some special information, a “trapdoor”, that enables
efficient inversion, but without which inversion remains hard.

In classical cryptography, there is a marked dividing line between one-way functions and trapdoor func-
tions. One-way functions are equivalent to so-called “minicrypt” primitives, e.g. pseudorandom generators,
pseudorandom functions, commitments and private-key encryption. On the other hand, (injective) trap-
door functions imply public-key cryptosystems [Yao82, GM82]. This dividing line can be made formal: one
can provably show that injective trapdoor functions cannot be constructed from black-box use of one-way
functions [IR89, BMG09].

In this work, we consider the question of whether the dividing line between one-way and trapdoor
functions also stands in a quantum world, i.e. a world where parties have access to quantum computation
and communication. Concretely, we ask:

Can we achieve some version of trapdoor functions and public-key encryption
from one-way functions, in a quantum world?

1.1 Our results
We provide a partial positive answer to the question above. Our first contribution is to introduce the notion
of a quantum trapdoor function (QTF). This is similar to a classical trapdoor function, but differs in two
crucial ways:

• The generation procedure outputs a classical trapdoor tr and a quantum evaluation key |eval⟩.

• Evaluation takes as input a classical string x, and the evaluation key |eval⟩, and outputs a quantum
state |ψx⟩.

For security, we require that (without the trapdoor) it should be hard to recover x from |ψx⟩, even given
access to polynomially many copies of |eval⟩. On the other hand, given the trapdoor tr, inversion is easy.
We additionally restrict our attention to the case where (the same) |eval⟩ can be efficiently generated given
the trapdoor tr. The reason for this is that we think of |eval⟩ as being a “publicly” available resource: anyone
can request copies of |eval⟩ from the party who has the trapdoor.

Our main result is the following.

Theorem 1 (informal). Quantum trapdoor functions exist, assuming the existence of quantum-secure one-
way functions.

Our construction is remarkably simple. It uses as a building block a construction of pseudorandom
states from one-way functions proposed by Ji, Liu, and Song [JLS18], and later proven secure by Brakerski
and Shmueli [BS19]. To achieve the trapdoor property we leverage the particular structure of this PRS
construction. To prove security, we invoke the PRS property in order to reduce an adversary that inverts
our quantum trapdoor function to one that succeeds at a certain information-theoretic “state-discrimination”
task involving Haar random states.

In classical cryptography, the most common application of trapdoor functions is to construct public-key
encryption. Any injective trapdoor function implies a public-key encryption scheme, where the secret key
is the trapdoor, and the public key is the (description of the) tradpoor function f itself. In particular,
encryption of a message m ∈ {0, 1} takes the form (f(x), hc(x) ⊕ m), where x is sampled uniformly at
random, and hc(x) is a hardcore bit of x, e.g. the one obtained via Goldreich-Levin [GL89]. A quantum
trapdoor function yields a public-key encryption scheme in an analogous way, except that the “public key”
is now the evaluation key |eval⟩, and hence is a quantum state. Thus, the following is a direct consequence
of Theorem 1.

Corollary 1 (informal). Assuming the existence of quantum-secure one-way functions, there exists a public-
key encryption scheme with a quantum public key.
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While a quantum state as public key is most likely impractical, and in some sense against the spirit of
public-key encryption (where the point is that a party’s public-key should be readily available to any party
that wishes to send them an encrypted message), we still find the conclusion significant from a conceptual
standpoint: the quantum public key is still “public” in the sense that the scheme is secure even if an adversary
obtains an arbitrary (polynomial) number of copies of the public key.

Our result suggests that there is some subtlety in defining what it means for quantum information to
be “public”: while in the classical setting having access to a single copy of a string is trivially equivalent to
knowing a circuit that generates the string, in the quantum setting, having access to many copies of a state
is crucially different (in the computational setting) from knowing a circuit that generates the state.

Corollary 1 implies the following simple two-message key-exchange protocol: Alice samples a secret key
and a public key, and sends the public key to Bob; then, Bob sends back an encryption of a uniformly
sampled key, which Alice is able to decrypt. This protocol is secure in a model where the quantum channel
used by Alice and Bob is authenticated in the following sense: Alice and Bob can trust the origin of the
quantum message that they receive, and that it has not been tampered with, but the adversary obtains a
copy of the same quantum message. One can think of this model as capturing a scenario where Alice is
broadcasting many copies of the same state (which she can efficiently prepare) to a network of parties which
includes Bob and potentially also an adversary. We have the following.

Corollary 2 (informal). Assuming the existence of quantum-secure one-way functions, and of a quantum
authenticated channel as described above, there exists a two-message key-exchange protocol.

To place this result into context, in the analogous classical setting with authenticated channels, there is
a well-known two-message key-exchange protocol based on the hardness of Decision Diffie-Hellman (DDH)
[DH76], but one can provably show that key-exchange, with any number of rounds, cannot be realized from
black-box use of one-way functions [IR89]. On the other hand, if one allows for more rounds of communication
in the quantum setting, key exchange can of course be realized unconditionally via the BB84 protocol (where
classical authenticated channels suffice) [BB84]. We refer to Section 5.2 for a more detailed discussion about
Corollary 2, and the need for authenticated channels.

1.2 Related work
Our results fit into a broader line of work that aims to understand how the landscape of cryptographic
primitives changes in the presence of quantum information. The most well-known result in this direction is
that key-exchange (or key-distribution) can be realized unconditionally using quantum communication, via
the BB84 protocol [BB84]. However, this is somewhat of a standalone result, and does not directly imply
that any of the other primitives in “cryptomania”, e.g. trapdoor functions, public-key encryption, oblivious
transfer and multiparty-computation, can be realized unconditionally or even from weaker assumptions than
what is known classically. In a more recent development, two concurrent works [BCKM21, GLSV21] show
that oblivious transfer, and hence multiparty computation, can be realized from one-way functions. One can
think of the constructions from these two works as making a more sophisticated use of the original ideas
from BB84 in order to instantiate a template for oblivious transfer proposed in [CK88].

Our work is the first to draw a connection between trapdoor functions and one-way functions in the
quantum setting, and it does so by leveraging a simple novel idea based on the use of pseudorandom states
(PRS). While in our work we only make use of the structure of a particular construction of PRSs from
one-way functions, PRSs have recently received increasing attention more generally. They have been a
central object of study in a related line of work that explores the possibility of basing cryptography on the
computational hardness of genuinely quantum problems (i.e. problems with quantum inputs and/or quantum
outputs) [AQY22, BCQ22, MY22]. The existence of PRSs is an example of a computational assumption,
involving a quantum problem, that is potentially weaker than the existence of one-way functions. While
PRSs can be constructed from one-way functions, the converse is not known to be true: there is in fact
evidence to the contrary, namely an oracle with respect to which PRSs exist, but one-way functions do not
[Kre21, KQST22].

1.3 Open questions
The main open questions left open by our work are:
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• Can we build a quantum trapdoor function with a classical evaluation key from quantum-secure one-
way functions? This would imply a public-key encryption scheme with a classical public key (and
quantum ciphertexts) from one-way functions. Note that the current definition of quantum trapdoor
function asks for a classical trapdoor. Does relaxing this requirement to allow for a quantum secret key
help achieve a scheme with a classical public key? If not, can we prove that this is not possible if one
makes black-box use of the one-way function? The current classical black-box separation of public-key
encryption and one-way functions does not seem to directly apply as it relies on the ciphertext being
classical.

• In the converse direction, does the existence of a quantum trapdoor function (any of the variants),
imply the existence of classical one-way function? While in the classical setting trapdoor functions are
a special case of one-way functions, it is unclear what the answer to the above question is. It seems
plausible that there exists an oracle relative to which quantum trapdoor functions exist, but classical
one-way functions do not. An intermediate step in this direction would be to exhibit an oracle relative
to which quantum trapdoor functions exists, but classical trapdoor functions do not.

2 Technical Overview
In this overview, we informally describe the construction of a quantum trapdoor function from one-way
functions, and discuss its security. As mentioned, this construction uses as a building block a construction
of PRSs from one-way functions due to Ji, Liu, and Song [JLS18], and later proven secure by Brakerski and
Shmueli [BS19].

2.1 Pseudorandom States from one-way functions
First, recall what a PRS is. A PRS can be thought of as a quantum analogue of a pseudorandom generator
(PRG). A PRS takes as input a classical seed s ∈ {0, 1}n, where n is a security parameter, and outputs a state
|PRS(s)⟩. We ask that the PRS satisfies the following property: it is computationally hard to distinguish
between polynomially many copies of |PRS(s)⟩, for a uniformly random s, and polynomially many copies of
a state sampled from the Haar distribution. More precisely, for any quantum polynomial time A, and any
m = poly(n),∣∣∣Pr[A(|PRS(s)⟩⊗m) = 1 : s← {0, 1}n]− Pr[A(|ψ⟩⊗m) = 1 : |ψ⟩ ← Haar]

∣∣∣ = negl(n) .

The following is a construction of a PRS from any (quantum-secure) one-way function. The construction
is simple (although the proof that it is secure is quite involved). Let PRF : K×X ← {0, 1} be a pseudorandom
function (PRF) with a one-bit output, where there is an implicit security parameter that we are omitting.
Then the PRS seed is a PRF key k, and

|PRS(k)⟩ = 1

|X |
∑
y∈X

(−1)PRF(k,y) |y⟩ .

Invoking the security of the PRF, we deduce thatm copies of |PRS(k)⟩ are computationally indistinguishable
from m copies of a state that is a uniform superposition with a uniformly random ±1 phase. Showing that
the latter is statistically indistinguishable from m copies of a Haar random state is quite involved, and is the
main technical contribution of [BS19]. A simpler proof of this was later given in [AGQY23].

Note that the state |PRS(k)⟩ can be generated efficiently by (i) preparing a uniform superposition over
the elements of X , (ii) initializing a second register in the state |−⟩, and (iii) computing PRF in superposition,
treating the second register as the output register.

2.2 Quantum trapdoor functions
As informally described earlier, a quantum trapdoor function (QTF) consists of the following quantum
polynomial time algorithms:
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(i) A generation procedure that outputs a classical trapdoor tr and a quantum evaluation key |eval⟩.
Additionally we ask that there be an efficient algorithm to generate (the same) |eval⟩ given tr.

(ii) An evaluation procedure that takes as input a string x, and |eval⟩, and outputs a quantum state |ψx⟩.

(iii) An inversion procedure that takes as input the trapdoor tr and a state |ψx⟩ and returns x.

For security, we require that, without knowing tr, it is hard to recover x given |ψx⟩ and an arbitrary
(polynomial) number of copies of |eval⟩.

Construction The simple idea behind our construction of a QTF is the following. Consider the PRS
construction described in Subsection 2.1. We will take the trapdoor of our QTF to be a PRF key k (uniformly
sampled), and the evaluation key to be |eval⟩ = |PRS(k)⟩. For concreteness, for security parameter n, take
the domain X of PRF to be {0, 1}n, so that |PRS(k)⟩ is an n-qubit state. Then, the evaluation of the QTF
on input x, and evaluation key |PRS(k)⟩, is

|ψx⟩ = Zx |PRS(k)⟩ = 1√
2n

∑
y∈{0,1}n

(−1)x·y+PRF(k,y) |y⟩ .

Here Zx denotes the n-qubit operator that applies Pauli Z to the i-th qubit or not based on the value of the
i-th bit xi.

To invert, i.e. to recover x given |ψx⟩ and the trapdoor k, simply “undo” the PRF phase, namely apply
the unitary GPRF(k) : |y⟩ 7→ (−1)PRF(k,y) |y⟩. The crucial observation is that GPRF(k) commutes with Zx.
Thus, the PRF phase can be undone “out of order”, and

GPRF(k) |ψx⟩ =
1√
2n

∑
y∈{0,1}n

(−1)x·y |y⟩ = H⊗n |x⟩ .

Finally, applying H⊗n returns x.

Security Recall that we wish to establish that, without the trapdoor, it is hard to recover x given |ψx⟩
and m copies of the evaluation key |eval⟩, for any m = poly. In the case of our construction, this means
that it should be hard to recover x from the state(

|Zx⟩ |PRS(k)⟩
)
⊗ |PRS(k)⟩⊗m .

We can think of this of a “state discrimination” task: given a (uniformly random) mixed state from the
ensemble {

Ek (Zx |PRS(k)⟩ ⟨PRS(k)|Zx)⊗ (|PRS(k)⟩ ⟨PRS(k)|)⊗m
}
x∈{0,1}n

, (1)

the task is to guess x. We wish to argue that the probability of guessing x is negligible.
Now, suppose that there is an adversary A that breaks security of our QTF construction, and thus

succeeds at the above discrimination task with non-negligible probability. Then, by invoking the security of
the PRS, it must be the case the same adversary A also succeeds with non-negligible probability when we
replace |PRS(k)⟩ with a Haar random state (otherwise we can construct an adversary that has non-negligible
advantage at distinguishing copies of the PRS state from copies of a Haar random state). Thus, A must
also succeed with non-negligible probability at the following discrimination task: given a uniformly random
mixed state from the ensemble{

E|ψ⟩←Haar(2n) (Z
x |ψ⟩ ⟨ψ|Zx)⊗ (|ψ⟩ ⟨ψ|)⊗m

}
x∈{0,1}n

, (2)

the task is to guess x (where |ψ⟩ ← Haar(2n) denotes sampling from the Haar distribution on n-qubit states).
We get a contradiction by showing that the optimal success probability at the state discrimination task

in (2) is exponentially small when m = poly(n) (see Lemma 5 for the precise scaling). At first, this might
seem slightly surprising because the “classical analogue” of this discrimination task is easy, and can be solved
perfectly. The classical analogue is distinguishing between distributions over strings given a single sample.
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Thinking of the operator Zx as “xoring x” (in the Hadamard basis), and realizing that copies of a string
are “for free” classically, a natural classical analogue of the state discrimination task in (2) is: given a single
sample drawn from one of the distributions in the following ensemble (where x is picked uniformly at random)

{(ψ ⊕ x, ψ) : ψ ← {0, 1}n}x∈{0,1}n , (3)

guess x. Clearly one can recover x by taking the xor of ϕ and ϕ⊕ x. In contrast, this intuition fails for the
state discrimination task in (2): even though one has access to polynomially many copies of |ψ⟩, it is unclear
how one can “compare” the first copy (to which Zx was applied) to the others in order to recover x. The
proof that recovering x can be done at most with exponentially small probability is somewhat involved, and
we refer to Section 4.3 for the details.

3 Preliminaries
For n ∈ N, we denote [n] = {1, . . . , n}. For a finite set X, we write x ← X to mean that x is sampled
uniformly at random from S.

We think of a quantum algorithm as a uniform family of quantum circuits. If the circuits in the family
are polynomial-sized then we say that the algorithm is quantum polynomial time, which we abbreviate as
QPT. We use the notation poly to denote an (unspecified) polynomially-bounded function.

3.1 Quantum information
We introduce some facts that we will use later on. For n ∈ N, denote by {|j⟩ : j ∈ [2n]} the standard basis
of the space of n qubits. Let Z be the Pauli Z operator. For s ∈ {0, 1}n, let Zs :=

⊗n
i=1 Z

si .

Lemma 1 (Pauli Z twirl). Let n,m ∈ N. For any |ψ⟩ ∈ (C2)⊗n ⊗ (C2)⊗m,

Es←{0,1}n(Zs ⊗ I) |ψ⟩ ⟨ψ| (Zs ⊗ I) =
∑
j∈[2n]

(|j⟩ ⟨j| ⊗ I) |ψ⟩ ⟨ψ| (|j⟩ ⟨j| ⊗ I) .

Proof. This follows from a straightforward calculation.

We will also make use of what is referred to as the “Pretty Good Measurement”. In a state discrimination
task, one receives a single copy of a (mixed) state ρx from an ensemble {ρx}x∈X , where X is some index set.
The goal is to correctly guess x, where usually x is sampled uniformly at random from X . Let σ :=

∑
x ρx.

Then, the “Pretty Good Measurement” (PGM) is the POVM {Mx}x∈X ∪{M⊥} where Mx = σ−
1
2 ρxσ

− 1
2 and

M⊥ = 1Ker(σ) is the projection onto the kernel of σ.1. While in general the PGM may not be the POVM
that gives the optimal success probability at the state discrimination task, the following lemma says that
the PGM is “pretty good”.

Lemma 2 (PGM is optimal up to quadratic loss). If p is the optimal success probability at a state discrim-
ination task, then the success probability of the PGM for the same task is at least p2.

3.2 Pseudorandom functions
We recall the notion of quantum-secure pseudorandom functions.

Definition 1 (Quantum-secure pseudorandom function). Let PRF = {PRFn}n∈N, PRFn : Kn × Xn → Yn
be an efficiently computable function, where Kn is referred to as the key space, Xn as the domain, and Yn
as the co-domain. We say that PRF is a quantum-secure pseudorandom function if for every (non-uniform)
QPT oracle algorithm A, there exists a negligible function negl such that, for all n ∈ N,∣∣∣ Pr

k←Kn

[APRF(k,·)(1n) = 1]− Pr
O←YX

[AO(1n) = 1]
∣∣∣ ≤ negl(n) .

Quantum-secure pseudorandom functions exist, assuming the existence of quantum-secure one-way func-
tions [Zha12].

1Equivalently, to get a POVM without an additional “⊥” outcome, the POVM element M⊥ can be summed to one of the
other POVM elements without affecting any of the outcome probabilities
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3.3 Quantum randomness and pseudorandomness
3.3.1 The Haar Measure on Quantum States

The Haar measure on a d-dimensional quantum state is the uniform (continuous) probability distribution
over d-dimensional quantum states i.e. the uniform distribution over unit vectors in Cd. It can be thought
of as the quantum analogue of a classical uniform distribution over strings.

For d,m ∈ N, we denote the density matrix obtained by sampling a state according to the Haar measure
on d-dimensional states, and outputting m copies of it, as

E|ψ⟩←Haar(d)
[
(|ψ⟩ ⟨ψ|)⊗m

]
. (4)

For a Hilbert space H, we sometimes also denote the Haar measure on states in H as Haar(H).
We refer to span{|ϕ⟩⊗m : |ϕ⟩ ∈ Cd} as the symmetric subspace of (Cd)⊗m. We will later make use of the

following characterization of the density matrix in (4). Let Πd,msym denote the orthogonal projector onto the
symmetric subspace of (Cd)⊗m. We have the following.

Lemma 3 ([Har13]). Let d,m ∈ N. Then,

E|ψ⟩←Haar(d)
[
(|ψ⟩ ⟨ψ|)⊗m

]
=

(
d+m− 1

m

)−1
Πd,msym .

We will also use the fact that the symmetric subspace has the following convenient basis. For d,m ∈ N,
define Id,m = {(t1, .., td) : t1, · · · , td ∈ N, t1 + · · ·+ td = m}. For a vector j⃗ = (j1, . . . , jm) ∈ [d]m, denote by
T (⃗j) its type, i.e. T (⃗j) is defined to be the vector in Id,m whose i-th entry is the number of times i appears
in the string (j1, . . . , jm). For t⃗ ∈ Id,m, define

s(⃗t) :=

(
m

t⃗

)− 1
2 ∑
j⃗:T (⃗j)=t⃗

|j1, . . . , jm⟩ ,

where
(
m
t⃗

)
= m!

t1!...td!
. The s(⃗t) vectors form an orthonormal basis of the symmetric subspace.

Lemma 4 ([Har13]). Let d,m ∈ N. Then,

span{|ϕ⟩⊗m : |ϕ⟩ ∈ Cd} = span{|s(⃗t)⟩ : t⃗ ∈ Id,m} .

3.3.2 Pseudorandom states

The notion of pseudorandom quantum states was introduced in [JLS18]. The following is a formal definition.

Definition 2 (Pseudorandom Quantum State (PRS)). A Pseudorandom Quantum State (PRS) is a pair
of QPT algorithms (GenKey,GenState) such that the following holds. There is a family of Hilbert spaces
{Hn}n∈N, and a family {Kn}n∈N of subsets of {0, 1}∗ such that:

• GenKey(1n)→ k: Takes as input a security parameter n, and outputs a key k ∈ Kn.

• GenState(k) → |PRS(k)⟩: Takes as input a key k ∈ Kn, for some n, and outputs a state in Hn. We
additionally require that the state on input k be unique, and we denote this as |PRS(k)⟩.

Moreover, the following holds. For any (non-uniform) QPT quantum algorithm A, and any m = poly, there
exists a negligible function negl such that, for all n ∈ N,∣∣∣∣ Pr

k←GenKey(1n)
[A
(
|PRS(k)⟩⊗m(n) )

= 1]− Pr
|ψ⟩←Haar(Hn)

[A
(
|ψ⟩⊗m(n) )

= 1]

∣∣∣∣ ≤ negl(n) .

A PRS can be constructed from any quantum-secure one-way function [JLS18]. Here we describe a
particularly simple construction of PRSs that was proposed, and conjectured to be secure, in [JLS18], and
later proven secure in [BS19].
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Construction 1 (PRS with binary phase [JLS18, BS19]). Let PRF = {PRFn}n∈N be a pseudorandom
function family, where PRFn : Kn × {0, 1}n → {0, 1}. Define (GenKey,GenState) as follows.

• GenKey(1n)→ k: Sample a PRF key k ← Kn. Output k.

• GenState(k)→ |PRS(k)⟩: On input k ∈ Kn, output |PRS(k)⟩ =
∑
y∈{0,1}n(−1)PRF(k,y) |y⟩.

Note that GenState can be implemented efficiently by initializing an ancilla qubit in the state |−⟩, and applying
the unitary that computes PRF(k, ·) into that qubit.

Theorem 2 ([BS19]). Construction 1 is a PRS.

4 Quantum trapdoor functions

4.1 Definition
Definition 3 (Quantum trapdoor function). A quantum trapdoor function (QTF) is a tuple of QPT algo-
rithms (Sample,Eval, Invert), where:

• GenTR(1n)→ tr: Takes as input a security parameter, and outputs a classical trapdoor tr.

• GenEV(tr)→ |eval⟩: Takes as input a trapdoor tr, and outputs a state |eval⟩. We require that there is
a unique |eval⟩ for each tr.

• Eval(|eval⟩ , x) → |ϕ⟩: Takes as input an evaluation key |eval⟩ and a classical string x, and outputs a
quantum state |ϕ⟩.

• Invert(tr, |ϕ⟩)→ x: Takes as input a trapdoor tr and a quantum state |ϕ⟩ and outputs a classical string
x.

These algorithms should satisfy the following:

(a) (Hard to invert) For any QPT algorithm A, for any m = poly, there exists a negligible function negl
such that, for all n ∈ N,

Pr
[
A
(
Eval(|eval⟩ , x), |eval⟩⊗m(n)

)
= x : tr ← GenTR(1n), |eval⟩ ← GenEV(tr), x← {0, 1}n

]
≤ negl(n) .

(b) (Trapdoor) For all n ∈ N,

Pr
[
Invert

(
tr,Eval(|eval⟩ , x)

)
= x : tr ← GenTR(1n), |eval⟩ ← GenEV(tr), x← {0, 1}n

]
= 1 .

Note that requirement (b) is implicitly imposing that, for any fixed evaluation key, the induced map
x→ |ψx⟩ is “injective”, in the sense that for any honestly generated |ψx⟩, there is a unique “inverse” x.

4.2 Construction
Theorem 3. A quantum trapdoor function exists, assuming the existence of any quantum-secure one-way
function.

We describe a construction of a quantum trapdoor function from a quantum-secure PRF. Let PRF =
{PRFn}n∈N be a quantum-secure PRF, where PRFn : Kn×{0, 1}n → {0, 1}. Let (PRS.GenKey,PRS.GenState)
be the PRS from construction 1, based on PRF.

For k ∈ Kn, let GPRF(k) be the unitary that, for y ∈ {0, 1}n acts as |y⟩ 7→ (−1)PRFn(k,y) |y⟩. From now
on, we will drop the subscript n in PRFn(k, y) for convenience.

Note that GPRF(k) can be implemented efficiently by initializing an ancilla qubit in the state |−⟩ and
applying the unitary that computes PRF(k, ·) into that qubit.

Construction 2. Define (GenTR,GenEV,Eval, Invert) as follows:

8



• GenTR(1n)→ tr: Sample a key k ← PRS.GenKey(1n). Set tr = k.

• GenEV(tr)→ |eval⟩: Set
|eval⟩ = PRS.GenState(k) = |PRS(k)⟩ .

• Eval(|eval⟩ , x)→ |ϕ⟩: Output |ϕ⟩ = Zx |eval⟩.

• Invert(tr, |ϕ⟩)→ x: Compute H⊗nGPRF(tr) |ϕ⟩, and measure in the standard basis. Output the outcome
x.

We show the following.

Theorem 4. Assuming PRF is a quantum-secure PRF, Construction 2 is a quantum trapdoor function.

Since a quantum-secure PRF can be built from any quantum-secure one-way function [Zha12], Theorem
4 implies Theorem 3. The rest of Section 4 is dedicated to proving Theorem 4.

The trapdoor property is straightforward to verify. Let tr be in the support of GenTR(1n), and let
|eval⟩ = GenEV(tr). Then, tr = k and |eval⟩ = |PRS(k)⟩, for some k in the support of PRS.GenKey(1n).
Then, for any x, we have

Invert(tr,Eval(|eval⟩ , x)) = H⊗nGPRF(k)Z
x |PRS(k)⟩ .

Notice that, by construction 1, |PRS(k)⟩ = GPRF(k)H
⊗n |0⟩⊗n. Then,

Invert(tr,Eval(|eval⟩ , x)) = H⊗nGPRF(k)Z
xGPRF(k)H

⊗n |0⟩⊗n .

Crucially, notice that Zx commutes with GPRF(k), since they are both diagonal in the standard basis, and
moreover notice that GPRF(k) is self-inverse. Thus, we have

Invert(tr,Eval(|eval⟩ , x)) = H⊗nZxH⊗n |0⟩⊗n = |x⟩ .

The crucial part of this calculation is that Zx commutes with GPRF(k), and thus that the PRF phase can
be “undone” even after the Zx phase is applied.

4.3 Security
In this subsection, we show that Construction 2 also satisfies property (a) from Definition 3, i.e. it is hard
to invert without knowing the trapdoor. This will conclude the proof of Theorem 4, and thus of Theorem 3.

Suppose for a contradiction that there exists a QPT algorithm A, a function m = poly, and a non-
negligible function non-negl such that, for all n ∈ N,

Pr
[
A
(
Eval(|eval⟩ , x), |eval⟩⊗m(n)

)
= x : tr ← GenTR(1n), |eval⟩ ← GenEV(tr), x← {0, 1}n

]
≥ non-negl(n) .

(5)
Using A, we will construct a distinguisher D that breaks the security of the underlying PRS. Let m be as in
Equation (5). D is defined as follows, where we omit the security parameter for ease of notation:

• On input |ψ⟩⊗m+1 (where |ψ⟩ is either sampled according to the PRS or the Haar random distribution),
sample x← {0, 1}n.

• Give (Zx ⊗ I⊗m) |ψ⟩⊗m+1 as input to A.

• Let x′ be A’s output. If x′ = x, guess that the input came from the PRS distribution. Otherwise,
guess that it came from the Haar distribution.

Denote by Pr[x′ = x| |ψ⟩ ← PRS] the probability that A’s guess x′ is equal to x, when |ψ⟩ is sampled from
the PRS distribution, and by Pr[x′ = x| |ψ⟩ ← Haar] the analogous probability when |ψ⟩ is sampled from
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the Haar distribution. Notice that in the case that |ψ⟩ is sampled from the PRS distribution, the input that
D provides to A is distributed exactly as in Equation (5). Thus, the probability that D guesses correctly is

Pr[x′ = x| |ψ⟩ ← PRS] · 1
2
+ Pr[x′ ̸= x| |ψ⟩ ← PRS] · 1

2
= non-negl(n) · 1

2
+ Pr[x′ ̸= x| |ψ⟩ ← Haar] · 1

2
. (6)

In particular, notice thatD’s distinguishing advantage is non-negligible if Pr[x′ = x| |ψ⟩ ← Haar] is negligible.
We will show that the latter is the case, which thus implies that the distinguisher D breaks the security of
the PRS.

The problem of guessing x, in the case where |ψ⟩ ← Haar, can be viewed as a “state discrimination”
problem. Then, the fact that Pr[x′ = x| |ψ⟩ ← Haar] is negligible is implied by the following more general
lemma, which says that the (information-theoretically) optimal probability of guessing x is exponentially
small (when m = poly(n)).

Lemma 5. Let n,m ∈ N be such that 2n > 2(m+ 1). Consider the ensemble of states:

{ρx}x∈{0,1}n =
{
E|ψ⟩←Haar(2n)[(Z

x ⊗ I⊗m)(|ψ⟩ ⟨ψ|)⊗m+1(Zx ⊗ I⊗m)]
}
x∈{0,1}n

Then, there is a constant C > 0, such that, for any POVM {Mx}x∈{0,1}n ,

Ex←{0,1}nTr[Mxρx] < C ·
(
m

2n
+
m7

23n

) 1
2

.

Since in our case m = poly(n), the bound in Lemma 5 is exponentially small in n, and hence
Pr[x′ = x| |ψ⟩ ← Haar] is exponentially small in n. This implies that the distinguisher D described above
breaks the security of the PRS, giving us a contradiction.

Thus, to conclude our proof of security, i.e. that Construction 2 satisfies property (a) from Definition 3,
we are left with proving Lemma 5.

Proof of Lemma 5. We consider the “Pretty Good Measurement” (PGM) for this discrimination task. We
show that the PGM achieves a guessing probability that is C ′ ·

(
m
2n + m6

22n

)
for some constant C ′ > 0. By

Lemma 2, this implies the desired bound of Lemma 5.
Let σ =

∑
x∈{0,1}n ρx, and let σ−1 be its pseudoinverse. The PGM for this discrimination task is

{Mx}x∈{0,1}n ∪ {M⊥} where Mx = σ−
1
2 ρxσ

− 1
2 and M⊥ = 1Ker(σ) is the projection onto the kernel of σ.

For ease of notation, let d = 2n. For N ∈ N, denote by Πd,Nsym the projector onto the symmetric subspace of
(Cd)⊗N .

Now, notice that

σ =
∑
x

(Zx ⊗ I)E|ψ⟩←Haar(d)[|ψ⟩ ⟨ψ|
⊗m+1

](Zx ⊗ I) (7)

=

(
d+m

m+ 1

)−1
·
∑

x∈{0,1}n
(Zx ⊗ I)Πd,m+1

sym (Zx ⊗ I) (8)

=

(
d+m

m+ 1

)−1
· d
∑
j∈[d]

(|j⟩ ⟨j| ⊗ I)Πd,m+1
sym (|j⟩ ⟨j| ⊗ I) , (9)

where the second equality is by Lemma 3, and the third equality is by Lemma 1.
Now, define σ̃ =

∑
j(|j⟩ ⟨j| ⊗ I)Πd,m+1

sym (|j⟩ ⟨j| ⊗ I), and let σ̃−1 be its pseudoinverse. Then, we have

σ−1 =

(
d+m

m+ 1

)
· 1
d
· σ̃−1 .

In order to compute σ̃−1, we take a closer look at σ̃ and write it in terms of an eigenbasis. To do so,
we first consider the convenient orthonormal basis for the symmetric subspace described in Subsection 3.3.1,
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which we recall here. For N ∈ N, define Id,N = {(t1, .., td) : t1, · · · , td ∈ N, t1 + · · ·+ td = N}. For a vector
j⃗ = (j1, . . . , jN ) ∈ [d]N , denote by T (⃗j) its type, i.e. T (⃗j) is defined to be the vector in Id,N whose i-th entry
is the number of times i appears in the string (j1, . . . , jN ). For t⃗ ∈ Id,N , define

s(⃗t) :=

(
N

t⃗

)− 1
2 ∑
j⃗:T (⃗j)=t⃗

|j1, . . . , jN ⟩ ,

where
(
N
t⃗

)
= N !

t1!...td!
. The content of Lemma 4 is that {|s(⃗t)⟩ : t⃗ ∈ Id,N} is an orthonormal basis for the

symmetric subspace of (Cd)⊗N . This implies that Πd,Nsym =
∑
t⃗∈Id,N |s(⃗t)⟩ ⟨s(⃗t)|.

Now, for j ∈ [d], r ∈ {0, . . . ,m}, let Tmj,r = {t⃗ ∈ Id,m : tj = r}. Moreover, for t⃗ = (t1, . . . , td) ∈ Id,m+1

with tj ≥ 1, define t⃗−j ∈ Id,m to be such that its i-th entry is

t′i :=

{
ti if i ̸= j

ti − 1 if i = j

In other words, t⃗−j is identical to t⃗ except that the j-th entry is reduced by 1 (and hence t⃗−j ∈ Id,m). Then,
notice that, for any t⃗ ∈ Id,m+1,

|s(⃗t)⟩ =
(
m+ 1

t⃗

)− 1
2 ∑
k∈[d]:tk≥1

|k⟩ ⊗
∑

j⃗∈[d]m:T (⃗j)=t⃗−k

|j1, . . . , jm⟩

=

(
m+ 1

t⃗

)− 1
2 ∑
k:tk≥1

|k⟩ ⊗
(
m

t⃗−k

) 1
2

|s(⃗t−k)⟩

=
∑
k:tk≥1

√
tk

m+ 1
|k⟩ ⊗ |s(⃗t−k)⟩ . (10)

Then, we have

σ̃ =
∑
j∈[d]

(|j⟩ ⟨j| ⊗ I)Πd,m+1
sym (|j⟩ ⟨j| ⊗ I)

=
∑
j∈[d]

(|j⟩ ⟨j| ⊗ I)

( ∑
t⃗∈Id,m+1

|s(⃗t)⟩ ⟨s(⃗t)|

)
(|j⟩ ⟨j| ⊗ I)

=
∑
j∈[d]

(|j⟩ ⟨j| ⊗ I)

( ∑
t⃗∈Id,m+1

∑
k:tk≥1

∑
k′:tk′≥1

√
tk

m+ 1
·
√

tk′

m+ 1
|k⟩ ⟨k′| ⊗ |s(⃗t−k)⟩ ⟨s(⃗t−k′)|

)
(|j⟩ ⟨j| ⊗ I)

=
∑

t⃗∈Id,m+1

∑
j:tj≥1

tj
m+ 1

|j⟩ ⟨j| ⊗ |s(⃗t−j)⟩ ⟨s(⃗t−j)|

=
∑
j∈[d]

|j⟩ ⟨j| ⊗
∑

t⃗∈Id,m+1:tj≥1

tj
m+ 1

|s(⃗t−j)⟩ ⟨s(⃗t−j)|

=
∑
j∈[d]

|j⟩ ⟨j| ⊗
m∑
r=0

r + 1

m+ 1

∑
t⃗∈Tm

j,r

|s(⃗t)⟩ ⟨s(⃗t)|

=
1

m+ 1

∑
j∈[d]

|j⟩ ⟨j| ⊗
∑
t⃗∈Tm

j,0

|s(⃗t)⟩ ⟨s(⃗t)|+ 1

m+ 1

∑
j∈[d]

|j⟩ ⟨j| ⊗
m∑
r=1

(r + 1) ·
∑
t⃗∈Tm

j,r

|s(⃗t)⟩ ⟨s(⃗t)| , (11)

where the third equality uses Equation (10).
Equation (11) implies that {|j⟩ ⊗ |s(⃗t)⟩ : j ∈ [d], t⃗ ∈ Id,m} is exactly the set of eigenvectors of σ̃ with

non-zero eigenvalue. Hence, the pseudoinverse σ̃ is obtained by taking the inverse of the (non-zero) elements
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on the diagonal. Thus, we have

σ̃−1 = (m+ 1) ·
∑
j∈[d]

|j⟩ ⟨j| ⊗
∑
t⃗∈Tm

j,0

|s(⃗t)⟩ ⟨s(⃗t)|+ m+ 1

r + 1

∑
j∈[d]

|j⟩ ⟨j| ⊗
m∑
r=1

·
∑
t⃗∈Tm

j,r

|s(⃗t)⟩ ⟨s(⃗t)| .

Then,

σ̃−
1
2 =
√
m+ 1 ·

∑
j∈[d]

|j⟩ ⟨j| ⊗
∑
t⃗∈Tm

j,0

|s(⃗t)⟩ ⟨s(⃗t)|+
√
m+ 1

r + 1

∑
j∈[d]

|j⟩ ⟨j| ⊗
m∑
r=1

·
∑
t⃗∈Tm

j,r

|s(⃗t)⟩ ⟨s(⃗t)| .

Notice that, for any j ∈ [d], we can write Πd,msym =
∑
t⃗∈Id,m |s(⃗t)⟩ ⟨s(⃗t)| =

∑m
r=0

∑
t⃗∈Tm

j,r
|s(⃗t)⟩ ⟨s(⃗t)|. Then, we

have

σ̃−
1
2 =
√
m+ 1 · 1⊗Πd,msym −

√
m+ 1 ·

m∑
r=1

(
1− 1√

r + 1

)
·
∑
j∈[d]

|j⟩ ⟨j| ⊗
∑
t⃗∈Tm

j,r

|s(⃗t)⟩ ⟨s(⃗t)| . (12)

For convenience, for r ∈ {0, . . . ,m}, define Qr =
∑
j∈[d] |j⟩ ⟨j| ⊗

∑
t⃗∈Tm

j,r
|s(⃗t)⟩ ⟨s(⃗t)|. The probability of

guessing x when using the PGM is

Ex←{0,1}nTr
[
ρxσ

− 1
2 ρxσ

− 1
2

]
=

(
d+m

m+ 1

)
· 1
d
· Ex←{0,1}nTr

[
ρxσ̃

− 1
2 ρxσ̃

− 1
2

]
=

(
d+m

m+ 1

)
· m+ 1

d
· Ex←{0,1}nTr

[
ρx
(
1⊗Πd,msym

)
ρx
(
1⊗Πd,msym

) ]
+

(
d+m

m+ 1

)
· m+ 1

d
·

m∑
r,r′=1

(
1− 1√

r + 1

)(
1− 1√

r′ + 1

)
Ex←{0,1}nTr

[
ρxQrρxQr′

]
− 2

(
d+m

m+ 1

)
· m+ 1

d
·
m∑
r=1

(
1− 1√

r + 1

)
ExTr

[
ρx
(
1⊗Πd,msym

)
ρxQr

]
. (13)

where the last equality follows by using Equation (12) to replace the two appearances of σ̃−
1
2 . Now, note

that, by Lemma 3, ρx =
(
d+m
m+1

)−1
(Zx ⊗ 1)Πd,m+1

sym (Zx ⊗ 1). Further, note that Zx ⊗ 1 commutes with both
1 ⊗ Πd,msym and Qr. Substituting the last expression for ρx into Equation (13), and noticing that the Zx’s
cancel each other out thanks to the commutation, we obtain:

Ex←{0,1}nTr
[
ρxσ

− 1
2 ρxσ

− 1
2

]
=

(
d+m

m+ 1

)−1
· m+ 1

d
· Ex←{0,1}nTr

[
Πd,m+1

sym
(
1⊗Πd,msym

)
Πd,m+1

sym
(
1⊗Πd,msym

) ]
+

(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

(
1− 1√

r + 1

)(
1− 1√

r′ + 1

)
Ex←{0,1}nTr

[
Πd,m+1

sym QrΠ
d,m+1
sym Qr′

]
− 2

(
d+m

m+ 1

)−1
· m+ 1

d
·
m∑
r=1

(
1− 1√

r + 1

)
ExTr

[
Πd,m+1

sym
(
1⊗Πd,msym

)
Πd,m+1

sym Qr

]
.

Clearly both Πd,m+1
sym

(
1⊗Πd,msym

)
Πd,m+1

sym and Qr are positive semidefinite. Using the fact that Tr[AB] ≥ 0 if
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A and B are positive semidefinite, we have that Tr
[
Πd,m+1

sym
(
1⊗Πd,msym

)
Πd,m+1

sym Qr

]
≥ 0. Thus, we have

Ex←{0,1}nTr
[
ρxσ

− 1
2 ρxσ

− 1
2

]
≤
(
d+m

m+ 1

)−1
· m+ 1

d
· Tr
[
Πd,m+1

sym
(
1⊗Πd,msym

)
Πd,m+1

sym
(
1⊗Πd,msym

) ]
+

(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

(
1− 1√

r + 1

)(
1− 1√

r′ + 1

)
Tr
[
Πd,m+1

sym QrΠ
d,m+1
sym Qr′

]
≤
(
d+m

m+ 1

)−1
· m+ 1

d
· Tr
[
Πd,m+1

sym
(
1⊗Πd,msym

)
Πd,m+1

sym
(
1⊗Πd,msym

) ]
(14)

+

(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

Tr
[
Πd,m+1

sym QrΠ
d,m+1
sym Qr′

]
, (15)

where the last line follows from the fact that, for any r, r′, Tr
[
Πd,m+1

sym QrΠ
d,m+1
sym Qr′

]
≥ 0 since both

Πd,m+1
sym QrΠ

d,m+1
sym and Qr′ are positive semidefinite. Next, we bound each of the terms (14) and (15) sepa-

rately. First, notice that

Tr
[
Πd,m+1

sym
(
1⊗Πd,msym

)
Πd,m+1

sym
(
1⊗Πd,msym

) ]
= Tr

[
Πd,m+1

sym

]
.

Thus,

(14) =
(
d+m

m+ 1

)−1
· m+ 1

d
· Tr
[
Πd,m+1

sym

]
=

(
d+m

m+ 1

)−1
· m+ 1

d
·
(
d+m

m+ 1

)
=
m+ 1

d
, (16)

where the second equality is again due to Lemma 3.
Define, for any j ∈ [d] and r ∈ [m], Qj,r :=

∑
t⃗∈Tm

j,r
|s(⃗t)⟩ ⟨s(⃗t)|. Then, Qr =

∑
j∈[d] |j⟩ ⟨j| ⊗ Qj,r. We

have,

(15) ≤
(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

Tr
[
Πd,m+1

sym QrΠ
d,m+1
sym Qr′

]
=

(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j,j′∈[d]

Tr
[
Πd,m+1

sym (|j⟩ ⟨j| ⊗Qj,r)Πd,m+1
sym (|j′⟩ ⟨j′| ⊗Qj′,r′)

]

=

(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j,j′∈[d]

Tr
[
|j′⟩ ⟨j′|Πd,m+1

sym |j⟩ ⟨j| (1⊗Qj,r) |j⟩ ⟨j|Πd,m+1
sym |j′⟩ ⟨j′| (1⊗Qj′,r′)

]
,

(17)

where in the last line we are writing |j⟩ ⟨j| and |j′⟩ ⟨j′| as short for |j⟩ ⟨j| ⊗ 1 and |j′⟩ ⟨j′| ⊗ 1 respectively.
For n ∈ N, j, j′ ∈ [d] and l, l′ ∈ {0, . . . , n}, define Tn(j,l),(j′,l′) := {t⃗ ∈ Id,n : tj = l and tj′ = l′}. Then, for

any j, j′ ∈ [d], we can write

Πd,m+1
sym =

m+1∑
l,l′=0

∑
t⃗∈Tm+1

(j,l),(j′,l′)

|s(⃗t)⟩ ⟨s(⃗t)| . (18)

Recall that, for j ∈ [d] and t⃗ = (t1, . . . , td) ∈ Id,m+1 such that tj ≥ 1, we defined t⃗−j ∈ Id,m to be identical
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to t⃗ except that the j-th entry is reduced by 1. Then, combining Equations (18) and (10) implies

|j′⟩ ⟨j′|Πd,m+1
sym |j⟩ ⟨j| = |j′⟩ ⟨j| ⊗

m+1∑
l,l′≥1

√
l

m+ 1
·
√

l′

m+ 1

∑
t⃗∈Tm+1

(j′,l′),(j,l)

|s(⃗t−j′)⟩ ⟨s(⃗t−j)| (19)

For ease of notation, for j, j′ ∈ [d] and l, l′ ∈ {1, . . . ,m+1}, let P(j′,l′),(j,l) :=
∑
t⃗∈Tm+1

(j′,l′),(j,l)
|s(⃗t−j′)⟩ ⟨s(⃗t−j)|.

Then, plugging (19) into (17) (twice) and simplifying, we obtain

(15) ≤
(
d+m

m+ 1

)−1
· 1

d(m+ 1)
·

m∑
r,r′=1

∑
j,j′∈[d]

m+1∑
l,l′≥1
l′′,l′′′≥1

√
l · l′ · l′′ · l′′′Tr

[
|j′⟩ ⟨j′| ⊗

(
P(j′,l′),(j,l)Qj,rP(j,l′′),(j′,l′′′)Qj′,r′

) ]

=

(
d+m

m+ 1

)−1
· 1

d(m+ 1)
·

m∑
r,r′=1

∑
j,j′∈[d]

m+1∑
l,l′≥1
l′′,l′′′≥1

√
l · l′ · l′′ · l′′′Tr

[
P(j′,l′),(j,l)Qj,rP(j,l′′),(j′,l′′′)Qj′,r′

]
(20)

We can further simplify the expression using l, l′, l′′, l′′′ ≤ m+ 1 to obtain

(15) ≤
(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j,j′∈[d]

m+1∑
l,l′≥1
l′′,l′′′≥1

∣∣∣Tr[P(j′,l′),(j,l)Qj,rP(j,l′′),(j′,l′′′)Qj′,r′
]∣∣∣ (21)

Observe that

Qj,rP(j,l′′),(j′,l′′′)Qj′,r′ = δr=l′′−1 · δr′=l′′′−1 ·
∑

t⃗∈Tm+1

(j,l′′),(j′,l′′′)

|s(⃗t−j)⟩ ⟨s(⃗t−j′)| (22)

Then, with a similar observation, and additionally using the ciclicity of trace, we have

Tr
[
P(j′,l′),(j,l)Qj,rP(j,l′′),(j′,l′′′)Qj′,r′

]
= δr=l−1=l′′−1 · δr′=l′′′−1=l′−1 · Tr

[∑
t⃗∈Tm+1

(j,l′′),(j′,l′′′)
|s(⃗t−j′)⟩ ⟨s(⃗t−j′)|

]
= δr=l−1=l′′−1 · δr′=l′′′−1=l′−1 · Tr

[∑
t⃗∈Tm

(j,l′′),(j′,l′′′−1)
|s(⃗t)⟩ ⟨s(⃗t)|

]
= δr=l−1=l′′−1 · δr′=l′′′−1=l′−1 · |Tm(j,l′′),(j′,l′′′−1)| , (23)

where |Tm(j,l′′),(j′,l′′′−1)| is the cardinality of the set Tm(j,l′′),(j′,l′′′−1).
Plugging (23) into (21), and simplifying, gives

(15) ≤
(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j,j′∈[d]

|Tm(j,r+1),(j′,r′)|

=

(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j∈[d]

|Tm(j,r+1),(j,r′)|+
∑

j ̸=j′∈[d]

|Tm(j,r+1),(j′,r′)|

 . (24)

Now, let’s consider the first summand in the last expression of (24). Notice that Tm(j,r+1),(j,r′) = ∅ whenever
r + 1 ̸= r′. When r + 1 = r′, we have Tm(j,r+1),(j,r′) = Tmj,r′ . Notice that the size of the latter is just equal to
the dimension of the symmetric subspace of (Cd−1)⊗m−r′ (since j must appear exactly r′ times). Thus,

|Tm(j,r+1),(j,r′)| = δr+1=r′ · |Tmj,r′ | = δr+1=r′ ·
(
d+m− r′ − 2

m− r′

)
.
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Hence, we have (
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j∈[d]

|Tm(j,r+1),(j,r′)|

=

(
d+m

m+ 1

)−1
· m+ 1

d
·
m∑
r′=2

∑
j∈[d]

(
d+m− r′ − 2

m− r′

)

=

m∑
r′=2

(
d+m

m+ 1

)−1
· (m+ 1)

(
d+m− r′ − 2

m− r′

)

=

m∑
r′=2

(m+ 1)!(d− 1)!

(d+m)!
· (m+ 1) · (d+m− r′ − 2)!

(m− r′)!(d− 2)!

=

m∑
r′=2

(m+ 1) · · · (m− r′ + 1) · (d− 1)

(d+m) · · · (d+m− r′ − 1)
· (m+ 1)

≤
m∑
r′=2

d− 1

d+m− r′ − 1
· (m+ 1) ·

(
m+ 1

d

)r′+1

≤ (m+ 1) ·
m∑
r′=2

(
m+ 1

d

)r′+1

= (m+ 1) ·
(
m+ 1

d

)3

·
m−2∑
r=0

(
m+ 1

d

)r
=

(m+ 1)4

d3
·
1−

(
m+1
d

)m−1
1− m+1

d

≤ (m+ 1)4

d3
· 1

1− m+1
d

(as long as d > m+ 1)

=
(m+ 1)4

d2(d−m− 1)
≤ 2

(m+ 1)4

d3
(as long as d > 2(m+ 1)) . (25)

Next, consider the second summand in the last expression of (24) (corresponding to j ̸= j′). Notice that
Tm(j,r+1),(j′,r′) = ∅ whenever r + r′ ≥ m. When r + r′ ≤ m − 1, the size of Tm(j,r+1),(j′,r′) is equal to the
dimension of the symmetric subspace of (Cd−2)⊗m−r−r′−1 (since j must appear exactly r + 1 times, and j′
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must appear exactly r′ times). Thus, we have(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j ̸=j′∈[d]

|Tm(j,r+1),(j′,r′)|

=

(
d+m

m+ 1

)−1
· m+ 1

d
·

m∑
r,r′=1

∑
j∈[d]

(
d+m− r − r′ − 4

m− r′ − r′ − 1

)

=

m∑
r,r′=1

(
d+m

m+ 1

)−1
· d · (m+ 1) ·

(
d+m− r − r′ − 4

m− r′ − r′ − 1

)

=

m∑
r,r′=1

(m+ 1)!(d− 1)!

(d+m)!
· d · (m+ 1) · (d+m− r − r′ − 4)!

(m− r − r′ − 1)!(d− 3)!

=

m∑
r,r′=1

d(d− 1)(d− 2) · (m+ 1)2m · · · (m− r − r′)
(d+m) · · · (d+m− r − r′ − 3)

≤ d(d− 1)(d− 2)

d+m
·

m∑
r,r′=1

(
m+ 1

d+m− 1

)r+r′+3

≤ d2 ·m2 ·
(

m+ 1

d+m− 1

)5

≤ C ′′ · m
7

d3
, (26)

for some constant C ′′ > 0 independent of m and d. Plugging the bounds (25) and (26) into (24), we obtain,
provided d > 2(m+ 1):

(15) ≤ 2
(m+ 1)4

d3
+ C ′′ · m

7

d3
(27)

Finally, using the bounds we obtained for terms (14) and (15), we have, provided d > 2(m+ 1):

Ex←{0,1}nTr
[
ρxσ

− 1
2 ρxσ

− 1
2

]
≤ m+ 1

d
+ 2

(m+ 1)4

d3
+ C ′′ · m

7

d3
= C ′ ·

(
m

d
+
m7

d3

)
, (28)

for some constant C ′ > 0 independent ofm and d. Since, by Lemma 2, the PGM achieves a success probability
that is at most the square of the optimal, this gives the desired bound of Lemma 5 (with C =

√
C ′).

5 Applications
We describe two applications of quantum trapdoor functions.

5.1 Public-key encryption with quantum public key
A public-key encryption scheme with a quantum public key has almost the same syntax as a classical public-
key encryption scheme, except that the public key is a quantum state |pk⟩, and we additionally require that
|pk⟩ be efficiently generatable given the classical secret key. In the (CPA) security game, the adversary has
access to an arbitrary polynomial number of copies of |pk⟩. For completeness, we provide a formal definition.

Definition 4 (Public-key encryption with quantum public key). A public-key encryption scheme with quan-
tum public key is a tuple of QPT algorithms (GenSK,GenPK,Enc,Dec) as follows.

• GenSK(1n)→ sk: Takes as input a security parameter, and outputs a classical secret key sk.

• GenPK(sk) → |pk⟩: Takes as input the secret key sk, and outputs the quantum public key |pk⟩. We
additionally require that |pk⟩ be unique given sk.

• Enc(|pk⟩ ,m) → |c⟩: Takes as input a copy of the public key |pk⟩ and a message m ∈ {0, 1}∗, and
outputs a quantum ciphertext |c⟩.
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• Dec(sk, |c⟩)→ m: Takes as input the secret key sk and a ciphertext |c⟩, and outputs a string m.

These algorithms should satisfy “correctness”, i.e. for all m ∈ {0, 1}∗, for all n,

Pr[Dec(sk, |c⟩) = m : sk ← Gen(1n), |pk⟩ ← GenPK(sk), |c⟩ ← Enc(|pk⟩ ,m)] = 1 .

The definition of CPA security is analogous to the classical one, except that we explicitly give the
adversary access to an arbitrary polynomial number of copies of the quantum public key.

Definition 5 (CPA security with quantum public key). A public-key encryption scheme with quantum public
key satisfies CPA security if the following holds. For all QPT algorithms A0, A1, for all t = poly, there exists
a negligible function negl such that, for all n,

Pr[b = b′ :sk ← GenSK(1n), |pk⟩ ← GenPK(sk), (m0,m1, |aux⟩)← A0(|pk⟩⊗t(n)),

b← {0, 1}, |c⟩ ← Enc(|pk⟩ ,mb), b
′ ← A1(|aux⟩ , |c⟩)] ≤

1

2
+ negl(n) .

We show that quantum trapdoor functions imply a public-key encryption scheme with quantum public
key. The construction is analogous to the construction of a (classical) public-key encryption scheme from
injective trapdoor functions2. We start by describing a construction that supports encryptions of single-bit
messages.

Let (QTF.GenTR,QTF.GenEV,QTF.Eval,QTF.Invert) be a quantum trapdoor function, as in Definition 3.

Construction 3 (Public-key encryption with quantum public key, supporting single-bit messages). Define
(GenSK,GenPK,Enc,Dec) as follows:

• GenSK(1n)→ sk: Sample a trapdoor tr ← QTF.GenTR(1n). Set sk = tr.

• GenPK(sk)→ |pk⟩: Let |eval⟩ = QTF.GenEV(sk). Set |pk⟩ = |eval⟩.

• Enc
(
|pk⟩ ,m ∈ {0, 1}

)
→ |c⟩: Sample r, x← {0, 1}n. Compute |ψx⟩ ← QTF.Eval(|pk⟩ , x). Set

|c⟩ = (|ψx⟩ , r, r · x⊕m) .

• Dec(sk, |c⟩)→ m′: Parse |c⟩ as |c⟩ = (|ϕ⟩ , r, b). Compute x′ ← QTF.Invert(sk, |ϕ⟩). Set m′ = r ·x′⊕ b.

Correctness of this scheme clearly follows from the trapdoor property of the underlying QTF. We show
the following.

Theorem 5. Construction 3 satisfies CPA security.

Proof. Suppose for a contradiction that there is a QPT adversary A, a t = poly, and a non-negligible function
non-negl such that, for all n,

Pr[A(|c⟩ ⊗ |pk⟩⊗t) = m : sk ← Gen(1n), |pk⟩ ← GenPK(sk),m← {0, 1}, |c⟩ ← Enc(|pk⟩ ,m)]

≥ 1

2
+ non-negl(n) .

In the case of Construction 3, this implies that

Pr
[
A(|ψx⟩ , r, r · x⊕m, |eval⟩⊗t) = m : tr ← QTF.GenTR(1n), |eval⟩ ← QTF.GenEV(tr),m← {0, 1},

r, x← {0, 1}n, |ψx⟩ ← QTF.Eval(|eval⟩ , x)
]
≥ 1

2
+ non-negl(n) .

(29)

2Recall in particular that, for a quantum trapdoor function, the quantum map x → |ψx⟩ induced by a fixed evaluation key
is “injective”, in the sense that for each honestly generated |ψx⟩ there is a unique inverse x.
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It is clear that guessing m is equivalent to guessing r ·x. Thus, the existence of A satisfying (29) implies the
existence of an algorithm A′ such that

Pr
[
A′(|ψx⟩ , r, |eval⟩⊗t) = r · x : tr ← QTF.GenTR(1n), |eval⟩ ← QTF.GenEV(tr),

r, x← {0, 1}n, |ψx⟩ ← QTF.Eval(|eval⟩ , x)
]
≥ 1

2
+ non-negl(n) . (30)

Invoking the quantum version of Goldreich-Levin [AC02], which crucially works even in the presence of
quantum auxiliary information (since the reduction of [AC02] only makes a single call to A), we obtain an
adversary A′′ that breaks security of the quantum trapdoor function, i.e. given as input (|ψx⟩ , |eval⟩⊗t), A′′
outputs x with non-negligible probability.

The scheme of Construction 3 supports encryptions of single-bit messages. In the classical setting, it is
well-known that, for public-key schemes, CPA security for single-messages is equivalent to CPA security for
multiple messages. Thus, a scheme that supports encryptions of single-bit messages can be bootstrapped
to a scheme that supports encryptions of messages of arbitrary length by simply encrypting each bit of the
message under the same public key. In the case of quantum public key, we need to be a bit more careful.
This trivial bootstrapping does not work because the encryption algorithm crucially only receives as input
a single copy of |pk⟩ (this is of course not an issue classically, since the public key can be copied).

This issue can be circumvented by a slight modification of the classical bootstrapping technique that is
referred to as “hybrid encryption”:

(i) We first obtain a scheme that supports encryptions of n-bit messages by having the public key consist
of n copies of the public key for a single-bit scheme, i.e. |pk⟩⊗n. Note that this alone does not resolve
the issue because the size of the public-key still grows with the size of the message.

(ii) We modify encryption as follows. To encrypt a message m (of arbitrary length), use |pk⟩⊗n to encrypt
a freshly sampled secret key s̃k of a private-key encryption scheme corresponding to security parameter
n (we are assuming this secret key is n-bits long), which supports encryption of messages of arbitrary
length. Use s̃k to encryptm (this step is entirely classical). The ciphertext consists of both encryptions.

Theorem 6. Assuming the existence of quantum-secure one-way functions, there exists a public-key encryp-
tion scheme with a quantum public key (as in Definition 4).

Proof. The proof that CPA security is preserved through steps (i) and (ii) follows essentially unchanged from
the respective proofs in the classical setting. The reductions in these proofs only make straightline use of
the adversaries. Moreover, these reductions are allowed to make use of an arbitrary polynomial number of
copies of the public key, since the adversary in the definition of CPA security (Definition 5) is allowed the
same.

5.2 Two-message key-exchange
In this subsection, we informally discuss the implications of the result from the previous subsection on the
possibility of realizing two-message key-exchange from one-way functions.

Any public-key encryption scheme implies a simple two-message key-exchange protocol: (i) Alice samples
sk and pk, and sends pk to Bob; (ii) Bob samples a uniformly random string x and sends back an encryption
of x, which Alice is able to decrypt. Alice and Bob set x to be the shared key.

One can construct an analogous two-message key-exchange protocol from a public-key encryption scheme
with a quantum public key (like the one described in Subsection 5.1). The only difference is that Alice and
Bob’s messages are now quantum states. Then, given the results from the previous section, does this mean
that quantum communication allows for a two-message key-exchange protocol from one-way functions?

The answer is a bit subtle, and depends on how one models the attacker’s access to the quantum commu-
nication. In the case of the BB84 quantum key-exchange protocol, only the classical communication channels
(used by Alice and Bob to perform the steps of “information reconciliation” and “privacy amplification”) are
assumed to be authenticated. The quantum channel is not assumed to be authenticated, and the attacker
is free to tamper arbitrarily with the qubits that are being exchanged (and the protocol itself takes care of
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the fact that tampering can be detected by Alice and Bob by subsequently exchanging classical messages).
Note that the BB84 protocol requires strictly more than two messages.

If one insists on considering two-message key-exchange protocols, then it is easy to see that some form of
authenticated quantum channel is necessary. If Alice and Bob’s messages are not authenticated at all, then
the attacker can simply perform a “man-in-the-middle” attack: it can impersonate Bob when interacting
with Alice, and viceversa, resulting in the attacker sharing one key with Alice and another with Bob (and
the two of them not detecting this).

Then, the question becomes: what is the right notion of authenticated quantum channel? In the classical
setting, an authenticated channel has the following properties:

(a) Messages sent through it are guaranteed to not be tampered with, and the origin is trusted.

(b) However, messages sent through the channel are “in the clear”, i.e. they can be read by an attacker.

When trying to generalize this definition to the quantum setting, we run into an obstacle: “reading” a
quantum message is not something that is well-defined. In particular, the only way that (a) can be satisfied
is if the attacker acts as the identity on the quantum states that are sent through the channel. Then, trivially
the attacker does not gain any information about these quantum states.

One non-trivial quantum analogue of the classical authenticated channel described above is the following:

(a’) Same as (a), but for quantum messages.

(b’) The attacker gets an arbitrary (polynomial) number of copies of any quantum message sent through
the channel.

This model is not “realistic” in the sense that copying a quantum message is not possible in general. However,
it does reasonably capture a scenario in which the sender is generating many copies of the message, in our
case the quantum public key |pk⟩ (which can be generated efficiently given sk), and distributing them to
parties in a network. Then, the receiver gets one copy of the message, while the attacker may be able to
collect many other copies.

Our two-message key-exchange protocol from public-key encryption with a quantum public key is secure
as long as Alice’s message is sent through a quantum authenticated channel satisfying (a’) and (b’) (Bob’s
message need not be sent through an authenticated channel). The security of this key-exchange protocol
reduces exactly to the security of the underlying public-key encryption scheme.
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