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Abstract

We introduce the notion of public key encryption with secure key leasing (PKE-SKL). Our notion supports the
leasing of decryption keys so that a leased key achieves the decryption functionality but comes with the guarantee that
if the quantum decryption key returned by a user passes a validity test, then the user has lost the ability to decrypt. Our
notion is similar in spirit to the notion of secure software leasing (SSL) introduced by Ananth and La Placa (Eurocrypt
2021) but captures significantly more general adversarial strategies1. Our results can be summarized as follows:

1. Definitions: We introduce the definition of PKE with secure key leasing and formalize a security notion that we
call indistinguishability against key leasing attacks (IND-KLA security). We also define a one-wayness notion
for PKE-SKL that we call OW-KLA security and show that an OW-KLA secure PKE-SKL scheme can be lifted
to an IND-KLA secure one by using the (quantum) Goldreich-Levin lemma.

2. Constructing IND-KLA PKE with Secure Key Leasing: We provide a construction of OW-KLA secure PKE-SKL
(which implies IND-KLA secure PKE-SKL as discussed above) by leveraging a PKE scheme that satisfies a new
security notion that we call consistent or inconsistent security against key leasing attacks (CoIC-KLA security).
We then construct a CoIC-KLA secure PKE scheme using 1-key Ciphertext-Policy Functional Encryption (CPFE)
that in turn can be based on any IND-CPA secure PKE scheme.

3. Identity Based Encryption, Attribute Based Encryption and Functional Encryption with Secure Key Leasing:
We provide definitions of secure key leasing in the context of advanced encryption schemes such as identity
based encryption (IBE), attribute-based encryption (ABE) and functional encryption (FE). Then we provide
constructions by combining the above PKE-SKL with standard IBE, ABE and FE schemes.
Notably, our definitions allow the adversary to request distinguishing keys in the security game, namely, keys that
distinguish the challenge bit by simply decrypting the challenge ciphertext, as long as it returns them (and they
pass the validity test) before it sees the challenge ciphertext. All our constructions satisfy this stronger definition,
albeit with the restriction that only a bounded number of such keys is allowed to the adversary in the IBE and
ABE (but not FE) security games.

Prior to our work, the notion of single decryptor encryption (SDE) has been studied in the context of PKE (Georgiou
and Zhandry, Eprint 2020) and FE (Kitigawa and Nishimaki, Asiacrypt 2022) but all their constructions rely on strong
assumptions including indistinguishability obfuscation. In contrast, our constructions do not require any additional
assumptions, showing that PKE/IBE/ABE/FE can be upgraded to support secure key leasing for free.

1In more detail, our adversary is not restricted to use an honest evaluation algorithm to run pirated software.
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1 Introduction
Recent years have seen amazing advances in cryptography by leveraging the power of quantum computation. Several
novel primitives such as perfectly secure key agreement [BB20], quantum money [Wie83], quantum copy protection
[Aar09], one shot signatures [AGKZ20] and such others, which are not known to exist in the classical world, can be
constructed in the quantum setting, significantly advancing cryptographic capabilities.
In this work, we continue to study harnessing quantum powers to protect against software piracy. The quantum

no-cloning principle intuitively suggests applicability to anti-piracy, an approach which was first investigated in the
seminal work of Aaronson [Aar09], who introduced the notion of quantum copy protection. At a high level, quantum
copy protection prevents users from copying software in the sense that it guarantees that when an adversary is given a
copy protected circuit for computing some function f , it cannot create two (possibly entangled) quantum states, both of
which can compute f . While interesting in its own right for preventing software piracy, quantum copy protection (for
some class of circuits) also has the amazing application of public-key quantum money [AC12]. Perhaps unsurprisingly,
constructions of quantum copy protection schemes from standard cryptographic assumptions have remained largely
elusive. This motivates the study of primitives weaker than quantum copy protection, which nevertheless offer
meaningful guarantees for anti-piracy.
Secure software leasing (SSL), introduced by Ananth and La Placa [AL21], is such a primitive, which while being

weaker than quantum copy-protection, is nevertheless still meaningful for software anti-piracy. Intuitively, this notion
allows to encode software into a version which may be leased or rented out, for some specific term at some given cost.
Once the lease expires, the lessee returns the software and the lessor can run an efficient procedure to verify its validity.
If the software passes the test, we have the guarantee that the lessee is no longer able to run the software (using the
honest evaluation algorithm).
In this work, we explore the possibility of equipping public key encryption (PKE) with a key leasing capability. The

benefits of such a capability are indisputable – in the real world, decryption keys of users often need to be revoked, for
instance, when a user leaves an organization. In the classical setting, nothing prevents the user from maintaining a copy
of her decryption key and misusing its power. Revocation mechanisms have been designed to prevent such attacks,
but these are often cumbersome in practice. Typically, such a mechanism entails the revoked key being included in a
Certificate Revocation List (CRL) or Certificate Revocation Trees (CRT), or some database which is publicly available,
so that other users are warned against its usage. However, the challenges of effective certificate revocation are well
acknowledged in public key infrastructure – please see [BDTW01] for a detailed discussion. If the decryption keys of a
PKE could be encoded as quantum states and allow for verifiable leasing, this would constitute a natural and well-fitting
solution to the challenge of key revocation.

1.1 Prior Work
In this section, we discuss prior work related to public key encryption (PKE) and public key functional encryption
(PKFE), where decryption keys are encoded into quantum states to benefit from uncloneability. For a broader discussion
on prior work related to quantum copy protection and secure software leasing, we refer the reader to Section 1.4.
Georgiou and Zhandry [GZ20] introduced the notion of single decryptor encryption (SDE), where the decryption

keys are unclonable quantum objects. They showed how to use one-shot signatures together with extractable witness
encryption with quantum auxiliary information to achieve public key SDE. Subsequently, Coladangelo, Liu, Liu, and
Zhandry [CLLZ21] achieved SDE assuming iO and extractable witness encryption or assuming subexponential iO,
subexponential OWF, LWE and a strong monogamy property (which was subsequently shown to be true [CV22]). Very
recently, Kitagawa and Nishimaki [KN22a] introduced the notion of single-decryptor functional encryption (SDFE),
where each functional decryption key is copy protected and provided collusion-resistant single decryptor PKFE for
P/poly from the subexponential hardness of iO and LWE.
It is well-known [ALL+21, AL21] that copy protection is a stronger notion than SSL2 – intuitively, if an adversary

can generate two copies of a program, then it can return one of them while keeping the other for later use. Thus,
constructions of single decryptor encryption [GZ20, CLLZ21, KN22a] imply our notion of PKE with secure key leasing

2The informed reader may observe that this implication may not always be true due to some subtleties, but we ignore these for the purpose of the
overview.
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from their respective assumptions, which all include at least the assumption of iO (see Appendix A for the detail).
Additionally, in the context of public key FE, the only prior work by Kitagawa and Nishimaki [KN22a] considers the
restricted single-key setting where an adversary is given a single decryption key that can be used to detect the challenge
bit. In contrast, we consider the more powerful multi-key setting, which makes our definition of FE-SKL incomparable
to the SDFE considered by [KN22a]. For the primitives of IBE and ABE, there has been no prior work achieving any
notion of key leasing to the best of our knowledge. We also note that Aaronson et al. [ALL+21] studied the notion of
“copy-detection”, which is a weaker form of copy protection, for any “watermarkable” functionalities based on iO and
OWF. In particular, by instantiating the construction with the watermarkable PKE of [GKM+19], they obtain PKE with
copy-detection from iO + PKE.
Overall, all previous works that imply PKE-SKL are designed to achieve the stronger goal of copy protection (or

the incomparable goal of copy detection) and rely at least on the strong assumption of iO. In this work, our goal is to
achieve the weaker goal of PKE-SKL from standard assumptions.

1.2 Our Results
In this work, we initiate the study of public key encryption with secure key leasing. Our results can be summarized as
follows:

1. Definitions: We introduce the definition of PKE with secure key leasing (PKE-SKL) to formalize the arguably
natural requirement that decryption keys of a PKE scheme is encoded into a leased version so that the leased key
continues to achieve the decryption functionality but now comes with an additional “returnability” guarantee. In
more detail, the security of PKE-SKL requires that if the quantum decryption key returned by a user passes a
validity test, then the user has lost the ability to decrypt. To capture this intuition, we formalize a security notion
that we call indistinguishability against key leasing attacks (IND-KLA security). We also define a one-wayness
notion for PKE-SKL that we call OW-KLA security and show that an OW-KLA secure PKE-SKL scheme can be
lifted to an IND-KLA secure one by using the (quantum) Goldreich-Levin lemma.

2. Constructing IND-KLA PKE with Secure Key Leasing: We provide a construction of OW-KLA secure PKE-SKL
(which imples IND-KLA PKE-SKL as discussed above) by leveraging a PKE scheme that satisfies a new security
notion that we call consistent or inconsistent security against key leasing attacks (CoIC-KLA security). We then
construct a CoIC-KLA secure PKE scheme using 1-key Ciphertext-Policy Functional Encryption (CPFE) that in
turn can be based on any IND-CPA secure PKE scheme.

3. Identity Based Encryption, Attribute Based Encryption and Functional Encryption with Secure Key Leasing:
We provide definitions of secure key leasing in the context of advanced encryption schemes such as identity
based encryption (IBE), attribute-based encryption (ABE) and functional encryption (FE). Then we provide
constructions by combining the above PKE-SKL with standard IBE, ABE and FE schemes.
Notably, our definitions allow the adversary to request distinguishing keys in the security game, namely, keys that
distinguish the challenge bit by simply decrypting the challenge ciphertext. Recall that this was not permitted in
the classical setting to avoid trivializing the security definition. However, in the quantum setting, we consider a
stronger definition where the adversary can request such keys so long as it returns them (and they pass the validity
test) before it sees the challenge ciphertext. All our constructions satisfy this stronger definition, albeit with the
restriction that only a bounded number of such keys be allowed to the adversary in the IBE and ABE (but not FE)
security games. We emphasize that this restriction is a result of our techniques and could potentially be removed
in future work.

We note that, in general, secure software leasing (SSL) only ensures a notion of security where the adversary is forced to
use an honest evaluation algorithm for the software. However, our definition (and hence constructions) of PKE/ABE/FE
SKL do not suffer from this limitation. Our constructions do not require any additional assumptions, showing that
PKE/IBE/ABE/FE can be upgraded to support secure key leasing for free.

1.3 Technical Overview
We proceed to give a technical overview of this work.
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Definition of PKE with secure key leasing. We first introduce the definition of PKE with secure key leasing
(PKE-SKL). A PKE-SKL scheme SKL consists of four algorithms (KG , Enc, Dec, Vrfy), where the first three algorithms
form a standard PKE scheme except the following differences on KG .3

• KG outputs a quantum decryption key dk instead of a classical decryption key.

• KG outputs a (secret) verification key vk, together with a public encryption key and quantum decryption key.

The verification algorithm Vrfy takes as input a verification key and a quantum decryption key, and outputs ⊤ or ⊥. In
addition to decryption correctness, SKL should satisfy verification correctness that states that Vrfy(vk, dk ) = ⊤ holds,
where (ek, dk , vk)← KG(1λ).
The security of PKE-SKL requires that once a user holding a quantum decryption key returns the key correctly,

the user can no longer use the key and lose the ability to decrypt. We formalize this as a security notion that we call
indistinguishability against key leasing attacks (IND-KLA security). It is defined by using the following security game.

1. First, the challenger generates (ek, dk , vk)← KG(1λ) and sends ek and dk to an adversary A .

2. A sends two challenge plaintexts (m∗0 , m∗1) and a quantum state d̃k that is supposed to be a correct decryption
key. The challenger checks if Vrfy(vk, d̃k ) = ⊤ holds. If not, A is regarded as invalid and the game ends here.
Otherwise, the game goes to the next step.4

3. The challenger generates ct∗ ← Enc(ek, m∗coin) and sends it to A , where coin← {0, 1}.

4. A outputs coin′.

IND-KLA security guarantees that any QPT A cannot guess coin correctly significantly better than random guessing,
conditioned on A being valid. In more detail, for any QPT adversary A that passes the verification with a non-negligible
probability, we have

∣∣∣Pr
[
coin′ = coin | Vrfy(vk, d̃k ) = ⊤

]
− 1/2

∣∣∣ = negl(λ).

One-wayness to indistinguishability. It is natural to define a one-wayness notion for PKE-SKL, which we call
OW-KLA security, by modifying the above definition so that the adversary is required to recover entire bits of a randomly
chosen message from its ciphertext. Similarly to standard PKE, we can transform a OW-KLA secure PKE-SKL scheme
into an IND-KLA secure one by using (quantum) Goldreich-Levin lemma [AC02, CLLZ21]. Hence, though our goal is
to construct an IND-KLA secure scheme, it suffices to construct an OW-KLA secure one.

Basic idea for OW-KLA secure scheme. Towards realizing a OW-KLA secure PKE-SKL scheme, we construct
an intermediate scheme Basic = (Basic.KG , Basic.Enc, Basic.Dec, Basic.Vrfy) using two instances of a standard
PKE scheme, with parallel repetition. Let PKE = (PKE.KG, PKE.Enc, PKE.Dec) be a standard PKE scheme.
Basic.KG generates two key pairs (ek0, dk0) and (ek1, dk1) using PKE.KG and outputs ek := (ek0, ek1), dk :=
1/
√

2(|0⟩ |dk0⟩+ |1⟩ |dk1⟩), and vk := (dk0, dk1). Given m and ek, Basic.Enc generates ct0 ← PKE.Enc(ek0, m)
and ct1 ← PKE.Enc(ek1, m) and outputs ct := (ct0, ct1). Basic.Dec can decrypt this ciphertext using the decryption
keys dk0 and dk1, respectively, in superposition. Since both decryptions result in the same message m, we can
decrypt ciphertexts without collapsing dk . Finally, Basic.Vrfy checks if the input decryption key is an equal-
weight superposition of dk0 and dk1. Concretely, it applies a binary outcome measurement w.r.t. a projection
Πvrfy := 1

2 (|0⟩ |dk0⟩+ |1⟩ |dk1⟩) (⟨0| ⟨dk0|+ ⟨1| ⟨dk1|), and returns ⊤ if and only if the state is projected onto
Πvrfy.
Intuitively, if the adversary has returned the correct decryption key, then it no longer has the capability to decrypt

since the decryption key cannot be cloned. However, this scheme does not satisfy OW-KLA because an adversary
can pass the verification with probability 1/2 simply by measuring the decryption key and returning the collapsed

3In this paper, standard math or sans serif font stands for classical algorithms and classical variables. The calligraphic font stands for quantum
algorithms and the calligraphic font and/or the bracket notation for (mixed) quantum states.

4We also consider a slightly stronger definition where the adversary can get access to a verification oracle many times, and the adversary is
regarded as valid if the answer to at least one query d̃k is ⊤. In this overview, we focus on the “1-query” security for simplicity.
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decryption key. Such an adversary can keep the decryption capability even after passing verification because the
decryption key collapses to a classical string, which can be easily copied. Nonetheless, it is reasonable to expect that
this attack strategy is optimal because there appears to be no obvious way to attack with a better advantage. That said, it
is unclear how to turn this intuition into a formal proof assuming only IND-CPA security of the underlying PKE. To
address this gap, we introduce a new security notion for PKE, that we call consistent or inconsistent security against key
leasing attacks (CoIC-KLA security). Using this, we can prove that the aforementioned adversarial strategy is optimal
and Basic satisfies 1/2-OW-KLA security.
By being 1/2-OW-KLA secure, we mean that the probability that an adversary can correctly return a decryption key

and recover the challenge plaintext simultaneously is at most 1/2 + negl(λ). Below, we introduce the definition of
CoIC-KLA security and how to prove 1/2-OW-KLA security of Basic using CoIC-KLA security. Then, we explain
how to achieve a full OW-KLA secure scheme by applying parallel amplification to Basic.

Definition of CoIC-KLA security. CoIC-KLA security is defined by using the following game.

1. The challenger generates (ek0, dk0) and (ek1, dk1) using PKE.KG, and generates dk := 1/
√

2(|0⟩ |dk0⟩ +
|1⟩ |dk1⟩). The challenger sends ek0, ek1, and dk to an adversary A . In this game, A can access the verification
oracle only once, where the oracle is given a quantum state and returns the outcome of the projective measurement
(Πvrfy, I −Πvrfy).

2. A sends two plaintexts (m∗0 , m∗1) to the challenger. The challenger picks random bits a, b and generates
ct0 = Enc(ek0, ma) and ct1 = Enc(ek1, ma⊕b). Then, the challenger sends ct0 and ct1 to A .

3. A outputs a bit b′.

Then, CoIC-KLA security requires that any QPT A cannot guess b significantly better than random guessing. In the
above game, if b = 0, ct0 and ct1 are ciphertexts of the same plaintext m∗a . On the other hand, if b = 1, ct0 and ct1 are
ciphertexts of the different plaintextsm∗a andm∗1⊕a. Thus, we call this security notion consistent or inconsistent security.

1/2-OW-KLA security of Basic. We explain how to prove 1/2-OW-KLA security of Basic based on CoIC-KLA
security of PKE. The OW-KLA security game for Basic is as follows.

1. The challenger generates (ek0, dk0) and (ek1, dk1) usingPKE.KG, sets ek := (ek0, ek1) and dk := 1/
√

2(|0⟩ |dk0⟩+
|1⟩ |dk1⟩), and sends ek and dk to an adversary A .

2. The adversary returns a quantum state d̃k that is supposed to be a correct decryption key. The challenger checks
if the result of applying Πvrfy defined above to d̃k is 1. If not, A is regarded as invalid and the game ends here.
Otherwise, the game goes to the next step.

3. The challenger generates random plaintext m∗ and two ciphertexts ct0 ← PKE.Enc(ek0, m∗) and ct1 ←
PKE.Enc(ek1, m∗), and sends ct := (ct0, ct1) to A .

4. A outputs m′.

In this game, we say that A wins if (a) d̃k passes the verification, that is, the result of applying Πvrfy to d̃k is 1, and (b)
m′ = m∗ holds. A can win this game with probability at least 1/2 by just measuring 1/

√
2(|0⟩ |dk0⟩+ |1⟩ |dk1⟩),

returns collapsed key, and decrypt the challenge ciphertext with the key. As stated above, we can prove that this is the
optimal strategy for A , that is, we can bound the advantage of A by 1/2 + negl(λ). The proof can be done by using
game sequences. We denote the probability that A wins in Game i as Pr[Si].

Game 0: This is exactly the above game.

Game 1: We defer the verification of the returned key d̃k after A outputs m′.

From the deferred measurement principle, we have Pr[S0] = Pr[S1].
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Game 2: We change A’s winning condition (b). Concretely, we replace (b) with (b′) m′ ∈ {m∗, m̃} holds, where m̃
is a random plaintext.

Since we relaxed A’s winning condition, we have Pr[S1] ≤ Pr[S2].

Game 3: We generate ct1 as ct1 ← PKE.Enc(ek1, m̃) instead of ct1 ← PKE.Enc(ek1, m∗).

The only difference between Game 2 and 3 is that ct0 and ct1 are ciphertexts of the same plaintext in Game 2, but they
are ciphertexts of different plaintexts in Game 3. Thus, we obtain |Pr[S2]− Pr[S3]| = negl(λ) using CoIC security of
PKE.
We complete the proof by showing that Pr[S3] ≤ 1/2+ negl(λ) holds if PKE satisfies one-wayness (that is implied

by CoIC-KLA security). To show it, we use the following Fact 1.

Fact 1: Assume PKE satisfies one-wayness. Then, given 1/
√

2(|0⟩ |dk0⟩ + |1⟩ |dk1⟩), PKE.Enc(ek0, m∗), and
PKE.Enc(ek1, m̃), no adversary can obtain (dk0, m̃) or (dk1, m∗) with non-negligible probability.

This can be proved by using the fact that even if we measure 1/
√

2(|0⟩ |dk0⟩+ |1⟩ |dk1⟩) in the computational basis
before giving it to the adversary, the adversary still has success probability at least ϵ/2, where ϵ is the success probability
of the original experiment [BZ13, Lemma 2.1] (which is stated as Lemma 2.21).
Suppose Pr[S3] = 1/2 + 1/poly(λ) for some polynomial poly. This means that conditioned that m′ ∈ {m∗, m̃},

d̃k returned by A passes the verification with probability significantly greater than 1/2. Thus, if we measure d̃k in the
computational basis, we obtain dk0 with some inverse polynomial probability and also dk1 with some inverse polynomial
probability. (If either one is obtained with overwhelming probability, d̃k cannot pass the verification with probability
significantly greater than 1/2.) This means that using A , we can obtain either one pair of (dk0, m̃) or (dk1, m∗) with
inverse polynomial probability, which contradicts Fact 1. Thus, we obtain Pr[S3] ≤ 1/2 + negl(λ).
From the above discussions, we can conclude that if PKE satisfies CoIC-KLA security, Basic satisfies 1/2-OW-KLA

security.

Full OW-KLA security by parallel repetition. To achieve a fully OW-KLA secure scheme, we apply parallel
amplification to Basic in the following way. When generating a key tuple, we generate λ key tuples (eki, dk i, vki) of
Basic and set ek′ := (eki)i∈[λ, dk ′ := (dk i)i∈[λ], and vk′ := (vki)i∈[λ]. When encrypting a plaintext m, we divide it
into λ pieces m1, · · · , mλ, and encrypt each mi using eki. Then decryption and verification are performed naturally
by running the underlying procedures in Basic for every i ∈ [λ]. We can prove the full OW-KLA security of this
construction using a strategy analogous to that used to achieve 1/2-OW-KLA security of Basic. We remark that it is
unclear whether we can amplify 1/2-OW-KLA security to full OW-KLA security in a black box way and our security
proof relies on the specific structure of our scheme.

Constructing CoIC-KLA secure PKE scheme. In the rest of this overview, we mainly explain how to construct
CoIC-KLA secure PKE scheme. We construct it using 1-key Ciphertext-Policy Functional Encryption (CPFE) that in
turn can be based on any IND-CPA secure PKE scheme.
We first review the definition of 1-key CPFE scheme. A 1-key CPFE scheme CPFE consists of four algorithms

(FE.Setup, FE.KG, FE.Enc, FE.Dec). Given a security parameter, FE.Setup outputs a master public key mpk and a
master secret key msk. FE.KG takes as input msk and a string x and outputs a decryption key skx tied to the string x.
FE.Enc takes as input mpk and a description of a circuit C and outputs a ciphertext ct. If we decrypt this ciphertext
ct with skx using FE.Dec, we can obtain C(x). The security of it states that ciphertexts of two circuits C0 and C1
are computationally indistinguishable for an adversary who has decryption key skx for x of its choice, as long as
C0(x) = C1(x) holds.
Letting CPFE = (FE.Setup, FE.KG, FE.Enc, FE.Dec) be a 1-key CPFE scheme, we construct a CoIC secure PKE

scheme PKE = (PKE.KG, PKE.Enc, PKE.Dec) as follows. PKE.KG generates (mpk, msk)← CPFE.Setup(1λ) and
a decryption key skx ← CPFE.KG(msk, x) for random string x, and outputs an encryption key ek := mpk and the
corresponding decryption key dk := skx. Given ek = mpk andm, PKE.Enc outputs FE.Enc(mpk, C[m]), where C[m]
is the constant circuit that outputsm on any input. Given dk = skx and ct, PKE.Dec simply outputs CPFE.Dec(skx, ct).
We see that PKE satisfies decryption correctness from that of CPFE.
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Before proving CoIC-KLA security of PKE, we explain a nice tracing property of PKE that plays an important role
in the proof. It says that if there exists a decoder that can distinguish PKE.Enc(ek, m∗0) and PKE.Enc(ek, m∗1) with
probability 1/2 + 1/poly(λ) for some plaintexts m∗0 , m∗1 and polynomial poly, we can extract the string x tied to the
decryption key from the decoder. Concretely, the following fact holds.

Fact 2: Consider the following experiment. The challenger generates (ek := mpk, dk := skx) using PKE.KG and
sends them to an adversary A . A outputs a decoder D together with m∗0 , m∗1 that can predict random bit b from
PKE.Enc(ek, m∗b) with probability 1/2 + 1/poly(λ) for some polynomial poly. Then, we can extract x from
D with inverse polynomial probability.

In fact, if the decoder D is a classical decoder, we can extract x from D with a probability close to 1 as follows. Let
C̃[b, m0, m1, i] be the circuit that is given x as an input and outputsmb⊕x[i], where x[i] is the i-th bit of x. Then, supposewe
generate many random (b, FE.Enc(mpk, C̃[b, m∗0 , m∗1 , i])) and estimate the probability that the decoderD outputs b given
FE.Enc(mpk, C̃[b, m∗0 , m∗1 , i]) as an input. By the CPFE’s security, FE.Enc(mpk, C̃[b, m∗0 , m∗1 , i]) is indistinguishable
from a correctly generated ciphertext of m∗b⊕xi

, that is, PKE.Enc(ek, m∗b⊕xi
) = FE.Enc(mpk, C[m∗b⊕xi

]) from the view
of A and D who has skx, since C̃[b, m∗0 , m∗1 , i](x) = C[m∗b⊕xi

](x) = m∗b⊕xi
. Then, the result of the estimation should

be as follows.

• In the case of x[i] = 0, each sample used for the estimation looks (b, PKE.Enc(ek, mb)) from the view of D.
Thus, the result of the estimation should be greater than 1/2 from the fact that D correctly predicts random bit b
from PKE.Enc(ek, mb) with probability 1/2 + 1/poly(λ).

• In the case of x[i] = 1, each sample used for the estimation looks (b, PKE.Enc(ek, m1⊕b)) from the view of D.
Thus, the result of the estimation should be smaller than 1/2 since D outputs 1⊕ b given PKE.Enc(ek, m1⊕b)
with probability 1/2 + 1/poly(λ).

Therefore, by checking if the result of the estimation is greater than 1/2 or not, we can extract x[i]. By doing this for
every i, we can extract entire bits of x.
The above extraction technique is a direct application of that used by Kitagawa and Nishimaki [KN22b] to realize

watermarking scheme secure against quantum adversaries. By using their technique, even if the decoder is a quantum
decoder D that consists of a unitary and an initial quantum state, we can extract x from D with inverse polynomial
probability, as long as D has a high distinguishing advantage. Roughly speaking, this is done by performing the above
estimation using (approximate) projective implementation proposed by Zhandry [Zha20] that is based on the technique
by Marriott and Watrous [MW05]. By extending the above extraction technique, we can obtain the following fact.

Fact 3: Consider the following experiment. The challenger generates (ek0 := mpk0, dk0 := skx0) and (ek1 :=
mpk1, dk1 := skx1) using PKE.KG, and sends ek0, ek1, and 1/

√
2(|0⟩ |dk0⟩+ |1⟩ |dk1⟩) = 1/

√
2(|0⟩ |skx0⟩+

|1⟩ |skx1⟩) to an adversary A . A outputs a quantum decoder D together with (m∗0 , m∗1) that can predict b from
PKE.Enc(ek0, ma) and PKE.Enc(ek1, ma⊕b) with probability 1/2 + 1/poly(λ) for some polynomial poly.
Then, we can extract both x0 and x1 from D with inverse polynomial probability.

We now explain how we can prove CoIC-KLA security of PKE using Fact 3. To this end, we introduce one more
fact.

Fact 4: Given mpk0, mpk1, and 1/
√

2(|0⟩ |skx0⟩+ |1⟩ |skx1⟩), where (mpk0, skx0) and (mpk1, skx1) are generated
as in PKE.KG, no adversary can compute both x0 and x1 with non-negligible probability.

Similarly to Fact 1, we can prove this from the fact that even if we measure 1/
√

2(|0⟩ |skx0⟩+ |1⟩ |skx1⟩) in the
computational basis before giving it to the adversary, the adversary still has success probability at least ϵ/2, where ϵ is
the success probability of the original experiment [BZ13, Lemma 2.1].
Suppose there exists a QPT adversary A that breaks CoIC-KLA security of PKE. We consider the following

adversary B using A . Given mpk0, mpk1, and 1/
√

2(|0⟩ |skx0⟩+ |1⟩ |skx1⟩), B simulates CoIC-KLA security game
for A by setting ek0 := mpk0, ek1 := mpk1, and dk := 1/

√
2(|0⟩ |skx0⟩+ |1⟩ |skx1⟩) until A outputs two plaintexts

(m∗0 , m∗1). When A makes a verification query, B just returns a random bit. Let U be the unitary that performs the
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rest of A’s actions given the challenge ciphertexts. Also, let q be the internal state of A at this point. Then, from the
averaging argument and the fact that B correctly answers to A’s verification query with probability 1/2, with some
inverse polynomial probability, the quantum decoderD = (U , q) is a decoder that can predict b from PKE.Enc(ek0, m∗a)
and PKE.Enc(ek1, m∗a⊕b) with probability 1/2 + 1/poly(λ) for some polynomial poly. Thus, by using the extractor
that is guaranteed to exist by Fact 3, B can obtain both x0 and x1 with some inverse polynomial probability, which
contradicts Fact 4. This means that PKE satisfies CoIC-KLA security.

Extension to Advanced Encryption Systems with Secure Key Leasing. We also provide constructions of advanced
encryption schemes such as ABE and FE with secure key leasing. We do not focus on IBE in this paper since IBE is
a special case of ABE and our transformation preserves the underlying function class.5 We construct these schemes
by carefully combining standard ABE (resp. FE) with PKE-SKL in the way that each decryption key of the resulting
ABE-SKL (resp. FE-SKL) scheme includes a decryption key of the underlying PKE-SKL scheme and a ciphertext of the
ABE-SKL (resp. FE-SKL) scheme cannot be decrypted without the decryption key of the underlying PKE-SKL scheme.
By doing so, our ABE-SKL and FE-SKL take over the secure key leasing security from the underlying PKE-SKL.
Moreover, since PKE-SKL can be based on any PKE, our ABE-SKL and FE-SKL can be based on any standard ABE
and FE, respectively.

ABE-SKL. Here, we provide an overview of ABE with secure key leasing. Let us start with the definition of plain ABE
(without key leasing). An ABE scheme ABE consists of four algorithms (ABE.Setup, ABE.KG, ABE.Enc, ABE.Dec)
and is associated with a relation R. Given a security parameter, ABE.Setup outputs a master public key mpk and a
master secret key msk. ABE.KG takes as input msk and a key attribute y and outputs a user secret key sky tied to the
attribute y. ABE.Enc takes as input mpk, a ciphertext attribute x, and a message m and outputs a ciphertext ct. The
decryption of the ciphertext is possible only when R(x, y) = 1. For this reason, we call a user secret key for attribute
y satisfying R(x, y) = 1 a decrypting key (for a ciphertext associated with x). As for the security, we require that
ABE.Enc(x∗, m∗0) should be computationally indistinguishable from ABE.Enc(x∗, m∗1) as long as an adversary is only
given non-decrypting keys for the ciphertext (i.e., user secret keys for y satisfying R(x∗, y) = 0).
We now define the notion of ABE with secure key leasing (ABE-SKL) by extending the syntax of ABE. The

difference from the above is that the key generation algorithm is now quantum and it outputs user secret key usk y along
with verification key vk. We also additionally introduce a verification algorithm that takes vk and a quantum state usk ′

and outputs ⊤ if it judges that the user secret key corresponding to vk is correctly returned and ⊥ otherwise. As for the
security, we require that ABE.Enc(x∗, m0) should be computationally indistinguishable from ABE.Enc(x∗, m1) if the
adversary returns all decrypting keys before it is given the challenge ciphertext. Here, we say the adversary returns the
key if the adversary provides the challenger with a quantum state that makes the verification algorithm output ⊤.
For the construction, the basic idea is to use ABE for access control and PKE-SKL for obtaining security against key

leasing attacks. To enable this idea, we encrypt a message m for an attribute x so that the decryptor recovers PKE-SKL
ciphertext skl.ct = SKL.Enc(skl.ek, m) if it has decrypting key and nothing otherwise, where skl.ek is an individual
encryption key corresponding to the user. The user is given the corresponding decryption key skl.dk and can recover the
message by decrypting skl.ct. Roughly speaking, the security follows since (1) a user with a non-decrypting key cannot
obtain any information and (2) even a user with a decrypting key cannot recover the message from skl.ct once it returns
skl.dk due to the security of SKL.
The generation of user individual SKL ciphertext is somewhat non-trivial since ABE can only encrypt a single

message. In order to achieve this, we use an idea similar to [SS10, GKW16] that combines encryption with the garbled
circuits. In particular, we garble the encryption circuit of SKL that hardwires a message and encrypt the labels by
ABE. We then provide a secret key of ABE for a user only for the positions corresponding to skl.ek. This allows a user
with decrypting key to recover the labels corresponding to skl.ek and then run the garbled circuit on input the labels to
recover skl.ct.
Unfortunately, the introduction of the garbled circuits in the construction poses some limitations on the security of

the scheme. In particular, once the adversary obtains two decrypting user secret keys, the message can be revealed from
the garbled circuit in the ciphertext since the security of garbled circuits is compromised when labels for two different

5Although ABE is a special case of FE, we need stronger assumptions for (collusion-resistant) FE to instantiate them. In addition, the security
level of FE-SKL that we can achieve is different from that of ABE-SKL. Hence, we consider both ABE and FE.
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inputs are revealed. Therefore, we are only able to prove 1-bounded distinguishing key security,6 where the adversary
can make a single decrypting key query and should return the key before the challenge ciphertext is given. We note
that the adversary can make an arbitrary number of non-decrypting key queries throughout the game, unlike bounded
collusion ABE [GVW12, ISV+17] and only the number of decrypting keys is bounded.
Ideally, we would like to have a scheme without restriction on the number of decrypting keys. However, we do

not know how to achieve it without strong assumptions like functional encryption or indistinguishability obfuscation.
Instead, we achieve intermediate security notion that we call q-bounded distinguishing key security without introducing
additional assumption, where the number of decrypting keys is bounded by some pre-determined polynomial. To do so,
we use the same idea as [ISV+17], which converts single bounded collusion ABE into q-bounded collusion ABE. The
construction is based on the balls and bins idea, where we prepare multiple “bins", each of which consists of multiple
instances of 1-bounded distinguishing key secure ABE-SKL 1ABE. The key generation algorithm chooses a single
instance from each bin randomly and generates a user secret key for each of them. The encryption algorithm secret
shares the message and encrypts them using the instances of the 1ABE so that the same share is encrypted by the
instances in the same bin. By careful choices of the parameters and analysis, in the security proof, we can argue that
there exists a bin such that 1ABE instances used for generating decrypting keys in that bin are all distinct. This means
that for every 1ABE instance in that bin, only a single decrypting key is generated and thus, we can use 1-bounded
distinguishing key security for each of them. While this overall proof strategy is the same as [ISV+17], our proof is a
little bit more complex than theirs because the adversary is allowed to make an unbounded number of (non-decrypting)
key queries. We refer to Section 6 for further details.

PKFE-SKL. We move to the overview of PKFE-SKL. In this work, we focus on Key-Policy FE (KPFE) with secure
key leasing. We start with the definition of plain FE (without key leasing). An FE scheme FE consists of four algorithms
(FE.Setup, FE.KG, FE.Enc, FE.Dec) and is associated with a function class F . Given a security parameter, FE.Setup
outputs a public key pk and a master secret key msk. FE.KG takes as input msk and a function f ∈ F and outputs
a functional decryption key sk f tied to the function f . FE.Enc takes as input pk and a plaintext x and outputs a
ciphertext ct. The decryption result is f (x). For security, we require that FE.Enc(pk, x0) should be computationally
indistinguishable from FE.Enc(pk, x1) as long as an adversary is only given functional decryption keys for { fi}i such
that fi(x0) = fi(x1) for all i.
We define the notion of FE with secure key leasing (FE-SKL) by extending the syntax of FE like ABE-SKL. The

key generation algorithm is now quantum and it outputs functional decryption key sk f along with verification key vk.
We also introduce a verification algorithm that takes vk and a quantum state sk ′ and outputs ⊤ if it judges that the
functional decryption key corresponding to vk is correctly returned and ⊥ otherwise.
In the security game of PKFE-SKL, the adversary can send a distinguishing key query f such that f (x∗0) ̸= f (x∗1)

where (x∗0 , x∗1) are the challenge plaintexts as long as it returns a valid functional decryption key for f . We consider a
security game where the adversary can send unbounded polynomially many distinguishing and non-distinguishing (that
is, f (x∗0) = f (x∗1)) key queries and tries to distinguish FE.Enc(pk, x0) from FE.Enc(pk, x1).
We transform a (classical) PKFE scheme into a PKFE scheme with secure key leasing by using the power of

PKE-SKL. The basic idea is as follows. When we generate a functional decryption key for function f , we generate a key
triple of PKE-SKL and a functional decryption key of the classical PKFE for a functionW that computes a PKE-SKL
ciphertext of f (x). That is, we wrap f (x) by PKE-SKL encryption. A decryption key of PKE-SKL is appended to
fe.skW , which is the functional decryption key forW. Hence, we can decrypt the PKE-SKL ciphertext and obtain f (x).
The PKE-SKL decryption key for f is useless for another function g since we use different key triples of PKE-SKL for
each function.
More specifically, we generate PKE-SKL keys (skl.ek, skl.sk , skl.vk) and a PKFE functional decryption key

fe.skW ← FE.KG(fe.msk, W[ f , skl.ek]), where function W[ f , skl.ek] takes as input x and outputs a PKE-SKL
ciphertext SKL.Enc(skl.ek, f (x)).7 A functional decryption key for f consists of (fe.skW , skl.sk ). A ciphertext of
x is a (classical) PKFE ciphertext FE.Enc(fe.pk, x). If we return skl.sk for f (verified by skl.vk) before we obtain
FE.Enc(fe.pk, x), we cannot obtain f (x) from SKL.Enc(skl.ek, f (x)) by the security of PKE-SKL.

6When we consider the security game for ABE-SKL, a decrypting key can be used for distinguishing the challenge bit by decrypting the challenge
ciphertext (if it is not returned). Therefore, we use the term “decrypting key" and “distinguishing key" interchangeably.

7We ignore the issue of encryption randomness here. In our construction, we use (puncturable) PRFs to generate encryption randomness.
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We need to prove security against an adversary that obtains a functional decryption key for f such that f (x∗0) ̸= f (x∗1)
where (x∗0 , x∗1) is a pair of challenge plaintexts if the adversary returns the functional decryption key. To handle this
issue, we rely on IND-KLA security and need to embed a challenge ciphertext of PKE-SKL into a PKFE ciphertext.
We use the trapdoor method of FE (a.k.a. Trojan method) [ABSV15, BS18] for this purpose. We embed an SKFE
functional decryption key and ciphertext in a PKFE functional decryption key and ciphertext, respectively. We use these
SKFE functional decryption key and ciphertext for the trapdoor mode of PKFE. We gradually change SKFE ciphertexts
and keys so that we can embed a PKE-SKL challenge ciphertext by using the adaptively single-ciphertext function
privacy of SKFE. Once we succeed in embedding a PKE-SKL challenge ciphertext, we can change a ciphertext of x∗0
into a ciphertext of x∗1 such that f (x∗0) ̸= f (x∗1) as long as the functional decryption key sk f = (fe.skW , skl.sk ) for f
is returned. This is because skl.sk is returned and we can use IND-KLA security under skl.ek. See Section 7 for more
details.

1.4 Other Related Work
Quantum Copy Protection. Aaronson [Aar09] introduced the notion of quantum copy protection and constructed a
quantum copy protection scheme for arbitrary unlearnable Boolean functions relative to a quantum oracle. He also
provided two heuristic copy-protection schemes for point functions in the standard model. Coladangelo et al. [CMP20]
provided a quantum copy-protection scheme for a class of evasive functions in the QROM. Subsequently, Aaronson et
al. [ALL+21] constructed a quantum copy protection scheme for unlearnable functions relative to classical oracles. By
instantiating the oracle with post-quantum candidate obfuscation schemes, they obtained a heuristic construction of
copy protection. Coladangelo et al. [CLLZ21] provided a copy-protection scheme for pseudorandom functions in the
plain model assuming iO, OWF and extractable witness encryption, or assuming subexponential iO, subexponential
OWF, LWE and a strong “monogamy property” (which was was proven to be true in a follow-up work [CV22]). Ananth
et al. [AK21, AKL+22] also constructed copy protection for point functions, which in turn can be transformed into
copy protection for compute-and-compare programs. Sattath and Wyborski [SW22] studied unclonable decryptors,
which are an extension of SDE. Their unclonable decryptors scheme is secret key encryption and can be instantiated
with iO and OWF, or quantum oracles.

Secure software leasing. Secure software leasing (SSL) was introduced by Ananth and La Placa [AL21], where they
also provided the first SSL scheme supporting a subclass of “evasive” functions by relying on the existence of public
key quantum money and the learning with errors assumption. Evasive functions is a class of functions for which it
is hard to find an accepting input given only black-box access to the function. Their construction achieves a strong
security notion called infinite term security. They also demonstrate that there exists an unlearnable function class such
that it is impossible to achieve an SSL scheme for that function class, even in the CRS model. Later, Coladangelo
et al. [CMP20] improved the security notion achieved by [AL21] by relying on the QROM, for the same class of
evasive functions. Additionally, Kitagawa, Nishimaki and Yamakawa [KNY21] provided a finite term secure SSL
scheme for pseudorandom functions (PRFs) in the CRS model by assuming the hardness of the LWE problem against
polynomial time quantum adversaries. Additionally, this work achieves classical communication. Further, Broadbent et
al. [BJL+21] showed that SSL is achievable for the aforementioned evasive circuits without any setup or computational
assumptions that were required by previous work, but with finite term security, quantum communication and correctness
based on a distribution. The notion of secure leasing for the powerful primitive of functional encryption was studied by
Kitagawa and Nishimaki [KN22a], who introduced the notion of secret key functional encryption (SKFE) with secure
key leasing and provided a transformation from standard SKFE into SKFE with secure key leasing without relying on
any additional assumptions.

Certified deletion. Broadbent and Islam [BI20] introduced the notion of quantum encryption with certified deletion,
where we can generate a (classical) certificate to ensure that a ciphertext is deleted. They constructed a one-time SKE
scheme with certified deletion without computational assumptions. After that, many works presented various quantum
encryption primitives (PKE, ABE, FE and so on) with certified deletion [HMNY21, Por23, BK22, HMNY22]. The
root of quantum encryption with certified deletion is revocable quantum time-released encryption by Unruh [Unr15]. It
is an extension of time-released encryption where a sender can revoke quantum encrypted data before a pre-determined
time. If the revocation succeeds, the receiver cannot obtain the plaintext information.
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Related technique. The basic idea of our PKE-SKL is to prepare a superposition of two decryption keys and coherently
run the decryption algorithm in each branch. Previous works by Zhang [Zha21, Zha22] use a similar idea of running
some algorithm (which is an evaluation of “lookup tables” in their case) on two branches in superposition though their
motivation is to construct efficient blind quantum computation and classical verification of quantum computation, which
are completely irrelevant to PKE-SKL.

1.5 Concurrent Work
A concurrent and independent work by Ananth, Poremba, and Vaikuntanathan [APV23] introduces key-revocable PKE,
which is similar to PKE-SKL. They construct key-revocable PKE based on the LWE assumption while our construction
of PKE-SKL only assumes the existence of IND-CPA secure PKE. In addition, they only prove somewhat weaker
security notion called 1-bit unpredictability. Roughly, it ensures that the probability that the adversary passes the
verification for the returned key and wins the IND game is at most 1/2 + negl(λ). For example, even if an adversary
passes the verification with probability 1/3 and has a distinguishing advantage 1 conditioned on the acceptance, it is not
considered to break the security while such an adversary breaks IND-KLA security. Thus, we believe that IND-KLA
security is more desirable security notion than 1-bit unpredictability.8 On the other hand, the advantages of their work
are that their construction of key-revocable PKE is based on dual-Regev encryption, which is likely to be more efficient
than our PKE-SKL, and that they also show a fully homomorphic encryption variant.

1.6 Organization of the paper
In Section 2 we define the notation and preliminaries that we require in this work. In Section 3, we define the notion
of public key encryption with secure key leasing (PKE-SKL) and its various security notions. We also show several
general relationships among those security notions. In Section 4, we define and construct Public Key Encryption with
CoIC-KLA security. In Section 5, we provide our construction of PKE with secure key leasing. In Section 6 and
Section 7 we provide our construction of Attribute Based Encryption with secure key leasing and public key Functional
Encryption with secure key leasing respectively.

2 Preliminaries
Notations and conventions. In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or
Gen) and classical variables (e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic
font and/or the bracket notation for (mixed) quantum states (e.g., q or |ψ⟩).
Let [ℓ] denote the set of integers {1, · · · , ℓ}, λ denote a security parameter, and y := z denote that y is set, defined,

or substituted by z. For a finite set X and a distribution D, x ← X denotes selecting an element from X uniformly at
random, x ← D denotes sampling an element x according to D. Let y← A(x) and y← A(x ) denote assigning to y
the output of a probabilistic or deterministic algorithm A and a quantum algorithm A on an input x and x , respectively.
When we explicitly show that A uses randomness r, we write y ← A(x; r). PPT and QPT algorithms stand for
probabilistic polynomial-time algorithms and polynomial-time quantum algorithms, respectively. Let negl denote a
negligible function. For strings x, y ∈ {0, 1}n, x · y denotes⊕i∈[n] xiyi where xi and yi denote the ith bit of x and y,
respectively.

2.1 Standard Cryptographic Tools
Secret-key encryption.

Definition 2.1 (Secret Key Encryption). An SKE scheme SKE is a two tuple (E, D) of PPT algorithms.

8Strictly speaking, IND-KLA security and 1-bit unpredictability are incomparable because the former requires the indistinguishability between
ciphertexts of two different messages whereas the latter requires the indistinguishability between a ciphertext of some message and a uniformly
random string.

12



• The encryption algorithm E, given a key K ∈ {0, 1}λ and a plaintext m ∈ M, outputs a ciphertext ct, whereM
is the plaintext space of SKE.

• The decryption algorithm D, given a key K and a ciphertext ct, outputs a plaintext m̃ ∈ {⊥} ∪M. This
algorithm is deterministic.

We require SKE to satisfy correctness.

Correctness: We require D(K, E(K, m)) = m for every m ∈ M and key K ∈ {0, 1}λ.

Definition 2.2 (Ciphertext Pseudorandomness for SKE). Let {0, 1}ℓ be the ciphertext space of SKE. We define the
following experiment Exppr-ct

A ,SKE(1
λ, coin) between a challenger and an adversary A .

1. The challenger generates K ← {0, 1}λ. Then, the challenger sends 1λ to A .

2. A may make polynomially many encryption queries adaptively. A sends m ∈ M to the challenger. Then, the
challenger returns ct← E(K, m) if coin = 0, otherwise ct← {0, 1}ℓ.

3. A outputs coin′ ∈ {0, 1}.

We say that SKE is pseudorandom-secure if for any QPT adversary A , we have

Advpr-ct
SKE,A(λ) =

∣∣∣Pr
[
Exppr-ct

A ,SKE(1
λ, 0) = 1

]
− Pr

[
Exppr-ct

A ,SKE(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

Theorem 2.3. If OWFs exist, there exists a pseudorandom-secure SKE scheme.

Public-key encryption.

Definition 2.4 (PKE). A PKE scheme PKE is a tuple of three algorithms (KG, Enc, Dec). Below, let X be the message
space of PKE.

KG(1λ)→ (ek, dk): The key generation algorithm takes a security parameter 1λ, and outputs an encryption key ek
and a decryption key dk.

Enc(ek, m)→ ct: The encryption algorithm takes an encryption key ek and a message m ∈ X , and outputs a ciphertext
ct.

Dec(dk, ct)→ m̃: The decryption algorithm is a deterministic algorithm that takes a decryption key dk and a ciphertext
ct, and outputs a value m̃.

Correctness: For every m ∈ X , we have

Pr
[
Dec(dk, ct) = m

∣∣∣∣ (ek, dk)← KG(1λ)
ct← Enc(ek, m)

]
= 1− negl(λ).

Definition 2.5 (IND-CPA Security). We say that a PKE scheme PKE with the message space X is IND-CPA secure if it
satisfies the following requirement, formalized from the experiment Expind-cpa

PKE,A (1λ, coin) between an adversary A and a
challenger:

1. The challenger runs (ek, dk)← KG(1λ) and sends ek to A .

2. A sends (m∗0 , m∗1) ∈ X 2 to the challenger.

3. The challenger generates ct∗ ← Enc(ek, m∗coin) and sends ct∗ to A .

4. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.
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For any QPT A , it holds that

Advind-cpa
PKE,A (λ) :=

∣∣∣Pr
[
Expind-cpa

PKE,A (1λ, 0)→ 1
]
− Pr

[
Expind-cpa

PKE,A (1λ, 1)→ 1
]∣∣∣ ≤ negl(λ).

Definition 2.6 (OW-CPA Security). We say that a PKE scheme PKE with the message space X is OW-CPA secure if
it satisfies the following requirement, formalized from the experiment Expow-cpa

PKE,A (1λ) between an adversary A and a
challenger:

1. The challenger runs (ek, dk)← KG(1λ), chooses m∗ ← X , runs ct∗ ← Enc(ek, m∗), and sends (ek, ct∗) to A .

2. A sends m′ ∈ X to the challenger.

3. The challenger outputs 1 if m′ = m∗ and otherwise 0 as the final output of the experiment.

For any QPT A , it holds that

Advow-cpa
PKE,A (λ) := Pr

[
Expow-cpa

PKE,A (1λ)→ 1
]
≤ negl(λ).

It is well-known that IND-CPA security implies OW-CPA security if |X | is super-polynomial.

Pseudorandom functions.

Definition 2.7 (Puncturable PRF). A puncturable PRF (PPRF) is a tuple of algorithms PPRF = (PRF.Gen, F, Puncture)
where {FK : {0, 1}ℓ1 → {0, 1}ℓ2 | K ∈ {0, 1}λ} is a PRF family and satisfies the following two conditions. Note that
ℓ1 and ℓ2 are polynomials of λ.

Punctured correctness: For any polynomial-size set S ⊆ {0, 1}ℓ1 and any x ∈ {0, 1}ℓ1 \ S, it holds that

Pr
[
FK(x) = FK/∈S(x) | K← PRF.Gen(1λ), K/∈S ← Puncture(K, S)

]
= 1.

Pseudorandom at punctured point: For any polynomial-size set S ⊆ {0, 1}ℓ1 and any QPT distinguisher A , it holds
that

|Pr
[
A(FK/∈S , {FK(xi)}xi∈S)→ 1

]
− Pr

[
A(FK/∈S , (Uℓ2)

|S|)→ 1
]
| ≤ negl(λ),

where K← PRF.Gen(1λ), K/∈S ← Puncture(K, S) and Uℓ2 denotes the uniform distribution over {0, 1}ℓ2 .

If S = {x∗} (i.e., puncturing a single point), we simply write F ̸=x∗(·) instead of FK/∈S(·) and consider F ̸=x∗ as a keyed
function.

It is easy to see that the Goldwasser-Goldreich-Micali tree-based construction of PRFs (GGM PRF) [GGM86] from
OWF yield puncturable PRFs where the size of the punctured key grows polynomially with the size of the set S being
punctured [BW13, BGI14, KPTZ13]. Thus, we have:

Theorem 2.8 ([GGM86, BW13, BGI14, KPTZ13]). If OWFs exist, then for any polynomials ℓ1(λ) and ℓ2(λ), there
exists a PPRF that maps ℓ1-bits to ℓ2-bits.

Garbling schemes.

Definition 2.9 (Garbling schemes). A garbling scheme GC is a tuple of PPT algorithms GC = (Grbl, GCEval).

Grbl(1λ, C)→ ({labi,b}i∈[ℓ],b∈{0,1}, C̃): The garbling algorithm takes a security parameter 1λ and a circuit C and
outputs labels {labi,b}i∈[ℓ],b∈{0,1} and garbled version of the circuit C̃, where ℓ is the input length of C.
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GCEval(C̃, {labi}i∈[ℓ])→ z: The evaluation algorithm GCEval takes the garbled circuit C̃ and labels {labi}i∈[ℓ] and
outputs an evaluation result z.

Correctness: We require that

Pr
[
GCEval(C̃, {labi,xi}i∈[ℓ]) = C(x)

∣∣∣ Grbl(1λ, C))→ ({labi,b}i∈[ℓ],b∈{0,1}, C̃)
]
= 1− negl(λ)

holds for all ℓ ∈N, x ∈ {0, 1}ℓ and C with input length ℓ, where xi is the i-th bit of x.

Security: We require that there exists a PPT algorithm Sim.GC such the following distributions are computationally
indistinguishable for all ℓ ∈N, x ∈ {0, 1}ℓ, and circuit C with input length ℓ:

({labi,xi}i∈[ℓ], C̃) ≈c Sim.GC(1λ, info(C), C(x))

where Grbl(1λ, C))→ ({labi,b}i∈[ℓ],b∈{0,1}, C̃) and info(C) refers to the size of C, input and output lengths of
C.

We note that we will drop info(C) from the inputs to Sim.GC when it is clear from the context.

Theorem 2.10. [Yao86, LP09] If there exists a one-way function, there exists secure garbling scheme.

Attribute-based encryption.

Definition 2.11 (Attribute-Based Encryption). An ABE scheme ABE is a tuple of four PPT algorithms (Setup, KG, Enc, Dec).
Below, let X = {Xλ}λ, Y = {Yλ}λ, and R = {Rλ : Xλ × Yλ → {0, 1}}λ be the ciphertext attribute space, key
attribute space, and the relation associated with ABE, respectively. We note that we will abuse the notation and
occasionally drop the subscript for these spaces for notational simplicity. We also note that the message space is set to
be {0, 1}ℓ below.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ and outputs a public key pk and master
secret key msk.

KG(msk, y)→ sky: The key generation algorithm KG takes a master secret key msk and a key attribute y ∈ Y , and
outputs a decryption key sky.

Enc(pk, x, m)→ ct: The encryption algorithm takes a public key pk, a ciphertext attribute x ∈ X , and a message x,
and outputs a ciphertext ct.

Dec(sky, x, ct)→ z: The decryption algorithm takes a secret key sk f , a ciphertext attribute x, and the corresponding
ciphertext ct and outputs z ∈ {⊥} ∪ {0, 1}ℓ.

Correctness: We require that

Pr

Dec(sky, x, ct) = m

∣∣∣∣∣∣
(pk, msk)← Setup(1λ),
sky ← KG(msk, y),
ct← Enc(pk, x, m)

 = 1− negl(λ).

holds for all x ∈ X and y ∈ Y such that R(x, y) = 1 and m ∈ {0, 1}ℓ.

Definition 2.12 (Adaptive Security for ABE). We say that ABE is an adaptively secure ABE scheme for relation
R : X × Y → {0, 1}, if it satisfies the following requirement, formalized from the experiment Expada-ind

A (1λ, coin)
between an adversary A and a challenger:

1. The challenger runs (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends arbitrary key queries. That is, A sends a key attribute y ∈ Y to the challenger and the challenger
responds with sky ← KG(msk, y) for the query.
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3. At some point, A sends (x, m0, m1) to the challenger. If R(x, y) = 0 for all queried y, the challenger generates a
ciphertext ct∗ ← Enc(pk, x, mcoin). The challenger sends ct∗ to A .

4. Again, A can send key queries y such that R(x, y) = 0.

5. A outputs a guess coin′ for coin.

6. The experiment outputs coin′.

We say that ABE is adaptively secure if, for any QPT A , it holds that

Advada-ind
ABE,A (λ) :=

∣∣∣Pr
[
Expada-ind

ABE,A (1λ, 0)→ 1
]
− Pr

[
Expada-ind

ABE,A (1λ, 1)→ 1
]∣∣∣ ≤ negl(λ).

Definition 2.13 (Selective Security for ABE). We also define selective security for ABE. For doing so, we consider the
same security game as that for adaptive security except that the adversary A should declare its target x at the beginning
of the game (even before it is given pk). We then define the advantage Advsel-ind

ABE,A(λ) for the selective security similarly.
We say ABE is selectively indistinguishably-secure if for any QPT adversary A , Advsel-ind

ABE,A(λ) is negligible.

By setting X , Y , and R appropriately, we can recover important classes of ABE. In particular, if we set
Xλ = Yλ = {0, 1}∗ and define R so that R(x, y) = 1 if x = y and R(x, y) = 0 otherwise, we recover the definition
of identity-based encryption (IBE). If we set Xλ = {0, 1}n(λ) and Yλ to be the set of all circuits with input space
{0, 1}n(λ) and depth at most d(λ), where n and d are some polynomials, and define R so that R(x, y) = y(x), we
recover the definition of ABE for circuits.

Functional encryption.

Definition 2.14 (Secret-Key Functional Encryption). An SKFE scheme SKFE is a tuple of four PPT algorithms
(Setup, KG, Enc, Dec). Below, let X , Y , and F be the plaintext, output, and function spaces SKFE, respectively.

Setup(1λ)→ msk: The setup algorithm takes a security parameter 1λ, and outputs a master secret key msk.

KG(msk, f )→ sk f : The key generation algorithm takes a master secret key msk and a function f ∈ F , and outputs a
functional decryption key sk f .

Enc(msk, x)→ ct: The encryption algorithm takes a master secret key msk and a plaintext x ∈ X , and outputs a
ciphertext ct.

Dec(sk f , ct)→ y: The decryption algorithm takes a functional decryption key sk f and a ciphertext ct, and outputs
y ∈ {⊥} ∪ Y .

Correctness: We require that for every x ∈ X , f ∈ F , q ∈N, we have that

Pr

Dec(sk f , ct) = f (x)

∣∣∣∣∣∣
msk← Setup(1λ),
sk f ← KG(msk, f ),
ct← Enc(msk, x)

 = 1− negl(λ).

Definition 2.15 (Function Privacy). We formalize the experiment Expfull-fp
A ,SKFE(1

λ, coin) between an adversary A and a
challenger for SKFE scheme for X ,Y , and F as follows:

1. At the beginning, the challenger runs msk← Setup(1λ). Throughout the experiment, A can access the following
oracles.

OEnc(x0, x1): Given (x0, x1), it returns Enc(msk, xcoin).
OKG( f0, f1): Given ( f0, f1), it returns KG(msk, fcoin).
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2. If the following happens during the oracle queries above, the experiment aborts: f0(x0) ̸= f1(x1) or |x0| ̸= |x1|
or | f0| ̸= | f1|.

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

We say that SKFE is fully function private if, for any QPT A , it holds that

Advfull-fp
SKFE,A(λ) :=

∣∣∣Pr
[
Expfull-fp

SKFE,A(1
λ, 0)→ 1

]
− Pr

[
Expfull-fp

SKFE,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

If A can access OEnc only once in Expfull-fp
SKFE,A , we say that SKFE is adaptively single-ciphertext function private.

Theorem 2.16 ([GVW12, BS18, ABSV15, AV19]). If there exist OWFs, there exists adaptively single-ciphertext
function private SKFE for P/poly.

Definition 2.17 (Public-Key Functional Encryption). A PKFE scheme PKFE is a tuple of four PPT algorithms
(Setup, KG, Enc, Dec). Below, let X , Y , and F be the plaintext, output, and function spaces of PKFE, respectively.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ and outputs a public key pk and master
secret key msk.

KG(msk, f )→ sk f : The key generation algorithm KG takes a master secret key msk and a function f ∈ F , and
outputs a functional decryption key sk f .

Enc(pk, x)→ ct: The encryption algorithm takes a public key pk and a message x ∈ X , and outputs a ciphertext ct.

Dec(sk f , ct)→ y: The decryption algorithm takes a functional decryption key sk f and a ciphertext ct, and outputs
y ∈ {⊥} ∪ Y .

Correctness: We require we have that

Pr

Dec(sk f , ct) = f (x)

∣∣∣∣∣∣
(pk, msk)← Setup(1λ),
sk f ← KG(msk, f ),
ct← Enc(pk, x)

 = 1− negl(λ).

Definition 2.18 (Adaptive Security for PKFE). We formalize the experiment Expada-ind
A (1λ, coin) between an adversary

A and a challenger for PKFE scheme for X ,Y , and F as follows:

1. The challenger runs (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends arbitrary key queries. That is, A sends function fi ∈ F to the challenger and the challenger responds
with sk fi

← KG(msk, fi) for the i-th query fi.

3. At some point, A sends (x0, x1) to the challenger. If fi(x0) = fi(x1) for all i, the challenger generates a
ciphertext ct∗ ← Enc(pk, xcoin). The challenger sends ct∗ to A .

4. Again, A can sends function queries fi such that fi(x0) = fi(x1).

5. A outputs a guess coin′ for coin.

6. The experiment outputs coin′.

We say that PKFE is adaptively secure if, for any QPT A , it holds that

Advada-ind
PKFE,A(λ) :=

∣∣∣Pr
[
Expada-ind

PKFE,A(1
λ, 0)→ 1

]
− Pr

[
Expada-ind

PKFE,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

If A can send only q key queries in Expada-ind
PKFE,A where q is a bounded polynomial, we say that PKFE is q-bounded

adaptively secure.
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Theorem 2.19 ([GVW12, AV19]). If there exists IND-CPA secure PKE, there exists q-bounded adaptively secure PKFE
for P/poly.

Remark 2.20. We defined FE as key-policy FE (KPFE) here. There is another type of FE called ciphertext-policy FE
(CPFE). Since we use CPFE only as a building block of the CoIC-KLA secure PKE scheme in Section 4, we defer its
definition to Section 4.1.

2.2 Useful Lemmata
The following lemma is taken verbatim from [BZ13, Lemma 2.1].

Lemma 2.21 ([BZ13, Lemma 2.1]). Let A be a quantum algorithm, and let Pr[x] be the probability that A outputs x.
Let A ′ be another quantum algorithm obtained from A by pausing A at an arbitrary stage of execution, performing a
partial measurement that obtains one of k outcomes, and then resuming A . Let Pr′[x] be the probability A ′ outputs x.
Then Pr′[x] ≥ Pr[x]/k.

We will also need the quantum Goldreich-Levin lemma established by [CLLZ21] based on [AC02].

Lemma 2.22 (Quantum Goldreich-Levin with Quantum Auxiliary Input [CLLZ21, Lemma B.12]). There exists a
QPT algorithm Ext that satisfies the following. Let n ∈N, x ∈ {0, 1}n, ϵ ∈ [0, 1/2], and A be a quantum algorithm
with a quantum auxiliary input aux such that

Pr [A(aux , r)→ x · r | r ← {0, 1}n] ≥ 1
2
+ ϵ.

Then, we have

Pr [Ext([A ], aux )→ x] ≥ 4ϵ2.

where [A ] means the description of A .

3 Public Key Encryption with Secure Key Leasing
In this section, we define the notion of public key encryption with secure key leasing (PKE-SKL) and its various security
notions. Then we show several general relationships among those security notions.

3.1 Definitions
The syntax of PKE-SKL is defined as follows.

Definition 3.1 (PKE with Secure Key Leasing). A PKE-SKL scheme SKL is a tuple of four algorithms (KG , Enc, Dec, Vrfy).
Below, let X be the message space of SKL.

KG(1λ)→ (ek, dk , vk): The key generation algorithm takes a security parameter 1λ, and outputs an encryption key
ek, a decryption key dk , and a verification key vk.

Enc(ek, m)→ ct: The encryption algorithm takes an encryption key ek and a message m ∈ X , and outputs a ciphertext
ct.

Dec(dk , ct)→ m̃: The decryption algorithm takes a decryption key dk and a ciphertext ct, and outputs a value m̃.

Vrfy(vk, d̃k )→ ⊤/⊥: The verification algorithm takes a verification key vk and a (possibly malformed) decryption
key d̃k , and outputs ⊤ or ⊥.

18



Decryption correctness: For every m ∈ X , we have

Pr
[

Dec(dk , ct) = m
∣∣∣∣ (ek, dk , vk)← KG(1λ)

ct← Enc(ek, m)

]
= 1− negl(λ).

Verification correctness: We have

Pr
[
Vrfy(vk, dk ) = ⊤

∣∣ (ek, dk , vk)← KG(1λ)
]
= 1− negl(λ).

Remark 3.2. We can assume without loss of generality that a decryption key of a PKE-SKL scheme is reusable, i.e., it
can be reused to decrypt (polynomially) many ciphertexts. In particular, we can asusme that for honestly generated
ct and dk , if we decrypt ct by using dk , the state of the decryption key after the decryption is negligibly close to that
before the decryption in terms of trace distance. This is because the output of the decryption is almost deterministic by
decryption correctness, and thus such an operation can be done without almost disturbing the input state by the gentle
measurement lemma [Win99]. A similar remark applies to all variants of PKE-SKL (IBE, ABE, and FE with SKL)
defined in this paper.

Remark 3.3. Though we are the first to define PKE with secure key leasing, SKFE with secure key leasing was already
defined by Kitagawa and Nishimaki [KN22a]. The above definition is a natural adaptation of their definition with the
important difference that we do not require classical certificate of deletion.

We define several security notions for PKE-SKL. The first is a natural indistinguishability security definition, which
is our primary taget.

Definition 3.4 (IND-KLA Security). We say that a PKE-SKL scheme SKL with the message spaceX is IND-KLA secure,
if it satisfies the following requirement, formalized from the experiment Expind-kla

SKL,A (1λ, coin) between an adversary A
and a challenger C :

1. C runs (ek, dk , vk)← KG(1λ) and sends ek and dk to A .

2. Throughout the experiment, A can access the following (stateful) verification oracle OVrfy where V is initialized
to be ⊥:

OVrfy (d̃k ): It runs d← Vrfy(vk, d̃k ) and returns d. If V = ⊥ and d = ⊤, it updates V := ⊤.

3. A sends (m∗0 , m∗1) ∈ X 2 to C . If V = ⊥, C output 0 as the final output of this experiment. Otherwise, C generates
ct∗ ← Enc(ek, m∗coin) and sends ct∗ to A .

4. A outputs a guess coin′ for coin. C outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advind-kla
SKL,A (λ) :=

∣∣∣Pr
[
Expind-kla

SKL,A (1λ, 0)→ 1
]
− Pr

[
Expind-kla

SKL,A (1λ, 1)→ 1
]∣∣∣ ≤ negl(λ).

We say that SKL is 1-query IND-KLA secure if the above holds for any QPT A that makes at most one query to OVrfy .

Remark 3.5. When we consider a 1-query adversary, we can assume that its query is made before receiving the challenge
ciphertext ct∗ without loss of generality. This is because otherwise the experiment always outputs 0.

Remark 3.6. By a standard hybrid argument, one can show that IND-KLA security implies multi-challenge IND-KLA
security where the adversary is allowed to request arbitrarily many challenge ciphertexts. Thus, if we have an IND-KLA
secure PKE-SKL scheme for single-bit messages, we can extend the plaintext length to an arbitrary polynomial by
bit-by-bit encryption.

We also define the one-way variant of the above security.
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Definition 3.7 (OW-KLA Security). We say that a PKE-SKL scheme SKL with the message space X is OW-KLA
secure, if it satisfies the following requirement, formalized from the experiment Expow-kla

SKL,A (1
λ) between an adversary A

and a challenger C :

1. C runs (ek, dk , vk)← KG(1λ) and sends ek and dk to A .

2. Throughout the experiment, A can access the following (stateful) verification oracle OVrfy where V is initialized
to be ⊥:

OVrfy (d̃k ): It runs d← Vrfy(vk, d̃k ) and returns d. If V = ⊥ and d = ⊤, it updates V := ⊤.

3. A sends RequestChallenge to C . If V = ⊥, C outputs 0 as the final output of this experiment. Otherwise, C
chooses m∗ ← X , generates ct∗ ← Enc(ek, m∗) and sends ct∗ to A .

4. A outputs m. C outputs 1 if m = m∗ and otherwise outputs 0 as the final output of the experiment.

For any QPT A , it holds that

Advow-kla
SKL,A (λ) := Pr

[
Expow-kla

SKL,A (1
λ)→ 1

]
≤ negl(λ).

We say that SKL is 1-query OW-KLA secure if the above holds for any QPT A that makes at most one query to OVrfy .

Similar to normal PKE, IND-KLA security implies OW-KLA security if |X | is super-polynomial in λ.
Finally, we define a security notion which we call one-more unreturnability (OMUR), which requires that an

adversary given a single copy of the decryption key cannot pass the verification more than once. Though this does not
seem very meaningful by itself, this is a useful intermediate tool for our final goal of constructing IND-KLA secure
scheme.

Definition 3.8 (One-More Unreturnability). We say that a PKE-SKL scheme SKL with the message space X
satisfies One-More UnReturnability (OMUR), if it satisfies the following requirement, formalized from the experiment
Exptomur

SKL,A(1
λ) between an adversary A and a challenger C :

1. C runs (ek, dk , vk)← KG(1λ) and sends ek and dk to A .

2. Throughout the experiment, A can access the following (stateful) verification oracle OVrfy where count is
initialized to be 0:

OVrfy (d̃k ): It runs d← Vrfy(vk, d̃k ) and returns d. It updates count := count + 1 if d = ⊤.

3. A sends Finish to C . If count ≥ 2, C outputs 1 and 0 otherwise as the final output of this experiment.

For any QPT A , it holds that

Advomur
SKL,A(λ) := Pr

[
Exptomur

SKL,A(1
λ)→ 1

]
≤ negl(λ).

3.2 Relationships among Security Notions
We show several relationships among different security notions for PKE-SKL. In particular, we show the following
theorem.

Theorem 3.9. If there exists a 1-query OW-KLA secure PKE-SKL scheme, there exists an IND-KLA secure PKE-SKL
scheme.

This theorem simplifies our task: For constructing a (poly-query) IND-KLA secure scheme, it suffices to construct
a 1-query OW-KLA secure scheme. We construct a 1-query OW-KLA secure scheme in Section 5.
We prove Theorem 3.9 in the following three steps.
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1. Give a conversion to add OMUR to any 1-query OW-KLA secure scheme (Lemma 3.10).

2. Convert a 1-query OW-KLA secure scheme that satisfies OMUR to a 1-query IND-KLA secure scheme that
satisfies OMUR (Lemma 3.12).

3. Show that any 1-query IND-KLA secure scheme that satisfies OMUR is IND-KLA secure (Lemma 3.14).

It is clear that Theorem 3.9 follows from Lemmata 3.10, 3.12 and 3.14. We prove them in the following.

Lemma 3.10. If there exists a 1-query OW-KLA secure PKE-SKL scheme, then there exists a 1-query OW-KLA secure
PKE-SKL scheme that satisfies OMUR.

Remark 3.11. This lemma is actually not needed for the purpose of this paper since our construction of a 1-query
OW-KLA secure PKE-SKL scheme in Section 5 already satisfies OMUR as mentioned in Remark 5.7. We include this
lemma in the paper because this general reduction may be useful in future works.

Proof of Lemma 3.10. Let OW = (OW.KG , OW.Enc, OW.Dec, OW.Vrfy) be a 1-query OW-KLA secure PKE-
SKL scheme with the message space X . We assume that a decryption key of OW is reusable in the sense
of Remark 3.2 and vk contains ek without loss of generality. Then we consider a modified PKE-SKL scheme
OW′ = (OW′.KG , OW′.Enc, OW′.Dec, OW′.Vrfy) with the same message space X defined as follows. The algorithms
OW′.KG , OW′.Enc, and OW′.Dec are identical to OW.KG , OW.Enc, and OW.Dec, respectively. The algorithm
OW′.Vrfy works as follows:

OW′.Vrfy(vk, d̃k ): On input a verification key vk and a (possibly malformed) decryption key d̃k , do the following:

Decryptability verification: Choose m ← X and run ct ← Enc(ek, m) and m′ ← Dec(d̃k , ct). If m′ ̸= m,
return ⊥.

Original verification: Otherwise, let d̃k
′
be the state of the decryption key after running the decryption algorithm.

Run OW.Vrfy(vk, d̃k
′
) and return whatever OW.Vrfy returns.

Correctness. The decryption correctness of OW′ follows from that of OW because the only difference between these
schemes is the verification algorithm, which is irrelevant to the decryption correctness. The verification correctness of
OW′ follows from that of OW because we assume that OW has reusable decryption keys and thus d̃k

′
in OW′.Vrfy

has a negligible trace distance from d̃k , which passes OW.Vrfy except for a negligible probability by the verification
correctness of OW.

1-query OW-SKL security. The 1-query OW-SKL security of OW′ follows from that of OW by a straightforward
reduction. Specifically, let A be an QPT adversary that breaks the 1-query OW-SKL security of OW′. Then, we
construct a QPT adversary B that breaks the 1-query OW-SKL security of OW as follows:

B(ek, dk ): Run A(ek, dk ) until A makes a verification query d̃k . For simulating the verification oracle to A , choose
m ← X , run ct ← Enc(ek, m) and m′ ← Dec(d̃k , ct), and let d̃k

′
be the state of the decryption key after

running the decryption algorithm. If m′ ̸= m, output 0 and immediately halt. Otherwise, query d̃k
′
to its own

verification oracle, and forward the response to A . When A sends RequestChallenge, forward it to the external
challenger to receive ct∗ and forward it to A . Run A until it halts and output whatever A outputs.

We can see that the experiment which B plays outputs 1 if and only if the (simulated) experiment which A plays outputs
1. Therefore, B breaks the 1-query OW-SKL security of OW. Thus, the 1-query OW-SKL security of OW′ follows
from that of OW.
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OMUR. In the following, we show that OW′ satisfies OMUR. Let A be a QPT adversary against the OMUR of OW′
that makes Q = poly(λ) verification queries. Then we consider the following sequence of hybrids.

Hyb0: This is identical to the experiment Exptomur
OW′ ,A(1

λ) as defined in Definition 3.8.
Note that we have

Pr[Hyb0 = 1] = Advomur
OW′ ,A(λ).

Hyb1: This is identical to Hyb0 except that the challenger uniformly chooses integers 1 ≤ i1 < i2 ≤ Q at the beginning
of the experiment and outputs 1 if and only if i1-th and i2-th verification queries are the first two queries to which
the verification oracle returned ⊤.
Whenever Hyb0 returns 1, there are at least 2 verification queries accepted by the verification oracle. Therefore,
when we uniformly choose 1 ≤ i1 < i2 ≤ Q, the probability that i1-th and i2-th queries are the first two queries
to be accepted is (Q

2 )
−1

= 2
Q(Q−1) . Therefore we have

Pr[Hyb1 = 1] =
2

Q(Q− 1)
Pr[Hyb0 = 1].

Hyb2: This is identical to Hyb1 except that the verification oracle just returns ⊥ without running the verification
algorithm to i-th query for all i ∈ [i2 − 1] \ {i1} and the experiment halts right after running the verification
oracle for the i2-th query where it outputs 1 if and only if the verification oracle returned ⊤ to both i1-th and i2-th
queries.
When Hyb1 returns 1, the verification oracle returns ⊥ to i-th query for all i ∈ [i2 − 1] \ {i1} since otherwise
i1-th and i2-th queries cannot be the first 2 queries to be accepted. Therefore, these hybrids are identical until A
makes i2-th query when Hyb1 returns 1.9 Moreover, Hyb2 outputs 1 whenever Hyb1 outputs 1 if we run the rest
of A to complete Hyb1. Therefore, we have

Pr[Hyb2 = 1] ≥ Pr[Hyb1 = 1].

Hyb3: This is identical to Hyb2 except that the experiment outputs 1 if and only if i1-th query is accepted and i2-th
query passes the “Decryptability verification" part of OW′.Vrfy , i.e., m = m′ in the notation of the description of
OW′.Vrfy .
Since the condition to output 1 is just relaxed, we have

Pr[Hyb3 = 1] ≥ Pr[Hyb2 = 1].

Below, we prove

Pr[Hyb3 = 1] = negl(λ).

To prove this, we consider the following QPT adversary B against the 1-query OW-SKL security of OW that works as
follows:

B(ek, dk ): Uniformly choose integers 1 ≤ i1 < i2 ≤ Q and run A(ek, dk ) until it makes i2-th query where the
response by the verification oracle to A’s i-th query for i ∈ [i2 − 1] is simulated as follows: If i ̸= i1, return ⊥ as
the response from the verification oracle. If i = i1, forward the query to its own verification oracle and forward
the response to A . Let dk i2 be A’s i2-th verification query. Send RequestChallenge to the external challenger to
receive ct∗. Run m′ ← OW.Dec(ct∗, dk ) and output m′.

9 Note that there is a superficial difference that the verification oracle ofHyb1 runs the verification algorithm to i-th query for all i ∈ [i2 − 1] \ {i1}
in Hyb1 but it does not in Hyb2. However since these query registers are not used at all for generating the output of Hyb2, the difference of if
measurements are applied on them cannot affect the probability to output 1.
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By the definitions of Hyb3 and B, we can see that

Advow-kla
OW,B (λ) = Pr[Hyb3 = 1].

Thus, we have Pr[Hyb3 = 1] = negl(λ) by the 1-query OW-SKL security of OW.
Combining the above, we have Advomur

OW′ ,A(λ) = negl(λ), which means that OW satisfies OMUR. This completes
the proof of Lemma 3.10.

Lemma 3.12. If there exists a 1-query OW-KLA secure PKE-SKL scheme, then there exists a 1-query IND-KLA secure
PKE-SKL scheme. Moreover, if the base scheme satisfies OMUR, then then the resulting scheme satisfies OMUR.

Proof. Let OW = (OW.KG , OW.Enc, OW.Dec, OW.Vrfy) be a 1-query OW-KLA secure PKE-SKL scheme with
the message space {0, 1}n that satisfies OMUR. Then, we construct an IND-KLA secure PKE-SKL scheme IND =
(IND.KG , IND.Enc, IND.Dec, IND.Vrfy) with the message space {0, 1} as follows.

IND.KG(1λ)→ (ek, dk , vk): On input the security parameter 1λ, run (ek, dk , vk) ← OW.KG(1λ) and output
(ek, dk , vk).

IND.Enc(ek, m)→ IND.ct: On input an encryption key ek and a messagem ∈ {0, 1}, choose r, x ← {0, 1}n, generate
OW.ct← OW.Enc(ek, x), set b := (x · r)⊕m, and output a ciphertext IND.ct := (OW.ct, r, b).

IND.Dec(dk , IND.ct)→ m̃: On input a decryption key dk and a ciphertext IND.ct = (OW.ct, r, b), compute x̃ ←
OW.Dec(dk , OW.ct) and output m̃ := (x̃ · r)⊕ b.

IND.Vrfy(vk, d̃k )→ ⊤/⊥: On input a verification key vk and a (possibly malformed) decryption key d̃k , run
OW.Vrfy(vk, d̃k ) and output whatever OW.Vrfy outputs.

The decryption correctness and verification correctness of IND immediately follow from those of OW. The OMUR
of IND immediately follows from that of OW since their key generation and verification algorithms are identical and
the definition of OMUR only depends on these algorithms. In the following, we prove that IND is IND-KLA secure
assuming that OW is OW-KLA secure. Toward contradiction, suppose that IND is not IND-KLA secure. Then, there is
a QPT adversary A such that Advind-kla

IND,A (λ) is non-negligible. Without loss of generality, we assume that

Pr
coin←{0,1}

[Expind-kla
IND,A (1λ, coin)→ coin] ≥ 1/2 + ϵ(λ) (1)

for a non-negligible ϵ(λ). Since IND is a bit encryption, we assume that the challenge message pair (m0, m1) is (0, 1)
without loss of generality. We divide A into the following two stages A0 and A1:

A
OVrfy
0 (ek, dk )→ st A : Upon receiving (ek, dk ) from C , makes a single query toOVrfy and outputs a quantum state st A .

A1(st A , IND.ct)→ coin′: Upon receiving the state stA from A0 and IND.ct = (OW.ct, r, b) from C , output coin′.

We remark that we can assume that A1 does not make any query to OVrfy without loss of generality by Remark 3.5.
We have

Pr
coin←{0,1}

[Expind-kla
IND,A (1λ, coin)→ coin]

= Pr
coin←{0,1}

[Expind-kla
IND,A (1λ, coin)→ coin∧V = ⊤]

+ Pr
coin←{0,1}

[Expind-kla
IND,A (1λ, coin)→ coin∧V = ⊥]

= Pr[V = ⊤] · Pr
coin←{0,1}

[Expind-kla
IND,A (1λ, coin)→ coin | V = ⊤]

+
1
2
(1− Pr[V = ⊤]). (2)
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By Equations (1) and (2), we have10

Pr
coin←{0,1}

[Expind-kla
IND,A (1λ, coin)→ coin | V = ⊤] ≥ 1

2
+

ϵ(λ)

Pr[V = ⊤] . (3)

Then, we construct an adversary B = (B0, B1) against OW-KLA security of OW that works as follows.

B
OVrfy
0 (ek, dk )→ st A : This is identical to A0. Specifically, run st A ← A

OVrfy
0 (ek, dk ) and output st A .

B1(st A , OW.ct)→ x: Upon receiving st A from B0, send RequestChallenge to C and receive OW.ct from C . Then set
aux := (st A , OW.ct) and define an algorithm A ′ as follows.

A ′(aux , r): On input aux = (st A , OW.ct) and r ∈ {0, 1}n, choose b← {0, 1}, set IND.ct = (OW.ct, r, b), run
coin′ ← A1(st A , IND.ct), and output coin′ ⊕ b.

Run x ← Ext([A ′], aux ), and output x where Ext is the algorithm as in Lemma 2.22 and [A ′] is the description
of A ′.

In the following, we show that B breaks OW-KLA security of OW. Let G be an algorithm that works as follows.

G(1λ): Generate (ek, dk , vk) ← OW.KG(1λ), st A ← A
OVrfy
0 (ek, dk ), x ← {0, 1}n, and OW.ct ← OW.Enc(ek, x).

Let V := ⊤ if the response to A0’s query (which is assumed to be made once) is ⊤ and V := ⊥ otherwise.
Output (V, st A , OW.ct, x).

By Equation (3) and a standard averaging argument, for at least ϵ(λ)
2 Pr[V=⊤] -fraction of (V, st A , OW.ct, x) generated

by G(1λ) conditioned on V = ⊤, we have

Pr [A1(st A , IND.ct)→ coin] ≥ 1
2
+

ϵ(λ)

2 Pr[V = ⊤] ≥
1
2
+

ϵ(λ)

2

where coin← {0, 1}, r ← {0, 1}n, b := (x · r)⊕ coin, and IND.ct = (OW.ct, r, b).
Therefore, for at least ϵ(λ)

2 -fraction of (V, st A , OW.ct, x) generated by G(1λ), we have

Pr [V = ⊤∧ A1(st A , IND.ct)→ coin] ≥ 1
2
+

ϵ(λ)

2
(4)

where coin← {0, 1}, r ← {0, 1}n, b := (x · r)⊕ coin, and IND.ct = (OW.ct, r, b).
For such (V, st A , OW.ct, x), if we let aux = (st A , OW.ct), Equation (4) directly implies

Pr
r←{0,1}n

[
A ′(aux , r)→ x · r

]
≥ 1

2
+

ϵ(λ)

2
.

Therefore, by Lemma 2.22, we have

Pr
[
Ext([A ′], aux )→ x

]
≥ ϵ(λ)2. (5)

Since Equation (5) and V = ⊤ hold at the same time for at least ϵ(λ)
2 -fraction of (V, st A , OW.ct, x), we have

Pr
(v,st A ,OW.ct,x)←G(1λ)

[V = ⊤∧ B1(st A , OW.ct)→ x] ≥ ϵ(λ)3

2
.

By the definitions of B = (B0, B1) and G and the assumption that ϵ(λ) is non-negligible, this implies that B breaks
OW-KLA security of OW.

10We can assume Pr[V = ⊤] ̸= 0 since otherwise Equation (1) cannot be satisfied.
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Remark 3.13 (On Multiple-Query Case). In the above reduction, it is important that A1 can be assumed to not make any
verification query because otherwise we cannot apply the quantum Goldreich-Levin theorem (Lemma 2.22). In the
1-query setting, this can be assumed without loss of generality by Remark 3.5. In the multiple-query setting, we cannot
assume it in general. If we assume that the base scheme satisfies OMUR, we can assume it without loss of generality
because post-challenge verification queries are useless for such schemes. However, we do not know how to resolve the
issue in the multiple-query setting without relying on OMUR.

Lemma 3.14. If a PKE-SKL scheme is 1-query IND-KLA secure and satisfies OMUR, then it is IND-KLA secure.

Proof. Let SKL = (KG , Enc, Dec, Vrfy) be an IND-KLA secure PKE-SKL scheme that satisfies OMUR. For a QPT
adversary A against IND-KLA security of SKL that makes Q = poly(λ) verification queries and coin ∈ {0, 1}, we
consider the following sequence of hybrids.

Hybcoin
0 : This is identical to Expind-kla

SKL,A (1λ, coin).
Note that our goal is to prove ∣∣∣Pr

[
Hyb0

0 = 1
]
− Pr

[
Hyb1

0 = 1
]∣∣∣ = negl(λ).

Hybcoin
1 : This is identical to Hybcoin

0 except that the verification oracle returns ⊥ to all queries made after it returns ⊤
once.
By the OMUR of SKL, we have∣∣Pr

[
Hybcoin

1 → 1
]
− Pr

[
Hybcoin

0 → 1
]∣∣ = negl(λ)

for coin ∈ {0, 1}.

Hybcoin
2 : This is identical to Hybcoin

1 except that the challenger chooses i∗ ← [Q] at the beginning of the game, the
verification oracle just returns ⊥ without running the verification algorithm to i-th query for i ̸= i∗, and the
experiment returns 0 if the verification oracle returns ⊥ to i∗-th query.
Note that there is exactly one verification query to be accepted in Hybcoin

1 whenever it returns 1. If i∗ is the correct
guess for such query, which occurs with probability 1

Q , then Hybcoin
2 is identical to Hybcoin

1 .11 Moreover, Hybcoin
2

outputs 0 when the guess is incorrect. Therefore, we have

Pr
[
Hybcoin

2 → 1
]
=

1
Q

Pr
[
Hybcoin

1 → 1
]
.

Below, we prove ∣∣∣Pr
[
Hyb0

2 = 1
]
− Pr

[
Hyb1

2 = 1
]∣∣∣ = negl(λ).

To prove this, we consider a QPT adversary B against 1-query IND-KLA security of SKL that works as follows.

B(ek, dk ): Choose i∗ ← [Q] and run A(ek, dk ) where the i∗-th query is forwarded to its own verification oracle and
responded according to the response from the oracle while all the other queries are responded by ⊥. When A
sends (m∗0 , m∗1), forward it to the external challenger, receive ct∗ from the challenger, and forward it to A . Finally,
output whatever A outputs.

By the definitions of B and Hybcoin
2 , one can see that

Pr
[
Expind-kla

SKL,B (1λ, coin)→ 1
]
= Pr

[
Hybcoin

2 = 1
]

11A similar remark to Footnote 9 applies here.
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for coin ∈ {0, 1}. Therefore, we have∣∣∣Pr
[
Hyb0

2 = 1
]
− Pr

[
Hyb1

2 = 1
]∣∣∣

=
∣∣∣Pr

[
Expind-kla

SKL,B (1λ, 0)→ 1
]
− Pr

[
Expind-kla

SKL,B (1λ, 1)→ 1
]∣∣∣

= negl(λ)

by the 1-query IND-SKL security of SKL.
Combining the above, we have ∣∣∣Pr

[
Hyb0

0 = 1
]
− Pr

[
Hyb1

0 = 1
]∣∣∣ = negl(λ).

This completes the proof of Lemma 3.14.

4 Public Key Encryption with CoIC-KLA Security
In this section, we introduce a new security notion called CoIC-KLA security for PKE, and construct a PKE scheme that
satisfies it based on any IND-CPA secure PKE scheme. Looking ahead, it is used as a building block of our construction
of PKE-SKL in Section 5.

4.1 Tools
We first introduce some tools used in this section.

Measurement Implementation. We review some notions related to measurement implementations used in the
definition and the security proof of CoIC-KLA security.

Definition 4.1 (Projective Implementation). Let:

• D be a finite set of distributions over an index set I .

• P = {Pi}i∈I be a positive operator valued measure (POVM).

• E = {ED}D∈D be a projective measurement with index set D.

We consider the following measurement procedure.

1. Measure under the projective measurement E and obtain a distribution D.

2. Output a random sample from the distribution D.

We say E is the projective implementation of P , denoted by ProjImp(P), if the measurement process above is equivalent
to P .

Theorem 4.2 ([Zha20, Lemma 1]). Any binary outcome POVM P = (P , I −P ) has a unique projective implementa-
tion ProjImp(P).

Definition 4.3 (Shift Distance). For two distributions D0, D1, the shift distance with parameter ϵ, denoted by
∆ϵ

Shift(D0, D1), is the smallest quantity δ such that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x + ϵ] + δ, Pr[D0 ≥ x] ≤ Pr[D1 ≥ x− ϵ] + δ,
Pr[D1 ≤ x] ≤ Pr[D0 ≤ x + ϵ] + δ, Pr[D1 ≥ x] ≤ Pr[D0 ≥ x− ϵ] + δ.

For two real-valued measurementsM andN over the same quantum system, the shift distance betweenM andN with
parameter ϵ is

∆ϵ
Shift(M,N ) := sup

|ψ⟩
∆ϵ

Shift(M(|ψ⟩),N (|ψ⟩)).
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Definition 4.4 (Mixture of Projetive Measurement [Zha20]). Let D : R → I where R and I are some sets. Let
{(Pi, Qi)}∈I be a collection of binary projective measurement. The mixture of projective measurements associated to
R, I , D, and {(Pi, Qi)}∈I is the binary POVM PD = (PD, QD) defined as follows.

PD = ∑
i∈I

Pr[i← D(R)]Pi QD = ∑
i∈I

Pr[i← D(R)]Qi,

where R is uniformly distributed inR.

Theorem 4.5 ([Zha20, KN22b]). Let D be any probability distribution and P = {(Πi, I −Πi)}i be a collection of
binary outcome projective measurements. For any 0 < ϵ, δ < 1, there exists an algorithm of measurement API ϵ,δ

P ,D that
satisfies the following.

• ∆ϵ
Shift(API ϵ,δ

P ,D, ProjImp(PD)) ≤ δ.

• API ϵ,δ
P ,D is (ϵ, δ)-almost projective in the following sense. For any quantum state |ψ⟩, we apply API ϵ,δ

P ,D twice in
a row to |ψ⟩ and obtain measurement outcomes x and y, respectively. Then, Pr[|x− y| ≤ ϵ] ≥ 1− δ.

• API ϵ,δ
P ,D is (ϵ, δ)-reverse almost projective in the following sense. For any quantum state |ψ⟩, we apply

API ϵ,δ
P ,D and API ϵ,δ

Prev,D in a row to |ψ⟩ and obtain measurement outcomes x and y, respectively, where
Prev = {(I −Πi, Πi)}i. Then, Pr[|(1− x)− y| ≤ ϵ] ≥ 1− δ.

• The expected running time of API ϵ,δ
P ,D is TP ,D · poly(1/ϵ, log(1/δ)) where TP ,D is the combined running time

of D, the procedure mapping i→ (Pi, I −Pi), and the running time of measurement (Pi, I −Pi).

Theorem 4.6 ([Zha20, Corollary 1]). Let q be an efficiently constructible, potentially mixed state, and D0, D1 efficiently
sampleable distributions. If D0 and D1 are computationally indistinguishable, for any inverse polynomial ϵ and any
function δ, we have ∆3ϵ

Shift(API ϵ,δ
P ,D0

(q), API ϵ,δ
P ,D1

(q)) ≤ 2δ + negl(λ).

Definition 4.7 (Quantum Program with Classical Inputs and Outputs [ALL+21]). A quantum program with classical
inputs is a pair of quantum state q and unitaries {Ux}x∈[N] where [N] is the domain, such that the state of the program
evaluated on input x is equal to UxqU †

x . We measure the first register of UxqU †
x to obtain an output. We say that

{Ux}x∈[N] has a compact classical description U when applying Ux can be efficiently computed given U and x.

Ciphertext-Policy Functional Encryption. We review the definition of ciphertext-policy functional encryption
(CPFE) that we use as the building block of our CoIC-KLA secure PKE scheme.

Definition 4.8 (Ciphertext-Policy Functional Encryption). A CPFE scheme for the circuit space C and the input
space X is a tuple of algorithms (Setup, KG, Enc, Dec).

• The setup algorithm Setup takes as input a security parameter 1λ, and outputs a master public key MPK and
master secret key MSK.

• The key generation algorithm KG takes as input the master secret key MSK and x ∈ X , and outputs a decryption
key skx.

• The encryption algorithm Enc takes as input the master public key MPK and C ∈ C, and outputs a ciphertext ct.

• The decryption algorithm Dec takes as input a functional decryption key skx and a ciphertext ct, and outputs y.

Decryption Correctness: We require Dec(KG(MSK, x), Enc(MPK, C)) = C(x) for every C ∈ C, x ∈ X , and
(MPK, MSK)← Setup(1λ).

Next, we introduce 1-bounded security for CPFE schemes.
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Definition 4.9 (1-Bounded Security). Let CPFE be a CPFE scheme. We define the game Expt1-bounded
A ,CPFE (λ, coin) as

follows.

1. The challenger generates (MPK, MSK)← Setup(1λ) and sends MPK to A . A sends x ∈ X to the challenger.
The challenger generates skx ← KG(MSK, x) and sends skx to A .

2. A outputs (C0, C1) such that C0(x) = C1(x) and C0 and C1 have the same size. The challenger picks
coin← {0, 1}, generates ct← Enc(MPK, Ccoin), and sends ct to A .

3. A outputs coin′ ∈ {0, 1}.

We say that CPFE is 1-bounded secure if for every QPT A , we have

Adv1-bounded
A ,CPFE (λ) = 2

∣∣∣∣Pr
[
Expt1-bounded

A ,CPFE (λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

Theorem 4.10 ([GVW12]). If there exists IND-CPA secure PKE, there exists 1-bounded secure CPFE for P/poly.12

4.2 Definitions of CoIC-KLA Security
We introduce definitions of CoIC-KLA security. In addition to normal CoIC-KLA security needed to realize our
PKE-SKL, we also define what we call strong CoIC-KLA security. We can prove that strong CoIC-KLA security
implies CoIC-KLA security. The reason we introduce strong CoIC-KLA is that it is more compatible to our construction
strategy in Section 4.3 that uses watermarking technique by Kitagawa and Nishimaki [KN22b].

Definition 4.11 (CoIC-KLA Security). We say that a PKE scheme PKE with the message space X is CoIC-KLA secure,
if it satisfies the following requirement, formalized from the experiment Expcoic-kla

PKE,A (1λ) between an adversary A and a
challenger C :

1. C runs (ek0, dk0) ← KG(1λ) and (ek1, dk1) ← KG(1λ), and generates dk := 1√
2
(|0⟩ |dk0⟩+ |1⟩ |dk1⟩). C

sends ek0, ek1, and dk to A . A can get access to the following oracle only once.

O(d̃k ): On input a possibly malformed decryption key d̃k , it applies a binary-outcome measurement (I −
Πvrfy, Πvrfy), where Πvrfy is the projection to the right decryption key, i.e.,

Πvrfy :=
(

1√
2
(|0⟩ |dk0⟩+ |1⟩ |dk1⟩)

)(
1√
2
(⟨0| ⟨dk0|+ ⟨1| ⟨dk1|)

)
.

It returns the measurement outcome (indicating whether the state was projected onto Πvrfy or not).

2. A sends (m∗0 , m∗1) ∈ X 2 to C . C generates a, b ← {0, 1} and generates ct∗0 ← Enc(ek0, m∗a) and ct∗1 ←
Enc(ek1, m∗a⊕b). C sends ct∗0 and ct∗1 to A .

3. A outputs a guess b′ for b. C outputs 1 if b = b′ and 0 otherwise as the final output of the experiment.

For any QPT A , it holds that

Advcoic-kla
PKE,A (λ) := 2 ·

∣∣∣∣Pr
[
Expcoic-kla

PKE,A (1λ)→ 1
]
− 1

2

∣∣∣∣ ≤ negl(λ).

Definition 4.12 (Strong CoIC-KLA Security). We say that a PKE scheme PKE with the message space X is ϵ-strong
CoIC-KLA secure, if it satisfies the following requirement, formalized from the experiment Exps-coic-kla

PKE,A (1λ, ϵ) between
an adversary A and a challenger C :

12Though [GVW12] present their construction as KPFE instead of CPFE, it is easy to see that they implicitly give CPFE.
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1. C runs (ek0, dk0) ← KG(1λ) and (ek1, dk1) ← KG(1λ), and generates dk := 1√
2
(|0⟩ |dk0⟩+ |1⟩ |dk1⟩). C

sends ek0, ek1, and dk to A .

2. A sends (m∗0 , m∗1) ∈ X 2 and a quantum circuit D = (q , U ), where D is a quantum program with classical inputs
and one-bit outputs and U is a compact classical description of {Uct0,ct1}ct0,ct1 to C .

3. Let D be the following distribution.

D: Generate a, b← {0, 1} and ct0 ← Enc(ek0, ma) and ct1 ← Enc(ek1, ma⊕b). Output (b, ct0, ct1).

We also let P = (Pb,ct0,ct1 , Qb,ct0,ct1)b,ct0,ct1 be a collection of binary outcome projective measurements, where

Pb,ct0,ct1 = U †
ct0,ct1

(|b⟩ ⟨b| ⊗ I)Uct0,ct1 and Qb,ct0,ct1 = I −Pb,ct0,ct1 .

Moreover, we letMD = (PD, QD) be binary outcome POVMs, where

PD = ∑
r∈R

1
|R|PD(r) and QD = I −PD.

Note thatR is the random coin space of D and PD(r) = Pb,ct0,ct1 , where (b, ct0, ct1)← D(r).13 C applies the
measurement ProjImp(MD) to q , and obtain a value p. C outputs 1 if p ≥ 1

2 + ϵ and 0 otherwise.

For any QPT A , it holds that

Advs-coic-kla
PKE,A (λ) := Pr

[
Exps-coic-kla

SKL,A (1λ, ϵ)→ 1
]
≤ negl(λ).

Theorem 4.13. If PKE is ϵ-strong CoIC-KLA secure for any inverse polynomial ϵ, then PKE is CoIC-KLA secure.

Proof. Assume there exists A that breaks CoIC-KLA security of PKE. Without loss of generality, we assume that
A correctly guesses the bit b with probability 1

2 + γ for some inverse polynomial γ. Then, consider the following
experiment using A .

1. Execute Expcoic-kla
PKE,A (1λ) until the point A outputs (m∗0 , m∗1).

2. Construct a quantum program with classical inputs and outputs D = (q , U ), where q is the inner quantum state
of A and U is a compact description of {Uct0,ct1}ct0,ct1 and Uct0,ct1 is a unitary that performs the rest of A’s
computations on input (ct0, ct1).

3. Obtain p by applying ProjImp(MD) to q , where the measurementMD and the distribution D are defined in
Definition 4.12.

Then, from the definition of ProjImp and the fact that A’s advantage is 1
2 + γ, we have E[p] = 1

2 + γ. By the averaging
argument, we obtain Pr

[
p ≥ 1

2 + γ
2

]
≥ γ

2 . Consider the following adversary B that attacks γ
2 -strong CoIC-KLA

security of PKE.

1. Given, ek0, ek1, and dk , B executes Expcoic-kla
PKE,A (1λ) until the point A outputs (m∗0 , m∗1). When A makes a query

to O, B returns a random bit.

2. B constructs a quantum program with classical inputs and outputs D = (q , U ), where q is the inner quantum
state of A , U is a compact description of {Uct0,ct1}ct0,ct1 , and Uct0,ct1 is a unitary that performs the rest of A’s
computations on input (ct0, ct1). B outputs (m∗0 , m∗1) and D.

B correctly answers to A’s query to O and correctly simulates Expcoic-kla
PKE,A for A with probability 1

2 .14 Moreover,
from the above discussion, under the condition that B correctly answers to A’s query to O, B wins with probability γ

2 .
Overall, Advs-coic-kla

PKE,B (λ) ≥ γ
4 , which contradicts

γ
2 -strong CoIC-KLA security of PKE. This completes the proof.

13The random coin r for D consists of random bits a, b and encryption coins of two ciphertexts.
14B does not apply the verification procedure to the queried state differently from Expcoic-kla

PKE,A . This is not a problem since from the view of A , the
experiment simulated by B is the same as the experiment where the verification process is applied to the queried state, but the result is ignored and a
random bit is returned.
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4.3 Strong CoIC-KLA Secure PKE from CPFE
We construct a strong CoIC-KLA secure PKE PKE = (Gen, Enc, Dec) using a CPFE scheme CPFE = (CPFE.Setup,
CPFE.KG, CPFE.Enc, CPFE.Dec) as a building block.

Gen(1λ):

• Generate (MPK, MSK)← CPFE.Setup(1λ).
• Generate x ← {0, 1}λ and skx ← CPFE.KG(MSK, x).
• Output ek := MPK and dk := skx.

Enc(ek, m):

• Parse ek = MPK.
• Let C[m] be a constant circuit that outputs m on any input. C is padded so that it has the same size as the
circuit C∗ appeared in the security proof.

• Output ct← CPFE.Enc(MPK, C[m]).

Dec(dk, ct):

• Parse dk = skx.
• Output m′ ← CPFE.Dec(skx, ct).

The decryption correctness of PKE follows from that of CPFE. We also have the following theorems.

Theorem 4.14. If CPFE is a 1-bounded secure CPFE scheme, then PKE is a ϵ-strong CoIC-KLA secure PKE scheme
for any inverse polynomial ϵ.

Proof. We show that if there exists a QPT adversary A that breaks ϵ-strong CoIC-KLA security for some inverse
polynomial ϵ, then we can construct a QPT adversary B that contradicts the following lemma.

Lemma 4.15. Consider the following experiment ExptBZ
CPFE,B(1

λ) between an adversary B and a challenger C .

1. C generates (MPK0, MSK0) ← CPFE.Setup(1λ), (MPK1, MSK1) ← CPFE.Setup(1λ), x0, x1 ← {0, 1}λ,
skx0 ← CPFE.KG(MSK0, x0), and skx1 ← CPFE.KG(MSK1, x1). C gives MPK0, MPK1, and 1√

2
(|0⟩ |skx0⟩+

|1⟩ |skx1⟩) to B.

2. B outputs x′0 and x′1. C outputs 1 if x′0 = x0 and x′1 = x1 and 0 otherwise.

Then, for any QPT adversary B, we have AdvBZ
CPFE,B(1

λ) = Pr
[
ExptBZ

CPFE,B(1
λ) = 1

]
= negl(λ).

Proof. This lemma directly follows from Lemma 2.21.

Let ϵ be some inverse polynomial. Assume there exits a QPT A such that Advs-coic-kla
PKE,A (λ, ϵ) = γ for some inverse

polynomial γ. We construct the following adversary B.

1. GivenMPK0,MPK1, and dk , B sets ek0 := MPK0 and ek1 := MPK1. B sends ek0, ek1, and dk to A .

2. When A outputs (m∗0 , m∗1) and D = (q , U ), B outputs (x′0, x′1)← Extract(MPK0, MPK1, m∗0 , m∗1 , D, ϵ), where
Extract is described below.

Extract(MPK0, MPK1, m∗0 , m∗1 , D, ϵ):

• Let ϵ′ = ϵ/8λ and δ′ = 2−λ.
• Parse (q , U )← D.
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• Let P be defined in the same way as that in Definition 4.12 and D0,i and D1,i be the following distributions
for every i ∈ [λ].
D0,i: Generate a, b← {0, 1}. Generate ct0 ← CPFE.Enc(MPK0, C∗[a, b, m0, m1, i]), whereC∗[a, b, m0, m1, i]
is a circuit that takes x as input and outputs ma⊕b⊕x[i]. Generate ct1 ← CPFE.Enc(MPK1, C[ma]).
Output (b, ct0, ct1).

D1,i: Generate a, b← {0, 1}. Generate ct1 ← CPFE.Enc(MPK0, C∗[a, b, m0, m1, i]), whereC∗[a, b, m0, m1, i]
is a circuit that takes x as input and outputs ma⊕b⊕x[i]. Generate ct0 ← CPFE.Enc(MPK1, C[ma]).
Output (b, ct0, ct1).

• Let D be the distribution defined in the same way as that in Definition 4.12. Compute p̃0 ← API ϵ′ ,δ′
P ,D(q). If

p̃0 < 1
2 + ϵ− 4ϵ′, return ⊥. Otherwise, let q0,0 be the post-measurement state, go to the next step.

• For all i ∈ [λ], do the following.

1. Compute p̃0,i ← API ϵ′ ,δ′
P ,D0,i

(q0,i−1). Let q0,i be the post-measurement state.

2. If p̃0,i >
1
2 + ϵ− 4(i + 1)ϵ′, set x′0[i] = 0. If p̃0,i <

1
2 − ϵ + 4(i + 1)ϵ′, set x′0[i] = 1. Otherwise,

exit the loop and output ⊥.
• Let q1,0 be q0,λ. For all i ∈ [λ], do the following.

1. Compute p̃1,i ← API ϵ′ ,δ′
P ,D1,i

(q1,i−1). Let q1,i be the post-measurement state.

2. If p̃1,i >
1
2 + ϵ− 4(λ + i + 1)ϵ′, set x′1[i] = 0. If p̃1,i <

1
2 − ϵ + 4(λ + i + 1)ϵ′, set x′1[i] = 1.

Otherwise, exit the loop and output ⊥.
• Output x′0 = x′0[1]∥ · · · ∥x′0[λ] and x′1 = x′1[1]∥ · · · ∥x′1[λ].

We will estimate AdvBZ
CPFE,B(1

λ). We define the events BadDec, and BadExt0,i and BadExt1,i for every i ∈ [λ].

BadDec: When B runs Extract(MPK0, MPK1, m∗0 , m∗1 , D, ϵ), p̃0 < 1
2 + ϵ− 4ϵ′ holds.

BadExt0,i: When B runs Extract(MPK0, MPK1, m∗0 , m∗1 , D, ϵ), the following conditions hold.

• p̃0 ≥ 1
2 + ϵ− 4ϵ′ holds.

• x′0[j] = x0[j] holds for every j ∈ [i− 1].
• x′0[i] ̸= x0[i] holds.

BadExt1,i: When B runs Extract(MPK0, MPK1, m∗0 , m∗1 , D, ϵ), the following conditions hold.

• p̃0 ≥ 1
2 + ϵ− 4ϵ′ holds.

• x′0[j] = x0[j] holds for every j ∈ [λ].
• x′1[j] = x1[j] holds for every j ∈ [i− 1].
• x′1[i] ̸= x1[i] holds.

From the assumption that Advs-coic-kla
PKE,A (λ) = γ, for p̃0 computed in Extract , p̃0 ≥ 1

2 + ϵ− ϵ′ holds with probability
γ− negl(λ) due to the first item of Theorem 4.5. This means that Pr[BadDec] ≤ 1− γ + negl(λ). Then, we have

AdvBZ
CPFE,B(1

λ) ≥ 1−

Pr[BadDec] + ∑
i∈[λ]

Pr[BadExt0,i] + ∑
i∈[λ]

Pr[BadExt1,i]


≥ γ− negl(λ)−

 ∑
i∈[λ]

Pr[BadExt0,i] + ∑
i∈[λ]

Pr[BadExt1,i]

 .
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Estimation of Pr[BadExt0,i] for every i ∈ [λ]. We first estimate Pr[BadExt0,1]. We first consider the case of
x0[1] = 0. From the first item of the event, we have p̃0 > 1

2 + ϵ − 4ϵ′. Let p̃′0 ← API ϵ′ ,δ′
P ,D(q0,0). From the

almost-projective property of API , we have

Pr
[

p̃′0 >
1
2
+ ϵ− 4ϵ′ − ϵ′

]
≥ 1− δ′.

Lemma 4.16. When x0[1] = 0, D0,1 is computationally indistinguishable from D.

Proof. The difference between D0,1 and D is that ct0 is generated as ct0 ← CPFE.Enc(MPK0, C∗[a, b, m0, m1, 1])
in D0,1 and it is generated as ct0 ← CPFE.Enc(MPK0, C[ma⊕b]) in D. From the condition that x0[1] = 0, we
have C∗[a, b, m0, m1, 1](x0) = C[ma⊕b](x0) = ma⊕b. Thus, from the 1-bounded security of CPFE, D0,1 and D are
computationally indistinguishable when x0[1] = 0.

Thus, from Theorem 4.6 and Lemma 4.16, we have

1− δ′ ≤ Pr
[

p̃′0 >
1
2
+ ϵ− 5ϵ′

]
≤ Pr

[
p̃0,1 >

1
2
+ ϵ− 8ϵ′

]
+ negl(λ).

This means that Pr[BadExt0,1] = negl(λ) when x0[1] = 0. We next consider the case of x0[1] = 1. We define the
following distribution Drev.

Drev: Generate (b, ct0, ct1)← D. Output (1⊕ b, ct0, ct1).

That is, the first bit of the output is flipped from D. Then, for any random coin r, we have (PDrev(r), QDrev(r)) =

(QD(r), PD(r)). This is because we have Qb,ct0,ct1 = I − Pb,ct0,ct1 = P1⊕b,ct0,ct1 for any tuple (b, ct0, ct1).
Therefore, API ϵ′ ,δ′

P ,Drev is exactly the same process as API ϵ′ ,δ′
Prev,D, where P

rev = (Qb,ct0,ct1 , Pb,ct0,ct1)b,ct0,ct1 . Let
p̃′0 ← API ϵ′ ,δ′

P ,Drev(q0,0). From, the reverse-almost-projective property of API , we have

Pr
[

p̃′0 <
1
2
− ϵ + 4ϵ′ + ϵ′

]
≥ 1− δ′.

Lemma 4.17. When x0[1] = 1, D0,1 is computationally indistinguishable from Drev.

Proof. We see that Drev is identical to the following distribution.

• Generate a, b← {0, 1} and ct0 ← Enc(ek0, ma) and ct1 ← Enc(ek, ma⊕1⊕b). Output (b, ct0, ct1).

Then, the difference between D0,1 and Drev is that ct0 is generated as ct0 ← CPFE.Enc(MPK0, C∗[a, b, m0, m1, 1]) in
D0,1 and it is generated as ct0 ← CPFE.Enc(MPK0, C[ma⊕1⊕b]) in Drev. From the condition that x0[1] = 1, we have
C∗[a, b, m0, m1, 1](x0) = C[ma⊕1⊕b](x0) = ma⊕1⊕b. Thus, from the 1-bounded security of CPFE, D0,1 and Drev

are computationally indistinguishable when x0[1] = 1.

Thus, from Theorem 4.6 and Lemma 4.17, we have

1− δ′ ≤ Pr
[

p̃′0 <
1
2
− ϵ + 5ϵ′

]
≤ Pr

[
p̃0,1 <

1
2
− ϵ + 8ϵ′

]
+ negl(λ).

This means that Pr[BadExt0,1] = negl(λ) when x0[1] = 1.
Overall,Pr[BadExt0,1] = negl(λ) regardless of the value of x0. We can similarly show thatPr[BadExt0,i] = negl(λ)

for i ∈ {2, · · · , λ} using the fact that D0,i is computationally indistinguishable from D if x0[i] = 0 and it is
computationally indistinguishable from Drev if x0[i] = 1. We omit the details.
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Estimation of Pr[BadExt1,i] for every i ∈ [λ]. We estimate Pr[BadExt1,1]. We first consider the case of x0[λ] = 0
and x1[1] = 0. From the second item of the event, we have p̃0,λ > 1

2 + ϵ− 4(λ + 1)ϵ′. Let p̃′0,λ ← API ϵ′ ,δ′
P ,D0,λ

(q0,λ).
From, the almost-projective property of API , we have

Pr
[

p̃′0,λ >
1
2
+ ϵ− 4(λ + 1)ϵ′ − ϵ′

]
≥ 1− δ′.

Lemma 4.18. When x0[λ] = x1[1] = 0, D0,λ and D1,1 are computationally indistinguishable.

Proof. We can show that D0,λ is computationally indistinguishable from D when x0[λ] = 0 similarly to Lemma 4.16.
We see that D is identical to the following distribution.

• Generate a, b← {0, 1} and ct0 ← Enc(ek0, ma⊕b) and ct1 ← Enc(ek, ma). Output (b, ct0, ct1).

Then, the difference between D1,1 and D is that ct1 is generated as ct1 ← CPFE.Enc(MPK1, C∗[a, b, m0, m1, 1])
in D1,1 and it is generated as ct1 ← CPFE.Enc(MPK1, C[ma⊕b]) in D. From the condition that x1[1] = 0, we
have C∗[a, b, m0, m1, 1](x1) = C[ma⊕b](x1) = ma⊕b. Thus, from the 1-bounded security of CPFE, D1,1 and D are
computationally indistinguishable when x0[1] = 0. This means thatD0,λ andD1,1 are computationally indistinguishable
when x0[λ] = x1[1] = 0.

Thus, from Theorem 4.6 and Lemma 4.18, we have

1− δ′ ≤ Pr
[

p̃′0,λ >
1
2
+ ϵ− (4λ + 5)ϵ′

]
≤ Pr

[
p̃1,1 >

1
2
+ ϵ− 4(λ + 2)ϵ′

]
+ negl(λ).

This means that Pr[BadExt1,1] = negl(λ) when x0[λ] = 0 and x1[1] = 0. We next consider the case of x0[λ] = 0
and x1[1] = 1. We define the following distribution Drev

0,λ .

Drev
0,λ : Generate (b, ct0, ct1)← D0,λ. Output (1⊕ b, ct0, ct1).

That is, the first bit of the output is flipped from D0,λ. Then, for any random coin r, we have (PDrev
0,λ (r), QDrev

0,λ (r)) =

(QD0,λ(r), PD0,λ(r)). (Again, this is because we haveQb,ct0,ct1 = I−Pb,ct0,ct1 = P1⊕b,ct0,ct1 for any tuple (b, ct0, ct1).)

Therefore, API ϵ′ ,δ′
P ,Drev

0,λ
is exactly the same process as API ϵ′ ,δ′

Prev,D0,λ
, where Prev = (Qb,ct0,ct1 , Pb,ct0,ct1)b,ct0,ct1 . Let

p̃′0,λ ← API ϵ′ ,δ′
P ,Drev

0,λ
(q0,λ). From, the reverse-almost-projective property of API , we have

Pr
[

p̃′0,λ <
1
2
− ϵ + 4(λ + 1)ϵ′ + ϵ′

]
≥ 1− δ′.

Lemma 4.19. When x0[λ] = 0 and x1[1] = 1, Drev
0,λ and D1,1 are computationally indistinguishable.

Proof. We can show that both Drev
0,λ and D1,1 are computationally indistinguishable from Drev when x0[λ] = 0 and

x1[1] = 1. The proof is similarly to those for Lemmata 4.16 to 4.18, thus we omit the details.

Thus, from Theorem 4.6 and Lemma 4.19, we have

1− δ′ ≤ Pr
[

p̃′0,λ <
1
2
− ϵ + (4λ + 5)ϵ′

]
≤ Pr

[
p̃1,1 <

1
2
− ϵ + 4(λ + 2)ϵ′

]
+ negl(λ).

This means that Pr[BadExt1,1] = negl(λ) when x0[λ] = 0 and x1[1] = 1.
Similarly, we can show that Pr[BadExt1,1] = negl(λ) holds when (x0[λ], x1[1]) = (1, 0) and (x0[λ], x1[1]) =

(1, 1). Moreover, we can show that Pr[BadExt1,i] = negl(λ) holds for i ∈ {2, · · · , λ}.

From the above discussion, we have AdvBZ
CPFE,B(1

λ) ≥ γ − negl(λ) for some inverse polynomial γ, which
contradicts Lemma 4.15. This completes the proof of Theorem 4.14.
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5 Construction of PKE with Secure Key Leasing
In this section, we prove the following theorem:

Theorem 5.1. If there is an IND-CPA secure PKE scheme, then there is an IND-KLA secure PKE-SKL scheme.

By Theorem 3.9, it suffices to construct 1-query OW-KLA secure PKE-SKL scheme. In the rest of this section,
we construct such a scheme. To build our scheme, we rely on a PKE scheme satisfying CoIC-KLA security, which is
constructed from any IND-CPA secure PKE scheme in Section 4.
Let cPKE = (cPKE.KG, cPKE.Enc, cPKE.Dec) be a PKE scheme satisfying CoIC-KLA security with message

space {0, 1}ℓ where ℓ = ω(log λ). We note that CoIC-KLA security implies OW-CPA security when ℓ = ω(log λ).
(See Appendix B for the proof.) Then, we construct a PKE-SKL scheme (SKL.KG , SKL.Enc, SKL.Dec, SKL.Vrfy) with
message space {0, 1}λℓ as follows.

SKL.KG(1λ):

• Generate (cPKE.eki,b, cPKE.dki,b)← cPKE.KG(1λ) for i ∈ [λ] and b ∈ {0, 1}.
• Output an encryption key

ek := {cPKE.eki,b}i∈[λ],b∈{0,1},

a decryption key

dk :=
⊗
i∈[λ]

1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩) ,

and a verification key
vk := {cPKE.dki,b}i∈[λ],b∈{0,1}.

For convenience, wewriteDKi tomean the registers of dk that contains 1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩)

for i ∈ [λ].

SKL.Enc(ek, m):

• Parse ek = {cPKE.eki,b}i∈[λ],b∈{0,1} and m = m1∥ . . . ∥mλ where mi ∈ {0, 1}ℓ for each i ∈ [λ].

• Generate cPKE.cti,b ← cPKE.Enc(cPKE.eki,b, mi) for i ∈ [λ] and b ∈ {0, 1}.
• Output ct := {cPKE.cti,b}i∈[λ],b∈{0,1}.

SKL.Dec(dk , ct):

• Parse dk =
⊗

i∈[λ] dk i and ct = {cPKE.cti,b}i∈[λ],b∈{0,1}.

• Let Udec be a unitary such that for all cPKE.dk′, cPKE.ct′0, and cPKE.ct′1:

|b⟩
∣∣cPKE.dk′

〉 ∣∣cPKE.ct′0, cPKE.ct′1
〉
|0⟩

Udec−−→ |b⟩
∣∣cPKE.dk′

〉 ∣∣cPKE.ct′0, cPKE.ct′1
〉 ∣∣cPKE.Dec(cPKE.dk′, cPKE.ct′b)

〉
Note that such a unitary can be computed in quantum polynomial-time since we assume that cPKE.Dec is a
deterministic classical polynomial-time algorithm.

• For all i ∈ [λ], generate

Udec (dk i ⊗ |cPKE.cti,0, cPKE.cti,1⟩ ⟨cPKE.cti,0, cPKE.cti,1| ⊗ |0⟩ ⟨0|)U†
dec,

measure the rightmost register, and let m′i be the measurement outcome.
• Output m′ := m′1∥ . . . ∥m′λ.
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SKL.Vrfy(vk, d̃k ):

• Parse vk = {cPKE.dki,b}i∈[λ],b∈{0,1}.

• Apply a binary-outcome measurement (I −Πvk
vrfy, Πvk

vrfy) on d̃k where Πvk
vrfy is the projection onto the

right decryption key, i.e.,

Πvk
vrfy :=

⊗
i∈[λ]

(
1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩)

)(
1√
2
(⟨0| ⟨cPKE.dki,0|+ ⟨1| ⟨cPKE.dki,1|)

)
.

If the measurement outcome is 1 (indicating that the state was projected ontoΠvk
vrfy), output⊤ and otherwise

output ⊥.

The correctness of SKL easily follows from that of cPKE. Below, we show that SKL is 1-query OW-KLA secure.

Theorem 5.2. If cPKE is CoIC-KLA secure, then SKL is 1-query OW-KLA secure.

Proof. Let A be a QPT adversary against 1-query OW-KLA security of SKL. By Remark 3.5, we assume that A makes
the verification query before receiving the challenge ciphertext without loss of generality. We consider the following
sequence of hybrids.

Hyb0: This is the same as Expow-kla
SKL,A (1

λ). More specifically, it works as follows.

1. The challenger generates (cPKE.eki,b, cPKE.dki,b) ← cPKE.KG(1λ) for i ∈ [λ] and b ∈ {0, 1}, sets
ek := {cPKE.eki,b}i∈[λ],b∈{0,1} and dk :=

⊗
i∈[λ]

1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩), and sends

ek and dk to A .
2. A queries d̃k to the verification oracle. The challenger applies a binary-outcome measurement (I −

Πvk
vrfy, Πvk

vrfy) on d̃kwhereΠvk
vrfy is the projection defined in the description of SKL.Vrfy . If the measurement

outcome is 0 (indicating that the state was projected onto I −Πvk
vrfy), the challenger outputs 0 as the final

outcome of this experiment.15 Otherwise, the challenger returns ⊤ to A as the response from the oracle.
3. The challenger choosesm∗i ← {0, 1}ℓ for i ∈ [λ], generates cPKE.ct∗i,b ← cPKE.Enc(cPKE.eki,b, m∗i ) for

i ∈ [λ] and b ∈ {0, 1}, and sends ct∗ := {cPKE.ct∗i,b}i∈[λ],b∈{0,1} to A .16

4. A outputs m′ = m′1∥ . . . ∥m′λ. The challenger outputs 1 if m′i = m∗i for all i ∈ [λ] and otherwise 0 as the
final outcome of this experiment.

Note that we have Pr[Hyb0 = 1] = Advow-kla
SKL,A (1

λ). Our goal is to prove Pr[Hyb0 = 1] = negl(λ).

Hyb1: This is identical to Hyb0 except for the following modifications:

• The challenger chooses m∗i,b ← {0, 1}ℓ for i ∈ [λ] and b ∈ {0, 1} (instead of choosing m∗i ← {0, 1}ℓ for
i ∈ [λ]) and ai ← {0, 1} for i ∈ [λ].

• cPKE.ct∗i,b is generated as cPKE.ct∗i,b ← cPKE.Enc(cPKE.eki,b, m∗i,ai
) for i ∈ [λ] and b ∈ {0, 1}. We

emphasize that m∗i,ai
is encrypted for both cases of b = 0 and b = 1 and m∗i,ai⊕1 is not used in this step.

• In Step 4, the challenger outputs 1 if m′i ∈ {m∗i,0, m∗i,1} for all i ∈ [λ].

By considering m∗i,ai
in Hyb1 as m∗i in Hyb0, these hybrids are identical from the view of A except that the

winning condition (i.e., the condition that the challenger returns 1) is just relaxed in Hyb1. Therefore, we trivially
have Pr[Hyb0 = 1] ≤ Pr[Hyb1 = 1].

15In the description of the OW-KLA experiment in Definition 3.7, the oracle returns ⊥ even if the decryption key does not pass the verification.
However, in the 1-query setting, if the first (and only) query is rejected, the experiment finally outputs 0. Thus, we terminate the experiment at this
point when the query is rejected.

16Since A makes only one verification query, we can assume that A requests the challenge ciphertext immediately after finishing the first verification
query without loss of generality.
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Hyb2: This is identical to Hyb1 except that cPKE.ct∗i,b is generated as cPKE.ct∗i,b ← cPKE.Enc(cPKE.eki,b, m∗i,ai⊕b)

for i ∈ [λ] and b ∈ {0, 1}. We remark that the way of generating cPKE.ct∗i,1 is changed but that of cPKE.ct∗i,0 is
unchanged (because ai ⊕ 0 = ai).
By the CoIC-KLA security of cPKE and a standard hybrid argument, we have |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| =
negl(λ). See Lemma 5.3 for the detail.

Hyb3: This is identical to Hyb2 except that the challenger quits choosing ai ← {0, 1} for i ∈ [λ] and cPKE.ct∗i,b is
generated as cPKE.ct∗i,b ← cPKE.Enc(cPKE.eki,b, m∗i,b) for i ∈ [λ] and b ∈ {0, 1}.
This modification is just conceptual and we have Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Hyb4: This is identical to Hyb3 except for a conceptual modification that the measurement of the returned key d̃k is
deferred until the end of the experiment. For clarity, we give the full description of this experiment.

1. The challenger generates (cPKE.eki,b, cPKE.dki,b) ← cPKE.KG(1λ) for i ∈ [λ] and b ∈ {0, 1}, sets
ek := {cPKE.eki,b}i∈[λ],b∈{0,1} and dk :=

⊗
i∈[λ]

1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩), and sends

ek and dk to A .
2. A queries d̃k to the verification oracle. The challenger returns ⊤ to A as the response from the oracle.
3. The challenger choosesm∗i,b ← {0, 1}ℓ for i ∈ [λ] and b ∈ {0, 1} generates cPKE.ct∗i,b ← cPKE.Enc(cPKE.eki,b, m∗i,b)
for i ∈ [λ] and b ∈ {0, 1}, and sends ct∗ := {cPKE.ct∗i,b}i∈[λ],b∈{0,1} to A .

4. A outputs m′ = m′1∥ . . . ∥m′λ. The challenger outputs 0 as the final outcome of this experiment if
m′i /∈ {m∗i,0, m∗i,1} for some i ∈ [λ].

5. Otherwise, the challenger applies a binary-outcome measurement (I −Πvk
vrfy, Πvk

vrfy) on d̃kwhere Πvk
vrfy is

the projection defined in the description of SKL.Vrfy . the challenger outputs the outcome of the measurement
as the final outcome of this experiment.

By the deferred measurement principle, we have Pr[Hyb3 = 1] = Pr[Hyb4 = 1].

Hyb5: This is identical to Hyb4 except that the challenger measures the returned key d̃k in the computational basis
instead of applying the projective measurement (I −Πvk

vrfy, Πvk
vrfy) in Step 5, and the condition to output 1 is

modified as follows:

• Let {b̃i, cPKE.d̃ki}i∈[λ] be the outcome of the measurement of d̃k in the computational basis. If there is
i ∈ [λ] such that cPKE.d̃ki ̸= cPKE.dki,b̃i

, the challenger outputs 0 as the final outcome of this experiment.
Otherwise, define b = b1∥ . . . ∥bλ ∈ {0, 1}λ in such a way that m′i = m∗i,bi

for i ∈ [λ]. Note that such b
must exist since this step is invoked only when the challenger does not output 0 in Step 4.17 If there is
i ∈ [λ] such that b̃i ̸= bi, the challenger outputs 1 and otherwise 0 as the final output of the experiment.

We prove that if Pr[Hyb5 = 1] = negl(λ), then it holds that Pr[Hyb4 = 1] = negl(λ). The intuition is as follows:
If we have b̃i = bi with overwhelming probability, then d̃k has a negligible amplitude on

⊗
i∈[λ]

∣∣b′i〉 ∣∣∣cPKE.d̃kb′i

〉
for all b′ ̸= b. In this case, the probability that d̃k is projected onto Πvk

vrfy is negligible since the right key dk has

an exponentially small amplitude on
⊗

i∈[λ] |bi⟩
∣∣∣cPKE.d̃kbi

〉
. See Lemma 5.4 for the detail.

Hyb6: This is identical to Hyb5 except that the challenger chooses i∗ ← [λ] at the beginning of the experiment and the
condition to output 1 is modified to that b̃i∗ ̸= bi∗ holds for the a priori chosen i∗ instead of for some i ∈ [λ].

Whenever there is i such that b̃i ̸= bi, the probability that i∗ ← [λ] satisfies b̃i∗ ̸= bi∗ is at least 1
λ . Thus, we have

Pr[Hyb6 = 1] ≥ 1
λ Pr[Hyb5 = 1].

17Ifm∗i,0 = m∗i,1 (which happens with a negligible probability), then we set bi := 0.
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Hyb7: This is identical to Hyb6 except that challenger measures the register DKi∗ of the decryption key dk in the
computational basis before giving dk to A . (See the description of SKL.KG for the definition of register DKi∗ .)
Note that themeasurement ofDKi∗ in the computational basis yields either (0, cPKE.dki∗ ,0) or (1, cPKE.dki∗ ,1). In
particular, there are only two possible outcomes. Thus, by Lemma 2.21, we havePr[Hyb7 = 1] ≥ 1

2 Pr[Hyb6 = 1].

Hyb8: This is identical to Hyb7 except that the collapsing caused by measuring DKi∗ is simulated by classical
randomness. That is, the challenger chooses b∗ ← {0, 1} at the beginning and sets

dk :=
⊗

i∈[λ]\{i∗}

1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩)DKi

⊗ (|b∗⟩
∣∣cPKE.dki∗ ,b∗

〉
)DKi∗ .

It is easy to see that Hyb7 and Hyb8 are identical from the view of A , and thus we have Pr[Hyb7 = 1] =
Pr[Hyb8 = 1]. In Lemma 5.6, we prove that Pr[Hyb8 = 1] = negl(λ) by using the OW-CPA security (which is
implied by CoIC-KLA security) of SKL.

By combining the above, we have Pr[Hyb0 = 1] = negl(λ). This means that SKL is OW-KLA secure. We are left
to prove Lemmata 5.3, 5.4 and 5.6

Lemma 5.3. It holds that |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) if cPKE is CoIC-KLA secure.

Proof. We define additional hybrids Hyb1.j for j ∈ [λ + 1] as follows.

Hyb1.j: This is identical to Hyb1 except that cPKE.ct∗i,b is generated as

cPKE.ct∗i,b ←
{

cPKE.Enc(cPKE.eki,b, m∗i,ai⊕b) i < j
cPKE.Enc(cPKE.eki,b, m∗i,ai

) i ≥ j

for i ∈ [λ].

Clearly, we haveHyb1 = Hyb1.1 andHyb2 = Hyb1.λ+1. Thus, it suffices to prove that
∣∣∣Pr

[
Hyb1.j+1 = 1

]
− Pr

[
Hyb1.j = 1

]∣∣∣ =
negl(λ). Remark that the only difference betweenHyb1.j+1 and Hyb1.j is the way of generating cPKE.ct∗j,1. To show that∣∣∣Pr

[
Hyb1.j+1 = 1

]
− Pr

[
Hyb1.j = 1

]∣∣∣ = negl(λ), we construct B against CoIC-KLA security of cPKE as follows.

B(cPKE.ek∗0 , cPKE.ek∗1 , dk ∗): It works as follows.

1. Generate (cPKE.eki,b, cPKE.dki,b)← cPKE.KG(1λ) for i ∈ [λ] \ {j} and b ∈ {0, 1} and set cPKE.ekj,b :=
cPKE.ek∗b for b ∈ {0, 1}. Set ek := {cPKE.eki,b}i∈[λ],b∈{0,1} and

dk :=
⊗

i∈[λ]\{j}

1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩)DKi

⊗ dk ∗DKj
.

This implicitly defines vk := {cPKE.dki,b}i∈[λ],b∈{0,1} where cPKE.dkj,b is the decryption key correspond-
ing to cPKE.dkj,b chosen by the external challenger for b ∈ {0, 1} (but B cannot know vk).

2. Send ek and dk to A and receives the verification query d̃k from A .
3. Apply a binary-outcome measurement (I − Πvk

vrfy, Πvk
vrfy) on d̃k . This is possible by simulating the

projection on {DKi}i ̸=j by itself while forwarding DKj to its own verification oracle. If the outcome is 0,
output 0. Otherwise, return ⊤ to A as the response from the oracle.

4. Choose m∗i,b ← {0, 1}ℓ for i ∈ [λ] and b ∈ {0, 1} and ai ← {0, 1} for i ∈ [λ] \ {j}, send (m∗j,0, m∗j,1)
to the external challenger, and receive (cPKE.ct∗0 , cPKE.ct∗1) from the challenger. This implicitly defines
aj ← {0, 1} and β← {0, 1} where the challenger generates cPKE.ct∗0 := cPKE.Enc(cPKE.ekj, m∗j,aj

) and
cPKE.ct∗1 := cPKE.Enc(cPKE.ekj, m∗j,aj⊕β) (but B cannot know aj or β).18

18Here, β plays the role of b in the experiment Expcoic-kla
cPKE,B (1

λ) in Definition 4.11. This is because b is used in another meaning in this section.
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5. Generate cPKE.ct∗i,b ←, cPKE.Enc(cPKE.eki,b, m∗i,ai⊕b) for i ∈ [λ] \ {j} and b ∈ {0, 1}, set cPKE.ct∗j,b :=
cPKE.ct∗b for b ∈ {0, 1}, send ct∗ := {cPKE.ct∗i,b}i∈[λ],b∈{0,1} to A , and receive m′ = m′1∥ . . . ∥m′λ from
A .

6. Output 1 if m′i ∈ {m∗i,0, m∗i,1} for all i ∈ [λ] and otherwise output 0.

We have

Advcoic-kla
cPKE,B(λ)

= 2
∣∣∣∣Pr[B(cPKE.ek∗0 , cPKE.ek∗1 , dk ∗) = β]− 1

2

∣∣∣∣
= |Pr[B(cPKE.ek∗0 , cPKE.ek∗1 , dk ∗) = 1|β = 0]− Pr[B(cPKE.ek∗0 , cPKE.ek∗1 , dk ∗) = 1|β = 1]|

=
∣∣∣Pr

[
Hyb1.j+1 = 1

]
− Pr

[
Hyb1.j = 1

]∣∣∣
where (cPKE.ek∗0 , cPKE.dk∗0)← cPKE.KG(1λ), (cPKE.ek∗1 , cPKE.dk∗1)← cPKE.KG(1λ), and dk ∗ := 1√

2
(|cPKE.dk∗0⟩+

|cPKE.dk∗1⟩). Thus,
∣∣∣Pr

[
Hyb1.j+1 = 1

]
− Pr

[
Hyb1.j = 1

]∣∣∣ = negl(λ) by the CoIC-KLA security of cPKE. This
completes the proof of Lemma 5.3.

Lemma 5.4. If Pr[Hyb5 = 1] = negl(λ), then it holds that Pr[Hyb4 = 1] = negl(λ).

Proof. Let ϵ := Pr[Hyb4 = 1]. For vk = {cPKE.dki,b}i∈[λ],b∈{0,1} and b = b1∥ . . . ∥bλ ∈ {0, 1}λ, let Evk
b be the

event that vk is chosen as a verification key and m′i = m∗i,bi
for all i ∈ [λ]. Let d̃k

vk
b be the state of the returned key

conditioned on Evk
b . Clearly, we have

∑
vk,b

Pr
[
Evk

b

]
· Tr

(
Πvk

vrfyd̃k
vk
b

)
= ϵ.

Let Good be a subset defined as

Good :=
{
(vk, b) : Tr

(
Πvk

vrfyd̃k
vk
b

)
≥ ϵ

2

}
.

Then, by a standard averaging argument, it holds that

∑
(vk,b)∈Good

Pr
[
Evk

b

]
≥ ϵ

2
. (6)

For vk = {cPKE.dki,b}i∈[λ],b∈{0,1} and b = b1∥ . . . ∥bλ, let Πvk
̸=b be a projection defined as follows:

Πvk
̸=b := ∑

b′∈{0,1}λ\{b}

⊗
i∈[λ]

∣∣b′i〉 ∣∣∣cPKE.dki,b′i

〉 〈
b′i
∣∣ 〈cPKE.dki,b′i

∣∣∣ .

Then, by the definition of Hyb5, one can see that

Pr[Hyb5 = 1] = ∑
vk,b

Pr
[
Evk

b

]
· Tr

(
Πvk
̸=bd̃k

vk
b

)
.

Then, we show the following proposition.

Proposition 5.5. For any (vk, b) ∈ Good, it holds that

Tr
(

Πvk
̸=bd̃k

vk
b

)
≥ ϵ

4
− 2−λ.
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Proof of Proposition 5.5. By diagonalization, we can write

d̃k
vk
b =

N

∑
j=1

pj
∣∣ψj

〉 〈
ψj
∣∣

where 0 < pj ≤ 1, ∑N
j=1 pj = 1, and

∣∣〈ψj
∣∣ψj

〉∣∣ = 1. For each j ∈ [N], it holds that

Tr
(

Πvk
vrfy

∣∣ψj
〉 〈

ψj
∣∣)

= 2−λ

∥∥∥∥∥∥
 ∑

b′∈{0,1}λ

⊗
i∈[λ]

〈
b′i
∣∣ 〈cPKE.dki,b′i

∣∣∣
 ∣∣ψj

〉∥∥∥∥∥∥
2

≤ 2−λ+1


∥∥∥∥∥∥
 ∑

b′∈{0,1}λ\{b}

⊗
i∈[λ]

〈
b′i
∣∣ 〈cPKE.dki,b′i

∣∣∣
 ∣∣ψj

〉∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
⊗

i∈[λ]
⟨bi|

〈
cPKE.dki,bi

∣∣ ∣∣ψj
〉∥∥∥∥∥∥

2


≤ 2−λ+1

(
2λ − 1

)
∑

b′∈{0,1}λ\{b}

∥∥∥∥∥∥
⊗

i∈[λ]

〈
b′i
∣∣ 〈cPKE.dki,b′i

∣∣∣
 ∣∣ψj

〉∥∥∥∥∥∥
2

+ 1


≤ 2

∥∥∥Πvk
̸=b

∣∣ψj
〉∥∥∥2

+ 2−λ+1

where the inequalities in the third and fourth lines follow from Cauchy–Schwarz inequality.
Then, it holds that

Tr
(

Πvk
vrfyd̃k

vk
b

)
=

N

∑
j=1

pj Tr
(

Πvk
vrfy

∣∣ψj
〉 〈

ψj
∣∣)

≤
N

∑
j=1

pj

(
2
∥∥∥Πvk
̸=b

∣∣ψj
〉∥∥∥2

+ 2−λ+1
)

= 2 Tr
(

Πvk
̸=bd̃k

vk
b

)
+ 2−λ+1.

Since we assume (vk, b) ∈ Good, it holds that Tr
(

Πvk
vrfyd̃k

vk
b

)
≥ ϵ

2 . By combining the above, Proposition 5.5 is
proven.

Then, we have

Pr[Hyb5 = 1] = ∑
vk,b

Pr
[
Evk

b

]
· Tr

(
Πvk
̸=bd̃k

vk
b

)
≥ ∑

(vk,b)∈Good
Pr

[
Evk

b

]
· Tr

(
Πvk
̸=bd̃k

vk
b

)
≥ ∑

(vk,b)∈Good
Pr

[
Evk

b

]
·
( ϵ

4
− 2−λ

)
≥ ϵ

2
·
( ϵ

4
− 2−λ

)
where the second inequality follows from Proposition 5.5 and the third inequality follows from Eq. 6. Recalling that
ϵ = Pr[Hyb4 = 1], the above inequality implies Lemma 5.4.
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Lemma 5.6. It holds that Pr[Hyb8 = 1] = negl(λ) if cPKE is OW-CPA secure.

Proof. For clarity, we give the full description of Hyb8 below.
Hyb8: It works as follows:

1. The challenger chooses i∗ ← [λ] and b∗ ∈ {0, 1}, generates (cPKE.eki,b, cPKE.dki,b)← cPKE.KG(1λ)
for i ∈ [λ] and b ∈ {0, 1}, sets ek := {cPKE.eki,b}i∈[λ],b∈{0,1} and

dk :=
⊗

i∈[λ]\{i∗}

1√
2
(|0⟩ |cPKE.dki,0⟩+ |1⟩ |cPKE.dki,1⟩)DKi

⊗ (|b∗⟩
∣∣cPKE.dki∗ ,b∗

〉
)DKi∗

and sends ek and dk to A .
2. A queries d̃k to the verification oracle. The challenger returns ⊤ to A as the response from the oracle.
3. The challenger choosesm∗i,b ← {0, 1}ℓ for i ∈ [λ] and b ∈ {0, 1}, generates cPKE.ct∗i,b ← cPKE.Enc(cPKE.eki,b, m∗i,b)
for i ∈ [λ] and b ∈ {0, 1}, and sends ct∗ := {cPKE.ct∗i,b}i∈[λ],b∈{0,1} to A .

4. A outputs m′ = m′1∥ . . . ∥m′λ. The challenger outputs 0 as the final output of the experiment if m′i /∈
{m∗i,0, m∗i,1} for some i ∈ [λ].

5. Otherwise, the challenger measures d̃k in the computational basis, and let {b̃i, cPKE.d̃ki}i∈[λ] be the
outcome. If there is i ∈ [λ] such that cPKE.d̃ki ̸= cPKE.dki,b̃i

, the challenger outputs 0 as the final outcome
of this experiment. Otherwise, define b = b1∥ . . . ∥bλ ∈ {0, 1}λ in such a way that m′i = m∗i,bi

for i ∈ [λ].
Note that such b must exist since this step is invoked only when the challenger does not output 0 in Step 4.19
If b̃i∗ ̸= bi∗ , the challenger outputs 1 and otherwise 0 as the final output of the experiment.

Suppose that we simulate Hyb8 for A while embedding a problem instance of the OW-CPA security of cPKE
into cPKE.eki∗ ,b∗⊕1 and cPKE.ct∗i∗ ,b∗⊕1. Remark that this is possible without knowing cPKE.dki∗ ,b∗⊕1. Suppose that
Hyb8 = 1 occurs in the simulated execution. Then, we in particular have m′i∗ = m∗i∗ ,bi∗

, cPKE.d̃ki∗ = cPKE.dki∗ ,b̃i∗
,

and b̃i∗ ̸= bi∗ . We consider the following two sub-cases.
1. If bi∗ = b∗, then we have b̃i∗ = b∗ ⊕ 1. This implies cPKE.d̃ki∗ = cPKE.dki∗ ,b∗⊕1. Then we can decrypt

cPKE.cti∗ ,b∗⊕1 by honestly running the decryption algorithm with cPKE.dki∗ ,b∗⊕1. This contradicts the OW-CPA
security of cPKE.

2. If bi∗ ̸= b∗, then we have m′i∗ = m∗i∗ ,b∗⊕1, which is the message encrypted in cPKE.eki∗ ,b∗⊕1. This means that
we can break the OW-CPA security of cPKE.

Neither of themoccurswith a non-negligible probability assuming theOW-CPAsecurity of cPKE. Thus,Pr[Hyb8 = 1] =
negl(λ). This completes the proof of Lemma 5.6.

This completes the proof of Theorem 5.2.

Remark 5.7 (On OMUR). We can show that SKL constructed above also satisfies OMUR. Since there is a generic
conversion to add OMUR as shown in Lemma 3.10 anyway, we only give a proof sketch.
We reduce OMUR to 1-key OW-KLA security. Suppose that there is an adversary that breaks OMUR, i.e., passes

the verification twice. Then roughly speaking, we can use it to break 1-key OW-KLA security by sending one of
them to the verification oracle and using the other one to decrypt the challenge message. There is an issue that the
reduction algorithm may make only one verification query while the adversary against OMUR may make arbitrarily
many verification queries. To resolve this issue, we can use a similar idea to that used in the proof of Lemma 3.10. The
reduction algorithm guesses the first two queries to be accepted. Conditioned on that the guess is correct, the reduction
algorithm can simulate the verification oracle by simply returning ⊥ to all queries except for the two queries that are
guessed to be accepted until the adversary make the second guessed query. The guess is correct with probability (Q

2 )
−1

where Q is the number of queries. Thus, the reduction works with a polynomial security loss. Since we already proved
that SKL is 1-query OW-KLA secure (Theorem 5.2), the above reduction shows that it satisfies OMUR.

19Ifm∗i,0 = m∗i,1 (which happens with a negligible probability), then we set bi := 0.
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6 Attribute-Based Encryption with Secure Key Leasing
6.1 Definitions
Definition 6.1 (ABE with Secure Key Leasing). An ABE-SKL scheme ABE-SKL is a tuple of six algorithms
(Setup, KG , Enc, Dec, Cert , Vrfy). Below, let X = {Xλ}λ, Y = {Yλ}λ, and R = {Rλ : Xλ ×Yλ → {0, 1}}λ be the
ciphertext space, the key attribute space, and the associated relation of ABE-SKL, respectively.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ, and outputs a public key pk and master
secret key msk.

KG(msk, y)→ (usk , vk): The key generation algorithm takes a master secret key msk and a key attribute y ∈ Y , and
outputs a user secret key usk and a verification key vk.

Enc(pk, x, m)→ ct: The encryption algorithm takes a public key pk, a ciphertext attribute x ∈ X , and a plaintext m,
and outputs a ciphertext ct.

Dec(usk , x, ct)→ z: The decryption algorithm takes a user secret key usk , a ciphertext attribute x, and a ciphertext ct
and outputs a value z ∈ {⊥} ∪ {0, 1}ℓ.

Vrfy(vk, usk ′)→ ⊤/⊥: The verification algorithm takes a verification key vk and a quantum state usk ′, and outputs
⊤ or ⊥.

Decryption correctness: For every x ∈ X and y ∈ Y satisfying R(x, y) = 1, we have

Pr

Dec(usk , x, ct) = m

∣∣∣∣∣∣
(pk, msk)← Setup(1λ)
(usk , vk)← KG(msk, y)
ct← Enc(pk, x, m)

 = 1− negl(λ).

Verification correctness: For every y ∈ Y , we have

Pr
[

Vrfy(vk, usk ) = ⊤
∣∣∣∣ (pk, msk)← Setup(1λ)
(usk , vk)← KG(msk, y)

]
= 1− negl(λ).

Definition 6.2 (Adaptive Indistinguishability against Key Leasing Attacks). We say that an ABE-SKL scheme
ABE-SKL for relation R : X ×Y → {0, 1} is secure against adaptive indistinguishability against key leasing attacks
(Ada-IND-KLA), if it satisfies the following requirement, formalized from the experiment Expada-ind-kla

A ,ABE-SKL(1
λ, coin)

between an adversary A and a challenger:

1. At the beginning, the challenger runs (pk, msk) ← Setup(1λ) and initialize the list LKG to be an empty set.
Throughout the experiment, A can access the following oracles.

OKG (y): Given y, it finds an entry of the form (y, vk, V) from LKG . If there is such an entry, it returns ⊥.
Otherwise, it generates (usk , vk)← KG(msk, y), sends usk to A , and adds (y, vk,⊥) to LKG .

OVrfy (y, usk ′): Given (y, usk ′), it finds an entry (y, vk, V) from LKG . (If there is no such entry, it returns ⊥.) It
then runs d := Vrfy(vk, usk ′) and returns d to A . If V = ⊥, it updates the entry into (y, vk, d).

2. When A sends (x∗, m0, m1) to the challenger, the challenger checks if for any entry (y, vk, V) in LKG such that
R(x∗, y) = 1, it holds that V = ⊤. If so, the challenger generates ct∗ ← Enc(pk, x∗, mcoin) and sends ct∗ to A .
Otherwise, the challenger outputs 0.

3. A continues to make queries to OKG (·) and OVrfy (·, ·). However, A is not allowed to send a key attribute y such
that R(x∗, y) = 1 to OKG .

4. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.
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For any QPT A , it holds that

Advada-ind-kla
ABE-SKL,A(λ) :=

∣∣∣Pr
[
Expada-ind-kla

ABE-SKL,A(1
λ, 0)→ 1

]
− Pr

[
Expada-ind-kla

ABE-SKL,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

Remark 6.3. In Definition 6.2, the key generation oracle returns ⊥ if the same y is queried more than once. To handle
the situation where multiple keys for the same attribute y are generated, we need to manage indices for y such as
(y, 1, vk1, V1), (y, 2, vk2, V2). Although we can reflect the index management in the definition, it complicates the
definition and prevents readers from understanding the essential idea. Thus, we use the simplified definition above.

We also consider relaxed versions of the above security notion.

Definition 6.4 (Selective indistinguishability against key leasing attacks). We consider selective indistinguishability
against key leasing attacks (Sel-IND-KLA). For doing so, we consider the same security game as that for Ada-IND-KLA
except that the adversary A should declare its target x∗ at the beginning of the game (even before it is given pk). We then
define the advantage Advsel-ind-kla

ABE-SKL,A(λ) for the selective case similarly. We say ABE-SKL is secure against selective
indistinguishability against key leasing attack if for any QPT adversary A , Advsel-ind-kla

ABE-SKL,A(λ) is negligible.

We also consider the following security notion where we introduce additional restriction that the number of
distinguishing keys that are issued (and eventually returned) before ct∗ is generated is bounded by some predetermined
parameter q. Here, distinguishing key refers to a key that can decrypt the challenge ciphertext if it is not returned.

Definition 6.5 (Bounded Distinguishing Key Ada-IND-KLA/Sel-IND-KLA for ABE). For defining bounded
distinguishing key Ada-IND-KLA security, we consider the same security game as that for Ada-IND-KLA (i.e.,
Expada-ind-kla

A ,ABE-SKL(1
λ, coin)) except that we change the step 2 in Definition 6.2 with the following:

2’ When A sends (x∗, m0, m1) to the challenger, the challenger checks if there are at most q entries (y, vk, V) in LKG
such that R(x∗, y) = 1 and for all these entries, V = ⊤. If so, the challenger generates ct∗ ← Enc(pk, x∗, mcoin)
and sends ct∗ to A . Otherwise, the challenger outputs 0.

We then define the advantage Advada-ind-kla
ABE-SKL,A ,q(λ) similarly to Advada-ind-kla

ABE-SKL,A(λ). We say ABE-SKL is q-bounded
distinguishing key Ada-IND-KLA secure if for any QPT adversary A , Advada-ind-kla

ABE-SKL,A ,q(λ) is negligible. We also define
q-bounded distinguishing key Sel-IND-KLA security analogously by enforcing the adversary to output its target x∗ at
the beginning of the game.

We emphasize that while the number of distinguishing keys that the adversary can obtain in the game is bounded by
a fixed polynomial, the number of non-distinguishing keys (i.e., keys for y with R(x∗, y) = 0) can be unbounded.

6.2 1-Bounded Distinguishing Key Construction
We construct an ABE-SKL scheme 1ABE = (Setup, KG , Enc, Dec, Vrfy) for relation R : X × Y → {0, 1} with
1-bounded distinguishing key Ada-IND-KLA/Sel-IND-KLA security whose message space is {0, 1}ℓ by using the
following building blocks.

• IND-KLA secure PKE-SKL SKL.(KG , Enc, Dec, Vrfy). Without loss of generality, we assume that skl.ek ∈
{0, 1}ℓek and the randomness space used by SKL.Enc is {0, 1}ℓrand for some ℓek(λ) and ℓrand(λ). We also
assume that the message space of SKL is {0, 1}ℓ.

• Adaptively/Selectively secure ABE ABE.(Setup, KG, Enc, Dec) for relation R with message space {0, 1}λ.

• A garbling scheme GC = (Grbl, GCEval). Without loss of generality, we assume that the labels of GC are in
{0, 1}λ.

Setup(1λ):

• For i ∈ [ℓek] and b ∈ {0, 1}, run (abe.pki,b, abe.mski,b)← ABE.Setup(1λ).
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• Output (pk, msk) := ({abe.pki,b}i∈[ℓek],b∈{0,1}, {abe.mski,b}i∈[ℓek],b∈{0,1}).

KG(msk, y):

• Generate (skl.ek, skl.dk , skl.vk)← SKL.KG(1λ).
• Run abe.ski ← ABE.KG(ABE.mski,skl.ek[i], y) for i ∈ [ℓek], where skl.ek[i] denotes the i-th bit of the
binary string skl.ek.

• Output usk := ({abe.ski}i∈[ℓek], skl.ek, skl.dk ) and vk := skl.vk.

Enc(pk, x, m):

• Choose R← {0, 1}ℓrand .
• Construct circuit E[m, R], which is a circuit that takes as input an encryption key skl.ek of SKL and outputs

SKL.Enc(skl.ek, m; R).
• Compute ({labi,b}i∈[ℓek],b∈{0,1}, Ẽ)← Grbl(1λ, E[m, R]).
• Run abe.cti,b ← ABE.Enc(abe.pki,b, x, labi,b) for i ∈ [ℓek] and b ∈ {0, 1}.
• Output ct := ({abe.cti,b}i∈[ℓek],b∈{0,1}, Ẽ).

Dec(usk , x, ct):

• Parse usk = ({abe.ski}i∈[ℓek], skl.ek, skl.dk ) and ct = ({abe.cti,b}i∈[ℓek],b∈{0,1}, Ẽ).
• Compute labi ← ABE.Dec(ABE.ski, x, abe.cti,skl.ek[i]) for i ∈ [ℓek].

• Compute skl.ct = GCEval(Ẽ, {labi}i∈[ℓek]).
• Compute and output m′ ← SKL.Dec(skl.dk , skl.ct).

Vrfy(vk, usk ′):

• Parse vk = skl.vk and usk ′ = ({abe.ski}i∈[ℓek], skl.ek′, skl.dk ′).

• Compute and output SKL.Vrfy(skl.vk, skl.dk ′).

We show that the scheme satisfies decryption correctness. To see this, we first observe that the decryption algorithm
correctly recovers labels of Ẽ corresponding to the input skl.ek by the correctness of ABE. Therefore, skl.ct recovered
by the garbled circuit evaluation equals to SKL.Enc(skl.ek, m; R) by the correctness of GC. Then, the message m is
recovered in the last step by the correctness of SKL. We can also see that the verification correctness follows from that
of SKL.

Theorem 6.6. If ABE is adaptively (resp., selectively) secure, GC is secure, and SKL is IND-KLA secure, then 1ABE
above is 1-bounded distinguishing key Ada-IND-KLA (resp., Sel-IND-KLA) secure.

Proof of Theorem 6.6. Here, we first focus on the proof for the case of Ada-IND-KLA and later mention the necessary
modifications for the case of Sel-IND-KLA. Let Q be the upper bound on the number of key queries to OKG before the
challenge phase. We define a sequence of hybrid games.

Hyb0: This is the same as Expada-ind-kla
1ABE,A ,1 (1λ, 0). More specifically, it is as follows.

1. The challenger generates (abe.pki,b, abe.mski,b)← ABE.Setup(1λ) for i ∈ [ℓek] and b ∈ {0, 1} and sends
pk := {abe.pki,b}i,b to the adversary A . The challenger then initializes the list LKG to be an empty set. A
can access the following oracles.
OKG (y(j)): Given the j-th query y(j) with j ∈ [Q], if there is an entry of the form (y(j), vk, V), it

outputs ⊥. Otherwise, it generates (skl.ek(j), skl.dk (j), skl.vk(j)) ← SKL.KG(1λ) and abe.sk(j)
i ←

ABE.KG(abe.mski,skl.ek(j) [i], y(j)) for i ∈ [ℓek], where skl.ek(j)[i] is the i-th bit of the binary string

skl.ek(j). It then sends usk (j) := ({abe.sk(j)
i }i, skl.dk (j)) to A and adds (y(j), skl.vk(j),⊥) to LKG .
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OVrfy (y, usk ′): Given (y, usk ′), it finds an entry (y, vk, V) from LKG and parse usk ′ = ({abe.sk′i}i, skl.usk ′).
(If there is no such entry, it returns⊥.) It then parses vk = skl.vk and returns d := SKL.Vrfy(skl.vk, skl.dk ′)
to A . It finally updates the entry into (y, vk, d) if V = ⊥.

2. When A sends (x∗, m0, m1) to the challenger, the challenger checks whether there is at most one entry
(y, vk, V) in LKG such that R(x∗, y) = 1 and for that entry V = ⊤ holds. If so, the challenger generates
({labi,b}i∈[ℓek],b∈{0,1}, Ẽ)← Grbl(1λ, E[m0, R]) and computes abe.cti,b ← ABE.Enc(abe.pki,b, x∗, labi,b)

for i ∈ [ℓek] and b ∈ {0, 1}. It then sends ct∗ := ({abe.cti,b}i,b, Ẽ) to A . Otherwise (i.e., if there are
multiple entries with R(x∗, y) = 1 or if there is an entry with R(x∗, y) = 1 and V = ⊥), it aborts the
game and outputs 0.

3. A continues to make queries to OKG (·) and OVrfy (·, ·). However, A is not allowed to send a key attribute y
such that R(x∗, y) = 1 to OKG .

4. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

Hyb1: This game is the same as Hyb0 except that the challenger chooses random j̃ ← [Q] at the beginning of the
game. Then, right before it computes the challenge ciphertext, the challenger finds an index j∗ ∈ [Q] such that
R(x∗, y(j∗)) = 1. If there is no such a query, we define j∗ := 1.20 The challenger then checks whether j̃ = j∗. If
so, the challenger continues the game until A outputs its guess. Otherwise, it aborts the game and outputs 0 as the
outcome of the game.
Since the choice of j̃ is independent from the view of A and the outcome of the game is 1 only when j̃ = j∗, we
can easily see that Pr[Hyb1 = 1] = Pr[Hyb0 = 1]/Q.

Hyb2: This game is the same as Hyb1 except for the way {abe.cti,b}i,b is generated. Namely, we generate abe.cti,b as
abe.cti,b ← ABE.Enc(abe.pki,b, labi,skl.ek(j∗) [i]) for i ∈ [ℓek] and b ∈ {0, 1}.

We observe that the labels being encrypted are changed only for positions of the form (i, 1⊕ labi,skl.ek(j∗) [i]). The
adversary A cannot notice the change since it is not given any secret key that can decrypt the ABE ciphertexts for
these positions. To check this, recall that there is at most one index j∗ such that R(x∗, y(j∗)) = 1 and for the
corresponding key query, the adversary is given ABE secret keys for positions of the form (i, labi,skl.ek(j∗) [i]),
but not for (i, labi,1⊕skl.ek(j∗) [i]). Hence, we obtain |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) by the adaptive
security of ABE. See Lemma 6.7 for the detail.

Hyb3: This game is the same as Hyb2 except for the way ct∗ is generated. In particular, to generate ct∗,
we first run ({labi}i∈[ℓek], Ẽ) ← Sim.GC(1λ, SKL.Enc(skl.ek(j∗), m0; R)) and then compute abe.cti,b ←
ABE.Enc(abe.pki,b, labi) for i ∈ [ℓek] and b ∈ {0, 1}.
We claim that this game is indistinguishable from the previous one. To see this, it suffices to show that
({labi,skl.ek(j∗) [i]}i, Ẽ) computed by ({labi,b}i,b, Ẽ) ← Grbl(1λ, E[m0, R]) and ({labi}i∈[ℓek], Ẽ) computed by

({labi}i∈[ℓek], Ẽ) ← Sim.GC(1λ, SKL.Enc(skl.ek(j∗), m0; R)) are computationally indistinguishable. This im-
mediately follows from the security of the garbled circuit, since we have

E[m0, R](skl.ek(j∗)) = SKL.Enc(skl.ek(j∗), m0; R)

by the definition of E. Hence, we obtain |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| = negl(λ).

Hyb4: This game is the same as Hyb3 except that the challenger chooses ({labi}i, Ẽ) by ({labi}i∈[ℓek], Ẽ) ←
Sim.GC(1λ, SKL.Enc(skl.ek(j∗), m1; R)) instead of ({labi}i∈[ℓek], Ẽ)← Sim.GC(1λ, SKL.Enc(skl.ek(j∗), m0; R)).

To show that |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ), it suffices to show that SKL.Enc(skl.ek(j∗), m0; R)
is indistinguishable from SKL.Enc(skl.ek(j∗), m1; R) for A , if it makes OVrfy output ⊤ on input (y(j∗), usk ′)

20Note that if there are multiple indices j∗ satisfying the above, the challenger aborts and outputs 0 as specified in the previous game. Therefore,
there is at most one such j∗.
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for some usk ′ before the challenge ciphertext is given to A . The indistinguishability follows from the se-
curity of SKL, since the fact that A passes the verification OVrfy implies that A submitted skl.dk ′ such that
SKL.Vrfy(skl.vk(j∗), skl.dk ′) = ⊤ before it is given the challenge ciphertext and therefore it has no longer the
ability to decrypt the ciphertext. To turn this intuition into a formal reduction, we have to embed the public
key of SKL into the answer to the j∗-th key generation query. Since the reduction algorithm does not know j∗

until A submits (x∗, m0, m1), it can only guess it. The change in Hyb1 is introduced in order to incorporate
the guess into the game so that the reduction is possible. We refer to Lemma 6.8 for the formal proof for
|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ).

Hyb5: This is the same as Expada-ind-kla
1ABE,A ,1 (1λ, 1).

From the above discussion, we have

|Q Pr[Hyb3 = 1]− Pr[Hyb0 = 1]| = Q|Pr[Hyb3 = 1]− Pr[Hyb1 = 1]|
≤ Q ∑

i∈[0,2]
|Pr[Hybi+1 = 1]− Pr[Hybi = 1]| ≤ negl(λ). (7)

We then observe thatHyb5 (resp.,Hyb4) is the same asHyb0 (resp.,Hyb3) except thatm1 is used for the encryption instead
of m0. Therefore, we obtain |Q Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ) analogously to Eq. (7) by considering
similar sequence of the games with m0 being replaced by m1 in reverse order. We therefore have∣∣∣Expada-ind-kla

1ABE,A ,1 (1λ, 0)− Expada-ind-kla
1ABE,A ,1 (1λ, 1)

∣∣∣
= |Pr[Hyb0 = 1]− Pr[Hyb5 = 1]|
≤ |Pr[Hyb0 = 1]−Q Pr[Hyb3 = 1]|+ Q · |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]|+ |Pr[Hyb5 = 1]−Q Pr[Hyb4 = 1]|
≤ negl(λ)

as desired. It remains to prove Lemmata 6.7 and 6.8.

Lemma 6.7. |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ) if ABE is adaptively secure.

Proof. This can be reduced to the adaptive security of ABE by a standard hybrid argument where we modify the way of
generating ABE.cti,1⊕skl.ek(j∗) [i] for each i ∈ [ℓek] one by one. More precisely, the reduction works as follows.
We define additional hybrids Hyb1.k for k ∈ [ℓek] as follows.

Hyb1.k: This is identical to Hyb1 except that abe.cti,1⊕skl.ek(j∗) [i] is generated as

abe.cti,1⊕skl.ek(j∗) [i] ←
{

ABE.Enc(abe.pki,1⊕skl.ek(j∗) [i], labi,skl.ek(j∗) [i]) i < k

ABE.Enc(abe.pki,1⊕skl.ek(j∗) [i], labi,1⊕skl.ek(j∗) [i]) i ≥ k
(8)

for i ∈ [λ].

Clearly, we haveHyb1 = Hyb1.1 andHyb2 = Hyb1.ℓek+1. Thus, it suffices to prove that |Pr[Hyb1.k+1 = 1]− Pr[Hyb1.k = 1]| =
negl(λ) for all k ∈ [ℓek]. Remark that the only difference between Hyb1.k+1 and Hyb1.k is the way of generating
abe.ctk,1⊕skl.ek(j∗) [i]. To show that |Pr[Hyb1.k+1 = 1]− Pr[Hyb1.k = 1]| = negl(λ), we construct B against adaptive
security of ABE as follows.

B(abe.pk): It works as follows.

1. It chooses j̃← [Q] and (skl.ek(j), skl.dk (j), skl.vk(j))← SKL.KG(1λ) for j ∈ [Q].

2. Generate (abe.pki,b, abe.mski,b) ← ABE.KG(1λ) for (i, b) ∈ [ℓek]× {0, 1}\{(k, 1⊕ skl.ek( j̃)[k])}. Set
abe.pk

k,1⊕skl.ek( j̃) [k]
:= abe.pk and send pk := {abe.pki,b}i,b to A .
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3. B initializes the list LKG to be an empty set and simulates the following oracles for A .

OKG (y(j)): Given the j-th query y(j) with j ∈ [Q], if there is an entry of the form (y(j), vk, V), it outputs⊥.
Otherwise, it generates abe.sk(j)

i ← ABE.KG(abe.mski,skl.ek(j) [i], y(j)) for i ∈ [ℓek]\{k}. To simulate

abe.sk(j)
k , B preceeds as follows. If skl.ek(j)[k] = 1⊕ skl.ek( j̃)[k], it queries y(j) to its challenger. The

challenger runs
abe.sk← ABE.KG(abe.msk, y(j))

and returns it to B. B then sets abe.sk(j)
k := abe.sk. Otherwise (i.e., if skl.ek(j)[k] = skl.ek( j̃)[k]), it

runs abe.sk(j)
k ← ABE.KG(abe.mskk,skl.ek(j) [k], y(j)). It then sends usk (j) := ({abe.sk(j)

i }i, skl.dk (j))

to A and adds (y(j), skl.vk(j),⊥) to LKG .
OVrfy (y, usk ′): Given (y, usk ′), it finds an entry (y, vk, V) from LKG and parse usk ′ = ({abe.sk′i}i, skl.usk ′).

(If there is no such entry, it returns⊥.) It then parses vk = skl.vk and returns d := SKL.Vrfy(skl.vk, skl.dk ′)
to A . It finally updates the entry into (y, vk, d) if V = ⊥.

4. When A sends (x∗, m0, m1) to the challenger, B checks whether there are multiple entries (y, vk, V) in
LKG such that R(x∗, y) = 1 or there is an entry (y, vk, V) in LKG with R(x∗, y) = 1 and V = ⊤. If
so, B aborts the game and outputs 0 as its guess. Otherwise, B defines j∗ ∈ [Q] as in Hyb1. It then
aborts and outputs 0 if j∗ ̸= j̃. Otherwise, B computes ct∗ as follows. It first chooses R ← {0, 1}ℓrand

and computes ({labi,b}i∈[ℓek],b∈{0,1}, Ẽ) ← Grbl(1λ, E[m0, R]). It then computes abe.cti,b for (i, b) ∈
[ℓek]×{0, 1}\{(k, 1⊕ skl.ek(j∗)[k])} as in Equation (8). B then submits (labk,skl.ek(j∗) [k], labk,1⊕skl.ek(j∗) [k])

to its challenger. Then, the challenger runs

abe.ct← ABE.Enc(abe.pk, labcoin⊕skl.ek(j∗) [k])

and gives abe.ct to B, where coin ∈ {0, 1} is the coin chosen by the challenger. Then, B sets
abe.ctk,1⊕skl.ek(j∗) [k] := abe.ct and gives ct∗ := ({abe.cti,b}i,b, Ẽ) to A .

5. A then continues to make queries to OKG (·) and OVrfy (·, ·). B answers the queries in the same manner as
before the challenge query.

6. A finally outputs its guess. B outputs the same bit as its guess.

We first argue that B does not make any prohibited key query. To see this, we first observe that for every key query y
that B makes, there exists j such that y = y(j). We then observe that R(x∗, y(j)) = 0 for j ̸= j∗ and B does not make a
key query for y(j∗) in the above simulation.
We have

Advada-ind
ABE,B (λ) = 2

∣∣∣∣Pr
[

B outputs coin
]
− 1

2

∣∣∣∣
=

∣∣Pr
[

B outputs 1 |coin = 0
]
− Pr

[
B outputs 1 |coin = 1

]∣∣
= |Pr[Hyb1.k+1 = 1]− Pr[Hyb1.k = 1]|

where the probabilities are taken over the randomness used in the respective games. Thus, |Pr[Hyb1.k+1 = 1]− Pr[Hyb1.k = 1]| =
negl(λ) by the adaptive security of ABE. This completes the proof of Lemma 6.7.

Lemma 6.8. |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ) if SKL is IND-KLA secure.

Proof. This can be reduced to the IND-KLA security security of SKL. To do so, we construct an adversary B against
IND-KLA security of the scheme with advantage |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| as follows.

B(skl.ek, skl.dk ): It works as follows.
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1. It chooses j̃ ← [Q] and (skl.ek(j), skl.dk (j), skl.vk(j)) ← SKL.KG(1λ) for j ∈ [Q]\{ j̃}. It then sets
(skl.ek( j̃), skl.dk ( j̃)) := (skl.ek, skl.dk ). It then generates (abe.pki,b, abe.mski,b) ← ABE.Setup(1λ) for
i ∈ [ℓek] and b ∈ {0, 1} and sends pk := {abe.pki,b}i,b to the adversary A .

2. B initializes the list LKG to be an empty set and simulates the following oracles for A .

OKG (y(j)): Given the j-th query y(j) with j ∈ [Q], if there is an entry of the form (y(j), vk, V), it outputs
⊥. Otherwise, it generates abe.sk(j)

i ← ABE.KG(abe.mski,skl.ek(j) [i], y(j)) for i ∈ [ℓek]. It then returns

usk (j) := ({abe.sk(j)
i }i, skl.dk (j)) to A and adds (y(j), skl.vk(j),⊥) to LKG .

OVrfy (y, usk ′): Given (y, usk ′), it finds an entry (y, vk, V) from LKG and parses usk ′ = ({abe.sk′i}i, skl.dk ′).
(If there is no such entry, it returns⊥.) If y = y(j) for j ̸= j̃, B returns d := SKL.Vrfy(skl.vk(j), skl.dk ′)
to A . Otherwise (i.e., if y = y( j̃)), B submits skl.dk ′ to its verification oracle. Then,

d := SKL.Vrfy(skl.vk, skl.dk ′)

is computed and returned to B. B then returns d to A . It finally updates the entry into (y, vk, d) if
V = ⊥.

3. When A sends (x∗, m0, m1) to the challenger, B checks whether there are multiple entries (y, vk, V) in
LKG such that R(x∗, y) = 1 or there is an entry (y, vk, V) in LKG with R(x∗, y) = 1 and V = ⊤. If so, B
aborts the game and outputs 0 as its guess. Otherwise, B defines j∗ ∈ [Q] as in Hyb1. It then aborts and
outputs 0 if j∗ ̸= j̃. Otherwise, B computes ct∗ as follows. It first submits (m0, m1) to its challenger. Then,
the challenger runs

skl.ct← SKL.Enc(skl.ek, mcoin)

and returns it toB , where coin ∈ {0, 1} is the coin chosen by the challenger. B then runs ({labi}i∈[ℓek], Ẽ)←
Sim.GC(1λ, skl.ct) and computes abe.cti,b ← ABE.Enc(abe.pki,b, labi) for i ∈ [ℓek] and b ∈ {0, 1}. Then,
B sets ct∗ := ({abe.cti,b}i,b, Ẽ) and gives it to A .

4. A then continues to make queries to OKG (·) and OVrfy (·, ·). B answers the queries in the same manner as
before the challenge query.

5. A finally outputs its guess. B outputs the same bit as its guess.

We then have

Advind-kla
SKL,B (λ) =

∣∣Pr
[

B outputs 1 |coin = 0
]
− Pr

[
B outputs 1 |coin = 1

]∣∣
= |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]|

where the probabilities are taken over the randomness used in the respective games. Thus, |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| =
negl(λ) by the security of SKL. This completes the proof of Lemma 6.8.

This completes the proof of Theorem 6.6 for the case of adaptive security.

The proof for selective security. The statement for selective security can be obtained immediately by considering the
same sequence of games as adaptive security case with natural adaptations. In particular, we modify the reduction
algorithm in Lemma 6.7 so that it outputs x∗ at the beginning of the game right after given x∗ from A .
An alternative option is to consider a simpler proof that is tailored to selective setting. This is possible because

the proof obtained by adapting the adaptive setting to the selective setting includes a redundant step. In particular, we
consider a sequence of games without Hyb1. The reason why Hyb1 is not necessary is that in the selective setting,
the reduction algorithm obtains x∗ at the beginning of the game and can use this information throughout the game.
In particular, whenever A makes a key query y(j), the reduction algorithm can check whether j∗ = j holds or not by
computing the value of R(x∗, y(j)) and there is no need to guess it. By introducing this change, we can improve the
reduction cost to be independent of Q.
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6.3 Q-Bounded Distinguishing Key Construction
We construct an ABE-SKL scheme qABE = (Setup, KG , Enc, Dec, Vrfy) for relation R : X × Y → {0, 1} with
q-bounded distinguishing key Ada-IND-KLA (resp., Sel-IND-KLA) security from an ABE-SKL scheme 1ABE =
1ABE.(Setup, KG , Enc, Dec, Vrfy) for the same relation R with 1-bounded distinguishing key Ada-IND-KLA (resp.,
Sel-IND-KLA) security. We note that the construction here is essentially the same as [ISV+17], which converts a single
collusion secure ABE scheme into a q-bounded collusion secure ABE. However, our proof is more complex reflecting
the fact that the adversary is allowed to make unbounded number of key queries (though the number of distinguishing
keys is bounded).
The following construction uses parameters v := v(λ) and w := w(λ). We will set the parameters in Theorem 6.9.

Setup(1λ):

• For i ∈ [v] and j ∈ [w], run (1abe.pki,j, 1abe.mski,j)← 1ABE.Setup(1λ).
• Output (pk, msk) := ({1abe.pki,j}i∈[v],j∈[w], {1abe.mski,j}i∈[v],j∈[w]).

KG(msk, y):

• For i ∈ [v], choose ji ← [w].
• Run (1abe.vki, 1abe.usk i)← 1ABE.KG(1abe.mski,ji , y) for i ∈ [v].
• Output usk := {ji, 1abe.usk i}i∈[v] and vk := {1abe.vki}i∈[v].

Enc(pk, x, m):

• Choose µ1, . . . , µv−1 ← {0, 1}ℓ and set µv := (⊕i∈[v−1]µi)⊕m, where ⊕ denotes bit-wise XOR here.
• Run 1abe.cti,j ← 1ABE.Enc(1abe.pki,j, x, µi) for i ∈ [v] and j ∈ [w].
• Output ct := {1abe.cti,j}i∈[v],j∈[w].

Dec(usk , x, ct):

• Parse usk := {ji, 1abe.usk i}i∈[v] and ct := {1abe.cti,j}i∈[v],j∈[w].

• Compute µ′i ← 1ABE.Dec(1abe.usk i, x, 1abe.cti,ji ) for i ∈ [v].
• Compute and output m′ := ⊕i∈[v]µ

′
i.

Vrfy(vk, usk ′):

• Parse vk = {1abe.vki}i∈[v] and usk ′ := {ji, 1abe.usk ′i}i∈[v].

• Compute di ← 1ABE.Vrfy(1abe.vki, 1abe.usk ′i) for i ∈ [v].
• If di = ⊤ for all i ∈ [v], output ⊤. Otherwise, output ⊥.

It is straightforward to see that the decryption correctness and the verification correctness of the above scheme follow
from those of 1ABE.

Theorem 6.9. Assuming 1ABE is 1-bounded distinguishing key Ada-IND-KLA (resp., Sel-IND-KLA) secure, qABE is
q-bounded distinguishing key Ada-IND-KLA (resp., Sel-IND-KLA) secure if we set the parameters as follows:

• For the adaptive case, we assume that the size of the ciphertext attribute space |Xλ| is bounded by 2n(λ) for some
polynomial function n(λ). We then set v = 2(λ + n) and w = q2.

• For the selective case, we set v = λ and w = q2.

Proof of Theorem 6.9. Here, we first focus on the proof for the case of q-bounded distinguishing key Ada-IND-KLA
and later mention the difference for the case of q-bounded distinguishing key Sel-IND-KLA. We define a sequence of
hybrid games.
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Hyb0: This is the same as Expada-ind-kla
qABE,A ,q (1λ, 0). More specifically, it is as follows.

1. The challenger generates (1abe.pki,j, 1abe.mski,j)← 1ABE.Setup(1λ) for i ∈ [v] and j ∈ [w] and sends
pk := {1abe.pki,j}i,j to the adversary A . The challenger then initializes the list LKG to be an empty set. A
can access the following oracles.
OKG (y(k)): Given the k-th query y(k) with k ∈ [Q], if there is an entry of the form (y(k), vk, V), it

outputs ⊥. Otherwise, it chooses j(k)i ← [w] for i ∈ [v] and runs (1abe.vk(k)i , 1abe.usk (k)
i ) ←

1ABE.KG(1abe.mski,ji , y(k)) for i ∈ [v]. It then returns usk (k) := {j(k)i , 1abe.usk (k)
i }i∈[v] and

vk(k) := {1abe.vk(k)i }i∈[v] to A and adds (y(k), vk(k),⊥) to LKG .
OVrfy (y, usk ′): Given (y, usk ′), it finds an entry (y, vk, V) from LKG and parses usk ′ = {ji, usk ′i}i. (If

there is no such entry, it returns ⊥.) It then computes di := 1ABE.Vrfy(1abe.vki, usk ′i) for i ∈ [v] and
checks if di = ⊤ for all i ∈ [v]. If so, it returns d := ⊤ to A . Otherwise, it returns d := ⊥ to A . It
finally updates the entry into (y, vk, d) if V = ⊥.

2. When A sends (x∗, m0, m1) to the challenger, the challenger computes the set Kx∗ := {k ∈ [Q1] :
R(x∗, y(k)) = 1}, where Q1 ≤ Q is the number of key queries made by A so far. If we have V = ⊤ for all
entries of the form (y(k), vk, V) in LKG with k ∈ Kx∗ and |Kx∗ | ≤ q, the challenger chooses µ1, . . . , µv−1 ←
{0, 1}ℓ, sets µv := (⊕i∈[v−1]µi) ⊕ m0, and computes 1abe.cti,j ← 1ABE.Enc(1abe.pki,j, x∗, µi) for
i ∈ [v] and j ∈ [w]. It then sends ct∗ := {1abe.cti,j}i,j to A . Otherwise (i.e., if |Kx∗ | > q or if there is an
entry of the form (y(k), vk,⊥) for some k ∈ Kx∗ ), it aborts the game and outputs 0.

3. A continues to make queries to OKG (·) and OVrfy (·, ·). However, A is not allowed to send a key attribute y
such that R(x∗, y) = 1 to OKG .

4. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

Hyb1: This game is the same as Hyb0 except for the way ct∗ is generated. In particular, when A submits (x∗, m0, m1),
the challenger aborts the game and outputs 0 as the outcome of the game if there is no i∗ such that {j(k)i∗ }k∈Kx∗
are all distinct. Otherwise, the challenger continues the game as specified in Hyb0 .
We observe that unless there is no such i∗, the game is the same as the previous one. We bound the probability of
this occuring. Let us first consider the case where A fixes its target x∗ at the beginning of the game (i.e., selective
security setting). In this case, by simple probability calculation, we can show that the probability that i∗ does
not exist is exponentially small in the parameter v. However, in the adaptive case, the adversary can adaptively
choose x∗ dependent on the values of {j(k)i }i∈[v],k∈[Q] and the proof for the selective case no longer works. To
deal with the added flexibility given to the adversary, we use the union bound over all x ∈ X and then use the
above bound for each fixed x. This requires the parameter v to grow dependent on the size of log |Xλ| so that the
sum of the probabilities is still small enough even after taking the union bound. Based on the above discussion,
we can prove |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ). We refer to Lemma 6.10 for the detail.

Hyb2: This game is the same as Hyb1 except that the challenger chooses random ĩ← [v] at the beginning of the game.
Then, right before the challenger computes ct∗, it checks whether ĩ = i∗, where i∗ is the smallest index such that
{j(k)i∗ }k∈Kx∗ are all distinct. 21 If so, the challenger continues the game until A outputs its guess. Otherwise, it
aborts the game and outputs 0 as the outcome of the game.
Since the choice of ĩ is independent from the view of A and the outcome of the game is 1 only when ĩ = i∗, we
can easily see that Pr[Hyb2 = 1] = Pr[Hyb1 = 1]/v.

Hyb3: This is the same as Hyb2 except for how µ1, . . . , µv are generated. In particular, A first chooses µ1, . . . , µv ←
{0, 1}ℓ and discards µi∗ . It then sets µi∗ := (⊕i∈[v]\{i∗})⊕m0. It can be easily seen that the distribution of
µ1, . . . , µv is unchanged from the previous game and thus we have Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

21Note that i∗ is not defined until A chooses x∗.
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Hyb4: This is the same as Hyb3 except that µi∗ is set as µi∗ := (⊕i∈[v]\{i∗}µi)⊕m1.
We claim that this change is not noticed by A by the security of the underlying 1ABE. To show this, we first
observe that the game differs from the previous one only in how {1abe.cti∗ ,j}j∈[w] are generated. We then change
each plaintext encrypted in {1abe.cti∗ ,j}j one by one by using the security of the underlying 1ABE. This is
possible since for each 1ABE instance with index (i∗, j), A is given only at most one distinguishing key by the
change we introduced in Hyb1 and thus we can use the security of 1ABE for such instances. We therefore have
|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ). We refer to Lemma 6.11 for the detail.

Hyb5: This is the same as Expada-ind-kla
qABE,A ,q (1λ, 1).

From the above discussion, we have

|v Pr[Hyb3 = 1]− Pr[Hyb0 = 1]| = |Pr[Hyb1 = 1]− Pr[Hyb0 = 1]| ≤ negl(λ). (9)

We then observe that Hyb5 (resp., Hyb4) is the same as Hyb0 (resp., Hyb3) except that m1 is used for the encryption
instead ofm0. Therefore, we obtain |v Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ) analogously to Eq. (9) by considering
similar sequence of games with m0 being replaced by m1 in a reverse order. We therefore have∣∣∣Expada-ind-kla

qABE,A ,q (1λ, 0)− Expada-ind-kla
qABE,A ,q (1λ, 1)

∣∣∣
= |Pr[Hyb0 = 1]− Pr[Hyb5 = 1]|
≤ |Pr[Hyb0 = 1]− v Pr[Hyb3 = 1]|+ v · |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]|+ |Pr[Hyb5 = 1]− v Pr[Hyb4 = 1]|
≤ negl(λ)

as desired. It remains to prove Lemmata 6.10 and 6.11.

Lemma 6.10. |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ) holds both for selective and adaptive settings.

Proof. We first show the statement for the selective case. The proof for this case is the same as [ISV+17, Lemma 1],
but we provide the proof here for completeness. In the selective case, the probability that {j(k)i }k∈Kx∗ are not all distinct
for some fixed i is

1− w(w− 1) · · · (w− q + 1)
wq ≤ 1−

(
1− q− 1

w

)q
.

Therefore, the probability that there is no i∗ satisfying the requirement is at most(
1−

(
1− q− 1

w

)q)v

which is negligible when v = λ and w = q2 since(
1−

(
1− q− 1

w

)q)v

≤
(

1− e−1
)λ

= 2−O(λ).

We then consider the adaptive case. We have

Pr
[
{j(k)i }k∈Kx∗ are not all distinct

]
= ∑

x∈Xλ

Pr
[

x∗ = x ∧ {j(k)i }k∈Kx are not all distinct
]

≤ ∑
x∈Xλ

Pr
[
{j(k)i }k∈Kx are not all distinct

]
≤ ∑

x∈Xλ

(
1−

(
1− q− 1

w

)q)v

≤ |Xλ|
(

1− e−1
)v

≤ 2−λ,
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where the probabilities are taken over all randomness used in the game. In the above, third line follows from the same
analysis as the selective case and the forth and the fifth lines follow from our parameter setting.

Lemma 6.11. If 1ABE is 1-bounded distinguishing key Ada-IND-KLA, |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| = negl(λ).

Proof. This can be reduced to the 1-bounded distinguishing key Ada-IND-KLA security of 1ABE by a standard hybrid
argument, where we modify the plaintext encrypted in 1abe.cti∗ ,j for each j ∈ [w] one by one. More precisely, the
reduction works as follows.
We define additional hybrids Hyb3.k for k ∈ [w] as follows. In the following, let ξb := (⊕i∈[v]\{i∗}µi)⊕mb for

b ∈ {0, 1}.

Hyb3.τ: This is identical to Hyb3 except that 1abe.cti∗ ,j is generated as

1abe.cti∗ ,j ←
{

1ABE.Enc(1abe.pki∗ ,j, ξ1) j < τ

1ABE.Enc(1abe.pki∗ ,j, ξ0) j ≥ τ
(10)

for j ∈ [λ].

Clearly, we haveHyb3 = Hyb3.1 andHyb4 = Hyb3.w+1. Thus, it suffices to prove that |Pr[Hyb3.τ+1 = 1]− Pr[Hyb3.τ = 1]| =
negl(λ) for all τ ∈ [w]. Remark that the only difference between Hyb3.τ+1 and Hyb3.τ is the way of generating
1abe.cti∗ ,τ . To show that |Pr[Hyb3.τ+1 = 1]− Pr[Hyb3.τ = 1]| = negl(λ), we construct B against the security of
1ABE as follows.

B(1abe.pk): It works as follows.

1. It first chooses random ĩ← [v].
2. The challenger generates (1abe.pki,j, 1abe.mski,j) ← 1ABE.Setup(1λ) for (i, j) ∈ ([v]× [w])\{(ĩ, k)}.
It then sets 1abe.pkĩ,k := 1abe.pk and sends pk := {1abe.pki,j}i,j to the adversary A . It then initializes the
list LKG to be an empty set. B then simulates the following oracles for A .

OKG (y(k)): Given the k-th query y(k) with k ∈ [Q] from A , B returns ⊥ to A if there is an entry of the
form (y(k), vk, V). Otherwise, it chooses j(k)i ← [w] for i ∈ [v] and runs (1abe.vk(k)i , 1abe.usk (k)

i )←
1ABE.KG(1ABE.mski,ji , y(k)) for i ∈ [v]\{ĩ}. If j(k)

ĩ
= τ, it sends y(k) to its key generation oracle

and is given
1abe.usk ← 1ABE.KG(1abe.msk, y(k)).

Then, it sets 1abe.usk (k)
ĩ

:= 1abe.usk . Otherwise (i.e., if j(k)
ĩ
̸= τ), it runs (1abe.vk(k)

ĩ
, 1abe.usk (k)

ĩ
)←

ABE.KG(1ABE.mskĩ,jĩ
, y(k)) by itself. Finally, B returns usk (k) := {j(k)i , 1abe.usk (k)

i }i∈[v] to A and

adds (y(k), vk(k),⊥) to LKG , where vk(k) := {1abe.vk(k)i }i∈[v].
OVrfy (y, usk ′): Given (y, usk ′), it finds an entry (y, vk, V) from LKG and parses usk ′ = {ji, usk ′i}i. (If

there is no such entry, it returns ⊥.) It then computes di := 1ABE.Vrfy(1abe.vki, usk ′i) for i ∈ [v]. If
jĩ = τ, B makes a query to its own verification oracle to obtain

dĩ := 1ABE.Vrfy(1abe.vk, usk ′ĩ).

Otherwise, B runs dĩ := 1ABE.Vrfy(1abe.vkĩ,τ , usk ′ĩ) by itself. Finally, it checks if di = ⊤ for all
i ∈ [v]. If so, it returns d := ⊤ to A . Otherwise, it returns d := ⊥ to A . It finally updates the entry
into (y, vk, d) if V = ⊥.

3. When A sends (x∗, m0, m1) to the challenger, B aborts and outputs 0 if either |Kx∗ | > q or there is
an entry of the form (y(k), vk,⊥) for some k ∈ Kx∗ . It also aborts and outputs 0 if i∗ ̸= ĩ, which
includes the case that there is no i∗ satisfying the properties we defined in Hyb1. Otherwise, it chooses
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µ1, . . . , µv ← {0, 1}ℓ and sets ξ0 := (⊕i∈[v]\{i∗}µi) ⊕ m0 and ξ1 := (⊕i∈[v]\{i∗}µi) ⊕ m1. It then
computes 1abe.cti,j ← 1ABE.Enc(1abe.pki,j, x∗, µi) for i ∈ [v]\{i∗} and j ∈ [w] and 1abe.cti∗ ,j for
j ∈ [w]\{τ} as Equation (10). It then submits (ξ0, ξ1) to its challenger. Then,

1abe.ct← Enc(1abe.pk, ξcoin)

is run and 1abe.ct is returned to B, where coin is the random bit chosen by B’s challenger. Finally, B sets
1abe.cti∗ ,τ := 1abe.ct and sends ct∗ := {1abe.cti,j}i,j to A .

4. A continues to make queries to OKG (·) and OVrfy (·, ·). However, A is not allowed to send a key attribute y
such that R(x∗, y) = 1 to OKG .

5. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

We first argue that B does not make more than two distinguishing key queries. This is because B aborts and outputs 0
before it makes a challenge query if there is no i∗ with the required conditions. For such i∗, we have that {j(k)i∗ }k∈Kx∗
are all distinct and thus in particular, B needs to simulate only single distinguishing key for the (i∗, τ)-th instance, to
which the reduction algorithm embeds the 1ABE instance.
We then have

Advada-ind-kla
1ABE,B,1 (λ) =

∣∣Pr
[

B outputs 1 |coin = 0
]
− Pr

[
B outputs 1 |coin = 1

]∣∣
= |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]|

where the probabilities are taken over the randomness used in the respective games. Thus, |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| =
negl(λ) by the adaptive security of 1ABE. This completes the proof of Lemma 6.11.

This completes the proof of Theorem 6.9 for the case of adaptive security.

The proof for selective security. The proof for selective security can be obtained immediately by considering the
same sequence of games as adaptive security case with natural adaptations. There are two main differences. The proof
for Lemma 6.10 requires different parameters for selective and adaptive cases. We refer to the proof of the lemma for
the detail. Another difference is that we modify the reduction algorithm in Lemma 6.11 so that it outputs x∗ at the
beginning of the game right after given x∗ from A .

6.4 Instantiations
Here, we explain new schemes that can be obtained by applying the conversions that we showed in Sections 6.2 and 6.3
to existing IBE/ABE schemes. Our constructions are fully generic and can upgrade almost all ABE schemes22 into the
one with the security against key leasing attacks with the help of IND-KLA secure PKE-SKL scheme, which can be
instantiated from any (post quantum) PKE. Here, we mention some instantiations, all of which are obtained from the
standard LWE assumption.

• If we start from selectively secure ABE scheme for circuits [GVW13, BGG+14] and apply the conversions in
Sections 6.2 and 6.3, we obtain an ABE-SKL scheme for circuits with q-bounded distinguishing key Sel-IND-KLA
security for any q = poly(λ).

• If we start from adaptively secure ABE for inner products over the integer [KNYY20] and apply the conversions
in Sections 6.2 and 6.3, we obtain an ABE-SKL scheme for the same predicate with q-bounded distinguishing key
Ada-IND-KLA security for any q = poly(λ). We note that the conversion in Section 6.3 for adaptive security

22Our conversion in Section 6.3 for the adaptive security case poses the restriction that the size of the cipheretxt attribute space of the ABE should
be bounded by 2poly(λ) for some polynomial poly(λ). This means that we cannot apply the conversion for adaptively secure ABE for DFA for
example, since the ciphertext attribute is of unbounded length and there is no such bound for the size of the ciphertext attribute space. However, we do
not know any concrete ABE scheme from standard assumptions for which we cannot apply our conversion.
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case can be applied for the scheme, since the size of the ciphertext attribute space is bounded by 2poly(λ) for the
primitive. Similar implications can be obtained for adaptively secure t-CNF formulae for t = O(1) [Tsa19] and
fuzzy IBE for small universe [KNYY20].

• If we start from adaptively (resp., selectively) secure IBE [ABB10, CHKP10] and apply the conversion in
Section 6.2, we obtain IBE-SKL scheme with 1-bounded distinguishing key Ada-IND-KLA (resp., Sel-IND-KLA)
security. We note that 1-bounded distinguishing key security for the case of IBE is a more natural security notion
than that for the case of ABE with other relations since there is only one attribute that is eligible for decrypting
a ciphertext in the case of IBE (i.e., the identity that is associated with the ciphertext), whereas there can be
exponentially many such attributes in general.

7 Public-Key Functional Encryption with Secure Key Leasing
7.1 Definitions
Definition 7.1 (PKFE with Secure Key Leasing). A PKFE-SKL scheme PKFE-SKL is a tuple of six algorithms
(Setup, KG , Enc, Dec, Cert , Vrfy). Below, let X , Y , and F be the plaintext, output, and function spaces of PKFE-SKL,
respectively.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ, and outputs a public key pk and master
secret key msk.

KG(msk, f )→ (fsk , vk): The key generation algorithm takes a master secret key msk and a function f ∈ F , and
outputs a functional decryption key fsk and a verification key vk.

Enc(pk, x)→ ct: The encryption algorithm takes a public key pk and a plaintext x ∈ X , and outputs a ciphertext ct.

Dec(fsk , ct)→ x̃: The decryption algorithm takes a functional decryption key fsk and a ciphertext ct, and outputs a
value x̃.

Vrfy(vk, fsk ′)→ ⊤/⊥: The verification algorithm takes a verification key vk and a quantum state fsk ′, and outputs ⊤
or ⊥.

Decryption correctness: For every x ∈ X and f ∈ F , we have

Pr

Dec(fsk , ct) = f (x)

∣∣∣∣∣∣
(pk, msk)← Setup(1λ)
(fsk , vk)← KG(msk, f )
ct← Enc(pk, x)

 = 1− negl(λ).

Verification correctness: For every f ∈ F , we have

Pr
[

Vrfy(vk, fsk ) = ⊤
∣∣∣∣ (pk, msk)← Setup(1λ)
(fsk , vk)← KG(msk, f )

]
= 1− negl(λ).

Remark 7.2. Although Kitagawa and Nishimaki [KN22a] require SKFE-SKL to have classical certificate generation
algorithm for deletion, we do not since it is optional. If there exists a PKE-SKL scheme that has a classical certificate
generation algorithm, our PKFE-SKL scheme in Section 7.2 also has a classical certificate generation algorithm.

Definition 7.3 (Adaptive Indistinguishability against Key Leasing Attacks). We say that a PKFE-SKL scheme
PKFE-SKL for X ,Y , and F is an adaptively indistinguishable secure against key leasing attacks (Ada-IND-KLA), if it
satisfies the following requirement, formalized from the experiment Expada-ind-kla

A ,PKFE-SKL(1
λ, coin) between an adversary A

and a challenger:

1. At the beginning, the challenger runs (pk, msk) ← Setup(1λ). Throughout the experiment, A can access the
following oracles.
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OKG ( f ): Given f , it finds an entry ( f , vk, V) from LKG . If there is such an entry, it returns ⊥. Otherwise, it
generates (fsk , vk)← KG(msk, f ), sends fsk to A , and adds ( f , vk,⊥) to LKG .

OVrfy ( f , fsk ′): Given ( f , fsk ′), it finds an entry ( f , vk, V) from LKG . (If there is no such entry, it returns ⊥.)
It computes d ← Vrfy(vk, fsk ′) and sends d to A . If V = ⊤, it does not update LKG . Else if V = ⊥, it
updates the entry by setting V := d.

2. When A sends (x∗0 , x∗1) to the challenger, the challenger checks if for any entry ( f , vk, V) in LKG such that
f (x∗0) ̸= f (x∗1), it holds that V = ⊤. If so, the challenger generates ct∗ ← Enc(pk, x∗coin) and sends ct∗ to A .
Otherwise, the challenger outputs 0. Hereafter, A is not allowed to send a function f such that f (x∗0) ̸= f (x∗1) to
OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advada-ind-kla
PKFE-SKL,A(λ) :=

∣∣∣Pr
[
Expada-ind-kla

PKFE-SKL,A(1
λ, 0)→ 1

]
− Pr

[
Expada-ind-kla

PKFE-SKL,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

Remark 7.4. Definition 7.3 assumes that the adversary does not get more than one decryption key for the same f for
simplification as Remark 6.3.

7.2 Constructions
Wedescribe our PKFE-SKL scheme in this section. We construct a PKFE-SKL schemePKFE-SKL = (Setup, KG , Enc, Dec, Vrfy)
by using the following building blocks.

• IND-KLA secure PKE-SKL SKL = SKL.(KG , Enc, Dec, Vrfy).

• Adaptively secure PKFE FE = FE.(Setup, KG, Enc, Dec).

• Adaptively single-ciphertext function private SKFE SKFE = SKFE.(Setup, KG, Enc, Dec).

• Pseudorandom-secure SKE SKE = SKE.(Enc, Dec).

• Puncturable PRF PRF = (PRF.Gen, F, Puncture).

We set ℓpad := |skfe.ct| − |x| and ℓske := |ske.ct|, where |x| is the input length of PKFE-SKL, |skfe.ct| is the ciphertext
length of SKFE, and |ske.ct| is the ciphertext length of SKE.

Setup(1λ):

• Generate (fe.pk, fe.msk)← FE.Setup(1λ).
• Output (pk, msk) := (fe.pk, fe.msk).

KG(msk, f ):

• Generate (skl.ek, skl.sk , skl.vk)← SKL.KG(1λ).
• Choose ske.ct← {0, 1}ℓske .
• Construct a circuitW[ f , skl.ek, ske.ct], which is described in Figure 1.
• Generate fe.skW ← FE.KG(fe.msk, W[ f , skl.ek, ske.ct]).
• Output fsk := (fe.skW , skl.sk ) and vk := skl.vk.

Enc(pk, x):

• Choose K← PRF.Gen(1λ).
• Compute fe.ct← FE.Enc(fe.pk, (x∥0ℓpad ,⊥, K)).
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• Output ct := fe.ct.

Dec(fsk , ct):

• Parse fsk = (fe.sk, skl.sk ) and ct = fe.ct.
• Compute skl.ct← FE.Dec(fe.sk, fe.ct).
• Compute and output y← SKL.Dec(skl.sk , skl.ct).

Vrfy(vk, fsk ′):

• Parse vk = skl.vk and fsk ′ = (fe.sk′, skl.sk ′).
• Compute and output SKL.Vrfy(skl.vk, skl.sk ′).

Function W[ f , skl.ek, ske.ct](x′, ske.sk, K)

Constants: Function f , PKE-SKL encryption key skl.ek, SKE ciphertext ske.ct.
Input: Plaintext x′, SKE key ske.sk, PRF key K.

1. If ske.sk = ⊥, do the following:

• Parse x′ = x∥x such that |x| = ℓpad.

• Compute and output skl.ct := SKL.Enc(skl.ek, f (x); FK(skl.ek)).

2. If ske.sk ̸= ⊥, do the following:

• Compute skfe.sk← SKE.Dec(ske.sk, ske.ct).
• Compute and output z := SKFE.Dec(skfe.sk, x′).

Figure 1: The description ofW[ f , skl.ek, ske.ct]

Correctness. The decryption correctness of PKFE-SKL follows from the correctness of FE and the decryption
correctness of SKL. The verification correcntess of PKFE-SKL follows from the verification correcntess of SKL.

7.3 Security Proofs
We prove the security of PKFE-SKL.

Theorem 7.5. If PKFE is adaptively secure, SKFE is adaptively single-ciphertext function private, PRF is a secure
punctured PRF, and SKE has the ciphertext pseudorandomness, then PKFE-SKL above is Ada-IND-KLA.

Theorem 7.6. If PKFE is q-bounded adaptively secure, SKFE is adaptively single-ciphertext function private, PRF
is a secure punctured PRF, and SKE has the ciphertext pseudorandomness, then PKFE-SKL above is q-bounded
Ada-IND-KLA.

The proof of Theorem 7.6 is almost the same as that of Theorem 7.5. Hence, we focus on the proof of Theorem 7.5.
We can also consider a simulation-based security for q-bounded security as Kitagawa and Nishimaki [KN22a] and
believe that we can achieve it using a similar technique. However, it is out of scope of this work.

Proof of Theorem 7.5. In the proof, we embed an SKFE ciphertext skfe.ct ← SKFE.Enc(skfe.msk, (x,⊥, K, 0,⊥))
into the challenge ciphertext. More specifically, we generate fe.ct ← PKFE.Enc(fe.pk, (skfe.ct, ske.sk,⊥)) and
ske.ct ← SKE.Enc(ske.sk, SKFE.KG(skfe.msk, T[ f , skl.ek])), where T[ f , skl.ek] is described in Figure 2. By using
this embedding, we can use the function privacy of SKFE and can alter both plaintexts and functions in the proof.
Let q be the total number of key queries to OKG . In the collusion-resistant setting, q is an unbounded polynomial.

Note that even if q is an unbounded polynomial, we need only poly(λ) bits to describe q as an integer. We assume that
the adversary does not send the same f to OKG more than once without loss of generality. We define a sequence of
hybrid games.
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Function T[ f , skl.ek](x, x1, K, j, skl.ct∗)
Constants: Function f , encryption key of PKE-SKL skl.ek.
Input: Plaintext x and x1, PRF key K, index j, a PKE-SKL ciphertext skl.ct∗.a

1. Compute and output skl.ct := SKL.Enc(skl.ek, f (x); FK(skl.ek)).

aAlthough inputs (x1, j, skl.ct∗) are not used in this function, we need them in hybrid games later.

Figure 2: The description of T[ f , skl.ek]

Hyb0: This is the same as Expada-ind-kla
PKFE-SKL,A(1

λ, 0). More specifically, it is as follows.

1. The challenger generates (fe.pk, fe.msk) ← FE.Setup(1λ) and sends pk := fe.pk to A . A can access the
following oracles.
OKG ( fi): Given fi, it generates (skl.eki, skl.sk i, skl.vki) ← SKL.KG(1λ), ske.cti ← {0, 1}ℓske , and

fe.skW,i ← FE.KG(fe.msk, W[ fi, skl.eki, ske.cti]), sends fsk i := (fe.skW,i, skl.sk i) to A , and adds
( fi, vki,⊥) to LKG .

OVrfy ( fi, fsk ′i): Given ( fi, fsk ′i), it finds an entry ( fi, vki, Vi) from LKG and parse fsk ′i = (fe.sk′i, skl.sk ′i).
(If there is no such entry, it returns ⊥.) It returns d := SKL.Vrfy(skl.vk, skl.sk ′). If Vi = ⊤, it does
not update the entry. Otherwise, it updates the entry by setting Vi := d.

2. When A sends (x∗0 , x∗1) to the challenger, the challenger checks if for any entry ( f , vk, V) in LKG such
that f (x∗0) ̸= f (x∗1), it holds that V = ⊤. If so, the challenger generates K ← PRF.Gen(1λ) and
fe.ct∗ ← FE.Enc(fe.pk, (x∗coin∥0ℓpad ,⊥, K)) and sends ct∗ := fe.ct∗ to A . Otherwise, the challenger
outputs 0. Hereafter, A is not allowed to send a function f such that f (x∗0) ̸= f (x∗1) to OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

Hyb1: This is the same as Hyb0 except that for all i ∈ [q], we generate ske.cti ← SKE.Enc(ske.sk, skfe.ski), where
skfe.ski ← SKFE.KG(skfe.msk, T[ fi, skl.eki]) and (skl.eki, skl.sk i, skl.vki)← SKL.KeyGen(1λ). Note that the
SKE secret key ske.sk never appears in the view of A . Hence, we obtain |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| =
negl(λ) by the security of SKE.

Hyb2: This is the same as Hyb1 except that we generate fe.ct∗ ← PKFE.Enc(fe.pk, (skfe.ct∗, ske.sk,⊥)), where
skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 ,⊥, K, 0,⊥)). By the definition ofW described in Figure 1, if we decrypt
fe.ct∗ by fe.ski, we obtain

• SKL.Enc(skl.eki, f (x∗0); FK(skl.eki)) in Hyb1 since the plaintext in fe.ct∗ is (x∗0∥0ℓpad ,⊥, K),
• zi = SKFE.Dec(skfe.ski, skfe.ct∗) in Hyb2 since ske.ct is a ciphertext of skfe.ski and the plaintext in fe.ct∗
is (skfe.ct∗, ske.sk,⊥), where skfe.ct∗ = SKFE.Enc(skfe.msk, (x∗0 ,⊥, K, 0,⊥)). By the correctness of
SKFE, zi = SKL.Enc(skl.eki, f (x∗0); FK(skl.eki)).

That is, for all i ∈ [q], it holds thatW[ fi, skl.eki, ske.cti](x∗0∥0ℓpad ,⊥, K) = W[ fi, skl.eki, ske.cti](skfe.ct∗, ske.sk,⊥).
Hence, we can use the security of PKFE and obtain |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ). See Lemma C.1
for the detail.
After this game, we can focus on SKFE.

Hyb3: This is the same as Hyb2 except that we generate skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 , x∗1 , K, 0,⊥)) and
skfe.ski ← SKFE.KG(skfe.msk, Thyb[ fi, skl.eki, i]), where Thyb[ fi, skl.eki, i] is described in Figure 3. Since
i ∈ [q], it holds that Thyb[ fi, skl.eki, i](x∗0 , x∗1 , K, 0,⊥) = T[ fi, skl.eki](x∗0 ,⊥, K, 0,⊥) for all i ∈ [q]. Hence, by
the adaptively single-ciphertext function privacy of SKFE, we obtain |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| = negl(λ).
See Lemma C.2 for the detail.
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Hybj
3: This is the same asHyb3 except that we generate skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 , x∗1 , K, j,⊥)). Apparently,

Hyb0
3 is the same as Hyb3. We show it holds that

∣∣∣Pr
[
Hybj−1

3 = 1
]
− Pr

[
Hybj

3 = 1
]∣∣∣ = negl(λ) for j ∈ [q]

in Lemma 7.7.

Hyb4: This is the same as Hybq
3 except that we generate skfe.ski ← SKFE.KG(skfe.msk, T[ fi, skl.eki]) and skfe.ct∗ ←

SKFE.Enc(skfe.msk, (x∗1 ,⊥, K, 0,⊥)). Recall that inHybq
3, we use skfe.ski ← SKFE.KG(skfe.msk, Thyb[ fi, skl.eki, i])

and skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 , x∗1 , K, q,⊥)). By the definition of Thyb and T, it holds that for all
i ∈ [q],

Thyb[ fi, skl.eki, i](x∗0 , x∗1 , K, q,⊥) = SKL.Enc(skl.eki, fi(x∗1); FK(skl.eki))

= T[ fi, skl.eki](x∗1 ,⊥, K, 0,⊥).

Hence, we can use the adaptively single-ciphertext function privacy ofSKFE and obtain
∣∣∣Pr

[
Hybq

3 = 1
]
− Pr[Hyb4 = 1]

∣∣∣ =
negl(λ). See Lemma C.3 for the detail.
Now, we use x∗1 instead of x∗0 and erased x∗0 in the challenge ciphertext. Hence, we focus on PKFE again and
undo the changes from Hyb1 to Hyb2 and from Hyb0 to Hyb1.

Hyb5: This is the same as Hyb4 except that we generate fe.ct∗ ← PKFE.Enc(fe.pk, (x∗1∥0ℓpad ,⊥, K)). This is the
reverse transition from Hyb1 to Hyb2, so we obtain |Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| = negl(λ) by the security
of PKFE as the proof of Lemma C.1.

Hyb6: This is the same as Hyb5 except that we generate ske.cti ← {0, 1}ℓ. As the transition from Hyb0 to Hyb1, we
obtain |Pr[Hyb5 = 1]− Pr[Hyb6 = 1]| = negl(λ) by the ciphertext pseudorandomness of SKE. It is easy to see
that Hyb6 is the same as Expada-ind-kla

PKFE-SKL,A(1
λ, 1).

Function Thyb[ fi , skl.eki , i](x0, x1, K, j, skl.ct∗)
Constants: Function fi , PKE-SKL encryption key skl.eki , index i.
Input: Plaintext x0 and x1, PRF key K, index j, a PKE-SKL ciphertext skl.ct∗.

1. If i ≤ j, compute and output skl.cti := SKL.Enc(skl.eki , fi(x1); FK(skl.eki)).

2. If i > j, compute and output skl.cti := SKL.Enc(skl.eki , fi(x0); FK(skl.eki)).

Figure 3: The description of Thyb[ fi, skl.eki, i]

If we prove Lemma 7.7, we complete the proof of Theorem 7.5.

Lemma 7.7. For all j ∈ [q], it holds that
∣∣∣Pr

[
Hybj−1

3 = 1
]
− Pr

[
Hybj

3 = 1
]∣∣∣ = negl(λ) if SKFE is fully function

private, SKL is IND-KLA, and PRF is a puncturable PRF.

Proof. We define a sequence of hybrid games.

G0: This is the same as Hybj−1
3 . That is, skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 , x∗1 , K, j − 1,⊥)) and skfe.ski ←

SKFE.KG(skfe.msk, Thyb[ fi, skl.eki, i]).

G1: This is the same as G0 except that we generate skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 , x∗1 , K, j, skl.ct∗)), where
skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗0); FK(skl.ekj)) and skfe.ski ← SKFE.KG(skfe.msk, Temb[ fi, skl.eki, i]), where
Temb[ fi, skl.eki, i] is described in Figure 4. By the definitions of Thyb and Temb, it holds that

Thyb[ fi, skl.eki, i](x∗0 , x∗1 , K, j− 1,⊥) = Temb[ fi, skl.eki, i](x∗0 , x∗1 , K, j, skl.ct∗)

for all i ∈ [q] since skl.ct∗ is an encryption of f j(x∗0). Hence, by the adaptively single-ciphertext function privacy
of SKFE, we obtain |Pr[G0 = 1]− Pr[G1 = 1]| = negl(λ). See Lemma C.4 for the detail.
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G2: This is the same as G1 except that we use a punctured PRF key K ̸=skl.ekj = Puncture(K, skl.ekj). By the
functionality of punctured PRF keys, it holds that

Temb[ fi, skl.eki, i](x∗0 , x∗1 , K, j, skl.ct∗) = Temb[ fi, skl.eki, i](x∗0 , x∗1 , K ̸=skl.ekj , j, skl.ct∗)

for all i ∈ [q]. Note that Temb directly uses skl.ct∗ instead of computing SKL.Enc(skl.ekj, f j(x∗0); FK(skl.ekj)),
so K ̸=skl.ekj is sufficient for the functional equivalence. The only difference between the two games is whether the
PRF key is K or K ̸=skl.ekj . Hence, we can use the adaptively single-ciphertext function privacy of SKFE and
obtain |Pr[G1 = 1]− Pr[G2 = 1]| = negl(λ). We omit the proof since it is easy.

G3: This is the same asG2 except that we generate skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗0)). That is, we use uniform random-
ness for generating skl.ct∗. By the punctured pseudorandomness ofPRF, we obtain |Pr[G2 = 1]− Pr[G3 = 1]| =
negl(λ). We omit the proof since it is easy.

G4: This is the same as G3 except that we generate skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗1)). We consider two cases.

• If ( f j, vkj,⊥) is recorded in LKG , that is, valid fsk j is not returned, it must hold that f j(x∗0) = f j(x∗1) by the
requirement of Ada-IND-KLA security. In this case, the distribution of skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗0))
is trivially the same as that of skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗1)). Hence, we obtain Pr[G3 = 1] =
Pr[G4 = 1].

• If ( f j, vkj,⊤) is recorded in LKG , that is, it is certified that the adversary returned valid fsk j, it could
hold that f j(x∗0) ̸= f j(x∗1) by the requirement of Ada-IND-KLA security. In this case, we use IND-
KLA security of SKL since skl.sk j was returned. We have that skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗0))
is computationally indistinguishable from skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗1)). Hence, we obtain
|Pr[G3 = 1]− Pr[G4 = 1]| = negl(λ) in this case. See Lemma C.5 for the detail.

Hence, we obtain |Pr[G3 = 1]− Pr[G4 = 1]| = negl(λ) in either cases.

G5: This is the same as G4 except that we undo the change in G3. That is, we use FK(skl.ekj) for the randomness
of skl.ct∗. We obtain |Pr[G4 = 1]− Pr[G5 = 1]| = negl(λ) by the punctured pseudorandomness of PRF. We
omit the proof since it is easy.

G6: This is the same as G5 except that we undo the change in G2. That is, we use a unpunctured PRF key K. We obtain
|Pr[G1 = 1]− Pr[G2 = 1]| = negl(λ) by the adaptively single-ciphertext function privacy as the transition from
G1 to G2. So, we omit the proof.

G7: This is the same as G6 except that we undo the change in G1, but the index is still j. That is, we use
skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 , x∗1 , K, j,⊥)) and skfe.ski ← SKFE.KG(skfe.msk, Thyb[ fi, skl.eki, i]). We
obtain |Pr[G6 = 1]− Pr[G7 = 1]| = negl(λ) by the adaptively single-ciphertext function privacy of SKFE. The
proof is similar to that of Lemma C.4. So, we omit the proof.

Function Temb[ fi , skl.eki , i](x0, x1, K, j, skl.ct∗)
Constants: Function fi , encryption key of PKE-SKL skl.eki , index i.
Input: Plaintext x0, x1, PRF key K, index j, an SKL ciphertext skl.ct∗.

1. If i = j, output skl.ct∗.
2. If i < j, compute and output skl.cti := SKL.Enc(skl.eki , fi(x1); FK(skl.eki)).

3. If i > j, compute and output skl.cti := SKL.Enc(skl.eki , fi(x0); FK(skl.eki)).

Figure 4: The description of Temb[ fi, skl.eki, i]

It is easy to see that G7 is the same as Hybj
3. Therefore, we complete the proof.
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By Theorems 2.3, 2.8, 2.16, 2.19, 5.1 and 7.6, we obtain the following corollary.

Corollary 7.8. If there exists IND-CPA secure PKE, there exists q-bounded Ada-IND-KLA PKFE-SKL for P/poly.

By Theorems 2.3, 2.8, 2.16, 5.1 and 7.5 and known theorems about PKFE [GS16, LM16, KNTY19], we obtain the
following corollary.

Corollary 7.9. If there exists single-key selective-message-function secure23 and weakly compact PKFE for P/poly,
there exists Ada-IND-KLA PKFE for P/poly.
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A SDE Implies PKE-SKL
In this section, we discuss the relationship between SDE and PKE-SKL. There are many incomparable security
definitions for SDE in the literature. Coladangelo et al. [CLLZ21] defined two incomparable security definitions
called CPA-style anti-piracy and random challenge anti-piracy.24 All constructions of SDE in [CLLZ21] are shown
to satisfy both CPA-style anti-piracy and random challenge anti-piracy. Georgiou and Zhandry [GZ20] defined yet
another security definition, which is similar to but slightly different from CPA-style anti-piracy of [CLLZ21].25 Though
we do not see any relationships between security notions in [GZ20] and [CLLZ21], it seems possible to prove that
the construction given in [GZ20] satisfies both CPA-style anti-piracy and random challenge anti-piracy of [CLLZ21]
because it is very similar to one of the schemes given in [CLLZ21].26 In the following, we show that SDE with random
challenge anti-piracy implies IND-KLA secure PKE-SKL. This means that all known constructions of SDE can be used
to construct PKE-SKL.
The definitions of SDE and its random challenge anti-piracy are given below. The syntax of SDE is identical to that

of PKE except that the key generation and decryption algorithms are quantum and the decryption key is quantum.

Definition A.1 (Single-Decryptor Encryption). A single-decryptor encryption (SDE) scheme SDE is a tuple of three
algorithms (KG , Enc, Dec). Below, let X be the message space of SDE.

KG(1λ)→ (ek, dk ): The key generation algorithm takes a security parameter 1λ, and outputs an encryption key ek
and a decryption key dk .

Enc(ek, m)→ ct: The encryption algorithm takes an encryption key ek and a message m ∈ X , and outputs a ciphertext
ct.

Dec(dk , ct)→ m̃: The decryption algorithm takes a decryption key dk and a ciphertext ct, and outputs a value m̃.

Correctness: For every m ∈ X , we have

Pr
[

Dec(dk , ct) = m
∣∣∣∣ (ek, dk )← KG(1λ)

ct← Enc(ek, m)

]
= 1− negl(λ).

In the following definition of random challenge anti-piracy, we use the notion of quantum programs with classical
inputs and outputs as defined in Definition 4.7.

Definition A.2 (Random Challenge Anti-Piracy). We say that an SDE scheme SDE with the message space X satisfies
random-challenge anti-piracy, if it satisfies the following requirement, formalized from the experiment Exprand-chal

SDE,A (1λ)
between an adversary A and a challenger C :

24They actually also defined stronger variants of them called strong anti-piracy security and strong anti-piracy against random plaintexts. See
[CLLZ21, Definition 6.11 and D.4 in the full version] for the detail.

25We note that [GZ20] appeared before [CLLZ21].
26Here, we are referring to the construction of SDE based on one-shot signatures and extractable witness encryption in [GZ20, Section 5]. For

proving that the scheme satisfies the security notions of [CLLZ21], we will need to go trough the “strong” variants of them similarly to [CLLZ21].
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1. C runs (ek, dk )← KG(1λ) and sends ek and dk to A .

2. A sends two (possibly entangled) quantum programs (D0, D1) with classical inputs and outputs to C .

3. For b ∈ {0, 1}, C chooses m∗b ← X , generates ct∗b ← Enc(ek, m∗b), and runs Db on input ct∗b to obtain an output
mb. C outputs 1 if mb = m∗b for b ∈ {0, 1} and otherwise outputs 0 as the final output of the experiment.

For any QPT A , it holds that

Advrand-chal
SDE,A (λ) := Pr

[
Exprand-chal

SDE,A (1λ)→ 1
]
≤ negl(λ).

We prove the following theorem.

Theorem A.3. If there exists an SDE scheme that satisfies random challenge anti-piracy, there exists an IND-KLA
secure PKE-SKL scheme.

Proof. Let SDE = (SDE.KG , SDE.Enc, SDE.Dec) be an SDE scheme that satisfies random challenge anti-piracy. By
Theorem 3.9, it suffices to construct a one-query OW-KLA secure PKE-SKL scheme. We construct a one-query
OW-KLA secure PKE-SKL scheme SKL = (SKL.KG , SKL.Enc, SKL.Dec, SKL.Vrfy) as follows.

SKL.KG(1λ): Run (sde.ek, sde.dk ) ← SDE.KG(1λ) and output skl.ek := sde.ek, skl.dk := sde.dk , and skl.vk :=
sde.ek.

SKL.Enc(skl.ek, m): This is identical to SDE.Enc.

SKL.Dec(dk , ct): This is identical to SDE.Dec.

SKL.Vrfy(skl.vk, skl.d̃k ): Parse skl.vk = sde.ek, choose m∗ ← X , run ct∗ ← SDE.Enc(sde.ek, m∗) and m ←
SDE.Dec(skl.d̃k , ct∗), and output ⊤ if and only if m = m∗.

Suppose that SKL is not one-query OW-KLA secure. Let A be a QPT adversary that breaks the one-query OW-KLA
security of SKL. We construct a QPT adversary B that breaks the random challenge anti-piracy of SDE as follows.

B(sde.ek, sde.dk ): Set skl.ek := sde.ek, skl.dk := sde.dk , and skl.vk := sde.ek and sends (skl.ek, skl.dk , skl.vk) to
A . When A makes a verification query skl.d̃k , B returns 1 to A as the response from the oracle. Let D0 be the
quantum program with classical inputs and outputs that takes ct as input and outputs m← SDE.Dec(skl.d̃k , ct).
When A sends RequestChallenge, let D1 be the quantum program with classical inputs and outputs, in which A’s
internal state is hardwired, that takes ct as input, runs the rest of A on the challenge ciphertext ct, and outputs A’s
output m. Output (D0, D1).

By the construction of B and the deferred measurement principle, it is immediate to see that Advrand-chal
SDE,B (λ) =

Advow-kla
SKL,A (λ). Thus, B breaks the random challenge anti-piracy of SDE, which is contradiction. Therefore, SKL is

one-query OW-KLA secure.

Remark A.4 (On CPA-Style Anti-Piracy). We do not know if SDE with CPA-style anti-piracy implies PKE-SKL. On the
other hand, it seems possible to show that SDE with the “strong” variant of CPA-style anti-piracy (called strong anti
piracy [CLLZ21, Definition 6.11 in the full version]) implies PKE-SKL. In the single-bit encryption setting, the security
roughly means that the adversary given one decryption key cannot generate two “good” distinguishers that distinguish
encryptions of 0 and 1. Then our idea is to construct a PKE-SKL scheme whose verification algorithm accepts if a
returned decryption key gives a “good” distinguisher. Then the strong anti piracy ensures that if the adversary passes the
verification, then it cannot keep a “good” distinguisher, which in particular means that it cannot distinguish encryptions
of 0 and 1. Thus, the PKE-SKL scheme is one-query IND-KLA secure.
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B OW-CPA from CoIC-KLA
We show the following lemma.

Lemma B.1. If a PKE scheme with a super-polynomial-size message space is CoIC-KLA secure, then it is OW-CPA
secure.

Proof. Let PKE = (KG, Enc, Dec) be a CoIC-KLA secure PKE scheme with the message space X such that |X | is
super-polynomial in λ. Toward contradiction, suppose that it is not OW-CPA secure. Let A be an adversary that breaks
OW-CPA security of PKE. Then we construct B that breaks CoIC-KLA security of PKE as follows.

B(ek0, ek1, dk ): Measure dk to get (β, dkβ) for β ∈ {0, 1}. Choose (m∗0 , m∗1) ← X 2 and send (m∗0 , m∗1) to the
challenger (without making any oracle query). Upon receiving (ct∗0 , ct∗1) from the challenger, run m′β ←
Dec(dkβ, ct∗β) and m′β⊕1 ← A(ekβ⊕1, ct∗β⊕1) and output 0 if m′0 = m′1 and 1 otherwise.

Note that the challenger implicitly chooses a, b← {0, 1} and generates ct∗0 ← Enc(ek0, m∗a) and ct∗1 ← Enc(ek1, m∗a⊕b).
B’s goal is to guess b.
If b = 0, by the correctness of PKE, we have Pr

[
m′β = m∗a

]
= 1− negl(λ). By the assumption that A breaks

OW-CPA security, Pr
[
m′β⊕1 = m∗a

]
is non-negligible. In particular, Pr[B(ek0, ek1, dk )→ 0|b = 0] is non-negligible.

If b = 1, by the correctness of PKE, we have Pr
[
m′β = m∗a+β

]
= 1− negl(λ). On the other hand, ct∗β⊕1 contains no

information of m∗a⊕β. Therefore, Pr
[
m′β⊕1 = m∗a⊕β

]
≤ 1/|X | = negl(λ). Thus, Pr[B(ek0, ek1, dk )→ 0|b = 1] =

negl(λ). Thus, |2 Pr[B(ek0, ek1, dk )→ b]− 1| = |Pr[B(ek0, ek1, dk )→ 0|b = 0]−Pr[B(ek0, ek1, dk )→ 0|b = 1]|
is non-negligible. This contradicts the assumed CoIC-KLA security. Thus, PKE is OW-CPA secure.

C Deferred Proofs for PKFE-SKL
In this section, we present the deferred proofs in Section 7.

Lemma C.1. If PKFE is adaptively secure, it holds that |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ).

Proof. We construct an adversary B for PKFE by using the distinguisher D for these two games.

1. B is given fe.pk and sends pk := fe.pk to D. B also generates ske.sk ← {0, 1}λ and skfe.msk ←
SKFE.Setup(1λ).

2. WhenD sends fi toOKG ,B generates (skl.eki, skl.sk i, skl.vki)← SKL.KG(1λ), skfe.ski ← SKFE.KG(skfe.msk, V[ fi, skl.eki]),
and ske.cti ← SKE.Enc(ske.sk, skfe.ski). Then, B sends W[ fi, skl.eki, ske.cti] to its challenger and re-
ceives fe.skW,i ← FE.KG(fe.msk, W[ fi, skl.eki, ske.cti]). B returns fsk i := (fe.skW,i, skl.sk i) to D and adds
( fi, skl.vki,⊥) to LKG .

3. When D sends ( fi, fsk ′i) to OVrfy , B finds an entry ( fi, skl.vki, Vi) from LKG and parses fsk ′i = (fe.sk′i, skl.sk ′i).
B returns d := SKL.Vrfy(skl.vki, skl.sk ′i). If Vi = ⊤, B does not update the entry. Otherwise, B updates the
entry by setting Vi := d.

4. When D sends (x∗0 , x∗1), B generates K ← PRF.Gen(1λ), skfe.ct∗ ← SKFE.Enc(skfe.msk, (x∗0 ,⊥, K, 0,⊥)).
B sets X∗0 := (x∗0∥0ℓpad ,⊥, K) and X∗1 := (skfe.ct∗, ske.sk,⊥), sends (X∗0 , X∗1 ) to its challenger, and receives
fe.ct∗. B passes ct∗ := fe.ct∗ to D.

5. B outputs what D outputs.

By the definition ofW described in Figure 1, if we decrypt fe.ct∗ by fe.skW,i, we obtain

• SKL.Enc(skl.eki, f (x0); FK(skl.eki)) if fe.ct∗ is generated from X∗0 ,
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• zi = SKFE.Dec(skfe.ski, skfe.ct∗) if fe.ct∗ is generated from X∗1 since ske.cti is a ciphertext of skfe.ski, where
skfe.ct∗ = SKFE.Enc(skfe.msk, (x∗0 ,⊥, K, 0,⊥)). By the correctness of SKFE and the definition of T[ fi, skl.eki],
it holds that zi = SKL.Enc(skl.eki, f (x∗0); FK(skl.eki)).

That is, for all i ∈ [q], it holds thatW[ fi, skl.eki, ske.cti](X∗0 ) = W[ fi, skl.eki, ske.cti](X∗1 ), and B is a valid adversary
of PKFE.
It is easy to see that if fe.ct∗ is an encryption of X∗0 and X∗1 , B perfectly simulates Hyb1 and Hyb2, respectively.

This completes the proof.

Lemma C.2. If SKFE is adaptively single-ciphertext function private, it holds that |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| =
negl(λ).

Proof. We construct an adversary B for SKFE by using the distinguisher D for these two games.

1. B generates (fe.pk, fe.msk)← FE.Setup(1λ) and ske.sk← {0, 1}λ, and sends pk := fe.pk to D.

2. When D sends fi toOKG , B generates (skl.eki, skl.sk i, skl.vki)← SKL.KG(1λ), sends a key query (F0,i, F1,i) :=
(T[ fi, skl.eki], Thyb[ fi, skl.eki, i]) to its challenger, and receives skfe.ski. B also generates ske.cti ← SKE.Enc(ske.sk, skfe.ski)
and fe.skW,i ← FE.KG(fe.msk, W[ fi, skl.eki, ske.cti]). B returns fsk i := (fe.skW,i, skl.sk i) to D and adds
( fi, skl.vki,⊥) to LKG .

3. When D sends ( fi, fsk ′i) to OVrfy , B finds an entry ( fi, skl.vki, Vi) from LKG and parses fsk ′i = (fe.sk′i, skl.sk ′i).
B returns d := SKL.Vrfy(skl.vki, skl.sk ′i). If Vi = ⊤, B does not update the entry. Otherwise, B updates the
entry by setting Vi := d.

4. WhenD sends (x∗0 , x∗1),B generatesK← PRF.Gen(1λ), setsX∗0 := (x∗0 ,⊥, K, 0,⊥) andX∗1 := (x∗0 , x∗1 , K, 0,⊥),
sends an encryption query (X∗0 , X∗1 ) to its challenger, and receives skfe.ct∗. B also generates fe.ct∗ ←
FE.Enc(fe.pk, (skfe.ct∗, ske.sk,⊥)) and passes ct∗ := fe.ct∗ to D.

5. B outputs what D outputs.

Since i ∈ [q], it holds that Thyb[ fi, skl.eki, i](x∗0 , x∗1 , K, 0,⊥) = T[ fi, skl.eki](x∗0 ,⊥, K, 0,⊥) for all i ∈ [q]. That is,
F0,i(X∗0 ) = F1,i(X∗1 ) for all i ∈ [q] and B is an valid adversary for SKFE.
If skfe.ct∗ is an encryption of X∗0 and skfe.ski is a functional decryption key for F0,i, B perfectly simulate Hyb2. If

skfe.ct∗ is an encryption of X∗1 and skfe.ski is a functional decryption key for F1,i, B perfectly simulate Hyb3. This
completes the proof.

Lemma C.3. If SKFE is adaptively single-ciphertext function private, it holds that
∣∣∣Pr

[
Hybq

3 = 1
]
− Pr[Hyb4 = 1]

∣∣∣ =
negl(λ).

Proof. We construct an adversary B for SKFE by using the distinguisher D for these two games.

1. B generates (fe.pk, fe.msk)← FE.Setup(1λ) and ske.sk← {0, 1}λ, and sends pk := fe.pk to D.

2. When D sends fi toOKG , B generates (skl.eki, skl.sk i, skl.vki)← SKL.KG(1λ), sends a key query (F0,i, F1,i) :=
(Thyb[ fi, skl.eki, i], T[ fi, skl.eki]) to its challenger, and receives skfe.ski. B also generates ske.cti ← SKE.Enc(ske.sk, skfe.ski)
and fe.skW,i ← FE.KG(fe.msk, W[ fi, skl.eki, ske.cti]). B returns fsk i := (fe.skW,i, skl.sk i) to D and adds
( fi, skl.vki,⊥) to LKG .

3. When D sends ( fi, fsk ′i) to OVrfy , B finds an entry ( fi, skl.vki, Vi) from LKG and parses fsk ′i = (fe.sk′i, skl.sk ′i).
B returns d := SKL.Vrfy(skl.vki, skl.sk ′i). If Vi = ⊤, B does not update the entry. Otherwise, B updates the
entry by setting Vi := d.

4. WhenD sends (x∗0 , x∗1),B generatesK← PRF.Gen(1λ), setsX∗0 := (x∗0 , x∗1 , K, q,⊥) andX∗1 := (x∗1 ,⊥, K, 0,⊥),
sends an encryption query (X∗0 , X∗1 ) to its challenger, and receives skfe.ct∗. B also generates fe.ct∗ ←
FE.Enc(fe.pk, (skfe.ct∗, ske.sk,⊥)) and passes ct∗ := fe.ct∗ to D.
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5. B outputs what D outputs.

By the definition of Thyb and T, it holds that for all i ∈ [q],

Thyb[ fi, skl.eki, i](x∗0 , x∗1 , K, q,⊥) = SKL.Enc(skl.eki, fi(x∗1); FK(skl.eki))

= T[ fi, skl.eki](x∗1 ,⊥, K, 0,⊥).

That is, F0,i(X∗0 ) = F1,i(X∗1 ) for all i ∈ [q] and B is an valid adversary for SKFE.
If skfe.ct∗ is an encryption of X∗0 and skfe.ski is a functional decryption key for F0,i, B perfectly simulate Hybq

3. If
skfe.ct∗ is an encryption of X∗1 and skfe.ski is a functional decryption key for F1,i, B perfectly simulate Hyb4. This
completes the proof.

Lemma C.4. If SKFE is adaptively single-ciphertext function private, it holds that |Pr[G0 = 1]− Pr[G1 = 1]| =
negl(λ).

Proof. We construct an adversary B for SKFE by using the distinguisher D for these two games.

1. B generates (fe.pk, fe.msk)← FE.Setup(1λ) and ske.sk← {0, 1}λ, and sends pk := fe.pk to D.

2. When D sends fi toOKG , B generates (skl.eki, skl.sk i, skl.vki)← SKL.KG(1λ), sends a key query (F0,i, F1,i) :=
(Thyb[ fi, skl.eki, i], Temb[ fi, skl.eki, i]) to its challenger, and receives skfe.ski. B also generates ske.cti ←
SKE.Enc(ske.sk, skfe.ski) and fe.skW,i ← FE.KG(fe.msk, W[ fi, skl.eki, ske.cti]). B returns fsk i := (fe.skW,i, skl.sk i)
to D and adds ( fi, skl.vki,⊥) to LKG .

3. When D sends ( fi, fsk ′i) to OVrfy , B finds an entry ( fi, skl.vki, Vi) from LKG and parses fsk ′i = (fe.sk′i, skl.sk ′i).
B returns d := SKL.Vrfy(skl.vki, skl.sk ′i). If Vi = ⊤, B does not update the entry. Otherwise, B updates the
entry by setting Vi := d.

4. When D sends (x∗0 , x∗1), B generates K← PRF.Gen(1λ) and skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗0); FK(skl.ekj)),
sets X∗0 := (x∗0 , x∗1 , K, j − 1,⊥) and X∗1 := (x∗0 , x∗1 , K, j, skl.ct∗), sends an encryption query (X∗0 , X∗1 ) to
its challenger, and receives skfe.ct∗. B generates fe.ct∗ ← FE.Enc(fe.pk, (skfe.ct∗, ske.sk,⊥)) and passes
ct∗ := fe.ct∗ to D.

5. B outputs what D outputs.

By the definitions of Thyb and Temb, it holds that

Thyb[ fi, skl.eki, i](x∗0 , x∗1 , K, j− 1,⊥) = SKL.Enc(skl.eki, fi(x∗0); FK(skl.eki))

= Temb[ fi, skl.eki, i](x∗0 , x∗1 , K, j, skl.ct∗)

for all i ∈ [j, q] since skl.ct∗ is an encryption of f j(x0). it also holds that

Thyb[ fi, skl.eki, i](x∗0 , x∗1 , K, j− 1,⊥) = SKL.Enc(skl.eki, fi(x∗1); FK(skl.eki))

= Temb[ fi, skl.eki, i](x∗0 , x∗1 , K, j, skl.ct∗)

for all i ∈ [1, j− 1]. Hence, for all i ∈ [q], it holds that F0,i(X∗0 ) = F1,i(X1∗) and B is an valid adversary for SKFE. If
skfe.ct∗ is an encryption of X∗0 and skfe.ski is a functional decryption key for F0,i, B perfectly simulate G0. If skfe.ct∗
is an encryption of X∗1 and skfe.ski is a functional decryption key for F1,i, B perfectly simulate G1. This completes the
proof.

Lemma C.5. If SKL IND-KLA, it holds that |Pr[G3 = 1]− Pr[G4 = 1]| = negl(λ).

Proof. We focus on the case where the adversary returns a valid fsk j = (fe.skW,j, skl.sk j), which is the answer to the
j-th key query, since f j(x∗0) = f j(x∗1) must hold if fsk j is not returned. Hence f j(x∗0) ̸= f j(x∗1) is allowed in this case.
We construct an adversary B for SKL by using the distinguisher D for these two games.
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1. B is given (skl.ek∗, skl.sk ∗) and sets (skl.ekj, skl.ekj) := (skl.ek∗, skl.sk ∗).

2. B generates (fe.pk, fe.msk)← FE.Setup(1λ), skfe.msk← SKFE.Setup(1λ), and ske.sk← {0, 1}λ, and sends
pk := fe.pk to D.

3. When D sends the i-th query fi to OKG , if i ̸= j, B generates (skl.eki, skl.sk i, skl.vki)← SKL.KG(1λ). For all
i ∈ [q], B generates skfe.ski ← SKFE.KG(skfe.msk, Temb[ fi, skl.eki, i]), ske.cti ← SKE.Enc(ske.sk, skfe.ski),
and fe.skW,i ← FE.KG(fe.msk, W[ fi, skl.eki, ske.cti]), and returns fsk i := (fe.skW,i, skl.sk i) to D. Note that
skl.sk j = skl.sk is given from the challenger. If i ̸= j, B adds ( fi, skl.vki,⊥) to LKG . If i = j, B adds ( f j,⊥,⊥)
to LKG .

4. When D sends ( fi, fsk ′i) to OVrfy , B finds an entry ( fi, skl.vki, Vi) from LKG and parses fsk ′i = (fe.sk′i, skl.sk ′i).

• If fi ̸= f j, B returns d := SKL.Vrfy(skl.vki, skl.sk ′i) since skl.vki ̸= ⊥. If Vi = ⊤ B does not update the
entry. Otherwise, B updates the entry by setting Vi := d.

• Else if fi = f j, B sends skl.sk ′j to its challenger (OSKL.Vrfy of IND-KLA), receives the result dj, and passes
dj to D. If Vj = ⊤, B does not update the entry. Otherwise, B updates the entry by setting Vj := dj.

5. WhenD sends (x∗0 , x∗1), B generatesK← PRF.Gen(1λ) andK ̸=skl.ekj = Puncture(K, skl.ekj), sends (x∗0 , x∗1) to
its challenger, and receives skl.ct∗ ← SKL.Enc(skl.ekj, f j(x∗coin)). B generates skfe.ct∗ ← SKFE.Enc(skfe.msk,
(x∗0 , x∗1 , K ̸=skl.ekj , j, skl.ct∗)) and fe.ct∗ ← FE.Enc(fe.pk, (skfe.ct∗, ske.sk,⊥)) and passes ct∗ := fe.ct∗ to D.

6. B outputs what D outputs.

It is easy to see that B perfectly simulates G3 and G4 if coin = 0 and coin = 1, respectively. This completes the
proof.
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