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Abstract. Fully homomorphic encryption (FHE) is an encryption method
that allows to perform computation on encrypted data, without decryp-
tion. FHE preserves the privacy of the users of online services that handle
sensitive data, such as health data, biometrics, credit scores and other
personal information. A common way to provide a valuable service on
such data is through machine learning and, at this time, Neural Networks
are the dominant machine learning model for unstructured data.

In this work we show how to construct Deep Neural Networks (DNN)
that are compatible with the constraints of TFHE, an FHE scheme that
allows arbitrary depth computation circuits. We discuss the constraints
and show the architecture of DNNs for two computer vision tasks. We
benchmark the architectures using the Concrete stack!, an open-source
implementation of TFHE.

1 Introduction

Neural Networks (NNs) are machine learning (ML) models that have driven the
recent expansion of the field of Artificial Intelligence (AI). Their performance on
unstructured data such as images, sound and text is unmatched by other ML
techniques. Moreover, deep NNs obviate the need for complex feature engineer-
ing and process raw data directly, making them easier to deploy in production.
Applications of NNs include image classification, face recognition, voice assis-
tants, and search engines, tools which today are a staple of the user experience
online. Deployment of such models in SaaS applications raises a security risk:
they are a target of malevolent entities that seek to steal the sensitive user data
these models process.

Privacy-preserving technologies, such as multi-party computing (MPC) and
fully homomorphic encryption (FHE), provide a solution to the risk of data leaks,
eliminating it by design. Notably, FHE encrypts user data and allows a third
party to process the data in its encrypted form, without needing to decrypt
it. Only the data owner can decrypt the result of the computation. Thus, an
attacker can only steal encrypted data they can not decrypt.
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In this work we show how to build neural networks that are FHE compatible,
while minimizing the cryptography knowledge needed by the machine learning
practitioner. We based our work on the Concrete Library [7] which uses TFHE
[6], works over integers, provides a fast programmable bootstrapping mechanism,
and performs exact computation.

2 Related work

Several alternative approaches exist for neural network inference over encrypted
data. All use NNs with integer weights and activations and many of them rely on
"leveled" fully homomorphic encryption schemes that do not use bootstrapping,
such as CKKS [5] and YASHE [3].

CryptoNets [9] uses YASHE which supports the computation of polynomials
of encrypted values. CryptoNets are NNs quantized to integers (of 5-10 bits) with
activation functions expressed as low-degree polynomials. CryptoNets achieve
99% accuracy on MNIST using a three layer network with an inference time of
570 seconds/image.

FHE-DiNN [4], a TFHE based approach, quantizes inputs, intermediate val-
ues and weights to binary values. In this case, the training is done with hardSigmoid
activation which is swapped for the sign function in inference. However, binary
NNs are hard to train and do not perform well in many ML tasks such as object
detection and speech processing.

Another TFHE approach, SHE [11], uses bit series representation of en-
crypted values and boolean gates. They run NNs that fit within a maximum
multiplicative depth budget and, by avoiding expensive multi-bit PBSs, they
achieve inference of a ShuffleNet on ImageNet with a latency of 18 000 sec-
onds/image. They rely on logarithmic quantization of weights which allows to
reduce multiplicative depth for the convolution layers by using bit-shifts. Sums,
relu and maxpool are computed using boolean gates.

Leveled approaches such as SHE and CryptoNets are limited by the maximum
multiplicative depth budget, which, in turn, limits the supported network types
and their depth. Moreover, some schemes such as CKKS are approximate by
design, as the noise corrupts some of the message bits.

In this work we propose an approach to train arbitrary NNs which can have
any depth, number of neurons and activation functions. Furthermore, our ap-
proach performs exact computation in FHE: the noise of the encryption scheme
does not corrupt the values that are processed. Thus results in FHE are the same
as in the clear - there is no degradation of accuracy when moving to encrypted
inference - which is a major advantage when putting models in production.

3 Neural Network Training for Encrypted Inference

Training NNs is usually done in floating point, but most FHE schemes, including
TFHE, only support integers. Consequently, quantization must be used, and two
main approaches exist:
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1. Post-training quantization is commonly used [9, 11], but, in this mode, NNs
lose accuracy when the quantization bit-width is lower than 7-8 bits. With
per-channel quantization, or logarithmic quantization, which are more com-
plex to implement, as few as 4 bits were used for weights and activations
without loss of accuracy [14].

2. Quantization-aware Training (QAT), used in this work and in [4], is an
approach that adds quantizers to network activations and weights during
training. QAT enables extreme quantization with less than 4 bit weights
and activations.

To support arbitrarily deep NNs and any activation function, we make use of
the programmable boostrapping mechanism [8] (PBS) of TFHE. PBS reduces the
noise in accumulators of ciphertext leveled operations (addition, multiplication
with clear constants) but also allows to apply a lookup-table (TLU) on its input
ciphertext.

The TFHE PBS mechanism has a rather high computational cost, and this
cost depends on the number of bits of the encrypted value to be boostrapped.
It is convenient to keep the accumulator size low, in order to speed up the PBS
computation. However, reducing accumulator bit-width has a negative impact
on network prediction performance, so a compromise needs to be found.

We describe here a QAT strategy that can process all the intermediate en-
crypted values as integers. In this way, training an FHE compatible network
becomes purely a machine learning problem and no cryptography knowledge is
needed by the practitioner. To build a TFHE compatible NN, the constraints on
the network architecture are the following:

— All layers that sum or multiply two encrypted values, such as convolution
conv and fully-connected fc, must have quantized inputs. This is easily
achieved using QAT frameworks.

— The bit-width of the accumulators of layers such as conv, fc must be bounded.
To achieve this, we use pruning.

To control the accumulator bit-width while keeping the training dynamics
stable, we use L'-norm unstructured pruning. Figure 1 shows the impact of
pruning on the accumulator size for two quantization modes: narrow and wide
range.

While the inputs of conv and fc layers need to be quantized, it is possible to
use floating point layers for all univariate operations such as batch normalization,
quantization, and activations.

In our FHE compatible NNs the outputs of a conv or fc are processed by a
sequence of univariate operations that ends with quantization. This sequence of
functions takes integers and has integer outputs, but the intermediary compu-
tations in these operations can use float parameters. Thus, batch normalization,
activation functions, neuron biases and any other univariate transformation of
conv or fc outputs does not need quantization. Figure 1 shows the architecture
of the network during training and inference.
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Fig. 1. Left: accumulator size while varying the number of active neurons during prun-
ing for a 3-layer fully-connected network with 2 bit weights and activations. Two quan-
tization modes are shown: Narrow range uses values [—2°71 +1,2°~! — 1], while Wide
range uses [—2°71,2°71 — 1]. Right: the structure of a 2 layer convolutional network
in training and during inference. Univariate layers are fused to table-lookups, imple-
mented with PBS.

4 Neural Network Inference using TFHE

Inference of our FHE NNs is based on quantized implementations of NN oper-
ators that add or multiply together encrypted values. Convolutional, fully con-
nected and average pooling layers use the quantized formulation from [10]. Since
uniform quantization is used, we can define a quantized value r as r = S(q — Z)
where S is the quantization scale, Z is the quantization zero-point and ¢ is the
integer representation of the value. Next, the fully connected layer, with inputs
x, weights w and outputs o, with per-tensor quantization parameters (S;, Z,),
(Sw, Zyw) can be written as:

N
So(qif —Zo) = Z S!I?(q; - ZZ)Sw(qg’k) — Zy) + bk (1)
=0

where k is the index of a neuron in the layer and N is the number of connections
of the neuron and b* is the bias of the k-th neuron. A convolutional layer can be
expressed by extending the sum to the height, width and channel dimensions.
Equation 2 can be re-written to separate integer and floating point computations
(note that zero-points Z,, Z,, Z,, are integers).

s s Mo 4
CI§ =bF+ Zo+ mS = Z(q; - Zr)(qg’k) — Zy) (2)
° =0

Therefore we can separate the equation in a floating point univariate function
f and a sum over products of encrypted inputs and clear weights:
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N
dh = F(5) where (@) =+ 7, T and =Y (e}~ 22l - 2)
=0

o
(3)
The univariate function f in eq. 3 takes integer inputs. We compose this func-
tion with the batch-normalization, and, finally, with the quantization function

Q(zx) = floor <SLT) + Z,. Thus f becomes a function defined on Z, with values

in Z and can be implemented as a lookup table with a PBS in FHE, without
any loss of precision.

The complete NN computation can now be expressed over integers using the
following operations: multiplication of an encrypted value and a clear constant,
sums of encrypted integer values, table lookup of encrypted integer values. In our
implementation of TFHE, Concrete, we encode integers in two different ways:
integers up to 8 bits are encoded into a single ciphertext, and integers between
9-16 bits are encoded with a CRT representation into several ciphertexts as
described in [2]. This contrasts to previous works, such as [11], that encode each
bit of an integer as an individual ciphertext and use boolean gates to build
arithmetic circuits.

An automated optimization process [2] determines the cryptographic param-
eters of the circuit, based on several factors: (1) the circuit bit-width, defined as
the minimum bit-width necessary to encode the largest integer value obtained
anywhere in the NN’s integer-based evaluation, (2) the maximum 2-norm of the
integer weight tensors of the layers, and (3), the desired probability of error of the
PBS. The optimization process determines the cryptosystem parameters (LWE
dimension, polynomial size, GLWE dimension, etc.) to ensure a fast execution,
the target probability of failure and the security level (using the lattice-estimator
[1]). We set the PBS error probability sufficiently low to ensure full correctness
of the results, i.e. the results in the clear are always the same as those in FHE,
up to a user-defined error-rate, e.g. 1076, for one full NN inference.

5 Experimental Results

The networks were implemented in PyTorch with Brevitas [13] and converted to
FHE with Concrete-ML [12]. We ran experiments on two datasets with several
neural network architectures, in two quantization modes (see Figure. 1, left).
The test machine had an Intel i7-11800H CPU with 8 cores and we used 16

tgnezdsfog‘lihe experiments.

Three FC layers with 192, 192 and 10 neurons

3 Four conv layers with 8,8,16 and 16 filters followed by a FC layer with 120 neurons
and a final FC layer for classification

4 Six conv layers with: 64, 64, 128, 128, 256, 256 filters, followed by two 512 neuron
FC layers and a final FC layer for classification

5 Inputs are quantized in 8 bits, but all other activations use 2 bits

% Estimated time for a 8 core machine, using 16 threads
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Table 1. Experimental results obtained with Brevitas and Concrete-ML

Network Quant. Active Narrow | Data-set | Circuit Accuracy Inference
bits Neurons range bit-width time (s)
3-layer FCNN? 2/2 150 Yes MNIST 6 92.2% 31
3-layer FCNN 2/2 90 No MNIST 7 96.5% 77
3-layer FCNN 2/2 190 No MNIST 8 97.1% 300
LeNet 2/2 190 No MNIST 8 97.6% 2780
6-layer CNN3 2/2 190 No MNIST 8 98.7% 5072
VGG-9* 2/25 all Yes CIFAR10 13 87.5% 18000°

6 Conclusion

Our approach to encrypted inference for Neural Networks shows several advan-
tages over other methods. First, we believe our method is easier to use than
other works, since the problem of making an FHE compatible network becomes
strictly an ML problem and no cryptography knowledge is needed. Second, the
computations in FHE are correct with respect to the computations in the clear
and, using TFHE, noise does not corrupt the encrypted values. Thus, once a net-
work is trained incorporating the quantization constraints, the accuracy that is
measured on clear data will be the same as that on encrypted data. Finally, our
approach, using PBS, shows competitive accuracies in FHE and allows to con-
vert arbitrary depth networks using any activation function to FHE. Networks
up to 9 layers were shown, but deeper NNs can easily be implemented.

Preliminary code for the MNIST classifier is available” and code for the
CIFARI1O0 classifier will be released soon.

Many possible strategies can be employed to improve upon this work, in
order to support larger models, such as ResNet, on larger data-sets like Ima-
geNet. For example, a better pruning strategy could decrease the PBS count,
per-channel quantization can improve accuracy, and faster step functions in FHE
could improve the overall speed.
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