
Traitor Tracing with N 1/3-size Ciphertexts and O(1)-size Keys from k-Lin

Junqing Gong1,2,⋆, Ji Luo 3,⋆⋆, and Hoeteck Wee4

1 East China Normal University, Shanghai, China

jqgong@sei.ecnu.edu.cn
2 Shanghai Qi Zhi Institute, Shanghai, China

3 Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, USA

luoji@cs.washington.edu
4 NTT Research, Sunnyvale, USA

wee@di.ens.fr

Abstract. We present a pairing-based traitor tracing scheme for N users with

|pk| = |ct| =O(N 1/3), |sk| =O(1).

This is the first pairing-based scheme to achieve |pk| · |sk| · |ct| = o(N). Our construction relies on the (bilateral) k-

Lin assumption, and achieves private tracing and full collusion resistance. Our result simultaneously improves upon

the sizes of pk,ct in Boneh–Sahai–Waters [Eurocrypt ’06] and the size of sk in Zhandry [Crypto ’20], while further

eliminating the reliance on the generic group model in the latter work.

1 Introduction

Traitor tracing schemes [13] enable a content distributor to generate secret keys for different users, any of whom can

decrypt some protected content (e.g., a cable TV stream). However, if any group of “traitors” get together and publish

some program capable of decrypting the content, then it is possible to use this program to “trace” and identify at least

one of the traitors and therefore hold them accountable. We would like to design traitor tracing schemes with short

parameters, namely short public key pk, ciphertext overhead ct and secret key sk that depend minimally on the total

number of users N .

In this work, we focus on pairing-based traitor tracing schemes, where the most efficient schemes achieve

|pk| · |sk| · |ct| = Θ(N), with the classic result of Boneh, Sahai, and Waters (BSW) [6] achieving |pk| = |ct| = O(N 1/2),

|sk| =O(1) as well as a recent work by Zhandry [29] achieving |pk| = |ct| = |sk| =O(N 1/3).

In view of the state of the art for pairing-based traitor tracing, Zhandry put forth the following conjecture, which

captures the community’s intuition about the optimal trade-offs for pairing-based traitor tracing:

For any a,b,c ≥ 0 such that a + b + c = 1, there exists a pairing-based traitor tracing scheme with

|pk| =O(N a), |sk| =O(N b), |ct| =O(N c).

He also proved the conjecture for (1) b = 0,c ≥ a and (2) b,c ≥ a [29]. In light of this conjecture, we consider two open

problems in this work. The first is a special case of Zhandry’s conjecture:

Does there exist a traitor tracing scheme with |pk| =O(N 2/3), |ct| =O(N 1/3), |sk| =O(1) from pairings?

⋆ Partially supported by National Natural Science Foundation of China (62002120), Innovation Program of Shanghai Municipal

Education Commission (2021-01-07-00-08-E00101) and the “Digital Silk Road” Shanghai International Joint Lab of Trustworthy

Intelligent Software (22510750100). Part of this work was done while visiting NTT Research.
⋆⋆ Partially supported by NSF grants CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI Research Award, a Cisco Research

Award, and a Simons Collaboration on the Theory of Algorithmic Fairness. Part of this work was done during an internship at

NTT Research.

https://orcid.org/0000-0003-1225-5310

Such a scheme would inherit the short ciphertexts and short keys of the afore-mentioned pairing-based schemes in

[6,29]. We note that minimizing secret key size is important in settings where the decryption devices have limited

long-term cryptographic storage, and perhaps even more important than minimizing ciphertext overhead, since the

total ciphertext size is often dominated by the size of the payload (megabytes) and not the ciphertext overhead coming

from the traitor tracing scheme (kilobytes).

The next question challenges the optimality of Zhandry’s conjecture:

Does there exist a traitor tracing scheme with |pk| · |sk| · |ct| =O(N 1−δ) for some δ> 0 from pairings?

An affirmative answer would indicate that the trade-off suggested in Zhandry’s conjecture is far from optimal, and

more importantly, that our intuition about pairing-based traitor tracing is in fact flawed!

Traitor Tracing Beyond Pairings. Before we go on to describe our results, we note that from LWE (or obfuscation),

we have “optimal” traitor tracing schemes achieving |pk| + |sk| + |ct| = poly(log N) [18,12,9]. Nonetheless, we believe

there is still tremendous value in obtaining better pairing-based schemes. From a theoretical perspective, we

want (i) good traitor tracing from different assumptions; (ii) to understand what’s the best parameters we can get

from pairings, as also considered in [29]; and (iii) to develop new tracing techniques, and indeed, the LWE-based

schemes with poly(log N) parameters rely crucially on ideas first developed in earlier pairing-based schemes. From a

practical perspective, pairing-based cryptographic schemes are more widely deployed than lattice-based ones (e.g.,

in blockchain-type applications, and with better libraries, etc.) and for moderately small values of N that arise in

applications, could potentially achieve better concrete efficiency than the asymptotically more efficient LWE-based

schemes.

1.1 Our Results

We answer both open problems in the affirmative: we present a pairing-based traitor tracing scheme for N users with

|pk| = |ct| =O(N 1/3), |sk| =O(1).

This is the first pairing-based scheme to achieve |pk| · |sk| · |ct| = o(N). Our construction relies on the (bilateral) k-Lin

assumption, and achieves private tracing and full collusion resistance. Our result simultaneously improve upon the

sizes of pk,ct in [6] and the size of sk in [29], while further eliminating the reliance on the generic group model (GGM)

in the latter work. As in Zhandry’s work, the O(·) terms hides factors polynomial in the security parameter. See Fig. 1

for comparison with prior works.

1.2 Technical Overview

We proceed to provide a brief overview of our scheme and a technical comparison with Zhandry’s construction [29].

In this overview, for any positive integer N , we define [N] = {1,2, . . . , N } and [0, N] = {0,1, . . . , N }. Note that [0] =;.

Recap: PLBE and BSW Traitor Tracing. An N private linear broadcast encryption (N -PLBE) [6] is a type of anonymous

broadcast encryption where we can revoke decryption capabilities for the first z users. In particular,

– key generation produces a key sk for each user identity i ∈ [N];

– encryption takes as input a private index z ∈ [0, N] and a message m to produce a ciphertext ct;

– decryption returns m if i > z, or equivalently, i ∉ [z].

The security requirements for PLBE are as follows:

– message-hiding: the message m is hidden given unauthorized keys;

2

Scheme |pk| |ct| |sk| Assumption Tracing

folklore + IBE [29] 1 N 1 IBE public

BN08 [5] ∗† 1 κ N 2κ2 IBE private

BP08 [4] ∗ 1 κ N 2κ IBE private

BSW06 [6]
p

N
p

N 1 composite private

BW06 [8]
p

N
p

N
p

N composite public

PLBE + W20 [28]
p

N
p

N 1 bi-k-Lin public

Z20 [29]
3p

Nκ4 3p
Nκ4 3p

Nκ4 GGM private

this work (§ 3) 3pNκ
3pNκ κ bi-k-Lin private

Fig. 1. Comparison with prior pairing-based traitor tracing schemes for N users, where size L means Θ(L) group elements plus

O(L) bits. Here, κ denotes the statistical security parameter, with statistical error 2−Ω(κ). In the “Assumption” column, “bi-k-

Lin” (bilateral k-Lin) is a strengthening of the k-Linear assumption in prime-order groups (equivalent to k-Linear for symmetric

bilinear groups), “composite” stands for assumptions in composite-order symmetric bilinear groups (e.g., subgroup membership

assumption), and “GGM” stands for generic group model.
∗ IBE is used to compress pk [29].
† Threshold elimination compiler [29] is applied.

– index-hiding: encryptions of (z −1,m) and (z,m) are computationally indistinguishable given all secret keys for

identities i ̸= z.

Starting from an N -PLBE, BSW traitor tracing scheme [6] with identity space [N] works as follows:

– The public key and secret keys are the same as for PLBE;

– An encryption of m is a PLBE encryption of m with z = 0.

Correctness is straight-forward: every secret key satisfies i > 0, or equivalently, i ∉ [0] =;, and is authorized to recover

m.

Given a decoder D with distinguishing advantage ε, we can identify a traitor i∗ ∈ [N] with probability negligibly

close to 1 as follows: for i = 0,1, . . . , N , revoke the decryption capabilities of the first i users by feeding the decoder

PLBE encryption of (i ,m). We know that the advantage of D is ε for i = 0 (by the fact that decoder is “good”) and

negligible for i = N (by message-hiding). Therefore, there exists i∗ ∈ [N] such that there is a significant drop –at least

roughly ε/N – in the distinguishing advantage of the decoder from i∗−1 to i∗; index-hiding ensures that i∗ is a traitor.

The state of the art for N -PLBE achieves parameter sizes

|pk| =O(N 1/2), |ct| =O(N 1/2), |sk| =O(1)

from the bilateral k-Lin, via functional encryption for quadratic functions [3,28]. The resulting traitor tracing scheme

achieves the same parameter sizes.

Our Starting Point: Revocable PLBE. We will explain our traitor tracing scheme using a generalization of PLBE which

we refer to as (N1, N2) revocable private linear broadcast encryption ((N1, N2)-rPLBE). In an (N1, N2)-rPLBE,

– key generation takes as input a user identity (i1, i2) ∈ [N1]× [N2] to produce a key sk;

– encryption takes as input a private index z ∈ [0, N1], a private set S ⊆ [N1]× [N2] of size at most N2, and a message

m to produce a ciphertext ct.

– decryption returns m if (i1, i2) ∉ ([z]× [N2])∪S.

This allows us to revoke the decryption capability of the first z ·N2 users as well as additional (at most) N2 users in the

set S. We call them index-revocation and set-revocation, respectively. Accordingly, the security requirements for rPLBE

are generalized as follows:

3

– message-hiding: the message m is hidden given only unauthorized keys.

– index-hiding: encryptions of (z−1,S,m) and (z,S,m) are indistinguishable, even given secret keys for all identities

in {(i1, i2) ∈ [N1]× [N2] : i1 ̸= z}∪S.

– set-hiding: encryptions of (z,S0,m) and (z,S1,m) with S0 ⊂ S1 are indistinguishable, even given secret keys for all

identities (i1, i2) ̸∈ S1 \ S0.

Note that PLBE corresponds to the special case N2 = 1 and S =; during encryption. In this case, the identity is of the

form (i1,1); index-hiding reduces to that for PLBE; set-hiding becomes dummy since we always have S0 = S1 =;.

Tracing Using rPLBE. Starting from an (N1, N2)-rPLBE, we build a traitor tracing scheme with identity space

[N1]× [N2] as follows:

– The public key and secret keys are the same as for rPLBE;

– An encryption of m is a rPLBE encryption of m with z = 0,S =;.

Correctness is straight-forward.

Given a decoder D with distinguishing advantage ε, our goal is to identify a traitor (i∗1 , i∗2) ∈ [N1] × [N2] with

probability negligibly close to 1. The tracing strategy proceeds in two steps:

Step 1: Identifying i∗1 via Index-Revocation. For i1 = 0,1, . . . , N1, we revoke the decryption capabilities of the first i1 ·N2

users by feeding the decoder rPLBE encryptions of (i1,;,m). As BSW traitor tracing with PLBE, there exists i∗1 ∈ [N1]

such that there is a significant drop –at least roughly ε/N1– in the distinguishing advantage of the decoder from i∗1 −1 to

i∗1 , upon which we know that one of the users in {i∗1 }×[N2] is a traitor by index-hiding security (applied to z = i∗1 ,S =;).

Step 2: Identifying i∗2 via Set-Revocation. Next, for i2 = 0, . . . , N2, we revoke the decryption capabilities of the first i2

users in {i∗1 } × [N2] by feeding the decoder rPLBE encryptions of (i∗1 − 1,Si∗1 ,i2 ,m) and (i∗1 ,Si∗1 ,i2 ,m), where Si∗1 ,i2 is

{(i∗1 , j) : j ∈ [i2]}, and define εi2 to be the difference between the distinguishing advantages for the two ciphertext

distributions. We begin with the following bounds on ε0 and εN2 (corresponding to i2 = 0 and i2 = N2 respectively):

(1) ε0 ≳ ε/N1. This follows from Step 1 and the fact that Si∗1 ,0 =;.

(2) εN2 is negligible. This follows from applying index-hiding to z = i∗1 and S = Si∗1 ,N2 , and holds even when the

adversary gets the secret keys for all possible identities since {(i1, i2) ∈ [N1]× [N2] : i1 ̸= i∗1 }∪Si∗1 ,N2 = [N1]× [N2].

Therefore, there exists i∗2 ∈ [N2] such that εi∗2 − εi∗2 −1 ≳ ε/N1N2. By set-hiding applied to z = i∗1 −1,S0 = Si∗1 ,i∗2 −1,

S1 = Si∗1 ,i∗2 and z = i∗1 ,S0 = Si∗1 ,i∗2 −1,S1 = Si∗1 ,i∗2 , the user (i∗1 , i∗2) must be a traitor. Note that, for Step 2, we always have

|S| ≤ N2.

Implementing Set-Revocation and Set-Hiding. For set-revocation, we will need to relax the syntax for (N1, N2)-rPLBE

as follows (following “mixed functional encryption” in [18]) :

– encrypting to arbitrary sets S requires knowledge of msk;

– encrypting to S =; only requires mpk.

As a result of this relaxation, our traitor tracing scheme only achieves private tracing, as is also the case in [18] and in

Zhandry’s work [29].

One-Ciphertext Security. Consider the following construction for set-revocation (i.e., ignoring the index-revocation)

for N2 users (cf. Step 2 of our tracing) based on any negated-IBE scheme where a key for id ∈ {0,1}κ can decrypt a

ciphertext for id′ ∈ {0,1}κ iff id ̸= id′.

– The public key consists of N2 independent public keys for negated-IBE mpk1, . . . ,mpkN2
.

4

– The secret key for user i2 is a random ui2 ← {0,1}κ, together with a negated-IBE key for ui2 w.r.t. mpki2
. This means

that ui2 is perfectly hidden from the decoder if user i2 is honest.
– To encrypt to S ⊆ [N2], we provide N2 negated-IBE ciphertexts for identities r1, . . . ,rN2 w.r.t. mpk1, . . . ,mpkN2

respectively, where ri2 ← {0,1}κ if i2 ∉ S, and ri2 = ui2 if i2 ∈ S.

Correctness is straight-forward: Pr[ri2 ̸= ui2 : ri2 ← {0,1}κ] = 1−2−κ. Set-hiding for a single ciphertext follows from the

fact that (1) if the adversary does not see the key for user i2, then ui2 is statistically random and (2) we always have N2

negated-IBE ciphertexts (which hides |S|).

Multi-Ciphertext Security via Threshold Broadcast. In order to achieve set-hiding for multiple ciphertexts, as is

necessary for tracing, we adopt Zhandry’s “threshold broadcast” technique. We will rely on an approximated version of

negated-IBE where id ̸= id′ (i.e.,wt(id⊕id′) > 0) is replaced withwt(id⊕id′) ≥ 2κ/5 wherewt(·) corresponds to Hamming

weight. To revoke a user i2 ∈ S while preserving set-hiding, we will sample ri from a carefully-designed distribution of

bit-strings close to ui in Hamming distance, where the distribution depends adaptively on the adversary (c.f. Lemma 1

in Section 3.2); for this reason, we will require adaptive security w.r.t. id.

Instantiating rPLBE: Warm-Up. Next, we translate the problem of building an (N1, N2)-rPLBE to a problem about

functional encryption, specifically, that of attribute-based functional encryption (AB-FE) [1]. In AB-FE, a ciphertext is

associated with a private attribute z and a public attribute x, a key with a function f and a predicate P , and decryption

returns f (z) if P (x) is true. Specifically, an (N1, N2)-rPLBE implementing threshold-broadcast-based set-revocation

(sketched above) would follow from AB-FE for

f comp
i1

(

z︷ ︸︸ ︷
j1,m) =

m, if i1 > j1;

0, otherwise.

P tbe
i2,u

(x︷ ︸︸ ︷
r1, . . . ,rN2

)=
1, if wt(ri2 ⊕u) ≥ 2κ/5;

0, otherwise;

where f comp
i1

implements index-revocation and index-hiding, and P tbe
i2,u , set-revocation. Recall that set-hiding relies on

the distribution of r1, . . . ,rN2 .

The recent work of Abdalla, Catalano, Gay, and Ursu (ACGU) [1] presented an AB-FE scheme based on the k-Lin

assumption for the setting where f corresponds to inner product and P corresponds to read-once span programs. It

is easy to see that we can implement f comp
i1

as an inner product over vectors of length O(N1), and P tbe
i2,u as a read-once

span program of size O(N2κ). Combined with the ACGU result, we obtain an (N1, N2)-rPLBE with

|pk| =O(N1 +N2κ), |ct| =O(N1 +N2κ), |sk| =O(N2κ)

The parameter sizes are essentially the sum of those for (i) inner product FE for vectors of length ℓ = N1, namely

|pk| = |ct| =O(ℓ), |sk| =O(1), and (ii) ABE for read-once span programs of size s = N2κ, namely |pk| = |ct| = |sk| =O(s).

Instantiating rPLBE: Ours. We present an (N1, N2)-rPLBE based on (bilateral) k-Lin achieving shorter parameters

|pk| =O(N 1/2
1 +N2κ), |ct| =O(N 1/2

1 +N2κ), |sk| =O(κ),

we highlight the improvements by underlines. Setting N1 = N 2/3, N2 = N 1/3 yields our main result. We achieve shorter

parameters as follows:

– To reduce the dependency on N1 in pk,ct to N 1/2
1 , we implement f comp

i1
using quadratic functions over inputs of

length N 1/2
1 , following [6,3].

– To reduce |sk| to O(κ), we observe that the span program computing P tbe
i2,u is κ-local, that is, it depends only on κ

bits of its input and show that for such span programs, the ABE key size can be decreased to O(κ).

To put these two pieces together, we combine the ACGU construction which only supports linear functions over the

private attribute z with techniques from functional encryption for quadratic functions [28].

5

Achieving Adaptive Security from k-Lin. We need an additional idea to achieve adaptive security w.r.t. r ’s, which

is necessary for our traitor tracing strategy. The challenge lies in the fact that current techniques for realizing ABE

adaptive security from the k-Lin assumption via dual system encryption methodology [26] rely on the guarantee

(provided by the ABE security game) that the predicate P is never satisfied to switch the secret key distribution in

the security proof. In the AB-FE security game, this guarantee goes away. To address this challenge, we observe that

it suffices to construct AB-FE secure under a selective choice of z and an adaptive choice of x, since z (ignoring

the payload m) comes from a polynomial-size domain. When a key query for f ,P comes along, we will decide

whether to switch the secret key distribution depending on f (z). More precisely, the security experiment requires

that an adversary selectively specifies z0, z1, we only switch the secret key distribution (to a “semi-functional” key) if

f (z0) ̸= f (z1), for which P (x) must be false.

Comparison with Zhandry’s O(N 1/3) Scheme. We provide a simplified overview of Zhandry’s traitor tracing

scheme [29]. The first step is a traitor tracing scheme for N1N2 users with parameters:

|pk| =O(N2), |ct| =O(N2κ), |sk| =O(N1 +N2κ)

The underlying scheme is a variant of an (N1, N2)-rPLBE, which is adaptively secure in the generic group model.5

Observe that the total parameter size for this scheme is O(N1 +N2), similar to that based on ACGU, whereas we

achieve total parameter size O(N 1/2
1 + N2). The construction uses ideas from mixed bit matching encryption [17]

(MBME), which can be instantiated from inner product predicate encryption.6 In contrast, we crucially rely on

techniques from quadratic FE to achieve the square-root dependency on N1.

The second step in [29] is to amplify this to a traitor tracing scheme for N1N2N3 users with parameters:

|pk| =O(N2), |ct| =O(N2κ+N3), |sk| =O(N1 +N2κ)

Setting N1 = N2 = N3 = N 1/3 yields a traitor tracing scheme for N users with |pk| = |ct| = |sk| =O(N 1/3).

Note that in addition to achieving better parameters and assumptions, our approach also streamlines Zhandry’s

approach, eliminating the use of MBME and risky tracing [17] and the second step above. Moreover, our scheme

supports partially public tracing, in the sense that we can publicly identify a prefix i∗1 ∈ [N1] specifying a subset of

N2 = N 1/3 identities, one of which must be a traitor (via PLBE). This could be useful in applications where identity

prefixes constitute important information, like country of origin or name of company.

Nonetheless, we stress that our results do not completely subsume those in [29]. In particular, the latter achieves

some parameter trade-offs that we do not immediately achieve using our techniques, for instance, |pk| =O(1),

|sk| =O(N), |ct| =O(1) or |pk| =O(N 1/4), |sk| =O(1), |ct| =O(N 3/4). Also, we do not present any broadcast-and-trace

schemes.

5 In a bit more detail, the construction starts with a variant of (O(1), N2)-rPLBE with parameters

|pk| =O(N2), |ct| =O(N2κ), |sk| =O(1)

which yields a “1/N1-risky” traitor tracing scheme for N1N2 users following [17]. That is, tracing succeeds with probability 1/N1.

This is then amplified to a standard traitor tracing scheme with a blow-up in sk.
6 In MBME, ciphertexts are associated with (z1, . . . , zℓ) ∈ {0,1}ℓ and keys with (y1, . . . , yℓ) ∈ {0,1}ℓ and decryption is possible iff

∧ℓ
i=1 zi ∨ yi = 1

Security requires both attribute and function hiding. MBME for ℓ-bit vectors can be instantiated from attribute-hiding function-

hiding inner product predicate encryption for O(ℓ)-dimensional vectors, since

∧ℓ
i=1 zi ∨ yi = 1 ⇐⇒∑ℓ

i=1(1− zi)(1− yi)
?= 0

6

1.3 Discussion

Open Problems. We conclude with several open problems:

– Combined with Zhandry’s conjecture which asserts that we should be able to achieve full range of parameters with

the same |pk| · |sk| · |ct|, our result raises the tantalizing possibility of a pairing-based traitor tracing scheme with

total parameter size O(N 2/9). In fact, it seems entirely plausible to have a pairing-based traitor tracing scheme

with total parameter size O(N 1/4).

– Can we extend our techniques to broadcast with tracing following [19]? Or to public tracing with smaller

parameters than in [6]? For public tracing from pairings, we conjecture that BSW is essentially optimal, namely we

need min(|ct|, |pk| · |sk|) =Ω(
p

N).

Organization. We provide preliminaries in Section 2. Our traitor tracing based on AB-FE is given out in Section 3. We

develop the AB-FE scheme required by the traitor tracing in Section 4.

2 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from a finite set S. We use ≈s to denote

two distributions being statistically indistinguishable, and ≈c to denote two distributions being computationally

indistinguishable. We use lower-case boldfaced letters to denote row vectors and upper-case boldfaced letters to

denote matrices. We use ei to denote the i th elementary row vector (with 1 at the i ’th position and 0 elsewhere, and

the total length of the vector specified by the context). For any positive integer N , we use [N] to denote {1,2, . . . , N } and

[0, N] to denote {0,1, . . . , N }.

2.1 Prime-Order Bilinear Groups

A group generation algorithm G takes as input the security parameter 1λ and outputs a description G :=
(p,G1,G2,GT,e), where p is a prime,G1,G2 andGT are cyclic groups of order p, and e :G1×G2 →GT is a non-degenerate

bilinear map. We require that the group operations inG1,G2,GT and the bilinear map e be computable in deterministic

polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2, and gT = e(g1, g2) ∈ GT be the respective generators. We employ the

implicit representation of group elements: for a matrix M over Zp , we define [M]1 := g M
1 , [M]2 := g M

2 , [M]T := g M
T , where

exponentiation is carried out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T. We recall the matrix

Diffie–Hellman (MDDH) assumption in G1 [14]:

Assumption 1 (MDDHd
k,ℓ) Let k,ℓ,d ∈N. We say that the MDDHd

k,ℓ assumption holds in G1 if for all p.p.t. adversary A,

Adv
MDDHd

k,ℓ

A
(λ) :=∣∣Pr[A(1λ,G, [A]1, [SA]1) = 1]−Pr[A(1λ,G, [A]1, [C]1) = 1]

∣∣
is negligible in λ, where G := (p,G1,G2,GT,e) ←G(1λ), A ←Zk×ℓ

p , S ←Zd×k
p , C ←Zd×ℓ

p .

The MDDH assumption in G2 can be defined analogously. Escala et al. [14] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,ℓ ∀k,d ≥ 1

When ℓ≤ k, the MDDHd
k,ℓ assumption holds unconditionally.

Assumption 2 (bilateral MDDHd
k,ℓ) Let k,ℓ,d ∈N. We say that the bilateral MDDHd

k,ℓ assumption holds in G1,G2 if for

all p.p.t. adversary A,

Adv
biMDDHd

k,ℓ

A
(λ) := ∣∣Pr[A(1λ,G, [A]1, [SA]1 , [A]2, [SA]2) = 1]−Pr[A(1λ,G, [A]1, [C]1 , [A]2, [C]2) = 1]

∣∣
is negligible in λ, where G := (p,G1,G2,GT,e) ←G(1λ), A ←Zk×ℓ

p , S ←Zd×k
p , C ←Zd×ℓ

p .

7

The bilateral MDDH assumption is a strengthening of the MDDH assumption for asymmetric bilinear groups. It

cannot hold for k = 1 for reasons similar to why DDH cannot hold in symmetric bilinear groups. An implication similar

to that due to Escala et al. [14] holds:

bilateral k-Lin ⇒ bilateral MDDH1
k,k+1 ⇒ bilateral MDDHd

k,ℓ ∀k ≥ 2,d ≥ 1.

By the implication, we will work with (bilateral) MDDH1
k,k+1. This is sufficient for deriving our results based on

(bilateral) k-Lin.

2.2 Traitor Tracing

We follow the definition in [29]. A traitor tracing scheme with key space K consists of four p.p.t. algorithms:

– Gen(1λ,1N) → (
pk,tk, {ski }i∈[N]

)
: The key generation algorithm takes the security parameter 1λ and the number 1N

of users as input. It outputs a public key pk, a tracing key tk, and secret keys {ski }i∈[N] (one for each user).

– Enc(pk) → (ct,k): The encapsulation algorithm takes pk as input and outputs a ciphertext ct and an encapsulated

key k ∈K.

– Dec(pk,ski ,ct) → k: The decapsulation algorithm takes pk,ski ,ct as input and outputs a decapsulated key k.

– TraceD (pk,tk,11/ε) → i∗: The tracing algorithm takes pk,tk, and the error parameter 11/ε as input. It has oracle

access to a decoder D and outputs a traitor identity i∗ ∈ [N] or ⊥.

Correctness. We require that for all c ∈N, there exists a negligible function ε(λ) such that for allλ ∈N, N ∈ [λc], i ∈ [N],

Pr

[(
pk,tk, {ski }i∈[N]

)←Gen(1λ,1N)

(ct,k) ←Enc(pk)
: Dec(pk,ski ,ct) = k

]
≥ 1−ε(λ).

Tracing Security. The scheme is secure if for all ε(λ) > 0 such that 1/ε(λ) is polynomially bounded, all efficient

adversary A wins the following game with negligible probability:

– Launch A(1λ) and receive 1N from it. Run
(
pk,tk, {ski }i∈[N]

)←Gen(1λ,1N) and send pk to A.

– A adaptively queries keys for iq ∈ [N]. Upon this query, send skiq to A. This stage can be repeated as many times

as A wants. Let T be the set of iq ’s for which the key is queried.

– A outputs a decoder D . Run i∗ ←TraceD (pk,tk,11/ε(λ)). A wins if

Pr
[

b ← {0,1}, k0 ←K, (ct,k1) ←Enc(pk) : D∗(ct,kb) = b
]
− 1

2
≥ ε(λ)

and i∗ =⊥, or if i∗ ∉ T ∪ {⊥}.

Note that tracing security implies standard semantic security, cf. [29, Remark 3].

2.3 Attribute-Based Functional Encryption

An attribute-based functional encryption (AB-FE) for

function class F= { f :Z→ {0,1}∗} and predicate P :X×Y→ {0,1}

consists of four p.p.t. algorithms:

– Setup(1λ,F,Z,X,Y) → (mpk,msk): The set-up algorithm takes the security parameter 1λ and the domainsF,Z,X,Y

as input, and outputs a master public/secret key pair (mpk,msk).

– KeyGen(mpk,msk, f , y) → sk: The key generation algorithm takes mpk, msk, f ∈F, y ∈Y as input, and outputs a

secret key sk.

– Enc(mpk, z, x) → ct: The encryption algorithm takes mpk, z ∈Z, x ∈X as input, and outputs a ciphertext ct.

– Dec(mpk,sk, f , y,ct, x) → d : The decryption algorithm takes mpk,sk, f , y,ct, x as input and outputs d ∈ {0,1}∗.

8

Correctness. For all λ ∈N, F, Z, X, Y, f ∈F, y ∈Y, z ∈Z, x ∈X such that P (x, y) = 1, we require

Pr


(mpk,msk) ← Setup(1λ,F,Z,X,Y)

sk←KeyGen(mpk,msk, f , y)

ct←Enc(mpk, z, x)

: Dec(mpk,sk, f , y,ct, x) = f (z)

= 1.

Our scheme will be based on pairing, for which we require f to take values inZp and relax the correctness requirement

so that Dec only needs to output [f (z)]T.

Indistinguishability Security with Adaptive x and Semi-adaptive z . For all p.p.t. stateful A, we require

Pr



b ← {0,1}

(F,Z,X,Y) ←A(1λ)

(mpk,msk) ← Setup(1λ,F,Z,X,Y)

(z0, z1) ←A(mpk)

x ←AKeyGen(mpk,msk,·,·)()

ct←Enc(mpk, zb , x)

: AKeyGen(mpk,msk,·,·)(ct) = b


− 1

2

to be negligible, where for each query (fq , yq) made to KeyGen by A, it is required that fq (z0) = fq (z1) or P (x, yq) = 0.

We also consider a strengthened notion with partially adaptive z, where part of z0, z1 can be chosen with x, after

querying arbitrarily many keys.

3 Building Traitor Tracing

We define threshold broadcast, private linear broadcast encryption (TB-PLBE), a certain kind of AB-FE, and use it

to construct our traitor tracing scheme. We provide a construction for AB-FE that can be instantiated to TB-PLBE in

Section 4; the instantiation can be found in Section 4.5.

3.1 TB-PLBE

We define TB-PLBE as an AB-FE (Section 2.3) for the function class

Z= [0, N1]×Zp , F
comp
N1

= {
f comp

i1
: [0, N1]×Zp →Zp

∣∣ i1 ∈ [N1]
}

∀i1 ∈ [N1], f comp
i1

(j1,m) =
m, if i1 > j1;

0, otherwise.

and the predicate

X= ({0,1}κ)N2 , Y= [N2]× {0,1}κ,

P tbe
N2,κ

(
(r1, . . . ,rN2), (i2,u)

)=
1, if wt(ri2 ⊕u) ≥ 2κ/5;

0, otherwise;

In Setup, the functionality (Fcomp
N1

,Z,X,Y) is represented by (1N1 ,1N2). In KeyGen and Dec, the function f comp
i1

is

represented by i1. We need a TB-PLBE secure under adaptively chosen j1,r1, . . . ,rN2 and semi-adaptively chosen m

(cf. Section 2.3). We will present a construction of TB-PLBE in Section 4 that is secure under adaptively chosen

r1, . . . ,rN2 and selectively chosen j1,m based on bi-k-Lin; the fact that N1 = poly(λ) implies security against adaptively

chosen j1 by a standard guessing argument.

9

Remark 1 (relation with rPLBE). We will build traitor tracing from TB-PLBE directly in Section 3.2. For completeness,

we briefly sketch how to implement (N1, N2)-rPLBE (with set-revocation suitable for our tracing algorithm) as outlined

in Section 1.2 from TB-PLBE which is a AB-FE for Fcomp
N1

and P tbe
N2,κ:

– The public key are the same as TB-PLBE; the secret key for user (i1, i2) ∈ [N1]× [N2] consists of a TB-PLBE key for

(i1; i2,ui1,i2) where ui1,i2 is fresh for each user.

– An encryption of (z,S,m) where S ⊆ {i∗1 }× [N2] is a TB-PLBE encryption of (z; (r1, . . . ,rN2),m) where we sample ri2

uniformly for (i∗1 , i2) ∉ S but sample ri2 according to the distribution ρi∗1 ,i2 for (i∗1 , i2) ∈ S described in Section 3.2.

Revocation mechanisms are as follows:

– The index-revocation for z relies on the function F
comp
N1

of TB-PLBE: i1 > z iff (i1, i2) ∉ [z]× [N2]; index-hiding

follows from the security of TB-PLBE, namely z is hidden.

– The set-revocation S relies on the predicate P tbe
N2,κ and property of the distribution ρi1,i2 : this ensures that

wt(ri2 ⊕ui∗1 ,i2) < 2κ/5 for all (i∗1 , i2) ∈ S. However, set-hiding require an additional property of those distributions:

distributions ρi1,i2 are quite close to random distribution without the knowledge of ui1,i2 . See Lemma 1 for the two

properties of ρi1,i2 .

Note that we need the knowledge of ui1,i2 for finding ρi1,i2 (see algorithm Learn in Lemma 1), therefore the encryption

need secret key when S ̸= ; for tracing (Step 2).

3.2 Traitor Tracing from TB-PLBE

Traitor Tracing Scheme. Let TBPLBE be a TB-PLBE scheme as defined in Section 3.1. Our traitor tracing scheme

works as follows:

– Gen(1λ,1N) sets κ to be any ω(logλ) function that is polynomially bounded by λ, and N1 = N 2/3κ2/3,

N2 = N 1/3κ−1/3. Treating the identity space [N] as [N1]× [N2], the algorithm samples ui1,i2 ← {0,1}κ for all i1 ∈ [N1]

and i2 ∈ [N2], runs

(tpmpk,tpmsk) ←TBPLBE.Setup(1λ,1N1 ,1N2),

tpski1,i2 ←TBPLBE.KeyGen(tpmsk, i1, (i2,ui1,i2)),

ski1,i2 ← (tpski1,i2 , i1, (i2,ui1,i2)), ∀i1 ∈ [N1], i2 ∈ [N2],

and outputs

pk= tpmpk, tk= {ui1,i2 }i1∈[N1],i2∈[N2], {ski1,i2 }i1∈[N1],i2∈[N2].

– Enc(pk) samples m ←Zp and r j2 ← {0,1}κ for j2 ∈ [N2]. It runs

tpct←TBPLBE.Enc(tpmpk, (0,m), (r1, . . . ,rN2))

and outputs ct= (tpct,r1, . . . ,rN2) and k = [m]T. (Here, j1 is set to 0.)

– Dec(ski1,i2 ,ct) first parses ski1,i2 into (tpski1,i2 , i1, (i2,ui1,i2)) and ct into (tpct,r1, . . . ,rN2). It outputs

TBPLBE.Dec(tpski1,i2 , i1, (i2,ui1,i2),tpct, (r1, . . . ,rN2)).

– TraceD (pk,tk,11/ε) is described later.

Correctness. The correctness follows from that of TB-PLBE scheme with the fact that (i) 0 = j1 < i1 for all i1 ∈ [N1]; and

(ii) wt(ri2 ⊕ui1,i2) ≥ 2κ/5 with probability 1−2−Ω(κ) for all i1 ∈ [N1] and i2 ∈ [N2].

10

Distributions and Lemma for Tracing. Given ρ =σ1 · · ·σt ∈ {0,1,⋆}t for t ≤ κ, we associated ρ with a distribution and

write r ← ρ for

r = s1 · · · sκ,

si =σi , if i ≤ t and σi ∈ {0,1};

si ← {0,1}, if i > t or σi =⋆.

Our tracing algorithm follows the description in the technical overview, except u∗
i1,i2

is sampled from ρi1,i2 instead of

being fixed. The distributions ρi1,i2 are found iteratively. We rely on the following result:

Lemma 1 (implicit in [29, Section 8.1]). There is an algorithm LearnB (u,11/δ) that given u ∈ {0,1}κ, δ> 0, and oracle

access to a randomized algorithm B with bit output, makes poly(κ,1/δ) calls to B and runs in additional time

poly(κ,1/δ). Its output ρ ∈ {0,1,⋆}κ satisfies the following conditions:

– Each symbol of ρ is either the corresponding symbol in u, or is ⋆.

– The number of ⋆’s in ρ is no greater than 2κ/5.

Moreover, for all B and δ> 0,

Pr

[
u ← {0,1}κ

ρ← LearnB (u,11/δ)
: Pr

r←ρ
[B(r) = 1] ≥ Pr

r←{0,1}κ
[B(r) = 1]−δ

]
= 1−2−Ω(κ).

For completeness, we present a proof in Appendix A. We remark that [15,24] solves the same problem using similar

techniques in incomparable parameter regimes that are insufficient for our application.

Tracing Algorithm. Given a decoder D and a distribution D over traitor tracing ciphertexts and encapsulated keys,

we write

εD (D) = Pr
[

b ← {0,1}, k0 ←K, (ct,k1) ←D : D(ct,kb) = b
]
− 1

2
.

Recall that K is the key space, cf. Section 2.2. For brevity, we represent D by (j1;r1, . . . ,rN2) used in TB-PLBE.

The algorithm TraceD (pk,tk,11/ε) works as follows:

1. Let ξ1 = ε
10N1

. Compute estimations ε̂i1 of εi1 within additive error ξ1 for i1 = 0, . . . , N1, where

εi1 = εD (i1;r1, . . . ,rN2), r1, . . . ,rN2 ← {0,1}κ.

Recall that εD (· · ·) is defined by the probability of an efficient experiment minus 1
2 . It suffices to perform

⌈(κ log2+ log(4N1 +4))/(2ξ2
1)⌉ independent trials of that experiment and set ε̂i1 to be the empirical frequency

minus 1
2 .

2. Pick any i∗1 ∈ [N1] such that ε̂i∗1 −1 − ε̂i∗1 ≥ 3ξ1. If there is no such i∗1 , the algorithm Trace aborts.

3. For every t < N2 and values of ρi∗1 ,1, . . . ,ρi∗1 ,t (to be found later in Step 4), define B [ρi∗1 ,1, . . . ,ρi∗1 ,t](r), which has the

values of ρ’s hardwired, as

b ← {0,1}, b′ ← {0,1}, k0 ←K, m ←Zp , k1 = [m]T,

u∗
i∗1 ,1 ← ρi∗1 ,1, . . . ,u∗

i∗1 ,t ← ρi∗1 ,t ,

rt+1 = r, rt+2 ← {0,1}κ, . . . ,rN2 ← {0,1}κ,

R = (u∗
i∗1 ,1, . . . ,u∗

i∗1 ,t ,rt+1, . . . ,rN2),

output D
(
TBPLBE.Enc(tpmpk, (i∗1 +b′,m),R),R,kb

)⊕b ⊕b′⊕1.

4. Let δ= ε
540N1N2

. For i2 = 1, . . . , N2, run

ρi∗1 ,i2 ← Learn
B [ρi∗1 ,1,...,ρi∗1 ,i2−1]

(ui∗1 ,i2 ,11/δ).

11

5. Let ξ2 = ε
180N1N2

. Estimate ε̂i∗1 ,i2,0, ε̂i∗1 ,i2,1 of εi∗1 ,i2,0,εi∗1 ,i2,1 within additive error ξ2 for i2 = 0, . . . , N2, where

εi∗1 ,i2,b′ = εD (i∗1 −1+b′;u∗
i∗1 ,1, . . . ,u∗

i∗1 ,i2
,ri2+1, . . . ,rN2),

u∗
i∗1 ,1 ← ρi∗1 ,1, . . . ,u∗

i∗1 ,i2
← ρi∗1 ,i2 , ri2+1 ← {0,1}κ, . . . ,rN2 ← {0,1}κ.

They are computed with ⌈(κ log2+ log(8N2 +8))/(2ξ2
2)⌉ independent trials.

6. Pick any i∗2 ∈ [N2] such that (ε̂i∗1 ,i∗2 −1,0 − ε̂i∗1 ,i∗2 −1,1)− (ε̂i∗1 ,i∗2 ,0 − ε̂i∗1 ,i∗2 ,1) ≥ 5ξ2. If there is no such i∗2 , the algorithm

Trace aborts.

7. Output (i∗1 , i∗2) as a traitor.

Tracing Security. We prove the following theorem.

Theorem 1. Assuming TBPLBE being a TB-PLBE secure under adaptively chosen j1,r1, . . . ,rN2 and semi-adaptively

chosen m (cf. Section 2.3), our traitor tracing scheme is secure (cf. Section 2.2).

Our proof uses the following lemmas which will be proved later:

Lemma 2. Assuming TBPLBE being a TB-PLBE secure under adaptively chosen j1,r1, . . . ,rN2 and semi-adaptively

chosen m, in the tracing security game, εN1 ≤ ε(λ)
2 with probability 1−λ−ω(1).

Lemma 3. Assuming TBPLBE being a TB-PLBE secure under adaptively chosen j1,r1, . . . ,rN2 and semi-adaptively

chosen m, in the tracing security game, εi∗1 ,N2,0 −εi∗1 ,N2,1 ≤ ε(λ)
20N1

with probability 1−λ−ω(1), where i∗1 is the index found

in Step 2 of Trace.

It should be noted that in the tracing security game, εN1 ,εi∗1 ,N2,0,εi∗1 ,N2,1 depend on the random coins of A, and more

importantly, those used to set up the traitor tracing scheme in the security game, so they are random variables (not

constants) even when A,ε,λ are fixed. Therefore, εN1 ≥ ε(λ)
2 and εi∗1 ,N2,0 −εi∗1 ,N2,1 ≤ ε(λ)

20N1
are events (i.e., probabilistic)

and the above lemmas bound their probabilities.

Lemma 2 corresponds to the claim in the introduction that εN1 is negligible, and Lemma 3, εi∗1 ,N2,0 −εi∗1 ,N2,1.

They are indeed negligible with overwhelming probability, but we only need the weakened version as stated in those

lemmas.

Proof (Theorem 1). It suffices to prove the following three claims:

– Claim 1: The probability (of the conjunction event) that ε0 ≥ ε(λ) and Trace aborts at Step 2 is λ−ω(1).7

– Claim 2: The probability that Trace aborts at Step 6 is λ−ω(1).

– Claim 3: Let i∗1 and i∗2 be the indices found in Steps 2 and 6, then ski∗1 ,i∗2 is queried by the adversary in the tracing

security game with probability 1−2−Ω(κ) poly(N) (i.e., user (i∗1 , i∗2) is not honest).8

Let GoodEst be the event that all estimations are within the prescribed additive errors:

|ε̂i1 −εi1 | ≤ ξ1 for all i1 = 0, . . . , N1,

|ε̂i∗1 ,i2,b′ −εi∗1 ,i2,b′ | ≤ ξ2 for all i2 = 0, . . . , N2 and b′ = 0,1.

By the Chernoff bound, the union bound, and how the numbers of trials are set, we have Pr[GoodEst] ≥ 1−2−κ. We

proceed to prove the claims.

7 As κ = ω(logλ) and N = poly(λ), any statistical error 2−Ω(κ) is absorbed by λ−ω(1) when combined with a computational

argument, and thus omitted in such case.
8 Claim 3 does not care about whether ε0 ≥ ε(λ).

12

Proof of Claim 1. By Lemma 2 and our choice of ξ1, with probability 1−λ−ω(1),

max
i1∈[N1]

{εi1−1 −εi1 } ≥ 1

N1

∑
i1∈[N1]

(εi1−1 −εi1) = ε0 −εN1

N1
≥ ε(λ)− ε(λ)

2

N1
= 5ξ1,

when ε0 ≥ ε(λ). Then, GoodEst implies

max
i1∈[N1]

{ε̂i1−1 − ε̂i1 } ≥ 5ξ1 −2ξ1 = 3ξ1.

This proves Claim 1.

Proof of Claim 2. GoodEst implies

εi∗1 −1 −εi∗1 ≥ ε̂i∗1 −1 − ε̂i∗1 −2ξ1 = ξ1.

Note that εi∗1 ,0,b′ = εi∗1 −1+b′ . Together with Lemma 3 and our choice of ξ1,ξ2, with probability 1−λ−ω(1),

max
i2∈[N2]

{(εi∗1 ,i2−1,0 −εi∗1 ,i2−1,1)− (εi∗1 ,i2,0 −εi∗1 ,i2,1)}

≥ 1

N2

(
(εi∗1 ,0,0 −εi∗1 ,0,1)− (εi∗1 ,N2,0 −εi∗1 ,N2,1)

)≥ ξ1 − ε(λ)
20N1

N2
= 9ξ2.

Again with GoodEst, we have

max
i2∈[N2]

{(ε̂i∗1 ,i2−1,0 − ε̂i∗1 ,i2−1,1)− (ε̂i∗1 ,i2,0 − ε̂i∗1 ,i2,1)} ≥ 9ξ2 −4ξ2 = 5ξ2.

This proves Claim 2.

Proof of Claim 3. Let GoodLearn be the event that for all i2 ∈ [N2] such that ski∗1 ,i2 is not queried by the adversary,

Pr
r←ρi∗1 ,i2

[
B [ρi∗1 ,1, . . . ,ρi∗1 ,i2−1](r) = 1

]≥ Pr
r←{0,1}κ

[
B [ρi∗1 ,1, . . . ,ρi∗1 ,i2−1](r) = 1

]−δ.

Note that if ski∗1 ,i2 is not queried, then ui∗1 ,i2 is independent of the tracing security game until Learn is invoked with it,

and therefore, Lemma 1 applies. By a union bound over Lemma 1, we have Pr[GoodLearn] = 1−2−Ω(κ) poly(N).

Following the definition of B (with t = i2 −1) in Step 3 of Trace and that of εi∗1 ,i2−1,b′ in Step 5, and applying the law

of total probability over b′,

Pr
r←{0,1}κ

[
B [ρi∗1 ,1, . . . ,ρi∗1 ,i2−1](r) = 1

]
= 1

2
Pr

[
D

(
TBPLBE.Enc(tpmpk, (i∗1 +0,m),R),R,kb

)⊕b ⊕0⊕1 = 1
]

+ 1

2
Pr

[
D

(
TBPLBE.Enc(tpmpk, (i∗1 +1,m),R),R,kb

)⊕b ⊕1⊕1 = 1
]

= 1

2
Pr

[
D

(
TBPLBE.Enc(tpmpk, (i∗1 ,m),R),R,kb

)= b
]

+ 1

2

(
1−Pr

[
D

(
TBPLBE.Enc(tpmpk, (i∗1 +1,m),R),R,kb

)= b
])

= 1

2
εi∗1 ,i2−1,0 +

1

2

(
1−εi∗1 ,i2−1,1

)
.

Similarly, considering t = i2 and εi∗1 ,i2,b′ ,

Pr
r←ρi∗1 ,i2

[
B [ρi∗1 ,1, . . . ,ρi∗1 ,i2−1](r) = 1

]= 1

2
εi∗1 ,i2,0 +

1

2

(
1−εi∗1 ,i2,1

)
.

13

Therefore,

Pr
r←ρi∗1 ,i2

[
B [ρi∗1 ,1, . . . ,ρi∗1 ,i2−1](r) = 1

]− Pr
r←{0,1}κ

[
B [ρi∗1 ,1, . . . ,ρi∗1 ,i2−1](r) = 1

]
= −1

2

(
(εi∗1 ,i2−1,0 −εi∗1 ,i2−1,1)− (εi∗1 ,i2,0 −εi∗1 ,i2,1)

)
.

GoodLearn thus implies that for all i2 ∈ [N2] such that ski∗1 ,i2 is not queried by the adversary,

(εi∗1 ,i2−1,0 −εi∗1 ,i2−1,1)− (εi∗1 ,i2,0 −εi∗1 ,i2,1) ≤ 2δ.

Together with GoodEst, for all i2 ∈ [N2] such that ski∗1 ,i2 is not queried by the adversary,

(ε̂i∗1 ,i2−1,0 − ε̂i∗1 ,i2−1,1)− (ε̂i∗1 ,i2,0 − ε̂i∗1 ,i2,1) ≤ 2δ+4ξ2 < 5ξ2,

i.e., except with probability 2−Ω(κ) poly(N), such i2 cannot be chosen as i∗2 by Trace. This proves Claim 3 and thus

Theorem 1. ⊓⊔

Proving Lemmas. To prove Lemma 2 and Lemma 3, we will use the following trick of advantage sign correction:

Lemma 4 ([7, Exercise 2.22(a)]). Suppose the tuple of a distinguisher D and two distributions D0,D1 follows some

joint distribution. Let

ε := Pr
x←D0

[D(x) = 1]− Pr
x←D1

[D(x) = 1]

be the signed advantage of D against D0,D1, which itself is a random variable (because D,D0,D1 are randomized).

Consider

b̃ ← {0,1}, x̃ ←Db̃ , c̃ ← D(x̃), D̃(x) := c̃ ⊕ b̃ ⊕D(x),

ε̃ := Pr
x←D0

[D̃(x) = 1]− Pr
x←D1

[D̃(x) = 1],

then E[ε̃] = E[ε2].

In our reduction algorithm, ε in Lemma 4 is the signed advantage of the decoder D against certain ciphertext

distributions (D0,D1) used byTrace, and we want to prove that ε is negligible with overwhelming probability. However,

if we directly use D as the distinguisher, depending on the sampling of D,D0,D1, the realization of ε could be positive

or negative, causing cancellation in E[ε], the advantage of the reduction algorithm. The ·̃ components estimate the sign

of ε with one trial, and D̃ is an attempted correction of D , which is the distinguisher used by the reduction algorithm

and immune from cancellation.

We are now ready to present our proofs.

Proof (Lemma 2). Let A be an efficient adversary against tracing security. We construct the following efficient B

against TB-PLBE security:

– B launches A, receives 1N from it, picks κ, N1, N2 as specified by the traitor tracing scheme, samples

m0 ←Zp , m1 ←Zp , ui1,i2 ← {0,1}κ for i1 ∈ [N1], i2 ∈ [N2],

sends 1N1 ,1N2 ,m0,m1 to TB-PLBE game, and receives back tpmpk. It sends pk= tpmpk to A. Here, m0,m1 sent to

TB-PLBE game are part of the challenge plaintexts.

– When, and only when, A queries for ski1,i2 , the adversary B queries TB-PLBE game and sends the key to A.

– WhenA outputs a decoder D , the adversaryB samples r1, . . . ,rN2 ← {0,1}κ, sends N2, N2 as the rest of the challenge

plaintexts and r1, . . . ,rN2 as the challenge attribute, and receives back tpct.

14

– B samples and computes

m̃0,m̃1 ←Zp , b̃ ←Zp , r̃1, . . . , r̃N2 ← {0,1}κ,

t̃pct←TBPLBE.Enc
(
tpmpk, (N1,m̃b̃), (r̃1, . . . , r̃N2)

)
,

c̃ ← D(t̃pct, r̃1, . . . , r̃N2 , [m̃1]T),

c ← D(tpct,r1, . . . ,rN2 , [m1]T).

It outputs c̃ ⊕ b̃ ⊕ c.

By Lemma 4, the advantage of B is E[ε2
N1

], which must be λ−ω(1) by TB-PLBE security. It follows that in the tracing

security game with A,

Pr

[
εN1 ≥

ε(λ)

2

]
≤ Pr

[
ε2

N1
≥ (ε(λ))2

4

]
= 4

(ε(λ))2 · (ε(λ))2

4
·Pr

[
ε2

N1
≥ (ε(λ))2

4

]
≤ (ε(λ))2

4
·E[ε2

N1
] =λ−ω(1). ⊓⊔

Proof (Lemma 3). The reduction is similar to that in the previous proof, with the following changes:

– The selective part of the challenge plaintexts are m,m.

– After A outputs D , the reduction computes 1/ε(λ), runs Trace to obtain i∗1 and ρi∗1 ,i2 ’s, samples u∗
i∗1 ,i2

← ρi∗1 ,i2 for

i2 ∈ [N2], and sends i∗1 −1, i∗1 as the challenge plaintexts and u∗
i∗1 ,1, . . . ,u∗

i∗1 ,N2
as the challenge attribute.

– The ·̃ components sampled by the reduction are

m̃ ←Zp instead of m̃0,m̃1,

ũ∗
i∗1 ,i2

← ρi∗1 ,i2 instead of r̃i2 ,

(i∗1 −1+ b̃,m̃) in t̃pct instead of (N1,m̃b̃).

We verify the constraints of TB-PLBE. The constraints of ski1,i2 for all i1 ̸= i∗1 and all i2 are satisfied as

fi1 (i∗1 −1,m) = fi1 (i∗1 ,m) =
m, if i1 > i∗1 ;

0, if i1 ≤ i∗1 −1.

The constraint of ski∗1 ,i2 for each i2,

0 = P
(
(u∗

i∗1 ,1, . . . ,u∗
i∗1 ,N2

), (i2,ui∗1 ,i2)
)=

1, if wt(u∗
i∗1 ,i2

⊕ui∗1 ,i2) ≥ 2κ/5;

0, otherwise;

holds with probability 1−2−Ω(κ) by Lemma 1 and a standard Chernoff bound.

The reduction checks the constraints (for both non- ·̃ and ·̃ values) and aborts if any of them is violated. By the

analysis above, the probability of aborting is 2−Ω(κ) poly(N) =λ−ω(1), which we denote by ε′. By Lemma 4, the reduction

algorithm has advantage E[(εi∗1 ,N2,0 −εi∗1 ,N2,1)2]−ε′, which is λ−ω(1) by TB-PLBE security. Let C be a polynomial upper

bound9 of 20N1
ε(λ) , then

Pr

[
εi∗1 ,N2,0 −εi∗1 ,N2,1 ≥

ε(λ)

20N1

]
≤ Pr

[
(εi∗1 ,N2,0 −εi∗1 ,N2,1)2 ≥ 1

C 2

]
=C 2 · 1

C 2 ·Pr

[
(εi∗1 ,N2,0 −εi∗1 ,N2,1)2 ≥ 1

C 2

]
≤C 2(E[(εi∗1 ,N2,0 −εi∗1 ,N2,1)2]−ε′+ε′)=λ−ω(1). ⊓⊔

9 N1 is a random variable due to the random coins of A, so it is impossible to write N1 outside probability or expectation. For

non-uniform security we may assume N1 is fixed for every λ, yet it is better to present the more general proof.

15

4 Building Attribute-Based Functional Encryption

This section builds TB-PLBE scheme promised in Section 3.1. At the core is an attribute-based functional encryption

(AB-FE) for predicate P :X×Y→ {0,1} and quadratic function class

F
quad
ℓ1,ℓ2

= {
f quad

f :Zℓ1
p ×Zℓ2

p →Zp , (z1,z2) 7→ (z1 ⊗z2)f⊤
∣∣ f ∈Zℓ1ℓ2

p
}

(1)

with Z = Zℓ1
p ×Zℓ2

p , called AB-QFE. We combine a slightly tweaked version of the FE scheme for quadratic functions

(QFE) in [28] and a compatible attribute-based key encapsulation mechanism (AB-KEM) for P . In the following

sections, we first introduce the two building blocks in Section 4.1 and Section 4.2; for generality, we will work with

general AB-KEM in Section 4.3 where we build our AB-QFE scheme and describe AB-KEM for a certain P (i.e., local

(read-once) monotone span program) in Section 4.4 needed for traitor tracing in Section 3. We show how to instantiate

our AB-QFE to get TB-PLBE in Section 4.5.

4.1 Building Block: Functional Encryption for Quadratic Functions

A functional encryption scheme for function class F= { f :Z→ {0,1}∗} consists of four p.p.t. algorithms:

– Setup(1λ,F,Z) → (mpk,msk): The set-up algorithm takes the security parameter 1λ and the domains F,Z as input,

and outputs a master public/secret key pair (mpk,msk).

– KeyGen(mpk,msk, f) → sk: The key generation algorithm takes mpk, msk, and a function f ∈F as input, and

outputs a secret key sk.

– Enc(mpk, z) → ct: The encryption algorithm takes mpk and function input z ∈Z as input, and outputs a

ciphertext ct.

– Dec(mpk,sk, f ,ct) → d : The decryption algorithm takes mpk,sk, f ,ct as input and outputs d ∈ {0,1}∗.

Correctness. For all λ ∈N, F, Z, f ∈F, z ∈Z, we require

Pr


(mpk,msk) ← Setup(1λ,F,Z)

sk←KeyGen(mpk,msk, f)

ct←Enc(mpk, z)

: Dec(mpk,sk, f ,ct) = f (z)

= 1.

Semi-adaptive Simulation Security. For all p.p.t. stateful A, there exists p.p.t. stateful (�Setup, ãKeyGen, Ẽnc) such that

(F,Z) ←A(1λ)

(mpk,msk) ← Setup(1λ,F,Z)

z ←A(mpk)

ct←Enc(mpk, z)

output AKeyGen(mpk,msk,·)(ct)


≈c



(F,Z) ←A(1λ)�mpk← �Setup(1λ,F,Z)

z ←A(�mpk)

c̃t← Ẽnc()

output A
ãKeyGen(·,·)(c̃t)


,

where for each query fq ∈F made by A, we supply fq (z) to ãKeyGen.

QFE. A functional encryption scheme for quadratic functions (QFE) is an FE computing

(z1,z2,u) 7→ (z1 ⊗z2)f⊤+uv⊤

where z1 ∈Zℓ1
p , z2 ∈Zℓ2

p , u ∈Zℓ3
p are the function input, and f ∈Zℓ1ℓ2

p , v ∈Zℓ3
p are specified by the function. In this work,

we consider QFE implemented using pairing. We let KeyGen,Dec take (f, [v]2) instead of (f,v) as the description of the

function, let Enc take (z1,z2, [u]1) instead of (z1,z2,u), and only require that Dec output [(z1 ⊗z2)f⊤+uv⊤]T. We also let

the simulator take the function output encoded in G2 when simulating a key, which will be convenient for the security

proof of AB-FE for quadratic functions.

16

IPFE. Our construction of QFE is similar to that in [28] and uses an inner-product function encryption (IPFE) scheme

which is an FE for u 7→ uv⊤, where u ∈Zℓ4
p is the function input and v ∈Zℓ4

p is specified by the function. Again, in a

group-based scheme, KeyGen,Dec takes [v]2, Enc takes [u]1, Dec outputs [uv⊤]T, and ãKeyGen takes [uv⊤]2. The IPFE

in [2] is first proved to be semi-adaptively simulation-secure in [27]. Its parameter sizes are (ignoring constants)

|mpk| = ℓ4|G1|, |ct| = ℓ4|G1|, |sk| = |G2|.

Construction. Suppose k2-Lin holds in G2 and bilateral k12-Lin holds. Let IPFE be a semi-adaptively simulation-

secure IPFE. Our QFE is as follows:

– Setup(1λ,1ℓ1 ,1ℓ2 ,1ℓ3) samples A1 ←Z
k12×ℓ1
p , A2 ←Z

k2×ℓ2
p , sets the IPFE dimension to ℓ4 = k2ℓ1 +k12ℓ2 +ℓ3, runs

(impk, imsk) ← IPFE.Setup(1λ,1ℓ4), and outputs

mpk= (
[A1]1, [A1]2, [A2]2, impk

)
, msk= imsk.

– KeyGen(mpk,msk, f, [v]2) outputs

sk= isk← IPFE.KeyGen
(
imsk,

[
(A1 ⊗ Iℓ2)f⊤, (Iℓ1 ⊗A2)f⊤, v

]
2

)
.

– Enc(mpk,z1,z2, [u]1) samples s1 ←Z
k12
p , s2 ←Z

k2
p , run

ict← IPFE.Enc(impk, [−s1 ⊗z2, −(s1A1 +z1)⊗s2, u]1)

and outputs

ct= (
[s1A1 +z1]1, [s2A2 +z2]2, ict

)
,

– Dec(mpk,sk, f, [v]2,ct) outputs[
(s1A1 +z1︸ ︷︷ ︸

in ct

)⊗ (s2A2 +z2︸ ︷︷ ︸
in ct

) · f⊤
]

T · IPFE.Dec(impk, isk,
[
(A1 ⊗ Iℓ2)f⊤, (Iℓ1 ⊗A2)f⊤, v

]
2, ict)

The correctness is analogous to [28], we defer the details to Appendix B. Its parameter sizes are (ignoring constants)

|mpk| = ℓ1|G1|+ (ℓ1 +ℓ2)|G2|+ |impk| = (ℓ1 +ℓ2 +ℓ3)|G1|+ (ℓ1 +ℓ2)|G2|,
|ct| = ℓ1|G1|+ℓ2|G2|+ |ict| = (ℓ1 +ℓ2 +ℓ3)|G1|+ℓ2|G2|,
|sk| = |isk| = |G2|.

Security. We have the following theorem. The proof is analogous to that for QFE in [28], we defer the details to

Appendix B.

Theorem 2. Assume IPFE is semi-adaptively simulation-secure, k2-Lin holds in G2, and bilateral k12-Lin holds, our

QFE scheme achieves semi-adaptive simulation security.

4.2 Building Block: Attribute-Based Key Encapsulation Mechanism

We define attribute-based key encapsulation mechanism (AB-KEM) with syntactical properties compatible for

constructing AB-FE for quadratic functions. Fix the source groups G1,G2 and the target group GT, an AB-KEM for

predicate P :X×Y→ {0,1} consists of four p.p.t. algorithms:

– Setup(1λ,X,Y) → (mpk, [A]2): The set-up algorithm takes the security parameter 1λ and the domains X,Y as input,

and outputs a master public key mpk and a public matrix [A]2 with A ∈Zℓ3×ℓ5
p .

– KeyGen(mpk,k, y) → sk: The key generation algorithm takes mpk, a vector k ∈Zℓ5
p , and y ∈Y as input, and outputs

a secret key sk.
– Enc(mpk,s, x) → ct: The encapsulation algorithm takes a vector s ∈Zℓ3

p and x ∈X as input, and outputs a

ciphertext ct.
– Dec(mpk,sk, y,ct, x) → d : The decapsulation algorithm takesmpk,sk, y,ct, x as input, and outputs an encapsulated

key d .

17

Correctness. For all λ ∈N, X, Y, k ∈Zℓ5
p , s ∈Zℓ3

p , x ∈X, y ∈Y such that P (x, y) = 1, we require

Pr


(mpk, [A]2) ← Setup(1λ,X,Y)

sk←KeyGen(mpk,k, y)

ct←Enc(mpk,s, x)

: Dec(mpk,sk, y,ct, x) = [sAk⊤]T

= 1.

Adaptive Indistinguishability. For all p.p.t. stateful A, we require

Pr



(X,Y) ←A(1λ)

(mpk, [A]2) ← Setup(1λ,X,Y)

s ←Z
ℓ3
p

x ←ANewKeykem(·)([sA]2)

ct←Enc(mpk,s, x)

: ANewKeykem(·)(ct) = 1


−Pr



(X,Y) ←A(1λ)

(mpk, [A]2) ← Setup(1λ,X,Y)

s ←Z
ℓ3
p

x ←ANewKey$(·)([sA]2)

ct←Enc(mpk,s, x)

: ANewKey$(·)(ct) = 1


to be negligible under the constraint that P (x, yq) = 0 for all query yq made by A, where NewKeykem(yq) and

NewKey$(yq) run

kq ←Z
ℓ5
p , skq ←KeyGen(mpk,kq , yq),

kemq ← [sAk⊤
q]2, in NewKeykem;

kemq ←G2, in NewKey$;

and return (skq , [Ak⊤
q]2,kemq) to A. The security notion requires that the encapsulated key be pseudorandom even

when encoded in G2, which is stronger than the usual requirement for KEM. This strengthening is for security

reduction from AB-FE.

Remark 2. Our formalization basically captures the setting with one key per instance for polynomially many instances

and requires that master secret key have special structure. In more detail, mpk here is the public parameter shared

among all instances and k is the master secret key. We will show a concrete construction for local (read-once)

monotone span programs in Section 4.4. The construction can be generalized to support a broader class of predicates

(see Remark 3).

4.3 AB-FE for Quadratic Functions

We present our AB-FE for quadratic functions (AB-QFE) as defined in (1). In Setup, the functionality F
quad
ℓ1,ℓ2

is

represented by (1ℓ1 ,1ℓ2); in KeyGen and Dec, the function f quad
f is represented by f where f ∈ Zℓ1ℓ2

p . In this section,

we consider general P , as defined in (1) and Section 4.2, and provide concrete instance for our use.

Construction. Let QFE be the QFE scheme and ABE an AB-KEM for predicate P . Our AB-QFE for P works as follows:

– Setup(1λ,1ℓ1 ,1ℓ2 ,X,Y) runs

(qmpk,qmsk) ←QFE.Setup(1λ,1ℓ1 ,1ℓ2 ,1ℓ3), (abmpk, [A]2) ←ABE.Setup(1λ,X,Y),

and outputs

mpk= (abmpk,qmpk) and msk= ([A]2,qmsk).

– KeyGen(mpk,msk, f, y) samples k ←Z
ℓ5
p , runs

absk←ABE.KeyGen(abmpk,k, y), qsk←QFE.KeyGen(qmsk, f, [Ak⊤]2),

and outputs

sk= (absk,qsk, [Ak⊤]2).

18

– Enc(mpk,z1,z2, x) samples s ←Z
ℓ3
p , runs

abct←ABE.Enc(abmpk,s, x), qct←QFE.Enc(qmpk,z1,z2, [s]1),

and outputs

ct= (abct,qct).

– Dec(mpk,sk, f, y,ct, x) checks whether P (x, y) = 0 and aborts if so. Otherwise, P (x, y) = 1, it runs

dABE ←ABE.Dec(abmpk,absk, y,abct, x),dQFE ←QFE.Dec(qmpk,qsk, f, [Ak⊤]2,qct),

and outputs dQFEd−1
ABE

.

Correctness. When P (x, y) = 1, the correctness follows from those of ABE and QFE which imply that

dQFE = [(z1 ⊗z2)f⊤+sAk⊤]T, dABE = [sAk⊤]T

Efficiency. Our scheme inherits the efficiency from the building blocks:

|mpk| = |abmpk|+ |qmpk|, |ct| = |abct|+ |qct|, |sk| = |absk|+ |qsk|+ℓ3|G2|.

Here, ℓ3 depends on the assumption used by AB-KEM.

Security. We have the following theorem.

Theorem 3. Assuming QFE is semi-adaptively simulation-secure as defined in Section 4.1 and ABE achieves security

as defined in Section 4.2, our AB-QFE scheme achieves security as defined in Section 2.3.

Let (z0,1,z0,2,z1,1,z1,2) be the semi-adaptive challenge message, x be the adaptive challenge attribute and (fq , yq) be

the q-th query. We prove Theorem 3 via the following game sequence where we write ηq,b = (zb,1 ⊗zb,2)f⊤q for b ∈ {0,1}.

– G0 is the real game, where the keys and the challenge ciphertext are

mpk= (abmpk,qmpk),

ct= (
ABE.Enc(abmpk,s, x), QFE.Enc(qmpk,zb,1,zb,2, [s]1)︸ ︷︷ ︸

qct

)
,

skq = (
ABE.KeyGen(abmpk,kq , yq), QFE.KeyGen(qmpk, fq , [Ak⊤

q]2)︸ ︷︷ ︸
qskq

, [Ak⊤
q]2

)
.

– G1 is identical to G0, except we use the simulator for QFE to generate QFE components:

mpk= (abmpk, �qmpk), qct= QFE.Ẽnc() ,

qskq = QFE.ãKeyGen (fq , [Ak⊤
q]2, [ηq,b +sAk⊤

q]2).

We have G0 ≈c G1 by semi-adaptive simulation security of QFE.

– G2 is identical to G1, except we change sAk⊤
q in qskq to uniformly random µq ←Zp if ηq,0 ̸= ηq,1:

qskq =
QFE.ãKeyGen(fq , [Ak⊤

q]2, [ηq,b +sAk⊤
q]2), if ηq,0 = ηq,1;

QFE.ãKeyGen(fq , [Ak⊤
q]2, [ηq,b + µq]2), if ηq,0 ̸= ηq,1.

We have G1 ≈c G2 by adaptive security of AB-KEM. Roughly speaking, the reduction algorithm receives abmpk,

[A]2, [sA]2, and abct from the AB-KEM game. To answer an AB-QFE key query from the adversary, if ηq,0 = ηq,1,

the reduction algorithm samples kq ←Z
ℓ5
p and computes skq using abmpk, [A]2, [sA]2,kq , fq . Otherwise, it queries

the AB-KEM game to obtain abskq , [Ak⊤
q]2,kemq , where kemq is either [sAk⊤

q]2 or random, and computes skq with

[ηq,b]2 ·kemq as the third argument to QFE.ãKeyGen.

19

The advantage is 0 in G2. To see this, note that b only appears in G2 as(
{ηq,b}ηq,0=ηq,1 , {ηq,b +µq }ηq,0 ̸=ηq,1

)≡ (
{ηq,0}ηq,0=ηq,1 , {µ̃q }ηq,0 ̸=ηq,1

)
,

thus completely hidden.

4.4 AB-KEM for Local (Read-Once) Monotone Span Programs

We describe AB-KEM for local (read-once) monotone span program [10,11]; we redo the scheme and proof in order to

fit our syntax and security notion as well as pursue optimal size.

Preliminaries. An m-local (read-once) monotone span program (roMSP) with input length n is specified by (M,ρ),

where M ∈Zm×t
p and ρ : [m] → [n] is injective.10 The predicate for roMSPs of input length n is

P roMSP
n,m

(
x, (M,ρ)

)=
1, if e1 ∈ span{m j |xρ(j) = 1};

0, otherwise;

where x ∈ {0,1}n and m j is the j th row of M. We say x is accepted by (M,ρ) for P
(
x, (M,ρ)

)= 1. It is also worth noting

that by the tight equivalence between monotone span programs and linear secret sharing schemes (LSSS) [21], m-

local roMSPs are equivalent to LSSS where at most m parties have a share and the size of each party’s share is at most

one.

Construction. The AB-KEM for local roMSPs, denoted by ABQFEMSP, is as follows:

– Setup(1λ,1n) samples

A ←Z
k12×(k12+1)
p , B ←Z

k2×(k2+1)
p , Wi ←Z

(k12+1)×(k2+1)
p for i ∈ [n],

and outputs

mpk= (
[A]1,

{
[AWi]1

}
i∈[n], [B]2,

{
[BW⊤

i]2
}

i∈[n]

)
and [A]2.

– KeyGen
(
mpk,k, (M,ρ)

)
samples r ←Z

k2
p and T′ ←Z

(t−1)×(k12+1)
p , sets T =

(
k

T′

)
, and outputs

sk=
(
[r ·B]2,

{[
m j T+ r ·BW⊤

ρ(j)

]
2

}
j∈[m]

)
.

– Enc(mpk,s, x) outputs

ct= (
[s ·A]1, {[s ·AWi]1}xi=1

)
.

– Dec(mpk,sk, (M,ρ),ct, x) checks whether P roMSP
n,m

(
x, (M,ρ)

) = 0 and aborts if so. Otherwise, it finds β1, . . . ,βn ∈Zp

such that
∑

xρ(j)=1βρ(j)m j = e1, and outputs

∏
xρ(j)=1

[
βρ(j) · (

sk︷ ︸︸ ︷
m j T+ rBW⊤

ρ(j)) · (

ct︷︸︸︷
sA)⊤

]
T[

βρ(j) · rB︸︷︷︸
sk

·(sAWρ(j)︸ ︷︷ ︸
ct

)⊤
]

T

.

The correctness is straight-forward (cf. [10], more details can be found in Appendix C). The parameter sizes of the

scheme are (ignoring constants)

|mpk| = n|G1|+n|G2|, ℓ3 = ℓ5 = 1, |ct| =wt(x)|G1|, |sk| = m|G2|,
where n,m,wt(x) are the length of x, the locality of the span program (number of rows of M), and the Hamming weight

of x.
10 It is important that we do not assume ρ is the identity map by enlarging M, so that we capture key size dependency in m, the

locality. The scheme will be instantiated for κ-local roMSPs (κ≪ n), which is crucial for the efficiency of our application.

20

Security. We have the following theorem. The proof basically follows that in [10] and we defer the details to

Appendix C.

Theorem 4. Assume k2-Lin holds in G2 and bilateral k12-Lin holds, our AB-KEM for local roMSPs achieves security

defined in Section 4.2.

Remark 3. Our construction is basically a concrete instantiation of [10] and the proof is adapted from it. The

adaptation can be generalized to support predicate encoding: only step G0
4 ≡ G1

4 relies on the so-called α-privacy

of predicate encoding, other steps, which are irrelevant to the predicate, remain unchanged. Thanks to versatile

instantiations of predicate encoding (cf. Appendix A in [10]), this allows us to cover AB-KEM (and thus AB-FE)

for arithmetic branching program. Furthermore, many existing dual-system ABE schemes in prime-order pairing

groups [20,22,16,23] can be fit into this definition with slight tweaks.

4.5 Threshold Broadcast, Private Linear Broadcast Encryption

Putting Section 4.3 and Section 4.4, we readily have an AB-FE for

F
quad
ℓ1,ℓ2

and P roMSP
n,m (2)

with

|mpk| =O(ℓ1 +ℓ2 +n), |ct| =O(ℓ1 +ℓ2 +n), |sk| =O(m).

We can obtain a TB-PLBE scheme (for message space Zp) as an AB-FE for

F
comp
N1

and P tbe
N2,κ (3)

as defined in Section 3.1 by applying the following efficiently computable mappings that reduce (3) to (2) so that

ℓ1 = ℓ2 = N 1/2
1 and n = 2κN2, m = κ.

This gives our TB-PLBE with shorter parameters:

|mpk| =O(N 1/2
1 +κN2), |ct| =O(N 1/2

1 +κN2), |sk| =O(κ).

Below, we first describe the mappings in general. In Setting Parameters for Efficiency, we choose the optimal

parameters achieving the desired efficiency.

Function Part. For any n1,n2 ∈N satisfying n1n2 = N1, we can perform F
comp
N1

7→F
quad
n1,n2

. For this, we follow [3,

Section 6.1] and define

ηz : [0, N1]×Zp →Z
n1
p ×Zn2

p , (j1,m) 7→
(me j11 ,e j12), if j1 < N1;

(0,0), if j1 = N1;

η f : [N1] →Z
n1n2
p , i1 7→

∑
0≤ j1<i1

e j11 ⊗e j12 ,

where j11 ∈ [n1], j12 ∈ [n2] satisfy (j11 −1)n2 + (j12 −1) = j1 for j1 ∈ [0, N1 −1]. Note that, for notation convenience, j1

is the input of ηz and also serves as a general index in the description of η f . It is straightforward to verify that

f comp
i1

(j1,m) =F
quad
η f (i1)(ηz (j1,m)).

This follows from the fact that

〈e j11 ⊗e j12 ,e j ′11
⊗e j ′12

〉 =
1 if j1 = j ′1;

0 if j1 ̸= j ′1;

where j ′11, j ′12 are defined analogous to j11, j12.

21

Predicate Part. We will perform P tbe
N2,κ 7→ P roMSP

2κN2,κ. For this, we define

ηx : ({0,1}κ)N2 → {0,1}2κN2 , (r1, . . . ,rN2) 7→ (r1, r̄1, . . . ,rN2 , r̄N2),

ηy : [N2]× {0,1}κ→ {κ-local roMSP with input length 2κN2},

(i2,u) 7→ (M,ρ) with M =


m1

...

mκ

 ∈Zκ×2κ/5
p

where mθ = (1,θ,θ2, · · · ,θ2κ/5−1),

ρ(θ) = 2(i2 −1)κ+uθκ+θ, ∀θ ∈ [κ].

The construction of ηy is simply Shamir’s secret sharing [25]. We show that

P tbe
N2,κ((r1, . . . ,rN2), (i2,u)) = P roMSP

2κN2,κ(ηx (r1, . . . ,rN2),ηy (i2,u))

by proving that wt(ri2 ⊕u) ≥ 2κ/5 if and only if ηx (r1, . . . ,rN2) is accepted by ηy (i2,u). To see this, first note that

(ηx (r1, . . . ,rN2))ρ(θ) = (

2(i2−1)κ bits︷ ︸︸ ︷
r1, r̄1, . . . ,ri2−1, r̄i2−1,ri2 , r̄i2 , . . .)2(i2−1)κ+uθκ+θ

= (ri2 , r̄i2)uθκ+θ =
(ri2)θ , if uθ = 0;

(r̄i2)θ , if uθ = 1;

= (ri2)θ⊕uθ .

By the Vandermonde determinant, any 2κ/5 vectors among e1 and mθ’s are linearly independent, and therefore,

ηy (i2,u) accepts ηx (r1, . . . ,rN2) ⇐⇒ |{θ | (ηx (r1, . . . ,rN2))ρ(θ) = 1}| ≥ 2κ/5

⇐⇒ |{θ | (ri2)θ⊕uθ = 1}| ≥ 2κ/5

⇐⇒ wt(ri2 ⊕u) ≥ 2κ/5.

Transformation. Given those mappings and an AB-FE ABQFEMSP for Fquad
n1,n2

and P roMSP
2κN2,κ, our TBPLBE for Fcomp

N1

and P tbe
N2,κ works as follows for n1n2 = N1:

– Setup(1λ,1N1 ,1N2 ,1κ) is

ABQFEMSP.Setup(1λ,1n1 ,1n2 ,12κN2);

– KeyGen(tpmsk, i1, i2,ui1,i2) is

ABQFEMSP.KeyGen(tpmsk,η f (i1),ηy (i2,ui1,i2));

– Enc(tpmpk, j1,m,r1, . . . ,rN2) is

ABQFEMSP.Enc(tpmpk,ηz (j1,m),ηx (r1, . . . ,rN2));

– Dec=ABQFEMSP.Dec.

Setting Parameters for Efficiency. By definition, wt(ηx (r1, . . . ,rN2)) = κN2 and the roMSP ηy (i2,u) is always κ-local.

We have TB-PLBE with parameter sizes (ignoring constants)

|tpmpk| = (n1 +n2 +κN2)|G1|+ (n1 +n2 +κN2)|G2|, |tpct| = (n1 +n2 +κN2)|G1|+n2|G2|, |tpsk| = κ|G2|,
where n1n2 = N1 and N1N2 = N . By setting

n1 = n2 = N 1/3κ1/3 and N2 = N 1/3κ−2/3,

we obtain

|tpmpk| = N 1/3κ1/3|G1|+N 1/3κ1/3|G2|, |tpct| = N 1/3κ1/3|G1|+N 1/3κ1/3|G2|, |tpsk| = κ|G2|.

22

Security. We will need our TB-PLBE to be secure under adaptively chosen j1,r1, . . . ,rN2 and semi-adaptively chosen m.

The scheme we obtain is already adaptive in r1, . . . ,rN2 and semi-adaptive in j1,m. Since j1 ∈ [0, N1] is within a

polynomial range, by a standard guessing argument, the scheme is also adaptive in j1, at a loss of 1
N1+1 .

References

1. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control. In: Moriai, S.,

Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 467–497. Springer, Heidelberg (Dec 2020). https://doi.org/
10.1007/978-3-030-64840-4_16

2. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In:

Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (Aug 2016). https:
//doi.org/10.1007/978-3-662-53015-3_12

3. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with applications to

predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer, Heidelberg

(Aug 2017). https://doi.org/10.1007/978-3-319-63688-7_3
4. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In: Safavi-Naini, R. (ed.) ICITS 08. LNCS, vol. 5155,

pp. 171–182. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-85093-9_17
5. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008. pp.

501–510. ACM Press (Oct 2008). https://doi.org/10.1145/1455770.1455834
6. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay,

S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (May / Jun 2006). https://doi.org/10.1007/
11761679_34

7. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography (2015), version 0.2, https://toc.cryptobook.us/
8. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: Juels, A., Wright, R.N., De Capitani di

Vimercati, S. (eds.) ACM CCS 2006. pp. 211–220. ACM Press (Oct / Nov 2006). https://doi.org/10.1145/1180405.1180432
9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In:

Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (Aug 2014). https:
//doi.org/10.1007/978-3-662-44371-2_27

10. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M.

(eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/
978-3-662-46803-6_20

11. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V.

(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 503–534. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.
1007/978-3-319-78381-9_19

12. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing from LWE made simple and attribute-based.

In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 341–369. Springer, Heidelberg (Nov 2018).

https://doi.org/10.1007/978-3-030-03810-6_13
13. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y. (ed.) CRYPTO’94. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg

(Aug 1994). https://doi.org/10.1007/3-540-48658-5_25
14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R.,

Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013). https://doi.org/10.
1007/978-3-642-40084-1_8

15. Etesami, O., Mahloujifar, S., Mahmoody, M.: Computational concentration of measure: Optimal bounds, reductions, and more.

In: Chawla, S. (ed.) 31st SODA. pp. 345–363. ACM-SIAM (Jan 2020). https://doi.org/10.1137/1.9781611975994.21
16. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,

Part III. LNCS, vol. 12107, pp. 278–308. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45727-3_
10

17. Goyal, R., Koppula, V., Russell, A., Waters, B.: Risky traitor tracing and new differential privacy negative results. In: Shacham, H.,

Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 467–497. Springer, Heidelberg (Aug 2018). https://doi.org/
10.1007/978-3-319-96884-1_16

18. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: Diakonikolas, I., Kempe, D.,

Henzinger, M. (eds.) 50th ACM STOC. pp. 660–670. ACM Press (Jun 2018). https://doi.org/10.1145/3188745.3188844

23

https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-540-85093-9_17
https://doi.org/10.1007/978-3-540-85093-9_17
https://doi.org/10.1145/1455770.1455834
https://doi.org/10.1145/1455770.1455834
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://toc.cryptobook.us/
https://doi.org/10.1145/1180405.1180432
https://doi.org/10.1145/1180405.1180432
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1137/1.9781611975994.21
https://doi.org/10.1137/1.9781611975994.21
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-319-96884-1_16
https://doi.org/10.1007/978-3-319-96884-1_16
https://doi.org/10.1007/978-3-319-96884-1_16
https://doi.org/10.1007/978-3-319-96884-1_16
https://doi.org/10.1145/3188745.3188844
https://doi.org/10.1145/3188745.3188844

19. Goyal, R., Quach, W., Waters, B., Wichs, D.: Broadcast and trace with Nε ciphertext size from standard assumptions. In:

Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 826–855. Springer, Heidelberg (Aug 2019).

https://doi.org/10.1007/978-3-030-26954-8_27
20. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias,

E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (Jul 2014). https://doi.org/10.1007/
978-3-662-43948-7_54

21. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in Complexity Theory. pp. 102–111 (1993)

22. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,

Part I. LNCS, vol. 11476, pp. 3–33. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-17653-2_1
23. Lin, H., Luo, J.: Succinct and adaptively secure ABE for ABP from k-lin. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III.

LNCS, vol. 12493, pp. 437–466. Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-64840-4_15
24. Mahloujifar, S., Mahmoody, M.: Can adversarially robust learning leverage computational hardness? CoRR abs/1810.01407

(2018), http://arxiv.org/abs/1810.01407
25. Shamir, A.: How to share a secret. Communications of the Association for Computing Machinery 22(11), 612–613 (Nov 1979)

26. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi,

S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (Aug 2009). https://doi.org/10.1007/
978-3-642-03356-8_36

27. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,

vol. 10677, pp. 206–233. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70500-2_8
28. Wee, H.: Functional encryption for quadratic functions from k-lin, revisited. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I.

LNCS, vol. 12550, pp. 210–228. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/978-3-030-64375-1_8
29. Zhandry, M.: New techniques for traitor tracing: Size N 1/3 and more from pairings. In: Micciancio, D., Ristenpart, T.

(eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 652–682. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/
978-3-030-56784-2_22

24

https://doi.org/10.1007/978-3-030-26954-8_27
https://doi.org/10.1007/978-3-030-26954-8_27
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-030-64840-4_15
https://doi.org/10.1007/978-3-030-64840-4_15
http://arxiv.org/abs/1810.01407
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-56784-2_22
https://doi.org/10.1007/978-3-030-56784-2_22
https://doi.org/10.1007/978-3-030-56784-2_22
https://doi.org/10.1007/978-3-030-56784-2_22

Appendix

A Proof of Lemma 1

LearnB (u,11/δ) works as follows:

1. Let ρ0 be the empty string and d = δ
2κ .

2. For i = 1, . . . ,κ:

(a) Compute an estimate δ̂i of

δi = Pr
r←ρi−1ui

[B(r) = 1]− Pr
r←ρi−1⋆

[B(r) = 1]

within additive error d . More precisely, for each of the two probabilities, perform ⌈2(κ log2+ log4κ)/d 2⌉
independent trials and set δ̂i to be the empirical frequency. Let Yi (resp. Ŷi) be the random variable11

indicating whether δi ≥ 0 (resp. δ̂i ≥−d).

(b) Let ρi ←
ρi−1ui , if Ŷi = 1;

ρi−1⋆, otherwise.

3. Output ρ←
ρκ, if the number of ⋆’s in ρκ is at most 2κ/5;

u, otherwise.

Analysis. By definition, each symbol in ρ is either the corresponding symbol in u or ⋆, and the number of ⋆’s in ρ is

at most 2κ/5.

To prove

Pr

[
u ← {0,1}κ

ρ← LearnB (u,11/δ)
: Pr

r←ρ
[B(r) = 1] ≥ Pr

r←{0,1}κ
[B(r) = 1]−δ

]
= 1−2−Ω(κ),

we will show

Pr[ρ = ρκ] = 1−2−Ω(κ), and

Pr

[
Pr

r←ρκ
[B(r) = 1] ≥ Pr

r←{0,1}κ
[B(r) = 1]−δ

]
= 1−2−Ω(κ),

where the probability is taken over u ← {0,1}κ and the randomness of Learn. Let GoodEst be the event that |δi − δ̂i | ≤ d

for all i ∈ [κ]. By the Chernoff bound, the union bound, and how the number of trials is set, Pr[GoodEst] ≥ 1−2−κ.

By definition, we have Ŷi δ̂i ≥−d . Also, GoodEst implies δi − δ̂i ≥−d , from which it follows that

Pr
r←ρκ

[B(r) = 1]− Pr
r←{0,1}κ

[B(r) = 1] =
κ∑

i=1

(
Pr

r←ρi
[B(r) = 1]− Pr

r←ρi−1
[B(r) = 1]

)
=

κ∑
i=1

Ŷiδi =
κ∑

i=1
Ŷi δ̂i +

κ∑
i=1

Ŷi (δi − δ̂i) ≥ κ(−d)+κ(−d) =−2dκ=−δ.

Note that GoodEst∧ (Yi = 1) implies Ŷi = 1, and we have

Pr[ρ = ρκ] ≥ Pr

[
κ∑

i=1
Ŷi ≥ 2κ/5

]
≥ Pr

[
GoodEst∧

(
κ∑

i=1
Yi ≥ 2κ/5

)]
≥ 1−Pr[¬GoodEst]−Pr

[
κ∑

i=1
Yi < 2κ/5

]
.

Since Pr[¬GoodEst] ≤ 2−κ, it remains to show

Pr

[
κ∑

i=1
Yi < 2κ/5

]
= 2−Ω(κ).

11 Yi is only used for analysis and need not be efficiently computable.

25

Let Xi = Y1 +·· ·+Yi − i
2 . For all ρi−1 ∈ {0,1,⋆}i−1, we have

Pr
ui←{0,1}

[
Pr

r←ρi−1ui
[B(r) = 1]− Pr

r←ρi−1⋆
[B(r) = 1] ≥ 0

]
≥ 1

2
,

from which it follows that

E[Xi |Xi−1, · · · , X1, X0] = E
[

Xi−1 +Yi − 1

2

∣∣∣∣ Xi−1, · · · , X1, X0

]
= Xi−1 +E

[
Yi − 1

2

∣∣∣∣ Xi−1, · · · , X1, X0

]
≥ Xi−1,

i.e., X0, X1, . . . , Xκ is a submartingale. Together with |Xi −Xi−1| =
∣∣Yi − 1

2

∣∣≤ 1
2 , we have by Azuma’s inequality

Pr

[
κ∑

i=1
Yi < 2κ/5

]
= Pr[Xκ <−κ/10] ≤ exp

(−(−κ/10)2

2 · (1/2)2 ·κ
)
= 2−Ω(κ).

This completes the proof.

B More Details of QFE in Section 4.1

Correctness. Correctness follows from:

IPFE.Dec(impk, isk,
[
(A1 ⊗ Iℓ2)f⊤, (Iℓ1 ⊗A2)f⊤, v

]
2, ict)

= [−(s1 ⊗z2)(A1 ⊗ Iℓ2)f⊤− ((s1A1 +z1)⊗s2)(Iℓ1 ⊗A2)f⊤+uv⊤]
T

= [
(z1 ⊗z2)f⊤+uv⊤− (s1A1 +z1)⊗ (s2A2 +z2) · f⊤

]
T

Simulator. Our (stateful) simulator follows that in [28] and additionally accommodates v,u:

– �Setup(1λ,1ℓ1 ,1ℓ2 ,1ℓ3) samples A1 ←Z
k12×(k12+1)
p , A2 ←Z

k2×(k2+1)
p , sets the IPFE dimension toℓ4 = k2ℓ1 +k12ℓ2 +ℓ3,

runs �impk← IPFE.�Setup(1λ,1ℓ4), and outputs

�mpk= (
[A1]1, [A1]2, [A2]2, �impk

)
.

– Ẽnc() samples z̃1 ←Z
ℓ1
p , z̃2 ←Z

ℓ2
p , runs ĩct← IPFE.Ẽnc(), and outputs

c̃t= (
[z̃1]1, [z̃2]2, ĩct

)
.

– ãKeyGen(f, [v]2, [d]2) outputs s̃k= ĩsk← IPFE.ãKeyGen([
(A1 ⊗ Iℓ2)f⊤, (Iℓ1 ⊗A2)f⊤, v

]
2, [d − (z̃1 ⊗ z̃2)f⊤q]2

)
.

Security. We have the following theorem.

Theorem 5. Assume IPFE is semi-adaptively simulation-secure, k2-Lin holds in G2, and bilateral k12-Lin holds, our

QFE scheme achieves semi-adaptive simulation security.

Let (z1,z2) be the semi-adaptive challenge message and fq be the q-th query. We prove Theorem 5 via the following

game sequence:

– G0 uses the real scheme, and the adversary receives

mpk= (
[A1]1, [A1]2, [A2]2, impk

)
,

ct= (
[s1A1 +z1]1, [s2A2 +z2]2, ict

)
, ict← IPFE.Enc

(
impk, [· · ·]1

)
,

skq = iskq ← IPFE.KeyGen
(
imsk,

[
(A1 ⊗ Iℓ2)f⊤q , (Iℓ1 ⊗A2)f⊤q , vq

]
2

)
.

26

– G1 is identical to G0 except we switch IPFE to simulation:

mpk= (
[A1]1, [A1]2, [A2]2, �impk

)
,

ct= (
[s1A1 +z1]1, [s2A2 +z2]2, ĩct

)
, ĩct← IPFE.Ẽnc() ,

skq = ĩskq ← IPFE.ãKeyGen ([
(A1 ⊗ Iℓ2)f⊤q , (Iℓ1 ⊗A2)f⊤q , vq

]
2,

[
(z1 ⊗z2)f⊤q +uv⊤

q − (
(s1A1 +z1)⊗ (s2A2 +z2)

)
f⊤q

]
2

)
.

We have G0 ≈c G1 by the semi-adaptive simulation security of IPFE.

– G2 is identical to G1 except we replace s1A1 +z1 by uniformly random z̃1:

mpk= (
[A1]1, [A1]2, [A2]2, �impk

)
,

ct= (
[z̃1]1, [s2A2 +z2]2, ĩct

)
, ĩct← IPFE.Ẽnc(),

skq = ĩskq ← IPFE.ãKeyGen([
(A1 ⊗ Iℓ2)f⊤q , (Iℓ1 ⊗A2)f⊤q , vq

]
2,

[
(z1 ⊗z2)f⊤q +uv⊤

q − (
z̃1 ⊗ (s2A2 +z2)

)
f⊤q

]
2

)
.

We have G2 ≈c G3 by the bilateral MDDH1
k12,ℓ1

assumption in G1,G2, which is implied by the bilateral k12-Lin

assumption. The reduction algorithm takes [A1]1, [c]1, [A1]2, [c]2 as input, where A1 ←Z
k12×ℓ1
p and c ∈Zℓ1

p is either

s1A1 for s1 ←Z
k12
p or uniformly random. It samples A2,s2, maintains the IPFE simulator, and sets z̃1 = c+z1. To

compute the first component of the challenge ciphertext, the reduction algorithm uses [c]1. To compute the input

to IPFE.ãKeyGen, it uses [A1]2, [c]2.

– G4 is identical to G3 except we replace s2A2 +z2 by uniformly random z̃2:

mpk= (
[A1]1, [A1]2, [A2]2, �impk

)
,

ct= (
[z̃1]1, [z̃2]2, ĩct

)
, ĩct← IPFE.Ẽnc(),

skq = ĩskq ← IPFE.ãKeyGen([
(A1 ⊗ Iℓ2)f⊤q , (Iℓ1 ⊗A2)f⊤q , vq

]
2,

[dq︷ ︸︸ ︷
(z1 ⊗z2)f⊤q +uv⊤

q − (
z̃1 ⊗ z̃2

)
f⊤q

]
2

)
.

We have G3 ≈c G4 by the MDDH1
k2,ℓ2

assumption in G2, which is implied by the k2-Lin assumption. The reduction

is similar to that for showing G2 ≈c G3. Note that G4 is the same as using the simulator.

C More Details of AB-KEM in Section 4.4

Correctness. The correctness follows from

∏
xρ(j)=1

[
βρ(j) · (m j T+ rBW⊤

ρ(j)) · (sA)⊤
]

T[
βρ(j) · rB · (sAWρ(j))⊤

]
T

=
[∑

xρ(j)=1
βρ(j)m j TA⊤s⊤

]
T

=
[

e1

(
k

T′

)
A⊤s⊤

]
T

= [sAk⊤]T.

Security. We have the following theorem.

Theorem 6. Assume k2-Lin holds in G2 and bilateral k12-Lin holds, our AB-KEM for local roMSPs achieves security

defined in Section 4.2.

By a standard hybrid argument, it suffices to consider security with only one secret key query. Let M be the key query,

we prove Theorem 6 via the following game sequence.

– G
γ
0 is the AB-KEM security game with NewKeykem (if γ= 0) or NewKey$ (if γ= 1), where the adversary receives

mpk= (
[A]1,

{
[AWi]1

}
i∈[n], [B]2,

{
[BW⊤

i]2
}

i∈[n]

)
, [A]2, [sA]2,

sk=
(
[rB]2,

{[
m j T+ rBW⊤

ρ(j)

]
2

}
j∈[m]

)
, [sAk⊤+γµ]2,

ct= (
[sA]1, {[sAWi]1}xi=1

)
.

27

– G
γ
1 is identical to G

γ
0 except we change all sA to c ←Z

k12+1
p :

mpk= (
[A]1,

{
[AWi]1

}
i∈[n], [B]2,

{
[BW⊤

i]2
}

i∈[n]

)
, [A]2, [c]2,

sk=
(
[rB]2,

{[
m j T+ rBW⊤

ρ(j)

]
2

}
j∈[m]

)
, [c k⊤+γµ]2,

ct= (
[c]1, {[c Wi]1}xi=1

)
.

G
γ
0 ≈c G

γ
1 follows from the bilateral k12-Lin assumption in G1,G2. Roughly speaking, the reduction algorithm

receives [A]1, [c]1, [A]2, [c]2 as a bilateral k12-Lin challenge (c is either sA or random), samples Wi ,B,k,r,T′, and

can compute all the components sent to the adversary.

– G
γ
2 is identical to G

γ
1 except we change rB to d ←Z

k2+1
p :

mpk= (
[A]1,

{
[AWi]1

}
i∈[n], [B]2,

{
[BW⊤

i]2
}

i∈[n]

)
, [A]2, [c]2,

sk=
(
[d]2,

{[
m j T+ d W⊤

ρ(j)

]
2

}
j∈[m]

)
, [ck⊤+γµ]2,

ct= (
[c]1, {[cWi]1}xi=1

)
.

We have G
γ
1 ≈c G

γ
2 , analogous to G

γ
0 ≈c G

γ
1 , except we only need k2-Lin in G2 instead of bilateral k12-Lin.

– G
γ
3 is identical to G

γ
2 except c (resp. d) is uniformly random outside the row span of A (resp. B). We have G

γ
2 ≈s G

γ
3 .

– G
γ
4 is identical to G

γ
3 except we compute a⊥ (resp. b⊥) such that A(a⊥)⊤ = 0, c(a⊥)⊤ = 1 (resp. B(b⊥)⊤ = 0, d(b⊥)⊤ = 1)

and change the variables by

Wi = W̃i +wi (a⊥)⊤b⊥, W̃i ←Z
(k12+1)×(k2+1)
p , wi ←Zp for i ∈ [n],

k = k̃+ξa⊥, k̃ ←Z
k12+1
p , ξ←Zp ,

T′ = T̃′+ t⊤a⊥, T̃′ ←Z
(t−1)×(k12+1)
p , t ←Zt−1

p .

Write T̃ =
(

k̃

T̃′

)
, then the components the adversary receives become

mpk= (
[A]1,

{
[AW̃i]1

}
i∈[n], [B]2,

{
[BW̃⊤

i]2
}

i∈[n]

)
, [A]2, [c]2,

sk=
[d]2,

{[
m j T̃+dW̃⊤

ρ(j) +
(

m j

(
ξ

t⊤

)
+w j

)
a⊥

]
2

}
j∈[m]

 , [ck̃⊤+ξ+γµ]2,

ct= (
[c]1, {[cW̃i +wi b⊥]1}xi=1

)
.

We have G
γ
3 ≡G

γ
4 .

Lastly, for all (M,ρ) and x such that P
(
x, (M,ρ)

)= 0, it holds that (see [10, Section A.5])(
{m j v⊤+wi } j∈[m],xρ(j)=1, {wi }xi=1,ξ , {m j v⊤+wi } j∈[m],xρ(j)=0

)
≡ (

{m j v⊤+wi } j∈[m],xρ(j)=1, {wi }xi=1,ξ , { w̃ j } j∈[m],xρ(j)=0
)

≡ (
{m j v⊤+wi } j∈[m],xρ(j)=1, {wi }xi=1,ξ+µ, { w̃ j } j∈[m],xρ(j)=0

)
≡ (

{m j v⊤+wi } j∈[m],xρ(j)=1, {wi }xi=1,ξ+µ, {m j v⊤+wi } j∈[m],xρ(j)=0
)
,

where ξ,µ←Zp , wi , w̃i ←Zp , v = (ξ,t) for t ←Zt−1
p , which implies G0

4 ≡G1
4. This readily implies that G0

0 ≈c G
1
0.

28

	Traitor Tracing with N1/3-size Ciphertexts and O(1)-size Keys from k-Lin

