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Abstract

We show how to obfuscate pseudo-deterministic quantum circuits in the classical oracle
model, assuming the quantum hardness of learning with errors. Given the classical description
of a quantum circuit𝑄, our obfuscator outputs a quantum state | ̃︀𝑄⟩ that can be used to evaluate
𝑄 repeatedly on arbitrary inputs.

Instantiating the classical oracle using any candidate post-quantum indistinguishability
obfuscator gives us the first candidate construction of indistinguishability obfuscation for all
polynomial-size pseudo-deterministic quantum circuits. In particular, our scheme is the first
candidate obfuscator for a class of circuits that is powerful enough to implement Shor’s algo-
rithm (SICOMP 1997).

Our approach follows Bartusek and Malavolta (ITCS 2022), who obfuscate null quantum
circuits by obfuscating the verifier of an appropriate classical verification of quantum compu-
tation (CVQC) scheme. We go beyond null circuits by constructing a publicly-verifiable CVQC
scheme for quantum partitioning circuits, which can be used to verify the evaluation procedure
of Mahadev’s quantum fully-homomorphic encryption scheme (FOCS 2018). We achieve this
by upgrading the one-time secure scheme of Bartusek (TCC 2021) to a fully reusable scheme,
via a publicly-decodable Pauli functional commitment, which we formally define and construct
in this work. This commitment scheme, which satisfies a notion of binding against commit-
ters that can access the receiver’s standard and Hadamard basis decoding functionalities, is
constructed by building on techniques of Amos, Georgiou, Kiayias, and Zhandry (STOC 2020)
introduced in the context of equivocal but collision-resistant hash functions.

*Part of this work was done while visiting NTT Social Informatics Laboratories for an internship.
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1 Introduction

A program obfuscator is a “one-way compiler” that renders code unintelligible without harming
its functionality. This concept dates back to the beginning of modern cryptography [DH76], and
has since attracted much interest as a tool for protecting software against reverse-engineering,
intellectual property theft, and piracy. While the theoretical foundations of program obfusca-
tion were laid in 2001 [BGI+12],1 it was not until 2013 [GGH+16]2 that researchers developed a
proposal for obfuscating general-purpose (classical) computation. This first candidate sparked a
massive research effort that has both established program obfuscation as a “central hub” [SW21]
of cryptography with countless applications, and has resulted in obfuscation schemes based on
well-founded cryptographic assumptions [JLS21].

Meanwhile, the concepts of quantum information and quantum computation have had a pro-
found impact on computer science, with stunning applications such as unconditionally secure
key agreement [BB84] and efficient integer factorization [Sho97a], not to mention the promise of
major advances in chemistry and physics. As the field of quantum information science matures,
researchers have investigated fundamental questions pertaining to information privacy and in-
formation integrity. This has resulted in a remarkable series of feasibility results for securing
quantum information and computation, e.g. encryption [AMTDW00], authentication [BCG+02],
zero-knowledge [BJSW20], secure multi-party computation [CGS02, DNS10, DGH+20], and del-
egation of computation [Chi05, ABOEM18, BFK09, RUV13, Mah18, Mah22]. However, despite
these efforts, the feasibility of quantum obfuscation has remained elusive, and the following ques-
tion has remained largely open.

Is it possible to obfuscate quantum computation?

Prior research has focused its efforts on definitional work [AF16], impossibility results [AF16,
AL21, ABDS21], and limited classes of quantum computation [AJJ14, BK21, BM22]. The best fea-
sibility results we had prior to this work were for obfuscating quantum circuits with logarith-
mically many non-Clifford gates [BK21] and for obfuscating “null” quantum circuits that always
output zero [BM22]. Neither of these classes comes close to a notion of “general-purpose” quan-
tum computation, and thus the feasibility of quantum obfuscation as a tool for quantum software
protection has remained wide open.

Results. We consider the class of pseudo-deterministic quantum circuits, which are quantum
circuits that take a classical input and produce a fixed classical output for each input with over-
whelming probability. Essentially, these circuits compute a classical truth table, and can decide
any language in (non-promise) BQP. This class captures Shor’s algorithm [Sho97a], which is ar-
guably the quintessential algorithm for demonstrating the power of quantum computation over
classical computation.

Our main result is the following. In the classical oracle model, the evaluator (and adversary) are
given oracle access to an efficiently computable classical functionality prepared by the obfuscator.

Theorem 1.1. Assuming the quantum hardness of Learning with Errors (QLWE), there exists a VBB
obfuscator for any polynomial-size pseudo-deterministic quantum circuit 𝑄 in the classical oracle model,
where the obfuscated program is a quantum state | ̃︀𝑄⟩.

1The preliminary version appeared in CRYPTO 2001.
2The preliminary version appeared in FOCS 2013.
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On the classical oracle model. The classical oracle model idealizes the notion of obfuscation for
classical circuits, much like the random oracle model [BR95] idealizes a cryptographic hash func-
tion and the generic group model [Sho97b] idealizes a cryptographic group. Such idealized prim-
itives are typically not realizable in the real world, and a classical oracle is no exception. Indeed,
virtual black-box (VBB) obfuscation comes for free in the classical oracle model, and it is known
[BGI+12] that there exist (contrived) examples of circuits that provably cannot be VBB obfuscated
(even with quantum information [AL21, ABDS21]). However, despite these contrived counterex-
amples, there is by now a fairly long history of establishing the feasibility of novel quantum-
cryptographic primitives in the classical oracle model [AC12, BS16, AGKZ20, ALL+21, BM22],
and our result fits into this line of work.

Moreover, [BGI+12] also defined a weaker notion of obfuscation called indistinguishability ob-
fuscation, which only requires that the obfuscations of two functionally equivalent programs are
computationally indistinguishable, and which was subsequently shown by [SW21] and many
follow-up works to be extremely powerful. Our main result is a construction of obfuscation for
pseudo-deterministic quantum circuits from obfuscation of classical circuits (plus QLWE), and in
order to prove security, we treat the classical obfuscation as implementing a black-box. However,
one can interpret this result as heuristic evidence that our construction gives indistinguishability
obfuscation for pseudo-deterministic quantum circuits when the classical obfuscator is instanti-
ated with a candidate post-quantum indistinguishability obfuscation scheme [BGMZ18, CVW18,
BDGM22, GP21, WW21, DQV+21].

One can also appreciate our result in an oraclized world. Here, we show that, assuming
QLWE,3 it is possible to simulate access to a “BQP oracle” with just a P oracle. More precisely,
the BQP oracle we implement can decide languages in BQP, as opposed to more general promise
problems.4

Building blocks. To obtain our main result of quantum obfuscation, we construct the following
intermediate primitives that may be of independent interest.

Publicly-decodable Pauli functional commitments.

We formally define the notion of a Pauli functional commitment, which has appeared implicitly
in many recent works, e.g. [BCM+21, Mah22, Vid20]. These are bit commitment schemes that,
when used in superposition to commit to a qubit, support opening the qubit to a measurement in
either the standard or the Hadamard basis. While the only prior construction [BCM+21, Mah22]
of such commitments supports publicly-decodable standard basis measurements, security is com-
pletely compromised if the committer obtains access to the receiver’s Hadamard basis decoding
functionality.

In this work, we describe a novel construction of Pauli functional commitments where secu-
rity holds even if the committer obtains access to both the receiver’s standard and Hadamard basis
decoding functionalities, and we argue security in the classical oracle model. Our construction
is inspired by and unifies two lines of work: privately-decodable Pauli functional commitments

3In fact, it may be possible to remove the QLWE assumption entirely from our construction by showing that quan-
tum fully-homomorphic encryption and dual-mode randomized trapdoor claw-free hash functions can be built from
classical VBB obfuscation. We leave an exploration of this to future work.

4This is because circuits for deciding promise problems are technically not pseudo-deterministic. There exist inputs
that are neither yes or no instances, and thus are not guaranteed to produce a pseudo-deterministic output.
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[BCM+21, Mah22], and collision-resistant but equivocal hash functions [ARU14, AGKZ20].

Publicly-verifiable quantum fully-homomorphic encryption.

Given the recent progress in constructing quantum homomorphic encryption schemes [BJ15,
DSS18, Mah18], a natural question is whether the homomorphic evaluation procedure for these
schemes can be verified and with what resources.

The first work to address this question was [ADSS17], who showed how to make the scheme
of [DSS18] verifiable. Unfortunately, their verifier requires secret parameters, including the de-
cryption key of the homomorphic encryption scheme. In a recent work, [Bar21] showed how to
obtain verifiable quantum FHE based on the scheme of [Mah18], with the following properties.
The verifier is completely classical and doesn’t require the decryption key of the FHE scheme,
though it does require additional secret verification parameters.

In this work, we obtain the first feasibility result for publicly-verifiable quantum fully-homomorphic
encryption. Our protocol supports the classical verification of pseudo-deterministic quantum
computation over the underlying plaintexts, and is proven sound in the classical oracle model.
We also remark that the public parameters for our scheme are quantum (while the verification is
classical), and it is an interesting question for future work to see whether these public parameters
(and, in turn, our obfuscated program) can be made completely classical.

Applications. Program obfuscation has direct applications to software protection, and our re-
sults indicate that such protections may be possible to achieve in the context of quantum software.
Obfuscated programs intuitively cannot be reverse-engineered, meaning that we can now pro-
tect any intellectual property or other secret information contained in the implementation of the
quantum program.

In the classical and post-quantum settings, obfuscation has also been identified as a useful tool
for digital watermarking [BGI+12, CHN+18, KN22], which allows for embedding an unremovable
“mark” into a program, and acts as a deterrent against software piracy. Quantum information
potentially allows for much stronger forms of protection against piracy, enabling computation to be
encoded into a quantum state that provably cannot be copied [Aar09]. However, the scope of such
“copy-protection” schemes has so far been limited to classical functionalities [CMP20, ALL+21,
CLLZ21, AK21, AKL+22, KN23]. In Section 6.2, we sketch how our obfuscation scheme results in
a candidate for copy-protection of (unlearnable) quantum programs, following the construction of
[ALL+21].

Another common application of obfuscation in the classical setting is to advanced forms of
encryption, such as functional encryption [GGH+16]. In Section 6.3, we sketch an application of
our construction to functional encryption for quantum functionalities.

That being said, we stress that the main focus of our work is on the construction of quantum
obfuscation, and we leave a more in-depth exploration of applications to future work.

Open problems. Our work raises many interesting questions on the topic of quantum obfus-
cation. One immediate question is whether it is possible to obfuscate all quantum circuits with
classical input and output, extending our result for pseudo-deterministic circuits. That is, can cir-
cuits that output an arbitrary distribution over classical strings be obfuscated? As explained in
Section 2, we follow the approach of [BM22] who consider obfuscating the verifier of an appro-
priate classical verification of computation protocol [Mah22]. Unfortunately, it is not known how
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to classically verify general quantum sampling circuits, at least with negligible soundness (the
work of [CLLW22] provides a solution with weaker soundness). This appears to be one barrier for
extending our approach to all quantum circuits with classical input and output.

One can also wonder about the possibility of obfuscating general quantum operations over
quantum registers. That is, while our scheme is able to obfuscate quantum computation, it still
only implements a “classical” language, albeit one whose truth table may only be (known to be)
computable with a quantum circuit. Thus, this leaves open the feasibility (or impossibility) of im-
plementing quantum oracles, and we consider this to be a very interesting question to understand
in future work.

Finally, we mention two natural open questions regarding our construction itself. First, is it
possible to remove the quantum states from our construction and obtain a classical obfuscated
program? Next, can we improve on the heuristic nature of our security proof, and obtain in-
distinguishability obfuscation for pseudo-deterministic quantum circuits from the assumption of
indistinguishability obfuscation for classical circuits?

2 Technical Overview

In this overview, we will describe how to obfuscate any pseudo-deterministic quantum circuit
𝑄, where pseudo-deterministic means that for each input 𝑥 there exists an output 𝑦 such that
Pr[𝑄(𝑥)→ 𝑦] = 1− negl. That is, we describe a compiler that given the classical description of 𝑄,
produces an obfuscated program | ̃︀𝑄⟩ that reveals as little as possible about the description of 𝑄
while preserving the functionality of 𝑄. Throughout this overview, we will treat such circuits as
fully deterministic, associating a well-defined bit 𝑦 := 𝑄(𝑥) to each input 𝑥, which has a negligible
effect on our arguments.

2.1 Our approach: Verifying quantum partitioning circuits

Fully-homomorphic encryption. A natural approach to obfuscation involves the notion of fully-
homomorphic encryption (FHE), which allows for encoding data 𝑥 into a ciphertext Enc(𝑥) so that
anyone holding Enc(𝑥) and a function 𝑓 can produce a ciphertext Enc(𝑓(𝑥)). Indeed, given an
FHE scheme that supports the evaluation of quantum functionalities [Mah18], one could release
an encryption Enc(𝑄) of the description of 𝑄. Then, any evaluator with an input 𝑥 can obtain
Enc(𝑄(𝑥)) by running an appropriate evaluation procedure.

This comes close to a working obfuscation scheme, except that the evaluator obtains Enc(𝑄(𝑥))
rather than the output 𝑄(𝑥) in the clear. To fix this, we cannot simply release the FHE secret key
sk, allowing the evaluator to decrypt Enc(𝑄(𝑥)) and learn 𝑄(𝑥), because this would also allow the
evaluator to decrypt Enc(𝑄) and learn the description of 𝑄. Instead, we could release a carefully
“broken” secret key that only allows decryption of ciphertexts Enc(𝑄(𝑥)) that encrypt an honestly
evaluated output 𝑄(𝑥).

Reducing to classical obfuscation. But how can we obtain such a carefully broken key? One
attempt would be to release an obfuscation of the following program 𝐶, which has the secret key
sk and the ciphertext Enc(𝑄) hard-coded,

𝐶[sk,Enc(𝑄)](𝑥, ct) : if Eval[Enc(𝑄)](𝑥)→ ct, output Dec(sk, ct), and otherwise output ⊥,
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where Eval[Enc(𝑄)](·) is the FHE evaluation circuit that on input 𝑥 outputs Enc(𝑄(𝑥)). However,
we don’t know how to obfuscate 𝐶 since Eval[Enc(𝑄)](·) is a quantum circuit.

Instead, building on observations by [BM22], we could hope to construct an argument system
with a classical verifier 𝑉 that satisfies the following properties.

• For any 𝑥, one can compute a ciphertext ct and a proof 𝜋 such that 𝑉 (Enc(𝑄), 𝑥, ct, 𝜋) = 1.

• It is hard to find (𝑥, ct, 𝜋) such that 𝑉 (Enc(𝑄), 𝑥, ct, 𝜋) = 1 and Dec(sk, ct) ̸= 𝑄(𝑥).

If such a system existed, we could instead obfuscate the following classical program

̃︀𝐶[sk,Enc(𝑄)](𝑥, ct, 𝜋) : if 𝑉 (Enc(𝑄), 𝑥, ct, 𝜋)→ 1, output Dec(sk, ct), and otherwise output ⊥.

Crucially, this approach follows the “verify-then-decrypt” paradigm, where the output cipher-
text is first verified to be honest, and only then decrypted using sk. A procedure that first decrypts
and then verifies may not be secure since the adversary could submit dishonest ciphertexts to
learn information about sk.

Classical verification of quantum computation and its limitations. Thus, it suffices to construct
a classically-verifiable argument system for the class of quantum circuits Eval[Enc(𝑄)] that take

Eval[Enc(𝑄)](𝑥)→ Enc(𝑄(𝑥)),

where Enc is a quantum fully-homomorphic encryption (QFHE) scheme and 𝑄 is a deterministic
quantum circuit.

As mentioned earlier, [Mah22] did construct a protocol for classical verification of quantum
computation. Unfortunately, there are two major problems with using [Mah22]’s scheme for this
application.

• Sampling circuits. [Mah22]’s scheme only supports verification of (pseudo)-deterministic
quantum circuits. However, the evaluation procedure of known QFHE schemes [Mah18,
Bra18] is inherently randomized, even if the underlying computation is deterministic, mean-
ing that the circuit that we would like to verify actually produces a sample Enc(𝑄(𝑥)) from a
classical distribution over ciphertexts.5

• Public verifiability. Note that the evaluator will have (obfuscated) access to the verification
function, which means that it can repeatedly query the verifier with proofs of its choice. If
soundness holds even when verification is public, then the evaluator cannot break soundness
using access to this oracle. However, [Mah22]’s scheme is privately-verifiable, and can be
broken given repeated access to the verifier.

Towards solving the first problem, [CLLW22] presented a scheme for classical verification of
sampling circuits, though only with inverse polynomial soundness error. While interesting on its
own, this renders the scheme difficult to use for our application, since a polynomial-time evaluator
can eventually break soundness and thus break security of the obfuscation scheme. It appears that
improving upon their result to obtain negligible soundness for classical verification of quantum
sampling circuits is difficult, and could be considered a major open problem.

5While this distribution is only supported on ciphertexts that encrypt the correct output bit 𝑄(𝑥), the random coins
used for the output ciphertext will vary.

5



Quantum partitioning circuits. Instead, we relax our goal. We observe that if 𝑄 is determin-
istic, then we don’t need the full power of verification of sampling circuits to verify the sam-
pling of Enc(𝑄(𝑥)). Indeed, we can partition the output space of Eval[Enc(𝑄)](·) into ciphertexts
ct0 that decrypt to 0 and ciphertexts ct1 that decrypt to 1. Thus, each input 𝑥 outputs a sample
from one of these two sets. That is, we can define a classical predicate 𝑃 := Dec(sk, ·) such that
𝑃 (Eval[Enc(𝑄)](·)) is (pseudo)-deterministic.

Thus, we say that 𝑄 is a quantum partitioning circuit if there exists a predicate 𝑃 such that
𝑃 (𝑄(·)) is pseudo-deterministic, and we investigate the feasibility of obtaining a classically-verifiable
argument system for such partitioning circuits. Crucially for our application, the prover in the ar-
gument system cannot depend on 𝑃 since 𝑃 will contain the description of the FHE secret key.6

Then, we will need an argument system with (roughly) the following syntax (see Section 5.1 for a
formal description).

• Gen(1𝜆, 𝑄) → pp: The parameter generation algorithm outputs public parameters pp. We
allow pp to contain the description of a classical oracle, and refer to such a protocol as being
in the oracle model.

• Prove(pp, 𝑄, 𝑥)→ 𝜋: The prover algorithm outputs a proof 𝜋.

• Ver(pp, 𝑄, 𝑥, 𝜋) → 𝑞 ∪ {⊥}: The verifier checks if the proof is valid, and if so outputs a
classical string 𝑞.

• Out(𝑞, 𝑃 )→ 𝑏: The output algorithm takes 𝑞 and the description of a predicate 𝑃 and outputs
a bit 𝑏.

For soundness, we require that no computationally bounded prover can produce an (𝑥, 𝜋) such
that Ver(pp, 𝑄, 𝑥, 𝜋) → 𝑞 and Out(𝑞, 𝑃 ) ̸= 𝑃 (𝑄(𝑥)). We refer to such a protocol as a non-interactive
publicly-verifiable classical verification of quantum partitioning circuits. In Section 6, we follow the
intuition given above, and show formally how to use this type of argument system along with
QFHE and VBB obfuscation of classical circuits (which is used to obfuscate the classical oracle in
pp) to obfuscate pseudo-deterministic quantum circuits.

In the remainder of this overview, we will describe how to construct non-interactive publicly-
verifiable classical verification of quantum partitioning circuits in the oracle model.

2.2 Prior work: One-time soundness

Building on [Mah22, CLLW22], the prior work of [Bar21] shows how to construct non-interactive
privately-verifiable classical verification of quantum partitioning circuits,7 where soundness breaks
down if the prover is given oracle access to the verification functionality. We refer to this security
as “one-time soundness”. We will eventually build on top of this protocol in two steps.8

1. We will first show how to obtain reusable soundness against provers that can access the
verification oracle in a limited “single instance” setting. In this setting, there is only one
input 𝑥 that the verification oracle will accept.

6And otherwise, this notion would trivially reduce to classical verification of pseudo-deterministic quantum circuits.
7In [Bar21], quantum partitioning circuits were referred to as “quantum-classical” circuits.
8Breaking this into two steps is only for the purpose of the overview. In Section 5.4, we perform both steps simulta-

neously.
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2. We will upgrade this protocol to the fully reusable setting, thus obtaining a publicly-verifiable
protocol in the oracle model.

In this section, we describe the protocol of [Bar21] in some detail, as our construction will use
these internal details. However, before getting into the protocol, we describe a useful abstraction
that is novel to this work: a Pauli functional commitment. We will then describe [Bar21]’s protocol
using the language of Pauli functional commitments, and, later in the overview, show how a new
variation on the notion of Pauli functional commitments will be integral to our final construction.

Pauli functional commitments. Bit commitment schemes traditionally satisfy a notion of bind-
ing and a notion of hiding. A functional commitment scheme includes an additional notion of
functionality, which allows the committer to open its commitment to some function of the commit-
ted message, up to some limitations imposed by the binding property.

A Pauli functional commitment (PFC) is a traditional (non-interactive) classical bit commit-
ment scheme augmented with a particular quantum functionality property. Note that any classi-
cal bit commitment algorithm Com(ck, 𝑏)→ (𝑏, 𝑢, 𝑐), where ck is the commitment key, 𝑢 is opening
information, and 𝑐 is the commitment string, can be used to commit to a qubit 𝛼0 |0⟩+𝛼1 |1⟩ in su-
perposition. If the commitment scheme is perfectly hiding, then measuring a commitment string
𝑐 would leave a remaining state of the form 𝛼0 |0⟩ |𝑢0⟩ + 𝛼1 |1⟩ |𝑢1⟩,9 which preserves the original
qubit. A Pauli functional commitment enables the committer to then “open” its state to either a
standard basis measurement or a Hadamard basis measurement of its original qubit 𝛼0 |0⟩+𝛼1 |1⟩.
More formally, it should satisfy the following syntax.

• Gen(1𝜆)→ (ck, dk): Gen outputs a commitment key ck and a decoding key dk.10

• Com(ck,ℬ)→ (ℬ,𝒰 , 𝑐): Com takes as input a single-qubit register ℬ and produces a classical
commitment 𝑐 along with registers (ℬ,𝒰), where 𝒰 holds opening information.11

• OpenZ(ℬ,𝒰)→ 𝑢: The standard basis opening algorithm performs a measurement on regis-
ters (ℬ,𝒰) to produce a classical string 𝑢.

• OpenX(ℬ,𝒰) → 𝑢: The Hadamard basis opening algorithm performs a measurement on
registers (ℬ,𝒰) to produce a classical string 𝑢.

• DecZ(dk, 𝑐, 𝑢) → {0, 1,⊥}: The standard basis decoding algorithm takes the decoding key
dk, a commitment 𝑐, an opening 𝑢, and either decodes a bit 0 or 1, or outputs ⊥.

• DecX(dk, 𝑐, 𝑢)→ {0, 1,⊥}: The Hadamard basis decoding algorithm takes the decoding key
dk, a commitment 𝑐, an opening 𝑢, and either decodes a bit 0 or 1, or outputs ⊥.

A Pauli functional commitment should satisfy functionality as described above and some no-
tion (depending on the application) of binding to a classical bit. That is, binding is defined with
respect to the bit output by the DecZ algorithm. A notion of hiding does not need to be explicitly

9Note that depending on the commitment scheme, the second register may contain a superposition over random
coins / opening information.

10For now, assume ck is classical, though later we will consider commitments with quantum commitment keys.
11Whenever we say that an algorithm takes as input or outputs a register, we mean that it operates on a quantum

state stored on that register.
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considered - the properties of functionality and binding are already enough to make this primitive
both non-trivial and useful.

We note that this notion has appeared implicitly in many previous works, e.g. [BCM+21,
Mah22, Vid20]. Indeed, [BCM+21, Mah22] essentially showed how to construct a Pauli functional
commitment that simultaneously satisfies two binding properties from the quantum hardness of
learning with errors (QLWE). In our own words, these properties are the following.

• Dual-mode. Gen(1𝜆, ℎ) now takes as input a bit ℎ indicating the “mode”, where ℎ = 1 is
the regular mode, and ℎ = 0 is a perfectly binding mode. In perfectly binding mode, for
every commitment 𝑐 there is at most one bit 𝑏 such that there exists an opening 𝑢 with
DecZ(dk, 𝑐, 𝑢) = 𝑏. This mode allows for the definition of an algorithm Invert(dk, 𝑐) → 𝑏
that outputs the bit 𝑏 such that there exists 𝑢 with DecZ(dk, 𝑐, 𝑢) = 𝑏 (or outputs ⊥ if such
a 𝑏 does not exist). Importantly, the ck output on ℎ = 0 vs ℎ = 1 must be computationally
indistinguishable.

• Uncertainty. For any polynomial-time adversary that outputs (𝑐, 𝑏, 𝑢𝑍 , 𝑢𝑋), it holds that

Pr[DecZ(dk, 𝑐, 𝑢𝑍) = 𝑏 ∧ DecX(dk, 𝑐, 𝑢𝑋) = 0]

≈ Pr[DecZ(dk, 𝑐, 𝑢𝑍) = 𝑏 ∧ DecX(dk, 𝑐, 𝑢𝑋) = 1].

That is, if an adversary opens successfully to a standard basis measurement of its committed
state, the Hadamard basis measurement is maximally uncertain. Note that this can be con-
sidered a binding property for the classical bit 𝑏 since the ability to measure in the Hadamard
basis implies the ability to reflect across the Hadamard basis axis, thus influencing the stan-
dard basis measurement.

More precisely, prior work has shown how to construct a PFC satisfying the above binding
properties from (what we call) a dual-mode randomized trapdoor claw-free hash function with an adap-
tive hard-code bit property. We refer to this primitive as a “Type I” PFC or PFC-I, in order to differ-
entiate it from a “Type II” PFC that we will construct in this work. We also note that in the body of
this work, we build our protocols directly from the underlying claw-free hash function, so that we
can appeal to theorems from prior work.12 Thus the primitive of PFC-I does not appear explicitly
in the body. However, in the remainder of this overview, we find it more convenient to explain
these protocols using the primitive of PFC-I.

Verification of quantum partitioning circuits with one-time soundness. Now, we describe a
privately-verifiable scheme for classical verification of quantum partitioning circuits that follows
from prior work [Mah22, CLLW22, Bar21].

The starting point is a particular way to prepare a history state |𝜓𝑄,𝑥⟩ of the computation𝑄(𝑥),
due to [CLLW22]. Given |𝜓𝑄,𝑥⟩, the verifier can either measure certain registers in the standard
basis to obtain an approximate sample 𝑞 ← 𝑄(𝑥), or measure a random local Hamiltonian term
(which involves just standard basis and Hadamard basis measurements). In [Bar21], the prover
is instructed to prepare multiple copies of the history state, and the verifier chooses some subset

12However, we believe it could be interesting to re-prove prior results using the notion of PFC, and we leave an
exploration of this possibility to future work. That is, does a PFC that satisfies the dual-mode and uncertainty binding
properties generically imply classical verification of quantum computation?
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for sampling (obtaining an output sample) and the other subset for verifying (measuring a local
Hamiltonian term). If verification passes, the verifier collects the output samples {𝑞𝑡}𝑡 and outputs
the bit 𝑏 := Maj ({𝑃 (𝑞𝑡)}𝑡), which should be equal to 𝑃 (𝑄(𝑥)) with overwhelming probability.

Combining this approach with [Mah22]’s measurement protocol, applying parallel repetition,
and finally applying Fiat-Shamir, we obtain the protocol described in Fig. 1.

Classical verification of quantum partitioning circuits with one-time soundness

Parameters: ℓ qubits per round, 𝑟 total rounds, 𝑘 Hadamard rounds.

Setup: Random oracle 𝐻 : {0, 1}* → {0, 1}log (
𝑟
𝑘).

Gen(1𝜆, 𝑄)

• For 𝑖 ∈ [𝑟], choose a subset 𝑆𝑖 ⊂ [ℓ] of qubits that will be measured in the standard basis to obtain output
samples. Then, sample a string ℎ𝑖 = (ℎ𝑖,1, . . . , ℎ𝑖,ℓ) ∈ {0, 1}ℓ of basis choicesa that are 0 on indices in 𝑆𝑖
and otherwise correspond to random Hamiltonian terms.

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], sample (ck𝑖,𝑗 , dk𝑖,𝑗)← PFC-I.Gen(1𝜆, ℎ𝑖,𝑗), and output

pp := {ck𝑖,𝑗}𝑖,𝑗 , sp := ({ℎ𝑖, 𝑆𝑖}𝑖, {dk𝑖,𝑗}𝑖,𝑗).

Prove(1𝜆, 𝑄, pp, 𝑥)

• Prepare sufficiently many copies of the history state |𝜓𝑄,𝑥⟩ on register ℬ = {ℬ𝑖,𝑗}𝑖,𝑗 .
• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], apply PFC-I.Com(ck𝑖,𝑗 ,ℬ𝑖,𝑗)→ (ℬ𝑖,𝑗 ,𝒰𝑖,𝑗 , 𝑐𝑖,𝑗), and let 𝑐 := (𝑐1,1, . . . , 𝑐𝑟,ℓ).

• Compute 𝑇 = 𝐻(𝑐), where 𝑇 ∈ {0, 1}𝑟 has Hamming weight 𝑘.

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], apply PFC-I.OpenZ(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ], apply PFC-I.OpenX(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

• Output 𝜋 := (𝑐, 𝑢), where 𝑢 := (𝑢1,1, . . . , 𝑢𝑟,ℓ).

Ver(1𝜆, 𝑄, 𝑃, sp, 𝑥, 𝜋)

• Parse 𝜋 = (𝑐, 𝑢) as input and compute 𝑇 = 𝐻(𝑐).

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], check that PFC-I.DecZ(dk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗) ̸= ⊥.

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ]:

– If ℎ𝑖,𝑗 = 0, compute the bit 𝑏𝑖,𝑗 := PFC-I.Invert(dk𝑖,𝑗 , 𝑐𝑖,𝑗), and abort if ⊥.

– If ℎ𝑖,𝑗 = 1, compute the bit 𝑏𝑖,𝑗 := PFC-I.DecX(dk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗), and abort if ⊥.

• Apply a verification procedure to {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗 /∈𝑆𝑖
based on the Hamiltonian for 𝑄(𝑥). If this passes, parse

the bits {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈𝑆𝑖 as a set of output samples {𝑞𝑡}𝑡, and output 𝑏 := Maj ({𝑃 (𝑞𝑡)}𝑡).b

aWe associate 0 with the standard basis and 1 with the Hadamard basis.
bFor technical reasons, the final output is actually computed as a “majority of majorities”, but we ignore that

detail here.

Figure 1: A non-interactive privately-verifiable protocol for classical verification of quantum
partitioning circuits, due to [Mah22, CLLW22, Bar21]. The circuit 𝑄 and predicate 𝑃 are such that
𝑃 (𝑄(·)) is a pseudo-deterministic circuit.

In more detail, Fig. 1 consists of a number 𝑟 of parallel rounds, where 𝑘 of them are denoted
“Hadamard” rounds, and the rest are denoted “test” rounds. Which rounds are Hadamard rounds
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are determined by a random oracle 𝐻 applied to the prover’s Pauli functional commitments 𝑐.
Each Hadamard round essentially runs a copy of the protocol described above, where the

verifier obtains a number of output samples. We let ℓ denote the number of qubits per round,
which is the number of history states per round times the number of qubits per history state.
The standard basis measurements are obtained by inverting the commitments themselves (since
these commitments are generated in mode ℎ = 0), and the Hadamard basis measurements are
obtained via the OpenX procedure. On the other hand, in the test rounds, the prover opens all of
their commitments using the OpenZ procedure, and the verifier simply checks that DecZ does not
reject these openings. We also note that the public and secret parameters (pp, sp) are generated
independently of the input 𝑥, which was shown to be possible by an observation of [ACGH20].13

The one-time soundness of this protocol was proven in [Bar21], and relies on the soundness
of the underlying measurement protocol due to [Mah22]. While the proof in [Mah22] actually
required an additional property of the claw-free hash function beyond dual-mode and adaptive
hard-core bit, the recent work of [BKL+22] showed that these two properties, which correspond
to the dual-mode and uncertainty properties of the PFC, suffice for proving soundness.

Challenges with reusability. Now, our goal is to obtain soundness even against provers that
have (superposition) oracle access to the verification algorithm. We denote this algorithm Ver[sp](·, ·),
which has the secret parameters sp hard-coded (and implicitly 1𝜆, 𝑄, and 𝑃 ), expects (𝑥, 𝜋) as in-
put, and outputs either a bit 𝑏 or ⊥.

Unfortunately, there is a simple attack on soundness in this setting. The main issue is that
the secret parameters sp hard-code the measurement bases ℎ = (ℎ1, . . . , ℎ𝑟), and soundness of the
underlying information-theoretic protocol would be completely compromised if the prover could
figure out ℎ. Note that in the Hadamard rounds, the strings 𝑢𝑖,𝑗 corresponding to ℎ𝑖,𝑗 = 0 are
completely ignored by the verifier, while the strings 𝑢𝑖,𝑗 corresponding to ℎ𝑖,𝑗 = 1 factor into the
verifier’s response. This discrepancy provides a way for the prover to learn the bits of ℎ𝑖,𝑗 by
querying the verifier multiple times, ultimately breaking soundness of the protocol (see [BM22]
for a more detailed discussion of this issue).

Can signature tokens help? Before coming to our solution, we discuss one promising but flawed
attempt at upgrading to reusable soundness via the primitive of signature tokens [BS16]. A signa-
ture token consists of a quantum signing |sk⟩ that can be used to sign a single arbitrary message 𝑥,
and then becomes useless.

So suppose we included |sk⟩ in the public parameters, and ask that the prover sign its proof
𝜋 before querying Ver[sp]. That is, Ver[sp] will now take as input (𝑥, 𝜋, 𝜎), and only respond if
𝜎 is a valid signature on 𝜋. Intuitively, if the prover tries to start collecting information from
multiple malformed proofs in order to learn enough bits of ℎ to break soundness, they should fail
to produce the multiple signatures required to learn this information.

Unfortunately, this intuition is false. First, since the prover has superposition access to the ver-
ifier, they never have to actually output a classical signature 𝜎. Moreover, in known signature
token schemes [BS16], the public parameters can be used to implement a projection |sk⟩ ⟨sk| onto
the original signing key. Thus, even though a prover may “damage” its state |sk⟩ by querying
Ver[sp] in superposition in order to learn a single bit of information about ℎ, they could then

13Technically, Gen just needs to know the size of 𝑄.
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project back onto |sk⟩ via amplitude amplification. Thus, they could launch the same attacks as
before, ultimately learning enough about ℎ to break soundness.

2.3 Reusable soundness for a single instance

Classically, the following is a common route for boosting one-time soundness to reusable sound-
ness for, say, an NP argument system. Note that any fixed instance 𝑥, either 𝑥 is a yes instance, so
we don’t have to worry about the prover breaking soundness with respect to 𝑥, or 𝑥 is a no in-
stance, so by the one-time soundness of the protocol, the prover should never be able to make the
verification oracle accept, rendering it useless. Thus, we can obtain reusable soundness if each in-
stance 𝑥 was associated with its own pair of public and secret parameters (pp𝑥, sp𝑥). One method
for achieving this is to fix the actual public parameters as an obfuscation of a program that takes
𝑥 as input and samples parameters (pp𝑥, sp𝑥) using randomness derived from a PRF applied to 𝑥
(see [BGL+15] for an example).

Although we would like to follow this approach, one difficulty is that in our setting the notion
of an “instance” is unclear. The inputs 𝑥 to the circuit cannot be classified into yes and no instances,
since they all produce some valid outputs. In particular, note that the attacks on reusability out-
lined above will work even if the prover always queries the verification oracle on the same input
𝑥, eventually producing a 𝜋 that causes the verifier to output 𝑏 ̸= 𝑃 (𝑄(𝑥)). A next attempt would
be to start with some input 𝑥, sample 𝑞 ← 𝑄(𝑥), and consider the pair (𝑥, 𝑞) to be an instance.
However, since 𝑄 is a sampling circuit, it may be the case that this particular 𝑞 is only sampled
with small, or even negligible, probability on input 𝑥. Our one-time sound scheme is not equipped
to prove a statement of the form, “𝑞 is in the support of the output of 𝑄(𝑥)”. Thus, we will need a
different approach.

Committing to the history state. Given an input 𝑥, we will essentially classify the history state of
the computation 𝑄(𝑥) into “yes” and “no” instances. That is, an honestly prepared history state
|𝜓𝑄,𝑥⟩ should be classified as a yes instance, while any large enough perturbation to |𝜓𝑄,𝑥⟩ should
be classified as a no instance. However, looking ahead, it will be crucial that our instances are
classical so that we can generate parameters by applying a PRF to the instance. Thus, what we
really need is a classical commitment to the history state. Moreover, after the state is committed,
we still need it to be available for the prover to use in the one-time sound scheme. Fortunately,
the prover only needs to perform standard and Hadamard basis measurements on the state (in
addition to some operations that are classically controlled on the state). Thus, we have already
discussed the exact primitive that we need - a Pauli functional commitment!

In Fig. 2, we outline a protocol where an instance (𝑥,̃︀𝑐), consisting of an input 𝑥 and a com-
mitment ̃︀𝑐 to a set of history states |𝜓𝑄,𝑥⟩, is generated and fixed before the protocol begins. We
use a Pauli functional commitment denoted PFC-II to commit to the history states (since we will
eventually require PFC-II to satisfy different properties than PFC-I).

We remark that correctness of this protocol relies on a couple of specific properties: (1) PFC-I.Com
and PFC-II.Com are both classically controlled on the register ℬ, so they commute with each other,
and (2) PFC-I.OpenZ (resp. PFC-I.OpenX) simply measures the register ℬ in the standard (resp.
Hadamard) basis14 so the first bit of the string 𝑢 can be computed instead by applying PFC-II.Com
to ℬ followed by PFC-II.OpenZ and PFC-II.DecZ (resp. PFC-II.OpenX and PFC-II.DecX).

14Though it could be performing an arbitrary operation to the 𝒰 register.
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Now, our goal will be to obtain reusable soundness for any fixed instance (𝑥,̃︀𝑐). That is, we
give the prover oracle access to Ver[sp,̃︁dk, (𝑥,̃︀𝑐)](·) wherẽ︁dk and (𝑥,̃︀𝑐) are now hard-coded and the
only input is a proof 𝜋, and require that the prover cannot make the verifier output 𝑏 ̸= 𝑃 (𝑄(𝑥)).

A protocol with reusable soundness for a single “instance”

Parameters: ℓ qubits per round, 𝑟 total rounds, 𝑘 Hadamard rounds.

Setup: Random oracle 𝐻 : {0, 1}* → {0, 1}log (
𝑟
𝑘).

Instance generation

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], the verifier samples ( ̃︀ck𝑖,𝑗 ,̃︁dk𝑖,𝑗) ← PFC-II.Gen(1𝜆), outputs ̃︀ck := { ̃︀ck𝑖,𝑗}𝑖,𝑗 , and keeps̃︁dk := {̃︁dk𝑖,𝑗}𝑖,𝑗 private.

• Given an input 𝑥, the prover prepares sufficiently many copies of the history state |𝜓𝑄,𝑥⟩ on register ℬ =
{ℬ𝑖,𝑗}𝑖,𝑗 .

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], the prover applies PFC-II.Com( ̃︀ck𝑖,𝑗 ,ℬ𝑖,𝑗) → (ℬ𝑖,𝑗 , ̃︀𝒰𝑖,𝑗 ,̃︀𝑐𝑖,𝑗). Then, it sets ̃︀𝑐 :=
(̃︀𝑐1,1, . . . ,̃︀𝑐𝑟,ℓ) and outputs the instance (𝑥,̃︀𝑐).

Gen(1𝜆, 𝑄)

• The verifier samples pp = {ck𝑖,𝑗}𝑖,𝑗 , sp = ({ℎ𝑖, 𝑆𝑖}𝑖, {dk𝑖,𝑗}𝑖,𝑗) as in Fig. 1.

Prove(1𝜆, 𝑄, pp, 𝑥)

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], apply PFC-I.Com(ck𝑖,𝑗 ,ℬ𝑖,𝑗)→ (ℬ𝑖,𝑗 ,𝒰𝑖,𝑗 , 𝑐𝑖,𝑗), and let 𝑐 := (𝑐1,1, . . . , 𝑐𝑟,ℓ).

• Compute 𝑇 = 𝐻(𝑐), where 𝑇 ∈ {0, 1}𝑟 has Hamming weight 𝑘.

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], apply PFC-II.OpenZ(ℬ𝑖,𝑗 , ̃︀𝒰𝑖,𝑗) → ̃︀𝑢𝑖,𝑗 followed by PFC-I.OpenZ(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗) →
𝑢𝑖,𝑗 . Let 𝑢′

𝑖,𝑗 be 𝑢𝑖,𝑗 with the first bit removed.

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ], apply PFC-II.OpenX(ℬ𝑖,𝑗 , ̃︀𝒰𝑖,𝑗) → ̃︀𝑢𝑖,𝑗 followed by PFC-I.OpenX(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗) →
𝑢𝑖,𝑗 . Let 𝑢′

𝑖,𝑗 be 𝑢𝑖,𝑗 with the first bit removed.

• Output 𝜋 := (𝑐, ̃︀𝑢, 𝑢), where ̃︀𝑢 := (̃︀𝑢1,1, . . . , ̃︀𝑢𝑟,ℓ) and 𝑢 := (𝑢′
1,1, . . . , 𝑢

′
𝑟,ℓ).

Ver(1𝜆, 𝑄, 𝑃, sp,̃︁dk, (𝑥,̃︀𝑐), 𝜋)
• Parse 𝜋 = (𝑐, ̃︀𝑢, 𝑢) and compute 𝑇 = 𝐻(𝑐).

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], compute 𝑏′𝑖,𝑗 := PFC-II.DecZ(̃︁dk𝑖,𝑗 ,̃︀𝑐𝑖,𝑗 , ̃︀𝑢𝑖,𝑗) and check that
PFC-I.DecZ(dk𝑖,𝑗 , 𝑐𝑖,𝑗 , (𝑏′𝑖,𝑗 , 𝑢′

𝑖,𝑗)) ̸= ⊥.

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ]:

– If ℎ𝑖,𝑗 = 0, compute the bit 𝑏𝑖,𝑗 := PFC-I.Invert(dk𝑖,𝑗 , 𝑐𝑖,𝑗), and abort if ⊥.

– If ℎ𝑖,𝑗 = 1, compute 𝑏′𝑖,𝑗 := PFC-II.DecX(̃︁dk𝑖,𝑗 ,̃︀𝑐𝑖,𝑗 , ̃︀𝑢𝑖,𝑗), followed by the bit 𝑏𝑖,𝑗 :=
PFC-I.DecX(dk𝑖,𝑗 , 𝑐𝑖,𝑗 , (𝑏′𝑖,𝑗 , 𝑢′

𝑖,𝑗)), and abort if ⊥.

• Apply a verification procedure to {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗 /∈𝑆𝑖
based on the Hamiltonian for 𝑄(𝑥). If this passes, parse

the bits {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈𝑆𝑖 as a set of output samples {𝑞𝑡}𝑡, and output 𝑏 := Maj ({𝑃 (𝑞𝑡)}𝑡).

Figure 2: A protocol for classical verification of quantum partitioning circuits that is reusably
sound for each fixed instance (𝑥,̃︀𝑐).
Binding. Following the classical intuition, we would like to split (𝑥,̃︀𝑐) into yes and no instances:
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1. “Yes” instance: ̃︀𝑐 can only be opened in a way that would cause the verifier to output 𝑏 =
𝑃 (𝑄(𝑥)) (or ⊥). In this case, the prover could potentially learn the secret parameters sp via
repeated queries, but would not be able to break soundness.

2. “No” instance: ̃︀𝑐 can only be opened in a way that would cause the verifier to output 𝑏 ̸=
𝑃 (𝑄(𝑥)) (or ⊥). In this case, by one-time soundness of the underlying protocol, the prover
should never be able to make the verifier output anything other than ⊥.

Now, a crucial difference from the classical case is that a prover might launch a superposition of
both strategies, so we can’t exactly classify each (𝑥,̃︀𝑐) as either a yes or a no instance. However, in
this case we will hope to rely on some notion of binding from the PFC-II commitment scheme in
order to guarantee that the prover cannot meaningfully “mix” these two strategies.

As discussed above, Pauli functional commitments satisfy a notion of binding to classical bits
rather than to quantum states, so we will need to capture these two options using classical open-
ings. For the first option, the parallel repetition theorem of [ACGH20, Bar21] can be used to show
that if the verifier accepts, then many, say 4/5, of their output samples 𝑞𝑡 from indices {𝑆𝑖}𝑖:𝑇𝑖=1

must be such that 𝑃 (𝑞𝑡) = 𝑃 (𝑄(𝑥)). For the second option, it is clear that the verifier will only
output 𝑏 ̸= 𝑃 (𝑄(𝑥)) if at least half of these output samples are such that 𝑃 (𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)). Thus, it
suffices to show that the prover can’t mix the following strategies.

1. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=1 to samples 𝑞𝑡 such that a large fraction (say 4/5) of them
are “honest”: 𝑃 (𝑞𝑡) = 𝑃 (𝑄(𝑥)).

2. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=1 to samples 𝑞𝑡 such that a significant fraction (say 1/2) of
them are “dishonest”: 𝑃 (𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)).

Since the {𝑆𝑖}𝑖 positions are all standard basis positions, and no string can satisfy both re-
quirements, arguing that these strategies can’t mix should now reduce to some binding property
for the classical strings opened on the {𝑆𝑖}𝑖:𝑇𝑖=1 positions. However, note that in Fig. 2, none of
these positions are even opened by PFC-II.OpenZ (that is, opened in the standard basis)! Indeed,
only the test round positions are opened in the standard basis.

Thus, we need to relate the strings opened on {𝑆𝑖}𝑖:𝑇𝑖=1 to the strings opened on {𝑆𝑖}𝑖:𝑇𝑖=0.
Now, we note that 𝑇 is chosen via a random oracle applied to 𝑐, and 𝑐 already determines the
only possible openings for the standard basis positions since the PFC-I parameters are sampled
in perfectly binding mode on these positions. Thus, it is possible to argue that the adversary
can’t significantly change their distribution of opened strings on test round vs. Hadamard round
positions. So it suffices to show that the following strategies can’t mix:

1. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=0 to samples 𝑞𝑡 such that a large fraction (say 3/4) of them
are “honest”: 𝑃 (𝑞𝑡) = 𝑃 (𝑄(𝑥)).

2. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=0 to samples 𝑞𝑡 such that a significant fraction (say 1/3) of
them are “dishonest”: 𝑃 (𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)).

Thus, we will only need a “vanilla” notion of string binding for PFC-II, which can be reduced
(see Section 4.1 for more discussion) to a vanilla notion of single-bit binding for a quantum com-
mitment to a classical bit. That is, given a decoding keỹ︁dk, a commitment ̃︀𝑐, and a bit 𝑏, let

Π̃︁dk,̃︀𝑐,𝑏 := ∑︁
̃︀𝑢:DecZ(̃︁dk,̃︀𝑐,̃︀𝑢)=𝑏

|̃︀𝑢⟩ ⟨̃︀𝑢|
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be the projection onto strings ̃︀𝑢 that open to 𝑏. Then for any two-part adversary (C,U), where C is
the committer, and U is the “opener”15 (modeled as a unitary), it holds that for any 𝑏 ∈ {0, 1},

E
( ̃︀ck,̃︁dk)←Gen(1𝜆)

[︁⃦⃦
Π̃︁dk,̃︀𝑐,1−𝑏UΠ̃︁dk,̃︀𝑐,𝑏 |𝜓⟩ ⃦⃦ : (|𝜓⟩ ,̃︀𝑐)← C( ̃︀ck)]︁ = negl(𝜆).

A couple of remarks:

• Looking at Fig. 2, we see that this binding property should hold even if the opener has oracle
access to DecZ(̃︁dk,̃︀𝑐, ·). In fact, in the known construction of PFC-I described above [BCM+21,
Mah22], DecZ decoding can be public. Moreover, this definition of binding is weaker than
both the dual-mode and uncertainty properties, and thus our requirements for PFC-II can so
far be satisfied by the known construction of PFC-I.

• Note that we only require binding on the standard basis positions, that is, (𝑖, 𝑗) such that
ℎ𝑖,𝑗 = 0. Looking at Fig. 2, we see that the prover does not have access to DecX(̃︁dk𝑖,𝑗 ,̃︀𝑐𝑖,𝑗 , ·)
on these positions. This is important, because the ability to perform a Hadamard basis mea-
surement on the committed qubit implies the ability to reflect it across the 𝑋 (Hadamard
basis) axis, thus changing its standard basis measurement. Thus, it seems difficult to design
a Pauli functional commitment scheme that remains binding when the opener has access to
DecX.

Proving soundness for a single instance. Next, we briefly discuss how soundness for a single
instance can be proven based on this binding property of PFC-II. We start with an adversary
that is assumed to be breaking soundness after a number of queries to the verification oracle.
That is, they output a proof 𝜋* that causes the verifier to accept and output 𝑏 ̸= 𝑃 (𝑄(𝑥))). We
know that a significant fraction of the samples 𝑞𝑡 from positions {𝑆𝑖}𝑖:𝑇𝑖=0 in 𝜋* must be such
that 𝑄(𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)). Then, we replace each of the adversary’s Ver[sp,̃︁dk, (𝑥,̃︀𝑐)] queries one by
one to being answered with ⊥. While the adversary may query Ver[sp,̃︁dk, (𝑥,̃︀𝑐)] on accepting
𝜋, we know that for such 𝜋, a large fraction of the samples 𝑞𝑡 from positions {𝑆𝑖}𝑖:𝑇𝑖=0 must be
such that 𝑄(𝑞𝑡) = 𝑃 (𝑄(𝑥)). Thus, by the binding of PFC-II, the fact that we are changing the
oracle’s response to such 𝜋 should have a negligible effect on the probability that the adversary
continues to output 𝜋*, since 𝜋 and 𝜋* contain openings to different strings and thus reside in
parts of the adversary’s state that have negligible overlap. After replacing all of these queries
with ⊥, we see that our adversary is actually breaking soundness of the underlying one-time
sound protocol, since they no longer learn anything from their queries to Ver[sp,̃︁dk, (𝑥,̃︀𝑐)], which
completes the proof. For more details, see the discussion before the “soundness” part of the proof
of Theorem 5.12.

2.4 Public verifiability in the oracle model

Next, we show how to obtain full-fledged public-verifiability in the oracle model. As a first at-
tempt, we follow the classical approach, and include in the public parameters the PFC-II parame-
ters { ̃︀ck𝑖,𝑗}𝑖,𝑗 along with a classical oracle that implements the following program OGen[𝑘], which

15More precisely, U is an algorithm that tries to break binding by rotating a state that is supported on valid openings
to 𝑏 to a state that is supported on valid openings to 1− 𝑏. We refer to this part of the adversary as the opener.
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has a PRF key 𝑘 hard-coded.

OGen[𝑘]:

• Take an 𝑥 and a commitment ̃︀𝑐 as input, and compute 𝑠 := PRF𝑘((𝑥,̃︀𝑐)).
• Compute (pp, sp) := Gen(1𝜆; 𝑠) from Fig. 1 using random coins 𝑠, and output pp.

Unfortunately, this attempt does not result in a sound scheme. To see why, note that the ad-
versary can query the verification oracle on multiple (𝑥,̃︀𝑐), thus using it to implement the oracle
PFC-II.DecX(̃︁dk𝑖,𝑗 , ·, ·) for any index (𝑖, 𝑗) of its choice. Indeed, for each index (𝑖, 𝑗), the adversary
just has to find some (𝑥,̃︀𝑐) that generates parameters with ℎ𝑖,𝑗 = 1. As mentioned above, if the
opener has access to PFC-II.DecX(̃︁dk𝑖,𝑗 , ·, ·), it is not clear how to obtain any binding property for
the bit on index (𝑖, 𝑗). Thus, an adversary could break soundness on a particular instance (𝑥,̃︀𝑐) by
querying its oracles on other instances (𝑥′,̃︀𝑐′) in order to obtain access to any PFC-II.DecX(̃︁dk𝑖,𝑗 , ·, ·)
of its choice.

Using signature tokens. To solve this issue, we use signature tokens to make sure that the ad-
versary’s strategy on multiple distinct (𝑥,̃︀𝑐) cannot “mix”. That is, we include the signing key |sk⟩
for a signature token scheme in the public parameters, and alter OGen[𝑘] as follows, where vk is
the verification key for the signature token scheme.

OGen[𝑘, vk]:

• Take an 𝑥, a commitment ̃︀𝑐, and a signature 𝜎 as input.

• If 𝜎 is a valid signature of (𝑥,̃︀𝑐) under vk, compute 𝑠 := PRF𝑘((𝑥,̃︀𝑐, 𝜎)), and otherwise abort.

• Compute (pp, sp) := Gen(1𝜆; 𝑠) from Fig. 1 using random coins 𝑠, and output pp.

Moreover, the verification oracle Ver[vk, 𝑘], which now hard-codes 𝑘 rather than some fixed
secret parameters sp, will also require a valid signature 𝜎 on any (𝑥,̃︀𝑐) that it takes as input. In-
tuitively, once the adversary learns the public parameters pp𝑥,̃︀𝑐,𝜎 corresponding to some instance
(𝑥,̃︀𝑐) and signature 𝜎, it can only access the oracles PFC-II.DecX(dk𝑖,𝑗 , ·, ·) on the specific indices
(𝑖, 𝑗) such that ℎ𝑖,𝑗 = 1 for the ℎ hard-coded in parameters pp𝑥,̃︀𝑐,𝜎. Note that this actually requires
the signature token scheme to be strongly unforgeable. That is, the adversary shouldn’t even be able
to produce a different signature 𝜎′ on the same message (𝑥,̃︀𝑐), since then (𝑥,̃︀𝑐, 𝜎′) could be used
to generate a fresh set of parameters with different ℎ. While this notion was not proven explicitly
in [BS16], we note that it follows easily from their proof strategy.

To formalize this intuition, we treat the PRF as a random oracle𝐻 and make use of the measure
and re-program technique of [DFMS19, DFM20]. If the adversary is breaking soundness, it must
output a proof 𝜋 with respect to some (𝑥,̃︀𝑐, 𝜎). Thus, we can “pre-measure” one of the adversary’s
queries to𝐻 to obtain (𝑥,̃︀𝑐, 𝜎), and then re-program𝐻((𝑥,̃︀𝑐, 𝜎))→ 𝑠 to fresh randomness 𝑠, which
defines fresh parameters (pp𝑥,̃︀𝑐,𝜎, sp𝑥,̃︀𝑐,𝜎). After this measurement, by the strong unforgeability of
the signature token, the adversary won’t be able to query the verification oracle on any (𝑥′,̃︀𝑐′, 𝜎′) ̸=
(𝑥,̃︀𝑐, 𝜎), so they will only be able to access DecX(̃︁dk𝑖,𝑗 , ·, ·) for (𝑖, 𝑗) such that ℎ𝑖,𝑗 = 1 as defined by
pp𝑥,̃︀𝑐,𝜎. Then, security should reduce to the single instance setting discussed above.
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It is useful to note a crucial difference from the more direct but flawed approach to using
signature tokens discussed earlier in the overview. There, we could never hope to use the security
of the signature token, because we couldn’t “force” the adversary to ever measure a signature (and
indeed there was an attack on the attempted scheme). Here, since we are using the signature as
part of the input to a random oracle, we can make use of measure-and-reprogram to first “force”
a measurement of a signature during the security proof, and then use signature token security.

The need for public decodability. However, we have so far omitted a crucial detail. Note that
before the measurement of (𝑥,̃︀𝑐, 𝜎), the adversary can access any DecX oracle of its choice. Indeed,
we can’t hope to prevent this, as the adversary has full access to both OGen[𝑘, vk] and Ver[𝑘, vk],
and this measurement anyway only happens during an intermediate hybrid in the proof.

In the reduction to the binding of PFC-II, this first part of the adversary corresponds to the
commit stage. Thus, we will need a Pauli functional commitment scheme where the committer has
access to both the DecZ and DecX oracles, while the opener (necessarily) only has access to DecZ.

We refer to such a commitment scheme as a Pauli functional commitment with public decodability.
Somewhat more formally, we will require the following binding property, where DecZ[dk] (resp.
DecX[dk]) is the oracle implementing the classical functionality DecZ(dk, ·, ·) (resp. DecX(dk, ·, ·)).
For any polynomial-query adversary (C,U),

Pr
( ̃︀ck,̃︁dk)←Gen(1𝜆)

[︁⃦⃦
Π̃︁dk,̃︀𝑐,1−𝑏UDecZ[̃︁dk]Π̃︁dk,̃︀𝑐,𝑏 |𝜓⟩ ⃦⃦ = 1/poly(𝜆) : (|𝜓⟩ ,̃︀𝑐)← CDecZ[̃︁dk],DecX[̃︁dk]( ̃︀ck)]︁ = negl(𝜆).

Unfortunately, the known construction of Pauli functional commitments [BCM+21, Mah22]
does not satisfy this property, which we explain in the following section. Thus, in the remainder
of this overview, we demonstrate a novel approach to constructing Pauli functional commitments,
and describe a construction with public decodability in the oracle model. Once we have this com-
mitment, our construction of non-interactive publicly-verifiable classical verification of quantum
partitioning circuits is complete, which also completes our construction of obfuscation for pseudo-
deterministic quantum circuits.

2.5 Pauli functional commitments with public decodability

First, we review why the Pauli functional commitment based on claw-free hash functions [BCM+21,
Mah22] does not satisfy binding with public decodability. To commit to a state |𝜓⟩ = 𝛼0 |0⟩+𝛼1 |1⟩,
the committer evaluates and measures an (approximately) two-to-one hash function 𝑓 in super-
position to end up with a commitment 𝑐 and a left-over state 𝛼0 |0⟩ |𝑥0⟩ + 𝛼1 |1⟩ |𝑥1⟩, where 𝑥0, 𝑥1
are 𝑛-bit strings such that 𝑥0 starts with 0 and 𝑥1 starts with 1. If they do this honestly, it will hold
that 𝑓(𝑥0) = 𝑓(𝑥1) = 𝑐. Moreover, the receiver has a trapdoor for 𝑓 and can thus compute both 𝑥0
and 𝑥1 from 𝑐.

Now, a standard basis opening to the bit 𝑏 is the string 𝑥𝑏. To open |𝜓⟩ in the Hadamard basis,
the committer measures each qubit of their left-over state in the Hadamard basis, obtaining a bit
𝑏′ and a string 𝑑. It follows that 𝑏 := 𝑏′ + 𝑑 · (𝑥0 + 𝑥1)

16 is a decoding of the Hadamard basis
measurement of |𝜓⟩. Thus, if we define 𝑆 := {0, 𝑥0 + 𝑥1} to be a one-dimensional subspace of
F𝑛2 , access to the DecX oracle provides the committer with a membership oracle for the subspace

16Here, and throughout this section, all arithmetic will be over F2.
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𝑆⊥. Since 𝑆 is just one dimension, it is straightforward to use this oracle to learn a description of
𝑆, which is 𝑥0 + 𝑥1. But if the committer C computes the string 𝑥0 + 𝑥1 and passes it along with
𝛼0 |0⟩ |𝑥0⟩+ 𝛼1 |1⟩ |𝑥1⟩ to U, the opener can first measure their state in the standard basis to obtain
(𝑏, 𝑥𝑏), and then use 𝑥0 + 𝑥1 to compute (1− 𝑏, 𝑥1−𝑏), obtaining a valid opening for both bits in the
standard basis. This completely breaks any notion of binding for the commitment scheme.

Using a larger subspace. To solve this issue, we follow this template but increase the dimen-
sion of 𝑆, thus decreasing the dimension of 𝑆⊥. That is, suppose that the left-over state after a
commitment to |𝜓⟩ = 𝛼0 |0⟩+ 𝛼1 |1⟩was instead

𝛼0 |0⟩ |𝐴0⟩+ 𝛼1 |1⟩ |𝐴1⟩ ,

where 𝐴 = 𝑆+𝑣 is a coset of a random 𝑛/2-dimensional subspace 𝑆,17 𝐴0 is the affine subspace of
vectors in 𝐴 that start with 0, and 𝐴1 is the affine subspace of vectors in 𝐴 that start with 1. Here,
we are using the notation

|𝐴⟩ := 1√︀
|𝐴|

∑︁
𝑠∈𝐴
|𝑠⟩

for any affine subspace 𝐴.
It can be shown that if this state is measured in the Hadamard basis to produce 𝑏′, 𝑑, then

𝑏 := 𝑏′ ⊕ 𝑟𝑑,𝑆 is a decoding of the Hadamard basis measurement of |𝜓⟩, where we define the bit
𝑟𝑑,𝑆 = 0 if 𝑑 ∈ 𝑆⊥ and 𝑟𝑑,𝑆 = 1 if 𝑑+ (1, 0, . . . , 0) ∈ 𝑆⊥. Thus, the DecX oracle can be implemented
just given a membership checking oracle for 𝑆⊥. Moreover, now that 𝑆⊥ has 𝑛/2 dimensions,
and 𝑆 is random, it is no longer clear that an adversary can use oracle access to 𝑆⊥ to learn a
description of 𝑆.

Completing the construction. Now, two main questions remain: (1) How do we define a com-
mitment key ck that enables the committer to apply the map |𝑏⟩ → |𝑏⟩ |𝐴𝑏⟩? (2) What is the actual
commitment string 𝑐? We will first address question (1).

Our commitment key will consist of a quantum state and a classical oracle. The Gen algo-
rithm will sample a random 𝑛/2-dimensional affine subspace 𝐴 = 𝑆 + 𝑣, set dk = 𝐴, and re-
lease the quantum state |𝐴⟩, which is a uniform superposition over all vectors in 𝐴. Note that
|𝐴⟩ = 1√

2
|𝐴0⟩+ 1√

2
|𝐴1⟩, which can be seen as the “|+⟩” state in the two-dimensional space spanned

by |𝐴0⟩ and |𝐴1⟩. Thus, for any 𝑏 ∈ {0, 1}, we need to allow the committer to rotate the |+⟩ state
to the “|𝑏⟩” state |𝐴𝑏⟩. It is easy to project onto vectors that start with either 0 or 1, but we will
have to implement a reflection across the 𝑋-axis of this space if this projection results in |𝐴1−𝑏⟩.
While it is clear that this can be done given a quantum oracle implementing the projection |𝐴⟩ ⟨𝐴|,
it was observed by [AGKZ20] that a classical oracle for membership in 𝑆⊥ suffices! Thus, as a first
attempt, we will set the commitment key ck to consist of |𝐴⟩ and an oracle 𝑂[𝑆⊥] for membership
in 𝑆⊥.

This brings us to our second question. So far, we have shown that a committer, given ck, can
perform the map

𝛼0 |0⟩+ 𝛼1 |1⟩ → 𝛼0 |0⟩ |𝐴0⟩+ 𝛼1 |1⟩ |𝐴1⟩ ,
17Assume that 𝐴 and 𝑆 are “balanced”, meaning that exactly half of their vectors start with 0.

17



and give this final state to the opener. However, since the opener also has access to ck and
thus to 𝑂[𝑆⊥], there is no sense in which the original state is committed, since the opener could
continue to use 𝑂[𝑆⊥] to rotate arbitrarily around the space spanned by |𝐴0⟩ and |𝐴1⟩.

To fix this, we use a signature token. We include the signing key |sk⟩ for a single-bit signature
token scheme in ck, and alter the oracle 𝑂[𝑆⊥] so that it only responds given a valid signature
on 0. The actual commitment string 𝑐 will then be a signature on 1. Thus, while the committer is
free to rotate around span{|𝐴0⟩ , |𝐴1⟩} using access to 𝑆⊥, as soon as it outputs a valid classical
commitment string 𝑐, the membership oracle for 𝑆⊥ will become inaccessible and the opener will
intuitively be unable to make further changes to the state.

The proof of binding. Now, it remains to formalize this intuition, and prove that this scheme
satisfies binding with public decodability. After appealing to the security of the signature token
scheme, we can reduce this to showing that for any polynomial-query adversary (C,U),

Pr
[︁⃦⃦

Π𝐴1U
𝑂[𝐴]Π𝐴0 |𝜓⟩

⃦⃦
≥ 1/poly(𝜆) : |𝜓⟩ ← C𝑂[𝐴],𝑂[𝑆⊥](|𝐴⟩)

]︁
= negl,

where the probability is over a random choice of 𝑛/2-dimensional affine subspace 𝐴 = 𝑆 +
𝑣, and Π𝐴𝑏 is the projection onto vectors 𝑠 ∈ 𝐴𝑏. Note that C and U have access to 𝑂[𝐴], the
membership checking oracle for the affine subspace 𝐴 since this is needed to implement DecZ,
and C has access to 𝑂[𝑆⊥] because it is needed to implement both ck and DecX.

To show this, we will follow [AC12]’s blueprint for proving security in the classical oracle
model, and proceed via the following steps.

1. Show that we can instead sample 𝐴 from a public ambient space of dimension 3𝑛/4, and
remove U’s access to the 𝑂[𝐴] oracle.

2. Perform a worst-case to average-case reduction over the sampling of 𝐴.

3. Have the committer apply amplitude amplification onto Π𝐴0 . At this point, we can reduce
the problem to showing that for small enough 𝜖, there cannot exist a query-bounded C and
a unitary U such that for all 𝑛/2-dimensional affine subspaces 𝐴 of F3𝑛/4

2 ,

|𝜓𝐴⟩ ∈ Im(Π𝐴0) and
⃦⃦
Π𝐴1U |𝜓𝐴⟩

⃦⃦
≥ 𝜖,

where |𝜓𝐴⟩ ← C𝑂[𝐴],𝑂[𝑆⊥](|𝐴⟩).

4. Apply the “inner-product adversary method” of [AC12]. That is, we (i) define a relation ℛ
on pairs of affine subspaces (𝐴,𝐵) such that ⟨𝐴|𝐵⟩ = 1/2 for all (𝐴,𝐵) ∈ ℛ, (ii) argue that
for any collection of states {|𝜓𝐴⟩}𝐴 that satisfy the above conditions,

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≤ 1/2− 𝛿

for some large enough 𝛿, and (iii) conclude that if C can decrease the expected inner product
overℛ by 𝛿, it must be making “too many” oracle queries, yielding a contradiction.

However, arguing part (ii) of this final step turns out to be significantly more challenging than
analogous claims in previous work (e.g. [AC12, BS16, AGKZ20]). Indeed, the condition is neither
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that |𝜓𝐴⟩ is some fixed state (as in [AC12]), or that measuring |𝜓𝐴⟩ in the standard basis yields a
classical string in some well-defined set (as in [BS16, AGKZ20]). Rather, the condition involves
reasoning about the overlap between two projectors, where one is defined via an arbitrary rotation
U. Moreover, we only have the guarantee that |𝜓𝐴⟩ is 𝜖-close to Im(U†Π𝐴1U), and this value cannot
be amplified to 1 (depending on U, the images of Π𝐴0 and U†Π𝐴1U may not intersect at all).

In Appendix B, we show that for our definition of ℛ, 𝛿 > 𝜖13, which is enough for us to reach
a contradiction and complete the proof. We proceed by contradiction, and eventually reduce to a
Welch bound [Wel74], which upper bounds the number of vectors of a given minimum distance
that can be packed into a low-dimensional Hilbert space. We defer a further overview and details
of this proof to Appendix B. This completes our proof of binding with public decodability.

3 Preliminaries

Let 𝜆 denote the security parameter. We write negl(·) to denote any negligible function, which
is a function 𝑓 such that for every constant 𝑐 ∈ N there exists 𝑁 ∈ N such that for all 𝑛 > 𝑁 ,
𝑓(𝑛) < 𝑛−𝑐. We write non-negl(·) to denote any function 𝑓 that is not negligible. That is, there
exists a constant 𝑐 such that for infinitely many 𝑛, 𝑓(𝑛) ≥ 𝑛−𝑐. Finally, we write poly(·) to denote
any polynomial function 𝑓 . That is, there exists a constant 𝑐 such that for all 𝑛 ∈ N, 𝑓(𝑛) ≤ 𝑛−𝑐.
For two probability distributions 𝐷0, 𝐷1 with classical support 𝑆, let

TV (𝐷0, 𝐷1) :=
∑︁
𝑥∈𝑆
|𝐷0(𝑥)−𝐷1(𝑥)|

denote the total variation distance. For a set 𝑆, we let 𝑥← 𝑆 denote sampling a uniformly random
element 𝑥 from 𝑆. For a classical randomized algorithm 𝑦 ← 𝐶(𝑥), we let 𝑦 := 𝐶(𝑥; 𝑟) denote
running 𝐶 with random coins 𝑟.

3.1 Quantum information

An 𝑛-qubit register 𝒳 is a named Hilbert space C2𝑛 . A pure quantum state on register 𝒳 is a unit
vector |𝜓⟩𝒳 ∈ C2𝑛 . A mixed state on register 𝒳 is described by a density matrix 𝜌𝒳 ∈ C2𝑛×2𝑛 ,
which is a positive semi-definite Hermitian operator with trace 1.

A quantum operation 𝐹 is a completely-positive trace-preserving (CPTP) map from a register 𝒳
to a register 𝒴 , which in general may have different dimensions. That is, on input a density matrix
𝜌𝒳 , the operation 𝐹 produces 𝐹 (𝜌𝒳 ) = 𝜏𝒴 a mixed state on register 𝒴 . A unitary 𝑈 : 𝒳 → 𝒳 is
a special case of a quantum operation that satisfies 𝑈 †𝑈 = 𝑈𝑈 † = I𝒳 , where I𝒳 is the identity
matrix on register 𝒳 . A projector Π is a Hermitian operator such that Π2 = Π, and a projective
measurement is a collection of projectors {Π𝑖}𝑖 such that

∑︀
𝑖Π𝑖 = I. Throughout this work, we will

often write an expression like Π |𝜓⟩, where |𝜓⟩ has been defined on some multiple registers, say
𝒳 , 𝒴 , and 𝒵 , and Π has only been defined on a subset of these registers, say 𝒴 . In this case, we
technically mean (I𝒳 ⊗Π⊗ I𝒵) |𝜓⟩, but we drop the identity matrices for notational convenience.

A family of quantum circuits is in general a sequence of quantum operations {𝐶𝜆}𝜆∈N, param-
eterized by the security parameter. We say that the family is quantum polynomial time (QPT) if 𝐶𝜆
can be implemented with a poly(𝜆)-size circuit. A family of oracle-aided quantum circuits {𝐶𝐹𝜆 }𝜆∈N
have access to an oracle 𝐹 : {0, 1}* → {0, 1}* that implements some classical map. That is, 𝐶
can apply a unitary that maps |𝑥⟩ |𝑦⟩ → |𝑥⟩ |𝑦 ⊕ 𝐹 (𝑥)⟩. Finally, we will sometimes also consider
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families of unitaries {𝑈𝜆}𝜆∈N and families of oracle-aided unitaries {𝑈𝐹𝜆 }𝜆∈N, where each operation
between oracle queries is a unitary.

Let Tr denote the trace operator. For registers 𝒳 ,𝒴 , the partial trace Tr𝒴 is the unique operation
from 𝒳 ,𝒴 to 𝒳 such that for all (𝜌, 𝜏)𝒳 ,𝒴 , Tr𝒴(𝜌, 𝜏) = Tr(𝜏)𝜌. The trace distance between states 𝜌, 𝜏 ,
denoted TD(𝜌, 𝜏) is defined as

TD(𝜌, 𝜏) :=
1

2
Tr

(︂√︁
(𝜌− 𝜏)†(𝜌− 𝜏)

)︂
.

The trace distance between two states 𝜌 and 𝜏 is an upper bound on the probability that any
(unbounded) algorithm can distinguish 𝜌 and 𝜏 .

Lemma 3.1 (Gentle measurement [Win99]). Let 𝜌 be a quantum state and let (Π, I−Π) be a projective
measurement such that Tr(Π𝜌) ≥ 1− 𝛿. Let

𝜌′ =
Π𝜌Π

Tr(Π𝜌)

be the state after applying (Π, I − Π) to 𝜌 and post-selecting on obtaining the first outcome. Then,
TD(𝜌, 𝜌′) ≤ 2

√
𝛿.

We will also often make use of the following simple claim.

Claim 3.2. Consider a register ℛ on 𝑛 qubits and a distribution ℱ over classical functions 𝑓 : {0, 1}𝑛 →
{0, 1}. For any such 𝑓 , let Π𝑓 be the projection onto 𝑥 such that 𝑓(𝑥) = 1. Then for any |𝜓⟩ on registerℛ,

E
𝑓←ℱ

[︁⃦⃦
Π𝑓 |𝜓⟩

⃦⃦2]︁ ≤ max
𝑥

{︂
Pr
𝑓←ℱ

[𝑓(𝑥) = 1]

}︂
.

Proof. For any |𝜓⟩ :=
∑︀

𝑥 𝛼𝑥 |𝑥⟩, write

E
𝑓←ℱ

[︁⃦⃦
Π𝑓 |𝜓⟩

⃦⃦2]︁
= E

𝑓←ℱ

⎡⎣ ∑︁
𝑥:𝑓(𝑥)=1

|𝛼𝑥|2
⎤⎦ =

∑︁
𝑥

Pr
𝑓←ℱ

[𝑓(𝑥) = 1] · |𝛼𝑥|2 ≤ max
𝑥

{︂
Pr
𝑓←ℱ

[𝑓(𝑥) = 1]

}︂
,

where the last inequality holds because {|𝛼𝑥|2}𝑥 is a probability distribution.

Finally, we define the notion of a pseudo-deterministic quantum ciruit.

Definition 3.3 (Pseudo-deterministic quantum circuit). A family of psuedo-deterministic quantum
circuits {𝑄𝜆}𝜆∈N is defined as follows. The circuit 𝑄𝜆 takes as input a classical string 𝑥 ∈ {0, 1}𝑛(𝜆)
and outputs a bit 𝑏 ← 𝑄𝜆(𝑥). The circuit is pseudo-deterministic if for every sequence of classical inputs
{𝑥𝜆}𝜆∈N, there exists a sequence of outputs {𝑏𝜆}𝜆∈N such that

Pr[𝑄𝜆(𝑥𝜆)→ 𝑏𝜆] = 1− negl(𝜆).

We will often leave the dependence on 𝜆 implicit, and just refer to pseudo-deterministic circuits𝑄with input
𝑥. In a slight abuse of notation, we will denote by 𝑄(𝑥) the bit 𝑏 such that Pr[𝑄(𝑥)→ 𝑏] = 1− negl(𝜆).
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3.2 Obfuscation

Definition 3.4 (Virtual black-box obfuscation). A virtual black-box (VBB) obfuscator for a family of
pseudo-deterministic quantum (resp. classical) circuits is a pair of QPT algorithms (Obf,Eval) with the
following syntax.

• Obf(1𝜆, 𝑄) → ̃︀𝑄: Obf takes as input the security parameter 1𝜆 and the description of a quantum
(resp. classical) circuit 𝑄, and outputs a (potentially quantum) obfuscated circuit ̃︀𝑄.

• Eval( ̃︀𝑄, 𝑥) → 𝑏: Eval takes as input an obfuscated circuit ̃︀𝑄 and an input 𝑥, and outputs a bit
𝑏 ∈ {0, 1}.

A VBB obfuscator should satisfy the following properties for any pseudo-deterministic (resp. classical)
family of circuits 𝑄 = {𝑄𝜆}𝜆∈N with input length 𝑛 = 𝑛(𝜆).

• Correctness: It holds with probability 1 − negl(𝜆) over ̃︀𝑄 ← Obf(1𝜆, 𝑄) that for all 𝑥 ∈ {0, 1}𝑛,
Pr[Eval( ̃︀𝑄, 𝑥)→ 𝑄(𝑥)] = 1− negl(𝜆).

• Security: For any QPT adversary {A𝜆}𝜆∈N, there exists a QPT simulator {S𝜆}𝜆∈N such that⃒⃒⃒⃒
Pr
[︁
1← A𝜆

(︁
Obf(1𝜆, 𝑄)

)︁]︁
− Pr

[︁
1← S

𝑂[𝑄]
𝜆

]︁ ⃒⃒⃒⃒
= negl(𝜆),

where 𝑂[𝑄] is the oracle that computes the map 𝑥→ 𝑄(𝑥).

Definition 3.5 (Indistinguishability obfuscation). An indistinguishability obfuscator (iO) for a family
of pseudo-deterministic (resp. classical) circuits is a pair of QPT algorithms (Obf,Eval) that has the same
syntax and correctness properties as a VBB obfuscator and satisfies the following security property. For
any QPT adversary {A𝜆}𝜆∈N and pair of functionally equivalent families of pseudo-deterministic (resp.
classical) circuits 𝑄0 = {𝑄0,𝜆}𝜆∈N, 𝑄1 = {𝑄1,𝜆}𝜆∈N,⃒⃒⃒

Pr
[︁
1← A𝜆

(︁
Obf(1𝜆, 𝑄0)

)︁]︁
− Pr

[︁
1← A𝜆

(︁
Obf(1𝜆, 𝑄1)

)︁]︁⃒⃒⃒
= negl(𝜆).

3.3 Dual-mode randomized trapdoor claw-free hash functions

Definition 3.6. Let {𝑋𝜆}𝜆∈N and {𝑌𝜆}𝜆∈N be families of finite sets. Below, we will leave the dependence
of these sets on 𝜆 implicit. A dual-mode randomized trapdoor claw-free hash function is described by
a tuple of algorithms (Gen,Eval, Invert,Check, IsValid) with the following syntax.

• Gen(1𝜆, ℎ) → (pk, sk) is a randomized classical algorithm that takes as input a security parameter
1𝜆 and a bit ℎ ∈ {0, 1} (where ℎ = 0 indicates injective mode and ℎ = 1 indicates 2-to-1 mode),
and outputs a public key pk and a secret key sk. The public key pk implicitly defines a function
𝑓pk : {0, 1} ×𝑋 → 𝒟𝑌 , where 𝒟𝑌 is the set of probability distributions over 𝑌 .

• Eval(pk, 𝑏)→ |𝜓pk,𝑏⟩ is a QPT algorithm that takes as input a public key pk and a bit 𝑏, and outputs
a fixed pure state |𝜓pk,𝑏⟩𝒳 ,𝒴 on two registers 𝒳 and 𝒴 , where 𝒳 is spanned by the elements of 𝑋 and
𝒴 is spanned by the elements of 𝑌 . We then define

Eval[pk] := |0⟩ ⟨0|ℬ ⊗ Eval(pk, 0) + |1⟩ ⟨1|ℬ ⊗ Eval(pk, 1),

which is a map from the single qubit register ℬ to registers (ℬ,𝒳 ,𝒴).

21



• Invert(ℎ, sk, 𝑦) is a deterministic classical algorithm that takes as input ℎ ∈ {0, 1}, a secret key sk,
and an element 𝑦 ∈ 𝑌 . If ℎ = 0, it outputs a pair (𝑏, 𝑥) ∈ {0, 1} ×𝑋 or ⊥. If ℎ = 1, it outputs two
pairs (0, 𝑥0) and (1, 𝑥1) with 𝑥0, 𝑥1 ∈ 𝑋 , or ⊥.

• Check(pk, 𝑏, 𝑥, 𝑦) → {⊤,⊥} is a deterministic classical algorithm that takes as input a public key
pk, a bit 𝑏 ∈ {0, 1}, an element 𝑥 ∈ 𝑋 , and an element 𝑦 ∈ 𝑌 , and outputs either ⊤ or ⊥.

• IsValid(𝑥0, 𝑥1, 𝑑) → {⊤,⊥} is a deterministic classical algorithm that takes as input two elements
𝑥0, 𝑥1 ∈ 𝑋 and a string 𝑑, and outputs either ⊤,⊥, characterizing membership in a set that we call

Valid𝑥0,𝑥1 := {𝑑 : IsValid(𝑥0, 𝑥1, 𝑑) = 1}.

We require that the following properties are satisfied.

1. Correctness:

(a) For all (pk, sk) ∈ Gen(1𝜆, 0): For every 𝑏 ∈ {0, 1}, every 𝑥 ∈ 𝑋 , and every 𝑦 ∈ Supp(𝑓pk(𝑏, 𝑥)),

Invert(0, sk, 𝑦) = (𝑏, 𝑥).

(b) For all (pk, sk) ∈ Gen(1𝜆, 1): For every 𝑏 ∈ {0, 1}, every 𝑥 ∈ 𝑋 , and every 𝑦 ∈ Supp(𝑓pk(𝑏, 𝑥)),

Invert(1, sk, 𝑦) = ((0, 𝑥0), (1, 𝑥1))

such that 𝑥𝑏 = 𝑥, 𝑦 ∈ Supp(𝑓pk(0, 𝑥0)), and 𝑦 ∈ Supp(𝑓pk(1, 𝑥1)).
(c) For all (pk, sk) ∈ Gen(1𝜆, 0) ∪ Gen(1𝜆, 1), every 𝑏 ∈ {0, 1} and every 𝑥 ∈ 𝑋 , it holds that

Check(pk, (𝑏, 𝑥), 𝑦) = 1 if and only if 𝑦 ∈ Supp(𝑓pk(𝑏, 𝑥)).
(d) For all (pk, sk) ∈ Gen(1𝜆, 0) ∪ Gen(1𝜆, 1) and every 𝑏 ∈ {0, 1}, it holds that

TD

⎛⎝|𝜓pk,𝑏⟩𝒳 ,𝒴 ,
1√︀
|𝑋|

∑︁
𝑥∈𝑋,𝑦∈𝑌

√︁
(𝑓pk(𝑏, 𝑥))(𝑦) |𝑥⟩𝒳 |𝑦⟩𝒴

⎞⎠ = negl(𝜆),

where |𝜓pk,𝑏⟩ ← Eval(pk, 𝑏).
(e) For all (pk, sk) ∈ Gen(1𝜆, 1) and every pair of elements 𝑥0, 𝑥1 ∈ 𝑋 , the density of Valid𝑥0,𝑥1 is

1− negl(𝜆).

2. Key indistinguishability: For every QPT adversary {A𝜆}𝜆∈N,⃒⃒⃒
Pr
[︁
1← A𝜆(pk) : (pk, sk)← Gen(1𝜆, 0)

]︁
−Pr

[︁
1← A𝜆(pk) : (pk, sk)← Gen(1𝜆, 1)

]︁ ⃒⃒⃒
= negl(𝜆).

3. Adaptive hardcore bit: There is an efficiently computable and efficiently invertible injection 𝐽 :
𝑋 → {0, 1}𝑤 such that for every QPT adversary {A𝜆}𝜆∈N,⃒⃒⃒⃒

⃒Pr
⎡⎣ Check(pk, 𝑏, 𝑥, 𝑦) = 1 ∧
𝑑 ∈ Valid𝑥0,𝑥1 ∧
𝑑 · (𝐽(𝑥0)⊕ 𝐽(𝑥1)) = 0

:
(pk, sk)← Gen(1𝜆, 1)
(𝑦, 𝑏, 𝑥, 𝑑)← A𝜆(pk)

((0, 𝑥0), (1, 𝑥1)) := Invert(1, sk, 𝑦)

⎤⎦
− Pr

⎡⎣ Check(pk, 𝑏, 𝑥, 𝑦) = 1 ∧
𝑑 ∈ Valid𝑥0,𝑥1 ∧
𝑑 · (𝐽(𝑥0)⊕ 𝐽(𝑥1)) = 1

:
(pk, sk)← Gen(1𝜆, 1)
(𝑦, 𝑏, 𝑥, 𝑑)← A𝜆(pk)

((0, 𝑥0), (1, 𝑥1)) := Invert(1, sk, 𝑦)

⎤⎦ ⃒⃒⃒⃒⃒ = negl(𝜆).

The works of [BCM+21, Mah22] showed that, assuming QLWE, there exists a dual-mode ran-
domized trapdoor claw-free hash function.
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3.4 Quantum fully-homomorphic encryption

We define quantum fully-homomorphic encryption (QFHE) with classical keys and classical en-
cryption of classical messages. One could also define encryption for quantum states and decryp-
tion for quantum ciphertexts, but we will not need that in this work.

Definition 3.7 (Quantum fully-homomorphic encryption). A quantum fully-homomorphic encryption
scheme (Gen,Enc,Eval,Dec) consists of the following efficient algorithms.

• Gen(1𝜆, 𝐷)→ (pk, sk): On input the security parameter 1𝜆 and a circuit depth𝐷, the key generation
algorithm returns a public key pk and a secret key sk.

• Enc(pk, 𝑥) → ct: On input the public key pk and a classical plaintext 𝑥, the encryption algorithm
returns a classical ciphertext ct.

• Eval(𝑄, ct) → ̃︀ct: On input a quantum circuit 𝑄 and a ciphertext ct, the quantum evaluation
algorithm returns an evaluated ciphertext ̃︀ct.

• Dec(sk, ct) → 𝑥: On input the secret key sk and a classical ciphertext ct, the decryption algorithm
returns a message 𝑥.

The scheme should satisfy the standard notion of semantic security.

Definition 3.8 (Semantic security). A QFHE scheme (Gen,Enc,Eval,Dec) is secure if for any QPT
adversary {A𝜆}𝜆∈N and circuit depth 𝐷,

⃒⃒⃒⃒
Pr

[︂
A𝜆(ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 0)

]︂
−Pr

[︂
A𝜆(ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 1)

]︂ ⃒⃒⃒⃒
= negl(𝜆).

We will also require the following notion of correctness for evaluation of pseudo-deterministic
quantum circuits.

Definition 3.9 (Evaluation Correctness). A QFHE scheme (Gen,Enc,Eval,Dec) is correct if for any
polynomial𝐷(𝜆), family of pseudo-deterministic quantum circuits {𝑄𝜆}𝜆∈N of depth𝐷(𝜆), inputs {𝑥𝜆}𝜆∈N,
security parameter 𝜆, (pk, sk) ∈ Gen(1𝜆, 𝐷(𝜆)), and ct ∈ Enc(pk, 𝑥),

Pr[Dec(sk,Eval(𝑄𝜆, ct)) = 𝑄𝜆(𝑥𝜆)] = 1− negl(𝜆).

The works of Mahadev [Mah18] and Brakerski [Bra18] show that such a QFHE scheme can be
constructed from QLWE.

3.5 Measure and re-program

Imported Theorem 3.10 (Measure and re-program [DFMS19, DFM20]). 18 Let 𝐴,𝐵 be finite non-
empty sets, and let 𝑞 ∈ N. Let A be an oracle-aided quantum circuit that makes 𝑞 queries to a uniformly

18This theorem was stated more generally in [DFMS19, DFM20] to consider the drop in expectation for each specific
𝑎* ∈ 𝐴, and also to consider a more general class of quantum predicates.
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random function 𝐻 : 𝐴 → 𝐵 and then outputs classical strings (𝑎, 𝑧) where 𝑎 ∈ 𝐴. There exists a
two-stage quantum circuit Sim[A] such that for any predicate 𝑉 , it holds that

Pr

⎡⎣𝑉 (𝑎, 𝑏, 𝑧) = 1 :
(𝑎, state)← Sim[A]

𝑏← 𝐵
𝑧 ← Sim[A](𝑏, state)

⎤⎦ ≥ Pr
[︀
𝑉 (𝑎,𝐻(𝑎), 𝑧) = 1 : (𝑎, 𝑧)← A𝐻

]︀
(2𝑞 + 1)2

.

Moreover, Sim[A] operates as follows.

• Sample 𝐻 : 𝐴 → 𝐵 as a 2𝑞-wise independent function and (𝑖, 𝑑) ← ({0, . . . , 𝑞 − 1} × {0, 1}) ∪
{(𝑞, 0)}.

• Run A until it has made 𝑖 oracle queries, answering each query using 𝐻 .

• When A is about to make its (𝑖+ 1)’th oracle query, measure its query registers in the standard basis
to obtain 𝑎. In the special case that (𝑖, 𝑑) = (𝑞, 0), the simulator measures (part of) the final output
register of A to obtain 𝑎.

• The simulator receives 𝑏← 𝐵.

• If 𝑑 = 0, answer A’s (𝑖 + 1)’th query using 𝐻 , and if 𝑑 = 1, answer A’s (𝑖 + 1)’th query using
𝐻[𝑎→ 𝑏], which is the function 𝐻 except that 𝐻(𝑎) is re-programmed to 𝑏.

• Run A until it has made all 𝑞 oracle queries. For queries 𝑖+ 2 through 𝑞, answer using 𝐻[𝑎→ 𝑏].

• Measure A’s output 𝑧.

Note that the running time of Sim[A] is at most poly(𝑞, log |𝐴|, log |𝐵|) times the running time of A.

3.6 Signature tokens

A signature token scheme consists of algorithms (Gen, Sign,Verify) with the following syntax.

• Gen(1𝜆)→ (vk, |sk⟩): The Gen algorithm takes as input the security parameter 1𝜆 and outputs
a classical verification key vk and a quantum signing key |sk⟩.

• Sign(𝑏, |sk⟩) → 𝜎: The Sign algorithm takes as input a bit 𝑏 ∈ {0, 1} and the signing key |sk⟩,
and outputs a signature 𝜎.

• Verify(vk, 𝑏, 𝜎) → {⊤,⊥}: The Verify algorithm takes as input a verification key vk, a bit 𝑏,
and a signature 𝜎, and outputs ⊤ or ⊥.

A signature token should satisfy the following definition of correctness.

Definition 3.11. A signature token scheme (Gen,Sign,Verify) is correct if for any 𝑏 ∈ {0, 1},

Pr

[︂
Verify(vk, 𝑏, 𝜎) = ⊤ :

(vk, |sk⟩)← Gen(1𝜆)
𝜎 ← Sign(𝑏, |sk⟩)

]︂
= 1− negl(𝜆).

Next, we define notions of unforgeability. In this paper, it suffices to consider security in the
oracle model, where the adversarial signer has oracle access to the verification function, rather than
to the description of the verification key vk itself.
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Definition 3.12. A signature token scheme (Gen, Sign,Verify) satisfies unforgeability if for any oracle-
aided adversary {A𝜆}𝜆∈N that makes at most poly(𝜆) oracle queries,

Pr

[︃
Verify(vk, 0, 𝜎0) = ⊤ ∧
Verify(vk, 1, 𝜎1) = ⊤

:
(vk, |sk⟩)← Gen(1𝜆)

(𝜎0, 𝜎1)← A
Verify[vk]
𝜆 (|sk⟩)

]︃
= negl(𝜆),

where Verify[vk] is the functionality Verify(vk, ·, ·).

Imported Theorem 3.13 ([BS16]). There exists a signature token scheme in the oracle model that satisfies
unforgeability.

We will also require a signature token with the property of strong unforgeability, defined as
follows.

Definition 3.14. A signature token scheme (KeyGen, Sign,Verify) satisfies strong unforgeability if for
any oracle-aided adversary {A𝜆}𝜆∈N that makes at most poly(𝜆) oracle queries,

Pr

⎡⎣ (𝑏0, 𝜎0) ̸= (𝑏1, 𝜎1) ∧
Verify(vk, 𝑏0, 𝜎0) = ⊤ ∧
Verify(vk, 𝑏1, 𝜎1) = ⊤

:
(vk, |sk⟩)← Gen(1𝜆)

(𝑏0, 𝜎0, 𝑏1, 𝜎1)← A
Verify[vk]
𝜆 (|sk⟩)

⎤⎦ = negl(𝜆),

where Verify[vk] is the functionality Verify(vk, ·, ·).

Claim 3.15. There exists a signature token scheme in the oracle model that satisfies strong unforgeability.

Proof. This follows by a slight tweak to arguments in [BS16]. We first note that by a union bound,
it suffices to show that each of the following three cases happens with negligible probability: (1)
A𝜆 outputs 𝜎0, 𝜎1 such that 𝜎0 is a valid signature of 0 and 𝜎1 is a valid signature of 1, (2) A𝜆
outputs 𝜎0 ̸= 𝜎′0 that are both valid signatures of 0, and (3) A𝜆 outputs 𝜎1 ̸= 𝜎′1 that are both valid
signatures of 1. The first case is already proven by [BS16].

The second case can be shown by following the proofs in [BS16] except for one difference: for a
subspace 𝐴 < F𝑛2 , the “target set” Λ(𝐴) (defined on page 25 of [BS16]) is instead defined to consist
of pairs of vectors (𝑎, 𝑏) such that 𝑎 ̸= 𝑏 ∈ 𝐴 ∖ {0𝑛}. The only change in the proof then comes in
[BS16, Lemma 19], where we need to show that

max
𝐴∈𝑆(𝑛),(𝑎,𝑏)∈Λ(𝐴)

Pr
𝐵←ℛ𝐴

[(𝑎, 𝑏) ∈ Λ(𝐵)] ≤ 1

4
,

where 𝑆(𝑛) is the set of subspaces of F𝑛2 of dimension 𝑛/2, and for any 𝐴 ∈ 𝑆(𝑛), ℛ𝐴 is the set of
𝐵 ∈ 𝑆(𝑛) such that dim(𝐴 ∩ 𝐵) = 𝑛/2 − 1. This follows by first noting that any distinct non-zero
𝑎, 𝑏 ∈ 𝐴 specify a two-dimensional subspace {0, 𝑎, 𝑏, 𝑎 + 𝑏}. Then, following the proof of [BS16,
Lemma 19], and defining

𝐺(𝑚, 𝑘) :=
𝑘−1∏︁
𝑖=0

2𝑚−𝑖 − 1

2𝑘−𝑖 − 1

to be the number of subspaces of F𝑘2 of dimension 𝑚, we have that this expression is at most

𝐺(𝑛/2− 2, 𝑛/2− 3)

𝐺(𝑛/2, 𝑛/2− 1)
=

2𝑛/2−1 − 1

2𝑛/2 − 1
· 2

𝑛/2−2 − 1

2𝑛/2−1 − 1
≤ 1

4
.

Finally, the third case can be proven in the same way as the second, by defining Λ(𝐴) as the set
of (𝑎, 𝑏) such that 𝑎 ̸= 𝑏 ∈ 𝐴⊥ ∖ {0𝑛}.
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Remark 3.16. It is straightforward to extend any single-bit signature token scheme (which is described
above) to a multi-bit scheme for polynomial-size messages, by signing each bit with a different invocation of
the single-bit scheme.

4 Pauli Functional Commitments

4.1 Definition

A Pauli functional commitment resembles a standard bit commitment scheme with a classical
receiver. However, when used to commit to a qubit |𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ in superposition, it
supports the ability to open to either a standard or Hadamard basis measurement of |𝜓⟩. A Pauli
functional commitment should also satisfy some notion of binding to a classical bit.

The syntax of a Pauli functional commitment is given below. We present the syntax in the
oracle model, where the committer obtains access to an efficient classical oracle CK as part of its
commitment key. Such a scheme can be heuristically instantiated in the plain model by using a
post-quantum indistinguishability obfuscator to obfuscate this oracle. We also specify that the
remainder of the commitment key is a quantum state |ck⟩, but note that this is not inherent to the
definition of a Pauli functional commitment.

Definition 4.1 (Pauli functional commitment: Syntax). A Pauli functional commitment consists of six
algorithms (Gen,Com,OpenZ,OpenX,DecZ,DecX) with the following syntax.

• Gen(1𝜆) → (dk, |ck⟩ ,CK) is a QPT algorithm that takes as input the security parameter 1𝜆 and
outputs a classical decoding key dk and a quantum commitment key (|ck⟩ ,CK), where |ck⟩ is a
quantum state on register 𝒦, and CK is the description of a classical deterministic polynomial-time
functionality CK : {0, 1}* → {0, 1}*.

• ComCK
𝑏 (|ck⟩) → (𝒰 , 𝑐) is a QPT algorithm that is parameterized by a bit 𝑏 and has oracle access to

CK. It applies a map from register 𝒦 (initially holding the commitment key |ck⟩) to registers (𝒰 , 𝒞)
and then measures 𝒞 in the standard basis to obtain a classical string 𝑐 ∈ {0, 1}* and a left-over state
on register 𝒰 . We then write

ComCK := |0⟩ ⟨0| ⊗ ComCK
0 + |1⟩ ⟨1| ⊗ ComCK

1

to refer to the map that applies the ComCK
𝑏 map classically controlled on a single-qubit register ℬ to

produce a state on registers (ℬ,𝒰 , 𝒞), and then measures 𝒞 in the standard basis to obtain a classical
string 𝑐 along with a left-over quantum state on registers (ℬ,𝒰).

• OpenZ(ℬ,𝒰)→ 𝑢 is a QPT measurement on registers (ℬ,𝒰) that outputs a classical string 𝑢.

• OpenX(ℬ,𝒰)→ 𝑢 is a QPT measurement on registers (ℬ,𝒰) that outputs a classical string 𝑢.

• DecZ(dk, 𝑐, 𝑢)→ {0, 1,⊥} is a classical deterministic polynomial-time algorithm that takes as input
the decoding key dk, a string 𝑐, and a string 𝑢, and outputs either a bit 𝑏 or a ⊥ symbol.

• DecX(dk, 𝑐, 𝑢)→ {0, 1,⊥} is a classical deterministic polynomial-time algorithm that takes as input
a the decoding key dk, a string 𝑐, and a string 𝑢, and outputs either a bit 𝑏 or a ⊥ symbol.
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Definition 4.2 (Pauli functional Commitment: Correctness). A Pauli functional commitment (Gen,
Com,OpenZ,OpenX,DecZ,DecX) is correct if for any single-qubit (potentially mixed) state on register
ℬ, it holds that

TV
(︁
Z(ℬ),PFCZ(1𝜆,ℬ)

)︁
= negl(𝜆), and TV

(︁
X(ℬ),PFCX(1𝜆,ℬ)

)︁
= negl(𝜆),

where the distributions are defined as follows.

• Z(ℬ) measures ℬ in the standard basis.

• X(ℬ) measures ℬ in the Hadamard basis.

• PFCZ(1𝜆,ℬ) samples (dk, |ck⟩ ,CK) ← Gen(1𝜆), (ℬ,𝒰 , 𝑐) ← ComCK(ℬ, |ck⟩), 𝑢 ← OpenZ(ℬ,𝒰),
and outputs DecZ(dk, 𝑐, 𝑢).

• PFCX(1𝜆,ℬ) samples (dk, |ck⟩ ,CK) ← Gen(1𝜆), (ℬ,𝒰 , 𝑐) ← ComCK(ℬ, |ck⟩), 𝑢 ← OpenX(ℬ,𝒰),
and outputs DecX(dk, 𝑐, 𝑢).

A Pauli functional commitment that satisfies binding with public decodability allows the adver-
sarial Committer to have oracle access to the receiver’s decoding functionalities DecZ(dk, ·, ·) and
DecX(dk, ·, ·). However, we crucially do not give the adversarial Opener access to DecX(dk, ·, ·).

Definition 4.3 (Pauli functional commitment: Single-bit binding with public decodability). A Pauli
functional commitment (Gen,Com,OpenZ,OpenX,DecZ,DecX) satisfies single-bit binding with pub-
lic decodability if the following holds. Given dk, 𝑐, and 𝑏 ∈ {0, 1}, let

Πdk,𝑐,𝑏 :=
∑︁

𝑢:DecZ(dk,𝑐,𝑢)=𝑏

|𝑢⟩ ⟨𝑢| .

Consider any adversary {(C𝜆,U𝜆)}𝜆∈N, where each C𝜆 is an oracle-aided quantum operation, each U𝜆
is an oracle-aided unitary, and each (C𝜆,U𝜆) make at most poly(𝜆) oracle queries. Then for any 𝑏 ∈ {0, 1},

E
[︂⃦⃦⃦⃦

Πdk,𝑐,1−𝑏U
CK,DecZ[dk]
𝜆 Πdk,𝑐,𝑏 |𝜓⟩

⃦⃦⃦⃦
: (|𝜓⟩ , 𝑐)← C

CK,DecZ[dk],DecX[dk]
𝜆 (|ck⟩)

]︂
= negl(𝜆),

where the expectation is over dk, |ck⟩ ,CK ← Gen(1𝜆). Here, DecZ[dk] is the oracle implementing the
classical functionality DecZ(dk, ·, ·) and DecX[dk] is the oracle implementing the classical functionality
DecX(dk, ·, ·).

Next, we extend the above single-bit binding property to a notion of string binding.

Definition 4.4 (Pauli functional commitment: String binding with public decodability). A Pauli
functional commitment (Gen,Com,OpenZ,OpenX,DecZ,DecX) satisfies string binding with public
decodability if the following holds for any polynomial𝑚 = 𝑚(𝜆) and two disjoint sets𝑊0,𝑊1 ⊂ {0, 1}𝑚
of 𝑚-bit strings. Given a set of 𝑚 verification keys dk = (dk1, . . . , dk𝑚), 𝑚 strings c = (𝑐1, . . . , 𝑐𝑚), and
𝑏 ∈ {0, 1}, define

Πdk,c,𝑊𝑏
:=

∑︁
𝑤∈𝑊𝑏

⎛⎝⨂︁
𝑖∈[𝑚]

Πdk𝑖,𝑐𝑖,𝑤𝑖

⎞⎠ .
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Consider any adversary {(C𝜆,U𝜆)}𝜆∈N, where each C𝜆 is an oracle-aided quantum operation, each U𝜆 is an
oracle-aided unitary, and each (C𝜆,U𝜆) make at most poly(𝜆) oracle queries. Then,

E
[︂⃦⃦⃦⃦

Πdk,c,𝑊1U
CK,DecZ[dk]
𝜆 Πdk,c,𝑊0 |𝜓⟩

⃦⃦⃦⃦
: (|𝜓⟩ , c)← C

CK,DecZ[dk],DecX[dk]
𝜆 (|ck⟩)

]︂
= negl(𝜆),

where the expectation is over {dk𝑖, |ck𝑖⟩ ,CK𝑖 ← Gen(1𝜆)}𝑖∈[𝑚]. Here, |ck⟩ = (|ck1⟩ , . . . , |ck𝑚⟩), CK
is the collection of oracles CK1, . . . ,CK𝑚, DecZ[dk] is the collection of oracles DecZ[dk1], . . . ,DecZ[dk𝑚],
and DecX[dk] is the collection of oracles DecX[dk1], . . . ,DecX[dk𝑚].

We prove the following lemma in Appendix A.

Lemma 4.5. Any Pauli functional commitment that satisfies single-bit binding with public decodabil-
ity also satisfies string binding with public decodability.

4.2 Construction

Before describing our construction, we introduce some notation.

• A subspace 𝑆 < F𝑛2 is balanced if half of its vectors start with 0 and the other half start
with 1. Note that 𝑆 is balanced if and only if at least one of its basis vectors starts with 1.
Thus, a random large enough (say 𝑛/2-dimensional) subspace is balanced with probability
1− negl(𝑛). By default, we will only consider balanced subspaces in what follows.

• For an affine subspace 𝐴 = 𝑆 + 𝑣 of F𝑛2 , we write

|𝑆 + 𝑣⟩ := 1√︀
|𝑆|

∑︁
𝑠∈𝑆
|𝑠+ 𝑣⟩ .

• Given an affine subspace 𝑆+ 𝑣, let (𝑆+ 𝑣)0 be the set of vectors in 𝑆+ 𝑣 that start with 0 and
let (𝑆 + 𝑣)1 be the set of vectors in 𝑆 + 𝑣 that start with 1.

We describe our construction of a Pauli functional commitment in Fig. 3.

Theorem 4.6. The Pauli functional commitment described in Fig. 3 satisfies correctness (Definition 4.2).

Proof. We will show correctness assuming that the signature token scheme Tok is perfectly correct.
In reality, it may be statistically correct, but in this case we can still conclude that Fig. 3 satisfies
correctness, which allows for a negligible statistical distance.

We will first show that the map applied by ComCK
𝑏 in the case that the measurement of the first

qubit of 𝒦0 is 1 − 𝑏 successfully takes |(𝑆 + 𝑣)1−𝑏⟩ → |(𝑆 + 𝑣)𝑏⟩. Since we are assuming perfect
correctness from Tok, it suffices to show that for any balanced affine subspace |𝑆 + 𝑣⟩,

𝐻⊗𝑛Ph𝑂[𝑆⊥]𝐻⊗𝑛 |(𝑆 + 𝑣)1−𝑏⟩ → |(𝑆 + 𝑣)𝑏⟩ ,

where Ph𝑂[𝑆⊥] is the map |𝑠⟩ → (−1)𝑂[𝑆⊥](𝑠) |𝑠⟩, and 𝑂[𝑆⊥] is the oracle that outputs 0 if 𝑠 ∈ 𝑆⊥
and 1 if 𝑠 /∈ 𝑆⊥. This was actually shown in [AGKZ20], but we repeat it here for completeness.
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Pauli Functional Commitment

Parameters: Polynomial 𝑛 = 𝑛(𝜆) ≥ 𝜆.
Ingredients: Signature token scheme (Tok.Gen,Tok.Sign,Tok.Verify) (Section 3.6).

• Gen(1𝜆): Sample a uniformly random 𝑛/2-dimensional balanced affine subspace 𝑆 + 𝑣 of F𝑛2 and sample
(vk, |sk⟩)← Tok.Gen(1𝜆). Set

dk := (𝑆, 𝑣, vk), |ck⟩ := (|𝑆 + 𝑣⟩ , |sk⟩).

Define CK to take as input (𝜎, 𝑠) for 𝑠 ∈ {0, 1}𝑛 and output ⊥ if Tok.Verify(vk, 0, 𝜎) = ⊥, and otherwise
output 0 if 𝑠 ∈ 𝑆⊥ or 1 if 𝑠 /∈ 𝑆⊥.

• ComCK
𝑏 (|ck⟩):

– Parse |ck⟩ = (|𝑆 + 𝑣⟩𝒦0 , |sk⟩𝒦1).

– Coherently apply Tok.Sign(1𝜆, 0, ·) from the 𝒦1 register to a fresh register 𝒢, which will now hold a
superposition over signatures 𝜎 on the bit 0.

– Measure the first qubit of register 𝒦0 in the standard basis. If the result is 𝑏, the state on register 𝒦0

has collapsed to |(𝑆 + 𝑣)𝑏⟩, and we continue. Otherwise, perform a rotation from |(𝑆 + 𝑣)1−𝑏⟩ to
|(𝑆 + 𝑣)𝑏⟩ by applying the operation (𝐻⊗𝑛)𝒦0PhCK(·,·)(𝐻⊗𝑛)𝒦0 to registers (𝒦0,𝒢), where PhCK(·,·)

is the map |𝑠⟩𝒦0 |𝜎⟩𝒢 → (−1)CK(𝜎,𝑠) |𝑠⟩𝒦0 |𝜎⟩𝒢 .

– Next, reverse the Tok.Sign(1𝜆, 0, ·) operation on (𝒦1,𝒢) to recover |sk⟩ on register 𝒦1.

– Finally, sample and output 𝑐← Tok.Sign(1𝜆, 1, |sk⟩), along with the final state on register 𝒰 := 𝒦0.

• OpenZ(ℬ,𝒰): Measure all registers in the standard basis.

• OpenX(ℬ,𝒰): Measure all registers in the Hadamard basis.

• DecZ(dk, 𝑐, 𝑢):

– Parse dk = (𝑆, 𝑣, vk) and 𝑢 = (𝑏, 𝑠), where 𝑏 ∈ {0, 1} and 𝑠 ∈ {0, 1}𝑛.

– Check that Tok.Verify(vk, 1, 𝑐) = ⊤, and if not output ⊥.

– If 𝑠 ∈ (𝑆 + 𝑣)𝑏, output 𝑏, and otherwise output ⊥.

• DecX(dk, 𝑐, 𝑢):

– Parse dk = (𝑆, 𝑣, vk) and 𝑢 = (𝑏′, 𝑠), where 𝑏′ ∈ {0, 1} and 𝑠 ∈ {0, 1}𝑛.

– Check that Tok.Verify(vk, 1, 𝑐) = ⊤, and if not output ⊥.

– If 𝑠 ∈ 𝑆⊥, then define 𝑟 := 0. If 𝑠 ⊕ (1, 0, . . . , 0) ∈ 𝑆⊥, then define 𝑟 := 1. Otherwise, abort and
output ⊥. That is, 𝑟 is set to 0 if 𝑠 ∈ 𝑆⊥ and to 1 if 𝑠 ∈ (𝑆0)

⊥ ∖ 𝑆⊥. Then, output 𝑏 := 𝑏′ ⊕ 𝑟.

Figure 3: A Pauli functional commitment that satisfies binding with public decodability.

We will use the facts that 𝑆1 = 𝑆0 + 𝑤 for some 𝑤, and that (𝑆 + 𝑣)0 = 𝑆0 + 𝑣0 and (𝑆 + 𝑣)1 =
𝑆0 + 𝑣1 for some 𝑣0, 𝑣1 such that 𝑣0 + 𝑣1 = 𝑤. Also note that for any 𝑠 ∈ 𝑆⊥, 𝑠 · 𝑤 = 0, and for any
𝑠 ∈ (𝑆0)

⊥ ∖ 𝑆⊥, 𝑠 · 𝑤 = 1.
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𝐻⊗𝑛Ph𝑂[𝑆⊥]𝐻⊗𝑛 |(𝑆 + 𝑣)1−𝑏⟩

= 𝐻⊗𝑛Ph𝑂[𝑆⊥]𝐻⊗𝑛
1√

2𝑛/2−1

⎛⎝∑︁
𝑠∈𝑆0

|𝑠+ 𝑣1−𝑏⟩

⎞⎠
= 𝐻⊗𝑛Ph𝑂[𝑆⊥] 1√

2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣1−𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛Ph𝑂[𝑆⊥] 1√

2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

(−1)𝑠·𝑤+𝑠·𝑣𝑏 |𝑠⟩+
∑︁

𝑠∈𝑆⊥
0 ∖𝑆⊥

(−1)𝑠·𝑤+𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛Ph𝑂[𝑆⊥] 1√

2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

(−1)𝑠·𝑣𝑏 |𝑠⟩+
∑︁

𝑠∈𝑆⊥
0 ∖𝑆⊥

(−1)1+𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛

1√
2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

(−1)𝑠·𝑣𝑏 |𝑠⟩+
∑︁

𝑠∈𝑆⊥
0 ∖𝑆⊥

(−1)𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛

1√
2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= |(𝑆 + 𝑣)𝑏⟩ .

Thus, applying ComCK to a pure state |𝜓⟩ = 𝛼0 |0⟩+ 𝛼1 |1⟩ and commitment key |ck⟩ produces
(up to negligible trace distance) the state

|𝜓Com⟩ = 𝛼0 |0⟩ |(𝑆 + 𝑣)0⟩+ 𝛼1 |1⟩ |(𝑆 + 𝑣)1⟩ ,

and a signature 𝑐 on the bit 1.
We continue by arguing that measuring and decoding |𝜓Com⟩ in the standard (resp. Hadamard)

basis produces the same distribution as directly measuring |𝜓⟩ in the standard (resp. Hadamard)
basis. As a mixed state is a probability distribution over pure states, this will complete the proof
of correctness.

First, it is immediate that measuring |𝜓Com⟩ in the standard basis produces a bit 𝑏 with proba-
bility |𝛼𝑏|2 along with a vector 𝑠 such that 𝑠 ∈ (𝑆 + 𝑣)𝑏.

Next, note that applying Hadamard to each qubit of |𝜓Com⟩ except the first results in the state

𝛼0 |0⟩

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣0 |𝑠⟩

⎞⎠+ 𝛼1 |1⟩

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣1 |𝑠⟩

⎞⎠ ,

and thus, measuring each of these qubits (except the first) in the Hadamard basis produces a vector
𝑠 and a single-qubit state

(−1)𝑠·𝑣0𝛼0 |0⟩+ (−1)𝑠·𝑣1𝛼1 |1⟩ = 𝛼0 |0⟩+ (−1)𝑠·𝑤𝛼1 |1⟩ .
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So, measuring this qubit in the Hadamard basis is equivalent to measuring |𝜓⟩ in the Hadamard
basis and masking the result with 𝑠 · 𝑤. Recalling that 𝑠 · 𝑤 = 0 if 𝑠 ∈ 𝑆⊥ and 𝑠 · 𝑤 = 1 if
𝑠 ∈ (𝑆0)

⊥ ∖ 𝑆⊥ completes the proof of correctness.

4.3 Binding

This section is dedicated to proving the following theorem.

Theorem 4.7. Assuming that Tok satisfies unforgeability (Definition 3.12), the Pauli functional commit-
ment described in Fig. 3 with 𝑛 ≥ 130𝜆 satisfies single-bit binding with public decodability (Defini-
tion 4.3).

The proof of this theorem will be identical for each choice of 𝑏 ∈ {0, 1} in the statement of Def-
inition 4.3. So, consider any adversary (C,U) attacking the publicly-decodable single-bit binding
game for 𝑏 = 0, where we drop the indexing by 𝜆 for notational convenience. We first show that it
suffices to prove the following claim, in which U no longer has oracle access to CK.

Claim 4.8. For any (C,U) where C and U each make poly(𝜆) many oracle queries, it holds that

Pr
dk,|ck⟩,CK←Gen(1𝜆)

[︃⃦⃦⃦⃦
Πdk,𝑐,1U

DecZ[dk]Πdk,𝑐,0 |𝜓⟩
⃦⃦⃦⃦2
≥ 1

2𝜆
: (|𝜓⟩ , 𝑐)← CCK,DecZ[dk],DecX[dk](|ck⟩)

]︃
= negl(𝜆).

Lemma 4.9. Claim 4.8 implies Theorem 4.7.

Proof. First, we note that to prove Theorem 4.7, it suffices to show that for any any (C,U) with
poly(𝜆) many oracle queries and any 𝜖(𝜆) = 1/poly(𝜆), it holds that

Pr
dk,|ck⟩,CK←Gen(1𝜆)

[︃⃦⃦⃦⃦
Πdk,𝑐,1U

CK,DecZ[dk]Πdk,𝑐,0 |𝜓⟩
⃦⃦⃦⃦2
≥ 𝜖(𝜆) : (|𝜓⟩ , 𝑐)← CCK,DecZ[dk],DecX[dk](|ck⟩)

]︃
= negl(𝜆).

To show that Claim 4.8 implies the above statement, we define the oracle 𝑂⊥ to always map
(𝜎, 𝑠)→ ⊥, and then argue that

E
dk,|ck⟩,CK←Gen(1𝜆)

(|𝜓⟩,𝑐)←CCK,DecZ[dk],DecX[dk](|ck⟩)

[︃⃦⃦⃦⃦
Πdk,𝑐,1U

CK,DecZ[dk]Πdk,𝑐,0 |𝜓⟩
⃦⃦⃦⃦2
−
⃦⃦⃦⃦
Πdk,𝑐,1U

𝑂⊥,DecZ[dk]Πdk,𝑐,0 |𝜓⟩
⃦⃦⃦⃦2]︃

= negl(𝜆).

This follows from a standard hybrid argument, by reduction to the unforgeability of the signature
token scheme. That is, consider replacing each CK oracle query with a 𝑂⊥ oracle query one by
one, starting with the last query. That is, we define hybridℋ0 to be

E
dk,|ck⟩,CK←Gen(1𝜆)

(|𝜓⟩,𝑐)←CCK,DecZ[dk],DecX[dk](|ck⟩)

[︃⃦⃦⃦⃦
Πdk,𝑐,1U

CK,DecZ[dk]Πdk,𝑐,0 |𝜓⟩
⃦⃦⃦⃦2]︃

,

and in hybrid ℋ𝑖, we switch the 𝑖’th from the last query from being answered by CK to being
answered by 𝑂⊥. Now, fix any 𝑖, and consider measuring the query register of U’s 𝑖’th from last
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query to obtain classical strings (𝜎, 𝑠). Then since Πdk,𝑐,0 is the zero projector when 𝑐 is not a valid
signature on 1, and CK outputs ⊥whenever 𝜎 is not a valid signature on 0, we have that

E[ℋ𝑖−1 −ℋ𝑖] ≤ Pr[Tok(vk, 1, 𝑐) = 1 ∧ Tok(vk, 0, 𝜎) = 1] = negl(𝜆),

by the unforgeability of the signature token scheme. Since there are poly(𝜆) many hybrids, this
completes the hybrid argument.

Finally, it follows by Markov that

Pr
dk,|ck⟩,CK←Gen(1𝜆)

(|𝜓⟩,𝑐)←CCK,DecZ[dk],DecX[dk](|ck⟩)

[︃⃦⃦⃦⃦
Πdk,𝑐,1U

CK,DecZ[dk]Πdk,𝑐,0 |𝜓⟩
⃦⃦⃦⃦2
−
⃦⃦⃦⃦
Πdk,𝑐,1U

𝑂⊥,DecZ[dk]Πdk,𝑐,0 |𝜓⟩
⃦⃦⃦⃦2
≥ 𝜖(𝜆)− 1

2𝜆

]︃

≤ negl(𝜆)

𝜖(𝜆)− 1/2𝜆
= negl(𝜆),

which completes the proof.

Now, we introduce some more notation.

• Let 𝒜𝑘,𝑛 be the set of balanced 𝑘-dimensional affine subspaces of F𝑛2 .

• For an affine subspace 𝐴 = 𝑆 + 𝑣, let 𝑂[𝐴] : F𝑛2 → {0, 1} be the classical functionality that
outputs 1 on input 𝑠 iff 𝑠 ∈ 𝑆 + 𝑣, and let 𝑂[𝐴⊥] : F𝑛2 → {0, 1} be the classical functionality
that outputs 1 on input 𝑠 iff 𝑠 ∈ 𝑆⊥.

• For an affine subspace 𝐴 = 𝑆 + 𝑣 and a bit 𝑏 ∈ {0, 1}, define the projector

Π[𝐴𝑏] :=
∑︁

𝑠∈(𝑆+𝑣)𝑏

|𝑠⟩ ⟨𝑠| .

We will use this notation to re-define the game in Claim 4.8, and show that it suffices to prove
the following claim.

Claim 4.10. For any two unitaries (UCom,UOpen), where UCom and UOpen each make poly(𝜆) many oracle
queries, it holds that

Pr
𝐴←𝒜𝑛/2,𝑛

[︃⃦⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦⃦2
≥ 1

2𝜆
: |𝜓⟩ := U

𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

]︃
= negl(𝜆).

Lemma 4.11. Claim 4.10 implies Claim 4.8.

Proof. First, we note that re-defining Πdk,𝑐,𝑏 in the statement of Claim 4.8 to ignore 𝑐 and only check
for membership in the affine subspace (𝑆 + 𝑣)𝑏 only potentially increases the squared norm of the
resulting vector. This means that we can ignore the string 𝑐 output by C. Then, we can give the
committer vk in the clear, and observe that it is now straightforward for the committer to simulate
its DecZ[dk] oracle with 𝑂[𝐴], where 𝐴 is the affine subspace defined by dk, and also to simulate
its DecX[dk] oracle with 𝑂[𝐴⊥]. Finally, we can purify any operation C to consider a unitary UCom

that outputs |𝜓⟩.
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Our next step is to remove UOpen’s oracle access to 𝑂[𝐴]. We will show that it suffices to prove
the following.

Claim 4.12. For any two unitaries (UCom,UOpen), where UCom makes poly(𝜆) many oracle queries, it
holds that

Pr
𝐴←𝒜𝑛/2,3𝑛/4

[︃⃦⃦⃦⃦
Π[𝐴1]UOpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦⃦2
≥ 1

2𝜆+1
: |𝜓⟩ := U

𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

]︃
= negl(𝜆).

Notice that we are now sampling affine subspaces of a 3𝑛/4-dimensional space.

Lemma 4.13. Claim 4.12 implies Claim 4.10.

Proof. Given an 𝑛/2-dimensional affine subspace 𝐴, let 𝑇 ← Super(3𝑛/4, 𝐴) denote sampling a
uniformly random (3𝑛/4)-dimensional subspace 𝑇 such that 𝐴 ⊂ 𝑇 . Then, define 𝑂[𝑇 ∖ {0𝑛}] to
be the oracle that checks for membership in the set 𝑇 ∖ {0𝑛}.

Now, we will show via a standard hybrid argument that

E
𝐴←𝒜𝑛/2,

𝑇←Super(3𝑛/4,𝐴)

|𝜓⟩:=U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

[︃⃦⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦⃦2
−
⃦⃦⃦⃦
Π[𝐴1]U

𝑂[𝑇∖{0𝑛}]
Open Π[𝐴0] |𝜓⟩

⃦⃦⃦⃦2]︃
≤ poly(𝜆)

2𝑛/4
.

Consider replacing each 𝑂[𝐴] oracle query with a 𝑂[𝑇 ∖{0𝑛}] oracle query one by one, starting
with the last query. That is, we define hybridℋ0 to be

E
𝐴←𝒜𝑛/2,𝑛

𝑇←Super(3𝑛/4,𝐴)

|𝜓⟩:=U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

[︃⃦⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦⃦2]︃
,

and in hybrid ℋ𝑖, we switch the 𝑖’th from the last query from being answered by 𝑂[𝐴] to being
answered by 𝑂[𝑇 ∖ {0𝑛}]. By Claim 3.2, we have that

E[ℋ𝑖−1 −ℋ𝑖] ≤ max
𝑠

Pr
𝑇
[𝑠 ∈ (𝑇 ∖ {0𝑛}) ∖ 𝑆] ≤ 1

2𝑛/4
.

Since there are poly(𝜆) many hybrids, this completes the hybrid argument. Now, it follows by
Markov that

Pr
𝐴←𝒜𝑛/2,𝑛

𝑇←Super(3𝑛/4,𝐴)

|𝜓⟩:=U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

[︃⃦⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦⃦2
−
⃦⃦⃦⃦
Π[𝐴1]U

𝑂[𝑇∖{0𝑛}]
Open Π[𝐴0] |𝜓⟩

⃦⃦⃦⃦2
≥ 1

2𝜆
− 1

2𝜆+1

]︃

≤ poly(𝜆)2𝜆+1

2𝑛/4
= negl(𝜆),

since 𝑛 > 5𝜆. This completes the proof, since we can imagine fixing 𝑇 as a public ambient space
of dimension 3𝑛/4 and sampling 𝐴 as a random affine subspace of 𝑇 .
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Next, we perform a worst-case to average-case reduction over the sampling of 𝐴 and thus
show that it suffices to prove the following.

Claim 4.14. There do not exist two unitaries (UCom,UOpen), where UCom makes poly(𝜆) many oracle
queries, such that for all 𝐴 ∈ 𝒜𝑛/2,3𝑛/4 it holds that⃦⃦⃦⃦

Π[𝐴1]UOpenΠ[𝐴0] |𝜓𝐴⟩
⃦⃦⃦⃦2
≥ 1

22𝜆
,

where |𝜓𝐴⟩ := U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩).

Lemma 4.15. Claim 4.14 implies Claim 4.12.

Proof. Suppose that there exists (UCom,UOpen) that violates Claim 4.12. We define an adversary
(̃︀C, ̃︀UOpen) as follows.

• ̃︀C takes |𝐴⟩ as input and samples a uniformly random change of basis 𝐵 of F3𝑛/4
2 . Define the

unitary U𝐵 acting on 3𝑛/4 qubits to map |𝑠⟩ → |𝐵(𝑠)⟩.

• Run UCom on |𝐵(𝐴)⟩. Answer each of UCom’s oracle queries with U𝐵𝑂[𝐴]U†𝐵 or U𝐵𝑂[𝐴⊥]U†𝐵 ,
where U𝐵 acts on the query register.

• Let |𝜓⟩ be UCom’s output, and output | ̃︀𝜓⟩ := (U†𝐵 |𝜓⟩ , 𝐵), where register ℬ holds 𝐵, which is
a classical description of the change of basis.

• ̃︀UOpen is defined to be UCoB−1UOpenUCoB, where

UCoB :=
1

#𝐵

∑︁
B

U𝐵 ⊗ |𝐵⟩ ⟨𝐵|ℬ , and UCoB−1 :=
1

#𝐵

∑︁
𝐵

U†𝐵 ⊗ |𝐵⟩ ⟨𝐵|
ℬ ,

where #𝐵 is the total number of change of bases 𝐵.

Then it holds that for any 𝐴 ∈ 𝒜𝑛/2,3𝑛/4,

Pr

[︃⃦⃦⃦⃦
Π[𝐴1]̃︀UOpenΠ[𝐴0] | ̃︀𝜓⟩ ⃦⃦⃦⃦2 ≥ 1

2𝜆+1
: | ̃︀𝜓⟩ ← ̃︀C𝑂[𝐴],𝑂[𝐴⊥](|𝐴⟩)

]︃

= Pr
𝐵(𝐴)←𝒜𝑛/2,3𝑛/4

[︃⃦⃦⃦⃦
Π[𝐵(𝐴)1]UOpenΠ[𝐵(𝐴)0] |𝜓⟩

⃦⃦⃦⃦2
≥ 1

2𝜆+1
: |𝜓⟩ ← U

𝑂[𝐵(𝐴)],𝑂[𝐵(𝐴)⊥]
Com (|𝐵(𝐴)⟩)

]︃
= non-negl(𝜆),

where the final equality follows because we are assuming that (UCom,UOpen) violates Claim 4.12,
and for any fixed balanced 𝐴 and uniformly random 𝐵, it holds that 𝐵(𝐴) is a uniformly random
balanced affine subspace except with negl(𝑛) probability. Now, define | ̃︀𝜓𝐵⟩ to be the output of ̃︀C
conditioned on sampling 𝐵. Then define ̃︀UCom to be a purification of C. It holds that for any fixed

𝐴 ∈ 𝒜𝑛/2,3𝑛/4 and | ̃︀𝜓⟩ := ̃︀U𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩),
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⃦⃦⃦⃦
Π[𝐴1]̃︀UOpenΠ[𝐴0] | ̃︀𝜓⟩ ⃦⃦⃦⃦2 = 1

#𝐵

∑︁
𝐵

⃦⃦⃦⃦
Π[𝐴1]̃︀UOpenΠ[𝐴0] | ̃︀𝜓𝐵⟩ ⃦⃦⃦⃦2 ≥ non-negl(𝜆) · 1

2𝜆+1
≥ 1

22𝜆
,

which completes the proof.

Next, we perform amplitude amplification onto Π[𝐴0], showing that it suffices to prove the
following claim.

Claim 4.16. There do not exist two unitaries (UCom,UOpen), where UCom makes at most 22𝜆 oracle queries,

such that for all 𝐴 ∈ 𝒜𝑛/2,3𝑛/4 and |𝜓𝐴⟩ := U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩), there exists a state |𝜓′𝐴⟩ such that⃦⃦

|𝜓𝐴⟩ − |𝜓′𝐴⟩
⃦⃦
≤ 1

215𝜆
, |𝜓′𝐴⟩ ∈ Im(Π[𝐴0]), and

⃦⃦
Π[𝐴1]𝑈Open |𝜓′𝐴⟩

⃦⃦
≥ 1

2𝜆
.

Lemma 4.17. Claim 4.16 implies Claim 4.14.

Proof. For any binary projective measurement (Π, I − Π), we define UΠ to be a unitary that maps
|𝜑⟩ → − |𝜑⟩ for any |𝜑⟩ ∈ Im(Π) and acts as the identity on all |𝜑⟩ orthogonal to Π. We use the
following imported theorem.

Imported Theorem 4.18 (Fixed-point amplitude amplification, [GSLW19] Theorem 27). There ex-
ists an oracle-aided unitary Amplify that is parameterized by (𝛼, 𝛽), and has the following properties. Let
|𝜓⟩ and |𝜓𝐺⟩ be normalized states and Π be a projector such that Π |𝜓⟩ = 𝛾 |𝜓𝐺⟩, where 𝛾 ≥ 𝛼. Then
| ̃︀𝜓𝐺⟩ := Amplify

U|𝜓⟩⟨𝜓|,UΠ

𝛼,𝛽 (|𝜓⟩) is such that ‖ |𝜓𝐺⟩ − | ̃︀𝜓𝐺⟩ ‖ ≤ 𝛽, and Amplify
U|𝜓⟩⟨𝜓|,UΠ

𝛼,𝛽 (|𝜓⟩) makes
𝑂(log(1/𝛽)/𝛼) oracle queries.

Now, suppose that (UCom,UOpen) violates Claim 4.14. Set 𝛼 = 1/2𝜆, 𝛽 = 1/215𝜆, and define

̃︀UCom(|𝐴⟩) := Amplify
U|𝜓𝐴⟩⟨𝜓𝐴|,UΠ[𝐴0]

𝛼,𝛽 (|𝜓𝐴⟩),

where |𝜓𝐴⟩ := UCom(|𝐴⟩).
We first argue that ̃︀UCom can be implemented with just oracle access to𝑂[𝐴] and𝑂[𝐴⊥]. Clearly,

the projector Π[𝐴0] can be implemented with 𝑂[𝐴], so it remains to show how to implement the
projector |𝜓𝐴⟩ ⟨𝜓𝐴|. Note that

|𝜓𝐴⟩ ⟨𝜓𝐴| = UCom |𝐴⟩ ⟨𝐴|U†Com,

so it suffices to show how to implement |𝐴⟩ ⟨𝐴|.
Recalling that 𝐴 = 𝑆 + 𝑣, we claim that

|𝐴⟩ ⟨𝐴| = 𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆 + 𝑣].

The proof is essentially shown in [AC12, Lemma 21] (in the case where𝐴 is a subspace), and we re-
peat it here for completeness. It is clear that𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆+𝑣] |𝐴⟩ = |𝐴⟩, so it remains to show
that for any |𝜓⟩ such that ⟨𝜓|𝐴⟩ = 0, 𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆 + 𝑣] |𝜓⟩ = 0. Write |𝜓⟩ =

∑︀
𝑠∈{0,1}𝑛 𝑐𝑠 |𝑠⟩,

where
∑︀

𝑠∈𝑆+𝑣 𝑐𝑠 = 0. Then
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𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆 + 𝑣] |𝜓⟩ = 𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛
∑︁
𝑠∈𝑆+𝑣

𝑐𝑠 |𝑠⟩

=
1

2𝑛/2
𝐻⊗𝑛Π[𝑆⊥]

∑︁
𝑡∈{0,1}𝑛

∑︁
𝑠∈𝑆+𝑣

(−1)𝑠·𝑡𝑐𝑠 |𝑡⟩

=
1

2𝑛/2
𝐻⊗𝑛

∑︁
𝑡∈𝑆⊥

∑︁
𝑠∈𝑆+𝑣

(−1)𝑠·𝑡𝑐𝑠 |𝑡⟩

=
1

2𝑛/2
𝐻⊗𝑛

∑︁
𝑡∈𝑆⊥

(︃ ∑︁
𝑠∈𝑆+𝑣

𝑐𝑠

)︃
|𝑡⟩ = 0.

Thus, ̃︀UCom can be implemented with just oracle access to 𝑂[𝐴] and 𝑂[𝐴⊥]. Moreover, it makes
at most 𝑂(log(1/𝛽)𝛼) · poly(𝜆) ≤ 𝑂(𝜆2𝜆) · poly(𝜆) ≤ 22𝜆 queries to 𝑂[𝐴] and 𝑂[𝐴⊥].

Now, define

|𝜓′𝐴⟩ :=
Π[𝐴0] |𝜓𝐴⟩
‖Π[𝐴0] |𝜓𝐴⟩ ‖

,

so |𝜓′𝐴⟩ ∈ Im(Π[𝐴0]) by definition. By the fact that (UCom,UOpen) violates Claim 4.14, we know that⃦⃦
Π[𝐴1]UOpen |𝜓′𝐴⟩

⃦⃦2 ≥ ⃦⃦Π[𝐴1]UOpenΠ[𝐴0] |𝜓𝐴⟩
⃦⃦2 ≥ 1

22𝜆
=⇒

⃦⃦
Π[𝐴1]UOpen |𝜓′𝐴⟩

⃦⃦
≥ 1

2𝜆
.

Finally, by the definition of |𝜓′𝐴⟩,

‖Π[𝐴1]UOpenΠ[𝐴0] |𝜓𝐴⟩ ‖2 ≥
1

22𝜆
=⇒ Π[𝐴0] |𝜓𝐴⟩ = 𝛾 |𝜓′𝐴⟩ for 𝛾 ≥ 1

2𝜆
,

so the guarantee of Imported Theorem 4.18 implies that⃦⃦̃︀UCom(|𝐴⟩)− |𝜓′𝐴⟩
⃦⃦
≤ 1

215𝑝
.

Thus, (̃︀UCom,UOpen) violates Claim 4.16, which completes the proof.

Finally, we prove Claim 4.16, which, as we have shown, suffices to prove Theorem 4.7.

Proof. (of Claim 4.16) We will use the following imported theorem.

Imported Theorem 4.19 ([AC12]). Let𝒪 be a set of classical functionalities 𝐹 : {0, 1}* → {0, 1}. Letℛ
be a symmetric binary relation between functionalities where for every 𝐹 ∈ 𝒪, (𝐹, 𝐹 ) /∈ ℛ, and for every
𝐹 ∈ 𝒪, there exists 𝐺 ∈ 𝒪 such that (𝐹,𝐺) ∈ ℛ. Moreover, for any 𝐹 ∈ 𝒪 and 𝑥 such that 𝐹 (𝑥) = 0,
suppose that

Pr
𝐺←ℛ𝐹

[𝐺(𝑥) = 1] ≤ 𝛿,

whereℛ𝐹 is the set of 𝐺 such that (𝐹,𝐺) ∈ ℛ. Now, consider any oracle-aided unitary U𝐹 (|𝜓𝐹 ⟩) that has
oracle access to some 𝐹 ∈ 𝒪, is initialized with some state |𝜓𝐹 ⟩ that may depend on 𝐹 , makes 𝑇 queries,
and outputs a state | ̃︀𝜓𝐹 ⟩. Then if | ⟨𝜓𝐹 |𝜓𝐺⟩ | ≥ 𝑐 for all (𝐹,𝐺) ∈ ℛ and E(𝐹,𝐺)←ℛ[| ⟨ ̃︀𝜓𝐹 | ̃︀𝜓𝐺⟩ |] ≤ 𝑑, then

𝑇 = Ω
(︁
𝑐−𝑑√
𝛿

)︁
.
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Now, suppose there exists UCom,UOpen that violates Claim 4.16. Recall that UCom has access to
the oracles 𝑂[𝐴] and 𝑂[𝐴⊥], defined by the 𝑛/2-dimensional balanced affine subspace 𝐴 = 𝑆 + 𝑣

of F3𝑛/4
2 . We define a single functionality 𝐹𝐴 that takes as input (𝑏, 𝑠) and if 𝑏 = 0 outputs whether

𝑠 ∈ 𝑆 + 𝑣, and if 𝑏 = 1 outputs whether 𝑠 ∈ 𝑆⊥.
Then, we define a binary symmetric relation on functionalities 𝐹𝐴, 𝐹𝐵 as follows. Letting 𝐴 =

𝑆𝐴 + 𝑣𝐴 and 𝐵 = 𝑆𝐵 + 𝑣𝐵 , we define (𝐹𝐴, 𝐹𝐵) ∈ ℛ if and only if dim(𝐴0 ∩ 𝐵0) = 𝑛/2 − 2 and
dim(𝐴1 ∩𝐵1) = 𝑛/2− 2. Note that for any (𝐹𝐴, 𝐹𝐵) ∈ ℛ, dim(𝐴 ∩𝐵) = 𝑛/2− 1.

Givenℛ defined this way, we see that for any fixed 𝐹𝐴 and (𝑏, 𝑠) such that 𝐹𝐴(𝑏, 𝑠) = 0,

Pr
𝐹𝐵←ℛ𝐹𝐴

[𝐹𝐵(𝑏, 𝑠) = 1]

≤ max

{︃
|𝐵 ∖𝐴|

|F3𝑛/4
2 ∖𝐴 ∖ {03𝑛/4}|

,
|𝑆⊥𝐵 ∖ 𝑆⊥𝐴 |
|F3𝑛/4

2 ∖ 𝑆⊥𝐴 |

}︃

≤ max

{︃
2𝑛/2−1

23𝑛/4 − 2𝑛/2 − 1
,

2𝑛/4−1

23𝑛/4 − 2𝑛/4

}︃
≤ 1

2𝑛/4
.

Next, we note that U𝐹𝐴Com is initialized with the state |𝐴⟩, and, for any (𝐴,𝐵) such that (𝐹𝐴, 𝐹𝐵) ∈
ℛ, it holds that | ⟨𝐴|𝐵⟩ | = 1/2. Our goal is then to bound

E
(𝐹𝐴,𝐹𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ,

where |𝜓𝐴⟩ = U𝐹𝐴Com(|𝐴⟩). Since (UCom,UOpen) violates Claim 4.16, we can write each |𝜓𝐴⟩ as |𝜓′𝐴⟩+
|𝜓err
𝐴 ⟩, where ⃦⃦

|𝜓err
𝐴 ⟩
⃦⃦
≤ 1

215𝜆
, |𝜓′𝐴⟩ ∈ Im(Π[𝐴0]), and

⃦⃦
Π[𝐴1]UOpen |𝜓′𝐴⟩

⃦⃦
≥ 1

2𝜆
.

Thus, we have that

E
(𝐹𝐴,𝐹𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩] ≤ E
(𝐹𝐴,𝐹𝐵)←ℛ

[| ⟨𝜓′𝐴|𝜓′𝐵⟩ |] +
3

215𝜆
.

Now, we appeal to the following theorem, which is proven in Appendix B.

Theorem 4.20. Let 𝑛,𝑚, 𝑑 ∈ N, 𝜖 ∈ (0, 1/8) be such that 𝑑 ≥ 2 and 𝑛−𝑑+1 > 10 log(1/𝜖)+6. Let U𝒳 ,𝒴

be any (2𝑛+𝑚)-dimensional unitary, where register 𝒳 is 2𝑛 dimensions and register 𝒴 is 2𝑚 dimensions.
Let 𝒜 be the set of 𝑑-dimensional balanced affine subspaces 𝐴 = (𝐴0, 𝐴1) of F𝑛2 , where 𝐴0 is the affine
subspace of vectors in 𝐴 that start with 0 and 𝐴1 is the affine subspace of vectors in 𝐴 that start with 1. For
any 𝐴 = (𝐴0, 𝐴1), let

Π𝐴0
:=
∑︁
𝑣∈𝐴0

|𝑣⟩ ⟨𝑣|𝒳 ⊗ I𝒴 , Π𝐴1
:= U†

⎛⎝∑︁
𝑣∈𝐴1

|𝑣⟩ ⟨𝑣|𝒳 ⊗ I𝒴
⎞⎠U.
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Letℛ be the set of pairs (𝐴,𝐵) of 𝑑-dimensional affine subspaces of F𝑛2 such that dim(𝐴0∩𝐵0) = 𝑑−2
and dim(𝐴1 ∩𝐵1) = 𝑑− 2. Then for any set of states {|𝜓𝐴⟩}𝐴 such that for all 𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0),
and ‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖,

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13.

Setting 𝜖 = 1/2𝜆, and noting that 3𝑛/4− 𝑛/2 + 1 > 11𝜆 > 10 log(2𝜆) + 6, this theorem implies
that

E
(𝐹𝐴,𝐹𝐵)←ℛ

[| ⟨𝜓′𝐴|𝜓′𝐵⟩ |] ≤
1

2
− 1

213𝜆
,

and thus we conclude that
E

(𝐹𝐴,𝐹𝐵)←ℛ
[| ⟨𝜓𝐴|𝜓𝐵⟩] ≤

1

2
− 1

214𝜆
.

Thus, by Imported Theorem 4.19, UCom must be making

Ω

(︃
2𝑛/8

214𝜆

)︃
= Ω

(︁
2130𝜆/8−14𝜆

)︁
> 22𝜆

oracle queries, recalling that 𝑛 ≥ 130𝜆. However, UCom was assumed to be making at most 22𝜆

queries, so this is a contradiction, completing the proof.

5 Verification of Quantum Partitioning Circuits

5.1 Definition

A protocol for publicly-verifiable non-interactive classical verification of quantum partitioning cir-
cuits consists of the following procedures. We write the syntax in the oracle model, where the prover
obtains access to a classical oracle as part of its public key. We also specify a quantum proving key
|pk⟩, but note that one could also consider the case where the proving key pk is classical.

• Gen(1𝜆, 𝑄) → (vk, |pk⟩ ,PK): The Gen algorithm takes as input the security parameter 1𝜆

and the description of a quantum circuit 𝑄 : {0, 1}𝑛′ → {0, 1}𝑛, and outputs a classical
verification key vk and a quantum proving key (|pk⟩ ,PK), which consists of a quantum
state |pk⟩ and the description of a classical deterministic polynomial-time functionality PK :
{0, 1}* → {0, 1}*.

• ProvePK(|pk⟩ , 𝑄, 𝑥) → 𝜋: The Prove algorithm has oracle access to PK, takes as input the
quantum proving key |pk⟩, a circuit 𝑄, and an input 𝑥 ∈ {0, 1}𝑛′

, and outputs a proof 𝜋.

• Ver(vk, 𝑥, 𝜋) → {(𝑞1, . . . , 𝑞𝑚)} ∪ {⊥}: The classical Ver algorithm takes as input the verifica-
tion key vk, an input 𝑥, and a proof 𝜋, and either outputs a sequence of samples (𝑞1, . . . , 𝑞𝑚)
or ⊥.

• Combine(𝑏1, . . . , 𝑏𝑚)→ 𝑏: The Combine algorithm takes as input a sequence of bits (𝑏1, . . . , 𝑏𝑚)
and outputs a bit 𝑏.

The proof should satisfy the following notions of completeness and soundness.
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Definition 5.1 (Publicly-verifiable non-interactive classical verification of quantum partitioning
circuits: Completeness). A protocol for publicly-verifiable non-interactive classical verification of quan-
tum partitioning circuits is complete if for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is pseudo-
deterministic, and any sequence of inputs {𝑥𝜆}𝜆∈N, it holds that (where we leave indexing by 𝜆 implicit)

Pr

[︂
Ver(vk, 𝑥, 𝜋) = (𝑞1, . . . , 𝑞𝑚) ∧
Combine(𝑃 (𝑞1), . . . , 𝑃 (𝑞𝑚)) = 𝑃 (𝑄(𝑥))

:
(vk, |pk⟩ ,PK)← Gen(1𝜆, 𝑄)

𝜋 ← ProvePK(|pk⟩ , 𝑄, 𝑥)

]︂
= 1− negl(𝜆).

We define soundness in the oracle model, where the adversarial prover gets access to an oracle
for the functionality Ver(vk, ·, ·).

Definition 5.2 (Publicly-verifiable non-interactive classical verification of quantum partitioning
circuits: Soundness). A protocol for publicly-verifiable non-interactive classical verification of quan-
tum partitioning circuits is sound if for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is pseudo-
deterministic, and any QPT adversarial prover {A𝜆}𝜆∈N, it holds that (where we leave indexing by 𝜆 im-
plicit)

Pr

[︂
Ver(vk, 𝑥, 𝜋) = (𝑞1, . . . , 𝑞𝑚) ∧
Combine(𝑃 (𝑞1), . . . , 𝑃 (𝑞𝑚)) = 1− 𝑃 (𝑄(𝑥))

:
(vk, |pk⟩ ,PK)← Gen(1𝜆, 𝑄)

(𝑥, 𝜋)← APK,Ver[vk](|pk⟩)

]︂
= negl(𝜆),

where Ver[vk] is the classical functionality Ver(vk, ·, ·) : (𝑥, 𝜋)→ {(𝑞1, . . . , 𝑞𝑚)} ∪ {⊥}.

5.2 QPIP1 verification

First, we recall an information-theoretic protocol for verifying quantum partitioning circuits using
only single-qubit standard and Hadamard basis measurements.19 This protocol is a 𝜆-wise parallel
repetition of the quantum sampling verification protocol from [CLLW22], and was described in
[Bar21]. Most of the underlying details of the protocol will not be important to us, but we provide
a high-level description.

The prover prepares multiple copies of a history state of the computation 𝑄(𝑥), which is in
general a sampling circuit. Each history state is prepared in a special way [CLLW22] to satisfy the
following properties: (i) a sample approximately from the output distribution may be obtained
by measuring certain registers of the state in the standard basis, which can be achieved by adding
enough dummy identity gates to ensure that the output state is a large fraction of the history state,
and (ii) the history state is the unique ground state of the Hamiltonian, and all orthogonal states
have much higher energy, ensuring that the verifier can test the validity of the entire computation
by testing the energy of the history state.

Then, the verifier samples certain copies for verifying and other copies for sampling. In the
verify copies, it samples a random Hamiltonian term, and measures in the corresponding standard
and Hadamard bases, while in the sample copies, the verifier measures the output register in the
standard basis. If the verifier accepts the results from measuring the verify copies, it outputs
the collection of samples obtained from the sample copies. It was shown by [Bar21] that if 𝑄
is a partitioning circuit with predicate 𝑃 , then one can set parameters so that conditioned on

19Quantum interactive protocols where the verifier only requires the ability to measure single qubits have been re-
ferred to as QPIP1 protocols.
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verification passing, it holds with overwhelming probability that at least half of the output samples 𝑞𝑡
are such that 𝑃 (𝑞𝑡) = 𝑃 (𝑄(𝑥)). We describe the formal syntax of this protocol in Fig. 4, where the
prover state |𝜓⟩ consists of sufficiently many copies of the history state, and the verifier’s string
ℎ of measurement bases consists of (mostly) indices used for verification as well as some indices
used for sampling outputs, which we denote by 𝑆. By an observation of [ACGH20], the sampling
of ℎ can be performed independently of the input 𝑥, which is reflected in the syntax of Fig. 4
(technically, it only needs the size |𝑄| rather than 𝑄 itself).

Next, we introduce some notation, and then state the correctness and soundness guarantees of
this protocol that follow from prior work.

Definition 5.3. Define Maj to be the predicate that takes as input a set of bits {𝑏𝑖}𝑖 and outputs the most
frequently occurring bit 𝑏. In the event of a tie, we arbitrarily set the output to 0.

Definition 5.4. For a string 𝑥 ∈ {0, 1}𝑛 and a subset 𝑆 ⊆ [𝑛], define 𝑥[𝑆] to be the string consisting of
bits {𝑥𝑖}𝑖∈𝑆 .

Definition 5.5. Given an ℎ ∈ {0, 1}𝑛 and an 𝑛-qubit state |𝜓⟩, let 𝑀(ℎ, |𝜓⟩) denote the distribution over
𝑛-bit strings that results from measuring each qubit 𝑖 of |𝜓⟩ in basis ℎ𝑖, where the bit ℎ𝑖 = 0 indicates
standard basis and ℎ𝑖 = 1 indicates Hadamard basis.

Imported Theorem 5.6 ([CLLW22, Bar21]). The protocol ΠQV (Fig. 4) that satisfies the following prop-
erties.

• Completeness. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘𝑄𝜆, }𝜆∈N is pseudo-deterministic, and
any sequence of inputs {𝑥𝜆}𝜆∈N,

Pr

⎡⎢⎢⎣VQV
Ver(𝑄, 𝑥, ℎ,𝑚) = ⊤ ∧Maj({𝑃 (𝑞𝑡)}𝑡) = 𝑃 (𝑄(𝑥)) :

|𝜓⟩ ← PQV(1𝜆, 𝑄, 𝑥)

(ℎ, 𝑆)← VQV
Gen(1

𝜆, 𝑄)
𝑚←𝑀(ℎ, |𝜓⟩)
{𝑞𝑡}𝑡∈[𝜆] := 𝑚[𝑆]

⎤⎥⎥⎦ = 1−negl(𝜆).

• Soundness. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is pseudo-deterministic, any
sequence of inputs {𝑥𝜆}𝜆∈N, and any sequence of states {|𝜓*𝜆⟩}𝜆∈N,

Pr

⎡⎣VQV
Ver(𝑄, 𝑥, ℎ,𝑚) = ⊤ ∧Maj({𝑃 (𝑞𝑡)}𝑡) = 1− 𝑃 (𝑄(𝑥)) :

(ℎ, 𝑆)← VQV
Gen(1

𝜆, 𝑄)
𝑚←𝑀(ℎ, |𝜓*⟩)
{𝑞𝑡}𝑡∈[𝜆] := 𝑚[𝑆]

⎤⎦ = negl(𝜆).

5.3 Classical verification

Next, we compile the above information-theoretic protocol into a classically-verifiable but computationally-
sound protocol, using Mahadev’s measurement protocol [Mah22]. The measurement protocol it-
self is a four-message protocol with a single bit challenge from the verifier. Then, we apply parallel
repetition and Fiat-Shamir, following [ACGH20, CCY20, Bar21], which results in a two-message
negligibly-sound protocol in the quantum random oracle model.

The resulting protocol ΠCV = (PCV
Prep,V

CV
Gen,P

CV
Prove,P

CV
Meas,V

CV
Ver) makes use of a dual-mode ran-

domized trapdoor claw-free hash function (TCF.Gen,TCF.Eval,TCF.Invert,TCF.Check,TCF.IsValid)
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QPIP1 protocol ΠQV =
(︁
PQV,VQV

Gen,V
QV
Ver

)︁
Parameters: Number of bits 𝑛 output by 𝑄, and number of qubits ℓ = ℓ(𝜆) in the prover’s state.

Prover’s computation

• PQV(1𝜆, 𝑄, 𝑥) → |𝜓⟩ : on input the security parameter 1𝜆, the description of a quantum circuit 𝑄, and an
input 𝑥, the prover prepares a state |𝜓⟩ on ℓ qubits, and sends it to the verifier.

Verifier’s computation

• VQV
Gen(1

𝜆, 𝑄) → (ℎ, 𝑆) : on input the security parameter 1𝜆 and the description of a quantum circuit 𝑄, the
verifier’s Gen algorithm samples a string ℎ ∈ {0, 1}ℓ and a subset 𝑆 ⊂ [ℓ] of size 𝑛 · 𝜆 with the property
that for all 𝑖 ∈ 𝑆, ℎ𝑖 = 0.

• Next, the verifier measures 𝑚←𝑀(ℎ, |𝜓⟩) to obtain a string of measurement results 𝑚 ∈ {0, 1}ℓ.
• VQV

Ver(𝑄, 𝑥, ℎ,𝑚) → {⊤,⊥} : on input a circuit 𝑄, input 𝑥, string of bases ℎ, and measurement results 𝑚,
the verifier’s Ver algorithm outputs ⊤ or ⊥.

• If⊤, the verifier outputs the string𝑚[𝑆] which is parsed as {𝑞𝑡}𝑡∈[𝜆] where each 𝑞𝑡 ∈ {0, 1}𝑛 and otherwise
the verifier outputs ⊥.

Figure 4: Syntax for a QPIP1 protocol that verifies the output of a quantum partitioning circuit 𝑄.

(Definition 3.6), and is described in Fig. 5. We choose to explicitly split the second prover’s algo-
rithm into two parts PCV

Prove and PCV
Meas for ease of notation when we build on top of this protocol in

the next section.
We introduce some notation needed for describing the security properties of this protocol.

• Fix a security parameter 𝜆, circuit 𝑄, input 𝑥, and parameters (pp, sp) ∈ VCV
Gen(1

𝜆, 𝑄).

• Based on sp = {ℎ𝑖, 𝑆𝑖, {sk𝑖,𝑗}𝑗∈[ℓ]}𝑖∈[𝑟], we define the set 𝑆 := {𝑆𝑖}𝑖∈[𝑟]. For any proof
𝜋 = {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖,𝑗 generated by PCV, we let 𝑤 := TestRoundOutputs[sp](𝜋) be a string
𝑤 ∈ {0, 1}|𝑆| defined as follows. Let 𝑇 := 𝐻(𝑦1,1, . . . , 𝑦𝑟,ℓ). The string 𝑤 consists of 𝑟 sub-
strings 𝑤1, . . . , 𝑤𝑟, where for each 𝑖 : 𝑇𝑖 = 0, 𝑤𝑖 consists of the bits {𝑏𝑖,𝑗}𝑗∈𝑆𝑖 , and for each
𝑖 : 𝑇𝑖 = 1, 𝑤𝑖 = 0|𝑆𝑖|.

• For any predicate 𝑃 and bit 𝑏 ∈ {0, 1}, we define the set 𝐷in[𝑃, 𝑏] ⊂ {0, 1}|𝑆| to consist of
𝑤 := (𝑤1, . . . , 𝑤𝑟) with the following property. There are at least 3/4 fraction of 𝑤𝑖 such that,
parsing 𝑤𝑖 as (𝑤𝑖,1, . . . , 𝑤𝑖,𝜆), it holds that Maj

(︁
{𝑃 (𝑤𝑖,𝑡)}𝑡∈[𝜆]

)︁
= 𝑏.

• For any predicate 𝑃 and bit 𝑏 ∈ {0, 1}, we define the set 𝐷out[𝑃, 𝑏] ⊂ {0, 1}|𝑆| to consist of
𝑤 := (𝑤1, . . . , 𝑤𝑟) with the following property. There are at least 1/3 fraction of 𝑤𝑖 such that,
parsing 𝑤𝑖 as (𝑤𝑖,1, . . . , 𝑤𝑖,𝜆), it holds that Maj

(︁
{𝑃 (𝑤𝑖,𝑡)}𝑡∈[𝜆]

)︁
= 1− 𝑏.

Note that for any predicate 𝑃 and 𝑏 ∈ {0, 1}, 𝐷in[𝑃, 𝑏] and 𝐷out[𝑃, 𝑏] are disjoint sets of strings.
Now, we state four properties that ΠCV satisfies. The proof of Lemma 5.8 follows immedi-

ately from the completeness of ΠQV (Imported Theorem 5.6) and the correctness of the dual-mode
randomized trapdoor claw-free hash function (Definition 3.6). The proofs of the remaining three
lemmas mostly follow from the prior work of [Bar21], and we show this formally in Appendix C.
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Classically-verifiable protocol ΠCV =
(︁
PCV
Prep,V

CV
Gen,P

CV
Prove,P

CV
Meas,V

CV
Ver

)︁
Parameters: Number of qubits per round ℓ := ℓ(𝜆), number of parallel rounds 𝑟 := 𝑟(𝜆), number of Hadamard
rounds 𝑘 := 𝑘(𝜆), and random oracle 𝐻 : {0, 1}* → {0, 1}log (

𝑟
𝑘).

• PCV
Prep(1

𝜆, 𝑄, 𝑥) → (ℬ1, . . . ,ℬ𝑟): For each 𝑖 ∈ [𝑟], prepare the state |𝜓𝑖⟩ := PQV(1𝜆, 𝑄, 𝑥) on register ℬ𝑖 =
(ℬ𝑖,1, . . . ,ℬ𝑖,ℓ), which we write as

|𝜓𝑖⟩ :=
∑︁

𝑣∈{0,1}ℓ
𝛼𝑣 |𝑣⟩ℬ𝑖 .

• VCV
Gen(1

𝜆, 𝑄) → (pp, sp): For each 𝑖 ∈ [𝑟], sample (ℎ𝑖, 𝑆𝑖) ← VQV
Gen(1

𝜆, 𝑄) where ℎ𝑖 = (ℎ𝑖,1, . . . , ℎ𝑖,ℓ), and
sample {(pk𝑖,𝑗 , sk𝑖,𝑗)← TCF.Gen(1𝜆, ℎ𝑖,𝑗)}𝑗∈[ℓ]. Then, set

pp := {{pk𝑖,𝑗}𝑗∈[ℓ]}𝑖∈[𝑟], sp := {ℎ𝑖, 𝑆𝑖, {sk𝑖,𝑗}𝑗∈[ℓ]}𝑖∈[𝑟].

• PCV
Prove(ℬ1, . . . ,ℬ𝑟, pp)→ (ℬ1, . . . ,ℬ𝑟, {𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]):

– Do the following for each 𝑖 ∈ [𝑟]: For each 𝑗 ∈ [ℓ], apply TCF.Eval[pk𝑖,𝑗 ](ℬ𝑖,𝑗) → (ℬ𝑖,𝑗 ,𝒵𝑖,𝑗 ,𝒴𝑖,𝑗),
resulting in the state ∑︁

𝑣∈{0,1}ℓ
𝛼𝑣 |𝑣⟩ℬ𝑖 |𝜓pk𝑖,1,𝑣1⟩

𝒵𝑖,1,𝒴𝑖,1 , . . . , |𝜓pk𝑖,ℓ,𝑣ℓ⟩
𝒵𝑖,ℓ,𝒴𝑖,ℓ ,

and measure registers 𝒴𝑖,1, . . . ,𝒴𝑖,ℓ in the standard basis to obtain strings 𝑦𝑖,1, . . . , 𝑦𝑖,ℓ.

– Compute 𝑇 := 𝐻(𝑦1,1, . . . , 𝑦𝑟,ℓ), where 𝑇 ∈ {0, 1}𝑟 with Hamming weight 𝑘.

– For each 𝑖 : 𝑇𝑖 = 0, measure 𝒵𝑖,1, . . . ,𝒵𝑖,ℓ in the standard basis to obtain strings 𝑧𝑖,1, . . . , 𝑧𝑖,ℓ.

– For each 𝑖 : 𝑇𝑖 = 1, apply 𝐽(·) coherently to each register 𝒵𝑖,1, . . . ,𝒵𝑖,ℓ and then measure in the
Hadamard basis to obtain strings 𝑧𝑖,1, . . . , 𝑧𝑖,ℓ.

• PCV
Meas(ℬ1, . . . ,ℬ𝑟) → {𝑏𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]: Measure registers {ℬ𝑖,𝑗}𝑖:𝑇𝑖=0,𝑗∈[ℓ] in the standard basis to ob-

tain bits {𝑏𝑖,𝑗}𝑖:𝑇𝑖=0,𝑗∈[ℓ] and measure registers {ℬ𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈[ℓ] in the Hadamard basis to obtain bits
{𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈[ℓ].

• VCV
Ver(𝑄, 𝑥, sp, 𝜋)→ {{{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1} ∪ {⊥}:

– Parse 𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] and compute 𝑇 := 𝐻(𝑦1,1, . . . , 𝑦𝑟,ℓ).

– For each 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], compute TCF.Check(pk𝑖,𝑗 , 𝑏𝑖,𝑗 , 𝑧𝑖,𝑗 , 𝑦𝑖,𝑗). If any are ⊥, then output ⊥.

– For each 𝑖 : 𝑇𝑖 = 1, do the following.

* For each 𝑗 ∈ [ℓ]: If ℎ𝑖,𝑗 = 0, compute TCF.Invert(0, sk𝑖,𝑗 , 𝑦𝑖,𝑗), output ⊥ if the output is ⊥,
and otherwise parse the output as (𝑚𝑖,𝑗 , 𝑥𝑖,𝑗). If ℎ𝑖,𝑗 = 1, compute TCF.Invert(1, sk𝑖,𝑗 , 𝑦𝑖,𝑗),
output⊥ if the output is⊥, and otherwise parse the output as (0, 𝑥𝑖,𝑗,0), (1, 𝑥𝑖,𝑗,1). Then, check
TCF.IsValid(𝑥𝑖,𝑗,0, 𝑥𝑖,𝑗,1, 𝑧𝑖,𝑗) and output ⊥ if the result is ⊥. Finally, set 𝑚𝑖,𝑗 := 𝑏𝑖,𝑗 ⊕ 𝑧𝑖,𝑗 ·
(𝐽(𝑥𝑖,𝑗,0)⊕ 𝐽(𝑥𝑖,𝑗,1)).

* Let𝑚𝑖 = (𝑚𝑖,1, . . . ,𝑚𝑖,ℓ), compute VQV
Ver(𝑄, 𝑥, ℎ𝑖,𝑚𝑖), output⊥ if the result is⊥, and otherwise

set {𝑞𝑖,𝑡}𝑡∈[𝜆] := 𝑚𝑖[𝑆𝑖].

– Output {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1.

Figure 5: Two-message protocol for verifying quantum partitioning circuits with a classical veri-
fier.
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Definition 5.7. Let MM𝜆 be the predicate that takes as input a set of bits {{𝑏𝑖,𝑡}𝑡∈[𝜆]}𝑖, and outputs the bit

MM𝜆({{𝑏𝑖,𝑡}𝑡∈[𝜆]}𝑖) := Maj
(︁{︀

Maj
(︀
{𝑏𝑖,𝑡}𝑡∈[𝜆]

)︀}︀
𝑖

)︁
.

Lemma 5.8 (Completeness). The protocol ΠCV (Fig. 5) with 𝑟(𝜆) = 𝜆2 and 𝑘(𝜆) = 𝜆 satisfies complete-
ness, which stipulates that for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is pseudo-deterministic
and sequence of inputs {𝑥𝜆}𝜆∈N,

Pr

⎡⎢⎢⎢⎢⎣ VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 𝑃 (𝑄(𝑥))
:

(ℬ1, . . . ,ℬ𝑟)← PCV
Prep(1

𝜆, 𝑄, 𝑥)

(pp, sp)← VCV
Gen(1

𝜆, 𝑄)
{𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] ← PCV

Prove(ℬ1, . . . ,ℬ𝑟, pp)
{𝑏𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] ← PCV

Meas(ℬ1, . . . ,ℬ𝑟)
𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]

⎤⎥⎥⎥⎥⎦ = 1−negl(𝜆).

Lemma 5.9 (Soundness). The protocol ΠCV (Fig. 5) with 𝑟(𝜆) = 𝜆2 and 𝑘(𝜆) = 𝜆 satisfies soundness,
which stipulates that for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆∘𝑄𝜆}𝜆∈N is pseudo-deterministic, sequence
of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

[︂
VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 1− 𝑃 (𝑄(𝑥))
:

(pp, sp)← VCV
Gen(1

𝜆, 𝑄)
𝜋 ← A(pp)

]︂
= negl(𝜆).

Lemma 5.10 (𝐷in if accept). The protocol ΠCV (Fig. 5) with 𝑟(𝜆) = 𝜆2 and 𝑘(𝜆) = 𝜆 satisfies the
following property. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘𝑄𝜆}𝜆∈N is pseudo-deterministic, sequence
of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

⎡⎣ VCV
Ver(𝑄, 𝑥, sp, 𝜋) ̸= ⊥ ∧

𝑤 /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))]
:

(pp, sp)← VCV
Gen(1

𝜆, 𝑄)
𝜋 ← A(pp)

𝑤 := TestRoundOutputs[sp](𝜋)

⎤⎦ = negl(𝜆).

Lemma 5.11 (𝐷out if accept wrong output). The protocol ΠCV (Fig. 5) with 𝑟(𝜆) = 𝜆2 and 𝑘(𝜆) = 𝜆 sat-
isfies the following property. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘𝑄𝜆}𝜆∈N is pseudo-deterministic,
sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

⎡⎣ VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 1− 𝑃 (𝑄(𝑥)) ∧
𝑤 /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))]

:
(pp, sp)← VCV

Gen(1
𝜆, 𝑄)

𝜋 ← A(pp, sp)
𝑤 := TestRoundOutputs[sp](𝜋)

⎤⎦ = negl(𝜆).

Note that in this final lemma, A𝜆 is given access to sp, so this does not trivially follow from
soundness.

5.4 Public verification

Next, we compile the above protocol into a publicly-verifiable protocol for quantum partitioning
circuits in the oracle model. We will use the following ingredients in addition to ΠCV (Protocol 5).

• A Pauli functional commitment PFC = (PFC.Gen,PFC.Com,PFC.OpenZ,PFC.OpenX,PFC.DecZ,
PFC.DecX) that satisfies string binding with public decodability (Definition 4.4).
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• A strongly unforgeable signature token scheme Tok = (Tok.Gen,Tok.Sign,Tok.Verify) (Defi-
nition 3.14).

• A pseudorandom function 𝐹𝑘 secure against superposition-query attacks [Zha12].

Publicly-verifiable protocol ΠPV = (PV.Gen,PV.Prove,PV.Ver,PV.Out)

Parameters: Let 𝜆 be the security parameter and define parameters (ℓ, 𝑟, 𝑘) as in ΠCV (Fig. 5).

• PV.Gen(1𝜆, 𝑄)→ (vk, |pk⟩ ,PK):

– Sample {(dk𝑖,𝑗 , |ck𝑖,𝑗⟩ ,CK𝑖,𝑗)← PFC.Gen(1𝜆)}𝑖∈[𝑟],𝑗∈[ℓ].

– Sample (vkTok, |skTok⟩)← Tok.Gen(1𝜆).

– Sample PRF keys 𝑘1, 𝑘2 ← {0, 1}𝜆.

– Define the functionality H(·) := 𝐹𝑘1(·), which will be used as the random oracle 𝐻 in ΠCV.

– Define the functionality CVGen(·) as follows, where its input is parsed as (𝑥, 𝑐, 𝜎).

* If Tok.Verify(vkTok, (𝑥, 𝑐), 𝜎) = ⊤ then continue, and otherwise return ⊥.

* Compute (pp, sp) := VCV
Gen(1

𝜆, 𝑄;𝐹𝑘2(𝑥, 𝑐, 𝜎)) and output pp.

– Set vk := (𝑄, 𝑘1, 𝑘2, vkTok, {dk𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]), |pk⟩ := (|skTok⟩ , {|ck𝑖,𝑗⟩}𝑖∈[𝑟],𝑗∈[ℓ]), and PK :=
(H,CVGen, {CK𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]).

• PV.ProvePK(|pk⟩ , 𝑄, 𝑥)→ 𝜋:

– Prepare |𝜓1⟩ℬ1 , . . . , |𝜓𝑟⟩ℬ𝑟 ← PCV
Prep(1

𝜆, 𝑄, 𝑥).

– For each 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ] apply PFC.ComCK𝑖,𝑗 (ℬ𝑖,𝑗 , |ck𝑖,𝑗⟩)→ (ℬ𝑖,𝑗 ,𝒰𝑖,𝑗 , 𝑐𝑖,𝑗) (see Definition 4.1).

– Set 𝑐 := (𝑐1,1, . . . , 𝑐𝑟,ℓ), compute 𝜎 ← Tok.Sign((𝑥, 𝑐), |skTok⟩), and compute pp := CVGen(𝑥, 𝑐, 𝜎).

– Apply PCV
Prove(ℬ1, . . . ,ℬ𝑟, pp)→ (ℬ1, . . . ,ℬ𝑟, {𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]), and define 𝑇 := H(𝑦1,1, . . . , 𝑦𝑟,ℓ)

– For each 𝑖 : 𝑇𝑖 = 0, 𝑗 ∈ [ℓ], apply PFC.OpenZ(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

– For each 𝑖 : 𝑇𝑖 = 1, 𝑗 ∈ [ℓ], apply PFC.OpenX(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

– Set 𝜋 := (𝑐, 𝜎, {𝑢𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]).

• PV.Ver(vk, 𝑥, 𝜋)→ {{{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1} ∪ {⊥}:

– Parse vk := (𝑄, 𝑘1, 𝑘2, vkTok, {dk𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]) and 𝜋 := (𝑐, 𝜎, 𝜇).

– If Tok.Verify(vkTok, (𝑥, 𝑐), 𝜎) = ⊤, then set (pp, sp) := VCV
Gen(1

𝜆, 𝑄;𝐹𝑘2(𝑥, 𝑐, 𝜎)), and let {ℎ𝑖}𝑖∈[𝑟] be
the string of basis choices defined by sp. Otherwise, return ⊥.

– Parse 𝜇 as {𝑢𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ], and define 𝑇 := 𝐹𝑘1(𝑦1,1, . . . , 𝑦𝑟,ℓ).

– For all 𝑖 : 𝑇𝑖 = 0, 𝑗 ∈ [ℓ], compute 𝑏𝑖,𝑗 := PFC.DecZ(dk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗), and return ⊥ if 𝑏𝑖,𝑗 = ⊥.

– For all 𝑖 : 𝑇𝑖 = 1, 𝑗 ∈ [ℓ] such that ℎ𝑖,𝑗 = 1, compute 𝑏𝑖,𝑗 := PFC.DecX(dk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗), and return ⊥
if 𝑏𝑖,𝑗 = ⊥.

– For all 𝑖 : 𝑇𝑖 = 1, 𝑗 ∈ [ℓ] such that ℎ𝑖,𝑗 = 0, set 𝑏𝑖,𝑗 = 0.

– Let ̃︀𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] and return {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 := VCV
Ver(𝑄, 𝑥, sp, ̃︀𝜋).

• PV.Combine ≡ MM𝜆 (see Definition 5.7).

Figure 6: Publicly-verifiable non-interactive classical verification of quantum partitioning circuits.

Theorem 5.12. The protocol ΠPV (Fig. 6) satisfies Definition 5.1 and Definition 5.2.
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Proof. We argue completeness (Definition 5.1) and soundness (Definition 5.2).

Completeness. Consider some circuit 𝑄, input 𝑥, and sample (vk, |pk⟩ ,PK) ← PV.Gen(1𝜆, 𝑄). By
the correctness of Tok (Definition 3.11), we know that the call to CVGen during PV.ProvePK(|pk⟩ , 𝑄, 𝑥)
only outputs⊥with negl(𝜆) probability. Also, by the security of the PRF, we can answer this query
using uniformly sampled random coins 𝑠 in place of 𝐹𝑘2(𝑥, 𝑐, 𝜎).

Now, imagine sampling 𝑠 and fixing (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠) before computing PV.ProvePK(|pk⟩ , 𝑄, 𝑥).
Then, since pp no longer depends on 𝑐, we can move the application of each PFC.ComCK𝑖,𝑗 (ℬ𝑖,𝑗 , |ck𝑖,𝑗⟩)
past the computation of pp, and thus right before PCV

Prove(ℬ1, . . . ,ℬ𝑟, pp). Moreover, since both
PFC.Com and PCV

Prove are classically controlled on registers ℬ1, . . . ,ℬ𝑟, and otherwise operate on dis-
joint registers, we can further commute each PFC.Com past PCV

Prove.
Then, the bits {𝑏𝑖,𝑗}𝑖,𝑗 for 𝑖 : 𝑇𝑖 = 0 computed during PV.Ver(vk, 𝑥, 𝜋) are now computed by

applying PFC.Com,PFC.OpenZ, and PFC.DecZ in succession to ℬ𝑖,𝑗 , and the bits {𝑏𝑖,𝑗}𝑖,𝑗 for 𝑖 : 𝑇𝑖 =
1, ℎ𝑖,𝑗 = 1 computed during PV.Ver(vk, 𝑥, 𝜋) are now computed by applying PFC.Com,PFC.OpenX,
and PFC.DecX in succession to ℬ𝑖,𝑗 . Thus, by the correctness of PFC (Definition 4.2), we can re-
place these operations by directly measuring ℬ𝑖,𝑗 in the standard (resp. Hadamard) basis. Now,
completeness follows directly from the completeness of ΠCV (Lemma 5.8), since the remaining bits
{𝑏𝑖,𝑗}𝑖,𝑗 for 𝑖 : 𝑇𝑖 = 1, ℎ𝑖,𝑗 = 0 (which are arbitrarily set to 0 in PV.Ver) are ignored by VCV

Ver, and the
rest of ̃︀𝜋 is now computed by applying PCV

Prove followed by PCV
Meas to ℬ1, . . . ,ℬ𝑟.

Soundness. Before getting into the formal proof, we provide a high-level overview. We will go via
the following steps.

• A1: Begin with an adversary A1 that is assumed to violate soundness of the protocol. Thus,
with non-negl(𝜆) probability, it’s final (classical) output consists of an input 𝑥* and a proof 𝜋*

such that PV.Ver(vk, 𝑥*, 𝜋*) ̸= ⊥ and PV.Out(PV.Ver(vk, 𝑥*, 𝜋*), 𝑃 ) ̸= 𝑃 (𝑄(𝑥*)).

• A2: Replace 𝐹𝑘2 with a random oracle, and call the resulting oracle algorithm A2.

• A3: Apply Measure-and-Reprogram (Imported Theorem 3.10) to obtain a two-stage adver-
sary A3, where the first stage outputs 𝑥*, a PFC commitment 𝑐*, and a token signature 𝜎*,
and the second stage outputs the remainder 𝜇* of the proof 𝜋* := (𝑐*, 𝜎*, 𝜇*). The parameters
(pp𝑥*,𝑐*,𝜎* , sp𝑥*,𝑐*,𝜎*) for ΠCV are re-sampled at the beginning of the second stage.

• A4: Use the strong unforgeability of the signature token scheme (Definition 3.14) to argue
that during the second stage of A3, all queries to PV.Ver except for (𝑥*, 𝑐*, 𝜎*) can be ignored.
Call the resulting adversary A4.

• 𝐷out[𝑃, 𝑃 (𝑄(𝑥*))]: Appeal to Lemma 5.11 to show that whenever A4 breaks soundness, its
output yields a proof ̃︀𝜋 for ΠCV such that

TestRoundOutputs[sp𝑥*,𝑐*,𝜎* ](̃︀𝜋) ∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥*))].

• ℋ0, . . . ,ℋ𝑝: Define a hybrid for each of the 𝑝 = poly(𝜆) queries that the second stage of A4

makes to PV.Ver. In each hybrid 𝜄, begin answering query 𝜄 with ⊥, and let Pr[ℋ𝜄 = 1] be
the probability that A4 still breaks soundness.
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• Pr[ℋ0 = 1] = non-negl(𝜆): This has already been proven, by assumption that A1 breaks
soundness with non-negl(𝜆) probability, and the hybrids above.

• Pr[ℋ𝑝 = 1] = negl(𝜆): This is implied by the soundness of ΠCV (Lemma 5.9) because in this
experiment, A4 does not have access to sp𝑥*,𝑐*,𝜎* before producing its final proof.

• Pr[ℋ𝜄 = 1] ≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆): This is proven in two parts.

1. By Lemma 5.10, we can say that since A4 does not have access to sp𝑥*,𝑐*,𝜎* before prepar-
ing its 𝜄’th query, each classical basis state in the query superposition that is not an-
swered with ⊥ yields a proof ̃︀𝜋 for ΠCV such that

TestRoundOutputs[sp𝑥*,𝑐*,𝜎* ](̃︀𝜋) ∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥*))].

2. We appeal to the string binding with public decodability of PFC (Definition 4.4) to show
that replacing these answers with ⊥ only affects the probability that A4 breaks sound-
ness by a negligible amount.
This follows because any part of the query that contains PFC openings for a string in
𝐷in[𝑃, 𝑃 (𝑄(𝑥*))] cannot have noticeable overlap with the part of the state (after run-
ning the rest of A4) that contains PFC openings for a string in 𝐷out[𝑃, 𝑃 (𝑄(𝑥*))]. Oth-
erwise, we can prepare an adversarial committer, where the part of A4 up to query 𝜄 is
the “Commit” stage, and the remainder of A4 is the “Open” stage. Crucially, since all
queries to PV.Ver except (𝑥*, 𝑐*, 𝜎*) are ignored during the Open stage, we do not have
to give the Open stage access to the receiver’s Hadamard basis decoding functionalities
on the indices that are checked by𝐷in[𝑃, 𝑃 (𝑄(𝑥*))] and𝐷out[𝑃, 𝑃 (𝑄(𝑥*))], which are all
standard basis positions with respect to the parameters (pp𝑥*,𝑐*,𝜎* , sp𝑥*,𝑐*,𝜎*).

• This completes the proof, as the previous three bullet points produce a contradiction.

Now we provide the formal proof. Suppose there exists 𝑄,𝑃 and A
PK,PV.Ver[vk]
1 that violates

Definition 5.2, where we have dropped the indexing by 𝜆 for convenience. Our first step will be
to replace the PRF 𝐹𝑘2(·) with a random oracle 𝐺. Note that A1 only has polynomially-bounded
oracle access to this functionality, so this has a negligible affect on the output of A1 [Zha12]. This
defines an oracle algorithm A𝐺2 based on A

PK,PV.Ver[vk]
1 that operates as follows.

• Sample (vk, |pk⟩ ,PK) as in PV.Gen(1𝜆, 𝑄), except 𝐹𝑘2(·) is replaced with 𝐺(·).

• Run A
PK,PV.Ver[vk]
1 (|pk⟩), forwarding calls to 𝐺 (which occur as part of calls to CVGen and

PV.Ver[vk]) to the external random oracle 𝐺.

• Measure A1’s output (𝑥*, 𝜋*), parse 𝜋* as (𝑐*, 𝜎*, 𝜇*) and output 𝑎 := (𝑥*, 𝑐*, 𝜎*) and aux :=
(𝜇*, vk).

Note that A2 makes 𝑝 = poly(𝜆) total queries to𝐺, since A1 makes poly(𝜆) queries. Now, define
𝑉 as in Fig. 7. Then since A1 breaks soundness,

Pr
[︀
𝑉 (𝑎,𝐺(𝑎), aux) = 1 : (𝑎, aux)← A𝐺2

]︀
= non-negl(𝜆).
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Functionalities used in the proof of Theorem 5.12

Fixed parameters: Security parameter 𝜆, circuit 𝑄, and predicate 𝑃 .

• PV.Ver[vk](𝑥, 𝜋): Same as PV.Ver(vk, 𝑥, 𝜋).

• PV.Ver[vk, 𝑠](𝑥, 𝜋): Same as PV.Ver[vk](𝑥, 𝜋) except that 𝑠 is used instead of 𝐹𝑘2(𝑥, 𝑐, 𝜎) when generating
(pp, sp) := VCV

Gen(1
𝜆, 𝑄; 𝑠).

• PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥, 𝜋): Same as PV.Ver[vk, 𝑠](𝑥, 𝜋), except that after the input is parsed as 𝑥 and
𝜋 := (𝑐, 𝜎, 𝜇), output ⊥ if

(𝑥, 𝑐, 𝜎) ̸= (𝑥*, 𝑐*, 𝜎*).

• PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in](𝑥, 𝜋): Same as PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥, 𝜋) except that after ̃︀𝜋 :=
{𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] has been computed, output ⊥ if

TestRoundOutputs[sp] (̃︀𝜋) /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))].

• PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), out](𝑥, 𝜋): Same as PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥, 𝜋) except that after ̃︀𝜋 :=
{𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] has been computed, output ⊥ if

TestRoundOutputs[sp] (̃︀𝜋) /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))].

• 𝑉 (𝑎, 𝑠, aux):

– Parse 𝑎 := (𝑥*, 𝑐*, 𝜎*) and aux := (𝜇*, vk).

– Compute 𝑞 := PV.Ver[vk, 𝑠](𝑥*, (𝑐*, 𝜎*, 𝜇*)).

– Output 1 iff 𝑞 ̸= ⊥ and PV.Out(𝑞, 𝑃 ) = 1− 𝑃 (𝑄(𝑥)).

• 𝑉 [out](𝑎, 𝑠, aux):

– Parse 𝑎 := (𝑥*, 𝑐*, 𝜎*) and aux := (𝜇*, vk).

– Compute 𝑞 := PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), out](𝑥*, (𝑐*, 𝜎*, 𝜇*)).

– Output 1 iff 𝑞 ̸= ⊥ and PV.Out(𝑞, 𝑃 ) = 1− 𝑃 (𝑄(𝑥)).

Figure 7: Description of functionalities used in the proof of Theorem 5.12.

Next, since 𝑝 = poly(𝜆), by Imported Theorem 3.10 there exists an algorithm A3 := Sim[A2]
such that

Pr

⎡⎣𝑉 ((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1 :
((𝑥*, 𝑐*, 𝜎*), state)← A3

𝑠← {0, 1}𝜆
(𝜇*, vk)← A3(𝑠, state)

⎤⎦ = non-negl(𝜆).

Moreover, A3 operates as follows.

• Sample 𝐺 as a 2𝑝-wise independent function and (𝑖, 𝑑)← ({0, . . . , 𝑝− 1} × {0, 1}) ∪ {(𝑝, 0)}.

• Run A2 for 𝑖 oracle queries, answering each query using the function 𝐺.

• When A2 is about to make its (𝑖+1)’th oracle query, measure its query register in the standard
basis to obtain 𝑎 := (𝑥*, 𝑐*, 𝜎*). In the special case that (𝑖, 𝑑) = (𝑝, 0), just measure (part of)
the final output register of A2 to obtain 𝑎.

• Receive 𝑠 externally.

47



• If 𝑑 = 0, answer A2’s (𝑖 + 1)’th query with 𝐺. If 𝑑 = 1, answer A2’s (𝑖 + 1)’th query instead
with 𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠].

• Run A2 until it has made all 𝑝 queries to 𝐺. For queries 𝑖 + 2 through 𝑝, answer with
𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠].

• Measure A2’s output aux := (𝜇*, vk).

Recall that A3 is internally running A1, who expects oracle access to H, CVGen, {CK𝑖,𝑗}𝑖,𝑗 and
PV.Ver[vk]. These oracle queries will be answered by A3. Next, we define A4 to be the same as
A3, except that after (𝑥*, 𝑐*, 𝜎*) is measured by A3, A1’s queries to PV.Ver[vk] are answered instead
with PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] from Fig. 7.

Claim 5.13.

Pr

⎡⎣𝑉 ((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1 :
((𝑥*, 𝑐*, 𝜎*), state)← A4

𝑠← {0, 1}𝜆
(𝜇*, vk)← A4(𝑠, state)

⎤⎦ = non-negl(𝜆).

Proof. We can condition on Tok.Ver(vkTok, (𝑥
*, 𝑐*), 𝜎*) = ⊤, since otherwise 𝑉 would output 0.

Then, by the strong unforgeability of Tok (Definition 3.14), once (𝑥*, 𝑐*, 𝜎*) is measured, A1 cannot
produce any query that has noticeable amplitude on any (𝑥, 𝑐, 𝜎) such that

(𝑥, 𝑐, 𝜎) ̸= (𝑥*, 𝑐*, 𝜎*) and Tok.Ver(vkTok, (𝑥, 𝑐), 𝜎) = ⊤.

But after (𝑥*, 𝑐*, 𝜎*) is measured and 𝑠 is sampled, PV.Ver[vk] and PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] can
only differ on (𝑥, 𝑐, 𝜎) such that

(𝑥, 𝑐, 𝜎) ̸= (𝑥*, 𝑐*, 𝜎*) and Tok.Ver(vkTok, (𝑥, 𝑐), 𝜎) = ⊤.

Thus, since A1 only has polynomially-many queries, changing the oracle in this way can only have
a negligible affect on the final probability, which completes the proof.

Next, we claim the following, where 𝑉 [out] is defined in Protocol 7.

Claim 5.14.

Pr

⎡⎣𝑉 [out]((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1 :
((𝑥*, 𝑐*, 𝜎*), state)← A4

𝑠← {0, 1}𝜆
(𝜇*, vk)← A4(𝑠, state)

⎤⎦ = non-negl(𝜆).

Proof. First, if we replace the PRF 𝐹𝑘1(·) with an external random oracle 𝐻 , then the probabilities
in Claim 5.13 and Claim 5.14 remain the same up to a negligible difference [Zha12]. Next, note
that the only event that differentiates Claim 5.13 and Claim 5.14 is when A4 outputs (𝑥*, 𝑐*, 𝜎*, 𝜇*)
such that

𝑞 ̸= ⊥ ∧ Out𝜆[𝑃 ](𝑞) = 1− 𝑃 (𝑄(𝑥*)) ∧ TestRoundOutputs[sp](̃︀𝜋) /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥*))],

where (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠), ̃︀𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] is computed during

PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥*, (𝑐*, 𝜎*, 𝜇*)),
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and 𝑞 := VCV
Ver(𝑄, 𝑥

*, sp, ̃︀𝜋). If this event occurs with noticeable probability, there must be some
fixed 𝑥* such that it occurs with noticeable probability conditioned on 𝑥*. However, this would
contradict Lemma 5.11. Thus, the difference in probability must be negligible, completing the
proof.

Finally, we will define a sequence of hybrids {ℋ𝜄}𝜄∈[0,𝑝] based on A4. Hybrid ℋ𝜄 is defined as
follows.

• Run ((𝑥*, 𝑐*, 𝜎*), state)← A4.

• Sample 𝑠← {0, 1}𝜆.

• Run (𝜇*, vk)← A4(𝑠, state) with the following difference. Recall that at some point, A4 begins
using the oracle 𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠] while answering A1’s queries. For the first 𝜄 times that A1

queries PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] after this point, respond using the oracle 𝑂⊥ that outputs ⊥
on every input.

• Output 𝑉 [out]((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)).

Note that Claim 5.14 is stating exactly that Pr[ℋ0 = 1] = non-negl(𝜆). Next, we have the
following claim.

Claim 5.15. Pr[ℋ𝑝 = 1] = negl(𝜆).

Proof. First, if we replace the PRF 𝐹𝑘1(·) with an external random oracle 𝐻 , then the probability
remains the same up to a negligible difference [Zha12]. Now, the claim follows by a reduction to
the soundness of ΠCV (Lemma 5.9). Note that A4 never needs to know the sp such that (pp, sp) :=
VCV
Gen(1

𝜆, 𝑄; 𝑠), since all of the (at most 𝑝) calls that A1 makes to PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] once 𝐺
is programmed so that 𝐺[(𝑥*, 𝑐*, 𝜎*) → 𝑠] are answered with 𝑂⊥. Thus, we can view A𝐻4 as an
adversarial prover for ΠCV, where the first stage of A𝐻4 outputs 𝑥*, and the second stage receives
pp and outputs ̃︀𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖,𝑗 (which can be computed from 𝜇*). By the definition of the
predicate 𝑉 [out], the probability that ℋ𝑝 = 1 is at most the probability that MM𝜆[𝑃 ](𝑞) = 1 −
𝑃 (𝑄(𝑥)), where 𝑞 := VCV

Ver(𝑄, 𝑥
*, sp, ̃︀𝜋), which by Lemma 5.9 must be negl(𝜆).

Finally, we prove the following Claim 5.16. Since 𝑝 = poly(𝜆), this contradicts Claim 5.14 and
Claim 5.15, which completes the proof.

Claim 5.16. For any 𝜄 ∈ [𝑝], Pr[ℋ𝜄 = 1] ≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆).

Proof. Throughout this proof, when we refer to “query 𝜄” in some hybrid, we mean the 𝜄’th query
that A1 makes to PV.Ver[vk, 𝑥, (𝑥*, 𝑐*, 𝜎*)] after A4 has begun using the oracle 𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠] (if
such a query exists).

Now, we introduce an intermediate hybridℋ′𝜄−1 which is the same asℋ𝜄−1 except that query 𝜄
is answered with the functionality PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in] defined in Protocol 7.

So, it suffices to show that

• Pr[ℋ′𝜄−1 = 1] ≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆), and

• Pr[ℋ𝜄 = 1] ≥ Pr[ℋ′𝜄−1 = 1]− negl(𝜆).
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We note that the only difference between the three hybrids is how query 𝜄 is answered:

• Inℋ𝜄−1, query 𝜄 is answered with PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)].

• Inℋ′𝜄−1, query 𝜄 is answered with PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in].

• Inℋ𝜄, query 𝜄 is answered with 𝑂⊥.

Now, the proof is completed by appealing to the following two claims.

Claim 5.17. Pr[ℋ′𝜄−1 = 1] ≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆).

Proof. First, if we replace the PRF 𝐹𝑘1(·) with an external random oracle 𝐻 , then Pr[ℋ𝜄−1 = 1]
and Pr[ℋ′𝜄−1 = 1] remain the same up to negligible difference [Zha12]. Now, this follows from a
reduction to Lemma 5.10. Indeed, note that if |Pr[ℋ′𝜄−1 = 1] − Pr[ℋ𝜄−1 = 1]| = non-negl(𝜆), then
inℋ𝜄−1, A1’s 𝜄’th query must have noticeable amplitude on (𝑥*, 𝜋* = (𝑐*, 𝜎*, 𝜇*)) such that

𝑞 ̸= ⊥ ∧ TestRoundOutputs[sp](̃︀𝜋) /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥*))],

where (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠), ̃︀𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] is computed during

PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥*, (𝑐*, 𝜎*, 𝜇*)),

and 𝑞 := VCV
Ver(𝑄, 𝑥

*, sp, ̃︀𝜋). However, A4 never needs to know sp prior to this query, since all of the
calls that A1 makes to PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] once𝐺 is programmed so that𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠] are
answered with 𝑂⊥. Thus, we can view A𝐻4 has an adversarial prover for ΠCV, where the first part
of A𝐻4 outputs 𝑥*, and the second part receives pp and outputs ̃︀𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖,𝑗 (which can be
computed from 𝜇*). Then, by Lemma 5.10, the above event occurs with negligible probability.

Claim 5.18. Pr[ℋ𝜄 = 1] ≥ Pr[ℋ′𝜄−1 = 1]− negl(𝜆)

Proof. We will show this by reduction to the string binding with public decodability property of
PFC. Recall from Section 5.3 that based on any (pp, sp) ∈ VCV

Gen(1
𝜆, 𝑄), we define a subset of indices

𝑆 := {𝑆𝑖}𝑖∈[𝑟] ⊂ [𝑟] × [ℓ] by the subsets {𝑆𝑖}𝑖∈[𝑟] defined by sp. This subset 𝑆 is used in turn
to define the predicates 𝐷in[𝑃, 𝑏] and 𝐷out[𝑃, 𝑏]. Throughout this proof, we will always let 𝑆 be
defined based on (pp, sp) := VCV

Gen(1
𝜆, 𝑄; 𝑠), where the coins 𝑠 will always be clear from context.

We also define 𝑚 := |𝑆|, which we assume is the same for all coins 𝑠.
Now we define an oracle-aided operation C as follows.

• C takes as input {|ck𝜏 ⟩}𝜏∈[𝑚], where {dk𝜏 , |ck𝜏 ⟩ ,CK𝜏 ← PFC.Gen(1𝜆)}𝜏∈[𝑚].

• C samples 𝑠← {0, 1}𝜆 and sets (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠). For (𝑖, 𝑗) /∈ 𝑆, sample dk𝑖,𝑗 , |ck𝑖,𝑗⟩ ,CK𝑖,𝑗 ←
PFC.Gen(1𝜆). Let 𝑓 : [𝑚] → 𝑆 be an arbitrary bijection, and re-define {dk𝜏 , |ck𝜏 ⟩ ,CK𝜏}𝜏∈[𝑚]

as {dk𝑓(𝜏), |ck𝑓(𝜏)⟩ ,CK𝑓(𝜏)}𝜏∈[𝑚].

• C runs A4 as defined by ℋ′𝜄−1 until right before query 𝜄 is answered. All queries to CK𝑖,𝑗 ,
PFC.DecZ[dk𝑖,𝑗 ], or PFC.DecX[dk𝑖,𝑗 ] for (𝑖, 𝑗) ∈ 𝑆 are forwarded to external oracles.
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That is, we can write the operation of C as

|𝜓⟩ ← CCK,PFC.DecZ[dk],PFC.DecX[dk](|ck⟩),

where CK is the collection oracles CK1, . . . ,CK𝑚, |ck⟩ = (|ck1⟩ , . . . , |ck𝑚⟩), PFC.DecZ[dk] is the
collection of oracles PFC.DecZ[dk1], . . . ,PFC.DecZ[dk𝑚], and PFC.DecX[dk] is the collection of ora-
cles PFC.DecX[dk1], . . . ,PFC.DecX[dk𝑚].

Next, we define an oracle-aided unitary U as follows.

• U takes as input the state |𝜓⟩ output by C.

• It coherently runs the remainder of A4 as defined byℋ′𝜄−1. Any queries to CK𝑖,𝑗 or PFC.DecZ[dk𝑖,𝑗 ]
for (𝑖, 𝑗) ∈ 𝑆 are forwarded to external oracles. Note that this portion of A4 does not require
access to the Hadamard basis decoding oracles PFC.DecX[dk𝑖,𝑗 ] for (𝑖, 𝑗) ∈ 𝑆. This follows
because for each such (𝑖, 𝑗), ℎ𝑖,𝑗 = 0, which means that PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in] only re-
quires access to the standard basis decoding oracles at these positions.

That is, we can write the operation of U as

|𝜓′⟩ := UCK,PFC.DecZ[dk](|𝜓⟩).

Now, we give a name to three registers of the space operated on by U, as follows.

• 𝒬 is the query register for A1’s 𝜄’th query. That is, the state |𝜓⟩ contains a superposition over
strings (𝑥, 𝜋) on register 𝒬.

• 𝒜 holds classical information (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*) that has been sampled previously by C. Thus,
the state |𝜓⟩ contains a standard basis state on register 𝒜, and U is classically controlled on
this register.

• 𝒱 is the register that is measured to produce the string 𝜇* output at the end of A4’s operation.
Thus, the state |𝜓′⟩ contains a superposition over 𝜇* on register 𝒱 .

We also define ̃︀U to be identical to U except that it runs the remainder of A4 as defined by ℋ𝜄.
Note that the only difference between U and ̃︀U is how query 𝜄 is answered at the very beginning.

Next, we define the following two projectors.

Π𝒬,𝒜in :=
∑︁

(𝑥, 𝜋), (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*) s.t.
PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in](𝑥, 𝜋) ̸= ⊥

|(𝑥, 𝜋), (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*)⟩ ⟨(𝑥, 𝜋), (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*)|

Π𝒜,𝒱out :=
∑︁

(vk, 𝑠, 𝑥*, 𝑐*, 𝜎*), 𝜇* s.t.
𝑉 [out]((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1

|(vk, 𝑠, 𝑥*, 𝑐*, 𝜎*), 𝜇*⟩ ⟨(vk, 𝑠, 𝑥*, 𝑐*, 𝜎*), 𝜇*|

Now, observe that

Pr[ℋ′𝜄−1 = 1] = E
CK,dk,|ck⟩

[︂⃦⃦⃦
Π𝒜,𝒱out U

CK,PFC.DecZ[dk] |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,PFC.DecZ[dk],PFC.DecX[dk](|ck⟩)
]︂
,
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and

Pr[ℋ𝜄 = 1] = E
CK,dk,|ck⟩

[︂⃦⃦⃦
Π𝒜,𝒱out

̃︀UCK,PFC.DecZ[dk] |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,PFC.DecZ[dk],PFC.DecX[dk](|ck⟩)
]︂
.

Furthermore, for any state |𝜓⟩ output by C, we can write |𝜓⟩ := |𝜓in⟩ + |𝜓⊥in⟩, where |𝜓in⟩ :=
Π𝒬,𝒜in |𝜓⟩. Notice that for any such |𝜓⊥in⟩, it holds that U |𝜓⊥in⟩ = ̃︀U |𝜓⊥in⟩, since query 𝜄 is answered
with ⊥ on both states and U and ̃︀U are otherwise identical. Thus, defining

Πout,U :=
(︁
UCK,PFC.DecZ[dk]

)︁†
Πout

(︁
UCK,PFC.DecZ[dk]

)︁
,

Π
out,̃︀U :=

(︁̃︀UCK,PFC.DecZ[dk]
)︁†

Πout

(︁̃︀UCK,PFC.DecZ[dk]
)︁
,

we have that for any |𝜓⟩ := |𝜓in⟩+ |𝜓⊥in⟩,

⃦⃦⃦
Πout,U(|𝜓in⟩+ |𝜓⊥in⟩)

⃦⃦⃦2
−
⃦⃦⃦
Π

out,̃︀U(|𝜓in⟩+ |𝜓⊥in⟩)
⃦⃦⃦2

= ⟨𝜓in|Πout,U |𝜓in⟩+ ⟨𝜓in|Πout,U |𝜓⊥in⟩+ ⟨𝜓⊥in |Πout,U |𝜓in⟩
− ⟨𝜓in|Πout,̃︀U |𝜓in⟩ − ⟨𝜓in|Πout,̃︀U |𝜓⊥in⟩ − ⟨𝜓⊥in |Πout,̃︀U |𝜓in⟩

≤ 3
⃦⃦⃦
Πout,U |𝜓in⟩

⃦⃦⃦
+ 3
⃦⃦⃦
Π

out,̃︀U |𝜓in⟩
⃦⃦⃦
.

So, we can bound Pr[ℋ′𝜄−1 = 1]− Pr[ℋ𝜄 = 1] by

E
CK,dk,|ck⟩

[︂
3
⃦⃦⃦
Πout,U |𝜓in⟩

⃦⃦⃦
+ 3
⃦⃦⃦
Π

out,̃︀U |𝜓in⟩
⃦⃦⃦
:
|𝜓⟩ ← CCK,PFC.DecZ[dk],PFC.DecX[dk](|ck⟩)

|𝜓⟩ := |𝜓in⟩+ |𝜓⊥in⟩

]︂
,

and thus it suffices to show that

E
CK,dk,|ck⟩

[︂⃦⃦⃦
ΠoutU

CK,PFC.DecZ[dk]Πin |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,PFC.DecZ[dk],PFC.DecX[dk](|ck⟩)
]︂
= negl(𝜆),

and

E
CK,dk,|ck⟩

[︂⃦⃦⃦
Πout

̃︀UCK,PFC.DecZ[dk]Πin |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,PFC.DecZ[dk],PFC.DecX[dk](|ck⟩)
]︂
= negl(𝜆).

The rest of this proof will be identical in either case, so we consider U. Towards proving this,
we first recall that 𝑠 is sampled uniformly at random at the very beginning of C, and the rest of C
and U are classically controlled on 𝑠. So, let C𝑠 be the same as C except that it is initialized with
the string 𝑠. Then it suffices to show that for any fixed 𝑠,

E
CK,dk,|ck⟩

[︂⃦⃦⃦
ΠoutU

CK,PFC.DecZ[dk]Πin |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,PFC.DecZ[dk],PFC.DecX[dk]
𝑠 (|ck⟩)

]︂
= negl(𝜆).
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Now, we observe that the register 𝒜 output by C contains a standard basis state holding
(vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)), where 𝑐* := {𝑐*𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]. Define commitments c := {𝑐*𝑖,𝑗}(𝑖,𝑗)∈𝑆 and write
the output of C𝑠 as (|𝜓⟩ , c) to make these commitments explicit. Then, define the following pred-
icates, where 𝑓 is the bijection from [𝑚]→ 𝑆 defined earlier.

̃︀𝐷in[dk, c]:

• Take as input (𝑏, 𝜋), where 𝜋 is parsed as (·, ·, {𝑢𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]).

• Output 1 if for some 𝑤 ∈ 𝐷in[𝑃, 𝑏] and all (𝑖, 𝑗) ∈ 𝑆, 𝑤𝑓−1(𝑖,𝑗) = PFC.DecZ(dk𝑖,𝑗 , 𝑐
*
𝑖,𝑗 , 𝑢𝑖,𝑗).̃︀𝐷out[dk, c]:

• Take as input (𝑏, 𝜇*), where 𝜇* is parsed as {𝑢𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ].

• Output 1 if for some 𝑤 ∈ 𝐷out[𝑃, 𝑏] and all (𝑖, 𝑗) ∈ 𝑆, 𝑤𝑓−1(𝑖,𝑗) = PFC.DecZ(dk𝑖,𝑗 , 𝑐
*
𝑖,𝑗 , 𝑢𝑖,𝑗).

Next, we define the following two projectors.

Π𝒬,𝒜dk,c,in :=
∑︁

(·, 𝜋), (·, ·, 𝑥*, ·, ·) s.t.̃︀𝐷in[dk, c](𝑃 (𝑄(𝑥*)), 𝜋) = 1

|(·, 𝜋), (·, ·, 𝑥*, ·, ·)⟩ ⟨(·, 𝜋), (·, ·, 𝑥*, ·, ·)|

Π𝒜,𝒱dk,c,out :=
∑︁

(·, ·, 𝑥*, ·, ·), 𝜇* s.t.̃︀𝐷out[dk, c](𝑃 (𝑄(𝑥*)), 𝜇*) = 1

|(·, ·, 𝑥*, ·, ·), 𝜇*⟩ ⟨(·, ·, 𝑥*, ·, ·), 𝜇*|

Note that Π𝒬,𝒜in ≤ Π𝒬,𝒜dk,c,in and Π𝒜,𝒱out ≤ Π𝒜,𝒱dk,c,out, and thus it suffices to show that

E
CK,dk,|ck⟩

[︂⃦⃦⃦
Π𝒜,𝒱dk,c,outU

CK,PFC.DecZ[dk]Π𝒬,𝒜dk,c,in |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,PFC.DecZ[dk],PFC.DecX[dk]
𝑠 (|ck⟩)

]︂
= negl(𝜆).

Finally, for each 𝑏 ∈ {0, 1}, we define

Π𝒬dk,c,in,𝑏 :=
∑︁

(·,𝜋): ̃︀𝐷in[dk,c](𝑏,𝜋)=1

|(·, 𝜋)⟩ ⟨(·, 𝜋)| , Π𝒱dk,c,out,𝑏 :=
∑︁

𝜌*: ̃︀𝐷out[dk,c](𝑏,𝜇*)=1

|𝜇*⟩ ⟨𝜇*| .

In fact, these projectors now only operate on the sub-registers of 𝒬 and 𝒱 that hold the strings

{𝑢𝑖,𝑗}(𝑖,𝑗)∈𝑆 = {𝑢𝑓(𝜏)}𝜏∈[𝑚].

Naming these sub-registers 𝒬′ = (𝒬1, . . . ,𝒬𝑚) and 𝒱 ′ = (𝒱1, . . . ,𝒱𝑚), we can write

Π𝒬
′

dk,c,in,𝑏 :=
∑︁

𝑤∈𝐷in[𝑃,𝑏]

⎛⎝⨂︁
𝜏∈[𝑚]

Π𝒬𝜏dk𝜏 ,𝑐*𝜏 ,𝑤𝜏

⎞⎠ , Π𝒱
′

dk,c,out,𝑏 :=
∑︁

𝑤∈𝐷out[𝑃,𝑏]

⎛⎝⨂︁
𝜏∈[𝑚]

Π𝒱𝜏dk𝜏 ,𝑐*𝜏 ,𝑤𝜏

⎞⎠ ,
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where

Πdk𝜏 ,𝑐*𝜏 ,𝑤𝜏
:=

∑︁
𝑢:PFC.DecZ(dk𝜏 ,𝑐*𝜏 ,𝑢)=𝑤𝜏

|𝑢⟩ ⟨𝑢| .

Now, to complete the proof, we note that

E
CK,dk,|ck⟩

[︂⃦⃦⃦
Πdk,c,outU

CK,PFC.DecZ[dk]Πdk,c,in |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,PFC.DecZ[dk],PFC.DecX[dk]
𝑠 (|ck⟩)

]︂
≤ E

CK,dk,|ck⟩

[︂⃦⃦⃦
Πdk,c,out,0U

CK,PFC.DecZ[dk]Πdk,c,in,0 |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,PFC.DecZ[dk],PFC.DecX[dk]
𝑠 (|ck⟩)

]︂
+ E

CK,dk,|ck⟩

[︂⃦⃦⃦
Πdk,c,out,1U

CK,PFC.DecZ[dk]Πdk,c,in,1 |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,PFC.DecZ[dk],PFC.DecX[dk]
𝑠 (|ck⟩)

]︂
,

and by the string binding with public decodability of PFC (Definition 4.4), and the fact that
𝐷in[𝑃, 𝑏] and 𝐷out[𝑃, 𝑏] are disjoint sets of strings, we have that for any 𝑏 ∈ {0, 1},

E
CK,dk,|ck⟩

[︁⃦⃦⃦
Πdk,c,out,𝑏U

CK,PFC.DecZ[dk]Πdk,c,in,𝑏 |𝜓⟩
⃦⃦⃦
: (|𝜓⟩ , c)← CCK,PFC.DecZ[dk],PFC.DecX[dk]

𝑠 (|ck⟩)
]︁
= negl(𝜆).

5.5 Application: Publicly-Verifiable QFHE

Now, we apply our general framework for verification of quantum partitioning circuits to the
specific case of quantum fully-homomorphic encryption (QFHE). First, we define the notion of
publicly-verifiable QFHE for pseudo-deterministic circuits. We write the syntax in the oracle model,
where the parameters used for proving and verifying include an efficient classical oracle PP. Such
a scheme can be heuristically instantiated in the plain model by using post-quantum indistin-
guishability obfuscation to obfuscate this oracle.

Definition 5.19 (Publicly-verifiable QFHE for pseudo-deterministic circuits). A publicly-verifiable
quantum fully-homomorphic encryption scheme for pseudo-deterministic circuits consists of the following
algorithms (Gen,Enc,VerGen,Eval,Ver,Dec).

• Gen(1𝜆, 𝐷)→ (pk, sk): On input the security parameter 1𝜆 and a circuit depth𝐷, the key generation
algorithm returns a public key pk and a secret key sk.

• Enc(pk, 𝑥) → ct: On input the public key pk and a classical plaintext 𝑥, the encryption algorithm
outputs a ciphertext ct.

• VerGen(ct, 𝑄) → (|pp⟩ ,PP): On input a ciphertext ct and the description of a quantum circuit 𝑄,
the verification parameter generation algorithm returns public parameters (|pp⟩ ,PP), where PP is
the description of a classical deterministic polynomial-time functionality.

• EvalPP(ct, |pp⟩ , 𝑦) → (̃︀ct, 𝜋): The evaluation algorithm has oracle access to PP, takes as input a
ciphertext ct, a quantum state |pp⟩, and a classical string 𝑦, and outputs a ciphertext ̃︀ct and proof 𝜋.
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• VerPP(𝑦, ̃︀ct, 𝜋)→ {⊤,⊥}: The classical verification algorithm has oracle access to PP, takes as input
a string 𝑦, a ciphertext ̃︀ct, and a proof 𝜋, and outputs either ⊤ or ⊥.

• Dec(sk, ct) → 𝑥: On input the secret key sk and a classical ciphertext ct, the decryption algorithm
returns a message 𝑥.

These algorithms should satisfy the following properties.

• Correctness. For any family {𝑄𝜆, 𝑥𝜆, 𝑦𝜆}𝜆∈N where𝑄𝜆 takes two inputs, {𝑄𝜆(𝑥𝜆, ·)}𝜆∈N is pseudo-
deterministic, and 𝑄𝜆 has depth 𝐷 = 𝐷(𝜆), it holds that

Pr

⎡⎢⎢⎣ VerPP(𝑦, ̃︀ct, 𝜋) = ⊤ ∧
Dec(sk, ̃︀ct) = 𝑄(𝑥, 𝑦)

:

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥)

(|pp⟩ ,PP)← VerGen(ct, 𝑄)

(̃︀ct, 𝜋)← EvalPP(ct, |pp⟩ , 𝑦)

⎤⎥⎥⎦ = 1− negl(𝜆).

• Security. For any QPT adversary {A𝜆}𝜆∈N, depth 𝐷 = 𝐷(𝜆), and messages {𝑥𝜆,0, 𝑥𝜆,1}𝜆∈N,⃒⃒⃒⃒
Pr

[︂
A(pk, ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥0)

]︂
− Pr

[︂
A(pk, ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥1)

]︂ ⃒⃒⃒⃒
= negl(𝜆)

• Soundness. For any QPT adversary {A𝜆}𝜆∈N, depth 𝐷 = 𝐷(𝜆), and family {𝑄𝜆, 𝑥𝜆}𝜆∈N, where
𝑄𝜆 takes two inputs and {𝑄𝜆(𝑥𝜆, ·)}𝜆∈N is pseudo-deterministic,

Pr

⎡⎢⎢⎣ VerPP(𝑦, ̃︀ct, 𝜋) = ⊤ ∧
Dec(sk, ̃︀ct) ̸= 𝑄(𝑥, 𝑦)

:

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥)

(|pp⟩ ,PP)← VerGen(ct, 𝑄)
(𝑦, ̃︀ct, 𝜋)← APP(ct, |pp⟩)

⎤⎥⎥⎦ = negl(𝜆).

We will now construct publicly-verifiable QFHE for pseudo-deterministic circuits from the
following ingredients.

• A quantum fully-homomorphic encryption scheme (QFHE.Gen,QFHE.Enc,QFHE.Eval,QFHE.Dec)
(Section 3.4).

• A protocol for publicly-verifiable non-interactive classical verification of quantum partition-
ing circuits in the oracle model (PV.Gen,PV.Prove,PV.Verify,PV.Combine) (Section 5.4).

Our construction goes as follows.

• PVQFHE.Gen(1𝜆, 𝐷): Same as QFHE.Gen(1𝜆, 𝐷).

• PVQFHE.Enc(pk, 𝑥): Same as QFHE.Enc(pk, 𝑥).

• PVQFHE.VerGen(ct, 𝑄):

– Define the quantum circuit 𝐸[ct] : 𝑦 → QFHE.Eval(𝑄(·, 𝑦), ct).
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– Sample (PV.vk, |PV.pk⟩ ,PV.PK)← PV.Gen(1𝜆, 𝐸[ct]).
– Let VK(𝑦, 𝜋) be the following classical functionality. First, run PV.Ver(PV.vk, 𝑦, 𝜋). Out-

put ⊥ if the output was ⊥. Otherwise, parse the output as (ct1, . . . , ct𝑚), computẽ︀ct := QFHE.Eval(PV.Combine, (ct1, . . . , ct𝑚)), and output ̃︀ct.20

– Output |pp⟩ := |PV.pk⟩ ,PP := (PV.PK,VK) .

• PVQFHE.EvalPP(ct, |pp⟩ , 𝑦):

– Run 𝜋 ← PV.ProvePV.PK(|pp⟩ , 𝐸[ct], 𝑦).
– Compute ̃︀ct = VK(𝑦, 𝜋), and output (̃︀ct, 𝜋).

• PVQFHE.VerPP(𝑦, ̃︀ct, 𝜋): Output ⊤ iff VK(𝑦, 𝜋) = ̃︀ct.
• PVQFHE.Dec(sk, ct): Same as QFHE.Dec(sk, ct).

Theorem 5.20. The scheme described above satisfies Definition 5.19.

Proof. Correctness follows immediately from the evaluation correctness of QFHE (Definition 3.9)
and the completeness of PV (Definition 5.1). Security follows immediately from the semantic se-
curity of QFHE (Definition 3.8). Soundness follows immediately from the correctness of QFHE
(Definition 3.9) and soundness of PV (Definition 5.2), since QFHE.Dec(sk, ·) ∘ 𝐸[ct] is pseudo-
deterministic and the VK oracle is nothing but the PV.Ver[vk] oracle plus post-processing.

6 Quantum Obfuscation

6.1 Construction

In this section, we construct virtual black-box (VBB) obfuscation for pseudo-deterministic quan-
tum circuits from the following ingredients.

• A VBB obfuscator (CObf,CEval) for classical circuits (Definition 3.4).

• A publicly-verifiable QFHE for pseudo-deterministic circuits in the oracle model (Gen,Enc,
VerGen,Eval,Ver,Dec) (Definition 5.19).

The construction is given in Fig. 8.

Theorem 6.1. (QObf,QEval) described in Fig. 8 is a virtual black-box obfuscator for pseudo-deterministic
quantum circuits, satisfying Definition 3.4.

Proof. First, correctness follows immediately from the correctness of the VBB obfuscator (Defini-
tion 3.4) and the correctness of the publicly-verifiable QFHE scheme (Definition 5.19). Note that
even though the evaluation procedure may include measurements, an evaluator could run coher-
ently, measure just the output bit 𝑏, and reverse. By Gentle Measurement (Lemma 3.1), this implies
the ability to run the obfuscated program on any poly(𝜆) number of inputs.

Next, we show security. For any QPT adversary {A𝜆}𝜆∈N, we define a simulator {S𝜆}𝜆∈N as
follows, where {̃︀A𝜆}𝜆∈N is the simulator for the classical obfuscation scheme (CObf,CEval), defined
based on {A𝜆}𝜆∈N.

20Here, we are using the fact that QFHE.Eval is a deterministic classical functionality when evaluating a deterministic
classical functionality.
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Obfuscation scheme (QObf,QEval) for pseudo-deterministic quantum circuits

• QObf(1𝜆, 𝑄):

– Let 𝑈 be the universal quantum circuit that takes as input the description of a circuit of size |𝑄| and
an input of size 𝑛, where 𝑛 is the length of an input to 𝑄. Let 𝐷 be the depth of 𝑈 .

– Sample (pk, sk)← Gen(1𝜆, 𝐷), ct← Enc(pk, 𝑄), and (|pp⟩ ,PP)← VerGen(ct, 𝑈).

– Let DK(𝑥, ̃︀ct, 𝜋) be the following functionality. First, run VerPP(𝑥, ̃︀ct, 𝜋). If the output was ⊥, then
output ⊥, and otherwise output Dec(sk, ̃︀ct).

– Sample ̃︁PP← CObf(1𝜆,PP) and ̃︁DK← CObf(1𝜆,DK).

– Output ̃︀𝑄 :=
(︁
ct, |pp⟩ , ̃︁PP, ̃︁DK)︁.

• QEval( ̃︀𝑄, 𝑥):
– Parse ̃︀𝑄 as

(︁
ct, |pp⟩ , ̃︁PP, ̃︁DK)︁.

– Compute (̃︀ct, 𝜋)← Eval
̃︁PP(ct, |pp⟩ , 𝑥).

– Output 𝑏 := ̃︁DK(𝑥, ̃︀ct, 𝜋).
Figure 8: Obfuscation for pseudo-deterministic quantum circuits.

• Sample (pk, sk)← Gen(1𝜆, 𝐷), ct← Enc(pk, 0|𝑄|), and (|pp⟩ ,PP)← VerGen(ct, 𝑈).

• Run ̃︀APP,DK
𝜆 (ct, |pp⟩), answering PP calls honestly, and DK calls as follows.

– Take (𝑥, ̃︀ct, 𝜋) as input.

– Run VerPP(𝑥, ̃︀ct, 𝜋). If the output was ⊥ then output ⊥.

– Otherwise, forward 𝑥 to the external oracle 𝑂[𝑄], and return the result 𝑏 = 𝑂[𝑄](𝑥).

• Output ̃︀A𝜆’s output.

Now, for any circuit 𝑄, we define a sequence of hybrids.

• ℋ0: Sample ̃︀𝑄← QObf(1𝜆, 𝑄) and run A𝜆(1
𝜆, ̃︀𝑄).

• ℋ1: Sample (ct, |pp⟩ ,PP,DK) as in QObf(1𝜆, 𝑄), and run ̃︀APP,DK
𝜆 (ct, |pp⟩).

• ℋ2: Same asℋ1, except that calls to DK are answered as in the description of S𝜆.

• ℋ3: Same asℋ2, except that we sample (ct, |pp⟩ ,PP)← Enc(pk, 0|𝑄|, 𝑈). This is S𝜆.

We complete the proof by showing the following.

• |Pr[ℋ0 = 1]− Pr[ℋ1 = 1]| = negl(𝜆). This follows from the security of the classical obfusca-
tion scheme (CObf,CEval).
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• |Pr[ℋ1 = 1]− Pr[ℋ2 = 1]| = negl(𝜆). Suppose otherwise. Then there must exist some query
made by ̃︀A𝜆 to DK with noticeable amplitude on (𝑥, ̃︀ct, 𝜋) such that DK does not return⊥ but
Dec(sk, ̃︀ct) ̸= 𝑄(𝑥). Thus, we can measure a random one of the poly(𝜆) many queries made
by ̃︀A𝜆 to obtain such an (𝑥, ̃︀ct, 𝜋), which violates the soundness of the publicly-verifiable
QFHE scheme (Definition 5.19).

• |Pr[ℋ2 = 1] − Pr[ℋ3 = 1]| = negl(𝜆). Since sk is no longer used in ℋ2 to respond to DK
queries, this follows directly from the security of the publicly-verifiable QFHE scheme (Def-
inition 5.19).

6.2 Application: Copy-protection

We sketch an application of our obfuscation scheme to copy-protection of quantum programs. Let
(QObf,QEval) be a VBB obfuscation scheme for pseudo-deterministic quantum circuits, and let
𝐹𝑘 be a pseudo-random function secure against superposition-query attacks. In Fig. 9, we de-
scribe [ALL+21]’s construction of a software copy-protection scheme, generalized to copy-protect
pseudo-deterministic quantum circuits.

We refer the reader to [ALL+21] for definitions of (generalized) quantum unlearnable function
families and anti-piracy of quantum copy-protection schemes. Here, we observe that if 𝑄 is a
pseudo-deterministic circuit, then both 𝑂1 and 𝑂2 are as well, and thus they can be obfuscated by
our scheme. Finally, it is straightforward to see that any classical functionality 𝑓 sampled from
a distribution ℱ can be replaced with a pseudo-deterministic quantum functionality 𝑄 sampled
from a distribution 𝒬 in the definitions and proofs from [ALL+21]. Thus, we can generalize their
main theorem as follows.

Theorem 6.2. (Corollary of [ALL+21, Theorem 4] and Theorem 6.1) Let𝒬 be a family of pseudo-deterministic
quantum ciruits that is 𝛾-quantum-unlearnable with respect to distribution 𝒟 (where 𝛾 is a non-negligible
function of 𝜆). Then Protocol 9 is a copy protection scheme for𝒬,𝒟 that has (𝛾(𝜆)−1/poly(𝜆))-anti-piracy
security, for any polynomial poly(𝜆).

6.3 Application: Functional encryption

We sketch an application of our obfuscation scheme to functional encryption for pseudo-deterministic
quantum functionalities. Let (QObf,QEval) be a VBB obfuscation scheme for pseudo-deterministic
quantum circuits,21 let (Gen,Enc,Dec) be a (post-quantum) public-key encryption scheme, and
let (Setup,Prove,Verify) be a (post-quantum) statistically simulation sound non-interactive zero-
knowledge proof system (SSS-NIZK). We refer the reader to [GGH+16] for preliminaries on SSS-
NIZK, and for definitions of functional encryption.

Consider the following construction of functional encryption for pseudo-deterministic quan-
tum functionalities.

• FE.Setup(1𝜆): Sample (pk1, sk1) ← Gen(1𝜆), (pk2, sk2) ← Gen(1𝜆), crs ← Setup(1𝜆), and out-
put pp := (pk1, pk2, crs) and msk := sk1.

21For this application, we technically only require the weaker notion of indistinguishability obfuscation (Defini-
tion 3.5).
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Quantum copy-protection scheme [ALL+21]

• Setup(1𝜆)→ sk:

– Take as input the security parameter 1𝜆.

– Sample a uniformly random subspace 𝑆 < F𝜆2 of dimension 𝜆/2.

– Sample a PRF key 𝑘 ← {0, 1}𝜆.

– Out sk := (𝑆, 𝑘).

• Generate(sk, 𝑄)→ ̂︀𝑄:

– Take as input sk = (𝑆, 𝑘) and the description of a pseudo-deterministic quantum circuit 𝑄.

– Let 𝑂1 be the functionality that takes (𝑥, 𝑣) as input and outputs 𝑄(𝑥)⊕ 𝐹𝑘(𝑥) if 𝑣 ∈ 𝑆 ∖ {0}, and ⊥
otherwise.

– Let 𝑂2 be the functionality that takes (𝑥, 𝑣) as input and outputs 𝐹𝑘(𝑥) if 𝑣 ∈ 𝑆⊥ ∖ {0}, and ⊥
otherwise.

– Sample ̃︀𝑂1 ← QObf(1𝜆, 𝑂1) and ̃︀𝑂2 ← QObf(1𝜆, 𝑂2)

– Output ̂︀𝑄 :=
(︁
|𝑆⟩ , ̃︀𝑂1, ̃︀𝑂2

)︁
.

• Compute( ̂︀𝑄, 𝑥)→ 𝑦:

– Parse ̂︀𝑄 as |𝑆⟩ , ̃︀𝑂1, ̃︀𝑂2, where |𝑆⟩ is on register 𝒮.

– Apply QEval( ̃︀𝑂1, ·) coherently to register 𝒮, measure the output to obtain 𝑦1, and reverse the com-
putation of QEval( ̃︀𝑂1, ·).

– Apply 𝐻⊗𝜆 to register 𝒮, apply QEval( ̃︀𝑂2, ·) coherently to register 𝒮, measure the output to obtain
𝑦2, reverse the computation of QEval( ̃︀𝑂2, ·), and finally apply 𝐻⊗𝜆 to register 𝒮.

– Output 𝑦 := 𝑦1 ⊕ 𝑦2.

Figure 9: A description of the quantum copy protection scheme from [ALL+21], where the Gen-
erate algorithm may now take as input the description of a pseudo-deterministic quantum func-
tionality.

• FE.KeyGen(msk, 𝑄): On input the master secret key msk and the description of a pseudo-
deterministic quantum circuit 𝑄, define the following pseudo-deterministic quantum circuit
𝐶[𝑄, crs, sk1].

– Take (ct1, ct2, 𝜋) as input.

– Check that 𝜋 is a valid SSS-NIZK proof under crs that there exists (𝑚, 𝑟1, 𝑟2) such that
ct1 = Enc(pk1,𝑚; 𝑟1) and ct2 = Enc(pk2,𝑚; 𝑟2).

– If so, output 𝑄(Dec(sk1, ct1)), and otherwise output ⊥.

Finally, sample and output sk𝑄 ← QObf(1𝜆, 𝐶[𝑄, crs, sk1]).

• FE.Enc(pp,𝑚): Sample 𝑟1, 𝑟2 ← {0, 1}𝜆, compute ct1 := Enc(pk1,𝑚; 𝑟1), ct2 := Enc(pk2,𝑚; 𝑟2),
compute a SSS-NIZK proof 𝜋 that there exists (𝑚, 𝑟1, 𝑟2) such that ct1 = Enc(pk1,𝑚; 𝑟1) and
ct2 = Enc(pk2,𝑚; 𝑟2), and output ct := (ct1, ct2, 𝜋).

59



• FE.Dec(sk𝑄, ct): Run the obfuscated program sk𝑄 on input ct to obtain the output.

It is straightforward to extend the definitions and proofs in Section 6 of [GGH+16] to consider
functional encryption and obfuscation of pseudo-deterministic quantum circuits. As a result, we
obtain the following theorem.

Theorem 6.3 (Corollary of [GGH+16] Section 6 and Theorem 6.1). The above construction is a func-
tional encryption scheme satisfying indistinguishability security for the class of polynomial-size pseudo-
deterministic quantum functionalities.
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Lemma A.1. Any Pauli functional commitment that satisfies single-bit binding with public decodabil-
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Proof. For this proof, we will need a couple of different binding definitions, as well as a couple of
imported theorems.

Definition A.2 (Collapse binding). A Pauli functional commitment (Gen,Com,OpenZ,OpenX,DecZ,
DecX) satisfies collapse binding if the following holds. For any adversary A := {(C𝜆,U𝜆)}𝜆∈N, where
each of C𝜆 and U𝜆 are oracle-aided quantum operations that make at most poly(𝜆) oracle queries, define the
experiment EXPA

CB(𝜆) as follows.

• Sample dk, |ck⟩ ,CK← Gen(1𝜆).

• Run C
CK,DecZ[dk],DecX[dk]
𝜆 (|ck⟩) until it outputs a commitment 𝑐 and a state on registers (ℬ,𝒰 ,𝒜).

• Sample 𝑏← {0, 1}. If 𝑏 = 0, do nothing, and otherwise measure (ℬ,𝒰) with {Πdk,𝑐,0,Πdk,𝑐,1}.22

• Run U
CK,DecZ[dk]
𝜆 (ℬ,𝒰 ,𝒜) until it outputs a bit 𝑏′. The experiment outputs 1 if 𝑏 = 𝑏′.

We say that A is valid if the state on (ℬ,𝒰) output by C𝜆 is in the image of Πdk,𝑐,0 + Πdk,𝑐,1. Then, it
must hold that for all valid adversaries A,⃒⃒⃒⃒

Pr
[︁
EXPA

CB(𝜆) = 1
]︁
− 1

2

⃒⃒⃒⃒
= negl(𝜆).

Definition A.3 (Unique message binding). A Pauli functional commitment (Gen,Com,OpenZ,OpenX,
DecZ,DecX) satisfies unique message binding if for any polynomial𝑚(𝜆) and any adversary {(C𝜆,U𝜆)}𝜆∈N,
where each of C𝜆 and U𝜆 are oracle-aided quantum operations that make at most poly(𝜆) oracle queries, the
following experiment outputs 1 with probability negl(𝜆).

• Sample {dk𝑖, |ck𝑖⟩ ,CK𝑖 ← Gen(1𝜆)}𝑖∈[𝑚].

• Run C
CK,DecZ[dk],DecX[dk]
𝜆 (|ck⟩) until it outputs a commitment c := (𝑐1, . . . , 𝑐𝑚), a message 𝑥1 ∈

{0, 1}𝑚, and a state on registers (ℬ1,𝒰1, . . . ,ℬ𝑚,𝒰𝑚,𝒜).

• For each 𝑖 ∈ [𝑚], apply Πdk𝑖,𝑐𝑖,𝑥1,𝑖 to (ℬ𝑖,𝒰𝑖) and abort and output 0 if this projection rejects.

• Run U
CK,DecZ[dk]
𝜆 (ℬ1,𝒰1, . . . ,ℬ𝑚,𝒰𝑚,𝒜) until it outputs a message 𝑥2 ∈ {0, 1}𝑚, and a state on

registers (ℬ1,𝒰1, . . . ,ℬ𝑚,𝒰𝑚). If 𝑥1 = 𝑥2, abort and output 0.

• For each 𝑖 ∈ [𝑚], apply Πdk𝑖,𝑐𝑖,𝑥2,𝑖 to (ℬ𝑖,𝒰𝑖) and abort and output 0 if this projection rejects.
Otherwise, output 1.

Imported Theorem A.4 ([LMS22]). Any commitment that satisfies collapse binding also satisfies unique
message binding.

Imported Theorem A.5 ([DS22]). Let D be a projector, Π0,Π1 be orthogonal projectors, and |𝜓⟩ ∈
Im (Π0 +Π1). Then,

‖Π1DΠ0 |𝜓⟩ ‖2 + ‖Π0DΠ1 |𝜓⟩ ‖2 ≥
1

2

(︀
‖D |𝜓⟩ ‖2 −

(︀
‖DΠ0 |𝜓⟩ ‖2 + ‖DΠ1 |𝜓⟩ ‖2

)︀)︀2
.

Given these imported theorems, the proof of our lemma is quite straightforward.

22These projectors are defined in Definition 4.3.

66



• First, we establish using Imported Theorem A.5 that any Pauli functional commitment that
satisfies single-bit binding also satisfies collapse binding. To see this, suppose there exists
an adversary (C,U) that breaks collapse binding, let Π0 = Πdk,𝑐,0, Π1 = Πdk,𝑐,1, let D be
a projective implementation of UCK,DecZ[dk], and let |𝜓⟩ be the state of the collapse binding
experiment that is output by CCK,DecZ[dk],DecX[dk]. Then the RHS of Imported Theorem A.5 is
half the squared advantage of the adversary in the collapse binding game. This implies that
at least one of the terms on the LHS is non-negligible, which immediately implies that this
adversary can be used to break the single-bit binding game.

• Next, appealing to Imported Theorem A.4, we see that any Pauli functional commitment
that satisfies single-bit binding also satisfies unique message binding.

• Finally, suppose there is a Pauli functional commitment that is single-bit binding, but there
exists an adversary that breaks the string binding of this commitment for some pair of dis-
joint sets 𝑊0,𝑊1. We define an experiment where we insert a measurement of DecZ(dk, c, ·)
applied to the state Πdk,c,𝑊0 |𝜓⟩, which by definition will return some string 𝑥0 ∈𝑊0. By the
collapse binding of the commitment, inserting this measurement will only have a negligible
affect on the experiment. But now, since 𝑊0 and 𝑊1 are disjoint sets, this adversary breaks
the unique message binding of the commitment. This completes the proof.

B Remaining Proofs from Section 4.3

In this appendix, we prove the following theorem.

Theorem B.1. Let 𝑛,𝑚, 𝑑 ∈ N, 𝜖 ∈ (0, 1/8) be such that 𝑑 ≥ 2 and 𝑛−𝑑+1 > 10 log(1/𝜖)+6. Let U𝒳 ,𝒴

be any (2𝑛+𝑚)-dimensional unitary, where register 𝒳 is 2𝑛 dimensions and register 𝒴 is 2𝑚 dimensions.
Let 𝒜 be the set of 𝑑-dimensional balanced affine subspaces 𝐴 = 𝐴0 ∪ 𝐴1 of F𝑛2 , where 𝐴0 is the affine
subspace of vectors in 𝐴 that start with 0 and 𝐴1 is the affine subspace of vectors in 𝐴 that start with 1. For
any 𝐴 = 𝐴0 ∪𝐴1, let

Π𝐴0
:=
∑︁
𝑣∈𝐴0

|𝑣⟩ ⟨𝑣|𝒳 ⊗ I𝒴 , Π𝐴1
:= U†

⎛⎝∑︁
𝑣∈𝐴1

|𝑣⟩ ⟨𝑣|𝒳 ⊗ I𝒴
⎞⎠U.

Letℛ be the set of pairs (𝐴,𝐵) of 𝑑-dimensional affine subspaces of F𝑛2 such that dim(𝐴0∩𝐵0) = 𝑑−2
and dim(𝐴1 ∩𝐵1) = 𝑑− 2. Then for any set of states {|𝜓𝐴⟩}𝐴 such that for all 𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0),
and ‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖,

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13.

We will first simplify the problem by reducing to the case where each 𝐴 is two-dimensional,
consisting of just four vectors. This case is proven later in Appendix B.1. In the reduction, which
follows below, we begin with the observation that each (𝐴,𝐵) ∈ ℛ consists of six cosets of a par-
ticular (𝑑− 2)-dimensional subspace 𝑆. Then, we partition ℛ based on this underlying subspace,
and prove the claim separately for each 𝑆. Finally, the process of sampling (𝐴,𝐵) from ℛ condi-
tioned on an underlying subspace 𝑆 can be seen as sampling 𝐴 and 𝐵 as two-dimensional spaces
in the subspace of cosets of 𝑆.
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Proof. (of Theorem B.1) First, note that for any (𝐴,𝐵) ∈ ℛ, 𝐴0 ∩ 𝐵0 is an intersection of affine
subspaces, so is an affine subspace itself. So, we write𝐴0∩𝐵0 = 𝑆+𝑣0 for some (𝑑−2)-dimensional
subspace 𝑆. Since all vectors in 𝑆 + 𝑣0 start with 0, it must be the case that all vectors in 𝑆 start
with 0 and 𝑣0 starts with 0. Moreover, 𝐴 = 𝐴0∪𝐴1 and𝐵 = 𝐵0∪𝐵1 are both cosets of superspaces
of 𝑆, and thus we can write

𝐴 = (𝑆 + 𝑣0) ∪ (𝑆 + 𝑤0) ∪ (𝑆 + 𝑣1) ∪ (𝑆 + 𝑤1), 𝐵 = (𝑆 + 𝑣0) ∪ (𝑆 + 𝑢0) ∪ (𝑆 + 𝑣1) ∪ (𝑆 + 𝑢1)

for 𝑣0, 𝑤0, 𝑢0 that start with 0, 𝑣1, 𝑤1, 𝑢1 that start with 1, and where 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1 and
𝑣0 + 𝑢0 = 𝑣1 + 𝑢1.

Now, for any (𝑑 − 2)-dimensional subspace 𝑆 := span(𝑧1, . . . , 𝑧𝑑−2) such all vectors in 𝑆 start
with 0, let 𝑧𝑑−1, . . . , 𝑧𝑛 be such that (𝑧1, . . . , 𝑧𝑛) is an orthonormal basis of F𝑛2 and 𝑧𝑑−1 is the only
basis vector that starts with 1. Define the subspace co(𝑆) := span(𝑧𝑑−1, . . . , 𝑧𝑛). Furthermore, let
co(𝑆)0 be the subspace of vectors in co(𝑆) that start with 0, and let co(𝑆)1 be the affine subspace
of vectors in co(𝑆) that starts with 1.

Then we can sample from ℛ by first sampling a random (𝑑 − 2)-dimensional subspace 𝑆
such that all vectors in 𝑆 start with 0, then sampling distinct 𝑣0, 𝑤0, 𝑢0 ← co(𝑆)0 and distinct
𝑣1, 𝑤1, 𝑢1 ← co(𝑆)1 such that 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1 and 𝑣0 + 𝑢0 = 𝑣1 + 𝑢1, and finally setting

𝐴 = (𝑆 + 𝑣0) ∪ (𝑆 + 𝑤0) ∪ (𝑆 + 𝑣1) ∪ (𝑆 + 𝑤1), 𝐵 = (𝑆 + 𝑣0) ∪ (𝑆 + 𝑢0) ∪ (𝑆 + 𝑣1) ∪ (𝑆 + 𝑢1)

For any subspace 𝑆, letℛ[𝑆] be the set of (𝐴,𝐵) ∈ ℛ such that 𝐴0 ∩𝐵0 is a coset of 𝑆. Thus, it
suffices to prove that for each fixed 𝑆,

E
(𝐴,𝐵)←ℛ[𝑆]

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13.

Now consider any fixed 𝑆. For each 𝐴 that could be sampled byℛ[𝑆], we write

𝐴 = (𝑆 + 𝑣0) ∪ (𝑆 + 𝑤0) ∪ (𝑆 + 𝑣1) ∪ (𝑆 + 𝑤1)

for 𝑣0, 𝑤0 ∈ co(𝑆)0 and 𝑣1, 𝑤1 ∈ co(𝑆)1 such that 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1. Moreover, we can express
𝑣0, 𝑤0 as (0, 𝑣′0), (0, 𝑤

′
0) ∈ F𝑛−𝑑+2

2 and 𝑣1, 𝑤1 as (1, 𝑣′1), (1, 𝑤
′
1) ∈ F𝑛−𝑑+2

2 in the (𝑧𝑑−1, . . . , 𝑧𝑛)-basis.
Thus we can associate each 𝐴 with vectors 𝑣′0, 𝑤

′
0, 𝑣
′
1, 𝑤

′
1 ∈ F𝑛−𝑑+1

2 such that 𝑣′0 + 𝑤′0 = 𝑣′1 + 𝑤′1.
Let U𝑆,co(𝑆) be the unitary that implements the change of basis (𝑒1, . . . , 𝑒𝑛) → (𝑧1, . . . , 𝑧𝑛),

where the 𝑒𝑖 are the standard basis vectors, and let

̃︀U :=
(︀
U𝑆,co(𝑆) ⊗ I𝒴

)︀
U𝒳 ,𝒴

(︁
U†𝑆,co(𝑆) ⊗ I𝒴

)︁
.

Then, re-defining

| ̃︀𝜓𝐴⟩ := U𝑆,co(𝑆) |𝜓𝐴⟩ ,̃︀Π𝐴0
:= I⊗𝑑−2 ⊗ |0⟩ ⟨0| ⊗

(︀
|𝑣′0⟩ ⟨𝑣′0|+ |𝑤′0⟩ ⟨𝑤′0|

)︀
⊗ I𝒴 ,̃︀Π𝐴1

:= ̃︀U† (︁I⊗𝑑−2 ⊗ |1⟩ ⟨1| ⊗ (︀|𝑣′1⟩ ⟨𝑣′1|+ |𝑤′1⟩ ⟨𝑤′1|)︀⊗ I𝒴
)︁ ̃︀U,
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we have that | ̃︀𝜓𝐴⟩ ∈ Im(̃︀Π𝐴0) and ‖̃︀Π𝐴1 | ̃︀𝜓𝐴⟩ ‖ ≥ 𝜖 for all 𝐴 that could be sampled by ℛ[𝑆].
Moreover, we can replace the projections on the 𝑑− 1’st qubit with identities, defining

̃︀Π′𝐴0
:= I⊗𝑑−1 ⊗

(︀
|𝑣′0⟩ ⟨𝑣′0|+ |𝑤′0⟩ ⟨𝑤′0|

)︀
⊗ I𝒴 ,̃︀Π′𝐴1

:= ̃︀U† (︁I⊗𝑑−1 ⊗ (︀|𝑣′1⟩ ⟨𝑣′1|+ |𝑤′1⟩ ⟨𝑤′1|)︀⊗ I𝒴
)︁ ̃︀U,

and still have that | ̃︀𝜓𝐴⟩ ∈ Im(̃︀Π′𝐴0
) and ‖̃︀Π′𝐴1

| ̃︀𝜓𝐴⟩ ‖ ≥ 𝜖 for all𝐴 that could be sampled byℛ[𝑆].
Thus, we have reduced this problem to the “two-dimensional” case, which is covered in the next
section. Since 𝑛− 𝑑+ 1 > 10 log(1/𝜖) + 6, Theorem B.2 implies that

E
(𝐴,𝐵)←ℛ[𝑆]

[| ⟨ ̃︀𝜓𝐴| ̃︀𝜓𝐵⟩ |] < 1

2
− 𝜖13,

which implies that

E
(𝐴,𝐵)←ℛ[𝑆]

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13,

completing the proof.

B.1 Two-dimensional case

Theorem B.2. Let 𝑛,𝑚 ∈ N, 𝜖 ∈ (0, 1/8) be such that 𝑛 > 10 log(1/𝜖) + 6. Let U𝒳 ,𝒴 be a (2𝑛+𝑚)-
dimensional unitary, where register 𝒳 is 2𝑛 dimensions and register 𝒴 is 2𝑚 dimensions. Let 𝒜 be the set
of pairs of sets ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}) such that 𝑣0, 𝑤0, 𝑣1, 𝑤1 ∈ F𝑛2 and 𝑣0 +𝑤0 = 𝑣1 +𝑤1.23 We will write
any 𝐴 ∈ 𝒜 as 𝐴 := (𝐴0, 𝐴1), where 𝐴0 := {𝑣0, 𝑤0} and 𝐴1 = {𝑣1, 𝑤1}. For any such 𝐴, let

Π𝐴0
:= (|𝑣0⟩ ⟨𝑣0|+ |𝑤0⟩ ⟨𝑤0|)𝒳 ⊗ I𝒴 , Π𝐴1

:= U†
(︁
(|𝑣1⟩ ⟨𝑣1|+ |𝑤1⟩ ⟨𝑤1|)𝒳 ⊗ I𝒴

)︁
U.

Let ℛ be the set of pairs (𝐴,𝐵) such that |𝐴0 ∩ 𝐵0| = 1 and |𝐴1 ∩ 𝐵1| = 1. Then for any set of states
{|𝜓𝐴⟩}𝐴 such that for all 𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0) and ‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖,

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13.

First, we provide a high-level overview the proof. We note that it is easy to show that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≤
1

2
,

which only requires the condition that for all 𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0). Adding the condition that
‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖 should intuitively only decrease this expected inner product, since many of the

23Note that this theorem is not strictly the two-dimensional version of Theorem B.1, since 𝒜 is not exactly defined
to be the set of two-dimensional affine subspaces. Rather it consists of pairs of two sets {𝑣0, 𝑤0}, {𝑣1, 𝑤1} where the
vectors are arbitrary but satisfy 𝑣0 +𝑤0 = 𝑣1 +𝑤1. That is, 𝑣0, 𝑤0, 𝑣1, 𝑤1 here play the role of 𝑣′0, 𝑤′

0, 𝑣
′
1, 𝑤

′
1 in the proof

of Theorem B.1, and in particular 𝑣0, 𝑤0 do not necessarily start with 0 and 𝑣1, 𝑤1 do not necessarily start with 1.

69



Π𝐴1 are orthogonal. In particular, for any 𝐴0, all the Π𝐴1 such that (𝐴0, 𝐴1) ∈ 𝒜 are orthogonal.
To formalize this intuition, we proceed by contradiction, and assume that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≥
1

2
− 𝜖13.

For each 𝐴 = ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}), we will write |𝜓𝐴⟩ as

|𝜓𝐴⟩ := 𝛼𝑣0𝐴 |𝑣0⟩
𝒳 |𝜑𝑣0𝐴 ⟩

𝒴 + 𝛼𝑤0
𝐴 |𝑤0⟩𝒳 |𝜑𝑤0

𝐴 ⟩
𝒴 ,

and note that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≤ E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | · | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |],

where {𝑣𝐴,𝐵} := 𝐴0 ∩𝐵0.
Then, we proceed via the following steps.

1. If we only require that |𝜓𝐴⟩ ∈ Im(Π𝐴0), then one way to obtain the maximum expected inner
product of 1/2 is to set each |𝛼𝑣0𝐴 | = 1/

√
2 and for each 𝑣0, let all |𝜑𝑣0𝐴 ⟩ be the same vector.

Then, each |𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | = 1/2 and each | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | = 1. We show that this way of
defining the 𝛼𝑣0𝐴 is “robust” in the sense that if the expected inner product is close to 1/2,
then for many of the (𝐴,𝐵), |𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | is close to 1/2 (Claim B.3).

2. We show that Step 1 implies that this way of defining |𝜑𝑣0𝐴 ⟩ is also “robust”, in the sense that
for many of the (𝐴,𝐵), | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | is close to 1 (Claim B.4). Thus, this property must be
satisfied if our expected inner product is at least 1/2− 𝜖13.

3. By analyzing the graph of “connections” induced byℛ between the elements of𝒜, we show
that Step 2 implies that there must exist some 𝐴*0 = {𝑣*0, 𝑤*0} with the following property.
There any many (exponential in 𝑛) states{︁

|𝜓(𝐴*
0,𝐴1)⟩ := 𝛼

𝑣*0
(𝐴*

0,𝐴1)
|𝑣*0⟩ |𝜑

𝑣*0
(𝐴*

0,𝐴1)
⟩+ 𝛼

𝑤*
0

(𝐴*
0,𝐴1)

|𝑤*0⟩ |𝜑
𝑤*

0

(𝐴*
0,𝐴1)
⟩
}︁
𝐴1:(𝐴*

0,𝐴1)∈𝒜

such that the {|𝜑𝑣
*
0

(𝐴*
0,𝐴1)
⟩} are all close to each other, and the {|𝜑𝑤

*
0

(𝐴*
0,𝐴1)
⟩} are all close to each

other (Claim B.5).

4. Step 3 implies that there exists a large (exponential in 𝑛) collection of states |𝜓(𝐴*
0,𝐴1)⟩ such

that (i) all |𝜓(𝐴*
0,𝐴1)⟩ are close to the same two-dimensional subspace, and (ii) each |𝜓(𝐴*

0,𝐴1)⟩ has 𝜖
overlap with a different orthogonal subspace Π𝐴1 . We complete the proof by showing that this
is impossible when 𝑛 is large enough compared to 1/𝜖. This relies on a Welch bound, which
bounds the number of distinct vectors of some minimum distance from each other that can
be packed into a low-dimensional subspace.

Proof. (of Theorem B.2) Assume that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≥
1

2
− 𝜖13.
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Using the fact that each |𝜓𝐴⟩ ∈ Im(Π𝐴0), write each

|𝜓𝐴⟩ := 𝛼𝑣0𝐴 |𝑣0⟩
𝒳 |𝜑𝑣0𝐴 ⟩

𝒴 + 𝛼𝑤0
𝐴 |𝑤0⟩𝒳 |𝜑𝑤0

𝐴 ⟩
𝒴 ,

where 𝐴0 = {𝑣0, 𝑤0}. For any (𝐴,𝐵) ∈ ℛ, define {𝑣𝐴,𝐵} = 𝐴0 ∩ 𝐵0. Then, we have the following
series of inequalities.

1

2
− 𝜖13 ≤ E

(𝐴,𝐵)←ℛ
[| ⟨𝜓𝐴|𝜓𝐵⟩ |]

= E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴

*
𝛼
𝑣𝐴,𝐵
𝐵 ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |]

≤ E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | · | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |]

≤ E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |].

Next, we show the following.

Claim B.3.

Pr
(𝐴,𝐵)←ℛ

[︂
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ≥ 1

2
− 2𝜖2

]︂
≥ 1− 𝜖6.

Proof. First, note that for any (𝐴,𝐵) ∈ ℛwhere𝐴 = ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}) and𝐵 = ({𝑣0, 𝑢0}, {𝑣1, 𝑢1}),
the set 𝐶 = ({𝑤0, 𝑢0}, {𝑤1, 𝑢1}) ∈ 𝒜. This follows because

𝐴 ∈ 𝒜 =⇒ 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1 =⇒ 𝑤0 = 𝑣0 + 𝑣1 + 𝑤1

𝐵 ∈ 𝒜 =⇒ 𝑣0 + 𝑢0 = 𝑣1 + 𝑤1 =⇒ 𝑢0 = 𝑣0 + 𝑣1 + 𝑢1,

so 𝑤0 + 𝑢0 = 𝑤1 + 𝑢1 =⇒ 𝐶 ∈ 𝒜.

This means that each (𝐴,𝐵) ∈ ℛ uniquely define a 𝐶 ∈ 𝒜 such that all

(𝐴,𝐵), (𝐵,𝐶), (𝐶,𝐴) ∈ ℛ.

Thus, we will imagine sampling (𝐴,𝐵)← ℛ as follows. First, sample distinct 𝑣0, 𝑤0, 𝑢0 ← F𝑛2 .
Then, sample 𝑣1, 𝑤1, 𝑢1 such that

𝐶1 := ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}), 𝐶2 := ({𝑣0, 𝑢0}, {𝑣1, 𝑢1}), 𝐶3 := ({𝑤0, 𝑢0}, {𝑤1, 𝑢1}) ∈ 𝒜.

Let (𝐶1, 𝐶2, 𝐶3)← 𝒮 denote this sampling procedure. Finally, choose

(𝐴,𝐵)← ℛ[𝐶1, 𝐶2, 𝐶3] := {(𝐶1, 𝐶2), (𝐶2, 𝐶3), (𝐶3, 𝐶1)}.

Let
𝐸[𝐶1, 𝐶2, 𝐶3] := E

(𝐴,𝐵)←ℛ[𝐶1,𝐶2,𝐶3]

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |

]︀
.

Then,

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |

]︀
= E

(𝐶1,𝐶2,𝐶3)←𝒮
[𝐸[𝐶1, 𝐶2, 𝐶3]] ≥

1

2
− 𝜖13 > 1

2
− 𝜖12.
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Now, given any (𝐶1, 𝐶2, 𝐶3) and corresponding

|𝜓𝐶1⟩ := 𝛼𝑣0𝐶1
|𝑣0⟩ |𝜑𝑣0𝐶1

⟩+ 𝛼𝑤0
𝐶1
|𝑤0⟩ |𝜑𝑤0

𝐶1
⟩ ,

|𝜓𝐶2⟩ := 𝛼𝑣0𝐶2
|𝑣0⟩ |𝜑𝑣0𝐶2

⟩+ 𝛼𝑢0𝐶2
|𝑢0⟩ |𝜑𝑢0𝐶2

⟩ ,
|𝜓𝐶3⟩ := 𝛼𝑤0

𝐶3
|𝑤0⟩ |𝜑𝑤0

𝐶3
⟩+ 𝛼𝑢0𝐶3

|𝑢0⟩ |𝜑𝑢0𝐶3
⟩ ,

we have that

𝐸[𝐶1, 𝐶2, 𝐶3] ≤
1

3

(︁
|𝛼𝑣0𝐶1
| · |𝛼𝑣0𝐶2

|+ |𝛼𝑤0
𝐶1
| · |𝛼𝑤0

𝐶3
|+ |𝛼𝑢0𝐶2

| · |𝛼𝑢0𝐶3
|
)︁
.

By Fact B.8, 𝐸[𝐶1, 𝐶2, 𝐶3] ≤ 1/2, so by Markov,

Pr
(𝐶1,𝐶2,𝐶3)←𝒮

[︂
1

2
− 𝐸[𝐶1, 𝐶2, 𝐶3] ≥ 𝜖6

]︂
≤ 𝜖6 =⇒ Pr

(𝐶1,𝐶2,𝐶3)←𝒮

[︂
𝐸[𝐶1, 𝐶2, 𝐶3] ≥

1

2
− 𝜖6

]︂
≥ 1− 𝜖6.

Moreover, whenever 𝐸[𝐶1, 𝐶2, 𝐶3] ≥ 1/2− 𝜖6, we have that

|𝛼𝑣0𝐶1
| · |𝛼𝑣0𝐶2

|+ |𝛼𝑤0
𝐶1
| · |𝛼𝑤0

𝐶3
|+ |𝛼𝑢0𝐶2

| · |𝛼𝑢0𝐶3
| ≥ 3

2
− 6𝜖6

2
,

so by Fact B.8,

|𝛼𝑣0𝐶1
| · |𝛼𝑣0𝐶2

|, |𝛼𝑤0
𝐶1
| · |𝛼𝑤0

𝐶3
|, |𝛼𝑢0𝐶2

| · |𝛼𝑢0𝐶3
| ≥ 1

2
− 2𝜖2,

which completes the proof of the claim.

Claim B.4.
Pr

(𝐴,𝐵)←ℛ

[︀
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | ≥ 1− 𝜖6

]︀
≥ 1− 2𝜖6.

Proof. First, note that the proof of Claim B.3 also shows that

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |

]︀
≤ 1

2
,

since each 𝐸[𝐶1, 𝐶2, 𝐶3] ≤ 1/2.
By our assumption that

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | · | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |

]︀
≥ 1

2
− 𝜖13

and linearity of expectation,

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ·

(︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |

)︀]︀
≤ 𝜖13.

Now, assume for contradiction that

Pr
(𝐴,𝐵)←ℛ

[︀
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | < 1− 𝜖6

]︀
> 2𝜖6 =⇒ Pr

(𝐴,𝐵)←ℛ

[︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | > 𝜖6

]︀
> 2𝜖6.
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By Claim B.3, this implies that

Pr
(𝐴,𝐵)←ℛ

[︂(︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | > 𝜖6

)︀
∧
(︂
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ≥ 1

2
− 2𝜖2

)︂]︂
≥ 𝜖6.

But then,

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ·

(︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |

)︀]︀
> 𝜖6 · 𝜖6 ·

(︂
1

2
− 2𝜖2

)︂
≥ 𝜖12

4
> 𝜖13,

whenever 𝜖 < 1/4.

Claim B.5. There exists an𝐴*0 = {𝑣*0, 𝑤*0} and two unit vectors |𝜏𝑣*0 ⟩ , |𝜏𝑤*
0 ⟩ such that the following holds.

Let {︁
|𝜓(𝐴*

0,𝐴1)⟩ := 𝛼
𝑣*0
(𝐴*

0,𝐴1)
|𝑣*0⟩ |𝜑

𝑣*0
(𝐴*

0,𝐴1)
⟩+ 𝛼

𝑤*
0

(𝐴*
0,𝐴1)

|𝑤*0⟩ |𝜑
𝑤*

0

(𝐴*
0,𝐴1)
⟩
}︁
𝐴1:(𝐴*

0,𝐴1)∈𝒜

be the set of 2𝑛−1 states indexed by 𝐴1 such that (𝐴*0, 𝐴1) ∈ 𝒜.24 Then there exists a set 𝒜*1 of size at least
2𝑛−2 such that for all 𝐴1 ∈ 𝒜*1,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜏𝑣*0 ⟩ | ≥ 1− 2𝜖3 and | ⟨𝜑𝑤

*
0

(𝐴*
0,𝐴1)
|𝜏𝑤*

0 ⟩ | ≥ 1− 2𝜖3.

Proof. For each ordered pair (𝑣0, 𝑤0) where 𝑣0 ̸= 𝑤0 ∈ F𝑛2 , define

ℛ[(𝑣0, 𝑤0)] := {(𝐴,𝐵) ∈ ℛ : 𝐴0 = {𝑣0, 𝑤0} ∧ 𝑣𝐴,𝐵 = 𝑣0} .

Then Claim B.4 implies that there exists some set {𝑣*0, 𝑤*0} such that

Pr
(𝐴,𝐵)←ℛ[(𝑣*0 ,𝑤

*
0)]

[︁
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | = | ⟨𝜑𝑣

*
0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 4𝜖6, and

Pr
(𝐴,𝐵)←ℛ[(𝑤*

0 ,𝑣
*
0)]

[︁
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | = | ⟨𝜑𝑤

*
0

𝐴 |𝜑
𝑤*

0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 4𝜖6.

Let 𝐴*0 = {𝑣*0, 𝑤*0}, let 𝒜1 := {{𝑣1, 𝑤1}}𝑣1+𝑤1=𝑣*0+𝑤
*
0

be the set of 𝐴1 such that (𝐴*0, 𝐴1) ∈ 𝒜, let{︁
|𝜓(𝐴*

0,𝐴1)⟩ := 𝛼
𝑣*0
(𝐴*

0,𝐴1)
|𝑣*0⟩ |𝜑

𝑣*0
(𝐴*

0,𝐴1)
⟩+ 𝛼

𝑤*
0

(𝐴*
0,𝐴1)

|𝑤*0⟩ |𝜑
𝑤*

0

(𝐴*
0,𝐴1)
⟩
}︁
𝐴1∈𝒜1

,

and let
𝒜×21 = {{𝐴1, 𝐴

′
1}}𝐴1 ̸=𝐴′

1∈𝒜1
.

Note that by the definition of 𝒜1, for any {𝐴1, 𝐴
′
1} ∈ 𝒜

×2
1 , it holds that 𝐴1 ∩𝐴′1 = ∅. Now, we will

argue that there exists a vector |𝜏𝑣*0 ⟩ and a set 𝒜𝑣
*
0

1 of size at least 3
42
𝑛−1 such that for all 𝐴1 ∈ 𝒜*1,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜏𝑣*0 ⟩ | ≥ 1− 2𝜖3.

Consider any {𝐴1, 𝐴
′
1} ∈ 𝒜

×2
1 , where 𝐴1 = {𝑣1, 𝑤1} and 𝐴′1 = {𝑣′1, 𝑤′1}. There are exactly four

𝐵 such that
((𝐴*0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)] and ((𝐴*0, 𝐴

′
1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)],

24Note that there are 2𝑛−1 possible states because the 𝐴1 partition of the set F𝑛2 into disjoint unordered pairs of
vectors, where each pair {𝑣1, 𝑤1} is such that 𝑣1 + 𝑤1 = 𝑣*0 + 𝑤*

0 .
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which are25

𝐵 ∈

⎧⎪⎪⎨⎪⎪⎩
({𝑣*0, 𝑣*0 + 𝑣1 + 𝑣′1}, {𝑣1, 𝑣′1}),
({𝑣*0, 𝑣*0 + 𝑤1 + 𝑤′1}, {𝑤1, 𝑤

′
1}),

({𝑣*0, 𝑣*0 + 𝑣1 + 𝑤′1}, {𝑣1, 𝑤′1}),
({𝑣*0, 𝑣*0 + 𝑤1 + 𝑣′1}, {𝑤1, 𝑣

′
1})

⎫⎪⎪⎬⎪⎪⎭ .

Define
ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴

′
1}] := {((𝐴*0, 𝐴1), 𝐵)}𝐵 ∪ {((𝐴*0, 𝐴′1), 𝐵)}𝐵

where the indexing is over the four 𝐵 such that

((𝐴*0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)] and ((𝐴*0, 𝐴
′
1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)].

Note that for any two {𝐴1, 𝐴
′
1} ≠ { ̃︀𝐴1, ̃︀𝐴′1} ∈ 𝒜×21 , the setsℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴

′
1}] andℛ[(𝑣*0, 𝑤*0), { ̃︀𝐴1, ̃︀𝐴′1}]

are disjoint, which can be seen by noting that𝐵1 always includes one vector from𝐴1 and one from
𝐴′1.

Next, we claim that

ℛ[(𝑣*0, 𝑤*0)] =
⋃︁

{𝐴1,𝐴′
1}∈𝒜

×2
1

ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴
′
1}],

which follows from a counting argument. First,⃒⃒⃒⃒ ⋃︁
{𝐴1,𝐴′

1}∈𝒜
×2
1

ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴
′
1}]
⃒⃒⃒⃒
= 8 ·

(︂
2𝑛−1

2

)︂
= 22𝑛 − 2𝑛+1.

Then, counting |ℛ[(𝑣*0, 𝑤*0)]| directly, we can choose from any of the 2𝑛−1 possible 𝐴1, any 2𝑛 − 2
of the possible 𝐵0, and then, given 𝐵0, the two possible 𝐵1 that intersect 𝐴1. Thus,⃒⃒

ℛ[(𝑣*0, 𝑤*0)]
⃒⃒
= 2𝑛−1 · (2𝑛 − 2) · 2 = 22𝑛 − 2𝑛+1.

This establishes that the sets {︀
ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴

′
1}]
}︀
{𝐴1,𝐴′

1}∈𝒜
×2
1

partitionℛ[(𝑣*0, 𝑤*0)] equally into sets of size 8. Thus,26

Pr
{𝐴1,𝐴′

1}←𝒜
×2
1

[︁
∀(𝐴,𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴

′
1}], | ⟨𝜑

𝑣*0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 32𝜖6,

which means that there exists some 𝐴*1 = {𝑣*1, 𝑤*1} such that

25Note that 𝑣*0 + 𝑣1 + 𝑣′1 ̸= 𝑤*
0 since otherwise 𝑤1 = 𝑣1 + (𝑣*0 +𝑤*

0) = 𝑣′1 and 𝑤′
1 = 𝑣1 + (𝑣*0 +𝑤*

0) = 𝑣1 which would
mean that 𝐴1 = 𝐴′

1. Thus, for the first 𝐵 listed, ((𝐴*
0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0 , 𝑤*

0)], and a similar argument holds for the rest
of the 𝐵.

26Here, we show that there exists a large fraction of {𝐴1, 𝐴
′
1} such that all (𝐴,𝐵) ∈ ℛ[(𝑣*0 , 𝑤*

0), {𝐴1, 𝐴
′
1}] are “good”,

meaning that | ⟨𝜑𝑣𝐴,𝐵

𝐴 |𝜑𝑣𝐴,𝐵

𝐵 ⟩ | ≥ 1 − 𝜖6. As we will see later, it would have sufficed to prove the slightly weaker
claim that there exists a large fraction of {𝐴1, 𝐴

′
1} such that at least 5/8 of the (𝐴,𝐵) ∈ ℛ[(𝑣*0 , 𝑤*

0), {𝐴1, 𝐴
′
1}] are good.

This is because for each such {𝐴1, 𝐴
′
1}, we will just need a single 𝐵 (rather that all four) such that ((𝐴*

0, 𝐴1), 𝐵) and
((𝐴*

0, 𝐴
′
1), 𝐵) are good.
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Pr
𝐴1←𝒜1∖{𝐴*

1}

[︁
∀(𝐴,𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴*1, 𝐴1}], | ⟨𝜑

𝑣*0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 32𝜖6 ≥ 7

8
,

which holds for all 𝜖 ≤ 1/8.
Let 𝒜𝑣

*
0

1 be the set of 𝐴1 such that

∀(𝐴,𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴*1, 𝐴1}], | ⟨𝜑
𝑣*0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6,

and note that |𝒜𝑣
*
0

1 | ≥ 7
8(2

𝑛−1 − 1) > 3
42
𝑛−1.

Now consider any 𝐴1 = {𝑣1, 𝑤1} ∈ 𝒜
𝑣*0
1 , and note that for 𝐵 = ({𝑣*0, 𝑣*0 + 𝑣*1 + 𝑣1}, {𝑣*1, 𝑣1}), we

have that
((𝐴*0, 𝐴

*
1), 𝐵), ((𝐴*0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴*1, 𝐴1}].

Thus, we know that

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴

*
1)
|𝜑𝑣

*
0
𝐵 ⟩ | ≥ 1− 𝜖6, and | ⟨𝜑𝑣

*
0

(𝐴*
0,𝐴1)
|𝜑𝑣

*
0
𝐵 ⟩ | ≥ 1− 𝜖6,

so by Fact B.7,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜑𝑣

*
0

(𝐴*
0,𝐴

*
1)
⟩ | ≥ (1− 𝜖6)2 −

√
2𝜖6 ≥ 1− 2𝜖3.

Then if we set |𝜏𝑣*0 ⟩ := |𝜑𝑣
*
0

(𝐴*
0,𝐴

*
1)
⟩, we have that for all 𝐴1 ∈ 𝒜

𝑣*0
1 ,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜏𝑣*0 ⟩ | ≥ 1− 2𝜖3.

Finally, repeating the analysis for ℛ[(𝑤*0, 𝑣*0)], there exists a |𝜏𝑤*
0 ⟩ and a set 𝒜𝑤

*
0

1 of size at least
3
42
𝑛−1 such that for all 𝐴1 ∈ 𝒜

𝑤*
0

1 ,

| ⟨𝜑𝑤
*
0

(𝐴*
0,𝐴1)
|𝜏𝑤*

0 ⟩ | ≥ 1− 2𝜖3.

Thus, setting 𝒜*1 := 𝒜
𝑣*0
1 ∩ 𝒜

𝑤*
0

1 (which has size ≥ 2𝑛−2) completes the proof.

Finally, we can reach a contradiction by using the fact that for any fixed 𝐴*0, all of the Π𝐴1 such
that (𝐴*0, 𝐴1) ∈ 𝒜 are orthogonal, which follows from the definition of the Π𝐴1 .

Now, define the rank-two projector

Π* := |𝑣*0⟩ |𝜏𝑣
*
0 ⟩ ⟨𝜏𝑣*0 | ⟨𝑣*0|+ |𝑤*0⟩ |𝜏𝑤

*
0 ⟩ ⟨𝜏𝑤*

0 | ⟨𝑤*0| .

By Claim B.5 and the assumption of the theorem, for each 𝐴1 ∈ 𝒜*1 we know that

‖Π* |𝜓(𝐴*
0,𝐴1)⟩ ‖ ≥ 1− 2𝜖3 and ‖Π𝐴1 |𝜓(𝐴*

0,𝐴1)⟩ ‖ ≥ 𝜖.

For each 𝐴1 ∈ 𝒜*1, define

|𝜓*𝐴1
⟩ :=

Π* |𝜓(𝐴*
0,𝐴1)⟩

‖Π* |𝜓(𝐴*
0,𝐴1)⟩ ‖

.
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Thus, since | ⟨𝜓*𝐴1
|𝜓(𝐴*

0,𝐴1)⟩ | ≥ 1 − 2𝜖3 and ‖Π𝐴1 |𝜑(𝐴*
0,𝐴1)⟩ ‖ ≥ 𝜖, by Fact B.7 (second part) it

holds that
‖Π𝐴1 |𝜓*𝐴1

⟩ ‖ ≥ 𝜖(1− 2𝜖3)− 2𝜖3/2 ≥ 𝜖

2
,

which holds for all 𝜖 ≤ 1/8.
Consider the following algorithm, which will eventually select all {|𝜓*𝐴1

⟩}𝐴1∈𝒜*
1
.

1. Set 𝑖 = 1.

2. Select an arbitrary (not yet selected) |𝜓*𝐴1
⟩, and define |𝜓𝑖⟩ := |𝜓*𝐴1

⟩.

3. Select all (not yet selected) |𝜓*𝐴1
⟩ such that | ⟨𝜓*𝐴1

|𝜓𝑖⟩ | ≥ 1− 𝜖4.

4. Set 𝑖 = 𝑖+ 1 and go back to Step 2.

First, we claim that in each invocation of Step 3, we select at most 16/𝜖2 vectors. To see this,
note that for each |𝜓*𝐴1

⟩ selected in Step 3 during the 𝑖’th loop of the procedure, | ⟨𝜓*𝐴1
|𝜓𝑖⟩ | ≥ 1−𝜖4

and ‖Π𝐴1 |𝜓*𝐴1
⟩ ‖ ≥ 𝜖/2. Thus, by Fact B.7 (second part),

‖Π𝐴1 |𝜓𝑖⟩ ‖ ≥
𝜖

2
(1− 𝜖4)−

√
2𝜖2 ≥ 𝜖

4
,

which holds for all 𝜖 ≤ 1/8. Since the Π𝐴1 are all orthogonal, and |𝜓𝑖⟩ has a component of at least
𝜖2/16 squared norm on each, we conclude that there can be at most 16/𝜖2 such 𝐴1.

Second, let 𝐼 be the value of 𝑖 when the procedure terminates. Note that the {|𝜓𝑖⟩}𝑖∈[𝐼] are all
in the image of a two-dimensional subspace Im(Π*), and for all 𝑖 ̸= 𝑗, | ⟨𝜓𝑖|𝜓𝑗⟩ | < 1− 𝜖4.

Now, we use a Welch bound.

Imported Theorem B.6 ([Wel74]). Let {𝑥1, . . . , 𝑥𝐼} be unit vectors in C𝑑, and define 𝑐 = max𝑖 ̸=𝑗 | ⟨𝑥𝑖|𝑥𝑗⟩ |.
Then for every 𝑘 ∈ N,

𝑐2𝑘 ≥ 1

𝐼 − 1

(︃
𝐼(︀

𝑘+𝑑−1
𝑘

)︀ − 1

)︃
.

Setting 𝑑 = 2 and 𝑘 = 𝐼/2− 1, we have that

1

𝐼 − 1
≤ (1− 𝜖4)𝐼−2 ≤ 𝑒−𝜖4(𝐼−2) =⇒ 1

𝜖4
≥ 𝐼 − 2

ln(𝐼 − 1)
≥
√
𝐼 =⇒ 𝐼 ≤ 1

𝜖8
.

Putting these two facts together, we have that the size of 𝒜*1 is at most 16/𝜖10, meaning that

2𝑛−2 ≤ 16

𝜖10
=⇒ 2𝑛 ≤ 64

𝜖10
,

and contradicting the fact that 𝑛 > 10 log(1/𝜖) + 6.
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B.2 Useful facts

Fact B.7. Let |𝜑𝑎⟩ , |𝜑𝑏⟩ be complex unit vectors such that | ⟨𝜑𝑎|𝜑𝑏⟩ | ≥ 1− 𝛼. Then the following hold.

1. If |𝜑𝑐⟩ is a complex unit vector such that | ⟨𝜑𝑏|𝜑𝑐⟩ | ≥ 𝛽, then | ⟨𝜑𝑎|𝜑𝑐⟩ | ≥ 𝛽(1− 𝛼)−
√
2𝛼.

2. If Π is a projector such that ‖Π |𝜑𝑏⟩ ‖ ≥ 𝛽, then ‖Π |𝜑𝑎⟩ ‖ ≥ 𝛽(1− 𝛼)−
√
2𝛼.

Proof. To show the first part, write |𝜑𝑎⟩ = 𝑒𝑖𝜃(1 − 𝛼) |𝜑𝑏⟩ +
√
2𝛼− 𝛼2 |𝜑⊥𝑏 ⟩ for some 𝜃 and |𝜑⊥𝑏 ⟩

orthogonal to |𝜑𝑏⟩. Then

| ⟨𝜑𝑎|𝜑𝑐⟩ | = |𝑒𝑖𝜃(1− 𝛼) ⟨𝜑𝑏|𝜑𝑐⟩+
√︀
2𝛼− 𝛼2 ⟨𝜑⊥𝑏 |𝜑𝑐⟩ |

≥ |𝑒𝑖𝜃(1− 𝛼) ⟨𝜑𝑏|𝜑𝑐⟩ | −
√︀
2𝛼− 𝛼2

≥ 𝛽(1− 𝛼)−
√
2𝛼.

To show the second part, define

|𝜑𝑐⟩ :=
Π |𝜑𝑏⟩
‖Π |𝜑𝑏⟩ ‖

,

and note that

| ⟨𝜑𝑏|𝜑𝑐⟩ | =
⟨𝜑𝑏|Π |𝜑𝑏⟩
‖Π |𝜑𝑏⟩ ‖

=
‖Π |𝜑𝑏⟩ ‖2

‖Π |𝜑𝑏⟩ ‖
= ‖Π |𝜑𝑏⟩ ‖ ≥ 𝛽.

Thus,
‖Π |𝜑𝑎⟩ ‖ ≥ ‖ |𝜑𝑐⟩ ⟨𝜑𝑐| |𝜑𝑎⟩ ‖ = | ⟨𝜑𝑎|𝜑𝑐⟩ | ≥ 𝛽(1− 𝛼)−

√
2𝛼,

where the first inequality follows because |𝜑𝑐⟩ ∈ Im(Π) and the second inequality follows from the
first part.

Fact B.8. Let

𝑢1 :=

⎛⎝𝑎1𝑎2
0

⎞⎠ , 𝑢2 :=

⎛⎝𝑏10
𝑏2

⎞⎠ , 𝑢3 :=

⎛⎝ 0
𝑐1
𝑐2

⎞⎠
be three unit vectors in R3

≥0. Then,

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 ≤
3

2
.

Moreover, for any 𝛿 ∈ [0, 1/2], if

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 ≥
3

2
− 𝛿3

2
,

then
𝑢1 · 𝑢2 ≥

1

2
− 𝛿, 𝑢1 · 𝑢3 ≥

1

2
− 𝛿, and 𝑢2 · 𝑢3 ≥

1

2
− 𝛿.
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Proof. We begin with the first part of the claim. Let 𝑣1 := (𝑎1 𝑎2 𝑏1 𝑏2 𝑐1 𝑐2) and 𝑣2 := (𝑏1 𝑐1 𝑎1 𝑐2 𝑎2 𝑏2).
Then,

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 =
1

2
𝑣1 · 𝑣⊤2 ≤

1

2
(𝑎21 + 𝑎22 + 𝑏21 + 𝑏22 + 𝑐21 + 𝑐22) =

3

2
,

where the inequality is Cauchy-Schwartz.
Now, we prove the “moreover” part. This is trivial when 𝛿 = 1/2, so suppose that 𝑢1 · 𝑢2 =

1/2− 𝛿 for some 𝛿 ∈ [0, 1/2). We will show that this implies that

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 ≤
3

2
− 𝛿3

2
,

which, by symmetry, would complete the proof.
Define the value

𝑚 := max
𝑢1, 𝑢2, 𝑢3,

𝑢1 · 𝑢2 = 1/2− 𝛿

{𝑢1 · 𝑢3 + 𝑢2 · 𝑢3} ,

and let 𝑎1 =
√
1− 𝑥, 𝑎2 =

√
𝑥, 𝑏1 =

√
1− 𝑦 and 𝑏2 =

√
𝑦 for some 𝑥, 𝑦 ∈ [0, 1). Then,

𝑚 = max
𝑥,𝑦∈[0,1),

√
1−𝑥
√
1−𝑦=1/2−𝛿

{︀√
𝑥𝑐1 +

√
𝑦𝑐2
}︀

≤ max
𝑥,𝑦∈[0,1),

√
1−𝑥
√
1−𝑦=1/2−𝛿

{︀√
𝑥+ 𝑦

√
𝑐1 + 𝑐2

}︀
= max

𝑥,𝑦∈[0,1),
√
1−𝑥
√
1−𝑦=1/2−𝛿

{︀√
𝑥+ 𝑦

}︀
,

where the inequality is Cauchy-Schwartz.
Next, we solve for

𝑦 = 1−
(12 − 𝛿)

2

1− 𝑥
,

and see that

𝑚2 = max
𝑥∈[0,1)

{︃
𝑥+ 1−

(12 − 𝛿)
2

1− 𝑥

}︃

= max
𝑥∈[0,1)

{︃
2− 2

1− 𝑥

(︃
(1− 𝑥)2 +

(︀
1
2 − 𝛿

)︀2
2

)︃}︃

≤ 2− 2

(︂
1

2
− 𝛿
)︂

= 1 + 2𝛿,

where the inequality is AM-GM.
Thus, to complete the proof it suffices to show that

1

2
− 𝛿 +

√
1 + 2𝛿 ≤ 3

2
− 𝛿3

2
.
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If 𝛿 = 0, then both sides are 1, so now assume that 𝛿 > 0. Then

1

2
− 𝛿 +

√
1 + 2𝛿 ≤ 3

2
− 𝛿3

2
⇐⇒

√
1 + 2𝛿 ≤ 1 + 𝛿 − 𝛿3

2

⇐⇒ 1 + 2𝛿 ≤ 1 + 2𝛿 + 𝛿2 − (1 + 𝛿)𝛿3 +
𝛿6

4

⇐⇒ 𝛿 + 𝛿2 − 𝛿4

4
≤ 1,

which is true for all 𝛿 ∈ (0, 1/2).

C Remaining Proofs from Section 5.3

In this appendix, we prove Lemma 5.9, Lemma 5.10, and Lemma 5.11. We proceed via three steps.

1. Compile the information-theoretic protocol ΠQV from Section 5.2 into a 4-message quantum
“commit-challenge-response” protocol ΠCCR with a classical verifier. This compilation is
achieved via the use of Mahadev’s measurement protocol [Mah22]. As argued in [Bar21],
the resulting protocol satisfies a “computationally orthogonal projectors” property, which
was first described by [ACGH20].

2. Apply parallel repetition to ΠCCR to obtain Πparl, and observe that the parallel repetition
theorem of [Bar21] implies that the analogues of Lemma 5.9, Lemma 5.10, and Lemma 5.11
hold in Πparl.

3. Apply Fiat-Shamir to Πparl to obtain the protocol ΠCV from Protocol 5, and observe that
Measure and Re-program (Imported Theorem 3.10) implies that Lemma 5.9, Lemma 5.10,
and Lemma 5.11 must also hold with respect to ΠCV.

Proof. (of Lemma 5.9, Lemma 5.10, and Lemma 5.11)

Step 1. We first describe the syntax of a generic commit-challenge-response protocol between a
quantum prover P and a classical verifier V.

• Commit: P(1𝜆) and V(1𝜆; 𝑟) engage in a two-message commitment protocol, where 𝑟 are
the random coins used by V to generate the first message of the protocol, and the prover
responds with a classical commitment string.

• Challenge: V samples a random bit 𝑑← {0, 1} and sends it to P.

• Response: P computes a (classical) response 𝑧 and sends it to V.

• Output: V receives 𝑧 and decides to either accept and output ⊤ or reject and output ⊥.

Consider any QPT adversarial prover P*, and let |𝜓P*
𝜆,𝑟⟩
𝒜,𝒞 be the (purified) state of the prover

after interacting with V(1𝜆; 𝑟) in the commit phase, where 𝒞 holds the (classical) prover message
output during this phase, and 𝒜 holds its remaining state.
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Commit-challenge-response protocol ΠCCR = (VCCR
Gen ,P

CCR
Com,P

CCR
Prove,V

CCR
Ver )

Parameters: Number of qubits ℓ = ℓ(𝜆) in the prover’s state.

• VCCR
Gen (1

𝜆, 𝑄)→ (pp, sp): Sample (ℎ, 𝑆)← VQV
Gen(1

𝜆, 𝑄) and {(pk𝑗 , sk𝑗)← TCF.Gen(1𝜆, ℎ𝑗)}𝑗∈[ℓ], and set

pp := {pk𝑗}𝑗∈[ℓ], sp := (ℎ, 𝑆, {sk𝑗}𝑗∈[ℓ]).

• PCCR
Com(1

𝜆, 𝑄, 𝑥, pp) → (ℬ,𝒵, 𝑦): Prepare the state |𝜓⟩ ← PQV(1𝜆, 𝑄, 𝑥) on register ℬ = (ℬ1, . . . ,ℬℓ), which
we write as

|𝜓⟩ :=
∑︁

𝑣∈{0,1}ℓ
𝛼𝑣 |𝑣⟩ℬ ,

and then for each 𝑗 ∈ [ℓ], apply TCF.Eval[pk𝑗 ](ℬ𝑗)→ (ℬ𝑗 ,𝒵𝑗 ,𝒴𝑗), resulting in the state∑︁
𝑣∈{0,1}ℓ

𝛼𝑣 |𝑣⟩ℬ |𝜓pk1,𝑣1⟩
𝒵1,𝒴1 , . . . , |𝜓pkℓ,𝑣ℓ⟩

𝒵ℓ,𝒴ℓ .

Finally, measure registers 𝒴1, . . . ,𝒴ℓ in the standard basis to obtain string 𝑦 := {𝑦𝑗}𝑗∈[ℓ].

• The verifier samples a random bit 𝑑← {0, 1}, and sends 𝑑 to the prover.

• PCCR
Prove(ℬ,𝒵, 𝑑) → 𝑧: If 𝑑 = 0, the prover measures registers ℬ,𝒵 in the standard basis to obtain 𝑧 :=
{𝑏𝑗 , 𝑧𝑗}𝑗∈[ℓ]. If 𝑑 = 1, the prover applies 𝐽(·) coherently to each register 𝒵𝑗 and then measures registers
ℬ,𝒵 in the Hadamard basis to obtain 𝑧 := {𝑏𝑗 , 𝑧𝑗}𝑗∈[ℓ].

• VCCR
Ver (𝑄, 𝑥, sp, 𝑦, 𝑑, 𝑧)→ {{𝑞𝑡}𝑡∈[𝜆]} ∪ {⊤,⊥}:

– Parse 𝑦 := {𝑦𝑗}𝑗∈[ℓ] and 𝑧 := {𝑏𝑗 , 𝑧𝑗}𝑗∈[ℓ].

– If 𝑑 = 0, for each 𝑗 ∈ [ℓ] compute TCF.Check(pk𝑗 , 𝑏𝑗 , 𝑧𝑗 , 𝑦𝑗). If any are ⊥, then output ⊥, and
otherwise output ⊤.

– If 𝑑 = 1, do the following for each 𝑗 ∈ [ℓ].

* If ℎ𝑗 = 0, compute TCF.Invert(0, sk𝑗 , 𝑦𝑗), abort and output ⊥ if the output is ⊥, and otherwise
parse the output as (𝑚𝑗 , 𝑥𝑗).

* If ℎ𝑗 = 1, compute TCF.Invert(1, sk𝑗 , 𝑦𝑗), abort and output ⊥ if the output is ⊥, and other-
wise parse the output as (0, 𝑥𝑗,0), (1, 𝑥𝑗,1). Then, check TCF.IsValid(𝑥𝑗,0, 𝑥𝑗,1, 𝑧𝑗) and abort and
output ⊥ if the result is ⊥. Next, set 𝑚𝑗 := 𝑏𝑗 ⊕ 𝑧𝑗 · (𝐽(𝑥𝑗,0)⊕ 𝐽(𝑥𝑗,1)).

Then, let𝑚 := (𝑚1, . . . ,𝑚ℓ) and compute VQV
Ver(𝑄, 𝑥, ℎ,𝑚). Output⊥ if the result is⊥, and otherwise

output {𝑞𝑡}𝑡∈[𝜆] := 𝑚[𝑆].

Figure 10: A quantum “commit-challenge-response” protocol for verifying quantum partitioning
circuits.

The remaining strategy of the prover can be described by family of unitaries
{︁
UP*
𝜆,0,U

P*
𝜆,1

}︁
𝜆∈N

,

where UP*
𝜆,0 is applied to |𝜓P*

𝜆,𝑟⟩ on challenge 0 (followed by a measurement of 𝑧), and UP*
𝜆,1 is applied

to |𝜓P*
𝜆,𝑟⟩ on challenge 1 (followed by a measurement of 𝑧).

Let V𝜆,𝑟,0 denote the accept projector applied by the verifier to the prover messages when 𝑑 = 0,
and define V𝜆,𝑟,1 analogously. Then define the following projectors on registers (𝒜, 𝒞).

ΠP*
𝜆,𝑟,0 := UP*

𝜆,0
†
V𝜆,𝑟,0U

P*
𝜆,0, ΠP*

𝜆,𝑟,1 := UP*
𝜆,1
†
V𝜆,𝑟,1U

P*
𝜆,1.
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Definition C.1. A commit-challenge-response protocol has computationally orthogonal projectors
if for any QPT prover {P*𝜆}𝜆∈N,

E
𝑟

[︁
⟨𝜓P*

𝜆,𝑟|ΠP*
𝜆,𝑟,0Π

P*
𝜆,𝑟,1Π

P*
𝜆,𝑟,0 |𝜓P*

𝜆,𝑟⟩
]︁
= negl(𝜆).

Now, consider running protocol ΠCCR with some fixed circuit 𝑄 and input 𝑥, and suppose
that 𝑃 is a predicate such that 𝑃 (𝑄(·)) is pseudo-deterministic. We define the verifier acceptance
predicates as follows.

• V𝜆,𝑟,0 runs VCCR
Ver on 𝑑 = 0.

• V𝜆,𝑟,1 runs VCCR
Ver on 𝑑 = 1 to obtain either ⊥ or {𝑞𝑡}𝑡∈[𝜆]. In the latter case, it outputs ⊤ if

Maj
(︀
{𝑃 (𝑞𝑡)}𝑡∈[𝜆]

)︀
= 1− 𝑃 (𝑄(𝑥)) and ⊥ otherwise.

Then, by [Bar21, Lemma 4.4], which uses the soundness of ΠQV (Imported Theorem 5.6) and
the soundness of the measurement protocol ([Mah22]), we have the following claim.

Claim C.2. For any {P*𝜆}𝜆∈N attacking ΠCCR (Protocol in Fig. 10), it holds that

E
𝑟

[︁
⟨𝜓P*

𝜆,𝑟|ΠP*
𝜆,𝑟,0Π

P*
𝜆,𝑟,1Π

P*
𝜆,𝑟,0 |𝜓P*

𝜆,𝑟⟩
]︁
= negl(𝜆),

where the verifier acceptance predicates V𝜆,𝑟,0,V𝜆,𝑟,1 used to define ΠP*
𝜆,𝑟,0 and ΠP*

𝜆,𝑟,1 are as described above.

Step 2. In this step, we will use the following imported theorem.

Imported Theorem C.3 ([Bar21], Theorem 3.1). Let 𝜖 > 0 and 0 < 𝛿 < 1 be constants. Let Π be
a commit-challenge-response protocol with computationally orthogonal projectors, and where the verifier’s
𝑑 = 0 acceptance predicate is publicly computable given the verifier’s first message. Let Πparl be the 𝜆1+𝜖

parallel repetition of Π, where the verifier’s challenge string 𝑇 is sampled as a uniformly random 𝜆1+𝜖 bit
string with Hamming weight 𝜆. Then for any QPT adversarial prover P* attacking Πparl, the probability
that the verifier accepts all rounds 𝑖 such that 𝑇𝑖 = 0 and ≥ 𝛿 · 𝜆 rounds 𝑖 such that 𝑇𝑖 = 1 is negl(𝜆).

Now, we define the protocol Πparl = (Vparl
Gen,P

parl
Com,P

parl
Prove,V

parl
Ver ) to be the 𝜆2 parallel repetition of

ΠCCR, where the verifier’s challenge string 𝑇 is sampled as a uniformly random 𝜆2 bit string with
Hamming weight 𝜆. Then, we can prove the following lemmas about Πparl.

Lemma C.4 (Πparl analogue of Lemma 5.9). For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is
pseudo-deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

⎡⎢⎢⎢⎣ Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆

(︀
{{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1

)︀
= 1− 𝑃 (𝑄(𝑥))

:

(pp, sp)← Vparl
Gen(1

𝜆, 𝑄)
𝑦 ← A(pp)

𝑇 ← {0, 1}(
𝜆2

𝜆 )

𝑧 ← A(𝑇 )

⎤⎥⎥⎥⎦ = negl(𝜆),

where A maintains an internal state, which we leave implicit above.

Proof. We have to rule out a prover that makes the verifier of ΠCCR accept each of the 𝜆2−𝜆 rounds
where 𝑇𝑖 = 0, and, for a majority of the rounds 𝑖 where 𝑇𝑖 = 1, accepts and outputs {𝑞𝑖,𝑡}𝑡∈[𝜆] such
that Maj

(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 1 − 𝑃 (𝑄(𝑥)). This is directly ruled out by Claim C.2 and Imported

Theorem C.3 with 𝜖 = 1 and 𝛿 = 1/2.
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Lemma C.5 (Πparl analogue of Lemma 5.10). For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is
pseudo-deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

⎡⎢⎢⎢⎢⎢⎣ Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) ̸= ⊥ ∧

𝑤 /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))]
:

(pp, sp)← Vparl
Gen(1

𝜆, 𝑄)
𝑦 ← A(pp)

𝑇 ← {0, 1}(
𝜆2

𝜆 )

𝑧 ← A(𝑇 )
𝑤 := TestRoundOutputs[sp](𝑦, 𝑇, 𝑧)

⎤⎥⎥⎥⎥⎥⎦ = negl(𝜆),

where A maintains an internal state, which we leave implicit above, and where TestRoundOutputs is defined
as in Section 5.3, except that string 𝑇 is explicitly given rather than being computed by a random oracle 𝐻 .

Proof. First, we make the following observation. For every 𝑖 ∈ [𝜆2], the strings {𝑞𝑖,𝑡}𝑡∈[𝜆] that the
verifier would output conditioned on accepting and on 𝑇𝑖 = 1 are already determined by the
prover’s first message 𝑦𝑖 := (𝑦𝑖,1, · · · , 𝑦𝑖,ℓ) and the secret parameters sp. Indeed, recall from the
description of ΠQV that the bits in {𝑞𝑖,𝑡}𝑡∈[𝜆] are computed from indices 𝑗 ∈ [ℓ] where the basis
ℎ𝑖,𝑗 = 0 (that is, they are the result of standard basis measurements). Moreover, when ℎ𝑖,𝑗 = 0,
pk𝑖,𝑗 defines an injective function, which follows from Definition 3.6, correctness properties (a)
and (c). Thus, each string 𝑦𝑖,𝑗 either has one or zero pre-images. If it has zero, the verifier would
never accept when 𝑇𝑖 = 1, and if it has one, the verifier would only accept the first bit 𝑏𝑖,𝑗 of the
pre-image.

So, we can define {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖∈[𝜆2] based on the prover’s first message {𝑦𝑖}𝑖∈[𝜆2]. Then,

• Let 𝑎 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 𝑃 (𝑄(𝑥)) over 𝑖 ∈ [𝜆2].

• Let 𝑏 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 𝑃 (𝑄(𝑥)) over 𝑖 : 𝑇𝑖 = 1.

By the definition of 𝐷in[𝑃, 𝑃 (𝑄(𝑥))],

𝑤 /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))] =⇒ 𝑎 ≤ 3

4
+

1

𝜆
.

Moreover, by Claim C.2 and Imported Theorem C.3 with 𝜖 = 1 and 𝛿 = 1/5,

Pr

[︂
Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) ̸= ⊥ ∧ 𝑏 <

4

5

]︂
= negl(𝜆).

Thus, the proof is completed by showing that

Pr

[︂
𝑏− 𝑎 ≥ 4

5
−
(︂
3

4
+

1

𝜆

)︂
>

1

30

]︂
≤ 𝑒−2(𝜆/30)2 = negl(𝜆),

where the expression inside the probability holds for large enough 𝜆, and the inequality is Hoeffd-
ing’s inequality (using the case where the random variables are sampled without replacement).
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Lemma C.6 (Πparl analogue of Lemma 5.11). For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is
pseudo-deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

⎡⎢⎢⎢⎢⎢⎣
Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆

(︀
{{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1

)︀
= 1− 𝑃 (𝑄(𝑥)) ∧

𝑤 /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))]

:

(pp, sp)← Vparl
Gen(1

𝜆, 𝑄)
𝑦 ← A(pp, sp)

𝑇 ← {0, 1}(
𝜆2

𝜆 )

𝑧 ← A(𝑇 )
𝑤 := TestRoundOutputs[sp](𝑦, 𝑇, 𝑧)

⎤⎥⎥⎥⎥⎥⎦ = negl(𝜆),

where A maintains an internal state, which we leave implicit above, and where TestRoundOutputs is defined
as in Section 5.3, except that string 𝑇 is explicitly given rather than being computed by a random oracle 𝐻 .

Proof. We again define {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖∈[𝜆2] based on the prover’s first message {𝑦𝑖}𝑖∈[𝜆2], and

• Let 𝑎 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 1− 𝑃 (𝑄(𝑥)) over 𝑖 ∈ [𝜆2].

• Let 𝑏 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 1− 𝑃 (𝑄(𝑥)) over 𝑖 : 𝑇𝑖 = 1.

By the definition of 𝐷out[𝑃, 𝑃 (𝑄(𝑥))],

𝑤 /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))] =⇒ 𝑎 ≤ 1

3
+

1

𝜆
.

Thus, the proof is completed by showing that

Pr

[︂
𝑏− 𝑎 ≥ 1

2
−
(︂
1

3
+

1

𝜆

)︂
>

1

10

]︂
≤ 𝑒−2(𝜆/10)2 = negl(𝜆),

which again follows from Hoeffding’s inequality. Note that this argument is entirely statistical,
and holds even if A𝜆 has sp.

Step 3. Note that the protocol ΠCV is exactly Fiat-Shamir applied to Πparl. That is, take Πparl and
let the verifier’s challenge 𝑇 be computed by applying a random oracle 𝐻 to the prover’s first
message 𝑦. This results in exactly the protocol ΠCV, where we have re-defined the prover oper-
ations (Pparl

Com,P
parl
Prove) as (PCV

Prep,P
CV
Prove,P

CV
Meas). Then, straightforward applications of Measure-and-

Reprogram (Imported Theorem 3.10) show that Lemma C.4, Lemma C.5, and Lemma C.6 imply
Lemma 5.9, Lemma 5.10, and Lemma 5.11 respectively.

In more detail, suppose that Lemma 5.9 is false, and fix 𝑃,𝑄, 𝑥, and an adversary A that breaks
that claim. Define a predicate 𝑉 that takes as input 𝑦,𝐻(𝑦), the rest of the transcript of the protocol,
and the verifier’s secret parameters sp, and outputs whether

VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧ MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 1− 𝑃 (𝑄(𝑥)).

Define adversary B𝐻 to run an interaction between A and the verifier VCV, forwarding ran-
dom oracles calls to an external oracle 𝐻 , and output 𝑦 along with auxiliary information aux that
includes the rest of the transcript and sp. Then we have that

Pr
[︀
𝑉 (𝑦,𝐻(𝑦), aux) = 1 : (𝑦, aux)← B𝐻

]︀
= non-negl(𝜆).
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Since B makes poly(𝜆) queries to 𝐻 , Imported Theorem 3.10 implies that there exists a simula-
tor Sim such that

Pr

⎡⎢⎣𝑉 (𝑦, 𝑇, aux) = 1 :

(𝑦, state)← Sim[B]

𝑇 ← {0, 1}(
𝜆2

𝜆 )

aux← Sim[B](𝑇, state)

⎤⎥⎦ = non-negl(𝜆).

Moreover, by definition (Imported Theorem 3.10), Sim[B] runs B honestly except that it simu-
lates 𝐻 and measures one of B’s queries to 𝐻 . Thus, Sim[B] can be used as an adversarial prover
interacting in Πparl, where 𝑦 is sent to the verifier as the prover’s first message, and 𝑇 is sampled
and given in response. Thus, Sim[B] can be used to violate Lemma C.4.

Finally, the fact that Lemma C.5 implies Lemma 5.10 and Lemma C.6 implies Lemma 5.11 can
be shown in exactly the same way, by defining the appropriate predicate 𝑉 . This completes the
proof.
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