
An extended abstract of this article was published with DOI 10.1007/978-3-031-30731-7_3 in the proceedings of SSR’23.
This is the full version, and available in the IACR eprint archive as article 2023/272.

A study of KEM generalizations

Bertram Poettering1 and Simon Rastikian1,2

1 IBM Research Europe – Zurich, Rüschlikon, Switzerland
2 ETH Zurich, Zurich, Switzerland

Abstract. The NIST, in its recent competition on quantum-resilient confidentiality primitives,
requested the submission of exclusively KEMs. The task of KEMs is to establish secure session
keys that can drive, amongst others, public key encryption and TLS-like secure channels. In this
work we test the KEM abstraction in the context of constructing cryptographic schemes that are
not subsumed in the PKE and secure channels categories. We find that, when used to construct a
key transport scheme or when used within a secure combiner, the KEM abstraction imposes certain
inconvenient limits, the settling of which requires the addition of auxiliary symmetric primitives.

We hence investigate generalizations of the KEM abstraction that allow a considerably simplified
construction of the above primitives. In particular, we study VKEMs and KDFEMs, which augment
classic KEMs by label inputs, encapsulation handle outputs, and key derivation features, and we
demonstrate that they can be transformed into KEM combiners and key transport schemes without
requiring auxiliary components. We finally show that all four finalist KEMs of the NIST competi-
tion are effectively KDFEMs. Our conclusion is that only very mild adjustments are necessary to
significantly increase their versatility.

1 Introduction

Hybrid Encryption. The contemporary approach to construct public key encryption (PKE) is via
the KEM+DEM paradigm [11]: To encrypt a message m ∈ M, first a key encapsulation mechanism
(KEM) is used to establish a session key k ∈ K, then a data encapsulation mechanism (DEM) is used
to symmetrically encrypt message m with session key k. The fundamental lemma of hybrid encryption
guarantees that if both KEM and DEM are secure against active adversaries, then also the resulting
PKE scheme is secure against active adversaries [11].

A main advantage of constructing PKE from two separate primitives is the gain in flexibility: The
KEM can be chosen to meet one specific set of conditions (e.g. related to ciphertext size/expansion,
resilience against quantum adversaries, level of standardization, ROM vs. standard model, . . .), and the
DEM can be chosen to meet a different set of conditions (e.g. related to its performance on the expected
computing architecture, the type of underlying primitive, . . .). While the KEM+DEM paradigm is now
about two decades old, its attractiveness was recently confirmed when the NIST opened their call for
quantum resilient cryptographic schemes, where all encryption primitive submissions were explicitly
required to be of the KEM type [1].

Key Transport. A key transport (KT) scheme is a public-key primitive that allows users to securely
transport ‘symmetric’ keys to other users. More specifically, KT can be seen as a special case of PKE
where the message space M is restricted to a payload key space of the form K̄ = {0, 1}κ, commonly
instantiated with κ = 128 or κ = 256. Standard applications of KT include OpenPGP email encryption [9]
where for each email that is encrypted a fresh session key k is randomly sampled from K̄ and then
transported, via KT, to all recipients of the email. The latter involves one KT operation per receiver,
and implicitly represents a multi-recipient PKE construction [19].

If one wants to construct a KT scheme from a KEM, the simple approach of first establishing a session
key k with the KEM and then appending the one-time pad encryption k ⊕ k of k to its ciphertext is,
due to the obvious malleability condition, not secure against active adversaries. Rather, it appears that
a stronger encryption primitive is necessary. For instance, k could be encrypted via c ← enck(k) where
enc is a DEM encapsulation routine that is secure against active adversaries. In practice, the natural

https://doi.org/10.1007/978-3-031-30731-7_3
https://eprint.iacr.org/2023/272
https://orcid.org/0000-0001-6525-5141

options for instantiating such a DEM would be using either EtM (encrypt-then-mac, [5]) or authenticated
encryption (AE/AEAD, [20]). Unfortunately, these approaches imply overheads that are inconvenient in
two independent dimensions: (1) At least one auxiliary symmetric algorithm has to be agreed on and
implemented (two in the case of EtM), and the effective price of this should not be underestimated.3
(2) AE/AEAD schemes expect auxiliary inputs like nonces [21] and associated data strings [20], the
processing of which requires additional resources.4 Note that the nonce processing is demanded by the
AE/AEAD interface [18], while our KT application itself wouldn’t require it (and could fix the nonce to
the all-zero string). The price of processing the nonce has to be paid anyway.

Starting from (a generalized form of) a KEM, this article contributes a KT construction that does
not require any auxiliary symmetric algorithm. That is, our KT scheme completely removes the two
overhead categories discussed above.

KEM Combiners. A KEM combiner merges two ingredient KEMs into a single (hybrid) KEM such that
if at least one of the ingredient KEMs is secure then so is the hybrid. Interest in KEM combiners increased
recently [2] with the availability of KEMs that are potentially resilient against quantum adversaries: While
hardness assumptions in the domain of lattices and codes can be considered less tested than RSA/DL,
only the former have the potential to provide security once quantum computers become available; hence,
combining a classic KEM with a lattice or code based KEM promises to achieve security in more scenarios.
Similarly to above (see KT discussion), the simple construction of first letting the ingredient KEMs
establish session keys k1, k2 independently of each other and then combining these keys to a common
key via k ← k1 ⊕ k2 does, due to malleability issues, not provide security against active adversaries.

KEM combiners secure against active adversaries have been investigated in [15,8]. All known con-
structions require auxiliary symmetric primitives, namely either blockciphers, PRFs, or hash functions.
For instance, the likely most elegant hybrid from [15] has an encapsulation routine that lets the ingre-
dient algorithms enc1, enc2 establish session keys k1, k2 independently of each other, and then computes
the hybrid key as per k ← F (k1, c2)⊕ F (k2, c1), where F is an auxiliary PRF and c1, c2 are the ingredi-
ent KEMs’ ciphertexts. Another example of a KEM combiner would derive the combined key k as per
k ← H(k1, k2, c1, c2), for a (quantum) random oracle H. As we discussed in the KT context, the use of
auxiliary symmetric components comes with a price that should not be underestimated.

Starting from (a generalized form of) a KEM, this article contributes a KEM combiner that does not
require any auxiliary symmetric algorithm.

1.1 Existing KEM generalizations

As discussed above, neither key transport nor KEM combiners seem to be constructable from KEMs
directly, i.e., without adding an auxiliary symmetric primitive of some kind. The goal of this article is to
study whether a relatively small strengthening of the KEM primitive might suffice to enable the construc-
tion of key transport or KEM combiners without adding extra primitives. We are not the first authors
to consider strengthenings of the KEM primitive. In the following we review three prior approaches (all
of which were originally explored with an overall different focus).

Labeled PKE/KEMs. In labeled PKE [23], the encryption and decryption algorithms take, in addition
to their standard inputs (public or secret key, message or ciphertext), an auxiliary label input L which
may consist of an arbitrary string. Correctness is provided if and only if encryption and decryption
use the same label. That is, intuitively, ∀L, m : dec(sk, L, enc(pk, L, m)) = m. The adapted security
definition, which is a straightforward variant of the standard PKE security definition, implies that for
L1 ̸= L2 the value of dec(sk, L2, enc(pk, L1, m)) is not correlated with m. (Assuming that dec doesn’t
reject the ciphertext in the first place.) The main application of the auxiliary label input is that it easily
allows to implement domain separation. For instance, if the same PKE instance is relied on both for
receiving encrypted emails and for authenticating to services (by proving the ability to decrypt challenge
3 Firstly, agreeing on an auxiliary component will likely require dedicated standardization efforts. Secondly, side-

channel resilient implementations of cryptographic algorithms require knowledge of the target machine and
hence, in the worst case, one dedicated implementation per computing architecture.

4 For instance, the nonce handling of most AES-based AE/AEAD schemes requires one additional blockcipher
invocation.

2

ciphertexts), if the labels "enc" and "auth" are used to logically separate to two applications, it is
ensured that the otherwise obvious attacks are not possible.

The idea of adding a label input to the PKE interface was formalized in [23]. Translating the idea to
the KEM world is immediate: Intuitively, for correctness we now would demand that ∀L : enc(pk, L) =
(c, k) =⇒ dec(sk, L, c) = k. Also the adaptation of the security notions is straightforward.

TagKEMs. It was observed by Abe et al. [3] that certain IND-CCA secure KEM constructions (e.g., in
the spirit of Cramer–Shoup encryption [11]) contain an internal mechanism that authenticates ciphertexts
in such a way that the decryptor can detect and reject malicious ciphertext manipulations. One idea
behind their TagKEM primitive is to use the same authentication mechanism to also protect the DEM
ciphertext of a KEM+DEM hybrid. To make this practical, the KEM encapsulation is split into two
algorithms, enc1 and enc2, such that first enc1 is executed on input the public key and with output
the session key k plus some state information, then session key k is used with a DEM to encrypt the
payload message m̄ which results in a DEM ciphertext c̄, and finally enc2 is executed on input the state
information and c̄ as a tag, and with output the KEM ciphertext c. The TagKEM decapsulation routine
is not split, and would recover k from sk, c and tag c̄, so that then m̄ can be recovered from c̄ via DEM
decapsulation.

While the TagKEM concept was specifically developed to allow the construction of efficient PKE
schemes, the fact that its encapsulation routine is split and can authenticate the use of the session keys
might find more general applications. This article will draw on a very similar concept.

We note that while labels (see above) and tags (see here) serve slightly different purposes, both of
them represent arbitrary strings that are known to both sender and receiver, and significantly control
the behavior of the corresponding algorithms. This concept also appears in other areas of cryptography,
e.g., in the form of associated-data strings in AEAD [20], or as a tweak input for blockciphers [17]. As
it will become clear in the course of this paper, it is meaningful in our generalizations to use one single
term for the label/tag inputs of KEMs; we chose to consistently use the term ‘label’.

KEMs with Handles. A KEM can be seen as a special form of a one-pass key establishment (KE)
protocol for two parties where only one party is authenticated (via a public key). Early models for key
establishment [7] define security via session transcripts that would match (or not) on both sides. To
side-step drawbacks implied by this purely syntactical approach, later models, e.g. [6], adopted the idea
of letting protocol instances also output an explicit session id, the matching of which would replace the
matching of transcripts. More concretely, if participant Alice establishes session id/key pair (sidA, kA)
and Bob establishes pair (sidB , kB), then, intuitively, correctness would demand that sidA = sidB =⇒
kA = kB (“same session, same key”), while the security definition would demand that if sidA ̸= sidB

then kA, kB are not correlated (“different session, independent key”). The main advantage of models
with session id is that the concept of matching sessions is made explicit and clear, and that obviously
correct protocols that couldn’t be proven in the model of [7] (for purely syntactical reasons) suddenly
become tractable.

Given that KEMs represent a special KE case, it makes sense to explore introducing the session id
concept also to KEMs. As in the KE world, this can only increase the number of tractable constructions.
However, as establishing a shared key using a KEM doesn’t really involve creating a ‘session’, in this
article we use the term ‘encapsulation handle’ instead of ‘session id’; we often just write handle for short.
Syntactically, a KEM supporting handles encapsulates via (c, hd, k) ← enc(pk) and decapsulates via
(hd ′, k′) ← dec(sk, c). The KE correctness condition translates to hd ′ = hd =⇒ k′ = k (“same handle,
same key”), and for security we demand that if hd ′ ̸= hd then k′, k are not correlated (“different handle,
independent key”).

We observe that the classic KEM notion also provides a handle concept, but only implicitly: In
standard correctness and security definitions for KEMs [11], the ciphertext takes a dual role: (1) It
conveys the information necessary for the decryptor to reconstruct the session key, and (2) it serves as
a handle for the encapsulation operation: Each KEM ciphertext uniquely identifies the invocation of the
encapsulation algorithm that created it. Also the “same ciphertext, same key” and “different ciphertext,
independent key” principles hold for (IND-CCA secure) KEMs.

While all formalizations in this article consistently use handle based definitions for KEMs and PKE,
readers unfamiliar or uncomfortable with this concept can, whenever a handle is mentioned, instead

3

think of the ciphertext. This way of thinking does reduce the generality of our results, but only mildly
so. We will make those cases explicit where the difference is significant.

1.2 Our approach

The goal of this article is to find and study natural generalizations of the KEM primitive such that
intuitively simple applications like key transport (KT) and KEM combiners can be constructed without
having to rely on auxiliary symmetric building blocks. In our search we considered it a necessary condition
that the KEM generalization wouldn’t change the main character profile of a KEM too much. For
instance, we insisted on the overall communication from sender to receiver remaining one-pass. In the
end our search identified two different KEM generalizations, dubbed VKEM and KDFEM, that we
briefly present in the upcoming paragraphs. We found in particular the KDFEM primitive suitable for
our purposes.

VKEMs. In Sect. 1.1 we discussed three already existing KEM generalizations from prior work: KEMs
with labels, with tags, and with handles. What we call a versatile key encapsulation mechanism (VKEM)
is a KEM variant that combines all three of these approaches, in a clean and unified way, with the ultimate
goal of maximum versatility: A VKEM has both the encapsulation and decapsulation routine split into
two phases each, where the algorithms of both phases take labels on input and generate keys and handles
on output. (See Fig. 4 for a high-level illustration of the syntax.)

After defining the precise syntax and security of VKEMs, we study how a KEM combiner and/or
KT scheme can be constructed from this primitive. The encapsulation routine of our VKEM combiner
from Sect. 5 is illustrated in Fig. 1. As the red crosses suggest, the label input and the session key
output of the two first-phase VKEM invocations (top left and top right) are not used. In contrast, the
first-phase encapsulation handles, serving as identifiers for the respective encapsulation invocations, are
fed, in form of labels, into the second phase of the other VKEM instance. The idea behind this cross-over
is to cryptographically tie the two VKEM instances together, so that an attack against the one can be
noticed, and reacted to, by the other. The hybrid KEM’s key k is the XOR of the two second-phase
session keys, while the hybrid’s handle hd is the concatenation of the two second-phase handles. We
formally confirm the security of this construction in Sect. 5.

enc1
1 enc2

1

enc1
2 enc2

2

pk1 pk2

L1
1 L2

1

k1
1 k2

1
hd1

1 hd2
1

L1
2 L2

2
hd1

2 hd2
2q

k1
2 k2

2+

hd k

Fig. 1. Combiner of two VKEMs (left and right) to obtain one secure KEM. We only show the encapsulation
process, and, for clarity, omit drawing the arrows transporting ciphertexts.

We also succeeded with transforming a VKEM into a KT scheme. The construction is a little odd for
allowing empty second-phase ciphertexts and using the second-phase session keys exclusively, in the style
of MAC tags, in cleartext for authentication. While this was confusing at first, we eventually noticed
that the very same key transport scheme could also be instantiated with a KDFEM (see below) instead
of with a VKEM, meaning that its requirements are located in the small intersection of VKEMs and
KDFEMs. As the KDFEM notation is substantially cleaner when it comes to defining a KT scheme, we
decided to present our KT solution and its analysis exclusively in the KDFEM setting.

KDFEMs. Our second approach to generalizing KEMs is based on the observation that many real-world
KEM constructions internally derive the output session key with a dedicated key derivation function
(KDF) like HKDF [16]. While KDFs allow for deriving many keys from a single seed, we are not aware
of a KEM construction that would evaluate its KDF at more than one point. Our approach is to remove
this restriction and to enable the evaluation of the (seeded) KDF on arbitrarily many points. Very

4

briefly, what we refer to as a key derivation function encapsulation mechanism (KDFEM) consists of
encapsulation/decapsulation algorithms (c, st) ← enc(pk) and st′ ← dec(sk, c) and a KDF evaluation
algorithm eval such that k ← eval(st, L) and k′ ← eval(st′, L) lead to the same result k = k′.

We observe that the KDFEM primitive allows for constructing both a KEM combiner and a KT
scheme in an extremely straightforward manner: The k ← F (k1, c2) ⊕ F (k2, c1) construction of [15]
discussed earlier can be salvaged by replacing the (auxiliary) PRF with the KDFEM’s eval routine: Using
our handle-based notation, the instruction becomes k ← eval(st1, hd2)⊕ eval(st2, hd1). Pronto. Our key
transport construction is as simple: A first eval invocation establishes a mask that is used to one-time
pad encrypt the payload key, and a second eval invocation is used on the resulting ciphertext to protect
its integrity in an encrypt-then-mac fashion. We formally confirm the security of these constructions in
Sect. 7 and Sect. 9.

Discussion. Our approach to expect of a generalized KEM that it expose a new kind of auxiliary KDF
functionality may at first seem moot given that our overall goal was to reduce the number of auxiliary
symmetric primitives (including KDFs) required to construct KEM combiners and KT. It’s not. The key
insight is that many KEMs already have that KDF functionality built into them, so we can re-use it for
free. The cost reduction of our approach is not necessarily visible in computation time or the like, but
in the removed requirement to agree on an additional primitive. Concretely, in Sect. 10 we demonstrate
that all four KEM finalists of the recent NIST competition [1] can be turned into KDFEMs with almost
no modification.

1.3 Related work

We already gave numerous references to related work inline in the above paragraphs. This includes work
on KEMs with labels, with tag inputs, and of primitives that establish keys together with handles. We
also mentioned relevant standardization efforts like ETSI TS 103 744 [2] and the ongoing, soon-to-be-
completed efforts by NIST [1]. The public interest in KEM combiners is also visible in the existence of
an RFC draft that explicitly targets this primitive (tolerating an auxiliary random oracle).5

The works of Zhang et al. [24], Dodis and Katz [13], Giacon et al. [15], as well as Bindel et al. [8]
consider combiners for public key encryption and key encapsulation mechanisms. While the former two
works consider PKE and their results cannot be translated to the KEM setting, the latter two combine
KEMs but require additional building blocks. In this sense, they don’t present solutions to our challenge.

Numerous practical protocols, including development versions of TLS and MLS, employ KEM com-
biners or KT schemes only implicitly. This is typically done via key mixing, using auxiliary symmetric
primitives like hash functions or KDFs. A difference to our setting is that TLS and MLS are generously
using such primitives anyway, so that the advantages offered by our approach become less considerable.

2 Preliminaries

2.1 Notation

We specify scheme algorithms and security games in pseudocode. In such code we write var ← exp
for evaluating expression exp and assigning the result to variable var . If var is a set variable and exp
evaluates to a set, we write var ∪← exp shorthand for var ← var ∪ exp. A (row) vector variable can
be appended to another vector variable with the (associative) concatenation operator q, and we write
var q← exp shorthand for var ← var q exp. We do not overload the q operator to also indicate string
concatenation, i.e., the objects a q b and ab are not the same. We use [] notation for associative arrays
(i.e., the ‘dictionary’ data structure): Once the instruction A[·]← exp initialized all items of array A to
the default value exp, individual items can be accessed as per A[idx], e.g., updated and extracted via
A[idx]← exp and var ← A[idx], respectively, for any expression idx.

To keep our games compact, we use the alias-creating operator “:=” where convenient. The instruction
‘A := B’ introduces A as a symbolic alias for the expression B. This crucially differs from A← B which
is an assignment that evaluates expression B and stores the result in variable A. For instance, if D[] is a
5 https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-combiners/.

5

https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-combiners/

dictionary and D["x"] an integer entry, and an alias is created as per A := D["x"], then the instruction
A← A + 1 expands to D["x"]← D["x"] + 1 and thus modifies the value of D["x"].

Unless explicitly noted, any scheme algorithm may be randomized. We use ⟨ ⟩ notation for stateful
algorithms: If alg is a (stateful) algorithm, we write y ← alg⟨st⟩(x) shorthand for (st, y) ← alg(st, x) to
denote an invocation with input x and output y that updates its state st. (Depending on the algorithm,
x and/or y may be missing.) If in a specific context one of the output elements of an algorithm shall
be ignored, we annotate this by assigning it to the symbol . Importantly, and in contrast to most
prior works, we assume that any algorithm of a cryptographic scheme may fail or abort, even if this is
not explicitly specified in the syntax definition. This approach is inspired by how modern programming
languages deal with error conditions via exceptions: Any code can at any time ‘throw an exception’ which
leads to an abort of the current code and is passed on to the calling instance. In particular, if in our
game definitions a scheme algorithm aborts, the corresponding game oracle immediately aborts as well
(and returns to the adversary).

Security games are parameterized by an adversary, and consist of a main game body plus zero or
more oracle specifications. The adversary is allowed to call any of the specified oracles. The execution
of the game starts with the main game body and terminates when a ‘Stop with exp’ instruction is
reached, where the value of expression exp is taken as the outcome of the game. If the outcome of a
game G is Boolean, we write Pr[G(A)] for the probability (over the random coins of G and A) that
an execution of G with adversary A results in the outcome 1. We define shorthand notation for specific
combinations of game-ending instructions: While in computational games we write ‘Win’ for ‘Stop with 1’,
in distinguishing games we write ‘Win’ for ‘Stop with b’ (where b is the challenge bit). In any case we
write ‘Lose’ for ‘Stop with 0’. Further, for a Boolean condition C, we write ‘Require C’ for ‘If ¬C: Lose’,
‘Penalize C’ for ‘If C: Lose’, ‘Reward C’ for ‘If C: Win’, and ‘Promise C’ for ‘If ¬C: Win’.

Many of the oracles specified in a security game will produce information that is considered public
and to be shared with the adversary. This holds for instance for a ciphertext c created within an en-
cryption oracle. Instead of collecting such information in an explicit data structure and returning it to
the adversary when the processing of the oracle finishes, we use the Share shortcut notation to perform
the same job implicitly. (In the above case we would write ‘Share c’.) If required, this concept could
be formalized by initializing a list L ← ϵ when the game starts, by appending the arguments of any
Share instruction to this list (e.g., L q← c), and to return L from any oracle query. We chose our implicit
notation as it uses less symbols and makes the game mechanics more clear.

2.2 Key establishment games

Most of the cryptographic primitives considered in this work (KEMs, VKEMs, KDFEMs) are key estab-
lishing primitives: Their goal is to establish fresh session keys that can be used with arbitrary applications.
While, not surprisingly, each such primitive is covered by individual security definitions and games, some
parts of these definitions overlap and are common across all formalizations. Instead of specifying the
same game components over and over again, we define and describe the common parts here and refer to
them from the main body of our treatment.

In Fig. 2 we define the core part that the formalizations of all our key establishing primitives have in
common. The game body (lines 00–03) initializes a secret/public key pair, invokes the adversary on input
the public key, checks for trivial win conditions (see below), and terminates the game with the output
provided by the adversary. The adversary can invoke a number of oracles (depending on the modeled
primitive), among which are always the Reveal and Challenge oracles specified here. (Some works in the
key establishment literature may refer to our Challenge oracle as the Test oracle.) Both oracles provide
access to a key that was priorly accepted (see lines 04,08; entries will be added to set A by other oracles).
The Reveal oracle always returns the real key (stored in array K, line 06), and the Challenge oracle
either returns the real key or a random key (line 10). (Array R is initialized to random keys, see the
Initializations: line at the top of the figure.)

Intuitively, if the adversary reveals a specific key, the latter becomes exposed. We record this in
set X (line 05). If however the adversary tests a key by invoking the Challenge oracle, the key is thereby
declared fresh. We record this in set F (line 09). It is a trivial attack to first reveal a key and then test it
(or vice versa); hence, in line 02, the game aborts (Stops with 0) if this condition is identified. Based on
the KE0, KE1 games specified in Fig. 2 (plus additional scheme specific oracles), a typical advantage of
an adversary would be defined as Adv(A) := |Pr[KE0(A)]− Pr[KE1(A)]|.

6

Initializations: A, X, F← ∅; K[·]← ⋄; R[·]← $(K)

Game KEb(A)
00 (sk, pk)← gen
01 b′ ← A(pk)
02 Require X ∩ F = ∅
03 Stop with b′

Oracle Reveal(hd)
04 Require hd ∈ A
05 X ∪← {hd}
06 k ← K[hd]
07 Return k

Oracle Challenge(hd)
08 Require hd ∈ A
09 F ∪← {hd}
10 k ← b ? K[hd] : R[hd]
11 Return k

Fig. 2. Game components for general key establishment. Legend: A: accepted; X: exposed; F: fresh; K: key;
R: random.

3 Key Encapsulation Mechanisms (KEM)

As a warm-up we define a KEM variant that supports encapsulation handles: Each encapsulation gener-
ates a fresh such handle, and a corresponding decapsulation operation can recover it from the ciphertext.
In contrast to the established session key, the handle is considered public information. As discussed in
Sect. 1.1, the handle concept is borrowed from the key establishment literature where handles reside
under the name of session id [6].

Definition 1. A key encapsulation mechanism (KEM) for (session) key space K consists of a secret
key space SK, a public key space PK, a ciphertext space C, an encapsulation handle space HD, a key
generation algorithm gen→ SK × PK, and algorithms enc, dec as follows:

PK → enc→ C ×HD ×K SK × C → dec→ HD ×K

Intuitively, for correctness we demand that after (sk, pk) ← gen and (c, hd, k) ← enc(pk) and
(hd ′, k′) ← dec(sk, c′) we have (1) handle freshness: the handle hd output by enc is unique (doesn’t
collide with other handles output by enc); and (2) key recovery: hd ′ = hd =⇒ k′ = k.6 We formalize
this in the following.

Definition 2. A KEM is correct if for every considerable adversary A the advantage function
Advcor–kem(A) := Pr[(sk, pk) ← gen; Invoke A(pk); Lose] is negligible, where the adversary has ac-
cess to the oracles of Fig. 3, and the game variables A, K are initialized as in Fig. 2. The KEM
is secure (against active adversaries) if for every considerable adversary A the advantage function
Advke–kem(A) := |Pr[KE0(A)] − Pr[KE1(A)]| is negligible, where the KE0, KE1 games consist of the
components specified in Fig. 2 and Fig. 3.

Note that the security definition also covers correctness (as the same Promise lines are present in
both games). Observe how lines 23,24 formalize handle freshness while lines 26,30,32 formalize the key
recovery demand. Lines 22,29,34 model that ciphertexts and handles and dishonestly generated session
keys are not considered secret but public information. While Def. 2, as is, specifies security against active
adversaries, a strengthening to IND-CCA security can be achieved by activating the gray components
including lines 25,31. (For the results of this article, this will not be necessary.)

4 Versatile key encapsulation: VKEM

We formalize the first of our two KEM generalizations. As discussed in Sect. 1.1, VKEMs combine and
extend the features of earlier KEM generalizations: They are two-phased as in Abe et al. [3], they support
labels as in ISO 18033-2, and they support handles as already used in Sect. 3. We illustrate the syntax
of VKEMs in Fig. 4.

Definition 3. A versatile key encapsulation mechanism (VKEM) for label spaces L1,L2 and (session)
key spaces K1,K2 consists of a secret key space SK, a public key space PK, state spaces STE ,STD,
ciphertext spaces C1, C2, encapsulation handle spaces HD1,HD2, a key generation algorithm gen→ SK×
PK, and algorithms enc1, enc2, dec1, dec2 as follows:
6 It might be tempting to additionally require that c′ = c =⇒ hd ′ = hd. However, as no part of our article

logically depends on such a property, we abstain from formally demanding it.

7

Initializations: C[·]← ⋄

Oracle Enc()
20 (c, hd, k)← enc(pk)
21 AcceptE(c, hd, k)
22 Share c, hd

Proc AcceptE(c, hd, k)
23 Promise hd /∈ A
24 A ∪← {hd}
25 C[hd]← c
26 K[hd]← k

Oracle Dec(c)
27 (hd, k)← dec(sk, c)
28 AcceptD(c, hd, k)
29 Share hd

Proc AcceptD(c, hd, k)
30 If hd ∈ A:
31 Promise C[hd] = c
32 Promise K[hd] = k
33 Else:
34 Share k

Fig. 3. KEM-specific oracles required by Def. 2. (By default ignore the gray components, in particular lines
25,31.) In the KE0, KE1 games, the adversary can query the Reveal, Challenge oracles of Fig. 2 and the Enc, Dec
oracles specified here. The AcceptE, AcceptD procedures are invoked (exclusively) from lines 21,28. See Sect. 2.1
for the meaning of instructions ‘Share’ and ‘Promise’.

PK × L1 → enc1 → C1 ×HD1 ×K1 × STE
STE × L2 → enc2 → C2 ×HD2 ×K2

SK × L1 × C1 → dec1 → HD1 ×K1 × STD
STD × L2 × C2 → dec2 → HD2 ×K2

enc1

enc2

dec1

dec2

pk
L1

L2

stE

c1

hd1
k1

c2

hd2
k2

stD

sk
L1

L2

Fig. 4. Interplay of VKEM algorithms. The thick arrows are relevant for functionality/applications. The thin
arrows are for technical artifacts.

In a nutshell, for correctness we demand that if the encapsulation and decapsulation algorithms
are invoked and the labels and handles are consistent, then so are the established session keys. More
precisely, we demand that for all (L1, L2), (L′

1, L′
2) ∈ L1×L2, after (sk, pk)← gen and (c1, hd1, k1, stE)←

enc1(pk, L1) followed by (c2, hd2, k2) ← enc2(stE , L2) and (hd ′
1, k′

1, stD) ← dec1(sk, L′
1, c′

1) followed by
(hd ′

2, k′
2)← dec2(stD, L′

2, c′
2), we have (1) handle freshness: the handles hd1, hd2 output by enc1, enc2 are

unique (don’t collide with other handles output by enc1 and enc2); (2) history matching: hd ′
1 = hd1 =⇒

L′
1 = L1 and hd ′

2 = hd2 =⇒ (L′
1, hd ′

1, L′
2) = (L1, hd1, L2); and (3) key recovery: hd ′

1 = hd1 =⇒ k′
1 = k1

and hd ′
2 = hd2 =⇒ k′

2 = k2.7 Before we formalize this, note that history matching is equivalent
with the possibly more intuitive demand for (2’) handle divergence: L′

1 ̸= L1 =⇒ hd ′
1 ̸= hd1 and

(L′
1, hd ′

1, L′
2) ̸= (L1, hd1, L2) =⇒ hd ′

2 ̸= hd2.

The oracles required by our formal definitions of correctness and security are considerably more
involved than those for KEMs in Fig. 3. This is primarily because the splitting of enc, dec into two
phases requires infrastructure for session management: In practice, multiple enc/dec sessions might be
invoked in parallel, meaning that an expressive definition has to support concurrency. We provide further
discussion after the definition.
7 Analogously to Footnote 6, it might be tempting to additionally require c′

1 = c1 =⇒ hd ′
1 = hd1 and

(c′
1, c′

2) = (c1, c2) =⇒ hd ′
2 = hd2. However, as no part of our article logically depends on such a property, we

once more abstain from formally demanding it.

8

Definition 4. A VKEM is correct if for every considerable adversary A the advantage function
Advcor–vkem(A) := Pr[(sk, pk) ← gen; Invoke A(pk); Lose] is negligible, where the adversary has ac-
cess to the oracles of Fig. 5, and the game variables A, K are initialized as in Fig. 2. The VKEM
is secure (against active adversaries) if for every considerable adversary A the advantage function
Advke–vkem(A) := |Pr[KE0(A)] − Pr[KE1(A)]| is negligible, where the KE0, KE1 games consist of the
components specified in Fig. 2 and Fig. 5.

Initializations: STE[·], STD[·]← ▷; HE[·], CE[·], HD[·], CD[·]← ϵ; H[·], C[·]← ⋄

Oracle Enc1(sid, L)
20 Require STE[sid] = ▷
21 (c,hd,k,st)←enc1(pk,L)
22 STE[sid]← st
23 HE[sid] q← L q hd
24 CE[sid] q← c
25 AcceptE(sid : hd, k)
26 Share c, hd

Oracle Enc2(sid, L)
27 Require STE[sid] ̸=▷,◁
28 st ← STE[sid]
29 (c, hd, k)←enc2(st, L)
30 STE[sid]← ◁

31 HE[sid] q← L q hd
32 CE[sid] q← c
33 AcceptE(sid : hd, k)
34 Share c, hd

Proc AcceptE(sid : hd, k)
35 Promise hd /∈ A
36 A ∪← {hd}
37 H[hd]← HE[sid]
38 C[hd]← CE[sid]
39 K[hd]← k

Oracle Dec1(sid, L, c)
40 Require STD[sid] = ▷
41 (hd,k,st)←dec1(sk,L,c)
42 STD[sid]← st
43 HD[sid] q← L q hd
44 CD[sid] q← c
45 AcceptD(sid : hd, k)
46 Share hd

Oracle Dec2(sid, L, c)
47 Require STD[sid] ̸=▷,◁
48 st ← STD[sid]
49 (hd, k)←dec2(st, L, c)
50 STD[sid]← ◁

51 HD[sid] q← L q hd
52 CD[sid] q← c
53 AcceptD(sid : hd, k)
54 Share hd

Proc AcceptD(sid : hd, k)
55 If hd ∈ A:
56 Promise H[hd]=HD[sid]
57 Promise C[hd]=CD[sid]
58 Promise K[hd]=k
59 Else:
60 Share k

Fig. 5. VKEM-specific oracles required by Def. 4. (By default ignore the gray components.) In the KE0, KE1

games, the adversary can query the Reveal, Challenge oracles of Fig. 2 and the Enc1, Enc2, Dec1, Dec2 oracles
specified here. The AcceptE, AcceptD procedures are invoked (exclusively) from lines 25,33,45,53. See Sect. 2.1
for the meaning of instructions ‘Share’ and ‘Promise’ and ‘Require’.

In Fig. 5 we store the states of enc/dec sessions in the arrays STE, STD, and use the ▷, ◁ symbols to
identify freshly initialized and completed sessions. See lines 20,22,27,28,30,40,42,47,48,50. Note that the
adversary can freely refer to any session via a self-chosen identifier sid.8 We further record the input-
output history of sessions in arrays HE and HD. More precisely, every completed VKEM encapsulation
or decapsulation operation defines a history h of the form h = L1 q hd1 q L2 q hd2 that records the public
information (here: the involved labels and established handles) logically associated with the established
session keys k1, k2. These histories are recorded in lines 23,31,43,51. Note how lines 37,56 implement
history matching/handle divergence and lines 39,58 implement key recovery. While Def. 4, as is, specifies
security against active adversaries, a strengthening to IND-CCA security can be achieved by activating
the gray components including lines 24,32,38,44,52,57. (For the results of this article, this will not be
necessary.)

4.1 Label binding

In Sect. 5 we specify a KEM combiner that transforms two ingredient VKEMs into a hybrid KEM such
that the hybrid is secure if at least one of the VKEMs is. As we will see, proving the security of this
construction will not be possible with just the properties guaranteed by Def. 4. Rather, the security
proof will require an additional, relatively mild auxiliary security property that we dub label binding
8 This notion of session id has nothing to do with the one used in the key exchange literature and mentioned

in Sect. 1.1. In the context of Fig. 5, session ids are not visible by any protocol algorithm. Their function is
exclusively to make sessions individually addressable by the adversary.

9

security. This notion places a restriction on the set of possible histories h. Concretely, it says that if an
encapsulation history h and a decapsulation history h′ match in the first three positions (we denote this
condition with h

.= h′), then they actually match fully. More precisely, if history h = L1 q hd1 q L2 q hd2
emerges from a complete encapsulation invocation, and history h′ = L′

1 q hd ′
1 q L′

2 q hd ′
2 emerges from

a complete decapsulation invocation, we define h
.= h′ :⇐⇒ L1 q hd1 q L2 = L′

1 q hd ′
1 q L′

2 and let the
label binding property demand that always h

.= h′ =⇒ h = h′. As a consequence, of course, we obtain
h

.= h′ =⇒ hd2 = hd ′
2.

Definition 5. A VKEM provides label binding if for every considerable adversary A the advantage
function Advlb(A) := Pr[LB(A)] is negligible, where the game consists of the components specified in
Fig. 5 and Fig. 6.

Initializations: A← ∅; K[·]← ⋄

Game LB(A)
00 (sk, pk)← gen
01 Invoke A(pk)
02 For all h ∈ HE[·] with |h| = 4:
03 For all h′ ∈ HD[·] with |h′| = 4:
04 Promise h

.= h′ =⇒ h = h′

05 Stop with 0

Fig. 6. Game required by Def. 5 to define label binding. The adversary can query the Enc1, Enc2, Dec1, Dec2
oracles specified in Fig. 5.

4.2 Constructions

VKEMs condense concepts explored in several lines of prior work into a single primitive. Many interesting
constructions in the spirit of the same prior work will hence exist. As we are specifically interested in
what one can do with VKEMs, we briefly exemplify the primitive in Appendix A and leave a more
detailed study of VKEM instantiations for future research. Our construction combines a regular KEM
with a PRF and is thus very efficient.

5 KEM Combiner from VKEMs

We present a combiner that constructs a KEM from two VKEMs. The combiner is generic, in the sense
that it allows running any two (correct) VKEMs such that, as long as one of the VKEMs meets KE
security definition (strong) and the other meets the LB definition (weak), then the overall combined
scheme forms a KE secure (and correct) KEM. The label-binding property is crucial for proving the
combiner secure. The reason is that the combined instances cross the first phase handles to exchange
information about the other VKEM (see Fig. 1 for an illustration). Intuitively, this prevents attacks
against the first phase part of weak VKEM. Adding label-binding prevents malleability attacks against
the second phase of the weak VKEM. The full specification of the combiner is in Fig. 7.

Theorem 1. Let VKEM1 := (gen1, enc1
1, enc1

2, dec1
1, dec1

2) and VKEM2 := (gen2, enc2
1, enc2

2, dec2
1, dec2

2)
be two VKEMs. Let C := (gen, enc, dec) be the KEM constructed by combining them according to
Fig. 7. For all adversaries A attacking the security of the KEM there exist adversaries B1,B2 attack-
ing the security of VKEM1, VKEM2, respectively, and adversaries C1, C2 attacking the label binding of
VKEM1, VKEM2, respectively, such that

Advke–kem(A) ≤ Advke–vkem(B1) + Advlb(C2)

and
Advke–kem(A) ≤ Advke–vkem(B2) + Advlb(C1)

where the security definitions are those of Def. 2 and Def. 4 and Def. 5.

10

Proc gen
00 (sk1, pk1)← gen1

01 (sk2, pk2)← gen2

02 sk := (sk1, sk2)
03 pk := (pk1, pk2)
04 Return sk, pk

Proc enc(pk)
05 (c1

1, hd1
1, , st1)← enc1

1(pk1, ⋄)
06 (c2

1, hd2
1, , st2)← enc2

1(pk2, ⋄)
07 (c1

2, hd1
2, k1

2)← enc1
2(st1, hd2

1)
08 (c2

2, hd2
2, k2

2)← enc2
2(st2, hd1

1)
09 c := (c1

1, c1
2, c2

1, c2
2)

10 hd ← (hd1
2, hd2

2)
11 k ← k1

2 + k2
2

12 Return c, hd, k

Proc dec(sk, c)
13 (hd1

1, , st1)← dec1
1(sk1, ⋄, c1

1)
14 (hd2

1, , st2)← dec2
1(sk2, ⋄, c2

1)
15 (hd1

2, k1
2)← dec1

2(st1, hd2
1, c1

2)
16 (hd2

2, k2
2)← dec2

2(st2, hd1
1, c2

2)
17 hd ← (hd1

2, hd2
2)

18 k ← k1
2 + k2

2
19 Return hd, k

Fig. 7. KEM combiner from two VKEM schemes. The instantiated combiner runs a single time both encapsu-
lation/decapsulation chains and crosses over the handles as depicted in Fig. 1. We assume {⋄} ⊆ L1

1 = L2
1 and

HD2
1 ⊆ L1

2 and HD1
1 ⊆ L2

2. We let HD = HD1
2 ×HD2

2.

We give an overview of the proof; the details can be found in Appendix B. Starting with the KEM
security game instantiated with the algorithms of Fig. 7, we add a Promise instruction that lets ad-
versary A ‘win’ in case its actions break label binding, i.e., if h

.= h′ yet h ̸= h′ for an encapsulation
history h and a decapsulation history h′. This game hop comes at the cost of Advlb(C) for some adver-
sary C derived from A. Once the condition is taken care of, the history h′ of every decapsulation query
has either h′ = h for a prior h (and is then trivial to reply to), or the labels and first-stage handle of h′

are sufficiently different from any prior h such that the access rules in Fig. 5 allow for straightforwardly
replying to the query in a reduction by using the session keys released by the game’s line 60. That is,
the remaining advantage of A is Advke–vkem(B) for some adversary B derived from A.

6 KDF Encapsulation Mechanisms: KDFEM

We formalize the second of our two KEM generalizations. As discussed in Sect. 1.1, KDFEMs don’t output
session keys directly, but instead establish keyed KDF instances. These KDF instances deterministically
map a domain L to a range K, and can be used to derive an arbitrary number of session keys.

Definition 6. A KDF encapsulation mechanism (KDFEM) for label space L and (session) key space K
consists of a secret key space SK, a public key space PK, a state space ST , a ciphertext space C, an
encapsulation handle space HD, a key generation algorithm gen→ SK×PK, and algorithms enc, dec, eval
as follows:

PK → enc→ C ×HD × ST SK × C → dec→ HD × ST ST × L → eval→ K

Intuitively, for correctness we demand that after (sk, pk) ← gen and (c, hd, st) ← enc(pk) and k ←
eval(st, L) and (hd ′, st′)← dec(sk, c′) and k′ ← eval(st′, L′) we have (1) handle freshness: the handle hd
output by enc is unique (doesn’t collide with other handles output by enc); and (2) key recovery: hd ′ =
hd ∧ L′ = L =⇒ k′ = k.9 We formalize this in the following.

Definition 7. A KDFEM is correct if for every considerable adversary A the advantage function
Advcor–kdfem(A) := Pr[(sk, pk) ← gen; Invoke A(pk); Lose] is negligible, where the adversary has ac-
cess to the oracles of Fig. 8 and the game variables A, K are initialized as in Fig. 2. The KDFEM
is secure (against active adversaries) if for every considerable adversary A the advantage function
Advke–kdfem(A) := |Pr[KE0(A)] − Pr[KE1(A)]| is negligible, where the KE0, KE1 games consist of
the components specified in Fig. 2 and Fig. 8.

In Fig. 8, the session management is organized in the same way as in Fig. 5. A novelty is the splitting
of set A into two: Set A− indicates the set of (pre-)accepted enc, dec operations (lines 23,24,51) and set A
indicates the accepted KDF evaluations (lines 34,35,53,54). (The latter matches precisely the spirit of
our KEM/VKEM formalizations in Sect. 3 and Sect. 4.) As in our KEM/VKEM formalizations, while
Def. 7, as is, specifies security against active adversaries, a strengthening to IND-CCA security can be
achieved by activating the gray components in Fig. 8. (As before, for the results of this article, this will
not be necessary.)
9 Analogously to Footnotes 6 and 7, it might be tempting to additionally require that c′ = c =⇒ hd ′ = hd.

However, as no part of our article logically depends on such a property, we once more abstain from formally
demanding it.

11

Initializations: STE[·], STD[·]← ▷; A− ← ∅; HE[·], HD[·], C[·]← ⋄

Oracle Enc(sid)
20 Require STE[sid] = ▷
21 (c, hd, st)← enc(pk)
22 STE[sid]← st
23 Promise hd /∈ A−

24 A− ∪← {hd}
25 C[hd]← c
26 HE[sid]← hd
27 Share c, hd

Oracle EvalE(sid, L)
28 Require STE[sid] ̸= ▷
29 st ← STE[sid]
30 k ← eval(st, L)
31 hd ← HE[sid]
32 AcceptE(hd, L, k)

Proc AcceptE(hd, L, k)
33 hd ← hd q L
34 If hd /∈ A:
35 A ∪← {hd}
36 K[hd]← k
37 Else:
38 Promise K[hd] = k

Oracle Dec(sid, c)
39 Require STD[sid] = ▷
40 (hd, st)← dec(sk, c)
41 STD[sid]← st
42 If hd ∈ A−:
43 Promise C[hd] = c
44 HD[sid]← hd
45 Share hd

Oracle EvalD(sid, L)
46 Require STD[sid] ̸= ▷
47 st ← STD[sid]
48 k ← eval(st, L)
49 hd ← HD[sid]
50 AcceptD(hd, L, k)

Proc AcceptD(hd, L, k)
51 If hd ∈ A−:
52 hd ← hd q L
53 If hd /∈ A:
54 A ∪← {hd}
55 K[hd]← k
56 Else:
57 Promise K[hd] = k
58 Else:
59 Share k

Fig. 8. KDFEM-specific oracles required by Def. 7. (By default ignore the gray components.) In the KE0, KE1

games, the adversary can query the Reveal, Challenge oracles of Fig. 2 and the Enc, EvalE, Dec, EvalD oracles
specified here. The AcceptE, AcceptD procedures are invoked (exclusively) from lines 32,50. See Sect. 2.1 for the
meaning of instructions ‘Share’ and ‘Promise’ and ‘Require’.

7 KEM combiner from KDFEMs

We present a combiner that generically constructs a KEM from two KDFEMs. We specify the details in
Fig. 9. The idea is to derive session keys as per k ← f1(hd2) + f2(hd1) where f1, f2 represent the keyed
KDF instances of the two KDFEMs. Note that, similarly to Fig. 1, the handles of the two instances are
crossed.

Proc gen
00 (sk1, pk1)← gen1

01 (sk2, pk2)← gen2

02 sk := (sk1, sk2)
03 pk := (pk1, pk2)
04 Return sk, pk

Proc enc(pk)
05 (c1, hd1, st1)← enc1(pk1)
06 (c2, hd2, st2)← enc2(pk2)
07 k1 ← eval1(st1, hd2)
08 k2 ← eval2(st2, hd1)
09 c := (c1, c2)
10 hd ← (hd1, hd2)
11 k ← k1 + k2

12 Return c, hd, k

Proc dec(sk, c)
13 (hd1, st1)← dec1(sk1, c1)
14 (hd2, st2)← dec2(sk2, c2)
15 k1 ← eval1(st1, hd2)
16 k2 ← eval2(st2, hd1)
17 hd ← (hd1, hd2)
18 k ← k1 + k2

19 Return hd, k

Fig. 9. A KEM combiner from two KDFEM schemes. The combiner crosses handles in lines 07 and 08 during
encapsulation, and in lines 15 and 16 during decapsulation. We let HD = HD1 ×HD2.

Our security theorem states that if one of the KDFEMs meets KE security, then the combined scheme
is a KE secure KEM.

Theorem 2. Let KDFEM1 := (gen1, enc1, dec1, eval1) and KDFEM2 := (gen2, enc2, dec2, eval2) be two
KDFEMs. Let C := (gen, enc, dec) be the KEM constructed by combining them according to Fig. 9. For
all adversaries A attacking the security of the KEM there exist adversaries B1,B2 attacking the security of
KDFEM1, KDFEM2, respectively, and adversaries C1, C2 attacking the correctness of KDFEM1, KDFEM2,
respectively, such that

Advke–kem(A) ≤ Advke–kdfem(B1) + Advcor–kdfem(C2)

12

and
Advke–kem(A) ≤ Advke–kdfem(B2) + Advcor–kdfem(C1)

where the security definitions are those of Def. 2 and Def. 7.

The proof is of the same flavour as the one in Sect. 5. The details can be found in Appendix C.

8 Key Transport

A key transport scheme can be seen as a PKE scheme that is specialized on encrypting short constant-
length symmetric keys from some key space K. Typically we have K = {0, 1}κ for κ = 128 or κ = 256.
In this section we specify its syntax and security. We provide a construction in Sect. 9.

Definition 8. A key transport (KT) scheme for a payload key space K consists of a secret key space SK,
a public key space PK, a ciphertext space C, an encryption handle space HD, a key generation algorithm
gen→ SK × PK, and algorithms enc, dec as follows:

PK ×K → enc→ C ×HD SK × C → dec→ HD ×K

Intuitively, for correctness we demand that after (sk, pk) ← gen and (c, hd) ← enc(pk, k) and
(hd ′, k′) ← dec(sk, c′) we have (1) handle freshness: the handle hd output by enc is unique (doesn’t
collide with other handles output by enc); and (2) payload key recovery: hd ′ = hd =⇒ k′ = k.10

A formal version of these demands is covered by Def. 9. Our security definition is simulation based.
In a nutshell, we say that a KT scheme is secure if there exists a simulator that behaves precisely like
(read: indistinguishably from) the real scheme, just that it never sees the payload keys that it is meant
to transport. If no adversary can tell apart whether it interacts with the real scheme or such a simulator,
it also cannot learn information about the transported keys.

We start with defining the syntax of a simulator that fits the specification of Def. 8: A simulator for
a KT scheme consists of a state space ST and algorithms

PK → simE⟨ST ⟩ → C ×HD SK × C → simD⟨ST ⟩ → HD ×K ,

where the ⟨ST ⟩ notation suggests that the algorithms are stateful with the common state space ST .

Definition 9. A KT scheme is correct and secure (against active adversaries) if there exists a simulator
such that for every considerable adversary A the advantage function Advind(A) := |Pr[IND0(A)] −
Pr[IND1(A)]| is negligible, where the games are in Fig. 10.

Note how lines 04,05 formalize handle freshness while lines 07,12,14,15 formalize the payload key
recovery demand. (In the b = 1 case there is no payload key, hence the conditioning in line 14.) Lines
03,11,17 model that ciphertexts and handles and the payload keys of dishonestly generated ciphertexts
are not considered secret but public information. As in our KEM/VKEM/KDFEM formalizations, while
Def. 9, as is, specifies security against active adversaries, a strengthening to IND-CCA security can be
achieved by activating the gray components in Fig. 10. (As before, for the results of this article, this will
not be necessary.)

9 Key transport from KDFEMs

We demonstrate how an efficient key transport (KT) scheme can be derived from a KDFEM. The details
of our construction are in Fig. 11. We prove that if the KDFEM is secure then so is the KT scheme.

Intuitively, our transform follows an encrypt-then-mac approach. The KT encryption algorithm in-
vokes the KDFEM encapsulation algorithm once and the KDF evaluation algorithm twice. The first KDF
evaluation creates a mask with which the transported key is one-time pad encrypted, and the second
KDF evaluation is used to create a MAC tag for the resulting ciphertext. The KT decryption algorithm
reverses this, and rejects all ciphertexts that have a wrong MAC tag.
10 Analogously to Footnotes 6 and 7, it might be tempting to additionally require that c′ = c =⇒ hd ′ = hd.

However, as no part of our article logically depends on such a property, we once more abstain from formally
demanding it.

13

Initializations: A← ∅; C[·], K[·]← ⋄; st ← ⋄

Game INDb(A): (sk, pk)← gen; b′ ← A(pk); Stop with b′

Oracle Enc(k)
00 If b = 0: (c, hd)← enc(pk, k)
01 If b = 1: (c, hd)← simE⟨st⟩(pk)
02 AcceptE(c, hd, k)
03 Share c, hd

Proc AcceptE(c, hd, k)
04 Promise hd /∈ A
05 A ∪← {hd}
06 C[hd]← c
07 K[hd]← k

Oracle Dec(c)
08 If b = 0: (hd, k)← dec(sk, c)
09 If b = 1: (hd, k)← simD⟨st⟩(sk, c)
10 AcceptD(c, hd, k)
11 Share hd

Proc AcceptD(c, hd, k)
12 If hd ∈ A:
13 Promise C[hd] = c
14 If b = 0:
15 Promise K[hd] = k
16 Else:
17 Share k

Fig. 10. Games IND0, IND1 as required by Def. 9. (By default ignore the gray components.) The adversary can
query the Enc, Dec oracles. The AcceptE, AcceptD procedures are invoked (exclusively) from lines 02,10.

Theorem 3. Let KDFEM := (gen, enc, dec, eval) be a KDFEM. Let KT := (gen, enc, dec) be the KT
scheme constructed from it according to Fig. 11. Then there exists a simulator for KT such that for all
adversaries A attacking the security of the KT scheme there exists an adversary B attacking the security
of the KDFEM such that

Advind(A) ≤ Advke–kdfem(B) + q

|K| − q

where q denotes the number of decryption queries that A is allowed to pose, and the security games are
those of Def. 7 and Def. 9.

Proc gen
00 (sk, pk)← gen
01 Return sk, pk

Proc enc(pk, k)
02 (c̄, hd, st)← enc(pk)
03 µ← eval(st, ⋄)
04 k ← k + µ
05 τ ← eval(st, k)
06 c := (c̄, k, τ)
07 hd ← hd q k
08 Return c, hd

Proc dec(sk, c)
09 (hd, st)← dec(sk, c̄)
10 τ ′ ← eval(st, k)
11 if τ = τ ′:
12 µ← eval(st, ⋄)
13 k ← k − µ
14 hd ← hd q k
15 Return hd, k
16 else: Abort

Fig. 11. Key transport built from KDFEM algorithms. The input key is masked by µ. A tag τ is generated for
the masked key k in line 05. Line 16 aborts when the tag in the ciphertext is deemed unauthentic.

The proof is in Appendix D. In the following we provide some intuition. We first fix the simulator such
that simE runs enc to establish the KDFEM ciphertext and handle, and then picks values k, τ uniformly
at random, while simD decrypts ciphertexts using the secret key except for authentic ciphertexts which
it can recognize based on their KDFEM handle and the tabulated values k, τ .

Given this simulator, the reduction from KT security to KDFEM security is straighforward, as all
KDFEM algorithm invocations can be replaced by corresponding oracle calls. The term q/(|K| − q) of
the theorem statement comes from the encrypt-then-MAC design and covers adversaries that try to find
valid MAC tags by guessing them. (With one attempt per decryption query, hence the factor q; note
that set K coincides with the universe of MAC tag.)

14

10 NIST KEM Candidates

We demonstrate that the four NIST post-quantum KEM finalists (Crystals-Kyber11 [22], Classic
McEliece [4], SABER [12] and NTRU [10]) are almost (post-quantum secure) KDFEMs. More precisely,
only mild tweaks are required to turn them into KDFEMs. Two challenges have to be resolved for this:

1. The NIST KEMs don’t natively support handles. Our KDFEM interpretations need to introduce
them, such that each enc invocation outputs a fresh handle, and such that any corresponding dec
invocation recovers it.

2. The two KEM algorithms (encapsulation and decapsulation) need to be broken into three KDFEM
algorithms (encapsulation, decapsulation, evaluation).

We address the first challenge by exploiting that the NIST KEMs are CCA secure so that we can simply
use the ciphertexts as handles. More compact solutions for the handle may exist, for instance inspired by
the approach of [14] that hashes an unpredictible part of the ciphertext. The second point is addressed
by observing a common structure of the NIST KEMs that is illustrated in Fig. 12.

Proc enc(pk)
00 (c, k∗, T)← enc∗(pk)
01 k ← KDF(k∗, T)
02 Return c, k

Proc dec(sk, c)
03 (k∗, T)← dec∗(sk, c)
04 k ← KDF(k∗, T)
05 Return k

Proc enc(pk)
06 (c, k∗, T)← enc∗(pk)
07 hd := c
08 st := (k∗, T)
09 Return c, hd, st

Proc dec(sk, c)
10 (k∗, T)← dec∗(sk, c)
11 hd := c
12 st := (k∗, T)
13 Return hd, st

Proc eval(st, L)
14 k ← KDF(k∗, T q L)
15 Return k

Fig. 12. The left-hand side represents a high level abstraction of the encapsulation and decapsulation algorithms
of all four NIST post-quantum candidates. Each of these algorithms can be seen as a succession of core steps
(denoted with enc∗ or dec∗) that output a pre-key k∗, some additional terms T , and a ciphertext in the case
of enc∗. Both algorithms end with a key derivation step denoted with KDF. The right-hand side shows how we
transform the KEMs into the KDFEM setting. Note that the KDF step is outsourced into a separate procedure,
which adds the label input to the information in T . Note also that the KEM ciphertexts are used as handles.

In the remaining part of this section we provide the details of how the four NIST KEMs can be
turned into KDFEMs. For concreteness we use the symbols from the documents provided by the KEMs’
authors. While their notation differs from ours in many cases, the overall concepts remain sufficiently
visible.

Crystals-Kyber. Considering page 10 of the specification document [22], we build the generation
algorithm exactly as in Algorithm 7. The encapsulation algorithm enc is constructed from lines 1–4 and
returns (c, hd, (K̄, H(c))) where hd is actually c. The decapsulation dec is the same except for line 8 that
should now return (hd, (K̄ ′, H(c))) and line 10 that should return (hd, (z, H(c))). The eval function is
simply the KDF where the label is appended to the state.

Classic McEliece. We build gen similarly as in page 9 of the specification document [4]. enc is
described as in lines 1 and 2 from the encapsulation section on page 10 and dec as in lines 1–3 from the
decapsulation section. Recall that in enc and dec, the ciphertext is assigned to the handle. eval computes
the hash H of the state appended to the label.

Saber. gen should be the same as the generation algorithm described in page 10 of the specifica-
tion document [12]. enc represents lines 1–3 of the encapsulation figure with the returned value being
11 Crystals-Kyber has been selected as a winner by the NIST on July 5, 2022.

15

(c, hd, (H(c), K̂)). dec is similar to the one presented in lines 1–7 of Algorithm 6 but with the exception
that line 5 returns (hd, (H(c), K̂ ′)) and line 7 returns (hd, (H(c), z)). Finally, eval computes the hash H
of the state appended to the label.

NTRU. This case is very similar to the previous ones: gen is described similarly as in section 1.12.1 [10],
enc is set to execute lines 1, 2, 3 and 5 of section 1.12.2 with the handle being the ciphertext. enc returns
the tuple (packed_ciphertext, hd, st) where st := bytes_to_bits(packed_rm, 8 · dpke_plaintext_bytes). dec
shall execute lines 1, 2, 4 and 5 but with the output being (hd, st) if fail = 0, and (hd, st′) otherwise where
st′ := bytes_to_bits(prf _key, prf_key_bits) q bytes_to_bits(packed_ciphertext, 8 · kem_ciphertext_bytes).
eval is now simply executing the function Hash over the state concatenated with the label.

11 Conclusion

The current efforts by NIST and other bodies to standardize quantum-resilient KEMs have a huge
impact on the next decades of practical cryptography. This is not only because the new schemes have
the potential to protect us from possible future threats, but also because of the conceptual change of
considering KEMs instead of PKE schemes as the more fundamental building block. (Prior confidentiality
standards like OAEP and IES and ECIES tended to formalize PKE, not KEM; this is now reversed.) It
is of utmost importance to get this PKE → KEM transition right: History has shown that any detail
that can be misunderstood by practitioners might be gotten wrong eventually, with severe security issues
as a consequence.

While cryptographic theory has found the classic KEM concept to be the most versatile abstraction,
practical needs suggest that KEMs should be a little stronger than theory assumes. Our research ex-
plores two avenues to provide such a strengthening. We test our newly proposed primitives, VKEM and
KDFEM, with benchmarks in the important domains of KEM combiners and key transport. We found
in particular the KDFEM approach promising, as (1) the concept is simple and the constructions of
combiners and key transports are immediate; and (2) all four NIST finalist KEMs require only minimal
modifications to meet our KDFEM syntax and security. We hope that our work helps informing future
standardization efforts.

Acknowledgments

Many valuable comments of anonymous SSR’23 reviewers helped improving this article. We also received
constructive feedback from Christian Stohrer. This research was partially funded by armasuisse Science
and Technology (Project Nr. CYD-C-2020010).

References

1. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Pro-
cess. Tech. rep., NIST (November 2016), https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

2. CYBER; Quantum-safe Hybrid Key Exchanges. Technical Specification TS 103 744, ETSI (December 2020),
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf

3. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new framework for hybrid encryption
and a new analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 128–146. Springer, Heidelberg (May 2005). https://doi.org/10.1007/11426639_8

4. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram, V., von Maurich, I.,
Misoczki, R., Niederhagen, R., Paterson, K.G., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., Szefer,
J., Tjhai, C.J., Tomlinson, M., Wang, W.: Classic McEliece. Tech. rep., National Institute of Standards and
Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-
submissions

5. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer,
Heidelberg (Dec 2000). https://doi.org/10.1007/3-540-44448-3_41

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (May 2000).
https://doi.org/10.1007/3-540-45539-6_11

16

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://doi.org/10.1007/11426639_8
https://doi.org/10.1007/11426639_8
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO’93.
LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug 1994). https://doi.org/10.1007/3-540-48329-
2_21

8. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encapsulation mechanisms and
authenticated key exchange. In: Ding, J., Steinwandt, R. (eds.) Post-Quantum Cryptography - 10th Inter-
national Conference, PQCrypto 2019. pp. 206–226. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-030-25510-7_12

9. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP Message Format. RFC 4880,
RFC Editor (November 2007). https://doi.org/10.17487/RFC4880, https://www.rfc-editor.org/info/
rfc4880

10. Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P., Whyte, W.,
Zhang, Z., Saito, T., Yamakawa, T., Xagawa, K.: NTRU. Tech. rep., National Institute of Standards and
Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-
submissions

11. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)

12. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F., Mera, J.M.B., Beirendonck, M.V., Basso, A.:
SABER. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions

13. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 188–209. Springer, Heidelberg (Feb 2005). https://doi.org/10.1007/978-3-540-30576-7_11

14. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster lattice-based KEMs via a generic
fujisaki-okamoto transform using prefix hashing. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2722–2737.
ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484819

15. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I.
LNCS, vol. 10769, pp. 190–218. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-
76578-5_7

16. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg (Aug 2010). https://doi.org/10.1007/
978-3-642-14623-7_34

17. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. Journal of Cryptology 24(3), 588–613 (Jul
2011). https://doi.org/10.1007/s00145-010-9073-y

18. McGrew, D.: An Interface and Algorithms for Authenticated Encryption. RFC 5116, RFC Editor (January
2008). https://doi.org/10.17487/RFC5116, https://www.rfc-editor.org/info/rfc5116

19. Pinto, A., Poettering, B., Schuldt, J.C.N.: Multi-recipient encryption, revisited. In: Moriai, S., Jaeger, T.,
Sakurai, K. (eds.) ASIACCS 14. pp. 229–238. ACM Press (Jun 2014)

20. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) ACM CCS 2002. pp. 98–107.
ACM Press (Nov 2002). https://doi.org/10.1145/586110.586125

21. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 348–359. Springer, Heidelberg (Feb 2004). https://doi.org/10.1007/978-3-540-25937-4_22

22. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Seiler,
G., Stehlé, D.: CRYSTALS-KYBER. Tech. rep., National Institute of Standards and Technology (2020),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

23. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption. Tech. Rep. Version 2.1, IBM Zurich
Research Lab (December 2001), https://www.shoup.net/papers/iso-2_1.pdf

24. Zhang, R., Hanaoka, G., Shikata, J., Imai, H.: On the security of multiple encryption or CCA-security+CCA-
security=CCA-security? In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 360–374.
Springer, Heidelberg (Mar 2004). https://doi.org/10.1007/978-3-540-24632-9_26

17

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.17487/RFC4880
https://doi.org/10.17487/RFC4880
https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc4880
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-540-30576-7_11
https://doi.org/10.1007/978-3-540-30576-7_11
https://doi.org/10.1145/3460120.3484819
https://doi.org/10.1145/3460120.3484819
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.17487/RFC5116
https://doi.org/10.17487/RFC5116
https://www.rfc-editor.org/info/rfc5116
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.shoup.net/papers/iso-2_1.pdf
https://doi.org/10.1007/978-3-540-24632-9_26
https://doi.org/10.1007/978-3-540-24632-9_26

A Constructing a VKEM

We show that VKEMs can be efficiently constructed from KEMs in combination with PRFs. In Fig. 13
we propose a construction that provides both key encapsulation security Def. 4 and label binding Def. 5.
Notice that, in this construction, the ciphertext c2 is empty. The label binding is straightforward as hd2
is generated by computing a PRF on L1 q hd q L2. The KE security of the VKEM is implied by the KE
security of the underlying KEM and the pseudo-randomness of the PRF. All four algorithms make use
of the same PRF instance that generates the session key.

Proc enc1(pk, L1)
00 (c1, hd, k)← encap(pk)
01 (k1,)← PRF(k, L1)
02 hd1 := L1 q hd
03 st := (k, hd1)
04 Return c1, hd1, k1, st

Proc enc2(st, L2)
05 (k2, hd2)← PRF(k, hd1 q L2)
06 Return ⋄, hd2, k2

Proc dec1(sk, L1, c1)
07 (hd, k)← decap(sk, c1)
08 k1 ← PRF(k, L1)
09 hd1 := L1 q hd
10 st := (k, hd1)
11 Return hd1, k1, st

Proc dec2(st, L2, c2)
12 (k2, hd2)← PRF(k, hd1 q L2)
13 Return hd2, k2

Fig. 13. A label binding VKEM construction from a KEM and a PRF. We omit gen as it simply consists of
running the KEM generation algorithm.

B Proof of Theorem 1

Initializations: K[·], C[·]← ⋄; A, X, F← ∅; R[·]← $(K)
H[·]← ⋄; STE[·], STD[·]← ▷; HE[·], CE[·], HD[·], CD[·]← ϵ;

Game KEb
0(A)

00 (sk1, pk1)← gen1

01 (sk2, pk2)← gen2

02 b′ ← A(pk1, pk2)
03 Require X ∩ F = ∅
04 Stop with b′

Oracle Reveal(hd)
05 Require hd ∈ A
06 X ∪← {hd}
07 k ← K[hd]
08 Return k

Oracle Challenge(hd)
09 Require hd ∈ A
10 F ∪← {hd}
11 k ← b ? K[hd] : R[hd]
12 Return k

Oracle Enc()
13 (c1

1, hd1
1, , st1)← enc1

1(pk1, ⋄)
14 (c2

1, hd2
1, , st2)← enc2

1(pk2, ⋄)
15 (c1

2, hd1
2, k1

2)← enc1
2(st1, hd2

1)
16 (c2

2, hd2
2, k2

2)← enc2
2(st2, hd1

1)
17 c := (c1

1, c1
2, c2

1, c2
2)

18 hd ← (hd1
2, hd2

2)
19 k ← k1

2 + k2
2

20 AcceptE(c, hd, k)
21 Share c, hd

Proc AcceptE(c, hd, k)
22 Promise hd /∈ A
23 A ∪← {hd}
24 C[hd]← c
25 K[hd]← k

Oracle Dec(c)
26 (hd1

1, , st1)← dec1
1(sk1, ⋄, c1

1)
27 (hd2

1, , st2)← dec2
1(sk2, ⋄, c2

1)
28 (hd1

2, k1
2)← dec1

2(st1, hd2
1, c1

2)
29 (hd2

2, k2
2)← dec2

2(st2, hd1
1, c2

2)
31 hd ← (hd1

2, hd2
2)

32 k ← k1
2 + k2

2
33 AcceptD(c, hd, k)
34 Share hd

Proc AcceptD(c, hd, k)
35 If hd ∈ A:
36 Promise C[hd] = c
37 Promise K[hd] = k
38 Else:
39 Share k

Fig. 14. Games KE0 and KE1 in a single figure. Adding the statement ‘Promise label-binding of VKEM2’ in
line 30 switches from KE0 to KE1.

18

Proof. We prove Theorem 1 when KE is instantiated with VKEM1 and LB is instantiated with VKEM2.
The alternative case can be proven using symmetric arguments.
We write KE0 in Fig. 14 as the instantiation of KE with the inlined C. The following equality is
straightforward:

Advke–kem(A) = AdvKE0(A)
We modify KE0 into KE1 by adding a Promise statement in line 30 reflecting Fig. 6:

Promise label-binding of VKEM2

Inspection shows the following inequality:

AdvKE0(A) ≤ AdvKE1(A) .

Letting E be the event that KE1 aborts on line 30, the next relation holds:

AdvKE1(A) := |Pr[KE0
1(A)]− Pr[KE1

1(A)]|
≤ |Pr[KE0

1(A) ∧ ¬E]− Pr[KE1
1(A) ∧ ¬E]|+ |Pr[KE0

1(A) ∧ E]− Pr[KE1
1(A) ∧ E]|

Proving the inequality of Theorem 1 boils down to showing that there exist B and C such that:

(1) |Pr[KE0(A) ∧ ¬E]− Pr[KE1(A) ∧ ¬E]| = Advke–vkem(B) and
(2) |Pr[KE0

1(A) ∧ E]− Pr[KE1
1(A) ∧ E]| ≤ Advlb(C) .

We now prove relation (1). Let KE2 (Fig. 14) be the key establishement game KE of VKEM1. Let
B be the adversary constructed from A and described in Fig. 15. We prove that B is a valid reduction
from KE1 to KE2. More formally, we show that the Promise, Require and Share statements of KE1 are
properly simulated in KE2(B).

Proc B(pk1)
00 A← ∅
01 K̄[·]← ⋄
02 (sk2, pk2)← gen2

03 b′ ← A(pk1, pk2)
04 Return b′

Oracle Enc()
05 Pick fresh sid
06 (c1

1, hd1
1)← Enc1(sid, ⋄)

07 (c2
1, hd2

1, , st2)← enc2
1(pk2, ⋄)

08 (c1
2, hd1

2)← Enc2(sid, hd2
1)

09 (c2
2, hd2

2, k2
2)← enc2

2(st2, hd1
1)

10 K̄[hd2
2]← k2

2
11 c← (c1

1, c1
2, c2

1, c2
2)

12 hd ← (hd1
2, hd2

2)
13 A ∪← {hd}
14 Share c, hd

Oracle Reveal(hd)
15 Require hd ∈ A
16 (hd1

2, hd2
2)← hd

17 k1
2 ← Reveal(hd1

2)
18 k2

2 ← K̄[hd2
2]

19 Share k1
2 + k2

2

Oracle Dec(c)
20 Pick fresh sid
21 (c1

1, c1
2, c2

1, c2
2)← c

22 hd1
1 ← Dec1(sid, ⋄, c1

1)
23 (hd2

1, , st2)← dec2
1(sk2, ⋄, c2

1)
24 (hd1

2, k1
2)← Dec2(sid, hd2

1, c1
2)

25 (hd2
2, k2

2)← dec2
2(st2, hd1

1, c2
2)

26 Require label-binding VKEM2

27 hd ← (hd1
2, hd2

2)
28 Share hd
29 if hd /∈ A:
30 Share k1

2 + k2
2

Oracle Challenge(hd)
31 Require hd ∈ A
32 (hd1

2, hd2
2)← hd

33 k1
2 ← Challenge(hd1

2)
34 k2

2 ← K̄[hd2
2]

35 Share k1
2 + k2

2

Fig. 15. Reduction from game KE1 to KE2. B runs A and provides a compatible interface to access the simulated
combiner. The statements in violet correspond to B calling the VKEM2 oracles from Fig. 5. Notice that the color
matches Fig. 1. The Require statements in lines 15, 26 and 31 abort the whole game (including B) when the
respective conditions are not met. Promising label-binding is now Require LB.

First, notice that picking fresh sid in Fig. 15 (lines 05 and 20) prevents the simulation from aborting
on lines 20, 27, 40 and 47 in Fig. 5. For simplicity, we denote all the variables, arrays and sets of Fig. 5
with a superindex (1 or 2), depending on which VKEM we are discussing (VKEM1 or VKEM2). For
example, A1 now corresponds to the set A when intantiating Fig. 5 with VKEM1.
The following arguments match the Promise statements in the simulation to those in KE1:

19

– If hd1
2 is fresh (line 35 Fig. 5), then so is hd (line 22 Fig. 14). Formally,

hd1
2 /∈ A1 ⇒ (hd1

2, hd2
2) /∈ A⇒ hd /∈ A

– Assuming the handles are honest (line 35 Fig. 14), if both VKEMs decrypt to the correct key (line 58
Fig. 5), then so does the overall simulation (line 37 Fig. 14). Formally speaking, if hd ∈ A, then

hd1
2 ∈ A1 ⇒ k1

2 = K1[hd1
2] and hd2

2 ∈ A2 ⇒ k2
2 = K2[hd2

2]

thus:
k = k1

2 + k2
2 = K[hd] .

– A similar proof applies to line 57 of Fig. 5 and line 36 of Fig. 3.
– Promising label-binding of VKEM2 in line 30 of Fig. 14 is assumed to never abort (event E does not

occur) and thus line 30 can be simulated in a require line 26.
We prove that the Require statements are also simulated properly:

– If for a certain query, no abort occurs on lines 05 and 09 of Fig. 14 (hd is honest during the challenge
and reveal calls), then for the same query, no abort occurs on lines 15 and 31 of Fig. 15 (and vice
versa).

– If KE2 does not abort when testing if the adversary queried the challenge and reveal oracle on the
same handle (02 in Fig. 2), then line 03 in Fig. 14 does not abort.
In order to prove this assertion, we first argue that the set A can only contain pairs of which both
elements are fresh. In fact, applying the handle freshness property (line 35 Fig. 5) on both successive
lines 08 and 09 of Fig. 15 imply that:

∄{(hd1
2, hd2

2), (hd1
2, hd2

2)} ⊆ A s.t. hd1
2 ̸= hd1

2 .

Second, we notice that lines 15 and 31 from Fig. 15 require that (hd1
2, hd2

2) ∈ A.
Third, having A querying Challenge and Reveal on two pairs (hd1

2, hd2
2) and (hd1

2, hd2
2), the game

aborts on line 02 of Fig. 2.
Putting the pieces together, if line 03 from Fig. 14 aborts in KE1, then one of the require lines 02
(Fig. 2), 15 or 31 (Fig. 15) must abort in the simulation.

The Share statements proofs follow.
– Sharing c, hd in line 21 Fig. 14 is reproduced in the simulation on line 14 Fig. 15.
– Similarly, sharing hd in line 34 Fig. 14 is reproduced in 28 of Fig. 15.
– k1

2 and k2
2 are computed analogously in both Fig. 15 and Fig. 14. The key shared in line 19 (resp.

35) Fig. 15 has the same probability distribution as the one shared in lines 08 (resp. 12) Fig. 14.
Notice that when b = 0, line 33 Fig. 15 outputs a uniformly random key k2

2 making k1
2 +k2

2 uniformly
random.

– Assuming hd /∈ A, then key k shared in line 39 Fig. 14 is of the same distribution as that in line 28
Fig. 15. Assuming the schemes do not abort on correctness conditions, we can present the following
arguments:
If hd1

2 /∈ A1 then Dec2 of line 24 Fig. 15 will output a key k1
2 thus sharing k1

2 + k2
2 is possible.

If hd1
2 ∈ A1 for a certain session sid, then we show that hd2

2 ∈ A2 contradicting the initial assumption
hd /∈ A. First, notice that if hd1

2 ∈ A1, this means that Enc was called and several handles were
generated honestly. More Formally:

∃ ¯sid, hd1
1, hd2

1, hd2
2 s.t. (hd1

2, hd2
2) ∈ A (line 13 Fig. 15)

⋄ q hd1
1 q hd2

1 q hd1
2 = H1[¯sid] (VKEM1 line 37 Fig. 5)

⋄ q hd2
1 q hd1

1 q hd2
2 = H2[¯sid] (VKEM2 line 37 Fig. 5)

Let ⋄ q hd1
1 q hd2

1 q hd1
2 := H1

D[sid] and ⋄ q hd2
1 q hd1

1 q hd2
2 := H2

D[sid] be the decryption histories in
session sid. Using the perfect correctness definition of line 56 of Fig. 5, we know that

hd1
2 ∈ A1 ⇒ H1

D[sid] = H1[¯sid]
⇒ ⋄ q hd1

1 q hd2
1 = ⋄ q hd1

1 q hd2
1

⇒ hd1
1 = hd1

1 ∧ hd2
1 = hd2

1

⇒ ⋄ q hd2
1 q hd1

1 q hd2
2 = H2

D[sid]

20

Requiring label-binding in line 26 Fig. 15 means that

⋄ q hd2
1 q hd1

1 q hd2
2 = H2

D[sid] and ⋄ q hd2
1 q hd1

1 q hd2
2 = H2[sid]

imply that hd2
2 = hd2

2. Finally, we have:

hd = (hd1
2, hd2

2) = (hd1
2, hd2

2) ∈ A

which contradicts the assumption hd /∈ A.

The above shows that the simulation is valid concluding the first part of the proof.
We now suppose that the event E occurs and prove relation (2). We show that there exists an

adversary C constructed from A in Fig. 16, such that for any b ∈ {0, 1}, Pr[KEb
1(A) ∧ E] ≤ Advlb(C).

In fact, C runs A and deals with the queries from A similarly as the previous adversary B with only two
main exceptions:

1. The oracle Dec can reveal the key k2
2 if VKEM2 decryption oracle did not share a key.

2. The challenge oracle always reveals the combined key k.

The first exception does not affect the validity of the simulation (aborting on X ∩ F ̸= ∅) because we
assume that the game already aborts on E (that occurs before promising X∩F = ∅). The second exception
only strengthens the adversary A as the latter might have more information about the generated keys.
Let qd, qc and qr be the number of queries that A is allowed to make respectively to Dec, Challenge and
Reveal oracles. In order to simulate properly, C should be allowed to make at most qr + qd + qc queries
to the reveal oracle. With this we conclude that:

∀b ∈ {0, 1}, Pr[KEb
1(A) ∧ E] ≤ Pr[LB(C)] = Advlb(C)

and thus
|Pr[KE0

1(A) ∧ E]− Pr[KE1
1(A) ∧ E]| ≤ Advlb(C) .

Proc C(pk2)
00 �A← ∅
01 K̄[·]← ⋄
02 (sk1, pk1)← gen1

03 A(pk1, pk2)

Oracle Enc()
04 Pick fresh sid
05 (c1

1, hd1
1, , st1)← enc1

1(pk1, ⋄)
06 (c2

1, hd2
1)← Enc1(sid, ⋄)

07 (c1
2, hd1

2, , k1
2)← enc1

2(st1, hd2
1)

08 (c2
2, hd2

2)← Enc2(sid, hd1
1)

09 K̄[hd1
2]← k1

2
10 c← (c1

1, c1
2, c2

1, c2
2)

11 hd ← (hd1
2, hd2

2)
12 �A ∪← {hd}
13 Share c, hd

Oracle Reveal(hd)
14 � Require hd ∈ A
15 (hd1

2, hd2
2)← hd

16 k1
2 ← K̄[hd1

2]
17 k2

2 ← Reveal(hd2
2)

18 Share k1
2 + k2

2

Oracle Dec(c)
19 Pick fresh sid
20 (c1

1, c1
2, c2

1, c2
2)← c

21 (hd1
1, , st1)← dec2

1(sk1, ⋄, c1
1)

22 hd2
1 ← Dec1(sid, ⋄, c2

1)
23 (hd1

2, k1
2)← dec2

2(st1, hd2
1, c1

2)
24 (hd2

2, k2
2)← Dec2(sid, hd1

1, c2
2)

25 hd ← (hd1
2, hd2

2)
26 Share hd
27 if hd /∈ A:
28 if k2

2 = ⋄: k2
2 ← Reveal(hd2

2)
29 Share k1

2 + k2
2

Oracle Challenge(hd)
30 Same as Reveal

Fig. 16. The commented statements are the ones related to the set A. These statements can be omited since
we know that the Promise label binding event is the only event that can be triggered. The statements in cyan
correspond to C calling the VKEM1 oracles from Fig. 5. Notice the color matching the one in Fig. 1.

C Proof of Theorem 2

Proof. Without loss of generality, we prove Theorem 2 when KE is instantiated with KDFEM1. We
denote KE0 the key establishment game of the inlined C and KE1 the key establishment game of

21

Proc B(pk1)
00 A− ← ∅
01 K̄[·]← ⋄
02 (sk2, pk2)← gen2

03 b′ ← A(pk1, pk2)
04 Return b′

Oracle Enc()
05 Pick fresh sid
06 (c1, hd1)← Enc(sid)
07 (c2, hd2, st2)← enc2(pk2)
08 EvalE(sid, hd2)
09 k2 ← eval2(st2, hd1)
10 c← (c1, c2)
11 hd ← (hd1, hd2)
12 K̄[hd]← k2

13 A ∪← {hd}
14 Share c, hd

Oracle Reveal(hd)
15 Require hd ∈ A−

16 (hd1, hd2)← hd
17 k1 ← Reveal(hd1 q hd2)
18 k2 ← K̄[hd]
19 Share k1 + k2

Oracle Dec(c)
20 Pick fresh sid
21 (c1, c2)← c
22 hd1 ← Dec(sid, c1)
23 (hd2, st2)← dec2(sk2, c2)
24 k1 ← EvalD(sid, hd2)
25 k2 ← eval2(st2, hd1)
26 hd ← (hd1, hd2)
27 Share hd
28 if hd /∈ A−:
29 if k1 = ⋄:
30 k1 ← Reveal(hd1 q hd2)
31 Share k1 + k2

Oracle Challenge(hd)
32 Require hd ∈ A−

33 (hd1, hd2)← hd
34 k1 ← Challenge(hd1 q hd2)
35 k2 ← K̄[hd]
36 Share k1 + k2

Fig. 17. The KDFEM adversary B is very similar to the same adversary from the previous section. The colored
lines correspond to B calling the KDFEM oracles. Notice that a Reveal query is happening in the decryption in
order to recover the key.

KDFEM1. We associate A to KE0 and B to KE1. We construct B from A in Fig. 17 and prove that B
simulates properly the combined KDFEM instances C. First, picking fresh sid in Fig. 17 (lines 05 and 20)
prevents the simulation from aborting on lines 20, 28, 39 and 46 in Fig. 8. For simplicity, we denote all
the variables, arrays and sets of Fig. 8 with a superindex 1 or 2, to refer respectively to either KDFEM1

or KDFEM2. Similarly to the proof in Appendix A, we prove that the Promise statements in KE1 match
those in KE0. In fact, promising handle freshness of KDFEM1 (line 34 Fig. 8) implies freshness of the
pair of handles of the combined instances (line 23 Fig. 3). Similarly, promising correctness of line 31
(resp. 32) Fig. 3 is ensured by the correctness of both KDFEM schemes in line 43 (resp. 57) Fig. 8.
Requiring honesty of the handles pair in line 04 (resp. 08) Fig. 2 is properly simulated on line 15 (resp.
32) of Fig. 17. Additionally, analogous arguments used in Sect. 5 can be applied in this case to show
that line 22 (resp. 29) of Fig. 3 matches line 14 Fig. 17 (resp. 27). Left to prove that, if hd /∈ A, then
the simulation is able to share a (valid) key, and if A does not make challenge and reveal queries on the
same handle pair, then the simulation does not abort.
For the first statement, we assume hd /∈ A as in line 30 of Fig. 8 which implies hd /∈ A− line 23 Fig. 17.
Supposing hd1 /∈ A−1, then by line 59 of Fig. 8 k1 is shared which makes it possible to share k1 + k2 in
line 31 of Fig. 17. Supposing hd1 ∈ A−1, we have

hd1 ∈ A−1 ⇒ L1 := hd2 /∈ A−2

⇒ hd1 q L1 /∈ A1

⇒ A1 ∪← {hd1 q L1} line 56 Fig. 8
∧K1[hd1 q L1]← k1 line 57 Fig. 8

thus line 30 of Fig. 17 does not abort and outputs a key k1.
For the second statement, notice that Reveal(hd1 q hd2) (line 30 Fig. 17) is called only if (hd1, hd2) /∈ A−,
whereas in lines 17 and 34 Fig. 17 both Reveal(hd1 q hd2) and Challenge(hd1 q hd2) can only be called
if (hd1, hd2) ∈ A−. Using similar arguments to those used in the previous proof, we have:

∄{(hd1, hd2), (hd1, hd2)} ⊆ A− s.t. hd1 ̸= hd1 .

We can thus conclude that if line 02 Fig. 2 passes in KE1 then the same line passes in KE0.

22

D Proof of Theorem 3

Proof. Consider the IND game defined in Fig. 10 and instantiated with the key transport from Fig. 11.
Let Fig. 18 describe the KT simulator algorithms that get plugged into lines 01 and 09 of Fig. 10.

Initializations: A← ∅; T[·]← ⋄; st := (A, T)

Proc simE⟨st⟩(pk)
00 (c̄, hd,)← enc(pk)
01 k ← $(K)
02 τ ← $(K)
03 hd ← hd q k
04 A ∪← {hd}
05 T[hd]← τ
06 c := (c̄, k, τ)
07 Return c, hd

Proc simD⟨st⟩(sk, c)
08 (hd, st)← dec(sk, c̄)
09 hd ← hd q k
10 if hd ∈ A:
11 τ ′ ← T[hd]
12 if τ ′ = τ : µ← $(K)
13 else: Abort
14 else:
15 τ ′ ← eval(st, k)
16 if τ = τ ′: µ← eval(st, ⋄)
17 else: Abort
18 k ← k − µ
19 Return hd, k

Fig. 18. The simulator sim used in proving Theorem 3. Recall that enc and dec (lines 00 and 08) are the KDFEM
encapsulation and decapsulation algorithms. Notice that simE picks uniformly at random both, the masked key
k and the tag τ . If the handle is authentic in simD (line 10), then any key k could be output (lines 12 and 18).
Otherwise k must be computed properly as in lines 16 and 18.

Consider now the KE game defined in Fig. 2 and instantiated with a KDFEM. Let A be the adversary
playing IND and B playing KE. We build B from A in Fig. 19. We prove that the Promise, Share and
Abort statements in Fig. 10 are properly simulated by the reduction both when b = 0 and when b = 1.

First, it is clear that the handle freshness of KT in Fig. 10 on line 04 is properly simulated by the
handle freshness of the KDFEM construction (Fig. 8 line 34)) and thus in line 04 Fig. 19 for both b = 0
and b = 1. Second, assuming that line 12 Fig. 10 is executed, then line 13 would match lines 43 and 57
of Fig. 8 that are respectively called by lines 15, 18 and 21 from Fig. 19 when b = 0 and by 15, 25 and 26
when b = 1. Assuming that b = 0, dec does not abort and hd ∈ A, if line 57 Fig. 8 passes on both eval
calls of lines 18 and 21 Fig. 17, then line 15 Fig. 10 passes.

We now study the simulation of the abort lines. When b = 0, the KT decryption algorithm aborts if
the tags do not match on line 11. This condition is reproduced precisely in lines 23 and 27 and under
the same conditions (recall that Challenge outputs real masks and tags when b = 0). Things become
trickier when b = 1. It is clear that if lines 23 and 27 Fig. 19 abort then so do lines 13 and 17 Fig. 18. We
now prove the other way around. Suppose, that the else statement in line 14 is executed. We prove that
line 27 Fig. 19 is executed with overwhealming probability. Having k ′ ̸= k, we show that the probability
of τ ′ = τ is upper bounded by q

|K|−q where q is the number of queries A is allowed to make to the
decryption oracle. In fact, for a fresh key k, the probability that Challenge(hd) outputs exactly τ ′ is
precisely 1

|K| . Having that the adversary can query multiple times the decryption oracle and on fresh
inputs, then 1

|K| + 1
|K|−1 + . . . + 1

|K|−q+1 ≤
q

|K|−q . We have shown that the simulator aborts if and only
if B aborts.

As for the share statement in line 03, if b = 1 then simE outputs elements of exactly the same
distribution as Enc oracle from Fig. 19. In fact, when b = 1, the challenge oracle outputs uniformly
random elements µ and τ that lead to k ← k + µ being uniformly random. Additionally, the outputs
of lines 04 and 15 Fig. 19 are respectively of the same distributions as those in lines 00 and 08 Fig. 19.
Finally, line 17 Fig. 10 is only executed in the case of b = 0. Thus the challenge oracle on lines 19 and 22
of Fig. 19 outputs the real values τ ′ and µ which leads in line 28 Fig. 19 to the exact same key as in dec
of Fig. 11. This concludes the proof of Theorem 3.

23

Proc B(pk)
00 A← ∅
01 b′ ← A(pk)
02 Return b′

Oracle Enc(k)
03 Pick fresh sid
04 (c̄, hd)← Enc(sid)
05 EvalE(sid, ⋄)
06 µ← Challenge(hd q ⋄)
07 k ← k + µ
08 hd ← hd q k
09 EvalE(sid, k)
10 τ ← Challenge(hd)
11 A ∪← {hd}
12 c := (c̄, k, τ)
13 Share c, hd

Oracle Dec(c)
14 Pick fresh sid
15 hd ← Dec(sid, c̄)
16 hd ← hd q k
17 if hd ∈ A:
18 EvalD(sid, k)
19 τ ′ ← Challenge(hd)
20 if τ = τ ′:
21 EvalD(sid, ⋄)
22 µ← Challenge(hd q ⋄)
23 else: Abort
24 else:
25 τ ′ ← EvalD(sid, k)
26 if τ = τ ′: µ← EvalD(sid, ⋄)
27 else: Abort
28 k ← k − µ
29 Share hd, k

Fig. 19. A reduction from IND of KT to KE of KDFEM. In the real world, the challenge oracle outputs the
real tag and mask. In the ideal world, it outputs uniformly random strings from the key space K.

24

	A study of KEM generalizations

