
Certified Everlasting Secure
Collusion-Resistant Functional Encryption, and More

Taiga Hiroka⋆, Fuyuki Kitagawa†♢, Tomoyuki Morimae⋆,
Ryo Nishimaki†♢, Tapas Pal♭, Takashi Yamakawa†♢⋆

⋆Yukawa Institute for Theoretical Physics, Kyoto University, Japan
{taiga.hiroka,tomoyuki.morimae}@yukawa.kyoto-u.ac.jp

†NTT Social Informatics Laboratories, Tokyo, Japan
{fuyuki.kitagawa,ryo.nishimaki,takashi.yamakawa}@ntt.com
♢NTT Research Center for Theoretical Quantum Information

♭∗
Karlsruhe Institute of Technology, KASTEL Security Research Labs, Germany

tapas.real@gmail.com

March 29, 2024

Abstract

We study certified everlasting secure functional encryption (FE) and many other cryptographic primitives in this
work. Certified everlasting security roughly means the following. A receiver possessing a quantum cryptographic
object (such as ciphertext) can issue a certificate showing that the receiver has deleted the cryptographic object and
information included in the object (such as plaintext) was lost. If the certificate is valid, the security is guaranteed
even if the receiver becomes computationally unbounded after the deletion. Many cryptographic primitives are known
to be impossible (or unlikely) to have information-theoretical security even in the quantum world. Hence, certified
everlasting security is a nice compromise (intrinsic to quantum).

In this work, we define certified everlasting secure versions of FE, compute-and-compare obfuscation, predicate
encryption (PE), secret-key encryption (SKE), public-key encryption (PKE), receiver non-committing encryption
(RNCE), and garbled circuits. We also present the following constructions:

• Adaptively certified everlasting secure collusion-resistant public-key FE for all polynomial-size circuits from
indistinguishability obfuscation and one-way functions.

• Adaptively certified everlasting secure bounded collusion-resistant public-key FE for NC1 circuits from standard
PKE.

• Certified everlasting secure compute-and-compare obfuscation from standard fully homomorphic encryption and
standard compute-and-compare obfuscation.

• Adaptively (resp., selectively) certified everlasting secure PE from standard adaptively (resp., selectively) secure
attribute-based encryption and certified everlasting secure compute-and-compare obfuscation.

• Certified everlasting secure SKE and PKE from standard SKE and PKE, respectively.
• Cetified everlasting secure RNCE from standard PKE.
• Cetified everlasting secure garbled circuits from standard SKE.

∗The research was conducted while the author was a postdoc at NTT Social Informatics Laboratories

1

Contents
1 Introduction 4

1.1 Background . 4
1.2 Our Results . 5
1.3 Concurrent and Independent Work . 6
1.4 Subsequent Work . 7
1.5 Technical Overview: Collusion-Resistant FE . 7
1.6 Technical Overview: Bounded Collusion-Resistant FE . 10
1.7 Technical Overview: Compute-and-Compare Obfuscation . 12
1.8 More on Related Works . 14

2 Preliminaries 15
2.1 Notations . 15
2.2 Quantum Computations . 16
2.3 Cryptographic Tools . 16

3 Collusion-Resistant Functional Encryption with Certified Everlasting Deletion 24
3.1 Definitions . 24
3.2 Tools . 25
3.3 Collusion-Resistant Construction . 28

4 Bounded Collusion-Resistant Functional Encryption with Certified Everlasting Deletion 36
4.1 Definitions . 36
4.2 1-Bounded Construction with Non-Adaptive Security . 39
4.3 1-Bounded Construction with Adaptive Security . 42
4.4 q-Bounded Construction with Adaptive Security for NC1 circuits . 47
4.5 Discussion on q-Bounded Consturction for All Circuits . 53

5 Compute-and-Compare Obfuscation with Certified Everlasting Deletion 54
5.1 Definition . 54
5.2 Construction . 55

6 Predicate Encryption with Certified Everlastng Deletion 60
6.1 Definition . 60
6.2 Construction . 62

A Omitted Proofs for Collusion-Resistant FE 73

B Adaptively Secure Public-Slot PKFE 75
B.1 Building Blocks . 76
B.2 Variants of Security Definitions . 80
B.3 Adaptively Single-Key Single-Ciphertext Public-Slot SKFE Scheme 80
B.4 Adaptively Secure Public-Slot PKFE Scheme . 83

C Secret and Public Key Encryption with Certified Everlasting Deletion 93
C.1 Definition . 93
C.2 SKE Scheme with QROM . 97
C.3 SKE Scheme without QROM . 98
C.4 PKE Scheme with QROM . 99
C.5 PKE Scheme without QROM . 100

2

D Receiver Non-Committing Encryption with Certified Everlasting Deletion 102
D.1 Definition . 102
D.2 Construction . 104

E Garbling Scheme with Certified Everlasting Deletion 109
E.1 Definition . 109
E.2 Construction . 111

3

1 Introduction
1.1 Background
Computational security in cryptography relies on assumptions that some problems are hard to solve. However,
such assumptions could be broken in the future when revolutionary novel algorithms are discovered, or computing
devices are drastically improved. One solution to the problem of computational security is to construct information-
theoretically-secure protocols. However, many cryptographic primitives are known to be impossible (or unlikely) to
satisfy information-theoretical security even in the quantum world [LC97, May97, MW18].

Good compromises (intrinsic to quantum!) have been studied recently [Unr15, BI20, KT20, HMNY21, HMNY22b,
Por23]. In particular, certified everlasting security, which was introduced in [HMNY22b] based on [Unr15, BI20],
achieves the following security: After receiving quantum-encrypted data, a receiver can issue a certificate to prove
that (s)he deleted its quantum-encrypted data. If the certificate is valid, its security is guaranteed even if the receiver
becomes computationally unbounded later. A (private or public) verification key for certificates is also generated along
with quantum-encrypted data. This security notion is weaker than information-theoretical security since a malicious
receiver could refuse to issue a valid certificate. However, it is still a useful security notion because, for example,
a sender can penalize receivers who do not issue valid certificates. In addition, certified everlasting security is an
intrinsically quantum property because it implies information-theoretical security in the classical world.1

Certified everlasting security can bypass the impossibility of information-theoretical security. In fact, several
cryptographic primitives have been shown to have certified everlasting security, such as commitments and zero-
knowledge [HMNY22b]. An important open problem in this direction is

Which cryptographic primitives can have certified everlasting security?

Functional encryption (FE) is one of the most advanced cryptographic primitives and achieves considerable flexibility
in controlling encrypted data [BSW11]. In FE, an owner of a master secret key MSK can generate a functional decryption
key sk f that hardwires a function f . When a ciphertext ctm of a message m is decrypted by sk f , we can obtain the value
f (m), and no information beyond f (m) is leaked. Information-theoretically secure FE is impossible, and all known
constructions are computationally secure [GVW12, GGH+16, AP20, AV19, JLS21, JLS22]. A motivating application
of FE is analyzing sensitive data and computing new data from personal data without sacrificing data privacy. In this
example, users must store their encrypted data on a remote server since users delegate the computation. At some
point, users might request the server to “forget” their data (even if they are encrypted). European Union [GDP16] and
California [CCP18] adopted data deletion clauses in legal regulations for such users. Encryption with certified deletion
could be useful for implementing the right to be forgotten. However, suppose that FE does not have certified everlasting
security. In that case, the rapid growth of computational power potentially breaks the privacy of sensitive personal data
(such as DNA) in the future. This risk (“recalling” in the future) is great because descendants inherit DNA information.
Certified everlasting security is desirable for such practical applications of FE.

Hence, we have the following open problem:

Is it possible to construct certified everlasting secure FE?

We note that certified everlasting secure FE is particularly useful compared to certified everlasting secure public key
encryption (PKE) (or more generally “all-or-nothing encryption”2 [GMM17]) because it ensures security even against
an honest receiver who holds a decryption key. That is, we can ensure that a receiver who holds a decryption key sk f for
a function f cannot learn more than f (m) even if the receiver can run an unbounded-time computation after issuing a
valid certificate. In contrast, certified everlasting PKE does not ensure any security against an honest receiver since the
receiver can simply keep a copy of a plaintext after honestly decrypting a ciphertext.

Another useful advanced cryptographic primitive is obfuscation for compute-and-compare programs [WZ17]
(a.k.a. lockable obfuscation [GKW17]). A compute-and-compare obfuscation scheme can obfuscate a compute-
and-compare circuit parameterized by a polynomial-time computable circuit P along with a lock value lock and

1This is because a malicious receiver can copy the encrypted data freely. Hence, the encrypted data must be secure against an unbounded malicious
receiver at the point when the receiver obtains the encrypted data. The same discussion does not go through in the quantum world because even a
malicious receiver cannot copy the quantum-encrypted data due to the quantum no-cloning theorem.

2Such as identity-based encryption (IBE), attribute-based encryption (ABE), fully homomorphic encryption (FHE), or witness encryption (WE).

4

a message m. The circuit takes an input x and outputs m if P(x) = lock and ⊥ otherwise. Point functions,
conjunction with wild cards, plaintext checkers, and affine testers are examples of such circuits [GKW17, WZ17]. Hence,
certified everlasting secure compute-and-compare obfuscation achieves certified deletion for obfuscated programs
in the restricted class of functionalities. In addition, compute-and-compare obfuscation has many cryptographic
applications [GKW17, WZ17, CVW+18, FFMV23, AYY22, AKYY23]. We can generically convert all-or-nothing
encryption into anonymous one via compute-and-compare obfuscation. In particular, we can obtain predicate encryption
(PE) [KSW08, GVW15b] from ABE and compute-and-compare obfuscation. PE is an attribute-hiding variant of ABE
and an intermediate primitive between ABE and FE. If we can achieve certified everlasting secure compute-and-compare
obfuscation, it is possible to achieve certified everlasting secure PE (and anonymous IBE and PKE).

Hence, we have the following second open problem:

Is it possible to construct certified everlasting secure compute-and-compare obfuscation?

1.2 Our Results
We solve the above questions in this work. Our contributions are as follows.

1. We formally define certified everlasting versions of many cryptographic primitives: FE (Section 3.1), compute-
and-compare obfuscation (Section 5.1), PE (Section 6.1), secret-key encryption (SKE) (Appendix C.1), PKE
(Appendix C.1), receiver non-committing encryption (RNCE) (Appendix D.1), and a garbling scheme (Ap-
pendix E.1).

2. We construct adaptively certified everlasting secure collusion-resistant public-key FE for P/poly from indistin-
guishability obfuscation (IO) and one-way functions (OWFs) (Section 3.3). We also construct adaptively certified
everlasting secure bounded collusion-resistant public-key FE for NC1 from standard PKE (Section 4.4).

3. We construct certified everlasting secure compute-and-compare obfuscation from standard FHE and standard
compute-and-compare obfuscation (Section 5.2). Both building blocks can be instantiated with the learning
with errors (LWE) assumption. We also construct adaptively (resp., selectively) certified everlasting secure PE
from standard adaptively (resp., selectively) secure ABE and certified everlasting secure compute-and-compare
obfuscation (Section 6.2).

4. To achieve adaptively certified everlasting secure bounded collusion-resistant FE, we construct many certified
everlasting secure cryptographic primitives:

• Two constructions of certified everlasting secure SKE from standard SKE (Appendices C.2 and C.3).
An advantage of the first construction is that the certificate is classical, but a disadvantage is that the
security proof relies on the quantum random oracle model (QROM) [BDF+11]. The security of the second
construction holds without relying on the QROM, but the certificate is quantum.

• Two constructions of certified everlasting secure PKE with the same properties of the SKE constructions
above from standard PKE (Appendices C.4 and C.5).

• A construction of certified everlasting secure RNCE from certified everlasting PKE (Appendix D.2).
• A construction of certified everlasting secure garbling scheme for P/poly from certified everlasting SKE

(Appendix E.2).

All our constructions are privately verifiable, so we must keep verification keys (for deletion certificate) secret. It is
open to achieving certified everlasting secure bounded collusion-resistant FE for P/poly from standard PKE.

We introduce fascinating techniques to achieve certified everlasting secure collusion-resistant FE and certified
everlasting secure compute-and-compare obfuscation. We developed an authentication technique for BB84 state to
satisfy both the functionality of FE and certified everlasting security. (See Section 1.5 for the detail.) This authentication
technique for BB84 states is of independent interest and we believe that it has further applications.3 We also developed
a deferred evaluation technique using dummy lock values to satisfy both the functionality of compute-and-compare
obfuscation and certified everlasting security. (See Section 1.7 for the detail.)

3Indeed, an application was found by Kitagawa, Nishimaki, and Yamakawa [KNY23]. See Section 1.4.

5

1.3 Concurrent and Independent Work
Certified everlasting secure SKE and PKE. Recently, Bartusek and Khurana concurrently and independently
obtained similar results [BK23]. They introduce a generic compiler that can convert several cryptographic primitives to
certified everlasting secure ones, such as PKE, ABE, FHE, WE, and timed-release encryption. Their constructions via
the generic compiler have the advantage that the certificates are classical and no QROM is required. Our constructions
of certified everlasting SKE and PKE cannot achieve both: if the certificates are classical, QROM is required, and if
QROM is not used, the certificates have to be quantum. We note that their certified everlasting SKE and PKE can be
used as building blocks of our RNCE, garbling, and bounded collusion-resistant FE constructions instead of our SKE
and PKE schemes.

While their work focuses on all-or-nothing encryption, our work presents certified everlasting secure garbling and
FE, which are not given in their work. It is unclear how to apply their generic compiler to garbling and FE.

One might think that certified everlasting garbling can be constructed from certified everlasting SKE, which is
constructed from their generic compiler. However, it is non-trivial whether certified everlasting garbling can be
immediately constructed from certified everlasting SKE because garbling needs double-encryption. (For details, see
Section 1.6.)

Moreover, a direct application of their generic compiler to FE does not work because of the following reason. If we
directly apply their generic compiler to FE, we have a ciphertext consisting of classical and quantum parts. The classical
part is the original FE ciphertext whose plaintext is m⊕ r with random r, and the quantum part is random BB84 states
whose computational basis states encode r. The decryption key of the function f consists of functional decryption key
sk f and the basis of the BB84 states. However, in this construction, a receiver with the ciphertext and the decryption key
cannot obtain f (m), because what the receiver obtains is only f (m⊕ r) and r, which cannot recover f (m).

Bartusek-Khurana’s results and our collusion-resistant FE, PE, and compute-and-compare obfuscation. While
our certified everlasting secure bounded collusion-resistant FE (and its building block SKE, PKE, garbling, and
RNCE) schemes are concurrent and independent work, our certified everlasting secure collusion-resistant FE, PE, and
compute-and-compare obfuscation schemes use the certified everlasting lemma by Bartusek and Khurana(Lemma 3.5).4
Those three schemes were added after the paper by Bartusek and Khurana was made public. Their work does not
consider FE, PE, and compute-and-compare obfuscation.

If we directly apply their generic compiler to PE, we cannot hide the attribute part though we can hide the plaintext
part. Even if we apply the same technique to the attribute part, say, we also set the attribute to a⊕ r′ with random r′,
and put random BB84 states whose computational basis states encode r′ in a ciphertext, the idea does not work. A
receiver cannot obtain the plaintext even if P(a) = 1 because the predicate computes P(a⊕ r′) instead of P(a), and
the correctness does not hold.

It is non-trivial whether we can obtain certified everlasting compute-and-compare obfuscation by their framework for
encryption with certified deletion because we need to hide information about circuits while preserving the functionality.
Savvy readers might think it may be possible by applying the framework to the compute-and-compare obfuscation
from circular insecure FHE by Kluczniak [Klu22]. However, we need compute-and-compare obfuscation to instantiate
circular insecure FHE. This is a circular argument.

Certified everlasting secure FE. Bartusek, Garg, Goyal, Khurana, Malavolta, Raizes, and Roberts [BGG+23]
concurrently and independently obtained adaptively certified everlasting secure collusion-resistant FE for P/poly from
IO and OWFs. They use subspace coset states [CLLZ21], while we use BB84 states (with one-time signatures). Hence,
the techniques are different. Their scheme is publicly verifiable thanks to the subspace coset state approach. Another
technical difference is that they directly rely on adaptively secure multi-input FE (MIFE) [GGG+14, GJO16] while we
do not. Hence, their scheme incurs an additional sub-exponential loss (from IO to adaptively secure MIFE [GJO16]).
Our scheme uses selectively secure MIFE and does not incur sub-exponential loss. We note that selectively secure
MIFE and IO are equivalent without any security loss [GGG+14]. They also present several certified everlasting secure

4This is because this paper is a major update version of the paper by Hiroka et al. [HMNY22a] with new additional results (i.e., collusion-resistant
FE, PE, and compute-and-compare obfuscation). The content in the work by Hiroka et al. [HMNY22a] is a concurrent and independent work of the
work by Bartusek and Khurana [BK23].

6

primitives that are not considered in our work. However, the results on RNCE, garbled circuits, compute-and-compare
obfuscation, and PE are unique to our work.

1.4 Subsequent Work
A subsequent work by Kitagawa, Nishimaki, and Yamakawa [KNY23] shows another application of our authentication
technique for BB84 states which we develop for the construction of certified everlasting secure collusion-resistant FE.
Specifically, they use the technique to construct a generic compiler to add the publicly verifiable deletion property for
various kinds of cryptographic primitives solely based on OWFs.

1.5 Technical Overview: Collusion-Resistant FE
Certified everlasting lemma of Bartusek and Khurana. Our construction is based on a lemma which we call
certified everlasting lemma proven by Bartusek and Khurana [BK23], which is described as follows.

Suppose that {Z(m)}m∈{0,1}λ+1 is a family of distributions over classical strings such that Z(m) is computatioally
indistinguishable from Z(0λ+1) for any m ∈ {0, 1}λ+1. Intuitively, Z(m) can be regarded as an “encryption” of m.
For b ∈ {0, 1} and a QPT adversary, let Z̃(b) be the following experiment:

• The experiment samples z, θ ← {0, 1}λ.

• The adversary takes |z⟩θ , and Z(θ, b⊕⊕
j:θj=0 zj) as input where zj is the j-th bit of z and outputs a classical

string z′ ∈ {0, 1}λ and a quantum state ρ.

• The experiment outputs ρ if z′j = zj for all j such that θj = 1 and otherwise outputs a special symbol ⊥.

Then for any QPT adversary, the trace distance between Z̃(0) and Z̃(1) is negl(λ).5
The above lemma can be regarded as a generic compiler that adds certified everlasting security. For example, we

can construct a certified everlasting PKE scheme from any plain PKE scheme as follows. For encrypting a message
b ∈ {0, 1}, a ciphertext is set to be |z⟩θ , Enc(θ, b⊕⊕

j:θj=0 zj) where z, θ ← {0, 1}λ and Enc is the encryption
algorithm of the underlying PKE scheme. Here, we omit an encryption key for simplicity and keep using a similar
convention throughout this subsection. The deletion algorithm simply measures |z⟩θ in the Hadamard basis to output a
certificate z′ and the verification algorithm checks if z′j = zj for all j such that θj = 1. Then the above lemma implies
that an adversary’s internal state has no information about b conditioned on the acceptance, which means certified
everlasting security.

Public-slot FE. Unfortunately, their compiler does not directly work for FE in general. The problem is that for a
function f , there may not exist a function f ′ such that f (m) can be recovered from f ′(m⊕⊕

j:θj=0 zj, θ) and z. To
overcome this issue, we introduce an extension of FE which we call public-slot FE. In public-slot FE, a decryption key
is associated with a two-input function where the first and second inputs are referred to as the secret and public inputs,
respectively. Given a ciphertext of a message m and a decryption key for a function f , one can compute f (m, pub)
for all public inputs pub. Its security is defined similarly to that of plain FE except that the challenge message pair
(m(0), m(1)) must satisfy f (m(0), pub) = f (m(1), pub) for all key queries f and public inputs pub.

We observe that many existing constructions of FE based on IO (e.g., [GGH+16]) can be naturally extended to
public-slot FE. In particular, we show that a simple modification of the FE scheme of Ananth and Sahai [AS16] yields
an adaptively secure public-slot FE based on IO. See Appendix B for details.

5In fact, we need an “interactive version” of the lemma. We believe that such an interactive version is implicitly proven and used in [BK23]. See
Lemma 3.7 for the formal statement of the lemma and Remark 3.8 for a comparison with [BK23].

7

First attempt. Our first attempt to construct a collusion-resistant FE scheme with certified everlasting security
is as follows. Let Enc be an encryption algorithm of a public-slot FE scheme. A ciphertext for a message
m = m1 . . . mn ∈ {0, 1}n consists of {|zi⟩θi

}i∈[n] and Enc(θ1, . . . , θn, β1, . . . , βn) where zi, θi ← {0, 1}λ for i ∈ [n],
and βi := mi ⊕

⊕
j:θi,j=0 zi,j where zi,j is the j-th bit of zi. A decryption key for a function f is a decryption key of

the underlying public-slot FE for a two-input function g[f] defined as follows. The function g[f] takes a secret input
(θ1, . . . , θn, β1, . . . , βn) and a public input (b1, . . . , bn) ∈ {0, 1}λ×n, computes mi := βi ⊕

⊕
j:θi,j=0 bi,j for i ∈ [n],

and outputs f (m1, . . . , mn). To see decryption correctness, we first observe that if we first measure {|zi⟩θi
}i∈[n] in

the computational basis to get (b1, . . . , bn), then we have bi,j = zi,j for all i, j such that θi,j = 0. Thus, if we run the
decryption algorithm of the public-slot FE scheme with the public input (b1, . . . , bn), then this yields the correct output
f (m1, . . . , mn). We remark that the decryption can actually be done without measuring {|zi⟩θi

}i∈[n] by running the
above procedure coherently. The deletion and verification algorithms can be defined similarly to those for the certified
everlasting PKE scheme as explained above: The deletion algorithm simply measures {|zi⟩θi

}i∈[n] in the Hadamard
basis to get {z′i}i∈[n] and the verification algorithm checks if z′i,j = zi,j for all i, j such that θi,j = 1.

However, the above scheme is insecure. The problem is that public-slot FE does not force an adversary to use a
legitimate public input. By running the decryption algorithm with different public inputs many times, an adversary can
learn more than f (m1, ..., mn), which would even break security as a plain FE scheme. For example, if the adversary
uses a public input (b1, ..., b′i , ..., bn) such that b′i is the same as bi except that b′i,j ̸= bi,j for some j such that θi,j = 0,
then it can obtain f (m1, ..., 1−mi, ..., mn).

Certify the public input by one-time signatures. Our idea to resolve the above issue is to certify {zi}i∈[n] in the
quantum part of the ciphertext by using one-time signatures. Specifically, the encryption algorithm first generates a pair of
a verification key vki,j and a signing key ski,j of a deterministic one-time signature for i ∈ [n] and j ∈ [λ]. A ciphertext for
a message m = m1 . . . mn ∈ {0, 1}n consists of {

∣∣ψi,j
〉
}i∈[n],j∈[λ] and Enc({vki,j}i∈[n],j∈[λ], θ1, . . . , θn, β1, . . . , βn)

where zi, θi ← {0, 1}n for i ∈ [n], βi := mi ⊕
⊕

j:θi,j=0 zj, and

∣∣ψi,j
〉

:=

{ ∣∣zi,j
〉 ∣∣∣σi,j,zi,j

〉
if θi,j = 0

|0⟩
∣∣σi,j,0

〉
+ (−1)zi,j |1⟩

∣∣σi,j,1
〉

if θi,j = 1

where σi,j,b is a signature generated by using the signing key ski,j on the message b ∈ {0, 1}. Note that
∣∣ψi,j

〉
is the state

obtained by coherently running the signing algorithm with the signing key ski,j on j-th qubit of |zi⟩θi
. We modify the

function g[f] associated with the decryption key of the public-slot FE to additionally check the validity of the signatures
for bi,j for i, j such that θi,j = 0. That is, g[f] takes a secret input ({vki,j}i∈[n],j∈[λ], θ1, . . . , θn, β1, . . . , βn) and a public
input (b1, . . . , bn, σ1, . . . , σn), parses σi = (σi,1, . . . , σi,λ) for each i ∈ [n], and checks if σi,j is a valid signature for
bi,j (i.e., if σi,j = σi,j,bi,j

) for all i, j such that θi,j = 0. If it is not the case, it just outputs ⊥. Otherwise, it computes
mi := βi ⊕

⊕
j:θi,j=0 bi,j for i ∈ [n] and outputs f (m1, . . . , mn). Note that

∣∣ψi,j
〉

contains the valid signature σi,j,zi,j on
the message zi,j whenever θi,j = 0. Thus, the decryption correctness is unaffected. In addition, if we measure

∣∣ψi,j
〉

in
the Hadamard basis for i, j such that θi,j = 1, then the outcome (ci,j, di,j) satisfies zi,j = ci,j ⊕ di,j(σi,j,0 ⊕ σi,j,1). By
modifying the verification algorithm to check the above equality, the verification correctness also holds. By the security
of one-time signatures, an adversary cannot arbitrarily modify the public input when running the decryption algorithm
of the underlying public-slot FE.

While this authentication technique seems to prevent obvious attacks, we still do not know how to prove certified
everlasting security of this scheme. In particular, we want to rely on the certified everlasting lemma of [BK23].
However, the lemma only enables us to perform bit-wise game hops. For example, if n = 3 and the challenge
messages are 000 and 111, we would need to consider hybrid experiments where the challenge message evolves as
000→ 100→ 110→ 111.6 However, the restriction on the adversary only ensures f (000) = f (111) for decryption
key queries f and does not ensure, say, f (000) = f (100). Without this condition, we cannot rely on the security of the

6Note that an FE scheme with 3-bit messages itself is trivial to construct from any PKE scheme. We are considering this toy example just to
explain a technical difficulty.

8

underlying public-slot FE. Hence, it seems impossible to prove indistinguishability between neighboring intermediate
hybrids.

Redundant encoding. Our idea for resolving the above issue is to encode the message in a redundant way so that there
is a space for a “spare message”. Specifically, we first encode a message m = m1 . . . mn ∈ {0, 1}n into a (2n + 1)-bit
string m1 . . . mn∥0n+1. The rest of the scheme is identical to that in the previous paragraph, except that i’s range
is [2n + 1] instead of [n] and g[f] chooses which part to use for deriving the output depending on the value of the
(2n + 1)-th bit. Specifically, g[f] takes a secret input ({vki,j}i∈[2n+1],j∈[λ], θ1, . . . , θ2n+1, β1, . . . , β2n+1) and a public
input (b1, . . . , b2n+1, σ1, . . . , σ2n+1) and first checks the validity of the signatures on positions corresponding to i, j
such that θi,j = 0 as before. Then it computes mi := βi ⊕

⊕
j:θi,j=0 bi,j for i ∈ [2n + 1], and outputs F(m1, . . . , m2n+1)

where F is defined as

F(m1, . . . , m2n+1) :=

{
f (m1, . . . , mn) if m2n+1 = 0
f (mn+1, . . . , m2n) if m2n+1 = 1

.

The decryption correctness is unaffected because we always have m2n+1 = 0 when decrypting an honestly generated
message. The verification correctness is also unaffected since the way of encoding messages is irrelevant. We explain
why this enables us to avoid the issue mentioned in the previous paragraph. Intuitively, the advantage of such a redundant
encoding is that we can ensure that the encoded challenge message contains either of two challenge messages in all
intermediate hybrids. Let m(0) and m(1) be a pair of challenge messages. Note that they correspond to m(0)∥0n+1 and
m(1)∥0n+1 after encoding. Then we consider intermediate hybrids where the corresponding challenge messages after
the encoding evolves as follows:

1. Starting from m(0)∥0n+1, we change the (n + 1)-th to 2n-th bits one-by-one toward m(0)∥m(1)∥0.

2. Flip the (2n + 1)-th bit, which results in m(0)∥m(1)∥1.

3. Change the first to n bits one-by-one toward m(1)∥m(1)∥1.

4. Flip the (2n + 1)-th bit, which results in m(1)∥m(1)∥0.

5. Change the (n + 1)-th to 2n-th bits one-by-one toward m(1)∥02n+1.

Importantly, the value of F on the encoded challenge message is equal to f (m(0)) = f (m(1)) at any point of the
hybrids. This enables us to rely on the security of the underlying public-slot FE along with certified everlasting lemma
in every hybrid.

What one-time signatures to use? Finally, we remark that we have to choose an instantiation of one-time signatures
carefully. Roughly speaking, the reason why we are using one-time signatures is to prevent an adversary from using
“unauthorized” bi,j, i.e., those for which the valid signature σi,j,bi,j

is not given to the adversary. However, by the
correctness of one-time signatures, a valid signature must exist on every message. This means that a valid signature on
an “unauthorized” bi,j must exist even if it is difficult for an adversary to find. This situation is not compatible with
the security definition of public-slot FE. Recall that its security requires that the challenge message pair (m(0), m(1))

must satisfy f (m(0), pub) = f (m(1), pub) for all key queries f and all public inputs pub. That is, the security is
not applicable if there is at least one pub such that f (m(0), pub) ̸= f (m(1), pub) even if such pub is difficult to find.
To overcome this issue, we use Lamport signatures instantiated with a PRG. Let PRG : {0, 1}λ → {0, 1}2λ be a
PRG. When the message length is 1, a signing key is set to be (u0, u1) ∈ {0, 1}λ×2 and a verification key is set to be
(v0 = PRG(u0), v1 = PRG(u1)) ∈ {0, 1}2λ×2. A signature for a bit b is defined to be ub. This scheme has a special
property in that we can program a verification key so that it does not have a valid signature for a particular message. For
example, if we want to ensure that a message 0 does not have a valid signature, then we can set v0 to be a uniformly
random 2λ-bit string. Then, with probability 1− 2−λ, there is no preimage of v0, which means that there is no valid
signature on the massage 0. By using this property, whenever bi,j is unauthorized, we can switch to a hybrid where there
is no valid signature for bi,j. This effectively resolves the above issue.

9

1.6 Technical Overview: Bounded Collusion-Resistant FE
In this subsection, we give a high-level overview of our certified everlasting secure bounded collusion-resistant FE
schemes. It is known that the (bounded collusion-resistant) plain FE is constructed from (standard) PKE, RNCE, and
garbling [GVW12]. A natural strategy is constructing PKE, RNCE, and garbling with certified everlasting security
and using them as building blocks. We show that PKE with certified everlasting security can be constructed using the
techniques of [Unr15, HMNY22b]. RNCE with certified everlasting security for classical messages can be constructed
from certified everlasting PKE in the same way as standard RNCE [KNTY19]. However, such an RNCE scheme is
insufficient for our purpose (constructing adaptively-secure FE) because it is not for quantum messages. We also need
a new idea to construct garbling with certified everlasting security. The following explains these ideas and how to
construct FE with certified everlasting security.

Certified everlasting garbling for P/poly circuits. In classical cryptography, it is known that we can construct plain
garbling from plain SKE using double-encryption [Yao86, LP09]. Double-encryption means we generate a nested
ciphertext ct2 ← Enc(sk′, ct1), where ct1 ← Enc(sk, m), m is the message, Enc is the encryption algorithm of SKE,
and sk, sk′ are secret keys of SKE. This double-encryption is an essential technique for garbling. However, it is an
obstacle to our purpose. First, we do not know SKE with certified everlasting security for quantum messages. Second,
even if the first problem is solved, we have another problem: We can obtain a valid certificate showing that ct1 has been
deleted by running the deletion algorithm on ct2. However, such a certificate does not necessarily mean the deletion of
m. We bypass the problem using XOR secret sharing instead of double-encryption.7 More precisely, we uniformly
randomly sample p and compute (vk′, ct′)← Enc(sk′, p) and (vk, ct)← Enc(sk, p⊕m) to encrypt message m. Here,
Enc is the encryption algorithm of certified everlasting SKE, and vk′, vk are the verification keys that are used to verify
the correctness of deletion certificates. The receiver with (ct′, ct) can obtain m only if it has both sk′ and sk, and
nothing else otherwise, as in the case of double-encryption. Furthermore, once the receiver issues the deletion certificate
of (ct′, ct), it can no longer obtain the information of m even if it becomes computationally unbounded.

It is easy to see that we can implement the well-known gate garbling [Yao86, LP09] by using the double encryption
in the parallel way above instead of the sequential double encryption. We can prove its computational security via
a similar discussion as that in [LP09]. (Although [LP09] uses double-encryption, we can show the security for the
XOR secret sharing case similarly.) Furthermore, we can prove its certified everlasting security by using the certified
everlasting security of the SKE. Hence, we can obtain certified everlasting garbling. The formal construction of our
certified everlasting garbling is given in Appendix E.2. For details, see that section.

FE with non-adaptive security. Our next task is achieving certified everlasting FE using certified everlasting garbling.
It is known that plain FE with non-adaptive security can be constructed by running the encryption algorithm of (plain)
PKE on labels of a plain garbling scheme [SS10].8 In our certified everlasting garbling scheme (explained in the previous
paragraph), the labels are classical bit strings and the deletion algorithm does not take the labels as input. Therefore,
this classical construction for plain FE by Sahai and Seyalioglu [SS10] can be directly applied to the construction of our
1-bounded certified everlasting FE for P/poly circuits with non-adaptive security. (The formal construction is given in
Section 4.2.)

FE with adaptive security. Now, we want to convert non-adaptive security to adaptive one.9 However, the conversion
is non-trivial. Let us first review the conversion for plain FE. In classical cryptography, we can convert non-adaptively
secure FE into adaptively secure FE by using RNCE. Roughly speaking, RNCE is the same as PKE except that we can
generate a fake ciphertext c̃t← Fake(pk) without plaintext and we can generate a fake secret key s̃k← Reveal(pk, m)
that decrypts c̃t to m. The security of RNCE guarantees that (Enc(pk, m), sk) and (Fake(pk), Reveal(pk, m)) are
computationally indistinguishable, where Enc is the real encryption algorithm, and sk is the real secret key. Adaptively
secure FE can be constructed by running the real encryption algorithm Enc of the RNCE on the ciphertext nad.ct of
the FE. We can prove its adaptive security as follows. The adversary of adaptive security can send key queries after

7A similar technique was used by Gentry, Halevi, and Vaikuntanathan [GHV10].
8The non-adaptive security means that the adversary can call the key queries only before the challenge encryption query.
9The adaptive security means that the adversary can call key queries before and after the challenge encryption query.

10

the challenge encryption query. However, the sender can simulate the challenge encryption query without generating
nad.ct. This is because, from the security of RNCE, we can switch (Enc(pk, nad.ct), (sk, nad.sk f)) to the fake one
(Fake(pk), (Reveal(pk, nad.ct), nad.sk f)), where nad.sk f is the functional secret key of the non-adaptively secure FE.
Therefore, the sender needs not generate nad.ct before generating nad.sk f for the simulation of the adversary’s queries,
which means that we can reduce the adaptive security to the non-adaptive security.

How can we adopt the above classical idea of the conversion to the certified everlasting case? From the discussion
above, a straightforward way is to encrypt the ciphertext nad.ct of certified everlasting FE with non-adaptive security
using certified everlasting RNCE as follows: (vk, ct) ← Enc(pk, nad.ct), where vk is the verification key, pk is the
public key, and Enc is the real encryption algorithm of the certified everlasting RNCE. However, this idea fails for
the following two reasons. First, nad.ct is a quantum state. Our certified everlasting RNCE scheme does not support
quantum messages. Second, even if we can construct RNCE for quantum messages, we have another problem: A valid
certificate of ct is issued by running the deletion algorithm on ct. However, such a certificate does not necessarily mean
the deletion of the plaintext of nad.ct. The first problem is about security, and the second problem is about correctness.

Our idea to resolve the first problem is to use quantum teleportation. We construct RNCE for quantum messages
from RNCE for classical messages by using quantum teleportation.10 (We believe that the idea of using quantum
teleportation in the following way will be useful in many other applications beyond RNCE.) As the ciphertext and the
secret key of adaptively secure FE, we take

1
22N ∑

a,b∈{0,1}N

(ZbXa(nad.ct)XaZb)C1 ⊗ Enc(pk, (a, b))C2 ⊗ (nad.sk f , sk)S,

where nad.ct is an N-qubit state, the registers C1 and C2 are the ciphertext, and the register S is the secret key. Here,
Xa :=

⊗N
j=1 X

aj
j , Zb :=

⊗N
j=1 Z

bj
j , aj is the jth bit of a, and bj is the jth bit of b. Moreover, Enc is the real encryption

algorithm of RNCE for classical messages, nad.sk f is the secret key of non-adaptively secure FE, and sk is the real
secret key of RNCE for classical messages. We want to show the adaptive security of the construction by reducing it to
the non-adaptive security of the building block FE. In the first step of hybrids, we switch the state to

1
22N ∑

a,b
(ZbXa(nad.ct)XaZb)C1 ⊗ Fake(pk)C2 ⊗ (nad.sk f , Reveal(pk, (a, b)))S

by using the property of RNCE for classical messages. In the second step of hybrids, we switch the state to
1

22N ∑
x,z∈{0,1}N

T x,z
A′ ,A[nad.ctA′ ⊗ |ΦN⟩⟨ΦN |A,C1]⊗ Fake(pk)C2 ⊗ (nad.sk f , Reveal(pk, (x, z)))S,

where |ΦN⟩ is the N Bell pairs between the registers A and C1. T x,z
A′ ,A[nad.ctA′ ⊗ |ΦN⟩⟨ΦN |A,C1] is the state on the

register C1 obtained in the following way: the state nad.ctA′ on the register A′ is coupled with the halves of N Bell
pairs on the register A, and the teleportation measurement T x,z

A′ ,A with the result (x, z) is applied on the registers A and
A′. Now, we can generate the states on the registers C1 and C2 without knowing nad.ct, which means that the sender
can simulate the challenge encryption query without nad.ct. In other words, the sender does not need to generate nad.ct
before generating nad.sk f for the simulation of adversary queries.

This idea solves the first problem. However, the second problem remains. The receiver with (ZbXa(nad.ct)XaZb,
Enc(pk, (a, b))) can issue a deletion certificate of ZbXa(nad.ct)XaZb. The deletion certificate does not necessarily
pass the verification algorithm for the deletion of nad.ct. This is an obstacle to achieving correctness. We solve
this problem by introducing an efficient algorithm that we call the modification algorithm. Let nad.cert∗ be the
deletion certificate of ZbXa(nad.ct)XaZb. The modification algorithm takes (a, b) and nad.cert∗ as input, and outputs
nad.cert that is the deletion certificate of nad.ct. Therefore, by using the modification algorithm, we can convert the
deletion certificate nad.cert∗ of ZbXa(nad.ct)XaZb to the deletion certificate nad.cert of nad.ct. We observe that the
modification algorithm exists for many natural constructions, including our construction.11

The formal explanation of the conversion from non-adaptive to adaptive FE is given in Section 4.3.
10A similar technique was used in the context of multi-party quantum computation [BCKM21].
11If the deletion algorithm is the computational-basis measurements followed by Clifford gates, the modification algorithm is just modifying the

Pauli one-time pad, XaZb. In fact, all known constructions use only Hadamard basis measurements.

11

q-bounded FE for NC1 circuits. Finally, we explain how to convert 1-bounded one to the q-bounded one.12
Unfortunately, we do not know how to obtain q-bounded certified everlasting FE for P/poly circuits. What we can
construct in this paper is that only for NC1 circuits. (It is an open problem to obtain q-bounded certified everlasting FE
for P/poly circuits. For more details, see Section 4.4.)

Let us explain how to convert 1-bounded certified everlasting FE for P/poly circuits to q-bounded certified everlasting
FE for NC1 circuits. In classical cryptography, it is known that [GVW12] multi-party computation (MPC) can convert
plain 1-bounded FE for P/poly circuits to plain q-bounded FE for NC1 circuits. The idea is, roughly speaking, the
view of each party in the MPC protocol is encrypted using 1-bounded FE scheme. In this classical construction, no
encryption is done on the ciphertexts of plain FE, and therefore this classical construction can be directly applied to our
certified everlasting case. (It is an open problem to obtain q-bounded certified everlasting FE for P/poly circuits. The
formal construction is given in Section 4.4.

1.7 Technical Overview: Compute-and-Compare Obfuscation
This section provides a high-level overview of our certified everlasting compute-and-compare obfuscation. Recall that a
compute-and-compare obfuscation scheme obfuscates a circuit P along with a lock value lock and a message m and
outputs an obfuscated circuit P̃. In the evaluation phase, one can recover m from P̃ using an input x to the circuit
such that P(x) = lock. A certified everlasting compute-and-compare obfuscation scheme additionally generates a
verification key vk while obfuscating circuit P. A user can generate a deletion certificate cert from P̃. If we have vk, we
can verify whether the certificate is valid or not. The certified everlasting security ensures that no information about
P, lock and m is available to the user after producing a valid certificate. This means that the user actually deleted the
obfuscated circuit.

Compute-and-compare obfuscation without a message. We first explain our idea to construct a certified everlasting
compute-and-compare obfuscation without any message. That is, the evaluation returns 1 if P(x) = lock holds. Let
CC.Obf be the obfuscation algorithm of a standard compute-and-compare obfuscation scheme and Enc, Dec be the
encryption, and decryption algorithms of FHE. The main idea is to compute an FHE ciphertext ctP encrypting the
circuit P and use CC.Obf to produce an obfuscated circuit D̃ec of the decryption circuit of FHE with lock value lock and
message 1. The obfuscated circuit P̃ consists of ctP and D̃ec. Given an input x, we first apply the evaluation procedure
of FHE to get a ciphertext ctP(x) = Enc(P(x)) (we omit the encryption key) and then run the evaluation algorithm
of the compute-and-compare obfuscation with input ctP(x) to check whether P(x) = lock. Note that we cannot use
certified everlasting FHE [BK23] in a black-box manner since CC.Obf is a classical algorithm that cannot obfuscate a
quantum circuit, in particular, the decryption algorithm of the FHE. Instead, we use BB84 states along with classical
FHE as follows. The obfuscated circuit P̃ consists of D̃ec := CC.Obf(Dec(sk, ·), lock, 1) and {|zi⟩θi

, cti}i∈[ℓP]
where

cti := Enc(θi∥b̃i), zi, θi ← {0, 1}λ for i ∈ [ℓP], b̃i := bi ⊕
⊕

j:θi,j=0 zi,j and bi is the i-th bit of the binary string of
length ℓP representing the circuit P. The verification key is vk = ({zi, θi}i∈[ℓP]

). To evaluate the obfuscated circuit

with an input x, we first coherently compute an evaluated FHE ciphertext
∣∣∣ctUx(P)

〉
where Ux is a circuit that on input

({zi, θi, b̃i}i∈[ℓP]
) first recovers bi, the bits representing P, and then outputs P(x). Then, we coherently evaluate the

obfuscated circuit D̃ec with input
∣∣∣ctUx(P)

〉
and check that the measured outcome is 1 to decide P(x) = lock. The

deletion and verification algorithm works similarly as in the certified everlasting PKE scheme described in Section 1.5.
That is, we use the concrete certified everlasting secure FHE scheme by Bartusek and Khurana in a non-black-box way.

However, the above scheme cannot guarantee certified everlasting security. The reason is that the classical
compute-and-compare obfuscation cannot hide the lock value from an unbounded adversary. More precisely, the
unbounded adversary is given a target circuit and an auxiliary input and can easily distinguish between the obfuscated
circuit D̃ec← CC.Obf(1λ, Dec, lock, 1) and the corresponding simulated circuit D̃ec← CC.Sim(1λ, ppDec, 11) if the
auxiliary input and lock are correlated, where ppDec consists of parameters of Dec (input and output length and circuit
size).

12q-bounded means that the adversary can call key queries q times with an a priori bounded polynomial q.

12

We solve this problem by masking the obfuscated circuit that encodes lock using the XOR function in combination
with the BB84 states. In particular, we sample “dummy” lock value R ← {0, 1}λ and set the obfuscated circuit LC
as (D̃ec := CC.Obf(Dec(sk, ·), R, 1), {|zi⟩θi

, cti}i∈[ℓ]) where ℓ = ℓP + ℓ Ĩ and {cti}i∈[ℓ] encrypts the binary string
representing the circuits (P∥ Ĩ) where Ĩ := CC.Obf(I, lock, R). We denote I by the identity circuit that is I(x) = x for
all x. The evaluation algorithm works as before except that the circuit Ux on input ({zi, θi, b̃i}i∈[ℓ]) first reconstructs
(P∥ Ĩ) and then outputs the result obtained in the evaluation of Ĩ with input P(x). Hence, checking P(x) = lock is
deferred until evaluating Ĩ, which is hidden due to the certified everlasting security of FHE. The correctness follows
from the fact that Ux returns R if P(x) = lock and evaluation of D̃ec outputs 1 if Ux(P∥ Ĩ) = R.

The simulated circuit P̃ consists of D̃ec = CC.Obf(Dec(sk, ·), R, 1) and {|zi⟩θi
, cti}i∈[ℓ] where cti := Enc(θi∥b̃i)

and b̃i := 0⊕⊕
j:θi,j=0 zi,j for i ∈ [ℓ]. Note that, P̃ does not contain any information about P and lock. We rely on the

certified everlasting lemma of [BK23] to show that the real obfuscated circuit is indistinguishable from the simulated
circuit for any unbounded adversary who produces a valid certificate of deletion. Although an unbounded adversary can
recover sk from D̃ec, sk is useless for distinguishing after the deletion. Since the lemma only allows us to flip one bit at a
time, we use a sequence of ℓ hybrid experiments. In the i-th hybrid, we change the bit bi from 1 to 0. If we can show that
Enc(θi∥b̃i) is computationally indistinguishable from Enc(0∥b̃i) and then it is possible to apply the certified everlasting
lemma to flip the bit bi without noticing the unbounded adversary. To establish the computational indistinguishability, we
first replace the circuit Ĩ ← CC.Obf(I, lock, R) with the simulated one Ĩ ← CC.Sim(1λ, ppI , 1|R|) and then change the
circuit D̃ec← CC.Obf(Dec, lock, 1) to the corresponding simulated circuit D̃ec← CC.Sim(1λ, ppDec, 11) depending
on the security of the underlying compute-and-compare obfuscation scheme. Since the FHE secret key sk is no longer
required to simulate the adversary’s view, we can change Enc(θi∥b̃i) to Enc(0∥b̃i) using the IND-CPA security of FHE.
Hence, bi can be set to 0 by employing the certified everlasting lemma.

Compute-and-compare obfuscation with a message. Next, we discuss extending the above construction into a
certified everlasting compute-and-compare obfuscation scheme that obfuscates a circuit P along with lock and a message
m = m1 . . . mn ∈ {0, 1}n. Our idea is to encrypt the message using FHE in combination with the BB84 states and
recover the message bits during evaluation depending on the outcome of the obfuscated circuit D̃ec. The obfuscated
circuit P̃ now additionally includes {|zℓ+k⟩θℓ+k

, ctℓ+k}k∈[n] where zℓ+k, θℓ+k ← {0, 1}λ , ctℓ+k := Enc(θℓ+k∥b̃ℓ+k)

and b̃ℓ+k := mk ⊕
⊕

j:θℓ+k,j=0 zℓ+k,j for k ∈ [n]. The evaluation procedure works as before except the Ux on input
(({zi, θi, b̃i}i∈[ℓ]), (zℓ+k, θℓ+k, b̃ℓ+k)) first reconstructs (P∥ Ĩ) from {zi, θi, b̃i}i∈[ℓ] and mk from (zℓ+k, θℓ+k, b̃ℓ+k),
and then outputs mk · Ĩ(P(x)). We can similarly define the deletion and verification algorithms as before. The scheme
correctly recovers m in a bit-by-bit manner. Let us consider P(x) = lock and mk = 1. Then, by the definition of Ux

and the correctness of compute-and-compare obfuscation, we have mk · Ĩ(P(x)) = R. Consequently, D̃ec evaluates to
1 for an input ctmk · Ĩ(P(x)). If the result of the evaluation is not 1, then we set mk := 0. We prove the certified everlasting
security of the scheme using the same idea as discussed for the compute-and-compare obfuscation scheme without a
message. The only difference is that we additionally delete the information of m using the IND-CPA security of FHE
and certified everlasting lemma of [BK23] after we erase the information about P and lock. The formal construction
and its security analysis are provided in Section 5.

Certified everlasting predicate encryption. Goyal, Koppula and Waters [GKW17] and Wichs and Zirdelis [WZ17]
showed a generic construction of PE13 from compute-and-compare obfuscation and ABE. The construction works as
follows. The setup and key generation algorithms are the same as the underlying ABE. Let Enc and Dec be the encryption
and decryption algorithms of ABE. To encrypt a message m with attribute x, the encryption algorithm samples a
random lock R ∈ {0, 1}ℓ and computes ct := Enc(x, R) and D̃ec := CC.Obf(Dec(·, ct), R, m). The ciphertext is the
obfuscated circuit D̃ec. Given a secret key skP for a policy P, a user simply evaluates D̃ec with input skP to recover the
message m. Note that, if P(x) = 1 then by the correctness of ABE, Dec(skP, ct) = R and hence D̃ec(skP) returns m.

13It satisfies one-sided attribute-hiding security, meaning that the attribute and message are both hidden to a user who does not have a secret key for
successful decryption.

13

One might hope that replacing the compute-and-compare obfuscation and ABE with their certified everlasting
counterparts in the classical construction yields a certified everlasting PE. This would not work since our certified
everlasting compute-and-compare obfuscation cannot obfuscate a quantum decryption circuit Dec(·, ct) of the certified
everlasting ABE. However, we need to erase the information about R from the ABE ciphertext ct in order to apply
the certified everlasting security of the compute-and-compare obfuscation. In other words, after a valid certificate of
deletion is produced, an unbounded adversary should not be able to distinguish between Enc(x, R) and Enc(x, 0). A
classical ABE alone can not guarantee such indistinguishability. We solve this problem by using a classical ABE coupled
with BB84 states and a certified everlasting compute-and-compare obfuscation in the above construction. In particular,
we first sample zi, θi ← {0, 1}ℓ, set r̃i := ri ⊕

⊕
j:θi,j=0 zi,j and then compute ct := Enc(x, (θ1, . . . , θℓ, r̃i, . . . , r̃ℓ))

where ri denotes the i-th bit of R. The ciphertext consists of D̃ec := CCObf (Dec(·, ct), R, m) and {|zi⟩θi
}i∈[ℓ]. The

verification key associated with the ciphertext includes {zi, θi}i∈[ℓ] and a verification key vkDec corresponding to the
circuit Dec. The deletion and verification algorithms can be defined in a natural way. That is, we use the concrete
certified everlasting secure ABE scheme by Bartusek and Khurana in a non-black-box way.

Suppose an adversary queries secret keys skP such that P(x) = 0 and becomes unbounded after delivering a valid
certificate of deletion of the ciphertext. Our idea is to use the security of ABE and the certified everlasting lemma of
[BK23] to delete the information of R. Then, we utilize the certified everlasting security of compute-and-compare
obfuscation for replacing D̃ec with a simulated circuit that does not contain any information about m, x. The formal
security analysis can be found in Section 6.2.

1.8 More on Related Works
Ciphertext certified deletion. Unruh [Unr15] introduced the concept of revocable quantum time-released encryption.
In this primitive, a receiver possessing quantum encrypted data can obtain its plaintext after a predetermined time T.
The sender can revoke the quantum encrypted data before time T. If the revocation succeeds, the receiver cannot obtain
the plaintext information even if its computing power becomes unbounded.

Broadbent and Islam [BI20] constructed one-time SKE with certified deletion. It is standard one-time SKE except
that once the receiver issues a valid classical certificate, the receiver cannot obtain the plaintext information even if the
receiver later becomes a computationally unbounded adversary. (See also [KT20].)

Hiroka, Morimae, Nishimaki, and Yamakawa [HMNY21] constructed reusable SKE, PKE, and ABE with certified
deletion. These reusable SKE, PKE, and ABE with certified deletion are standard reusable SKE, PKE, and ABE with
additional properties, respectively. Once the receiver issues a valid classical certificate, the receiver cannot obtain the
plaintext information even if it obtains some secret information (e.g., the master secret key of ABE). In these primitives,
the security holds against computationally bounded adversaries, unlike in this work. Poremba [Por23] achieved FHE
with certified deletion. In addition, certificates for deletion are publicly verifiable in his construction. The security holds
against computationally bounded adversaries, unlike in this work. However, the security of the construction relies on a
strong conjecture that a particular hash function is “strong Gaussian-collapsing”.

Hiroka, Morimae, Nishimaki, and Yamakawa [HMNY22b] constructed commitments with statistical binding and
certified everlasting hiding. From it, they also constructed a certified everlasting zero-knowledge proof system for QMA
based on the zero-knowledge protocol of [BG20].

Key certified deletion. Kitagawa and Nishimaki [KN22] introduced the notion of FE with secure key leasing, where
functional decryption keys are quantum states and we can generate certificates for deleting the keys. This can be seen as
certified deletion of keys and the dual of certified deletion of ciphertexts. They achieved bounded collusion-resistant
secret-key FE with secure key leasing for P/poly from standard SKE.

Secure software leasing. Ananth and La Place introduced the notion of secure software leasing and achieved it for a sub-
class of evasive functions from public-key quantum money (need IO and OWFs) and the LWE assumption [AL21]. Secure
software leasing encode classical program into quantum program and has an explicit returning process. After a lessor
verifies that a returned quantum program is valid, a lessee cannot run the leased program anymore. Later, several secure
software leasing schemes for a sub-class of evasive functions or cryptographic functionalities (or its variant) with various

14

properties (such as classical communication, without assumptions) were presented [CMP20, BJL+21, KNY21, ALL+21].
None of them are certified everlasting secure.

Compute-and-compare obfuscation, PE, and FE. There are tremendous amount of previous works on standard FE
and PE for general circuits and standard compute-and-compare obfuscation. We focus on strongly related works. No
previous work consider certified everlasting secure FE, PE, and compute-and-compare obfuscation.

Gorbunov, Vaikuntanathan, and Wee [GVW12] constructed bounded collusion-resistant adaptively secure PKFE for
P/poly from standard PKE (and either the DDH or LWE assumption). Later, Ananth and Vaikuntanathan improved
ciphertext size and assumptions. They constructed adaptively secure bounded collusion-resistant PKFE for P/poly with
optimal ciphertext size from standard PKE. Garg, Gentry, Halevi, Raykova, and Sahai [GGH+16] constructed selectively
secure collusion-resistant PKFE for P/poly from IO and OWFs. Waters [Wat15] constructed adaptively secure PKFE
collusion-resistant for P/poly from IO and OWFs. Ananth, Brakerski, Segev, and Vaikuntanathan [ABSV15] presented
a transformation from selectively secure collusion-resistant FE for P/poly to adaptively secure collusion-resistant FE
for P/poly. Jain, Lin, and Sahai constructed IO for P/poly from well-founded assumptions [JLS21, JLS22]. However,
their constructions are not post-quantum secure.14

Gorbunov, Vaikuntanathan, and Wee [GVW15b] constructed PE for P/poly from the LWE assumption. Goyal,
Koppula, and Waters [GKW17] and Wichs and Zirdelis [WZ17] presented the notion of compute-and-compare
obfuscation (or lockable obfuscation) and achieved it from the LWE assumption. These two works also presented a
general transformation from ABE to PE using compute-and-compare obfuscation. Kluczniak [Klu22] constructed
compute-and-compare obfuscation from circular insecure FHE. However, all known instantiations of circular insecure
FHE rely on compute-and-compare obfuscation.

Organization. In Section 2, we define the notation and preliminaries that we require in this work. In Section 3, we
define the notion of certified everlasting secure collusion-resistant FE and provide a construction. In Section 4, we
define the notion of certified everlasting secure bounded collusion-resistant FE and provide constructions. In Section 5,
we define the notion of certified everlasting secure compute-and-compare obfuscation and provide a construction.
In Section 6, we define the notion of certified everlasting secure PE and provide a construction.

In Appendix B, we provide a construction of adaptively secure public-slot FE, which is a building block of the
construction in Section 3. In Appendix C, we define the notion of certified everlasting secure SKE and PKE and provide
constructions, which are building blocks of the constructions in Section 4 and Appendices D and E. In Appendix D, we
define the notion of certified everlasting secure RNCE and provide a construction, which is a building block of the
construction in Section 4. In Appendix E, we define the notion of certified everlasting secure garbling schemes and
provide a construction, which is a building block of the construction in Section 4.

2 Preliminaries
2.1 Notations
Here we introduce basic notations we will use in this paper.

In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or Gen) and classical variables
(e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic font and/or the bracket
notation for (mixed) quantum states (e.g., q or |ψ⟩).

Let x ← X denote selecting an element x from a finite set X uniformly at random, and y← A(x) denote assigning
to y the output of a quantum or probabilistic or deterministic algorithm A on an input x. When we explicitly show that
A uses randomness r, we write y← A(x; r). When D is a distribution, x ← D denotes sampling an element x from D.
y := z denotes that y is set, defined, or substituted by z. Let [n] := {1, . . . , n}. Let λ be a security parameter. By [N]p
we denote the set of all size-p subsets of {1, 2 · · · , N}. For classical strings x and y, x∥y denotes the concatenation of
x and y. For a bit string s ∈ {0, 1}n, si and s[i] denotes the i-th bit of s. QPT stands for quantum polynomial time.
PPT stands for (classical) probabilistic polynomial time. A function f : N → R is a negligible function if for any

14There are a few candidate constructions of post-quantum secure IO [BGMZ18, CHVW19, AP20].

15

constant c, there exists λ0 ∈ N such that for any λ > λ0, f (λ) < λ−c. We write f (λ) ≤ negl(λ) to denote f (λ)
being a negligible function.

2.2 Quantum Computations
We assume familiarity with the basics of quantum computation and use standard notations. LetQ be the state space of a
single qubit. I is the two-dimensional identity operator. X and Z are the Pauli X and Z operators, respectively. For an
operator A acting on a single qubit and a bit string x ∈ {0, 1}n, we write Ax as Ax1 ⊗ Ax2 ⊗ · · · Axn . The trace distance
between two states ρ and σ is given by 1

2∥ρ− σ∥tr, where ∥A∥tr := tr
√

A†A is the trace norm. If 1
2∥ρ− σ∥tr ≤ ϵ,

we say that ρ and σ are ϵ-close. If ϵ ≤ negl(λ), then we say that ρ and σ are statistically indistinguishable.

Quantum Random Oracle. We use the quantum random oracle model (QROM) [BDF+11] to construct SKE and
PKE with certified everlasting deletion in Appendices C.2 and C.4, respectively. In the QROM, a uniformly random
function with a certain domain and range is chosen at the beginning, and quantum access to this function is given to all
parties including an adversary. Zhandry showed that quantum access to random functions can be efficiently simulatable
by using so-called compressed random oracle technique [Zha19].

We review the one-way to hiding lemma [Unr15, AHU19], which is useful when analyzing schemes in the QROM.
The following form of the lemma is based on [AHU19].

Lemma 2.1 (One-Way to Hiding Lemma [AHU19]). Let S ⊆ X be a random subset of X . Let G, H : X → Y be
random functions satisfying ∀x /∈ S [G(x) = H(x)]. Let z be a random classical bit string. (S, G, H, z may have an
arbitrary joint distribution.) Let A be an oracle-aided quantum algorithm that makes at most q quantum queries. Let B
be an algorithm that on input z chooses i← [q], runs A H(z), measures A’s i-th query, and outputs the measurement
outcome. Then we have

∣∣Pr
[
AG(z) = 1

]
− Pr

[
A H(z) = 1

]∣∣ ≤ 2q
√

Pr[BH(z) ∈ S].

Quantum Teleportation. We use quantum teleportation to prove that our construction of the FE scheme in Section 4.3
satisfies adaptive security.

Lemma 2.2 (Quantum Teleportation). Suppose that we have N Bell pairs between registers A and B, i.e., 1√
2N ∑s∈{0,1}N

|s⟩A ⊗ |s⟩B, and let ρ be an arbitrary N-qubit quantum state in register C. Suppose that we measure j-th qubits
of C and A in the Bell basis and let (xj, zj) ∈ {0, 1} × {0, 1} be the measurement outcome for all j ∈ [N]. Let
x := x1||x2|| · · · ||xN and z := z1||z2|| · · · ||zN . Then (x, z) is uniformly distributed over {0, 1}N × {0, 1}N .
Moreover, conditioned on the measurement outcome (x, z), the resulting state in B is XxZzρZzXx.

CSS code. We explain basics of CSS codes. CSS codes are used only in the constructions of SKE and PKE with
certified everlasting deletion (Appendix C.3 and Appendix C.5), and therefore readers who are not interested in these
constructions can skip this paragraph. A CSS code with parameters q, k1, k2, t consists of two classical linear binary
codes. One is a [q, k1] code C1 15 and the other is a [q, k2] code. Both C1 and C⊥2 can correct up to t errors, and they
satisfy C2 ⊆ C1. We require that the parity check matrices of C1, C2 are computable in polynomial time, and that error
correction can be performed in polynomial time. Given two binary codes C ⊆ D, let D/C := {x mod C : x ∈ D}.
Here, mod C is a linear polynomial-time operation on {0, 1}q with the following three properties. First, x mod C = x′

mod C if and only if x− x′ ∈ C for any x, x′ ∈ {0, 1}q. Second, for any binary code D such that C ⊆ D, x mod
C ∈ D for any x ∈ D. Third, (x mod C) mod C= x mod C for any x ∈ {0, 1}q.

2.3 Cryptographic Tools
In this section, we review the cryptographic tools used in this paper.

Lemma 2.3 (Difference Lemma [Sho04]). Let A, B, F be events defined in some probability distribution, and suppose
Pr

[
A ∧ F

]
= Pr

[
B ∧ F

]
. Then |Pr[A]− Pr[B]| ≤ Pr[F].

15A [q, k] code is a code consisting of 2k codewords, each of length q. That is, a k-dimensional subspace of {0, 1}q = GF(2)q.

16

Pseudorandom generators.

Definition 2.4 (Pseudorandom Generator). A pseudorandom generator (PRG) PRG : {0, 1}λ → {0, 1}λ+ℓ(λ) with
stretch ℓ(λ) (ℓ is some polynomial function) is a polynomial-time computable function that satisfies the following. For
any QPT adversary A , it holds that∣∣∣Pr[A(PRG(s)) = 1 | s← Uλ]− Pr

[
A(r) | r ← Uλ+ℓ(λ)

]∣∣∣ ≤ negl(λ),

where Um denotes the uniform distribution over {0, 1}m.

Theorem 2.5 ([HILL99]). If there exists a OWF, there exists a PRG.

Pseudorandom Functions.

Definition 2.6 (Pseudorandom Function). Let {FK : {0, 1}ℓ1 → {0, 1}ℓ2 | K ∈ {0, 1}λ} be a family of polynomially
computable functions, where ℓ1 and ℓ2 are some polynomials of λ. We say that F is a pseudorandom function (PRF)
family if, for any QPT distinguisher A , there exists negl(·) such that it holds that∣∣∣Pr

[
AFK(·)(1λ) = 1 | K ← {0, 1}λ

]
− Pr

[
AR(·)(1λ) = 1 | R← U

]∣∣∣ ≤ negl(λ),

where U is the set of all functions from {0, 1}ℓ1 to {0, 1}ℓ2 .

Theorem 2.7 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ) and m(λ),
there exists a PRF that maps n(λ) bits to m(λ) bits.

Secret Key Encryption (SKE).

Definition 2.8 (Secret Key Encryption (Syntax)). Let λ be a security parameter and let p, q, r and s be some
polynomials. A secret key encryption scheme is a tuple of algorithms Σ = (KeyGen, Enc, Dec) with plaintext space
M := {0, 1}n, ciphertext space C := {0, 1}p(λ), and secret key space SK := {0, 1}q(λ).

KeyGen(1λ)→ sk: The key generation algorithm takes the security parameter 1λ as input and outputs a secret key
sk ∈ SK.

Enc(sk, m)→ ct: The encryption algorithm takes sk and a plaintext m ∈ M as input, and outputs a ciphertext ct ∈ C.

Dec(sk, ct)→ m′ or ⊥: The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈ M or ⊥.

We require that a SKE scheme satisfies correctness defined below.

Definition 2.9 (Correctness for SKE). There are two types of correctness, namely, decryption correctness and special
correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr
[
Dec(sk, ct) ̸= m

∣∣∣∣ sk← KeyGen(1λ)
ct← Enc(sk, m)

]
≤ negl(λ).

Special Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr
[
Dec(sk2, ct) ̸= ⊥

∣∣∣∣ sk2, sk1 ← KeyGen(1λ)
ct← Enc(sk1, m)

]
≤ negl(λ).

Remark 2.10. In the original definition of SKE schemes, only decryption correctness is required. In this paper, however,
we additionally require special correctness as Lindell and Pinkas [LP09]. This is because we need special correctness
for the construction of garbling in Appendix E.2. In fact, special correctness can be easily satisfied as well as shown by
Lindell and Pinkas [LP09].

17

As security of SKE schemes, we consider OW-CPA security or IND-CPA security defined below.

Definition 2.11 (OW-CPA Security for SKE). Let ℓ be a polynomial of the security parameter λ. Let Σ =
(KeyGen, Enc, Dec) be a SKE scheme. We consider the following security experiment Expow-cpa

Σ,A (λ) against a QPT
adversary A .

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption query m to the challenger. The challenger computes ct← Enc(sk, m) and returns ct to A .
A can repeat this process polynomially many times.

3. The challenger samples (m1, · · · , mℓ)←Mℓ, computes cti ← Enc(sk, mi) for all i ∈ [ℓ] and sends {cti}i∈[ℓ]
to A .

4. A sends an encryption query m to the challenger. The challenger computes ct← Enc(sk, m) and returns ct to A .
A can repeat this process polynomially many times.

5. A outputs m′.

6. The output of the experiment is 1 if m′ = mi for some i ∈ [ℓ]. Otherwise, the output of the experiment is 0.

We say that the Σ is OW-CPA secure if, for any QPT A , it holds that

Advow-cpa
Σ,A (λ) := Pr

[
Expow-cpa

Σ,A (λ) = 1
]
≤ negl(λ).

Note that we assume 1/|M| is negligible.

Definition 2.12 (IND-CPA Security for SKE). Let Σ = (KeyGen, Enc, Dec) be a SKE scheme. We consider the
following security experiment Expind-cpa

Σ,A (λ, b) against a QPT adversary A .

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption query m to the challenger. The challenger computes ct← Enc(sk, m) and returns ct to A .
A can repeat this process polynomially many times.

3. A sends (m0, m1) ∈ M2 to the challenger.

4. The challenger computes ct← Enc(sk, mb) and sends ct to A .

5. A sends an encryption query m to the challenger. The challenger computes ct← Enc(sk, m) and returns ct to A .
A can repeat this process polynomially many times.

6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is IND-CPA secure if, for any QPT A , it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

It is well-known that IND-CPA security implies OW-CPA security. A SKE scheme exists if there exists a
pseudorandom function.

Definition 2.13 (Ciphertext Pseudorandomness for SKE). Let Σ = (KeyGen, Enc, Dec) be a SKE scheme whose
ciphertext space is {0, 1}ℓ. We consider the following security experiment Expct-pr

Σ,A (λ, b) against a QPT adversary A .

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption query mi to the challenger. If b = 0, the challenger computes cti ← Enc(sk, mi) and
returns cti to A . If b = 1, the challenger chooses cti ← {0, 1}ℓ and returns cti to A . A can repeat this process
polynomially many times.

18

3. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is ciphertext pseudorandom if, for any QPT A , it holds that

Advct-pr
Σ,A (λ) :=

∣∣∣Pr
[
Expct-cr

Σ,A (λ, 0) = 1
]
− Pr

[
Expct-pr

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Theorem 2.14. If OWFs exist, there exists an SKE scheme that is ciphertext pseudorandom.

Public Key Encryption (PKE).

Definition 2.15 (Public Key Encryption (Syntax)). Let λ be a security parameter and let p, q and r be some polynomials.
A public key encryption scheme is a tuple of algorithms Σ = (KeyGen, Enc, Dec) with plaintext spaceM := {0, 1}n,
ciphertext space C := {0, 1}p(λ), public key space PK := {0, 1}q(λ) and secret key space SK := {0, 1}r(λ).

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes as input the security parameter 1λ and outputs a public
key pk ∈ PK and a secret key sk ∈ SK.

Enc(pk, m)→ ct: The encryption algorithm takes as input pk and a plaintext m ∈ M, and outputs a ciphertext
ct ∈ C.

Dec(sk, ct)→ m′ or ⊥: The decryption algorithm takes as input sk and ct, and outputs a plaintext m′ or ⊥.

We require that a PKE scheme satisfies decryption correctness defined below.

Definition 2.16 (Decryption Correctness for PKE). There exists a negligible function negl such that for any λ ∈N,
m ∈ M,

Pr
[
Dec(sk, ct) ̸= m

∣∣∣∣ (pk, sk)← KeyGen(1λ)
ct← Enc(pk, m)

]
≤ negl(λ).

As security, we consider OW-CPA security or IND-CPA security defined below.

Definition 2.17 (OW-CPA Security for PKE). Let ℓ be a polynomial of the security parameter λ. Let Σ =
(KeyGen, Enc, Dec) be a PKE scheme. We consider the following security experiment Expow-cpa

Σ,A (λ) against a QPT
adversary A .

1. The challenger computes (pk, sk)← KeyGen(1λ).

2. The challenger samples (m1, · · · , mℓ)←Mℓ, computes cti ← Enc(pk, mi) for all i ∈ [ℓ] and sends {cti}i∈[ℓ]
to A .

3. A outputs m′.

4. The output of the experiment is 1 if m′ = mi for some i ∈ [ℓ]. Otherwise, the output of the experiment is 0.

We say that Σ is OW-CPA secure if, for any QPT A , it holds that

Advow-cpa
Σ,A (λ) := Pr

[
Expow-cpa

Σ,A (λ) = 1
]
≤ negl(λ).

Note that we assume 1/|M| is negligible.

Definition 2.18 (IND-CPA Security for PKE). Let Σ = (KeyGen, Enc, Dec) be a PKE scheme. We consider the
following security experiment Expind-cpa

Σ,A (λ, b) against a QPT adversary A .

1. The challenger generates (pk, sk)← KeyGen(1λ), and sends pk to A .

2. A sends (m0, m1) ∈ M2 to the challenger.

19

3. The challenger computes ct← Enc(pk, mb), and sends ct to A .

4. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is IND-CPA secure if, for any QPT A , it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

It is well known that IND-CPA security implies OW-CPA security. There are many IND-CPA secure PKE
schemes against QPT adversaries under standard cryptographic assumptions. A famous one is Regev PKE scheme,
which is IND-CPA secure if the learning with errors (LWE) assumption holds against QPT adversaries [Reg09]. See
[Reg09, GPV08] for the LWE assumption and constructions of post-quantum PKE.

Encryption with Certified Deletion. Broadbent and Islam [BI20] introduced the notion of encryption with certified
deletion.

Definition 2.19 (One-Time SKE with Certified Deletion (Syntax) [BI20, HMNY21]). Let λ be a security parameter
and let p, q and r be some polynomials. A one-time secret key encryption scheme with certified deletion is a tuple of
algorithms Σ = (KeyGen, Enc, Dec, Del , Vrfy) with plaintext spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), key
space K := {0, 1}q(λ) and deletion certificate space D := {0, 1}r(λ).

KeyGen(1λ)→ sk: The key generation algorithm takes as input the security parameter 1λ, and outputs a secret key
sk ∈ K.

Enc(sk, m)→ ct : The encryption algorithm takes as input sk and a plaintext m ∈ M, and outputs a ciphertext ct ∈ C.

Dec(sk, ct)→ m′ or ⊥: The decryption algorithm takes as input sk and ct , and outputs a plaintext m′ ∈ M or ⊥.

Del (ct)→ cert: The deletion algorithm takes as input ct , and outputs a certification cert ∈ D.

Vrfy(sk, cert)→ ⊤ or ⊥: The verification algorithm takes sk and cert as input, and outputs ⊤ or ⊥.

We require that a one-time SKE scheme with certified deletion satisfies correctness defined below.

Definition 2.20 (Correctness for One-Time SKE with Certified Deletion). There are two types of correctness, namely,
decryption correctness and verification correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

m′ ̸= m

∣∣∣∣∣∣
sk← KeyGen(1λ)
ct ← Enc(sk, m)
m′ ← Dec(sk, ct)

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

Vrfy(sk, cert) = ⊥

∣∣∣∣∣∣
sk← KeyGen(1λ)
ct ← Enc(sk, m)
cert← Del (ct)

 ≤ negl(λ).

We additionally require verification correctness with QOTP in this work. This is because we need it for the
construction of FE in Section 4.3. This notion means that even if we encrypt a ciphertext with quantum one-time pad
(QOTP), we can run the original deletion algorithm Del and recover a valid certificate by using the QOTP key. In fact,
the construction of [BI20] satisfies verification correctness with QOTP as well.

20

Definition 2.21 (Verification Correctness with QOTP). There exists a negligible function negl and a PPT algorithm
Recover such that for any λ ∈N and m ∈ M,

Pr

Vrfy(sk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣
sk← KeyGen(1λ)
ct ← Enc(sk, m)

a, b← {0, 1}p(λ)

c̃ert← Del (ZbXact XaZb)
cert∗ ← Recover(a, b, c̃ert)

 ≤ negl(λ).

We require that a one-time SKE with certified deletion satisfies certified deletion security defined below.

Definition 2.22 (Certified Deletion Security for One-Time SKE with Certified Deletion). Let Σ = (KeyGen, Enc, Dec,
Del , Vrfy) be a one-time SKE scheme with certified deletion. We consider the following security experiment
Expotsk-cert-del

Σ,A (λ, b) against an unbounded adversary A .

1. The challenger computes sk← KeyGen(1λ).

2. A sends (m0, m1) ∈ M2 to the challenger.

3. The challenger computes ct ← Enc(sk, mb) and sends ct to A .

4. A sends cert to the challenger.

5. The challenger computes Vrfy(sk, cert). If the output is ⊥, the challenger sends ⊥ to A . If the output is ⊤, the
challenger sends sk to A .

6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is OT-CD secure if, for any unbounded A , it holds that

Advotsk-cert-del
Σ,A (λ) :=

∣∣∣Pr
[
Expotsk-cert-del

Σ,A (λ, 0) = 1
]
− Pr

[
Expotsk-cert-del

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Theorem 2.23 ([BI20]). There exists one-time SKE with certified deletion that satisfies Definitions 2.19 to 2.22 exists
unconditionally.

Attribute-Based Encryption.

Definition 2.24 (KP-ABE (Syntax)). A key-policy ABE (KP-ABE) scheme is a tuple of PPT algorithms (Setup, KeyGen,
Enc, Dec) with a class of predicates Pn (represented as class of boolean circuits with n input bits), and a message
spaceM.

Setup(1λ): The setup algorithm takes as input a security parameter 1λ and outputs a public key pk and a master secret
key msk.

KeyGen(msk, P): The key generation algorithm takes as input the master secret key msk and a predicate P ∈ Pn, and
outputs a secret key skP corresponding to the predicate P.

Enc(pk, a, m): The encryption algorithm takes as input a public key pk, an attribute a ∈ {0, 1}n and a message
m ∈ M, and outputs a ciphertext ct.

Dec(skP, ct): The decryption algorithm takes as input a secret key skP and a ciphertext ct, and outputs a classical
message m′ or ⊥.

Definition 2.25 (Correctness of KP-ABE). The correctness of KP-ABE for a class of predicates Pn and a message
spaceM is defined as follows.

21

Decryption correctness: For any λ ∈N, P ∈ Pn, a ∈ {0, 1}n, m ∈ M such that P(a) = 1,

Pr

Dec(skP, ct) ̸= m

∣∣∣∣∣∣
(pk, msk)← Setup(1λ)
skP ← KeyGen(msk, P)
ct← Enc(pk, a, m)

 ≤ negl(λ).

Definition 2.26 (IND-CPA Security of KP-ABE). Let Σ = (Setup, KeyGen, Enc, Dec) be a KP-ABE scheme for a
class predicates Pn and message spaceM. We consider the following experiment Expada-ind

Σ,A (λ, b).

1. The challenger computes (pk, msk)← Setup(1λ) and sends pk to A .

2. A sends a predicate Pi ∈ Pn, called key query, to the challenger and it returns skPi ← KeyGen(msk, P). A can
send unbounded polynomially many key queries. Let q be the total number of key queries.

3. A sends a challenge message pair (m0, m1) and an attribute a ∈ {0, 1}n such that |m0| = |m1|.

4. The challenger computes ctb ← Enc(pk, a, mb). It sends ctb to A .

5. A can send key queries again.

6. A outputs its guess b′ ∈ {0, 1}. If Pi(a) = 0 for all i ∈ [q], the experiments outputs b′.

We say that the Σ is adaptively secure if for any QPT adversary A , it holds that

Advada-ind
Σ,A (λ) :=

∣∣∣Pr
[
Expada-ind

Σ,A (λ, 0) = 1
]
− Pr

[
Expada-ind

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

We can define similar experiment Expsel-ind
Σ,A (λ, b) where A is restricted to submit the challenge attribute a ∈ {0, 1}n

before it receives pk from the challenger. We say that the Σ is selectively secure if for any QPT adversary A , it holds that

Advsel-ind
Σ,A (λ) :=

∣∣∣Pr
[
Expsel-ind

Σ,A (λ, 0) = 1
]
− Pr

[
Expsel-ind

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Theorem 2.27 ([GVW15a, BGG+14]). If the LWE assumption holds, there exists selectively secure KP-ABE for all
boolean circuits. In addition, if the LWE assumption holds against sub-exponential time algorithms, there exists
adaptively secure KP-ABE for all boolean circuits.

Classical Fully Homomorphic Encryption.

Definition 2.28 (Leveled Fully Homomorphic Encryption). A leveled FHE is a tuple of PPT algorithms (KeyGen, Enc,
Eval, Dec) with a class of circuits C = {Cd}d∈N, where Cd contains all Boolean circuits of depth up to d.

KeyGen(1λ, 1d): The key generation algorithm takes as input the security parameters 1λ and 1d and outputs a public
key pk and a secret key sk.

Enc(pk, x): The encryption algorithm takes as input a public key pk and a message x ∈ {0, 1}, and outputs a ciphertext
ct.

Eval(pk, C, ct1, . . . , ctn): The evaluation algorithm takes as input a public key pk, a circuit C ∈ C, ciphertexts
ct1, . . . , ctn where n denotes the input length of the circuit C, and outputs a ciphertext ctC.

Dec(sk, ct): The decryption algorithm takes as input a secret key sk and a ciphertext ct, and outputs a message x′ or⊥.

Definition 2.29 (Compactness). A classical FHE is compact if there exists a fixed polynomial bound B(·) so that, for
all λ ∈N, any C ∈ C, and plaintext x ∈ {0, 1}n, it holds that

Pr

|ctC| ≤ B(λ)

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
cti ← Enc(pk, xi)
ctC ← Eval(pk, C, ct1, . . . , ctn)

 = 1.

22

Definition 2.30 (Correctness). An FHE scheme is said to be correct for C if for any λ, n ∈ N, C ∈ C, x =
(x1, . . . , xn) ∈ {0, 1}n,

Pr

Dec(sk, ctC) ̸= C(x)

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
cti ← Enc(pk, xi)
ctC ← Eval(pk, C, ct1, . . . , ctn)

 ≤ negl(λ).

Definition 2.31 (Security of FHE). An FHE scheme Σ = (Setup, KeyGen, Enc, Dec) with a class of circuits C is said
to be IND-CPA secure if for any QPT adversary A , any λ, n ∈N, the following holds:

Pr
[

A(1λ, pk, ct) = 1
∣∣∣∣ (pk, sk)← KeyGen(1λ),

ct← Enc(pk, 0)

]
− Pr

[
A(1λ, pk, ct) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ),
ct← Enc(pk, 1)

]
= negl(λ).

Theorem 2.32 ([BV14, GSW13]). If the LWE assumption holds, there exists leveled FHE.

Indistinguishability Obfuscation

Definition 2.33 (Indistinguishability Obfuscator [BGI+12]). A PPT algorithm iO is a secure IO for a classical
circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: For any security parameter λ ∈N, circuit C ∈ Cλ, and input x, we have that

Pr
[
C′(x) = C(x) | C′ ← iO(C)

]
= 1 .

Indistinguishability: For any PPT Sampler and QPT distinguisher D, the following holds:
If Pr

[
∀x C0(x) = C1(x) ∧ |C0| = |C1| | (C0, C1, aux)← Sampler(1λ)

]
> 1− negl(λ), then we have

Advio
iO,D(λ) :=

∣∣∣Pr
[

D(iO(C0), aux) = 1 | (C0, C1, aux)← Sampler(1λ)
]

−Pr
[

D(iO(C1), aux) = 1 | (C0, C1, aux)← Sampler(1λ)
]∣∣∣ ≤ negl(λ).

There are a few candidates of secure IO for polynomial-size classical circuits against quantum adversaries [BGMZ18,
CHVW19, AP20].

Obfuscation for compute-and-compare programs.

Definition 2.34 (Compute-and-Compare Circuits). A compute-and-compare circuit CC[P, lock, m] is of the form

CC[P, lock, m](x) =
{

m (P(x) = lock)
0 (otherwise) ,

where P is a circuit, lock is a string called lock value, and m is a message.

We assume that a program P has an associated set of parameters ppP (input size, output size, circuit size) which we
do not need to hide.

Definition 2.35 (Compute-and-Compare Obfuscation). A PPT algorithm CC.Obf is a secure obfuscator for the family
of distributions D = {Dparam}param if the following holds:

Functionality Preserving: There exists a negligible function negl such that for all program P, all lock value lock, and
all message m, it holds that

Pr
[
∀x, P̃(x) = CC[P, lock, m](x) | P̃← CC.Obf(1λ, P, lock, m)

]
≥ 1− negl(λ).

23

Distributional Indistinguishability: There exists an efficient simulator Sim such that for all D, param and message
m, we have∣∣∣Pr

[
D(CC.Obf(1λ, P, lock, m), aux) = 1

]
− Pr

[
D(Sim(1λ, ppP, 1|m|), aux) = 1

]∣∣∣ ≤ negl(λ),

where (P, lock, aux)← Dparam.

Theorem 2.36 ([GKW17, WZ17]). If the LWE assumption holds, there exists compute-and-compare obfuscation for
all families of distributions D = {Dparam}, where each Dparam outputs uniformly random lock value lock independent
of P and aux .

3 Collusion-Resistant Functional Encryption with Certified Everlasting Dele-
tion

In this section, we present the definitions of FE with certified everlasting deletion and a collusion-resistant construction.

3.1 Definitions
First, we introduce the syntax and security definitions of FE with certified everlasting deletion.

Definition 3.1 (Functional Encryption with Certified Everlasting Deletion). A functional encryption with certified
everlasting deletion for a class F of functions is a tuple of QPT algorithms (Setup, KeyGen, Enc, Dec, Del , Vrfy) with
plaintext spaceM, ciphertext space C, master public key spaceMPK, master secret key spaceMSK, and secret key
space SK, that works as follows.

Setup(1λ)→ (MPK, MSK): The setup algorithm takes the security parameter as input, and outputs a master public
key MPK ∈ MPK and a master secret key MSK ∈ MSK.

KeyGen(MSK, f): The key generation algorithm takes MSK and f ∈ F as input, and outputs a secret key sk f ∈ SK.

Enc(MPK, m)→ (ct , vk): The encryption algorithm takes MPK and m ∈ M as input, and outputs a ciphertext
ct ∈ C and a verification key vk.

Dec(sk f , ct)→ y or ⊥: The decryption algorithm takes sk f and ct as input, and outputs y or ⊥.

Del (ct)→ cert: The deletion algorithm takes the ciphertext ct as input, and outputs a classical certificate cert.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

Definition 3.2 (Correctness of Functional Encryption with Certified Everlasting Deletion). The correctness of FE
with certified everlasting deletion for a class of functions F and plaintext spaceM is defined as follows.

Evaluation Correctness: For any λ ∈N, m ∈ M, and f ∈ F ,

Pr

y ̸= f (m)

∣∣∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ)
sk f ← KeyGen(MSK, f)
(ct , vk)← Enc(MPK, m)
y← Dec(sk f , ct)

 ≤ negl(λ).

Verification Correctness: For any λ ∈N, m ∈ M, and f ∈ F ,

Pr

Vrfy(vk, cert) ̸= ⊤

∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ)
(ct , vk)← Enc(MPK, m)
cert← Del (ct)

 ≤ negl(λ).

24

Remark 3.3. In FE, we should be able to run Dec algorithm for many different functions f on the same ciphertext ct.
One might think that the quantum ct is destroyed by Dec algorithm, and it can be used only once. However, it is easy
to see that Dec algorithm can be always modified so that it does not disturb the quantum state ct by using the gentle
measurement lemma [Win99] thanks to the evaluation correctness.

Security notions. We define an indistinguishability-based security notion in the collusion-resistant setting in this
section. We extend the certified everlasting security notion of PKE by Bartusek and Khurana [BK23] to the FE setting
to obtain our indistinguishability-based security notion.

Definition 3.4 (Certified Everlasting Indistinguishable-Security of FE). Let Σ = (Setup, KeyGen, Enc, Dec, Del , Vrfy)
be a functional encryption with certified everlasting deletion for a class F of functions, plaintext spaceM. We consider
two experiments EV-Expada-ind

Σ, A (λ, b) and C-Expada-ind
Σ, A (λ, b) played between a challenger and a non-uniform QPT

adversary A = {Aλ, |ψ⟩λ}λ∈N. The experiments are defined as follows:

1. The challenger computes (MPK, MSK)← Setup(1λ) and sends MPK to Aλ(|ψ⟩λ).

2. Aλ is allowed to make arbitrarily many key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to Aλ.

3. Aλ sends (m0, m1) ∈ M2 to the challenger.

4. The challenger computes (ct b, vkb)← Enc(MPK, mb), and sends ctb to Aλ.

5. Aλ is allowed to make arbitrarily many key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to Aλ.

6. Aλ sends a certificate of deletion cert and its internal state ρ to the challenger.

7. The challenger computes Vrfy(vkb, cert). If the outcome is ⊤ and fℓ(m0) = fℓ(m1) holds for all key queries fℓ,
the experiment EV-Expada-ind

Σ, A (λ, b) outputs ρ; otherwise EV-Expada-ind
Σ, A (λ, b) outputs ⊥.

8. The challenger sends the outcome of Vrfy(vkb, cert) to Aλ.

9. Again, Aλ is allowed to make arbitrarily many key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to Aλ.

10. Aλ outputs its guess b′. If fℓ(m0) = fℓ(m1) holds for all key queries fℓ, the experiment C-Expada-ind
Σ, A (λ, b)

outputs b′; otherwise C-Expada-ind
Σ, A (λ, b) outputs ⊥.

We say that the Σ is adaptively certified everlasting indistinguishable-secure if for any non-uniform QPT adversary
A = {Aλ, |ψ⟩λ}λ∈N, it holds that

TD(EV-Expada-ind
Σ, A (λ, 0), EV-Expada-ind

Σ, A (λ, 1)) ≤ negl(λ),

and ∣∣∣Pr
[
C-Expada-ind

Σ, A (λ, 0) = 1
]
− Pr

[
C-Expada-ind

Σ, A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

3.2 Tools
We introduce a few tools for FE with certified everlasting deletion in this section.

25

(Interactive) certified everlasting lemma. First, we recall the certified everlasting lemma by Bartusek and Khu-
rana [BK23].

Lemma 3.5 (Certified Everlasting Lemma [BK23, ePrint Ver. 20221122:050839]). Let {Zλ(θ)}λ∈N,θ∈{0,1}λ be a
family of distributions over either classical bit strings or quantum states, and let A be any class of adversaries such that
for any {Aλ}λ∈N ∈ A, it holds that∣∣∣∣Pr[Aλ(Zλ(θ)) = 1]− Pr

[
Aλ(Zλ(0λ)) = 1

]∣∣∣∣ ≤ negl(λ).

For any {Aλ}λ∈N ∈ A, consider the following distribution {Z̃Aλ
λ (b)}λ∈N,b∈{0,1} over quantum states, obtained by

running Aλ as follows:

• Sample z, θ ← {0, 1}λ and initialize Aλ with (|z⟩θ , b⊕⊕
i:θi=0 zi,Zλ(θ)).

• Aλ’s output is parsed as bit string z′ ∈ {0, 1}λ and a residual quantum state ρ.

• If zi = z′i for all i such that θi = 1 then output ρ, and otherwise output a special symbol ⊥.

Then, it holds that
TD(Z̃Aλ

λ (0), Z̃Aλ
λ (1)) ≤ negl(λ).

Remark 3.6. Although the description of the lemma above is slightly different from the original version (see the first
item of Remark 3.8), it is essentially the same as what Bartusek and Khurana [BK23] proved. In addition, even if we put
b⊕⊕

i:θi=0 zi in Zλ with θ, the lemma holds.

We can generalize Lemma 3.5 to a variant in the interactive game setting as follows.

Lemma 3.7 (Interactive Certified Everlasting Lemma [BK23]). For interactive QPT algorithms A and C , θ ∈ {0, 1}λ,
and β ∈ {0, 1}, let ExptA ,C (λ, θ, β) be an experiment that works as follows:

• A takes 1λ as input and C takes (1λ, θ, β) as input.

• A and C interact with each other through a quantum channel.

• A outputs a bit b′, which is treated as the output of the experiment.

For interactive QPT algorithms A ′ and C and b ∈ {0, 1}, let ẼxptA ′ ,C (λ, b) be an experiment that works as follows:

• Sample z, θ ← {0, 1}λ.

• A ′ takes (1λ, |z⟩θ) as input and C takes (1λ, θ, b⊕⊕
i:θi=0 zi) as input.

• A ′ and C interact with each other through a quantum channel.

• A ′ outputs a string z′ ∈ {0, 1}λ and a quantum state ρ.

• If zi = z′i for all i such that θi = 1 then the experiment outputs ρ, and otherwise it outputs a special symbol ⊥.

For a QPT algorithm C , if for any QPT algorithm A , θ ∈ {0, 1}λ, and β ∈ {0, 1}, it holds that∣∣∣∣Pr
[
ExptA ,C (λ, θ, β) = 1

]
− Pr

[
ExptA ,C (λ, 0λ, β) = 1

]∣∣∣∣ ≤ negl(λ),

then for any QPT algorithm A ′, it holds that

TD(ẼxptA ′ ,C (λ, 0), ẼxptA ′ ,C (λ, 1)) ≤ negl(λ).

26

Remark 3.8. There are the following three differences from the certified everlasting lemma of [BK23] besides notational
adaptations.

1. The challenger can use θ in an arbitrary manner whereas they require the challenger to use θ in a bit-by-bit
manner.16

2. We consider an interactive setting whereas they consider a non-interactive setting.

3. The challenger also takes b⊕⊕
i:θi=0 zi as part of its input.

Indeed, we believe that the above variant is implicitly used in the security proof of their certified everlasting secure ABE
in [BK23]. We observe that the above variant can be proven in essentially the same way as their original proof.

Public-Slot functional encryption. We introduce a new primitive which we call public-slot functional encryption. In
this primitive, a decryption key is associated with two-input function where the first and second inputs are referred to as
secret and public inputs, respectively. Given a ciphertext of a message m and a decryption key for a two-input function
f , one can compute f (m, pub) for any public input pub. In the security experiment, we require that a pair of challenge
messages (m0, m1) must satisfy f (m0, pub) = f (m1, pub) for all key queries f and public inputs pub to prevent trivial
attacks. A formal definition is given below.

Definition 3.9 (Public-Slot FE (Syntax)). A public-slot functional encryption scheme for a class F of functions is a
tuple of PPT algorithms Σ = (Setup, KeyGen, Enc, Dec) with plaintext spaceM, ciphertext space C, master public
key spaceMPK, master secret key spaceMSK, secret key space SK, and public input space P , that work as follows.

Setup(1λ)→ (MPK, MSK): The setup algorithm takes the security parameter 1λ as input, and outputs a master
public key MPK ∈ MPK and a master secret key MSK ∈ MSK.

KeyGen(MSK, f)→ sk f : The key generation algorithm takes MSK and f ∈ F as input, and outputs a secret key
sk f ∈ SK.

Enc(MPK, m)→ CT: The encryption algorithm takes MPK and m ∈ M as input, and outputs a ciphertext CT ∈ C.

Dec(sk f , CT, pub)→ y or ⊥: The decryption algorithm takes sk f , CT, and a public input pub ∈ P as input, and
outputs y or ⊥.

We require that an FE with certified everlasting deletion scheme satisfies correctness defined below.

Definition 3.10 (Correctness of Public-Slot FE). There exists a negligible function negl such that for any λ ∈ N,
m ∈ M, f ∈ F , and pub ∈ P ,

Pr

y ̸= f (m, pub)

∣∣∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ)
sk f ← KeyGen(MSK, f)
CT← Enc(MPK, m)
y← Dec(sk f , CT, pub)

 ≤ negl(λ).

Definition 3.11 (Security of Public-Slot FE). Let Σ = (Setup, KeyGen, Enc, Dec) be a public-slot FE scheme. We
consider the following security experiment Expada-ind

Σ,A (λ, b) against a QPT adversary A .

1. The challenger runs (MPK, MSK)← Setup(1λ) and sends MPK to A .

2. A is allowed to make arbitrarily many key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to A .

3. A sends (m0, m1) ∈ M2 to the challenger.

16In their notation, the challenger corresponds to Z(θ).

27

4. The challenger computes CT← Enc(MPK, mb) and sends CT to A .

5. Again, A is allowed to make arbitrarily many key queries.

6. A outputs b′ ∈ {0, 1}. If fℓ(m0, pub) = fℓ(m1, pub) holds for all key queries fℓ and public inputs pub ∈ P ,
the experiment outputs b′. Otherwise, it outputs ⊥.

We say that Σ is adaptively indistinguishable-secure if for any QPT adversary A it holds that

Advada-ind
Σ,A (λ) :=

∣∣∣Pr
[
Expada-ind

Σ,A (λ, 0) = 1
]
− Pr

[
Expada-ind

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

It is easy to construct selectively single-ciphertext public-slot SKFE from multi-input FE by Goldwasser et al.,
which can be instantiated with IO [GGG+14]. We convert it to adaptively indistinguishable-secure public-slot PKFE
via a few transformation. We prove the following theorem in Appendix B.4.

Theorem 3.12. If there exist IO and OWFs, there exists an adaptively indistinguishable-secure public-slot PKFE for
P/poly.

3.3 Collusion-Resistant Construction
Ingredients. We need the following building blocks.

• Public-slot FE FE = FE.(Setup, KeyGen, Enc, Dec) for all polynomial-size circuits.

• PRG PRG : {0, 1}λ → {0, 1}2λ.

Scheme description. Our FE with certified everlasting deletion scheme CED = CED.(Setup, KeyGen, Enc, Dec, Del , Vrfy)
is described below.

CED.Setup(1λ):

1. Generate (fe.MPK, fe.MSK)← FE.Setup(1λ).
2. Output MPK := fe.MPK and MSK := fe.MSK.

CED.KeyGen(msk, f):

1. Parse MSK = fe.MSK.
2. Generate fe.skg[f] ← FE.KeyGen(fe.MSK, g[f]) where g[f] is a function described in Figure 1.
3. Output sk f = fe.skg[f].

CED.Enc(MPK, m):

1. Parse MPK = fe.MPK.
2. Generate zi, θi ← {0, 1}λ for every i ∈ [2n + 1].
3. Generate ui,j,b ← {0, 1}λ and compute vi,j,b ← PRG(ui,j,b) for every i ∈ [2n+ 1], j ∈ [λ], and b ∈ {0, 1}.

Set U := (ui,j,b)i∈[2n+1],j∈[λ],b∈{0,1} and V := (vi,j,b)i∈[2n+1],j∈[λ],b∈{0,1}.
4. Generate a state

∣∣ψi,j
〉

:=

{ ∣∣zi,j
〉 ∣∣∣ui,j,zi,j

〉
if θi,j = 0

|0⟩
∣∣ui,j,0

〉
+ (−1)zi,j |1⟩

∣∣ui,j,1
〉

if θi,j = 1

where θi,j (resp. zi,j) is the j-th bit of θi (resp. zi) for every i ∈ [2n + 1] and j ∈ [λ].

28

g[f]

Secret Input: V, θ1, . . . , θ2n+1, β1, . . . , β2n+1
Public Input: (bi,j, ui,j)i∈[2n+1],j∈[λ]

1. Parse V = (vi,j,b)i∈[2n+1],j∈[λ],b∈{0,1}.

2. Check if PRG(ui,j) = vi,j,bi,j
holds for every i ∈ [2n + 1] and j ∈ [λ]. If so, go to the next step and otherwise

output ⊥.
3. Compute mi := βi ⊕

⊕
j:θi,j=0 bi,j for every i ∈ [2n + 1].

4. Output f (m1∥ · · · ∥mn) if m2n+1 = 0 and output f (mn+1∥ · · · ∥m2n) otherwise.

Figure 1: The description of the function g[f]

5. Generate

βi :=

{
mi ⊕

⊕
j:θi,j=0 zi,j if i ∈ [n]

0⊕⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n + 1]

.

6. Generate fe.ct← FE.Enc(fe.MPK, V∥θ1∥ . . . ∥θ2n+1∥β1∥ . . . ∥β2n+1).
7. Output ct = (fe.ct,

⊗
i∈[2n+1],j∈[λ]

∣∣ψi,j
〉
) and vk = (U, (zi, θi)i∈[2n+1]).

CED.Dec(sk f , ct):

1. Parse sk f ← fe.skg[f] and ct = (fe.ct,
⊗

i∈[2n+1],j∈[λ]
∣∣ψi,j

〉
).

2. Coherently apply FE.Dec(fe.skg[f], fe.ct, ·) on
⊗

i∈[2n+1],j∈[λ]
∣∣ψi,j

〉
and measure the outcome y.

3. Output y.

CED.Del (ct):

1. Parse ct = (fe.ct,
⊗

i∈[2n+1],j∈[λ]
∣∣ψi,j

〉
).

2. Measure
∣∣ψi,j

〉
in the Hadamard basis to get ci,j∥di,j ∈ {0, 1}λ+1 for every i ∈ [2n + 1] and j ∈ [λ].

3. Output cert = (ci,j, di,j)i∈[2n+1],j∈[λ].

CED.Vrfy(vk, cert):

1. Parse vk = (U, (zi, θi)i∈[2n+1]) and cert = (ci,j, di,j)i∈[2n+1],j∈[λ].

2. Check if zi,j = ci,j ⊕ di,j · (ui,j,0 ⊕ ui,j,1) holds for every i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 1, where
zi,j is the j-th bit of zi. If so, output ⊤ and otherwise output ⊥.

Theorem 3.13. If FE is adaptively indistinguishable-secure public-slot FE for P/poly and PRG is a secure PRG, CED
is adaptively certified everlasting indistinguishable-secure FE for P/poly.

Decryption Correctness. Let ct = (fe.ct,
⊗

i∈[2n+1],j∈[λ]
∣∣ψi,j

〉
) be an honestly generated ciphertext for a mes-

sage m and sk f = fe.skg[f] be an honestly generated decryption key for a function f . Then we have fe.ct ∈
FE.Enc(fe.MPK, V∥θ1∥ . . . ∥θ2n+1∥β1∥ . . . ∥β2n+1) and

∣∣ψi,j
〉
=

∣∣zi,j
〉 ∣∣∣ui,j,zi,j

〉
for all i ∈ [2n + 1] and j ∈ [λ]

such that θi,j = 0. Since we have PRG(ui,j,b) = vi,j,b for all i ∈ [2n + 1], j ∈ [λ], and b ∈ {0, 1}, and m2n+1 =

29

β2n+1⊕
⊕

j:θ2n+1,j=0 zi,j = 0, if we coherently run g[f](V∥θ1∥ . . . ∥θ2n+1∥β1∥ . . . ∥β2n+1, ·) on
⊗

i∈[2n+1],j∈[λ]
∣∣ψi,j

〉
and measure the output, then the resulting outcome is f (β1 ⊕

⊕
j:θ1,j=0 z1,j∥ . . . ∥βn ⊕

⊕
j:θn,j=0 zn,j) = f (m). Then

the decryption correctness follows from that of FE.

Verification Correctness. Let ct = (fe.ct,
⊗

i∈[2n+1],j∈[λ]
∣∣ψi,j

〉
) be an honestly generated ciphertext and vk =

(U, (zi, θi)i∈[2n+1]) be the corresponding verification key. For all i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 1, since we
have

∣∣ψi,j
〉
= |0⟩

∣∣ui,j,0
〉
+ (−1)zi,j |1⟩

∣∣ui,j,1
〉
, if we measure it in the Hadamard basis, then the outcome ci∥di satisfies

zi,j = ci,j ⊕ di,j · (ui,j,0 ⊕ ui,j,1). This immediately implies the verification correctness.

Security for C-Expada-ind
CED, A(λ, b). We omit the proof in the main body. See Appendix A.

Security for EV-Expada-ind
CED, A(λ, b). Let A be an adversary against the adaptive certified everlasting indistinguishable-

security. We consider the following sequence of hybrids.

Hyb0: This is the original everlasting adaptive security experiment where the challenge bit is set to be 0. Specifically, it
works as follows:

1. The challenger generates (fe.MPK, fe.MSK) ← FE.Setup(1λ), sets MPK := fe.MPK and MSK :=
fe.MSK, and sends MPK to A .

2. A can make arbitrarily many key queries at any point of the experiment. When it makes a key query f , the
challenger generates fe.skg[f] ← FE.KeyGen(fe.MSK, g[f]) and returns sk f = fe.skg[f] to A .

3. A sends (m(0), m(1)) to the challenger.17 It must satisfy f (m(0)) = f (m(1)) for all key queries f that are
made before or after sending (m(0), m(1)).

4. The challenger generates (ct , vk)← Enc(MPK, m(0)). Specifically,
(a) Generate zi, θi ← {0, 1}λ for every i ∈ [2n + 1].
(b) Generate ui,j,b ← {0, 1}λ and compute vi,j,b ← PRG(ui,j,b) for every i ∈ [2n + 1], j ∈ [λ] and

b ∈ {0, 1} and set U = (ui,j,b)i∈[2n+1],j∈[λ],b∈{0,1} and V := (vi,j,b)i∈[2n+1],j∈[λ],b∈{0,1}.
(c) Generate a state

∣∣ψi,j
〉

:=

{ ∣∣zi,j
〉 ∣∣∣ui,j,zi,j

〉
if θi,j = 0

|0⟩
∣∣ui,j,0

〉
+ (−1)zi,j |1⟩

∣∣ui,j,1
〉

if θi,j = 1

where θi,j (resp. zi,j) is the j-th bit of θi (resp. zi) for every i ∈ [2n + 1] and j ∈ [λ].
(d) Generate

βi :=

{
m(0)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

0⊕⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n + 1]

.

(e) Generate fe.ct← FE.Enc(fe.MPK, V∥θ1∥ . . . ∥θ2n+1∥β1∥ . . . ∥β2n+1).
(f) Set ct = (fe.ct,

⊗
i∈[2n+1],j∈[λ]

∣∣ψi,j
〉
) and vk = (U, (zi, θi)i∈[2n+1]).

The challenger sends ct to A .
5. A sends cert = (ci,j, di,j)i∈[2n+1],j∈[λ] and its internal state ρ to the challenger.

6. The challenger checks if zi,j = ci,j ⊕ di,j · (ui,j,0 ⊕ ui,j,1) holds for every i ∈ [2n + 1] and j ∈ [λ] such that
θi,j = 1. If it does not hold, the challenger outputs ⊥ as a final output of the experiment. Otherwise, go to
the next step.

17We use (m(0), m(1)) instead of (m0, m1) to denote a pair of challenge messages to avoid a notational collision.

30

7. The experiment outputs ρ as a final output.

Hyb1,k: For k = 0, 1, . . . , n, this hybrid is identical to Hyb0 except that the way of generating βi is modified as follows:

βi :=


m(0)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

m(1)
i−n ⊕

⊕
j:θi,j=0 zi,j if i ∈ [n + 1, n + k]

0⊕⊕
j:θi,j=0 zi,j if i ∈ [n + k + 1, 2n + 1]

.

Remark that Hyb1,0 is identical to Hyb0.

Hyb2: This hybrid is identical to Hyb1,n except that β2n+1 is flipped. That is, βi is generated as follows.

βi :=


m(0)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

m(1)
i−n ⊕

⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n]

1⊕⊕
j:θi,j=0 zi,j if i = 2n + 1

.

Hyb3,k: For k = 0, 1, . . . , n, this hybrid is identical to Hyb2 except that the way of generating βi is modified as follows:

βi :=


m(1)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [k]

m(0)
i ⊕

⊕
j:θi,j=0 zi,j if i ∈ [k + 1, n]

m(1)
i−n ⊕

⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n]

1⊕⊕
j:θi,j=0 zi,j if i ∈ [n + k + 1, 2n + 1]

.

Remark that Hyb3,0 is identical to Hyb2.

Hyb4: This hybrid is identical to Hyb3,n except that β2n+1 is flipped. That is, βi is generated as follows.

βi :=


m(1)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

m(1)
i−n ⊕

⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n]

0⊕⊕
j:θi,j=0 zi,j if i = 2n + 1

.

Hyb5,k: For k = 0, 1, . . . , n, this hybrid is identical to Hyb4 except that the way of generating βi is modified as follows:

βi :=


m(1)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

0⊕⊕
j:θi,j=0 zi,j if i ∈ [n + 1, n + k]

m(0)
i−n ⊕

⊕
j:θi,j=0 zi,j if i ∈ [n + k + 1, 2n]

0⊕⊕
j:θi,j=0 zi,j if i = 2n + 1

.

Remark that Hyb5,0 is identical to Hyb4.

Remark that Hyb5,n is exactly the everlasting adaptive experiment where the challenge bit is set to be 1. Thus, we
have to prove

TD(Hyb0, Hyb5,n) ≤ negl(λ). (1)

We prove this by the following lemmata.

Lemma 3.14. If FE is adaptively secure and PRG is a secure PRG, for any k ∈ [n],

TD(Hyb1,k−1, Hyb1,k) ≤ negl(λ).

31

Lemma 3.15. If FE is adaptively secure and PRG is a secure PRG,

TD(Hyb1,n, Hyb2) ≤ negl(λ).

Lemma 3.16. If FE is adaptively secure and PRG is a secure PRG, for any k ∈ [n],

TD(Hyb3,k−1, Hyb3,k) ≤ negl(λ).

Lemma 3.17. If FE is adaptively secure and PRG is a secure PRG,

TD(Hyb3,n, Hyb4) ≤ negl(λ).

Lemma 3.18. If FE is adaptively secure and PRG is a secure PRG, for any k ∈ [n],

TD(Hyb5,k−1, Hyb5,k) ≤ negl(λ).

Noting that Hyb1,0, Hyb3,0, and Hyb5,0 are identical to Hyb0, Hyb2, and Hyb4, respectively, Lemmata 3.14 to 3.18
imply Equation (1).

What is left is to prove these lemmata. Actually, the proofs of these lemmata are very similar. We give a full
proof of Lemma 3.14 below. After that, we also explain how to modify it to prove Lemma 3.15. The proofs of
Lemmata 3.16 and 3.18 are almost identical to that of Lemma 3.14 and the proof of Lemma 3.17 is almost identical to
that of Lemma 3.15, and thus we omit them.

Proof of Lemma 3.14. First, we prove Lemma 3.14 below.

Proof. For applying Lemma 3.7, we consider the following experiment Expt1,k
B,C (λ, θ, β) between a QPT adversary B

and a challenger C for θ ∈ {0, 1}λ and β ∈ {0, 1} as follows:

Expt1,k
B,C (λ, θ, β): In this experiment, B and C play the roles of A and the challenger of Hyb1,k with the differences
that C sets βn+k := β and θn+k := θ, C does not generate

∣∣∣ψn+k,j

〉
for j ∈ [λ] and thus not send it to B, C

additionally sends {un+k,j,b}j∈[λ],b∈{0,1} to B, and B finally outputs a bit b′ instead of a certificate. Specifically,
it works as follows:

1. C generates (fe.MPK, fe.MSK)← FE.Setup(1λ), sets MPK := fe.MPK and MSK := fe.MSK, and sends
MPK to B.

2. B can make arbitrarily many key queries at any point of the experiment. When it makes a key query f , C
generates fe.skg[f] ← FE.KeyGen(fe.MSK, g[f]) and returns sk f = fe.skg[f] to B.

3. B sends (m(0), m(1)) to C . It must satisfy f (m(0)) = f (m(1)) for all key queries f that are made before or
after sending (m(0), m(1)).

4. C does the following:
(a) Generate zi, θi ← {0, 1}λ for every i ∈ [2n + 1] \ {n + k} and set θn+k := θ.
(b) Generate ui,j,b ← {0, 1}λ and compute vi,j,b ← PRG(ui,j,b) for every i ∈ [2n + 1], j ∈ [λ] and

b ∈ {0, 1} and set U = (ui,j,b)i∈[2n+1],j∈[λ],b∈{0,1} and V := (vi,j,b)i∈[2n+1],j∈[λ],b∈{0,1}.
(c) Generate a state

∣∣ψi,j
〉

:=

{ ∣∣zi,j
〉 ∣∣∣ui,j,zi,j

〉
if θi,j = 0

|0⟩
∣∣ui,j,0

〉
+ (−1)zi,j |1⟩

∣∣ui,j,1
〉

if θi,j = 1

where θi,j (resp. zi,j) is the j-th bit of θi (resp. zi) for every i ∈ [2n + 1] \ {n + k} and j ∈ [λ].

32

(d) Generate

βi :=


m(0)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

m(1)
i−n ⊕

⊕
j:θi,j=0 zi,j if i ∈ [n + 1, n + k− 1]

β if i = n + k
0⊕⊕

j:θi,j=0 zi,j if i ∈ [n + k + 1, 2n + 1]

.

(e) Generate fe.ct← FE.Enc(fe.MPK, V∥θ1∥ . . . ∥θ2n+1∥β1∥ . . . ∥β2n+1).
C sends (fe.ct,

⊗
i∈[2n+1]\{n+k},j∈[λ]

∣∣ψi,j
〉

, {un+k,j,b}j∈[λ],b∈{0,1}) to B.

5. B outputs a bit b′ as a final output of the experiment.

We prove the following lemma.

Lemma 3.19. For any QPT B,∣∣∣∣Pr[Expt1,k
B,C (λ, θ, β) = 1]− Pr[Expt1,k

B,C (λ, 0n, β) = 1]
∣∣∣∣ ≤ negl(λ).

Before proving Lemma 3.19, we complete the proof of Lemma 3.14 assuming that Lemma 3.19 is true. By
Lemmata 3.7 and 3.19, for any QPT adversary B ′, we have

TD(Ẽxpt1,k
B ′ ,C (λ, 0), Ẽxpt1,k

B ′ ,C (λ, 1)) ≤ negl(λ). (2)

where Ẽxpt1,k
B ′ ,C (λ, b) is an experiment that works as follows:

Ẽxpt1.k
B ′ ,C (λ, b):

1. Sample z, θ ← {0, 1}λ.
2. B ′ takes (1λ, |z⟩θ) as input.

3. B ′ interacts with C as in Expt1,k
B,C (λ, θ, b⊕⊕

j:θi,j=0 zi,j) where B ′ plays the role of B.

4. B ′ outputs a string z′ ∈ {0, 1}λ and a quantum state ρ.
5. If zj = z′j for all j ∈ [λ] such that θj = 1 then the experiment outputs ρ, and otherwise it outputs a special

symbol ⊥.

Note that the only difference between Hyb1,k−1 and Hyb1,k is that βn+k is set to be 0⊕⊕
j:θi,j=0 zi,j in Hyb1,k−1 and

m(1)
k ⊕

⊕
j:θi,j=0 zi,j in Hyb1,k. If m(1)

k = 0, then there is no difference. Thus, we assume that m(1)
k = 1. Then we

construct B ′ that distinguishes Ẽxpt1.k
B ′ ,C (λ, 0) and Ẽxpt1.k

B ′ ,C (λ, 1) using A that distinguishes Hyb1,k−1 and Hyb1,k as
follows.

B ′(1λ, |z⟩θ):

1. B ′ plays the role of A in Hyb1,k where the external challenger C of Ẽxpt1,k
B ′ ,C (λ, b) is used to simulate the

challenger of Hyb1,k. C provides everything that should be sent to A except for
∣∣∣ψn+k,j

〉
for j ∈ [λ]. B ′

generates
∣∣∣ψn+k,j

〉
by applying the map |b⟩ → |b⟩

∣∣∣un+k,j,b

〉
on the j-th qubit of |z⟩θ and uses it as part of

ct sent to A . Note that this is possible since (un+k,j,b)j∈[λ],b∈{0,1} is provided from C .

2. Suppose that A returns a certificate (ci,j, di,j)i∈[2n+1],j∈[λ]. B ′ sets z′n+k,j = cn+k,j ⊕ dn+k,j · (un+k,j,0 ⊕
un+k,j,1) for j ∈ [λ]. Again, note that this is possible since (un+k,j,b)j∈[λ],b∈{0,1} is provided from C .

33

3. Output z′ := z′n+k,1∥ . . . ∥z′n+k,λ and A’s internal state ρ.

We can see that B ′ perfectly simulates Hyb1,k−1 if b = 0 and Hyb1,k if b = 1. (Recall that we are assuming m(1)
k = 1.)

Moreover, we have zj = z′j for all j ∈ [λ] (which is the condition to not output ⊥ in Ẽxpt1.k
B ′ ,C (λ, b)) whenever

zi,j = ci,j ⊕ di,j · (ui,j,0 ⊕ ui,j,1) holds for every i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 1 (which is the condition to
not output ⊥ in Hyb1,k−1 and Hyb1,k). Therefore, we must have

TD(Hyb1,k−1, Hyb1,k) ≤ TD(Ẽxpt1,k
B ′ ,C (λ, 0), Ẽxpt1,k

B ′ ,C (λ, 1)).

Combined with Equation (2), this completes the proof of Lemma 3.14.

Now, we are left to prove Lemma 3.19.

Proof of Lemma 3.19. We further consider the following sequence of hybrids:

Expt1,k,a
B,C (λ, θ, β): This is identical to Expt1,k

B,C (λ, θ, β) except that vi,j,1⊕zi,j is uniformly chosen from {0, 1}2λ instead
of being set to be PRG(ui,j,1⊕zi,j) for all i ∈ [2n + 1] \ {n + k} and j ∈ [λ] such that θi,j = 0.

Expt1,k,b
B,C (λ, θ, β): This is identical to Expt1,k,a

B,C (λ, θ, β) except that θn+k = θ is replaced with 0n. Note that θn+k only
appears in the encrypted message for fe.ct in Expt1,k,a

B,C (λ, θ, β).

Proposition 3.20. If PRG is a secure PRG,∣∣∣∣Pr[Expt1,k
B,C (λ, θ, β) = 1]− Pr[Expt1,k,a

B,C (λ, θ, β) = 1]
∣∣∣∣ ≤ negl(λ).

Proof. Noting that ui,j,1⊕zi,j for i ∈ [2n + 1] \ {n + k} and j ∈ [λ] such that θi,j = 0 is used only for generating
vi,j,1⊕zi,j in Expt1,k

B,C (λ, θ, β), Proposition 3.20 directly follows from the security of PRG.

Proposition 3.21. If FE is adaptively secure,∣∣∣∣Pr[Expt1,k,a
B,C (λ, θ, β) = 1]− Pr[Expt1,k,b

B,C (λ, θ, β) = 1]
∣∣∣∣ ≤ negl(λ).

Proof. For each i ∈ [2n + 1] \ {n + k} and j ∈ [λ] such that θi,j = 0, there is no u such that PRG(u) = vi,j,1⊕zi,j

except for probability 2−λ. Let Good be the event that the above holds for all i ∈ [2n + 1] \ {n + k} and j ∈ [λ] such
that θi,j = 0. We have Pr[Good] ≥ 1− 2nλ2−λ = 1− negl(λ). We prove that whenever Good occurs, we have

g[f]((V, θ1, . . . , θ2n+1, β1, . . . , β2n+1), (bi,j, ui,j)i∈[2n+1],j∈[λ]) (3)

=g[f]((V, θ1, . . . , θn+k−1, 0n, θn+k+1,...θ2n+1, β1, . . . , β2n+1), (bi,j, ui,j)i∈[2n+1],j∈[λ])

for all key queries f and (bi,j, ui,j)i∈[2n+1],j∈[λ]. If this is proven, Proposition 3.21 directly follows from the adaptive
security of FE.

Below, we prove Equation (3). We consider the following two cases.

• If PRG(ui,j) = vi,j,bi,j
holds for every i ∈ [2n + 1] and j ∈ [λ], then by the assumption that Good occurs, we have

bi,j = zi,j for all i ∈ [2n + 1] \ {n + k} and j ∈ [λ] such that θi,j = 0. Then we have βi ⊕
⊕

j:θi,j=0 bi,j = m(0)
i

for i ∈ [n] and β2n+1 ⊕
⊕

j:θ2n+1,j=0 b2n+1,j = 0. Then both sides of Equation (3) are equal to f (m(0)).

• Otherwise, both sides of Equation (3) are equal to ⊥.

In either case, Equation (3) holds. This completes the proof of Proposition 3.21.

34

Proposition 3.22. If PRG is a secure PRG,∣∣∣∣Pr[Expt1,k,b
B,C (λ, θ, β) = 1]− Pr[Expt1,k

B,C (λ, 0n, β) = 1]
∣∣∣∣ ≤ negl(λ).

Proof. Noting that ui,j,1⊕zi,j for i ∈ [2n + 1] \ {n + k} and j ∈ [λ] such that θi,j = 0 is used only for generating
vi,j,1⊕zi,j in Expt1,k

B,C (λ, 0n, β), Proposition 3.22 directly follows from the security of PRG.

Lemma 3.19 follows from the above propositions.

Proof of Lemma 3.15. Next, we prove Lemma 3.15.

Proof. Since the proof of Lemma 3.15 is very similar to that of Lemma 3.14, we only explain the difference. First,
we define an experiment Expt2

B,C (λ, θ, β) that is similar to Expt1,k
B,C (λ, θ, β) except that n + k is replaced with 2n + 1.

Then by almost the same argument as that in the proof of Lemma 3.14 using Lemma 3.7, we only have to prove∣∣∣∣Pr[Expt2
B,C (λ, θ, β) = 1]− Pr[Expt2

B,C (λ, 0n, β) = 1]
∣∣∣∣ ≤ negl(λ)

for all QPT B. Its proof is also similar to that of Lemma 3.19. We define Expt2,a
B,C (λ, θ, β) and Expt2,b

B,C (λ, θ, β)

similarly to Expt1,k,a
B,C (λ, θ, β) and Expt1,k,b

B,C (λ, θ, β) except that n + k is replaced with 2n + 1. Then the computational
indistinguishability between Expt2

B,C (λ, θ, β) and Expt2,a
B,C (λ, θ, β) and between Expt2,b

B,C (λ, θ, β) and Expt2
B,C (λ, 0n, β)

immediately follow from the security of PRG. We argue the computational indistinguishability between Expt2,a
B,C (λ, θ, β)

and Expt2,b
B,C (λ, θ, β) based on the security of FE as follows.

Let Good be the event that there is no u such that PRG(u) = vi,j,1⊕zi,j for all i ∈ [2n] and j ∈ [λ] such that θi,j = 0.
We have Pr[Good] ≥ 1− negl(λ). Similarly to the proof of Proposition 3.21, it suffices to prove that whenever Good
occurs, we have

g[f]((V, θ1, . . . , θ2n+1, β1, . . . , β2n+1), (bi,j, ui,j)i∈[2n+1],j∈[λ]) (4)

=g[f]((V, θ1, . . . , θ2n, 0λ, β1, . . . , β2n+1), (bi,j, ui,j)i∈[2n+1],j∈[λ])

for all key queries f and (bi,j, ui,j)i∈[2n+1],j∈[λ]. Below, we prove Equation (4). We consider the following two cases.

• If PRG(ui,j) = vi,j,bi,j
holds for every i ∈ [2n + 1] and j ∈ [λ], then by the assumption that Good occurs, we

have bi,j = zi,j for all i ∈ [2n] and j ∈ [λ] such that θi,j = 0. Then we have

βi ⊕
⊕

j:θi,j=0

bi,j =

{
m(0)

i if i ∈ [n]

m(1)
i−n if i ∈ [n + 1, 2n]

.

Then the LHS of Equation (4) is equal to f (m(γ)) where γ = β2n+1 ⊕
⊕

j:θi,j=0 b2n+1,j and the RHS of
Equation (4) is equal to f (m(γ′)) where γ′ = β2n+1 ⊕

⊕
j∈[λ] b2n+1,j. By the restriction on B, we have

f (m(0)) = f (m(1)). Therefore, both sides of Equation (4) are equal to f (m(0)) = f (m(1)).

• Otherwise, both sides of Equation (4) are equal to ⊥.

In either case, Equation (4) holds. This completes the proof of Lemma 3.15.

35

4 Bounded Collusion-Resistant Functional Encryption with Certified Ever-
lasting Deletion

4.1 Definitions
We also require verification correctness with QOTP for q-bounded certified everlasting simulation-secure FE because
we need it for the construction of certified everlasting secure FE in Section 4.3.

Definition 4.1 (Verification Correctness with QOTP). There exists a negligible function negl and a PPT algorithm
Recover such that for any λ ∈N and m ∈ M,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ, 1q)
(vk, ct)← Enc(MPK, m)

a, b← {0, 1}p(λ)

c̃ert← Del (ZbXactXaZb)
cert∗ ← Recover(a, b, c̃ert)

 ≤ negl(λ).

Another is an adaptively simulation-based security notion in the bounded collusion-resistant setting. The other is a
non-adaptively simulation-based security notion in the bounded collusion-resistant setting. We consider only bounded
collusion-resistance in the simulation-based definitions because achieving simulation-based security is impossible in the
collusion-resistant setting [AGVW13].

Our simulation-based security notion is a natural extension of that in the classical FE setting [GVW12]. Note that
the setup algorithm additionally takes 1q as input in the bounded collusion-resistant setting where q is the total number
of key queries.

Definition 4.2 (q-Bounded Certified Everlasting Simulation-Security). Let q be a polynomial of λ. Let Σ =
(Setup, KeyGen, Enc, Dec, Del , Vrfy) be a q-bounded FE with certified everlasting deletion scheme. We consider the
following security experiment Expcert-ever-ada-sim

Σ,A (λ, b) against a QPT adversary A1 and an unbounded adversary A2.
Let Sim1, Sim2, and Sim3 be a QPT algorithm.

1. The challenger runs (MPK, MSK)← Setup(1λ, 1q) and sends MPK to A1.

2. A1 is allowed to make arbitrary key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F , computes
sk fℓ ← KeyGen(MSK, fℓ) and sends sk fℓ to A1. Let qpre be the number of times that A1 makes key queries in
this phase. Let V := {yi := fi(m), fi, sk fi

}i∈[qpre].

3. A1 chooses m ∈ M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, ct)← Enc(MPK, m), and sends ct to A1.

• If b = 1, the challenger computes (ct , stqpre)← Sim1(MPK,V , 1|m|), and sends ct to A1, where stqpre is a
quantum state.

5. A1 is allowed to make arbitrary key queries at most q− qpre times. For the ℓ-th key query, the challenger works
as follows.

• If b = 0, the challenger receives fℓ ∈ F , computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to A1.

• If b = 1, the challenger receives fℓ ∈ F , computes (sk fℓ , stℓ)← Sim2(MSK, fℓ, fℓ(m), stℓ−1), and sends
sk fℓ to A1, where stℓ is a quantum state.

6. If b = 1, the challenger runs vk← Sim3(stq).

7. At some point, A1 sends cert to the challenger and its internal state to A2.

36

8. The challenger computes Vrfy(vk, cert). If the output is ⊤, then the challenger outputs ⊤, and sends MSK to A2.
Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

9. A2 outputs b′ ∈ {0, 1}. If the challenger outputs ⊤, the output of the experiment is b′. Otherwise, the output of
the experiment is ⊥.

We say that Σ is q-bounded adaptively certified everlasting simulation-secure if there exists a QPT simulator
Sim = (Sim1, Sim2, Sim3) such that for any QPT adversary A1 and any unbounded adversary A2 it holds that

Advcert-ever-ada-sim
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-ada-sim

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-ada-sim

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Remark 4.3. Note that Definitions 4.2 and 4.4 were presented before the work by Bartusek and Khurana [BK23] appeared.
Although we can define simulation-based definitions based on the definitions by Bartusek and Khurana, we leave our
original simulation-based definitions as a concurrent and independent work. We also note that the challenger can
omit sending MSK to A2 in Definitions 4.2 and 4.4 in the public-key setting based on the results by Bartusek and
Khurana [BK23, Claim A.3 and A.4].

We can consider a non-adaptive variant of the definition above.

Definition 4.4 (q-Bounded Non-Adaptive Certified Everlasting Simulation-Security). Let q be a polynomial of
λ. Let Σ = (Setup, KeyGen, Enc, Dec, Del , Vrfy) be a q-bounded FE with certified everlasting deletion scheme. We
consider the following security experiment Expcert-ever-noada-sim

Σ,A (λ, b) against a QPT adversary A1 and an unbounded
adversary A2. Let Sim be a QPT algorithm.

1. The challenger runs (MPK, MSK)← Setup(1λ) and sends MPK to A1.

2. A1 is allowed to make arbitrary key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F , computes
sk fℓ ← KeyGen(MSK, fℓ) and sends sk fℓ to A1. Let q be the total number of times that A1 makes key queries.
Let V := {yi := fi(m), fi, sk fi

}i∈[q].

3. A1 chooses m ∈ M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, ct)← Enc(MPK, m), and sends ct to A1.

• If b = 1, the challenger computes (vk, ct)← Sim(MPK,V , 1|m|), and sends ct to A1.

5. At some point, A1 sends cert to the challenger and its internal state to A2.

6. The challenger computes Vrfy(vk, cert). If the output is ⊤, then the challenger outputs ⊤, and sends MSK to A2.
Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

7. A2 outputs b′ ∈ {0, 1}. If the challenger outputs ⊤, the output of the experiment is b′. Otherwise, the output of
the experiment is ⊥.

We say that Σ is q-bounded non-adaptive certified everlasting simulation-secure if there exists a QPT simulator Sim
such that for any QPT adversary A1 and any unbounded adversary A2 it holds that

Advcert-ever-noada-sim
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-noada-sim

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-noada-sim

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

We need to consider standard simulation-security notions for FE with certified everlasting deletion. We note that the
following two security definitions are simulation-based ones defined in [GVW12].

Definition 4.5 (q-Bounded Non-Adaptive Simulation-Security for FE with Certified Everlasting Deletion [GVW12]).
Let q be a polynomial of λ. Let Σ = (Setup, KeyGen, Enc, Dec, Del , Vrfy) be a q-bounded FE with certified everlasting
deletion scheme. We consider the following security experiment Expnon-ada-sim

Σ,A (λ, b) against a QPT adversary A . Let
Sim be a QPT algorithm.

37

1. The challenger runs (MPK, MSK)← Setup(1λ, 1q) and sends MPK to A .

2. A is allowed to make arbitrary key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F , computes
sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to A . Let q be the total number of times that A makes key queries. Let
V := {yi := fi(m), fi, sk fi

}i∈[q].

3. A chooses m ∈ M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, ct)← Enc(MPK, m), and sends ct to A .

• If b = 1, the challenger computes ct ← Sim(MPK,V , 1|m|), and sends ct to A .

5. A outputs b′ ∈ {0, 1}. The output of the experiment is b′.

We say that Σ is q-bounded non-adaptive secure if there exists a QPT simulator Sim such that for any QPT adversary
A it holds that

Advnon-ada-sim
Σ,A (λ) :=

∣∣∣Pr
[
Expnon-ada-sim

Σ,A (λ, 0) = 1
]
− Pr

[
Expnon-ada-sim

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition 4.6 (q-Bounded Adaptive Simulation-Security for FE with Certified Everlasting Deletion [GVW12]).
Let q be a polynomial of λ. Let Σ = (Setup, KeyGen, Enc, Dec, Del , Vrfy) be a q-bounded FE with certified everlasting
deletion scheme. We consider the following security experiment Expada-sim

Σ,A (λ, b) against a QPT adversary A . Let Sim1
and Sim2 be a QPT algorithm.

1. The challenger runs (MPK, MSK)← Setup(1λ, 1q) and sends MPK to A .

2. A is allowed to make arbitrary key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F , computes
sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to A . Let qpre be the number of times that A makes key queries in this
phase. Let V := {yi := fi(m), fi, sk fi

}i∈[qpre].

3. A chooses m ∈ M and sends m to the challenger.

4. The experiment works as follows:

• If b = 0, the challenger computes (vk, ct)← Enc(MPK, m), and sends ct to A .

• If b = 1, the challenger computes (ct , stqpre)← Sim1(MPK,V , 1|m|), and sends ct to A , where stqpre is a
quantum state.

5. A is allowed to make arbitrary key queries at most (q− qpre) times. For the ℓ-th key query, the challenger works
as follows:

• If b = 0, the challenger receives fℓ ∈ F , computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to A .

• If b = 1, the challenger receives fℓ ∈ F , computes (sk fℓ , stℓ)← Sim2(MSK, fℓ, fℓ(m), stℓ−1), and sends
sk fℓ to A .

6. A outputs b′ ∈ {0, 1}. The output of the experiment is b′.

We say that Σ is q-bounded adaptive simulation-secure if there exists a QPT simulator Sim = (Sim1, Sim2) such that for
any QPT adversary A it holds that

Advada-sim
Σ,A (λ) :=

∣∣∣Pr
[
Expada-sim

Σ,A (λ, 0) = 1
]
− Pr

[
Expada-sim

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

38

4.2 1-Bounded Construction with Non-Adaptive Security
To achieve q-bounded adaptive certified everlasting simulation-secure FE in Section 4.4, we prepare building blocks in
this section and Section 4.3. In this section, we construct a 1-bounded non-adaptive certified everlasting simulation-secure
FE scheme from a certified everlasting secure garbling scheme (Definition E.1) and a certified everlasting secure PKE
scheme (Definition C.8). See Appendices C.4, C.5 and E.2 for how to achieve these building blocks. Regarding PKE,
we can also use the construction by Bartusek and Khurana [BK23].

Our 1-bounded non-adaptive certified everlasting secure FE scheme. This construction is essentially the same as
the 1-bound FE by Sahai and Seyalioglu [SS10]. We use a universal circuit U(·, x) in which a plaintext x is hard-wired.
The universal circuit takes a function f as input and outputs f (x). Let s := | f |. We construct a 1-bounded non-adaptive
certified everlasting secure FE scheme Σcefe = (Setup, KeyGen, Enc, Dec, Del , Vrfy) from a certified everlasting secure
garbling scheme Σcegc = GC.(Setup, Garble, Eval , Del , Vrfy) (Definition E.1) and a certified everlasting secure PKE
scheme Σcepk = PKE.(KeyGen, Enc, Dec, Del , Vrfy) (Definition C.8).

Setup(1λ):

• Generate (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for every i ∈ [s] and α ∈ {0, 1}.
• Output MPK := {pke.pki,α}i∈[s],α∈{0,1} and MSK := {pke.ski,α}i∈[s],α∈{0,1}.

KeyGen(MSK, f):

• Parse MSK = {pke.ski,α}i∈[s],α∈{0,1} and f = (f1, · · · , fs).
• Output sk f := (f , {pke.ski, f [i]}i∈[s]).

Enc(MPK, m):

• Parse MPK = {pke.pki,α}i∈[s],α∈{0,1}.

• Compute {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ).

• Compute (Ũ, gc.vk)← GC.Garble(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}).
• For every i ∈ [s] and α ∈ {0, 1}, compute (pke.vki,α, pke.ct i,α)← PKE.Enc(pke.pki,α, Li,α).
• Output vk := (gc.vk, {pke.vki,α}i∈[s],α∈{0,1}) and ct := (Ũ, {pke.ct i,α}i∈[s],α∈{0,1}).

Dec(sk f , ct):

• Parse sk f = (f , {pke.ski}i∈[s]) and ct = (Ũ, {pke.ct i,α}i∈[s],α∈{0,1}).
• For every i ∈ [s], compute Li,← PKE.Dec(pke.ski, pke.ct i, f [i]).

• Compute y← GC.Eval (Ũ, {Li}i∈[s]).
• Output y.

Del (ct):

• Parse ct = (Ũ, {pke.ct i,α}i∈[s],α∈{0,1}).

• Compute gc.cert← GC.Del (Ũ).
• For every i ∈ [s] and α ∈ {0, 1}, compute pke.certi,α ← PKE.Del (pke.cti,α).
• Output cert := (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}).

Vrfy(vk, cert):

• Parse vk = (gc.vk, {pke.vki,α}i∈[s],α∈{0,1}) and cert = (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}).
• Output ⊤ if ⊤ ← GC.Vrfy(gc.vk, gc.cert) and ⊤ ← PKE.Vrfy(pke.vki,α, pke.certi,α) for every i ∈ [s] and

α ∈ {0, 1}. Otherwise, output ⊥.

39

Correctness: Correctness easily follows from that of Σcegc and Σcepk.

Security: The following two theorems hold.

Theorem 4.7. If Σcegc satisfies the selective security (Definition E.4) and Σcepk satisfies the IND-CPA security (Defini-
tion C.12), Σcefe satisfies the 1-bounded non-adaptive simulation-security (Definition 4.5).

Its proof is similar to that of Theorem 4.8, and therefore we omit it.

Theorem 4.8. If Σcegc satisfies the selective certified everlasting security (Definition E.5) and Σcepk satisfies the
certified everlasting IND-CPA security (Definition C.13), Σcefe satisfies the 1-bounded non-adaptive certified everlasting
simulation-security (Definition 4.4).

Proof of Theorem 4.8. Let us describe how the simulator Sim works.

Sim(MPK,V , 1|m|):

1. Parse MPK = {pke.pki,α}i∈[s],α∈{0,1} and V = { f (m), f , (f , {pke.ski, f [i]}i∈[s])} or ∅.

2. If V = ∅, generate f ← {0, 1}s.
3. Generate {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ) and L∗i, f [i]⊕1 ← L for every i ∈ [s].

4. Compute (Ũ, gc.vk)← GC.Sim(1λ, 1| f |, U(f , m), {Li, f [i]}i∈[s]).

5. Compute (pke.vki, f [i], pke.ct i, f [i]) ← PKE.Enc(pke.pki, f [i], Li, f [i]) and (pke.vki, f [i]⊕1, pke.ct i, f [i]⊕1) ←
PKE.Enc(pke.pki, f [i]⊕1, L∗i, f [i]⊕1) for every i ∈ [s].

6. Output vk := (gc.vk, {pke.vki,α}i∈[s],α∈{0,1}) and ct := (Ũ, {pke.ct i,α}i∈[s],α∈{0,1}).

Let us define the sequence of hybrids as follows.

Hyb0: This is identical to Expcert-ever-non-adapt
Σcefe,A (λ, 0).

1. The challenger generates (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for every i ∈ [s] and α ∈ {0, 1}, and
sends {pke.pki,α}i∈[s],α∈{0,1} to A1.

2. A1 is allowed to call a key query at most one time. If a key query is called, the challenger receives an
function f from A1, and sends (f , {pke.ski, f [i]}i∈[s]) to A1.

3. A1 chooses m ∈ M, and sends m to the challenger.
4. The challenger computes {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ), (Ũ, gc.vk) ← GC.Garble(1λ, U(·, m),
{Li,α}i∈[s],α∈{0,1}), and (pke.vki,α, pke.ct i,α)← PKE.Enc(pke.pki,α, Li,α) for every i ∈ [s] and α ∈ {0, 1},
and sends (Ũ, {pke.ct i,α}i∈[s],α∈{0,1}) to A1.

5. A1 sends (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}) to the challenger, and sends its internal state to A2.
6. If ⊤ ← GC.Vrfy(gc.vk, gc.cert), and ⊤ ← PKE.Vrfy(pke.vki,α, pke.certi,α) for every i ∈ [s] and α ∈
{0, 1}, the challenger outputs ⊤, and sends {pke.ski,α}i∈[s],α∈{0,1} to A2. Otherwise, the challenger outputs
⊥, and sends ⊥ to A2.

7. A2 outputs b′. If the challenger outputs ⊤, the output of the experiment is b′. Otherwise, the output of the
experiment is ⊥.

Hyb1: This is identical to Hyb0 except for the following four points. First, the challenger generates f ∈ {0, 1}s

if a key query is not called in step 2. Second, the challenger randomly generates L∗i, f [i]⊕1 ← L for every
i ∈ [s] and {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ) in step 2 regardless of whether a key query is called or
not. Third, the challenger does not compute {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ) in step 4. Fourth, the
challenger computes (pke.vki, f [i]⊕1, pke.ct i, f [i]⊕1)← PKE.Enc(pke.pki, f [i]⊕1, L∗i, f [i]⊕1) for every i ∈ [s] instead
of computing (pke.vki, f [i]⊕1, pke.ct i, f [i]⊕1)← PKE.Enc(pke.pki, f [i]⊕1, Li, f [i]⊕1) for every i ∈ [s].

40

Hyb2: This is identical to Hyb1 except for the following point. The challenger computes (Ũ, gc.vk)← GC.Sim(1λ, 1| f |,
U(f , m), {Li, f [i]}i∈[s]) instead of computing (Ũ, gc.vk)← GC.Garble(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}).

From the definition of Expcert-ever-non-adapt
Σcefe,A (λ, b) and Sim , it is clear that Pr[Hyb0 = 1] = Pr

[
Expcert-ever-non-adapt

Σcefe,A (λ, 0) = 1
]

and Pr[Hyb2 = 1] = Pr
[
Expcert-ever-non-adapt

Σcefe,A (λ, 1) = 1
]
. Therefore, Theorem 4.8 easily follows from the following

Propositions 4.9 and 4.10. (whose proof is given later.)

Proposition 4.9. If Σcepk satisfies the certified everlasting IND-CPA security,

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Proposition 4.10. If Σcegc satisfies the certified everlasting selective security,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof of Proposition 4.9. For the proof, we use Lemma D.9 whose statement and proof is given in Appendix D.2. We
assume that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible, and construct an adversary B that breaks the security
experiment of Expmulti-cert-ever

Σcepk,B (λ, b) defined in Lemma D.9. This contradicts the certified everlasting IND-CPA of
Σcepk from Lemma D.9. Let us describe how B works below.

1. B receives {pke.pki,α}i∈[s],α∈{0,1} from the challenger of Expmulti-cert-ever
Σcepk,B (λ, b), and sends {pke.pki,α}i∈[s],α∈{0,1}

to A1.

2. A1 is allowed to call a key query at most one time. If a key query is called, B receives an function f from A1,
generates L∗i, f [i]⊕1 ← L for every i ∈ [s] and {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ). If a key query is not called,
B generates f ← {0, 1}s, L∗i, f [i]⊕1 ← L for every i ∈ [s] and {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ).

3. B sends (f , L1, f [1]⊕1, L2, f [2]⊕1, · · · , Ls, f [s]⊕1, L∗1, f [1]⊕1, L∗2, f [2]⊕1, · · · , L∗s, f [s]⊕1) to the challenger of Expmulti-cert-ever
Σcepk,B (λ, b).

4. B receives ({pke.ski, f [i]}i∈[s], {pke.ct i, f [i]⊕1}i∈[s]) from the challenger. If a key query is called, B sends
(f , {pke.ski, f [i]}i∈[s]) to A1.

5. A1 chooses m ∈ M, and sends m to B.

6. B computes (Ũ, gc.vk)← GC.Garble(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}) and (pke.vki, f [i], pke.ct i, f [i])← PKE.Enc(
pke.pki, f [i], Li, f [i]) for every i ∈ [s], and sends (Ũ, {pke.ct i,α}i∈[s],α∈{0,1}) to A1.

7. A1 sends (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}) to B, and sends its internal state to A2.

8. B sends {pke.certi, f [i]⊕1}i∈[s] to the challenger, and receives {pke.ski, f [i]⊕1}i∈[s] or ⊥ from the challenger. If B
receives ⊥ from the challenger, it outputs ⊥ and aborts.

9. B sends {pke.ski,α}i∈[s],α∈{0,1} to A2.

10. A2 outputs b′.

11. B computes GC.Vrfy for gc.cert and PKE.Vrfy for all {pke.certi, f [i]}i∈[s], and outputs b′ if all results are ⊤.
Otherwise, B outputs ⊥.

It is clear that Pr[1← B | b = 0] = Pr[Hyb0 = 1] and Pr[1← B | b = 1] = Pr[Hyb1 = 1]. By assumption,
|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible, and therefore |Pr[1← B | b = 0]− Pr[1← B | b = 1]| is non-
negligible, which contradicts the certified everlasting IND-CPA security of Σcepk from Lemma D.9.

Proof of Proposition 4.10. We assume that |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| is non-negligible, and construct an adver-
sary B that breaks the selective certified everlasting security of Σcegc. Let us describe how B works below.

41

1. B generates (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for every i ∈ [s] and α ∈ {0, 1}, and sends {pke.pki,α}i∈[s],α∈{0,1}
to A1.

2. A1 is allowed to call a key query at most one time. If a key query is called, B receives an function f from A1,
generates L∗i, f [i]⊕1 ← L for every i ∈ [s], and sends (f , {pke.ski, f [i]}i∈[s]) to A1. If a key query is not called, B
generates f ← {0, 1}s and L∗i, f [i]⊕1 ← L for every i ∈ [s].

3. A1 chooses m ∈ M, and sends m to B.

4. B sends a circuit U(·, m) and an input f ∈ {0, 1}s to the challenger of Expcert-ever-sel-gbl
B,Σcegc

(1λ, b).

5. The challenger computes {Li,α}i∈[s],α∈{0,1} ← GC.Setup(1λ) and does the following:

• If b = 0, the challenger computes (Ũ, gc.vk) ← GC.Garble(1λ, U(·, m), {Li,α}i∈[s],α∈{0,1}), and sends
(Ũ, {Li, f [i]}i∈[s]) to B.

• If b = 1, the challenger computes (Ũ, gc.vk) ← GC.Sim(1λ, 1| f |, U(f , m), {Li, f [i]}i∈[s]), and sends
(Ũ, {Li, f [i]}i∈[s]) to B.

6. B computes (pke.vki, f [i], pke.ct i, f [i]) ← PKE.Enc(pke.pki, f [i], Li, f [i]) and (pke.vki, f [i]⊕1, pke.ct i, f [i]⊕1) ←
PKE.Enc(pke.pki, f [i]⊕1, L∗i, f [i]⊕1) for every i ∈ [s].

7. B sends (Ũ, {pke.ct i,α}i∈[s],α∈{0,1}) to A1.

8. A1 sends (gc.cert, {pke.certi,α}i∈[s],α∈{0,1}) to the challenger, and sends its internal state to A2.

9. B sends gc.cert to the challenger, and receives ⊤ or ⊥ from the challenger. If B receives ⊥ from the challenger,
it outputs ⊥ and aborts.

10. B sends {pke.ski,α}i∈[s],α∈{0,1} to A2.

11. A2 outputs b′.

12. B computes PKE.Vrfy for all pke.certi,α, and outputs b′ if all results are ⊤. Otherwise, B outputs ⊥.

It is clear that Pr[1← B | b = 0] = Pr[Hyb1 = 1] and Pr[1← B | b = 1] = Pr[Hyb2 = 1]. By assumption,
|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| is non-negligible, and therefore |Pr[1← B | b = 0]− Pr[1← B | b = 1]| is non-
negligible, which contradicts the selective certified everlasting security of Σcegc.

4.3 1-Bounded Construction with Adaptive Security
In this section, we convert the non-adaptive scheme constructed in the previous subsection to the adaptive one by using
a certified everlasting secure RNC scheme (Definition D.1). See Appendix D.2 for how to achieve this building block.

Our 1-bounded adaptive certified everlasting secure FE scheme. We construct a 1-bounded adaptive certified
everlasting secure FE scheme Σcefe = (Setup, KeyGen, Enc, Dec, Del , Vrfy) from a 1-bounded non-adaptive certified
everlasting secure FE scheme Σnad = NAD.(Setup, KeyGen, Enc, Dec, Del , Vrfy), where the ciphertext space is
C := Q⊗n, and a certified everlasting secure RNCE scheme Σcence = NCE.(Setup, KeyGen, Enc, Dec, Fake, Reveal,
Del , Vrfy) (Definition D.1). Let NAD.Recover be a QPT algorithm such that

Pr

NAD.Vrfy(nad.vk, nad.cert∗) ̸= ⊤

∣∣∣∣∣∣∣∣∣∣
(nad.MPK, nad.MSK)← NAD.Setup(1λ)
(nad.vk, nad.ct)← NAD.Enc(nad.MPK, m)
a, c← {0, 1}n

nad.c̃ert← NAD.Del (ZcXanad.ct XaZc)
nad.cert∗ ← NAD.Recover(a, c, nad.c̃ert)

 ≤ negl(λ).

42

for any m.
Our construction is as follows.

Setup(1λ):

• Run (nad.MPK, nad.MSK)← NAD.Setup(1λ).
• Run (nce.pk, nce.MSK)← NCE.Setup(1λ).
• Output MPK := (nad.MPK, nce.pk) and MSK := (nad.MSK, nce.MSK).

KeyGen(MSK, f):

• Parse MSK = (nad.MSK, nce.MSK).
• Compute nad.sk f ← NAD.KeyGen(nad.MSK, f).

• Compute nce.sk← NCE.KeyGen(nce.MSK).
• Output sk f := (nad.sk f , nce.sk).

Enc(MPK, m):

• Parse MPK = (nad.MPK, nce.pk).
• Compute (nad.vk, nad.ct)← NAD.Enc(nad.MPK, m).
• Generate a, c← {0, 1}n. Let Ψ := ZcXanad.ct XaZc.
• Compute (nce.vk, nce.ct)← NCE.Enc(nce.pk, (a, c)).
• Output vk := (nad.vk, nce.vk, a, c) and ct := (Ψ, nce.ct).

Dec(sk f , ct):

• Parse sk f = (nad.sk f , nce.sk) and ct = (Ψ, nce.ct).

• Compute (a′, c′)← NCE.Dec(nce.sk, nce.ct).

• Compute nad.ct ′ := Xa′Zc′ΨZc′Xa′ .
• Compute y← NAD.Dec(nad.sk f , nad.ct ′).
• Output y.

Del (ct):

• Parse ct = (Ψ, nce.ct).
• Compute nad.c̃ert← NAD.Del (Ψ).
• Compute nce.cert← NCE.Del (nce.ct).
• Output cert := (nad.c̃ert, nce.cert).

Vrfy(vk, cert):

• Parse vk = (nad.vk, nce.vk, a, c) and cert = (nad.c̃ert, nce.cert).
• Compute nad.cert∗ ← NAD.Recover(a, c, nad.c̃ert).
• Output⊤ if⊤ ← NCE.Vrfy(nce.vk, nce.cert) and⊤ ← NAD.Vrfy(nad.vk, nad.cert∗). Otherwise, output
⊥.

Correctness: Correctness easily follows from that of Σnad and Σcence.

43

Security: The following two theorems hold.

Theorem 4.11. If Σnad satisfies the 1-bounded non-adaptive simulation-security (Definition 4.5) and Σcence satisfies the
RNC security (Definition D.3), Σcefe satisfies the 1-bounded adaptive simulation-security (Definition 4.6).

Its proof is similar to that of Theorem 4.12, and therefore we omit it.

Theorem 4.12. If Σnad satisfies the 1-bounded non-adaptive certified everlasting simulation-security(Definition 4.4)
and Σcence satisfies the certified everlasting RNC security (Definition D.4), Σcefe satisfies the 1-bounded adaptive
certified everlasting simulation-security (Definition 4.2).

Proof of Theorem 4.12. For a given 2n-qubit, let A be the n-qubit of the first half of the 2n-qubit, and let B be the
n-qubit of the second half of the 2n-qubit. Let NAD.Sim be the simulating algorithm of the ciphertext nad.ct . Let us
describe how the simulator Sim = (Sim1, Sim2, Sim3) works below.

Sim1(MPK,V , 1|m|):

1. Parse MPK = (nad.MPK, nce.pk) and V = (f , f (m), (nad.sk f , nce.sk)) or ∅. 18

2. Sim1 does the following:

• If V = ∅, generate
∣∣∣0̃n0n

〉
and (nce.vk, ñce.ct , nce.aux) ← NCE.Fake(nce.pk). Let ΨA :=

TrB(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣) and ΨB := TrA(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣). Output ct := (ΨA, ñce.ct) and st :=

(nce.aux, nce.pk, nad.MPK, ΨB, 1|m|, nce.vk, 0).
• IfV = (f , f (m), (nad.sk f , nce.sk)), generate a, c← {0, 1}n, (nce.vk, nce.ct)← NCE.Enc(nce.pk, (a, c)),
(nad.vk, nad.ct)← NAD.Sim(nad.MPK, (f , f (m), nad.sk f), 1|m|) and Ψ := ZcXanad.ct XaZc. Out-
put ct := (Ψ, nce.ct) and st := (nad.vk, nce.vk, a, c, 1).

Sim2(MSK, f , f (m), st):

1. Parse MSK := (nad.MSK, nce.MSK) and st = (nce.aux, nce.pk, nad.MPK, ΨB, 1|m|, nce.vk, 0).
2. Compute nad.sk f ← NAD.KeyGen(nad.MSK, f).

3. Compute (nad.vk, nad.ct) ← NAD.Sim(nad.MPK, (f , f (m), nad.sk f), 1|m|). Measure the i-th qubit of
nad.ct and ΨB in the Bell basis and let (xi, zi) be the measurement outcome for all i ∈ [N].

4. Compute ñce.sk← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (x, z)).

5. Output sk f := (nad.sk f , ñce.sk) and st′ := (nad.vk, nce.vk, x, z, 1).

Sim3(st∗):

1. Parse st∗ = (nad.vk, nce.vk, x∗, z∗, 1) or st∗ = (nce.aux, nce.pk, nad.MPK, ΨB, 1|m|, nce.vk, 0).
2. Sim3 does the following:

• If the final bit of st∗ is 0, compute (nad.vk, nad.ct)← NAD.Sim(nad.MPK, ∅, 1|m|). Measure the i-th
qubit of nad.ct and ΨB in the Bell basis and let (xi, zi) be the measurement outcome for all i ∈ [N].
Output vk := (nad.vk, nce.vk, x, z).

• If the final bit of st∗ is 1, output vk := (nad.vk, nce.vk, x∗, z∗).

Let us define the sequence of hybrids as follows.

Hyb0: This is identical to Expcert-ever-ada-sim
Σcefe,A

(0).

18If an adversary calls a key query before the adversary receives a challenge ciphertext, then V = (f , f (m), (nad.sk f , nce.sk)). Otherwise,
V = ∅.

44

1. The challenger generates (nad.MPK, nad.MSK)← NAD.Setup(1λ) and (nce.pk, nce.MSK)← NCE.Setup(1λ),
and sends (nad.MPK, nce.pk) to A1.

2. A1 is allowed to make an arbitrary key query at most one time. For a key query, the challenger receives
f ∈ F , computes nad.sk f ← NAD.KeyGen(nad.MSK, f) and nce.sk ← NCE.KeyGen(nce.MSK), and
sends (nad.sk f , nce.sk) to A1.

3. A1 chooses m ∈ M, and sends m to the challenger.
4. The challenger generates a, c ← {0, 1}n, computes (nad.vk, nad.ct) ← NAD.Enc(nad.MPK, m), Ψ :=

ZcXanad.ct XaZc and (nce.vk, nce.ct)← NCE.Enc(nce.pk, (a, c)), and sends (Ψ, nce.ct) to A1.
5. If a key query is not called in step 2, A1 is allowed to make an arbitrary key query at most one time.

For a key query, the challenger receives f ∈ F , computes nad.sk f ← NAD.KeyGen(nad.MSK, f) and
nce.sk← NCE.KeyGen(nce.MSK), and sends (nad.sk f , nce.sk) to A1.

6. A1 sends (nad.cert, nce.cert) to the challenger and its internal state to A2.
7. The challenger computes nad.cert∗ ← NAD.Recover(a, c, nad.cert). The challenger computes NCE.Vrfy(

nce.vk, nce.cert) and NAD.Vrfy(nad.vk, nad.cert∗). If the results are ⊤, the challenger outputs ⊤ and
sends (nad.MSK, nce.MSK) to A2. Otherwise, the challenger outputs ⊥ and sends ⊥ to A2.

8. A2 outputs b′. The output of the experiment is b′ if the challenger outputs ⊤. Otherwise, the output of the
experiment is ⊥.

Hyb1: This is different from Hyb0 in the following second points. First, when a key query is not called in step 2,
the challenger computes (nce.vk, ñce.ct , nce.aux)← NCE.Fake(nce.pk) and sends (Ψ, ñce.ct) to A1 instead of
computing (nce.vk, nce.ct) ← NCE.Enc(nce.pk, (a, c)) and sending (Ψ, nce.ct) to A1. Second, in step 5, the
challenger computes ñce.sk ← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (a, c)) and sends (nad.sk f , nce.sk) to
A1 instead of computing nce.sk← NCE.KeyGen(nce.MSK) and sending (nad.sk f , nce.sk) to A1.

Hyb2: This is different from Hyb1 in the following three points. First, when a key query is not called in step
2, the challenger generates

∣∣∣0̃n0n
〉

instead of generating a, c ← {0, 1}n and Ψ = ZcXanad.ct XaZc. Let

ΨA := TrB(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣) and ΨB := TrA(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣). Second, when a key query is not called in

step 2, the challenger sends (ΨA, ñce.ct) to A1 instead of sending (Ψ, ñce.ct) to A1 and then that measures
the i-th qubit of nad.ct and ΨB in the Bell basis for all i ∈ [n]. Let (xi, zi) be the measurement outcome for
all i ∈ [n]. Third, the challenger computes ñce.sk ← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (x, z)) instead
of computing ñce.sk ← NCE.Reveal(nce.pk, nce.MSK, nce.aux, (a, c)) in step 5 and computes nad.cert∗ ←
NAD.Recover(x, z, nad.cert) instead of computing nad.cert∗ ← NAD.Recover(a, c, nad.cert) in step 7.

Hyb3: This is different from Hyb2 in the following three points. First, when a key query is not called in step 2,
the challenger does not generate (nad.vk, nad.ct) ← NAD.Enc(nad.MPK, m) and measure the i-th qubit of
nad.ct and ΨB in the Bell basis in step 4. Second, if a key query is called in step 5, the challenger computes
(nad.vk, nad.ct)← NAD.Enc(nad.MPK, m) and measures the i-th qubit of nad.ct and ΨB in the Bell basis for all
i ∈ [n] after it computes nad.sk f ← NAD.KeyGen(nad.MSK, f). Third, if a key query is not called throughout
the experiment, the challenger computes (nad.vk, nad.ct)← NAD.Enc(nad.MPK, m), measures the i-th qubit
of nad.ct and ΨB in the Bell basis after step 5.

Hyb4: This is identical to Hyb3 except that the challenger computes (nad.vk, nad.ct)← NAD.Sim(nad.MPK,V , 1|m|)
instead of computing (nad.vk, nad.ct) ← NAD.Enc(nad.MPK, m), where V = (f , f (m), nad.sk f) if a key
query is called and V = ∅ if a key query is not called.

From the definition of Expcert-ever-ada-sim
Σcefe,A (λ, b) and Sim = (Sim1, Sim2, Sim3), it is clear that Pr[Hyb0 = 1] =

Pr
[
Expcert-ever-ada-sim

Σcefe,A (λ, 0) = 1
]

and Pr[Hyb4 = 1] = Pr
[
Expcert-ever-ada-sim

Σcefe,A (λ, 1) = 1
]
. Therefore, Theorem 4.12

easily follows from Propositions 4.13 to 4.16. (Whose proof is given later.)

45

Proposition 4.13. If Σcence is certified everlasting RNC secure, it holds that

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Proposition 4.14.

Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proposition 4.15.

Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Proposition 4.16. If Σnad is 1-bounded non-adaptive certified everlasting simulation-secure, it holds that

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ negl(λ).

Proof of Proposition 4.13. When an adversary makes key queries in step 2, it is clear that Pr[Hyb0 = 1] = Pr[Hyb1 = 1].
Hence, we consider the case where the adversary does not make a key query in step 2 below.

We assume that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible, and construct an adversary B that breaks the
certified everlasting RNC security of Σcence. Let us describe how B works below.

1. B receives nce.pk from the challenger of Expcert-ever-rec-nc
Σcence,B (λ, b), generates (nad.MPK, nad.MSK)← NAD.KeyGen(1λ),

and sends (nad.MPK, nce.pk) to A1.

2. B receives a message m ∈ M, computes (nad.vk, nad.ct)← NAD.Enc(nad.MPK, m), generates a, c← {0, 1}n,
computes Ψ := ZcXanad.ct XaZc, sends (a, c) to the challenger, receives (nce.ct∗, nce.sk∗) from the challenger,
and sends (Ψ, nce.ct∗) to A1.

3. A1 is allowed to send a key query at most one time. For a key query, B receives an function f , generates
nad.sk f ← NAD.KeyGen(nad.MSK, f), and sends (nad.sk f , nce.sk∗) to A1.

4. A1 sends (nad.cert, nce.cert) to B and its internal state to A2.

5. B sends nce.cert to the challenger, and receives nce.MSK or ⊥ from the challenger. B computes nad.cert∗ ←
NAD.Recover(a, c, nad.cert) and NAD.Vrfy(nad.vk, nad.cert∗). If the result is⊤ and B receives nce.MSK from
the challenger, B sends (nad.MSK, nce.MSK) to A2. Otherwise, B outputs ⊥, sends ⊥ to A2, and aborts.

6. A2 outputs b′.

7. B outputs b′.

It is clear that Pr[1← B | b = 0] = Pr[Hyb0 = 1] and Pr[1← B | b = 1] = Pr[Hyb1 = 1]. By assumption,
|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible, and therefore |Pr[1← B | b = 0]− Pr[1← B | b = 1]| is non-
negligible, which contradicts the certified everlasting RNC security of Σcence.

Proof of Proposition 4.14. We clarify the difference between Hyb1 and Hyb2. First, in Hyb2, the challenger uses (x, z)
instead of using (a, c) as in Hyb1. Second, in Hyb2, the challenger sends ΨA to A1 instead of sending ZcXanad.ct XaZc

to A1 as in Hyb1. Hence, it is sufficient to prove that x and z are uniformly randomly distributed and ΨA is identical to
ZzXxnad.ct XxZz. These two things are obvious from Lemma 2.2.

Proof of Proposition 4.15. The difference between Hyb2 and Hyb3 is only the order of operating the algorithm NAD.Enc
and the Bell measurement on nad.ct and ΨB. Therefore, it is clear that the probability distribution of the ciphertext and
the decryption key given to the adversary in Hyb2 is identical to that the ciphertext and the decryption key given to the
adversary in Hyb3.

Proof of Proposition 4.16. We assume that |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| is non-negligible, and construct an adver-
sary B that breaks the 1-bounded non-adaptive certified everlasting simulation-security of Σnad. Let us describe how B
works below.

46

1. B receives nad.MPK from the challenger of Expcert-ever-noada-sim
Σnad,B (λ, b), generates (nce.pk, nce.MSK) ←

NCE.Setup(1λ), and sends (nad.MPK, nce.pk) to A1.

2. A1 is allowed to call a key query at most one time. For a key query, B receives f from A1, sends f to the challenger
as a key query, receives nad.sk f from the challenger, computes nce.sk← NCE.KeyGen(nce.MSK), and sends
(nad.sk f , nce.sk) to A1.

3. A1 chooses m ∈ M and sends m to B.

4. B does the following.

• If a key query is called in step 2, B sends a challenge query m to the challenger, receives nad.ct from the chal-
lenger, generates a, c← {0, 1}n, Ψ := ZcXanad.ct XaZc and (nce.vk, nce.ct)← NCE.Enc(nce.pk, (a, c)),
and sends (Ψ, nce.ct) to A1.

• If a key query is not called in step 2, B generates
∣∣∣0̃n0n

〉
. Let ΨA := TrB(

∣∣∣0̃n0n
〉 〈

0̃n0n
∣∣∣) and

ΨB := TrA(
∣∣∣0̃n0n

〉 〈
0̃n0n

∣∣∣). B computes (nce.vk, ñce.ct , nce.aux) ← NCE.Fake(nce.pk) and sends

(ΨA, ñce.ct) to A1.

5. If a key query is not called in step 2, A1 is allowed to make a key query at most one time. If B receives an
function f as key query, B sends f to the challenger as key query, and receives nad.sk f from the challenger.
B sends a challenge query m to the challenger, receives nad.ct , measures the i-th qubit of nad.ct and ΨB

in the Bell basis, and let (xi, zi) be the measurement outcome for all i ∈ [n]. B computes ñce.sk ←
NCE.Reveal(nce.pk, nce.MSK, nce.aux, (x, z)) and sends (nad.sk f , ñce.sk) to A1.

6. If B does not receive a key query throughout the experiment, B sends a challenge query m to the challenger,
receives nad.ct , and measures the i-th qubit of nad.ct and ΨB in the Bell basis and let (xi, zi) be the measurement
outcome for all i ∈ [n].

7. A1 sends (nad.cert, nce.cert) to B and its internal state to A2.

8. B computes nad.cert∗ ← NAD.Recover(x∗, z∗, nad.cert), where (x∗, z∗) = (a, c) if a key query is called in
step 2 and (x∗, z∗) = (x, z) if a key query is not called in step 2. B sends nad.cert to the challenger, and receives
nad.MSK or ⊥ from the challenger. B computes NCE.Vrfy(nce.vk, nce.cert). If the result is ⊤ and B receives
nad.MSK from the challenger, B sends (nad.MSK, nce.MSK) to A2. Otherwise, B outputs ⊥, sends ⊥ to A2,
and aborts.

9. A2 outputs b′.

10. B outputs b′.

It is clear that Pr[1← B | b = 0] = Pr[Hyb3 = 1] and Pr[1← B | b = 1] = Pr[Hyb4 = 1]. By assumption,
|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| is non-negligible, and therefore |Pr[1← B | b = 0]− Pr[1← B | b = 1]| is non-
negligible, which contradicts the 1-bounded non-adaptive certified everlasting simulation-security of Σnad.

4.4 q-Bounded Construction with Adaptive Security for NC1 circuits
In this section, we construct a q-bounded FE with certified everlasting deletion scheme for all NC1 circuits from
1-bounded certified everlasting secure FE constructed in the previous subsection and Shamir’s secret sharing ([Sha79]).
Our construction is similar to that of standard FE for all NC1 circuits in [GVW12] except that we use 1-bounded certified
everlasting secure FE instead of standard 1-bounded FE.

47

Our q-bounded adaptive certified everlasting secure FE scheme for NC1 circuits. We consider the polynomial
representation of circuits C in NC1. The input message space isM := Fℓ, and for each NC1 circuit C, C(·) is an
ℓ-variate polynomial over F of total degree at most D. Let q = q(λ) be a polynomial of λ. Our scheme is associated
with additional parameters S = S(λ), N = N(λ), t = t(λ) and v = v(λ) that satisfy

t(λ) = Θ(q2λ), N(λ) = Θ(D2q2t), v(λ) = Θ(λ), S(λ) = Θ(vq2).

Let us define a family G := {GC,∆}C∈NC1,∆⊆[S], where

GC,∆(x, Z1, Z2, · · · , ZS) := C(x) + ∑
i∈∆

Zi

is a function and Z1, · · · , ZS ∈ F.
We construct a q-bounded certified everlasting secure FE scheme for all NC1 circuits Σcefe = (Setup, KeyGen, Enc,

Dec, Del , Vrfy) from a 1-bounded certified everlasting secure FE scheme Σone = ONE.(Setup, KeyGen, Enc, Dec, Del ,
Vrfy).

Setup(1λ):

• For i ∈ [N], generate (one.MPKi, one.MSKi)← ONE.Setup(1λ).
• Output MPK := {one.MPKi}i∈[N] and MSK := {one.MSKi}i∈[N].

KeyGen(MSK, C):

• Parse MSK = {one.MSKi}i∈[N].
• Chooses a uniformly random set Γ ⊆ [N] of size tD + 1.
• Chooses a uniformly random set ∆ ⊆ [S] of size v.
• For i ∈ Γ, compute one.skC,∆,i ← ONE.KeyGen(one.MSKi, GC,∆).
• Output skC := (Γ, ∆, {one.skC,∆,i}i∈Γ).

Enc(MPK, x):

• Parse MPK = {one.MPKi}i∈[N].
• For i ∈ [ℓ], pick a random degree t polynomial µi(·) whose constant term is x[i].
• For i ∈ [S], pick a random degree Dt polynomial ξi(·) whose constant term is 0.
• For i ∈ [N], compute (one.vki, one.ct i)← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))).
• Output vk = {one.vki}i∈[N] and ct := {one.ct i}i∈[N].

Dec(skC, ct):

• Parse skC = (Γ, ∆, {one.skC,∆,i}i∈Γ) and ct = {one.ct i}i∈[N].
• For i ∈ Γ, compute η(i)← ONE.Dec(one.skC,∆,i, one.ct i).
• Output η(0).

Del (ct):

• Parse ct = {one.ct i}i∈[N].
• For i ∈ [N], compute one.certi ← ONE.Del (one.ct i).
• Output cert := {one.certi}i∈[N].

Vrfy(vk, cert):

• Parse vk = {one.vki}i∈[N] and cert = {one.certi}i∈[N].
• For i ∈ [N], compute ⊤/⊥ ← ONE.Vrfy(one.vki, one.certi). If all results are ⊤, output ⊤. Otherwise,

output ⊥.

48

Correctness: Verification correctness easily follows from verification correctness of Σone. Let us show evaluation
correctness. By decryption correctness of Σone, for all i ∈ Γ we have

η(i) = GC,∆(µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))
= C(µ1(i), · · · , µℓ(i)) + Σa∈∆ξa(i).

Since |Γ| ≥ Dt + 1, this means that η is equal to the degree Dt polynomial

η(·) = C(µ1(·), · · · , µℓ(·)) + Σa∈∆ξa(·)

Hence η(0) = C(x1, · · · , xℓ) = C(x), which means that our construction satisfies evaluation correctness.

Security: The following two theorems hold.

Theorem 4.17. If Σone satisfies the 1-bounded adaptive simulation-security, Σcefe satisfies the q-bounded adaptive
simulation-security.

Its proof is similar to that of Theorem 4.18, and therefore we omit it.

Theorem 4.18. If Σone satisfies the 1-bounded adaptive certified everlasting simulation-security, Σcefe the q-bounded
adaptive certified everlasting simulation-security.

Proof of Theorem 4.18. Let us denote the simulating algorithm of Σone as ONE.Sim = ONE.(Sim1, Sim2, Sim3). Let
us describe how the simulator Sim = (Sim1, Sim2, Sim3) works below.

Sim1(MPK,V , 1|x|): Let q∗ be the number of times that A1 has made key queries before it sends a challenge query.

1. Parse MPK := {one.MPKi}i∈[N] and V := {Cj, Cj(x), (Γj, ∆j, {one.skCj ,∆j ,i}i∈[Γj]
)}j∈[q∗].

2. Generate a uniformly random set Γi ⊆ [N] of size Dt + 1 and a uniformly random set ∆i ⊆ [S] of size v
for all i ∈ {q∗ + 1, · · · , q}. Let ∆0 := ∅. Let L :=

⋃
i ̸=i′(Γi ∩ Γi′). Sim1 aborts if |L| > t or there exists

some i ∈ [q] such that ∆i \ (
⋃

j ̸=i ∆j) = ∅.
3. Sim1 uniformly and independently samples ℓ random degree t polynomials µ1, · · · , µℓ whose constant

terms are all 0.
4. Sim1 samples the polynomials ξ1, · · · , ξS as follows for j ∈ [q]:

• fix a∗ ∈ ∆j \ (∆0 ∪ · · · ∪ ∆j−1);
• for all a ∈ (∆j \ (∆0 ∪ · · · ∪ ∆j−1)) \ {a∗}, set ξa to be a uniformly random degree Dt polynomial

whose constant term is 0;
• if j ≤ q∗, pick a random degree Dt polynomial ηj(·) whose constant term is Cj(x); if j > q∗, pick

random values for ηj(i) for all i ∈ L;
• the evaluation of ξa∗ on the points in L is defined by the relation:

ηj(·) = Cj(µ1(·), · · · , µℓ(·)) + ∑
a∈∆j

ξa(·).

• Finally, for all a /∈ (∆1 ∪ · · · ∪ ∆q), set ξa to be a uniformly random degree Dt polynomial whose
constant term is 0.

5. For each i ∈ L, Sim1 computes

(one.vki, one.ct i)← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))).

6. For each i /∈ L, Sim1 does the following:

49

• If i ∈ Γj for some j ∈ [q∗] 19, computes

(one.ct i, one.sti)← ONE.Sim1(one.MPKi, (GCj ,∆j ,i, ηj(i), one.skCj ,∆j ,i), 1|m|).

• If i /∈ Γj for all j ∈ [q∗], computes

(one.ct i, one.sti)← ONE.Sim1(one.MPKi, ∅, 1|m|).

7. Output ct := {one.ct i}i∈[N] and st := ({Γi}i∈[q], {∆i}i∈[q], {ηj(i)}j∈{q∗+1,··· ,q},i∈L, {one.sti}i∈[N]\L,
{one.vki}i∈L).

Sim2(MSK, Cj, Cj(x), st): The simulator simulates the j-th key query for j > q∗.

1. Parse MSK := {one.MSKi}i∈[N] and stj−1 := ({Γi}i∈[q], {∆i}i∈[q], {ηs(i)}s∈{q∗+1,··· ,q},i∈L, {one.sti}i∈[N]\L,
{one.vki}i∈L).

2. For each i ∈ Γj ∩ L, generate one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j).

3. For each i ∈ Γj \ L, generate a random degree Dt polynomial ηj(·) whose constant term is Cj(x) and
subject to the constraints on the values in L chosen earlier, and generate

(one.skCj ,∆j ,i, one.st∗i)← ONE.Sim2(one.MSKi, ηj(i), GCj ,∆j , one.sti).

For simplicity, let us denote one.st∗i as one.sti for i ∈ Γj \ L.
4. Output skCj

:= (Γj, ∆j, {one.skCj ,∆j ,i}i∈Γj) and stj := ({Γi}i∈[q], {∆i}i∈[q], {ηj(i)}j∈{q∗+1,··· ,q},i∈L,
{one.sti}i∈[N]\L, {one.vki}i∈L).

Sim3(st∗): The simulator simulates a verification key.

1. Parse st∗ := ({Γi}i∈[q], {∆i}i∈[q], {ηj(i)}j∈{q∗+1,··· ,q},i∈L, {one.sti}i∈[N]\L, {one.vki}i∈L).

2. For each i ∈ [N] \ L, compute one.vki ← ONE.Sim3(one.sti).
3. Output vk := {one.vki}i∈[N].

Let us define the sequence of hybrids as follows.

Hyb0: This is identical to Expcert-ever-ada-sim
Σcefe,A (λ, 0).

1. The challenger generates (one.MPKi, one.MSKi)← ONE.Setup(1λ) for i ∈ [N].
2. A1 is allowed to call key queries at most q times. For the j-th key query, the challenger receives an

function Cj from A1, generates a uniformly random set Γj ∈ [N] of size Dt + 1 and ∆j ∈ [S] of size
v. For i ∈ Γj, the challenger generates one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j), and sends
(Γj, ∆j, {one.skCj ,∆j ,i}i∈Γj) to A1. Let q∗ be the number of times that A1 has called key queries in this step.

3. A1 chooses x ∈ M and sends x to the challenger.
4. The challenger generates a random degree t polynomial µi(·) whose constant term is x[i] for i ∈ [ℓ]

and a random degree Dt polynomial ξi(·) whose constant term is 0. For i ∈ [N], the challenger
computes (one.vki, one.ct i) ← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))), and sends
{one.ct i}i∈[N] to A1.

5. A1 is allowed to call a key query at most q− q∗ times. For the j-th key query, the challenger receives
an function Cj from A1, generates a uniformly random set Γj ∈ [N] of size Dt + 1 and ∆j ∈ [S] of
size v. For i ∈ Γj, the challenger generates one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j), and sends
(Γj, ∆j, {one.skCj ,∆j ,i}i∈Γj) to A1.

19Note that j is uniquely determined since i /∈ L .

50

6. A1 sends {one.certi}i∈[N] to the challenger and its internal state to A2.
7. If⊤ ← ONE.Vrfy(one.vki, one.certi) for all i ∈ [N], the challenger outputs⊤ and sends {one.MSKi}i∈[N]

to A2. Otherwise, the challenger outputs ⊥ and sends ⊥ to A2.
8. A2 outputs b.
9. The experiment outputs b if the challenger outputs ⊤. Otherwise, the experiment outputs ⊥.

Hyb1: This is identical to Hyb0 except for the following three points. First, the challenger generates uniformly random
set Γi ∈ [N] of size Dt + 1 and ∆i ∈ [S] of size v for i ∈ {q∗ + 1, · · · , q} in step 4 instead of generating them
when a key query is called. Second, if |L| > t, the challenger aborts and the experiment outputs ⊥. Third, if
there exists some i ∈ [q] such that ∆i \ (

⋃
j ̸=i ∆j) = ∅, the challenger aborts and the experiment outputs ⊥.

Hyb2: This is identical to Hyb1 except that the challenger samples ξ1, · · · , ξS, η1, · · · , ηq as in the simulator Sim1
described above.

Hyb3: This is identical to Hyb2 except that the challenger generates {one.ct i}i∈[N]\{L}, {one.skCj ,∆j ,i}i∈Γj for
j ∈ {q∗ + 1, · · · , q′}, and vk := {one.vki}i∈[N]\{L} as in the simulator Sim = (Sim1, Sim2, Sim3) described
above, where q′ is the number of key queries that the adversary makes in total.

Hyb4: This is identical to Hyb3 except that the challenger generates µ1, · · · , µℓ as in the simulator Sim1 described
above.

From the definition of Expcert-ever-ada-sim
Σcefe,A (λ, b) and Sim = (Sim1, Sim2, Sim3), it is clear that Pr[Hyb0 = 1] =

Pr
[
Expcert-ever-ada-sim

Σcefe,A (λ, 0) = 1
]

and Pr[Hyb4 = 1] = Pr
[
Expcert-ever-ada-sim

Σcefe,A (λ, 1) = 1
]
. Therefore, Theorem 4.18

easily follows from Propositions 4.19 to 4.22 (whose proofs are given later).

Proposition 4.19. |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Proposition 4.20. Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proposition 4.21. If Σone is 1-bounded adaptive certified everlasting simulation-secure,

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Proposition 4.22. Pr[Hyb3 = 1] = Pr[Hyb4 = 1].

Proof of Proposition 4.19. Let Hyb′0 be the experiment identical to Hyb0 except that the challenger generates a set
Γi ∈ [N] and ∆i ∈ [S] for i ∈ {q∗ + 1, · · · , q} in step 4. It is clear that Pr[Hyb0 = 1] = Pr

[
Hyb′0 = 1

]
.

Let Hyb∗0 be the experiment identical to Hyb′0 except that it outputs⊥ if |L| > t. It is clear that Pr
[
Hyb′0 = 1∧ (|L| ≤ t)

]
=

Pr[Hyb∗0 = 1∧ (|L| ≤ t)]. Hence, it holds that∣∣Pr
[
Hyb′0 = 1

]
− Pr[Hyb∗0 = 1]

∣∣ ≤ Pr[|L| > t]

from Lemma 2.3.
Let Collide be the event that there exists some i ∈ [q] such that ∆i \ (

⋃
j ̸=i ∆j) = ∅. Hyb∗0 is identical to Hyb1

when Collide does not occur. Hence, it is clear that Pr
[
Hyb∗0 = 1∧ Collide

]
= Pr

[
Hyb1 = 1∧ Collide

]
. Therefore, it

holds that

|Pr[Hyb∗0 = 1]− Pr[Hyb1 = 1]| ≤ Pr[Collide]

from Lemma 2.3.
From the discussion above, we have

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ Pr[|L| > t] + Pr[Collide].

The following Lemmata 4.23 and 4.24 shows that Pr[|L| > t] ≤ 2−Ω(λ) and Pr[Collide] ≤ q2−Ω(λ), which completes
the proof.

51

Lemma 4.23 ([GVW12]). Let Γ1, · · · , Γq ⊆ [N] be randomly chosen subsets of size tD + 1. Let t = Θ(q2λ) and
N = Θ(D2q2t). Then,

Pr

∣∣∣∣∣∣⋃i ̸=i′
(Γi ∩ Γi)

∣∣∣∣∣∣ > t

 ≤ 2−Ω(λ)

where the probability is over the random choice of the subsets Γ1, · · · , Γq.

Lemma 4.24 ([GVW12]). Let ∆1, · · · , ∆q ⊆ [S] be randomly chosen subsets of size v. Let v(λ) = Θ(λ) and
S(λ) = Θ(vq2). Let Collide be the event that there exists some i ∈ [q] such that ∆i\(

⋃
j ̸=i ∆j) = ∅. Then, we have

Pr [Collide] ≤ q2−Ω(λ)

where the probability is over the random choice of subsets ∆1, · · · , ∆q.

Proof of Proposition 4.20. In the encryption in Hyb1, ξa∗ is chosen at random and ηj(·) is defined by the relation. Sim
essentially chooses ηj(·) at random which defines ξa∗ . It is easy to see that reversing the order of how the polynomials
are chosen produces the same distribution.

Proof of Proposition 4.21. To prove the proposition, let us define a hybrid experiment Hyb2s for each s ∈ [N] as
follows.

Hybs
2: This is identical to Hyb2 except for the following three points. First, the challenger generates {one.ct i}i∈[s]\L as

in the simulator Sim1. Second, the challenger generates {one.skCj ,∆j ,i}i∈Γj∩[s] for j ∈ {q∗ + 1, · · · , q′} as in the
simulator Sim2, where q′ is the number of key queries that the adversary makes in total. Third, the challenger
generates {one.vki}i∈[s]\L as in the simulator Sim3.

Let us denote Hyb2 as Hyb0
2. It is clear that Pr

[
HybN

2 = 1
]
= Pr[Hyb3 = 1]. Furthermore, we can show that∣∣∣Pr

[
Hybs−1

2 = 1
]
− Pr[Hybs

2 = 1]
∣∣∣ ≤ negl(λ)

for s ∈ [N]. (Its proof is given later.) From these facts, we obtain Proposition 4.21.
Let us show the remaining one. In the case s ∈ L, it is clear that Hybs−1

2 is identical to Hybs
2. Hence, we consider

the case s /∈ L. To show the inequality above, let us assume that
∣∣∣Pr

[
Hybs−1

2 = 1
]
− Pr[Hybs

2 = 1]
∣∣∣ is non-negligible.

Then, we can construct an adversary B that can break the 1-bounded adaptive certified everlasting simulation-security of
Σone as follows.

1. B receives one.MPK from the challenger of Expcert-ever-ada-sim
Σone,A (λ, b). B sets one.MPKs := one.MPK.

2. B generates (one.MPKi, one.MSKi)← ONE.Setup(1λ) for all i ∈ [N] \ s, and sends {one.MPKi}i∈[N] to A1.

3. A1 is allowed to call key queries at most q times. For the j-th key query, B receives an function Cj from
A1, generates a uniformly random set Γj ∈ [N] of size Dt + 1 and ∆j ∈ [S] of size v. For i ∈ Γj \ s, B
generates one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j). If s ∈ Γj, B sends GCj ,∆j to the challenger, receives
one.skCj ,∆j ,s from the challenger, and sends (Γj, ∆j, {one.skCj ,∆j ,i}i∈Γj) to A1. Let q∗ be the number of times
that A1 has called key queries in this step.

4. A1 chooses x ∈ M, and sends x to B.

5. B generates uniformly random set Γi ∈ [N] of size Dt + 1 and ∆i ∈ [S] of size v for i ∈ {q∗ + 1, · · · , q}. B
generates a random degree t polynomial µi(·) whose constant term is x[i] for i ∈ [ℓ], and ξ1, · · · , ξS, η1, · · · , ηq
as in the simulator Sim1. For i ∈ [s − 1] \ L, B generates one.ct i as in the simulator Sim1. For i ∈ {s +
1, · · ·N} ∪ L, B generates (one.vki, one.ct i) ← ONE.Enc(one.MPKi, (µ1(i), · · · , µℓ(i), ξ1(i), · · · , ξS(i))).
B sends µ1(s), · · · , µℓ(s), ξ1(s), · · · , ξS(s) to the challenger, and receives one.ct s from the challenger. B sends
{one.ct i}i∈[N] to A1.

52

6. A1 is allowed to call key queries at most q− q∗ times. For the j-th key query, B receives an function Cj from A1.
For i ∈ Γj \ [s], B generates one.skCj ,∆j ,i ← ONE.KeyGen(one.MSKi, GCj ,∆j). For i ∈ Γj ∧ [s− 1], B generates
one.skCj ,∆j ,i as in the simulator Sim2. If s ∈ Γj, B sends GCj ,∆j to the challenger, and receives one.skCj ,∆j ,s from
the challenger. B sends (Γj, ∆j, {one.skCj ,∆j ,i}i∈Γj) to A1.

7. For i ∈ [s− 1] \ L, B generates one.vki as in the simulator Sim3 20.

8. A1 sends {one.certi}i∈[N] to B and its internal state to A2.

9. B sends one.certs to the challenger, and receives one.MSKs or⊥ from the challenger. B computes ONE.Vrfy(one.vki,
one.certi) for all i ∈ [N] \ s. If the results are ⊤ and B receives one.MSKs from the challenger, B sends
{one.MSKi}i∈[N] to A2. Otherwise, B aborts.

10. A2 outputs b′.

11. B outputs b′.

It is clear that Pr[1← B | b = 0] = Pr
[
Hybs−1

2 = 1
]

and Pr[1← B | b = 1] = Pr[Hybs
2 = 1]. By assumption,∣∣∣Pr

[
Hybs−1

2 = 1
]
− Pr[Hybs

2 = 1]
∣∣∣ is non-negligible, and therefore |Pr[1← B | b = 0]− Pr[1← B | b = 1]| is

non-negligible, which contradicts the 1-bounded adaptive certified everlasting simulation-security of Σone.

Proof of Proposition 4.22. In Hyb3, the polynomials µ1, · · · , µℓ are chosen with constant terms x1, · · · , xℓ, respectively.
In Hyb4, these polynomials are now chosen with 0 constant terms. This only affects the distribution of µ1, · · · , µℓ

themselves and polynomials ξ1, · · · , ξS. Moreover, only the evaluations of these polynomials on the points in L affect
the outputs of the experiments. Now observe that:

• The distribution of the values {µ1(i), · · · , µℓ(i)}i∈L are identical to both Hyb3 and Hyb4. This is because in
both experiments, we choose these polynomials to be random degree t polynomials (with different constraints in
the constant term), so their evaluation on the points in L are identically distributed, since |L| ≤ t.

• The values {ξ1(i), · · · , ξS(i)}i∈L depend only on the values {µ1(i), · · · , µℓ(i)}i∈L.

Proposition 4.22 follows from these observations.

4.5 Discussion on q-Bounded Consturction for All Circuits
We discuss technical hurdles to achieve certified everlasting secure bounded collusion-resistant FE for P/poly from
standard PKE.

Gorbunov, Vaikuntanathan, and Wee [GVW12] presented a conversion from FE for NC1 to FE for P/poly by
using randomized encoding or FHE. However, we cannot directly apply their techniques in the certified everlasting
setting. When we use randomized encoding, we use a functional decryption key for circuit G f that takes m as an
input and outputs a randomized encoding f̃ (m).21 That is, we can obtain f̃ (m) (and f (m) via a decoding algorithm)
from the functional decryption key and ciphertext of m since randomized encoding is computable in a constant-depth
circuit [AIK06].

The first problem is that even if we use certified everlasting secure FE for NC1, information about m remains in
f̃ (m) since the decryption result does not directly provide f (m). More specifically, adversaries can keep f̃ (m) (this is
classical information) before deletion and an unbounded adversary could recover m from f̃ (m) even after Enc(m) was
deleted.

The second problem is that we cannot use certified everlasting secure randomized encoding to solve the first problem
since we use FE for classical circuits here. In certified everlasting secure randomized encoding, f̃ (m) must be quantum

20For i ∈ {s + 1, · · ·N} ∪ L, B generated one.vki in step 5.
21For simplicity, we ignore how to set randomness for randomized encoding here since it is not an essential issue.

53

state, which cannot be supported by FE for classical circuits. We do not have certified everlasting secure FE that supports
quantum circuits computing quantum state. Moreover, we do not know how to achieve certified everlasting secure
randomized encoding. Thus, the approach using randomized encoding does not work.

The approach using FHE also has problems. In this approach, we consider a functional decryption key
for circuit G f that takes an FHE ciphertext fhe.ct and an FHE decryption key fhe.sk and outputs fhe.ct and
FHE.Dec(fhe.sk, FHE.Eval(f , fhe.ct)). Here, we must output fhe.ct as the public part because we use FE for
NC1 and need to apply f ∈ P/poly by FHE.Eval in the public part (though the FHE decryption part is in NC1).22 That
is, the FHE part must be also certified everlasting secure.

First, we cannot use certified everlasting secure FHE in a black-box way. We need to encrypt an FHE ciphertext by
FE for NC1 in this approach. However, if FHE is certified everlasting secure, a ciphertext is quantum state, which is not
supported by our certified everlasting secure FE for NC1.

Second, even if we use certified everlasting secure FHE in a non-black-box way like our compute-and-compare
obfuscation construction in Section 5.2 (by separating the classical FHE part from the BB84 state), the approach does
not work due to the following reason. To achieve certified everlasting security, fhe.ct is an encryption of m⊕⊕

i θi
where θ is a basis choice as in Section 5.2. To unmask

⊕
i θi, we need to coherently apply f to fhe.ct and BB84 state

as the certified everlasting secure FHE by Bartusek and Khurana [BK23]. However, we cannot execute the coherent
evaluation in the FE decryption mechanism (cannot take BB84 state as input). Hence, we obtain f (m⊕⊕

i θi) and the
correctness does not hold. Thus, the approach using FHE does not work too.

Another plausible (but failed) approach is using the framework by Ananth and Vaikuntanathan [AV19]. They
constructed bounded collusion-resistant FE for P/poly without the bootstrapping method by Gorbunov et al. [GVW12].
However, their construction heavily relies on a secure multi-party computation protocol based on PRG. It is hard to
define certified everlasting security for PRG because there is nothing to delete. Thus, it is unclear how to use their
framework in the certified everlasting setting.

Therefore, previous approaches for converting FE for NC1 to FE for P/poly do not work in the certified everlasting
setting.

5 Compute-and-Compare Obfuscation with Certified Everlasting Deletion
5.1 Definition
In this section, we introduce the notion of compute-and-compare obfuscation with certified everlasting security.

Definition 5.1 (Compute-and-Compare Obfuscation with Certified Everlasting Deletion (Syntax)). A compute-and-
compare obfuscation with certified everlasting deletion is a tuple of algorithms (CCObf , Del , Vrfy) for the family of
distributions D = {Dparam}param and message spaceM.

CCObf (1λ, P, lock, m): The obfuscation algorithm takes as input a security parameter 1λ, a circuit P, a lock string
lock ∈ {0, 1}p(λ) and a message m ∈ M, and outputs an obfuscated circuit P̃ and a verification key vk.

Del (P̃)→ cert: The deletion algorithm takes as input an obfuscated circuit P̃ and outputs a classical certificate cert.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes as input the verification key vk and a certificate cert, and
outputs ⊤ or ⊥.

Definition 5.2 (Correctness of Compute-and-Compare Obfuscation with Certified Everlasting Deletion). The
correctness of compute-and-compare obfuscation with certified everlasting deletion for the family of distributions
D = {Dparam}param and message spaceM is defined as follows.

Functionality Preserving: There exists a negligible function negl such that for all circuit P, all lock value lock, and
all message m ∈ M, it holds that

Pr
[
∀x, P̃ (x) = CC[P, lock, m](x) | P̃ ← CCObf (1λ, P, lock, m)

]
≥ 1− negl(λ).

22See [GVW12] for the detail.

54

Verification Correctness: There exists a negligible function negl such that for all circuit P, all lock value lock, and all
message m ∈ M, it holds that

Pr
[
Vrfy(vk, cert) ̸= ⊤

∣∣∣∣ (P̃ , vk)← CCObf (1λ, P, lock, m)
cert← Del (P̃)

]
≤ negl(λ).

Definition 5.3 (Certified Everlasting Security of Compute-and-Compare Obfuscation). Let ΣCCO = (CCObf , Del , Vrfy)
be a compute-and-compare obfuscation with certified everlasting deletion for the family of distributions D =
{Dparam}param and a message spaceM. We consider experiments EV-Expsim-ccobf

ΣCCO, A (λ, b) and C-Expsim-ccobf
ΣCCO, A (λ, b)

played between a challenger and a non-uniform QPT adversary A = {Aλ, |ψ⟩λ}λ∈N. Let Sim be a QPT algorithm.
The experiments are defined as follows:

1. Aλ(|ψ⟩λ) submits a message m ∈ M to the challenger.

2. The challenger chooses (P, lock, aux)← Dparam.

3. The challenger computes (P̃ (0), vk(0)) ← CCObf (1λ, P, lock, m) or (P̃ (1), vk(1)) ← Sim(1λ, ppP, 1|m|) and
sends (P̃ (b), aux) to Aλ according to the bit b. Recall that a program P has an associated set of parameters ppP
(input size, output size, circuit size) which we do not need to hide.

4. Aλ submits a certificate of deletion cert and its internal state ρ to the challenger.

5. The challenger computes Vrfy(vk(b), cert). If the outcome is ⊤, the experiment EV-Expsim-ccobf
ΣCCO, A (λ, b) outputs ρ;

otherwise if the outcome is ⊥ then EV-Expsim-ccobf
ΣCCO, A (λ, b) outputs ⊥ and ends.

6. The challenger sends the outcome of Vrfy(vk(b), cert) to Aλ.

7. Aλ outputs its guess b′ ∈ {0, 1} which is the output of the experiment C-Expsim-ccobf
ΣCCO, A (λ, b).

We say that the ΣCCO is certified everlasting secure if for any non-uniform QPT adversary A = {Aλ, |ψ⟩λ}λ∈N, it
holds that

TD(EV-Expsim-ccobf
ΣCCO, A (λ, 0), EV-Expsim-ccobf

ΣCCO, A (λ, 1)) ≤ negl(λ),

and ∣∣∣Pr
[
C-Expsim-ccobf

ΣCCO, A (λ, 0) = 1
]
− Pr

[
C-Expsim-ccobf

ΣCCO, A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

5.2 Construction
In this section, we construct a compute-and-compare obfuscation with certified everlasting deletion from classical
compute-and-compare obfuscation and FHE.

Ingredients. We use the following building blocks.

1. Σfhe = FHE.(KeyGen, Enc, Eval, Dec) be a classical FHE scheme.

2. ΣCCO = CC.Obf be a classical compute-and-compare obfuscation scheme.

55

Certified everlasting compute-and-compare obfuscation for multi-bit message. We construct ΣCECCO = (CCObf ,
Del , Vrfy) for the family of distribution D = {Dparam}param and message space M. We let the message space
M := {0, 1}n.

CCObf (1λ, P, lock, m):

1. Sample R← {0, 1}λ.
2. Sample (fpk, fsk)← FHE.KeyGen(1λ).

3. Compute f̃Dec← CC.Obf(1λ, fDec, R, 1) where fDec(·) = FHE.Dec(fsk, ·).
4. Compute Ĩ ← CC.Obf(1λ, I, lock, R) where I(X) = X for every X.

5. Represent (P∥ Ĩ) = (b1, . . . , bℓ) ∈ {0, 1}ℓ.
6. Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ].

7. Set b̃i := bi ⊕
⊕

j:θi,j=0 zi,j for all i ∈ [ℓ].

8. Denote m = (m1, . . . , mn) ∈ {0, 1}n.
9. Sample θℓ+k, zℓ+k ← {0, 1}λ for all k ∈ [n].

10. Set b̃ℓ+k := mk ⊕
⊕

j:θℓ+k,j=0 zℓ+k,j for all k ∈ [n].

11. Compute fcti ← FHE.Enc(fpk, (θi, b̃i)) for all i ∈ [ℓ+ n].

12. Output P̃ := (f̃Dec, {(|zi⟩θi
, fcti)}i∈[ℓ+n], fpk) and vk := ({zi, θi}i∈[ℓ+n]).

How to evaluate P̃ (x):

1. Parse P̃ := (f̃Dec, {(|zi⟩θi
, fcti)}i∈[ℓ+n], fpk).

2. Define a circuit Ûx as in Figure 2.
3. To compute an evaluated ciphertext for FHE.Eval(fpk, Ûx, ·), apply Ûx homomorphically in superposition

with the input ({(|zi⟩θi
, fcti)}i∈[ℓ], (|zℓ+k⟩θℓ+k

, fctℓ+k)) and obtain a ciphertext
∣∣fctℓ+k,P

〉
for each

k ∈ [n].

4. Apply f̃Dec(·) in superposition with the input
∣∣fctℓ+k,P

〉
and measure the output register in the standard

basis to get a classical outcome βk for each k ∈ [n].
5. Set mk = 1 if βk = 1, else set mk = 0, for each k ∈ [n].
6. Output m = (m1, . . . , mn).

Del (P̃):

1. Parse P̃ := (f̃Dec, {(|zi⟩θi
, fcti)}i∈[ℓ+n], fpk).

2. Measure |zi⟩θi
in the Hadamard basis for all i ∈ [ℓ+ n], and obtain (z′1, . . . , z′ℓ+n).

3. Output cert := (z′1, . . . , z′ℓ+n).

Vrfy(vk, cert):

1. Parse vk = ({(zi, θi)}i∈[ℓ+n]) and cert = (z′1, . . . , z′ℓ+n).

2. If
(
(zi,j = z′i,j) ∧ (θi,j = 1)

)
holds for all i ∈ [ℓ+ n] and j ∈ [λ], then output ⊤; otherwise output ⊥.

56

Circuit Ûx

Hardwire: x
Input: ({(zi, θi, b̃i)}i∈[ℓ], (zℓ+k, θℓ+k, b̃ℓ+k))

1. Compute bi := b̃i ⊕
⊕

j:θi,j=0 zi,j for all i ∈ [ℓ].

2. Reconstruct (C∥ Ĩ) from (b1, . . . , bℓ).

3. Compute mk := b̃ℓ+k ⊕
⊕

j:θℓ+k,j=0 zℓ+k,j.

4. Output mk · Ĩ(C(x))

Figure 2: The description of the circuit Ûx

Security. We use Lemma 3.5 by Bartusek and Khurana [BK23] to prove the security of our construction.

Theorem 5.4. If ΣCCO is a secure compute-and-compare obfuscation and Σfhe is an IND-CPA secure fully homomorphic
encryption then ΣCECCO is a certified everlasting secure compute-and-compare obfuscation scheme for the family of
distribution D = {Dparam}param.

Proof of Theorem 5.4. We first describe the simulator of CCObf , denoted as Sim , before we go to the formal security
analysis. Let CCO.Sim be the simulator the classical compute-and-compare obfuscation employed as a building block
in the above construction. For (P, lock, aux)← Dparam, the algorithm Sim works as follows:

Sim(1λ, ppP, 1n):

1. Sample R← {0, 1}λ.
2. Sample (fpk, fsk)← FHE.KeyGen(1λ).

3. Compute f̃Dec← CC.Obf(1λ, fDec, R, 1).
4. Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ+ n].

5. Set b̃i := 0⊕⊕
j:θi,j=0 zi,j for all i ∈ [ℓ+ n].

6. Compute fcti ← FHE.Enc(fpk, (θi, b̃i)) for all i ∈ [ℓ+ n].

7. Output P̃ := (f̃Dec, {(|zi⟩θi
, fcti)}i∈[ℓ+n], fpk) and vk := ({zi, θi}i∈[ℓ+n]).

Note that Sim does not need information about (P, lock, aux) except ppP. We show that

TD(EV-Expsim-ccobf
ΣCECCO, A(λ, 0), EV-Expsim-ccobf

ΣCECCO, A(λ, 1)) ≤ negl(λ).

using Lemma 3.5 and the post-quantum security of ΣCCO and Σfhe. We use the following sequence of hybrids to prove
this.

Hyb0: This is the same as EV-Expsim-ccobf
ΣCECCO, A(λ, 0). Let P̃ (0) := (f̃Dec, {(|zi⟩θi

, fcti)}i∈[ℓ+n], fpk) be the compute-
and-compare obfuscated circuit computed using the honest CCObf algorithm.

Hyb1: This hybrid works as follows:

1. A submits a message m ∈ {0, 1}n to the challenger.
2. The challenger chooses (P, lock, aux)← Dparam.
3. The challenger computes the obfuscated circuit as follows:

57

(a) Sample (fpk, fsk)← FHE.KeyGen(1λ) and R← {0, 1}λ.
(b) Compute f̃Dec← CC.Obf(1λ, fDec, R, 1).
(c) Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ+ n].
(d) Set b̃i := 0⊕⊕

j:θi,j=0 zi,j for i ∈ [ℓ].

(e) Set b̃ℓ+k := mk ⊕
⊕

j:θℓ+k,j=0 zℓ+k,j for all k ∈ [n].

(f) Compute fcti ← FHE.Enc(fpk, (θi, b̃i)) for all i ∈ [ℓ+ n].
(g) Set P̃ := (f̃Dec, {(|zi⟩θi

, fcti)}i∈[ℓ+n], fpk).

The challenge sends P̃ to A .
4. A sends a deletion certificate cert := (z′1, . . . , z′ℓ+n) and its internal state ρ to the challenger.

5. The challenger checks if
(
(zi,j = z′i,j) ∧ (θi,j = 1)

)
holds for all i ∈ [ℓ+ n] and j ∈ [λ]. If the check fails,

the experiment halts and returns ⊥; otherwise, go to the next step.
6. The experiment outputs ρ as a final output.

Note that, the FHE ciphertexts {fcti}i∈[ℓ] contain no information about the lock value lock, the random string
R and the circuit P. To prove the indistinguishability between Hyb0 and Hyb1, we consider a sequence of
intermediate hybrids Hyb1,k for k ∈ [0, ℓ] where Hyb1,0 is identical to Hyb0 and the only difference between
Hyb1,k−1 and Hyb1,k is that fctk is an encryption of (θk, bk ⊕

⊕
j:θk,j=0 zk,j) where bk in Hyb1,k−1 is the same as

bk in Hyb0 and bk in Hyb1,k is set to zero for k ∈ [ℓ].

Now, we consider a sequence of experiments Expt1,k
B,C (λ, θ, β) for k ∈ [ℓ] between a QPT adversary B and a

challenger C for θ ∈ {0, 1}λ and β ∈ {0, 1}. The experiment Expt1,k
B,C (λ, θ, β) is basically the same as Hyb1,k

where we take θk = θ, b̃k = β and B plays the role of A , C plays the role of the challenger. In particular, it works
as follows:

Expt1,k
B,C (λ, θ, β):

1. B submits a message m ∈ M to the challenger.
2. The challenger chooses (P, lock, aux)← Dparam.
3. The challenger computes the obfuscated circuit as follows:

(a) Sample (fpk, fsk)← FHE.KeyGen(1λ) and R← {0, 1}λ.
(b) Compute f̃Dec← CC.Obf(1λ, fDec, R, 1).
(c) Compute Ĩ ← CC.Obf(1λ, I, lock, R).
(d) Represent (P∥ Ĩ) = (b1, . . . , bℓ) ∈ {0, 1}ℓ.
(e) Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ+ n] \ {k}.
(f) Set b̃i for i ∈ [ℓ] as follows:

b̃i :=


0⊕⊕

j:θi,j=0 zi,j if i ∈ [1, k− 1]

β if i = k
bi ⊕

⊕
j:θi,j=0 zi,j if i ∈ [k + 1, ℓ]

.

(g) Set b̃ℓ+k := mk ⊕
⊕

j:θℓ+k,j=0 zℓ+k,j for all k ∈ [n].

(h) Compute fcti ← FHE.Enc(fpk, (θi, b̃i)) for all i ∈ [ℓ+ n] where θk := θ.

The challenge sends (f̃Dec, {(|zi⟩θi
, fcti)}i∈[ℓ+n]\{k}, fctk, fpk) to B.

4. B outputs a bit b′ as the final output of the experiment.

58

Let us define Z k
λ(θ) = Expt1,k

B,C (λ, θ, β). We first show that∣∣∣Pr
[
Z k

λ(θ) = 1
]
− Pr

[
Z k

λ(0λ) = 1
]∣∣∣ ≤ negl(λ). (5)

Z k,1
λ : This is exactly the same as Z k

λ(θ) except the challenger uses the bits of Ĩ ← CC.Sim(1λ, ppI , 1|R|)
instead of Ĩ ← CC.Obf(1λ, I, lock, R) to set b̃i for all i ∈ [k + 1, ℓ]. The indistinguishability between the
distributions Z k

λ(θ) and Z k,1
λ follows from the post-quantum security of the classical compute-and-compare

obfuscation scheme ΣCCO.
Z k,2

λ : This is exactly the same as Z k,1
λ except the challenger replaces f̃Dec ← CC.Obf(1λ, fDec, R, 1) with

the simulated obfuscated circuit f̃Dec ← CC.Sim(1λ, ppfDec, 11). The indistinguishability between the
distributions Z k,1

λ and Z k,2
λ follows from the post-quantum security of the classical compute-and-compare

scheme ΣCCO.
Z k,3

λ : This is exactly the same as Z k,2
λ except the challenger computes fctk ← FHE.Enc(fpk, (0λ, b̃k)) instead

of encrypting (θ, b̃k). The indistinguishability between the distributions Z k,2
λ and Z k,3

λ follows from the
post-quantum security of Σfhe.

Z k,4
λ : This is exactly the same as Z k,3

λ except the challenger replaces f̃Dec← CC.Sim(1λ, ppfDec, 11) with the
real obfuscated circuit f̃Dec← CC.Obf(1λ, fDec, R, 1). The indistinguishability between the distributions
Z k,3

λ and Z k,4
λ follows from the post-quantum security of the classical compute-and-compare obfuscation

scheme ΣCCO.
Z k,5

λ : This is exactly the same as Z k,4
λ except the challenger uses the bits of Ĩ ← CC.Obf(1λ, I, lock, R) instead

of Ĩ ← CC.Sim(1λ, ppI , 11) to set b̃i for all i ∈ [k + 1, ℓ]. The indistinguishability between the distributions
Z k,4

λ and Z k,5
λ follows from the post-quantum security of the classical compute-and-compare obfuscation

scheme ΣCCO.

Observe that, the distributionsZ k,5
λ andZ k

λ(0λ) are identical. Hence, Equation (5) holds for all k ∈ [ℓ]. Therefore,
by Lemma 3.5, for any (unbounded) adversary B ′ we have

TD(Ẽxpt1,k
B ′ ,C (λ, 0), Ẽxpt1,k

B ′ ,C (λ, 1)) ≤ negl(λ) (6)

where the experiment Z̃ k
λ(b) = Ẽxpt1,k

B ′ ,C (λ, b) works as follows:

Ẽxpt1,k
B ′ ,C (λ, b) :

1. Sample z, θ ← {0, 1}λ.
2. B ′ receives (1λ, |z⟩θ) as input.

3. B ′ interacts with C as in Expt1,k
B,C (λ, θ, b⊕⊕

j:θi,j=0 zi,j) where B ′ plays the role of B.

4. B ′ outputs a string z′ ∈ {0, 1}λ and a quantum state ρ.
5. If zj = z′j for all j ∈ [λ] such that θj = 1 then the experiment outputs ρ, and otherwise it outputs a special

symbol ⊥.

Note that the only difference between Hyb1,k−1 and Hyb1,k is that b̃k is set to be bk ⊕
⊕

j:θi,j=0 zi,j in Hyb1,k−1

and 0⊕⊕
j:θi,j=0 zi,j in Hyb1,k. Let us assume bk = 1, since otherwise Hyb1,k−1 and Hyb1,k are identical. We

construct B ′ that distinguishes Ẽxpt1,k
B ′ ,C (λ, 0) and Ẽxpt1,k

B ′ ,C (λ, 1) if A distinguishes between the hybrids Hyb1,k−1
and Hyb1,k.

B ′(1λ, |z⟩θ):

59

1. B ′ plays the role of A in Hyb1,k where the external challenger C of Ẽxpt1,k
B ′ ,C (λ, b) is used to simulate the

challenger of Hyb1,k. C sends the obfuscated circuit to A .
2. Suppose A sends a certificate cert = (z′1, . . . , z′ℓ) to the challenger where z′i = (z′i,j)j∈[λ] for all i ∈ [ℓ].

Then, B ′ sets z′ := z′k.
3. Outputs z′ and the internal state ρ of A .

We observe that B ′ perfectly simulates Hyb1,k−1 if b = 1 and Hyb1,k if b = 0 (since we are assuming bk = 1).
Therefore, we can write

TD(Hyb1,k−1, Hyb1,k) ≤ TD(Z̃ k
λ(0), Z̃ k

λ(1)). (7)

Combining Equations (6) and (7), we have

TD(Hyb1,k−1, Hyb1,k) ≤ negl(λ). (8)

Recall that Hyb1,0 ≡ Hyb0 and Hyb1,ℓ ≡ Hyb1. Therefore, combining the advantages of A in the sequence of
intermediate hybrids as obtained in Equation 8, we have

TD(Hyb0, Hyb1) ≤ negl(λ).

Hyb2: This is exactly the same as Hyb1 except the fact that instead of encrypting the challenge message m ∈ {0, 1}n

the FHE ciphertexts {fctℓ+k}k∈[n] are encrypted to the message 0n. More precisely, the challenger samples
θℓ+k, zℓ+k ← {0, 1}λ and sets b̃ℓ+k := 0 ⊕⊕

j:θℓ+k,j=0 zℓ+k,j for all k ∈ [n] instead of setting b̃ℓ+k :=

mk ⊕
⊕

j:θℓ+k,j=0 zℓ+k,j. Finally, it obtains fctℓ+k ← FHE.Enc(fpk, (θℓ+k, b̃ℓ+k)) for all k ∈ [n] where the
encrypted bits {b̃ℓ+k}k∈[n] contain no information about the message m. Since the FHE master secret key fsk
is not required to simulate the hybrids, the indistinguishability between Hyb1 and Hyb2 is guaranteed by the
post-quantum semantic security of FHE. We can follow a similar argument as in the previous hybrid and show that

TD(Hyb1, Hyb2) ≤ negl(λ).

We observe that Hyb2 is equivalent to EV-Expsim-ccobf
ΣCECCO, A(λ, 1). Therefore, by combing the advantages of A in the

consecutive hybrids and applying the triangular inequality, we have

TD(EV-Expsim-ccobf
ΣCECCO, A(λ, 0), EV-Expsim-ccobf

ΣCECCO, A(λ, 1)) ≤ negl(λ).

Finally, it is easy to show the computational indistinguishability, i.e.,∣∣∣Pr
[
C-Expsim-ccobf

ΣCECCO, A(λ, 0) = 1
]
− Pr

[
C-Expsim-ccobf

ΣCECCO, A(λ, 1) = 1
]∣∣∣ ≤ negl(λ)

using the security of FHE and the post-quantum security of CCO. We skip the formal description as it follows from the
similar sequence of hybrids that we used to establish Equation (5) except that fctk is changed from encryption of (θ, b̃k)

to (θ, 0⊕⊕
j:θk,j=0 zk,j) (instead of changing it from (θ, b̃k) to (0λ, b̃k) in Z k,3

λ). This completes the proof.

6 Predicate Encryption with Certified Everlastng Deletion
6.1 Definition
We describe the notion of PE with certified everlasting deletion which generates a quantum ciphertext that can be deleted
when required and the deletion is verified using a classical certificate of deletion.

Definition 6.1 (PE with Ceritifed Everlasting Deletion (Syntax)). A certified everlasting PE is tuple of QPT algorithms
(Setup, KeyGen, Enc, Dec, Del , Vrfy) with a class predicates P , a class of attributes X and a message spaceM.

60

Setup(1λ)→ (pk, msk): The parameter setup algorithm takes as input the security parameter 1λ and outputs a public
key pk and a master secret key msk.

KeyGen(msk, P): The key generation algorithm takes as input the master secret key msk and a predicate P ∈ P , and
outputs a secret key skP corresponding to the predicate P.

Enc(pk, x, m)→ (ct , vk): The encryption algorithm takes as input the public key pk, an attribute x ∈ X and a message
m ∈ M, and outputs a quantum ciphertext ct and a classical verification key vk.

Dec(skP, ct)→ m′ or ⊥: The decryption algorithm takes as input a secret key skP and a quantum ciphertext ct , and
outputs a classical plaintext m′ or ⊥.

Del (ct)→ cert: The deletion algorithm takes as input the ciphertext ct and outputs a classical certificate cert.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes as input the verification key vk and a certificate cert, and
outputs ⊤ or ⊥.

Definition 6.2 (Correctness of PE with Certified Everlasting Deletion). The correctness of PE with certified deletion
for a class of predicates P is defined as follows.

Decryption correctness: For any λ ∈N, P ∈ P , x ∈ X , m ∈ M such that P(x) = 1,

Pr

Dec(skP, ct) ̸= m

∣∣∣∣∣∣
(pk, msk)← Setup(1λ)
skP ← KeyGen(msk, P)
(ct , vk)← Enc(pk, m)

 ≤ negl(λ).

Verification correctness: For any λ ∈N, x ∈ X , m ∈ M,

Pr

Vrfy(vk, cert) ̸= ⊤

∣∣∣∣∣∣
(pk, msk)← Setup(1λ)
(ct , vk)← Enc(pp, x, m)
cert← Del (ct)

 ≤ negl(λ).

Definition 6.3 (Certified Everlasting Security of PE). Let Σ = (Setup, KeyGen, Enc, Dec, Del , Vrfy) be a PE with
certified everlasting deletion for a class of predicates P , a class of attributes X and a message spaceM. We consider
two experiments EV-Expada-ind

Σ, A (λ, b) and C-Expada-ind
Σ, A (λ, b) played between a challenger and and a non-uniform QPT

adversary A = {Aλ, |ψ⟩λ}λ∈N. The experiments are defined as follows:

1. The challenger computes (pk, msk)← Setup(1λ) and sends pk to Aλ(|ψ⟩λ).

2. Aλ sends P ∈ P to the challenger and receives skP ← KeyGen(msk, P) from the challenger.

3. Aλ sends a pair of challenge attributes (x0, x1) and a pair of challenge messages (m0, m1) satisfying the fact
that P(x0) = P(x1) = 0 for all P queried so far in the key query phase.

4. The challenger computes (ct b, vkb)← Enc(pk, xb, mb) and sends ct b to Aλ.

5. Aλ can make further key queries with P satisfying P(x0) = P(x1) = 0.

6. Aλ sends a certificate of deletion cert and its internal state ρ to the challenger.

7. The challenger computes Vrfy(vkb, cert). If the outcome is ⊤, the experiment EV-Expada-ind
Σ, A (λ, b) outputs ρ;

otherwise if the outcome is ⊥ then EV-Expada-ind
Σ, A (λ, b) output ⊥ and ends.

8. The challenger sends the outcome of Vrfy(vk(b), cert) to Aλ.

9. Again, Aλ can make key queries with polynomial number of policies P satisfying P(x0) = P(x1) = 0.

61

10. Aλ outputs its guess b′ ∈ {0, 1} which is the output of the experiment C-Expada-ind
Σ, A (λ, b).

We say that the Σ is adaptively certified everlasting secure if for any non-uniform QPT adversary A = {Aλ, |ψ⟩λ}λ∈N,
it holds that

TD(EV-Expada-ind
Σ, A (λ, 0), EV-Expada-ind

Σ, A (λ, 1)) ≤ negl(λ),

and ∣∣∣Pr
[
C-Expada-ind

Σ, A (λ, 0) = 1
]
− Pr

[
C-Expada-ind

Σ, A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

We can define similar experiment EV-Expsel-ind
Σ, A (λ, b) and C-Expada-ind

Σ, A (λ, b) where Aλ is restricted to submit the
challenge attributes x0, x1 before it receives pk from the challenger. We say that the Σ is selectively certified everlasting
secure if for any non-uniform QPT adversary A = {Aλ, |ψ⟩λ}λ∈N, it holds that

TD(EV-Expsel-ind
Σ, A (λ, 0), EV-Expsel-ind

Σ, A (λ, 1)) ≤ negl(λ),

and ∣∣∣Pr
[
C-Expsel-ind

Σ, A (λ, 0) = 1
]
− Pr

[
C-Expsel-ind

Σ, A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

6.2 Construction
In this section, we construct a PE with certified everlasting deletion from a compute-and-compare obfuscation wiht
certified everlasting deletion introduced in Section 5 and a classical ABE.

Ingredients. We use the following building blocks.

1. Σabe = ABE.(Setup, KeyGen, Enc, Dec) be a classical ABE scheme for a class of predicates P and message
spaceMabe = {0, 1}λ+1.

2. ΣCECCO = CCO.(Obf , Del , Vrfy) be a compute-and-compare obfuscation with certified everlasting deletion for
a message spaceMpe and the family of distributions D = {Dapk,x,{θi}i ,{zi}i

}apk,x,{θi}i ,{zi}i
.

Let D = {Dapk,x,{θi}i ,{zi}i
}apk,x,{θi}i ,{zi}i

be a family of distributions where Dapk,x,{θi}i ,{zi}i
outputs (aDec, lock, aux)

generated as follows.

• Generate acti ← ABE.Enc(apk, x, (θi,
⊕

j:θi,j=0 zi,j)) for all i ∈ [ℓ].

• Construct aDec described in Figure 3.

• Choose lock← {0, 1}ℓ = K.

• Output (aDec, lock, aux := ⊥).

PE with certified everlasting deletion. We construct Σpe-ce = (Setup, KeyGen, Enc, Dec, Del , Vrfy) for a class of
predicates P , a class of attributes X and a message spaceMpe.

Setup(1λ)

1. Sample (apk, amsk)← ABE.Setup(1λ).

2. Output (pk := apk, msk := amsk).

62

Hardwire: {acti}i∈[ℓ]
Input: ({zi}i∈[ℓ], skP)

1. Compute (θi, r̃i)← ABE.Dec(skP, acti) for all i ∈ [ℓ].

2. Compute ri = r̃i ⊕
⊕

j:θi,j=0 zi,j for all i ∈ [ℓ].

3. Set R := (r1, . . . , rℓ)

4. Output R

Figure 3: The description of the circuit aDec

KeyGen(msk, P)

1. Parse msk = amsk.

2. Compute skP ← ABE.KeyGen(amsk, P).

3. Output skP.

Enc(apk, x, m)

1. Parse pk = apk.

2. Sample R← {0, 1}ℓ and denote R = (r1, . . . , rℓ).

3. Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ].

4. Set r̃i := ri ⊕
⊕

j:θi,j=0 zi,j for all i ∈ [ℓ].

5. Compute acti ← ABE.Enc(apk, x, (θi, r̃i)) for all i ∈ [ℓ].

6. (ãDec, vkaDec)← CCO.Obf (1λ, aDec, R, m) where aDec is defined in Figure 3.

7. Output ct := (ãDec, {|zi⟩θi
}i∈[ℓ]) and vk := ({(zi, θi)}i∈[ℓ], vkaDec).

Dec(skP, ct)

1. Parse ct = (ãDec, {|zi⟩θi
}i∈[ℓ]).

2. Apply ãDec in superposition to the input ({|zi⟩θi
}i∈[ℓ], skP) and measure the output register to obtain m′.

3. Output m′.

Del (ct)

1. Parse ct = (ãDec, {|zi⟩θi
}i∈[ℓ]).

2. Measure |zi⟩θi
in the Hadamard basis for all i ∈ [ℓ] and obtain z′ := (z′1, . . . , z′ℓ).

3. Compute certaDec ← CCO.Del (ãDec).

4. Output cert := (z′, certaDec).

63

Vrfy(vk, cert)

1. Parse vk := ({(zi, θi)}i∈[ℓ], vkaDec) and cert := (z′, certaDec).

2. If (zi,j = z′i,j) ∧ (θi,j = 1) holds for all i ∈ [ℓ] and j ∈ [λ] and CCO.Vrfy(vkaDec, certaDec) = ⊤, then output
⊤; otherwise output ⊥.

Theorem 6.4. If ΣCECCO is a certified everlasting secure compute-and-compare obfuscation for a message spaceMpe
and the family of distributions D = {Dapk,x,{θi}i ,{zi}i

}apk,x,{θi}i ,{zi}i
and Σabe is an adaptively (resp. selectively)

secure ABE for a class of predicates P , then Σpe-ce is an adaptively (resp. selectively) certified everlasting secure
predicate encryption scheme for the class of predicates P , message spaceMpe.

We focus on the case of adaptive security.

Proof. To prove the theorem we consider an adversary A against the certified everlasting security of Σpe-ce. We consider
the following sequence of hybrids.

Hyb0 : This is the original certified everlasting security experiment where the challenge bit is set to 0 (EV-Expada-ind
Σpe-ce, A(λ, 0)).

More precisely, it works as follows:

1. The challenger computes (apk, amsk)← ABE.Setup(1λ), sets pk := apk, and sends pk to A .
2. The adversary A sends any polynomial number of secret key queries for P ∈ P at any point of the experiment.

The challenger generates skP ← ABE.KeyGen(amsk, P) and sends skP to A .
3. A sends a pair of challenge attributes (x0, x1) and a pair of challenge messages (m0, m1) satisfying the fact

that P(x0) = P(x1) = 0 for all P queried so far in the key query phase.
4. The challenger computes the challenge ciphertext as follows:

(a) Sample R∗ = (r1, . . . , rℓ)← {0, 1}ℓ.
(b) Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ] where θi = (θi,j)j∈[λ] and zi = (zi,j)j∈[λ].
(c) Set r̃i := ri ⊕

⊕
j:θi,j=0 zi,j for all i ∈ [ℓ].

(d) Compute acti ← ABE.Enc(apk, x0, (θi, r̃i)) for all i ∈ [ℓ].
(e) (ãDec, vkaDec)← CCO.Obf (1λ, aDec, R∗, m0) where aDec is defined in Figure 3.
(f) Set ct∗ := (ãDec, {|zi⟩θi

}i∈[ℓ]) and vk := ({(zi, θi)}i∈[ℓ], vkaDec).
The challenger sends ct∗ to A .

5. A sends a certificate cert = (z′ = (z′1, . . . , z′ℓ), certaDec) and its internal state ρ to the challenger where
z′i = (z′i,j)j∈[λ] for all i ∈ [ℓ].

6. The challenger checks if (zi,j = z′i,j)∧ (θi,j = 1) holds for all i ∈ [ℓ] and j ∈ [λ] and CCO.Vrfy(vkaDec, certaDec) =

⊤. If it does not hold, the challenger outputs ⊥ as the final output of the experiment. Otherwise, go to the
next step.

7. The experiment outputs ρ as a final output.

Hyb1 : This hybrid proceeds exactly similar to Hybd0 except that the ABE ciphertexts acti is now replaced
with encryption of zero string. In particular, the hardwired values of aDec are computed as acti ←
ABE.Enc(apk, x0, (θi, 0⊕⊕

j:θi,j=0 zi,j)) for all i ∈ [ℓ].

To prove the indistinguishability between Hyb0 and Hyb1, we consider a sequence of intermediate hybrids Hyb1,k
for k ∈ [ℓ] where we take Hyb1,0 is identical to Hyb0 and the only difference between Hyb1,k−1 and Hyb1,k is that
actk is an encryption of (θk, rk ⊕

⊕
j:θk,j=0 zk,j) in Hyb1,k−1 whereas it is an encryption of (θk, 0⊕⊕

j:θk,j=0 zk,j)

in Hyb1,k.

Now, we consider a sequence of experiments Expt1,k
B,C (λ, θ, β) for k ∈ [ℓ] between a QPT adversary B and a

challenger C for θ ∈ {0, 1}λ and β ∈ {0, 1}. The experiment Expt1,0
B,C (λ, θ, β) is basically the same as Hyb0

where B plays the role of A and C plays the role of the challenger. In particular, it works as follows:

64

Expt1,k
B,C (λ, θ, β) :

1. C computes (apk, amsk)← ABE.Setup(1λ), sets pk := apk, and sends pk to B.
2. B sends any polynomial number of secret key queries for P ∈ P at any point of the experiment and C

generates skP ← ABE.KeyGen(amsk, P) and sends skP to B.
3. B sends a pair of challenge attributes (x0, x1) and a pair of challenge messages (m0, m1) satisfying the fact

that P(x0) = P(x1) = 0 for all P queried so far in the key query phase.
4. C computes the challenge ciphertext as follows:

(a) Sample R∗ = (r1, . . . , rℓ)← {0, 1}ℓ.
(b) Sample zi, θi ← {0, 1}λ for all i ∈ [ℓ] \ {k} where θi = (θi,j)j∈[λ] and zi = (zi,j)j∈[λ].
(c) Set r̃i as follows:

r̃i :=


0⊕⊕

j:θi,j=0 zi,j if i ∈ [1, k− 1]

β if i = k
ri ⊕

⊕
j:θi,j=0 zi,j if i ∈ [k + 1, ℓ]

.

(d) Compute acti as follows:

acti ←
{

ABE.Enc(apk, x0, (θ, r̃k)) if i = k
ABE.Enc(apk, x0, (θi, r̃i)) if i ∈ [ℓ] \ {k}

.

(e) (ãDec, vkaDec)← CCO.Obf (1λ, aDec, R∗, m0) where aDec is defined in Figure 3.
The challenger sends (ãDec, {|zi⟩θi

}i∈[ℓ]\{k}) to B.

5. B outputs a bit b′ as the final output of the experiment.

Since all the secret keys skP corresponding to predicates P queried by the adversary satisfy the condition that
P(x0) = 0, the semantic security of ABE ensures that∣∣∣Pr

[
Expt1,k

B,C (λ, θ, β) = 1
]
− Pr

[
Expt1,k

B,C (λ, 0λ, β) = 1
]∣∣∣ ≤ negl(λ).

Therefore, by Lemma 3.7, for any QPT (unbounded) adversary B ′, we have

TD(Ẽxpt1,k
B ′ ,C (λ, 0), Ẽxpt1,k

B ′ ,C (λ, 1)) ≤ negl(λ) (9)

where the experiment Ẽxpt1,k
B ′ ,C (λ, b) works as follows:

Ẽxpt1,k
B ′ ,C (λ, b) :

1. Sample z, θ ← {0, 1}λ.
2. B ′ takes (1λ, |z⟩θ) as input.

3. B ′ interacts with C as in Expt1,k
B,C (λ, θ, b⊕⊕

j:θi,j=0 zi,j) where B ′ plays the role of B.

4. B ′ outputs a string z′ ∈ {0, 1}λ and a quantum state ρ.
5. If zj = z′j for all j ∈ [λ] such that θj = 1 then the experiment outputs ρ, and otherwise it outputs a special

symbol ⊥.

Note that the only difference between Hyb1,k−1 and Hyb1,k is that r̃k is set to be rk ⊕
⊕

j:θi,j=0 zi,j in Hyb1,k−1
and 0⊕⊕

j:θi,j=0 zi,j in Hyb1,k. Let us assume rk = 1, since if rk is 0 then Hyb1,k−1 and Hyb1,k are identical. We

construct B ′ that distinguishes Ẽxpt1,k
B ′ ,C (λ, 0) and Ẽxpt1,k

B ′ ,C (λ, 1) if A distinguishes between the hybrids Hyb1,k−1
and Hyb1,k.

65

B ′(1λ, |z⟩θ) :

1. B ′ plays the role of A in Hyb1,k where the external challenger C of Ẽxpt1,k
B ′ ,C (λ, b) is used to simulate the

challenger of Hyb1,k. C provides everything that should be sent to A (as in Hyb0).
2. Suppose A sends a certificate cert = ((z′1, . . . , z′ℓ), certaDec) to the challenger where z′i = (z′i,j)j∈[λ] for

all i ∈ [ℓ]. Then, B ′ sets z′ = z′k.
3. Outputs z′ and the internal state ρ of A which it sends to A2.

We observe that B ′ perfectly simulates Hyb1,k if b = 0 and Hyb1,k−1 if b = 1 (since we are assuming rk = 1).
Therefore, we can write

TD(Hyb1,k−1, Hyb1,k) ≤ TD(Ẽxpt1,k
B ′ ,C (λ, 0), Ẽxpt1,k

B ′ ,C (λ, 1)). (10)

Combining Equations 9 and 10, we have

TD(Hyb1,k−1, Hyb1,k) ≤ negl(λ). (11)

Recall that Hyb1,0 ≡ Hyb0 and Hyb1,ℓ ≡ Hyb1. Therefore, combining the advantages of A in the sequence of
intermediate hybrids as obtained in Equation 11, we have

TD(Hyb0, Hyb1) ≤ negl(λ).

Hyb2 : This hybrid proceeds exactly similar to Hyb1 except that the obfuscated circuit is now replaced with a
simulated version of it. In particular, ãDec ← CCO.Obf (1λ, aDec, R∗, m0) is replaced with the circuit ãDec ←
CCO.Sim(1λ, ppaDec, 1|mb |). In particular, the hybrid works as follows:

1. The challenger computes (apk, amsk)← ABE.Setup(1λ), sets pk := apk, and sends pk to A .
2. The adversary A sends any polynomial number of secret key queries for P ∈ P at any point of the experiment.

The challenger generates skP ← ABE.KeyGen(amsk, P) and sends skP to A .
3. A sends a pair of challenge attributes (x0, x1) and a pair of challenge messages (m0, m1) satisfying the fact

that P(x0) = P(x1) = 0 for all P queried so far in the key query phase.
4. The challenger computes the challenge ciphertext as follows:

(a) Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ] where θi = (θi,j)j∈[λ] and zi = (zi,j)j∈[λ].

(b) ãDec ← CCO.Sim(1λ, ppaDec, 1|mb |) where aDec is defined in Figure 3. (Note that, we do not need to
compute ABE ciphertexts since we only require the lengths of a ABE ciphertext in order to calculate
ppaDec.)

(c) Set ct∗ := (ãDec, {|zi⟩θi
}i∈[ℓ]) and vk := ({(zi, θi)}i∈[ℓ], vkaDec).

The challenger sends ct∗ to A .
5. A sends a certificate cert = (z′ = (z′1, . . . , z′ℓ), certaDec) and its internal state ρ to the challenger where

z′i = (z′i,j)j∈[λ] for all i ∈ [ℓ].

6. The challenger checks if (zi,j = z′i,j) ∧ (θi,j = 1) holds for all i ∈ [ℓ] and j ∈ [λ] and CCO.Vrfy(vkaDec,
certaDec) = ⊤. If it does not hold, the challenger outputs⊥ as the final output of the experiment. Otherwise,
go to the next step.

7. The experiment outputs ρ as a final output.

Since the information of lock string R∗ is not used in generating the ABE ciphertexts acti, the certified everlasting
security of compute-and-compare obfuscation guarantees that Hyb1 and Hyb2 are indistinguishable to A . In other
words, we have

TD(Hyb1, Hyb2) ≤ negl(λ).

66

Hyb3 : This hybrid proceeds exactly similar to Hyb2 except that the simulated circuit is now replaced with a honestly
obfuscated version of it. In particular, the obfuscated circuit is computed as ãDec ← CCO.Obf (1λ, aDec, R∗, m1)
where the circuit aDec is defined using the hardwired values acti ← ABE.Enc(apk, x1, (θi, 0⊕⊕

j:θi,j=0 zi,j)).
In particular, the hybrid works as follows:

1. The challenger computes (apk, amsk)← ABE.Setup(1λ), sets pk := apk, and sends pk to A .
2. The adversary A sends any polynomial number of secret key queries for P ∈ P at any point of the experiment.

The challenger generates skP ← ABE.KeyGen(amsk, P) and sends skP to A .
3. A sends a pair of challenge attributes (x0, x1) and a pair of challenge messages (m0, m1) satisfying the fact

that P(x0) = P(x1) = 0 for all P queried so far in the key query phase.
4. The challenger computes the challenge ciphertext as follows:

(a) Sample R∗ = (r1, . . . , rℓ)← {0, 1}ℓ.
(b) Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ] where θi = (θi,j)j∈[λ] and zi = (zi,j)j∈[λ].
(c) Set r̃i := 0⊕⊕

j:θi,j=0 zi,j for all i ∈ [ℓ].
(d) Compute acti ← ABE.Enc(apk, x1, (θi, r̃i)) for all i ∈ [ℓ].
(e) ãDec ← CCO.Obf (1λ, aDec, R∗, m1) where aDec is defined in Figure 3.
(f) Set ct∗ := (ãDec, {|zi⟩θi

}i∈[ℓ]) and vk := ({(zi, θi)}i∈[ℓ], vkaDec).

The challenger sends ct∗ to A .
5. A sends a certificate cert = (z′ = (z′1, . . . , z′ℓ), certaDec) and its internal state ρ to the challenger where

z′i = (z′i,j)j∈[λ] for all i ∈ [ℓ].

6. The challenger checks if (zi,j = z′i,j) ∧ (θi,j = 1) holds for all i ∈ [ℓ] and j ∈ [λ] and CCO.Vrfy(vkaDec,
certaDec) = ⊤. If it does not hold, the challenger outputs⊥ as the final output of the experiment. Otherwise,
go to the next step.

7. The experiment outputs ρ as a final output.

By similar argument as in the previous hybrid, the hybrids Hyb2 and Hyb3 are indistinguishable by the certified
everlasting security of compute-and-compare obfuscation. In other words, we have

TD(Hyb2, Hyb3) ≤ negl(λ).

Hyb4 : This hybrid proceeds exactly similar to Hyb3 except that the ABE ciphertexts acti is now replaced with
encryption of (θi, r̃i) where r̃i := ri ⊕

⊕
j:θi,j=0 zi,j for all i ∈ [ℓ]. In particular, the hybrid works as follows:

1. The challenger computes (apk, amsk)← ABE.Setup(1λ), sets pk := apk, and sends pk to A .
2. The adversary A sends any polynomial number of secret key queries for P ∈ P at any point of the experiment.

The challenger generates skP ← ABE.KeyGen(amsk, P) and sends skP to A .
3. A sends a pair of challenge attributes (x0, x1) and a pair of challenge messages (m0, m1) satisfying the fact

that P(x0) = P(x1) = 0 for all P queried so far in the key query phase.
4. The challenger computes the challenge ciphertext as follows:

(a) Sample R∗ = (r1, . . . , rℓ)← {0, 1}ℓ.
(b) Sample θi, zi ← {0, 1}λ for all i ∈ [ℓ] where θi = (θi,j)j∈[λ] and zi = (zi,j)j∈[λ].
(c) Set r̃i := ri ⊕

⊕
j:θi,j=0 zi,j for all i ∈ [ℓ].

(d) Compute acti ← ABE.Enc(apk, x1, (θi, r̃i)) for all i ∈ [ℓ].
(e) ãDec ← CCO.Obf (1λ, aDec, R∗, m1) where aDec is defined in Figure 3.
(f) Set ct∗ := (ãDec, {|zi⟩θi

}i∈[ℓ]) and vk := ({(zi, θi)}i∈[ℓ], vkaDec).

67

The challenger sends ct∗ to A .
5. A sends a certificate cert = (z′ = (z′1, . . . , z′ℓ), certaDec) and its internal state ρ to the challenger where

z′i = (z′i,j)j∈[λ] for all i ∈ [ℓ].

6. The challenger checks if (zi,j = z′i,j) ∧ (θi,j = 1) holds for all i ∈ [ℓ] and j ∈ [λ] and CCO.Vrfy(vkaDec,
certaDec) = ⊤. If it does not hold, the challenger outputs⊥ as the final output of the experiment. Otherwise,
go to the next step.

7. The experiment outputs ρ as a final output.

Since all the secret keys skP corresponding to predicates P queried by the adversary satisy the condition
that P(x1) = 0, we can depend on the semantic security of ABE and show that the hybrids Hyb3 and Hyb4
are indistinguishable from A’s point of view using the similar argument that we used while establishing the
indistinguishability between the hybrids Hyb0 and Hyb1. In other words, we have

TD(Hyb3, Hyb4) ≤ negl(λ).

Finally, we note that Hyb4 is the original certified everlasting experiment of Σpe-ce where the challenge bit is set to 1.
Therefore, combing the advantages of A in the consecutive hybrids and applying the triangular inequality, we have

TD(Hyb0, Hyb4) ≤ negl(λ).

Finally, it is easy to show the computational indistinguishability, i.e.,∣∣∣Pr
[
C-Expada-ind

Σpe-ce, A(λ, 0) = 1
]
− Pr

[
C-Expada-ind

Σpe-ce, A(λ, 1) = 1
]∣∣∣ ≤ negl(λ).

We skip the formal description as it follows from the security of ABE and the security of CECCO. We can erase
information about R = (r, . . . , rℓ) by the security of ABE. Then, we can apply the security of CECCO. This completes
the proof.

Acknowledgement
TM is supported by JST Moonshot JPMJMS2061-5-1-1, JST FOREST, MEXT QLEAP, the Grant-in-Aid for Scientific
Research (B) No.JP19H04066, the Grant-in Aid for Transformative Research Areas (A) 21H05183, and the Grant-in-Aid
for Scientific Research (A) No.22H00522. TH is supported by JSPS research fellowship and by JSPS KAKENHI No.
JP22J21864.

References
[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adaptive

security in functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 657–677. Springer, Heidelberg, August 2015. (Cited on page 15.)

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption:
New perspectives and lower bounds. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 500–518. Springer, Heidelberg, August 2013. (Cited on page 36.)

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-classical
oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 269–295. Springer, Heidelberg, August 2019. (Cited on page 16.)

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing polynomials
and their applications. Computational Complexity, 15(2):115–162, 2006. (Cited on page 53.)

68

[AKYY23] Shweta Agrawal, Simran Kumari, Anshu Yadav, and Shota Yamada. Broadcast, trace and revoke
with optimal parameters from polynomial hardness. In Carmit Hazay and Martĳn Stam, editors,
EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 605–636. Springer, Heidelberg, April 2023.
(Cited on page 5.)

[AL21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 501–530. Springer,
Heidelberg, October 2021. (Cited on page 14.)

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches for quantum
copy-protection. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS,
pages 526–555, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 15.)

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: Attacks and fixes
for noisy linear FE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 110–140. Springer, Heidelberg, May 2020. (Cited on page 4, 15, 23.)

[AS16] Prabhanjan Vĳendra Ananth and Amit Sahai. Functional encryption for turing machines. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 125–153. Springer,
Heidelberg, January 2016. (Cited on page 7, 83, 86.)

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure functional encryption.
In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 174–198.
Springer, Heidelberg, December 2019. (Cited on page 4, 54.)

[AYY22] Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based encryption and predicate
encryption. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 590–621. Springer, Heidelberg, August 2022. (Cited on page 5.)

[BCKM21] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. On the round complexity of
secure quantum computation. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume
12825 of LNCS, pages 406–435, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 11.)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011. (Cited on page 5, 16.)

[BG20] Anne Broadbent and Alex B. Grilo. QMA-hardness of consistency of local density matrices with
applications to quantum zero-knowledge. In 61st FOCS, pages 196–205. IEEE Computer Society Press,
November 2020. (Cited on page 14.)

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014. (Cited on page 22.)

[BGG+23] James Bartusek, Sanjam Garg, Vipul Goyal, Dakshita Khurana, Giulio Malavolta, Justin Raizes, and
Bhaskar Roberts. Obfuscation and outsourced computation with certified deletion. Cryptology ePrint
Archive, Report 2023/265, 2023. https://eprint.iacr.org/2023/265. (Cited on page 6.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6:1–6:48, 2012.
(Cited on page 23.)

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: Provable security against
zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240
of LNCS, pages 544–574. Springer, Heidelberg, November 2018. (Cited on page 15, 23.)

69

https://eprint.iacr.org/2023/265

[BI20] Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 92–122. Springer,
Heidelberg, November 2020. (Cited on page 4, 14, 20, 21.)

[BJL+21] Anne Broadbent, Stacey Jeffery, Sébastien Lord, Supartha Podder, and Aarthi Sundaram. Secure software
leasing without assumptions. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I, volume
13042 of LNCS, pages 90–120. Springer, Heidelberg, November 2021. (Cited on page 15.)

[BK23] James Bartusek and Dakshita Khurana. Cryptography with certified deletion. In Helena Handschuh
and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual International
Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings,
Part V, volume 14085 of Lecture Notes in Computer Science, pages 192–223. Springer, 2023. (Cited on
page 6, 7, 8, 12, 13, 14, 25, 26, 27, 37, 39, 54, 57.)

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011.
(Cited on page 4.)

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. SIAM Journal on Computing, 43(2):831–871, 2014. (Cited on page 23.)

[CCP18] California consumer privacy act. 2018. (Cited on page 4.)

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In 28th ACM STOC, pages 639–648. ACM Press, May 1996. (Cited on page 76.)

[CHK05] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive public-key encryption.
In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 150–168. Springer, Heidelberg, February
2005. (Cited on page 76.)

[CHVW19] Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Matrix PRFs: Constructions, attacks,
and applications to obfuscation. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 55–80. Springer, Heidelberg, December 2019. (Cited on page 15, 23.)

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and applications to
unclonable cryptography. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 556–584, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 6.)

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model. Cryptology ePrint Archive, Report
2020/1194, 2020. https://eprint.iacr.org/2020/1194. (Cited on page 15.)

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs. Traitor-tracing from
LWE made simple and attribute-based. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part II, volume 11240 of LNCS, pages 341–369. Springer, Heidelberg, November 2018. (Cited on page 5.)

[FFMV23] Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key and multi-input
predicate encryption from learning with errors. In Carmit Hazay and Martĳn Stam, editors, EURO-
CRYPT 2023, Part III, volume 14006 of LNCS, pages 573–604. Springer, Heidelberg, April 2023. (Cited
on page 5.)

[GDP16] Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection
of natural persons with regard to the processing of personal data and on the free movement of such data,
and repealing directive 95/46 (general data protection regulation). Official Journal of the European Union
(OJ), pages 1–88, 2016. (Cited on page 4.)

70

https://eprint.iacr.org/2020/1194

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer,
Heidelberg, May 2014. (Cited on page 6, 28, 76, 79.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal on Computing,
45(3):882–929, 2016. (Cited on page 4, 7, 15.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, 1986. (Cited on page 17.)

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop homomorphic encryption and rerandomizable
Yao circuits. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 155–172. Springer,
Heidelberg, August 2010. (Cited on page 10.)

[GJO16] Vipul Goyal, Aayush Jain, and Adam O’Neill. Multi-input functional encryption with unbounded-message
security. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of
LNCS, pages 531–556. Springer, Heidelberg, December 2016. (Cited on page 6.)

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans, editor, 58th
FOCS, pages 612–621. IEEE Computer Society Press, October 2017. (Cited on page 4, 5, 13, 15, 24.)

[GMM17] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds on obfuscation from
all-or-nothing encryption primitives. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 661–695. Springer, Heidelberg, August 2017. (Cited on page 4.)

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008. (Cited on page 20.)

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013. (Cited
on page 23.)

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 162–179. Springer, Heidelberg, August 2012. (Cited on page 4, 10, 12, 15,
36, 37, 38, 47, 52, 53, 54.)

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits.
Journal of the ACM, 62(6):45:1–45:33, 2015. (Cited on page 22.)

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 503–523. Springer, Heidelberg, August 2015. (Cited on page 5, 15.)

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. (Cited on page 17.)

[HMNY21] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Quantum encryption with
certified deletion, revisited: Public key, attribute-based, and classical communication. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 606–636. Springer,
Heidelberg, December 2021. (Cited on page 4, 14, 20.)

71

[HMNY22a] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified everlasting
functional encryption. Cryptology ePrint Archive, Report 2022/969, 2022. https://eprint.iacr.
org/2022/969. (Cited on page 6.)

[HMNY22b] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified everlasting
zero-knowledge proof for QMA. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part I, volume 13507 of LNCS, pages 239–268. Springer, Heidelberg, August 2022. (Cited on page 4, 10,
14, 97, 98, 99.)

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Introducing
concurrency, removing erasures. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 221–242. Springer, Heidelberg, May 2000. (Cited on page 76.)

[JLS21] Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.
In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages 60–73. ACM Press,
June 2021. (Cited on page 4, 15.)

[JLS22] Aayush Jain, Huĳia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over Fp, DLIN, and
PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume
13275 of LNCS, pages 670–699. Springer, Heidelberg, May / June 2022. (Cited on page 4, 15.)

[Klu22] Kamil Kluczniak. Lockable obfuscation from circularly insecure fully homomorphic encryption. In
Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part II, volume 13178 of
LNCS, pages 69–98. Springer, 2022. (Cited on page 6, 15.)

[KN22] Fuyuki Kitagawa and Ryo Nishimaki. Functional encryption with secure key leasing. In Asiacrypt 2022,
2022. (Cited on page 14.)

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively secure and
succinct functional encryption: Improving security and efficiency, simultaneously. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–551.
Springer, Heidelberg, August 2019. (Cited on page 10, 77, 104.)

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software leasing from standard
assumptions. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I, volume 13042 of LNCS,
pages 31–61. Springer, Heidelberg, November 2021. (Cited on page 15.)

[KNY23] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Publicly verifiable deletion from minimal
assumptions. In Guy N. Rothblum and Hoeteck Wee, editors, Theory of Cryptography - 21st International
Conference, TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part IV, volume
14372 of Lecture Notes in Computer Science, pages 228–245. Springer, 2023. (Cited on page 5, 7.)

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 146–162. Springer, Heidelberg, April 2008. (Cited on page 5.)

[KT20] Srĳita Kundu and Ernest Tan. Composably secure device-independent encryption with certified deletion.
arXiv, 2011.12704, 2020. (Cited on page 4, 14.)

[LC97] Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really possible? Phys. Rev. Lett.,
78:3410–3413, 1997. (Cited on page 4.)

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, April 2009. (Cited on page 10, 17.)

[May97] Dominic Mayers. Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett.,
78:3414–3417, 1997. (Cited on page 4.)

72

https://eprint.iacr.org/2022/969
https://eprint.iacr.org/2022/969

[MW18] Sanketh Menda and John Watrous. Oracle separations for quantum statistical zero-knowledge.
arXiv:1801.08967, 2018. (Cited on page 4.)

[Por23] Alexander Poremba. Quantum proofs of deletion for learning with errors. In Yael Tauman Kalai,
editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023,
MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 90:1–90:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023. (Cited on page 4, 14.)

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM, 56(6):34:1–34:40, 2009. (Cited on page 20.)

[Sha79] Adi Shamir. How to share a secret. cacm, 22(11):612–613, nov 1979. (Cited on page 47.)

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2004. https://eprint.iacr.org/2004/332. (Cited on page 16.)

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public keys. In
Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010, pages 463–472.
ACM Press, October 2010. (Cited on page 10, 39.)

[Unr15] Dominique Unruh. Revocable quantum timed-release encryption. J. ACM, 62(6):49:1–49:76, 2015.
(Cited on page 4, 10, 14, 16, 98, 99, 100, 102.)

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryption. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
678–697. Springer, Heidelberg, August 2015. (Cited on page 15.)

[Win99] Andreas J. Winter. Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory,
45(7):2481–2485, 1999. (Cited on page 25.)

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE. In Chris
Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society Press, October 2017. (Cited on
page 4, 5, 13, 15, 24.)

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986. (Cited on page 10, 111.)

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 239–268. Springer, Heidelberg, August 2019. (Cited on page 16.)

A Omitted Proofs for Collusion-Resistant FE
We prove the adaptive security of our collusion-resistant scheme CED in Section 3.3. That is, we show∣∣∣Pr

[
C-Expada-ind

CED, A(λ, 0) = 1
]
− Pr

[
C-Expada-ind

CED, A(λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Let A be a QPT adversary against the adaptive security. We consider the following sequence of hybrids.

Hyb0: This is the original adaptive security experiment where the challenge bit is set to be 0. Specifically, it works as
follows:

1. The challenger generates (fe.MPK, fe.MSK) ← FE.Setup(1λ), sets MPK := fe.MPK and MSK :=
fe.MSK, and sends MPK to A .

73

https://eprint.iacr.org/2004/332

2. A can make arbitrarily many key queries at any point of the experiment. When it makes a key query f , the
challenger generates fe.skg[f] ← FE.KeyGen(fe.MSK, g[f]) and returns sk f = fe.skg[f] to A .

3. A sends (m(0), m(1)) to the challenger.23 It must satisfy f (m(0)) = f (m(1)) for all key queries f that are
made before or after sending (m(0), m(1)).

4. The challenger generates (ct , vk)← Enc(MPK, m(0)). Specifically,
(a) Generate zi, θi ← {0, 1}λ for every i ∈ [2n + 1].
(b) Generate ui,j,b ← {0, 1}λ and compute vi,j,b ← PRG(ui,j,b) for every i ∈ [2n + 1], j ∈ [λ] and

b ∈ {0, 1} and set U = (ui,j,b)i∈[2n+1],j∈[λ],b∈{0,1} and V := (vi,j,b)i∈[2n+1],j∈[λ],b∈{0,1}.
(c) Generate a state

∣∣ψi,j
〉

:=

{ ∣∣zi,j
〉 ∣∣∣ui,j,zi,j

〉
if θi,j = 0

|0⟩
∣∣ui,j,0

〉
+ (−1)zi,j |1⟩

∣∣ui,j,1
〉

if θi,j = 1

where θi,j (resp. zi,j) is the j-th bit of θi (resp. zi) for every i ∈ [2n + 1] and j ∈ [λ].
(d) Generate

βi :=

{
m(0)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

0⊕⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n + 1]

.

(e) Generate fe.ct← FE.Enc(fe.MPK, V∥θ1∥ . . . ∥θ2n+1∥β1∥ . . . ∥β2n+1).
(f) Set ct = (fe.ct,

⊗
i∈[2n+1],j∈[λ]

∣∣ψi,j
〉
) and vk = (U, (zi, θi)i∈[2n+1]).

The challenger sends ct to A .
5. If A sends a certificate of deletion cert, the challenger computes Vrfy(vk0, cert) and sends the result to A .
6. Again, the challenger answers key queries from A .
7. When A outputs a bit b′, the experiment outputs b′ if fℓ(m0) = fℓ(m1) holds for all key queries fℓ.

Hyb1: This is identical to Hyb0 except that vi,j,1⊕zi,j is uniformly chosen from {0, 1}2λ instead of being set to be
PRG(ui,j,1⊕zi,j) for all i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 0.

Hyb2: This is identical to Hyb1 except that (βi)i∈[2n+1] is generated as

βi :=

{
m(1)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

0⊕⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n + 1]

.

Hyb3: This is identical to Hyb2 except that vi,j,b is set to be PRG(ui,j,b) for all i ∈ [2n + 1], j ∈ [λ], and b ∈ {0, 1}.

Note that Hyb3 is identical to the original adaptive security experiment where the challenge bit is set to be 1. Thus, we
only have to prove

|Pr[Hyb0 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ). (12)

We prove Equation (12) by the following lemmata.

Lemma A.1. If PRG is a secure PRG,

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).
23We use (m(0), m(1)) instead of (m0, m1) to denote a pair of challenge messages to avoid a notational collision.

74

Proof. Noting that ui,j,1⊕zi,j for i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 0 is used only for generating vi,j,1⊕zi,j

in Hyb0, Lemma A.1 directly follows from the security of PRG. Note that we can simulate Vrfy(vk0, cert) where
cert = (ci,j, di,j)i,j since we need {zi,j}i,j and {ui,j,b}i,j,b such that θi,j = 1 for verification.

Lemma A.2. If FE is adaptively secure,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof. For each i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 0, there is no u such that PRG(u) = vi,j,1⊕zi,j except
for probability 2−λ. Let Good be the event that the above holds for all i ∈ [2n + 1] and j ∈ [λ]. We have
Pr[Good] ≥ 1− (2n + 1)λ2−λ = 1− negl(λ). We prove that whenever Good occurs, we have

g[f]((V, θ1, . . . , θ2n+1, β
(0)
1 , . . . , β

(0)
2n+1), (bi,j, ui,j)i∈[2n+1],j∈[λ]) (13)

=g[f]((V, θ1, . . . , θ2n+1, β
(1)
1 , . . . , β

(1)
2n+1), (bi,j, ui,j)i∈[2n+1],j∈[λ])

for all key queries f and (bi,j, ui,j)i∈[2n+1],j∈[λ] where

β
(a)
i :=

{
m(a)

i ⊕
⊕

j:θi,j=0 zi,j if i ∈ [n]

0⊕⊕
j:θi,j=0 zi,j if i ∈ [n + 1, 2n + 1]

for a ∈ {0, 1}. If this is proven, Lemma A.2 directly follows from the adaptive security of FE.
Below, we prove Equation (13). We consider the following two cases.

• If PRG(ui,j) = vi,j,bi,j
holds for every i ∈ [2n + 1] and j ∈ [λ], then by the assumption that Good occurs, we

have bi,j = zi,j for all i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 0. Then we have β
(a)
i ⊕

⊕
j:θi,j=0 bi,j = m(a)

i for

i ∈ [n] and β
(a)
2n+1 ⊕

⊕
j:θ2n+1,j=0 b2n+1,j = 0 for a ∈ {0, 1}. Then the LHS of Equation (13) is equal to f (m(0))

and the RHS of Equation (13) is equal to f (m(1)). By the restriction on A in the adaptive security experiment,
we have f (m(0)) = f (m(1)). Therefore, both sides of Equation (13) are equal to f (m(0)) = f (m(1)).

• Otherwise, both sides of Equation (13) are equal to ⊥.

In either case, Equation (13) holds. Note that we can simulate Vrfy(vkb, cert) where cert = (ci,j, di,j)i,j since we need
{zi,j}i,j and {ui,j,b}i,j,b such that θi,j = 1 for verification. This completes the proof of Lemma A.2.

Lemma A.3. If PRG is a secure PRG,

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Proof. Noting that ui,j,1⊕zi,j for i ∈ [2n + 1] and j ∈ [λ] such that θi,j = 0 is used only for generating vi,j,1⊕zi,j

in Hyb3, Lemma A.1 directly follows from the security of PRG. Note that we can simulate Vrfy(vk1, cert) where
cert = (ci,j, di,j)i,j since we need {zi,j}i,j and {ui,j,b}i,j,b such that θi,j = 1 for verification.

B Adaptively Secure Public-Slot PKFE
In this section, we present an adaptively secure public-slot PKFE scheme based on

• Selectively secure PKFE,

• Selectively single-key function private SKFE, and

• Adaptively single-key single-ciphertext public-slot SKFE.

75

We need to show how to achieve adaptively single-key single-ciphertext public-slot SKFE since it is an essentail
building block. Our adaptively secure public-slot PKFE scheme is presented in Appendix B.4.

We present an adaptively single-key single-ciphertext public-slot SKFE scheme based on

• Selectively single-key single-ciphertext public-slot SKFE and

• Receiver non-committing encryption

in Appendix B.3.
We also present a selectively secure single-ciphertext SKFE with public scheme based on IO and OWFs. This

construction uses an MIFE scheme whose arity is 2 (i.e., 2-input FE) by Goldwasser et al. [GGG+14]. We introduce
necessary tools and definitions in Appendices B.1 and B.2.

B.1 Building Blocks
We introduce building blocks for our adaptively single-key single-ciphertext public-slot SKFE scheme.

Non-committing encryption. We recall the notion of (secret-key) receiver non-committing encryption (NCE) [CFGN96,
JL00, CHK05].

Definition B.1 (Secret-Key RNCE (Syntax)). A secret-key NCE scheme is a tuple of PPT algorithms (KeyGen, Enc, Dec,
Fake, Reveal) with plaintext spaceM.

KeyGen(1λ)→ (ek, dk, aux): The key generation algorithm takes as input the security parameter 1λ and outputs a
key pair (ek, dk) and an auxiliary information aux.

Enc(ek, m)→ ct: The encryption algorithm takes as input ek and a plaintext m ∈ M and outputs a ciphertext ct.

Dec(dk, ct)→ m′ or ⊥: The decryption algorithm takes as input dk and ct and outputs a plaintext m′ or ⊥.

Fake(ek, aux)→ c̃t: The fake encryption algorithm takes dk and aux, and outputs a fake ciphertext c̃t.

Reveal(ek, aux, c̃t, m)→ d̃k: The reveal algorithm takes ek, aux, c̃t and m, and outputs a fake secret key d̃k.

Definition B.2 (Correctness of secret-key NCE). There exists a negligible function negl such that for any λ ∈ N,
m ∈ M,

Pr

m′ ̸= m

∣∣∣∣∣∣
(ek, dk, aux)← KeyGen(1λ)
ct← Enc(ek, m)
m′ ← Dec(dk, ct)

 ≤ negl(λ).

Definition B.3 (Receiver Non-Committing (RNC) Security for SKE). A secret-key NCE scheme is RNC secure if
it satisfies the following. Let Σ = (KeyGen, Enc, Dec, Fake, Reveal) be a secret-key NCE scheme. We consider the
following security experiment Expsk-rec

Σ,A nc(λ, b).

1. The challenger computes (ek, dk, aux)← KeyGen(1λ) and sends 1λ to the adversary A .

2. A sends an encryption query m to the challenger. The challenger computes and returns ct← Enc(ek, m) to A .
This process can be repeated polynomially many times.

3. A sends a query m ∈ M to the challenger.

4. The challenger does the following.

• If b = 0, the challenger generates ct← Enc(ek, m) and returns (ct, dk) to A .
• If b = 1, the challenger generates c̃t← Fake(ek, aux) and

d̃k← Reveal(ek, aux, c̃t, m) and returns (c̃t, d̃k) to A .

76

5. Again A can send encryption queries.

6. A outputs b′ ∈ {0, 1}.

Let Advsk-rec-nc
Σ,A (λ) be the advantage of the experiment above. We say that the Σ is RNC secure if for any QPT adversary,

it holds that

Advsk-rec-nc
Σ,A (λ) :=

∣∣∣Pr
[
Expsk-rec-nc

Σ,A (λ, 0) = 1
]
− Pr

[
Expsk-rec-nc

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Theorem B.4 ([KNTY19, Section 7.2 in the eprint version]). If there exists an IND-CPA secure SKE scheme (against
QPT adversaries), there exists an RNC secure secret-key NCE scheme (against QPT adversaries) with plaintext space
{0, 1}ℓ, where ℓ is some polynomial, respectively.

Functional Encryption.

Definition B.5 (Public-Key FE (Syntax)). A public-key functional encryption (PKFE) scheme for a class F of functions
is a tuple of PPT algorithms Σ = (Setup, KeyGen, Enc, Dec) with plaintext spaceM, ciphertext space C, master
public key spaceMPK, master secret key spaceMSK, and secret key space SK, that work as follows.

Setup(1λ)→ (MPK, MSK): The setup algorithm takes the security parameter 1λ as input, and outputs a master
public key MPK ∈ MPK and a master secret key MSK ∈ MSK.

KeyGen(MSK, f)→ sk f : The key generation algorithm takes MSK and f ∈ F as input, and outputs a secret key
sk f ∈ SK.

Enc(MPK, m)→ CT: The encryption algorithm takes MPK and m ∈ M as input, and outputs a ciphertext CT ∈ C.

Dec(sk f , CT)→ y or ⊥: The decryption algorithm takes sk f and CT as input, and outputs y or ⊥.

We require that a PKFE scheme satisfies correctness defined below.

Definition B.6 (Correctness of PKFE). There exists a negligible function negl such that for any λ ∈N, m ∈ M and
f ∈ F

Pr

y ̸= f (m)

∣∣∣∣∣∣∣∣
(MPK, MSK)← Setup(1λ)
sk f ← KeyGen(MSK, f)
CT← Enc(MPK, m)
y← Dec(sk f , ct)

 ≤ negl(λ).

Definition B.7 (Selective Security of PKFE). Let Σ = (Setup, KeyGen, Enc, Dec) be a PKFE scheme. We consider
the following security experiment Expsel-ind

Σ,A (λ, b) against a QPT adversary A .

1. A sends (m0, m1) ∈ M2 to the challenger.

2. The challenger runs (MPK, MSK) ← Setup(1λ), computes CT← Enc(MPK, mb), and sends (MPK, CT) to
A .

3. A is allowed to make arbitrarily many key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to A .

4. A outputs b′ ∈ {0, 1}. If fℓ(m0) = fℓ(m1) holds for all key queries fℓ, the experiment outputs b′. Otherwise, it
outputs ⊥.

We say that Σ is adaptively secure if for any QPT adversary A it holds that

Advsel-ind
Σ,A (λ) :=

∣∣∣Pr
[
Expsel-ind

Σ,A (λ, 0) = 1
]
− Pr

[
Expsel-ind

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

77

Definition B.8 (Secret-Key FE (Syntax)). A secret-key functional encryption (SKFE) scheme for a class F of functions
is a tuple of PPT algorithms Σ = (Setup, KeyGen, Enc, Dec) with plaintext spaceM, ciphertext space C, master secret
key spaceMSK, and secret key space SK, that work as follows.

Setup(1λ)→ MSK: The setup algorithm takes the security parameter 1λ as input, and outputs a master secret key
MSK ∈ MSK.

KeyGen(MSK, f)→ sk f : The key generation algorithm takes MSK and f ∈ F as input, and outputs a secret key
sk f ∈ SK.

Enc(MSK, m)→ CT: The encryption algorithm takes MSK and m ∈ M as input, and outputs a ciphertext CT ∈ C.

Dec(sk f , CT)→ y or ⊥: The decryption algorithm takes sk f and CT as input, and outputs y or ⊥.

We require that an SKFE scheme satisfies correctness defined below.

Definition B.9 (Correctness of SKFE). There exists a negligible function negl such that for any λ ∈N, m ∈ M and
f ∈ F

Pr

y ̸= f (m)

∣∣∣∣∣∣∣∣
MSK← Setup(1λ)
sk f ← KeyGen(MSK, f)
CT← Enc(MSK, m)
y← Dec(sk f , ct)

 ≤ negl(λ).

Definition B.10 (Adaptive Single-Key Single-Ciphertext Security of SKFE). Let Σ = (Setup, KeyGen, Enc, Dec) be
an SKFE scheme. We consider the following security experiment Expada-1key-1ct

Σ,A (λ, b) against a QPT adversary A .

1. The challenger runs MSK← Setup(1λ).

2. The adversary makes the following encryption query and key query in no particular order.

• A sends f ∈ F to the challenger. The challenger computes sk f ← KeyGen(MSK, f), and returns sk f to A .
A can do this process one once.

• A sends (m0, m1) ∈ M2 to the challenger. The challenger computes CT← Enc(MSK, mb), and returns
CT to A . A can do this process one once.

3. A outputs b′ ∈ {0, 1}. If f (m0) = f (m1) holds, the experiment outputs b′. Otherwise, it outputs ⊥.

We say that Σ is adaptively single-key single-ciphertext secure if for any QPT adversary A it holds that

Advada-1key-1ct
Σ,A (λ) :=

∣∣∣Pr
[
Expada-1key-1ct

Σ,A (λ, 0) = 1
]
− Pr

[
Expada-1key-1ct

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition B.11 (Selective Single-Key Function Privacy of SKFE). Let Σ = (Setup, KeyGen, Enc, Dec) be an SKFE
scheme. We consider the following security experiment Expsel-1key-fp

Σ,A (λ, b) against a QPT adversary A .

1. The challenger sends (m1,0, m1,1), . . . , (mq,0, mq,1) ∈ M2q to the challenger.

2. The challenger runs MSK ← Setup(1λ), computes CTi ← Enc(MSK, mi,b) for all i ∈ [q], and returns
(CT1, . . . , CTq) to A .

3. A sends (f0, f1) ∈ F 2 to the challenger. The challenger computes sk fb
← KeyGen(MSK, fb), and returns sk fb

to A . A can do this process only once.

4. A outputs b′ ∈ {0, 1}. If f0(mi,0) = f1(mi,1) holds for all i ∈ [q], the experiment outputs b′. Otherwise, it
outputs ⊥.

We say that Σ is selectively single-key function private if for any QPT adversary A it holds that

Advsel-1key-fp
Σ,A (λ) :=

∣∣∣Pr
[
Expsel-1key-fp

Σ,A (λ, 0) = 1
]
− Pr

[
Expsel-1key-fp

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

78

2-input FE. We recall the notion of 2-input FE. The following definitions are special cases of multi-input functional
encryption (MIFE) by Goldwasser et al. [GGG+14].

Definition B.12 (2-input FE (Syntax)). A 2-input FE scheme for a class F of functions is a tuple of PPT algorithms
Σ = (Setup, KeyGen, Enc, Dec) with plaintext spaceM, ciphertext space C, master secret key spaceMSK, and
secret key space SK, that work as follows.

Setup(1λ)→ MSK: The setup algorithm takes the security parameter 1λ as input, and outputs a master secret key
MSK ∈ MSK and two encryption keys EK1 and EK2.

KeyGen(MSK, f)→ sk f : The key generation algorithm takes MSK and f ∈ F as input, and outputs a secret key
sk f ∈ SK.

Enc(EKi, x)→ CTi: The encryption algorithm takes EKi and x ∈ M as input, and outputs a ciphertext CTi ∈ C.

Dec(sk f , CT1, CT2)→ z or ⊥: The decryption algorithm takes sk f and (CT1, CT2) as input, and outputs y or ⊥.

We require that a 2-input FE scheme satisfies correctness defined below.

Definition B.13 (Correctness of 2-input FE). There exists a negligible function negl such that for any λ ∈ N,
(x, y) ∈ M2 and f ∈ F

Pr

z ̸= f (x, y)

∣∣∣∣∣∣∣∣
(MSK, EK1, EK2)← Setup(1λ)
sk f ← KeyGen(MSK, f)
CT1 ← Enc(EK1, x), CT2 ← Enc(EK2, y)
z← Dec(sk f , CT1, CT2)

 ≤ negl(λ).

Definition B.14 ((1, 1)-sel-ind Security of 2-FE). Let Σ = (Setup, KeyGen, Enc, Dec) be a 2-input FE scheme. We
consider the following security experiment Expsel-1ct

Σ,A (λ, b) against a QPT adversary A .

1. The adversary sends ((x0, y0), (x1, y1)) to the challenger.

2. The challenger runs (MSK, EK1, EK2)← Setup(1λ), computes CT1 ← Enc(EK1, xb) and CT2 ← Enc(EK2, yb),
and sends (EK2, CT1, CT2) to A .

3. A can send a key query fi ∈ F to the challenger. The challenger computes sk fi
← KeyGen(MSK, fi), and

returns sk fi
to A . A can send unbounded polynomially many key queries. Let qk be the total number of the key

queries.

4. A outputs b′ ∈ {0, 1}. If fi(x0, y) = fi(x1, y) holds for all y ∈ M and i ∈ [qk] (we call A is valid), the
experiment outputs b′. Otherwise, it outputs ⊥.

We say that Σ is (1, 1)-sel-ind secure if for any QPT adversary A it holds that

Advsel-1ct
Σ,A (λ) :=

∣∣∣Pr
[
Expsel-1ct

Σ,A (λ, 0) = 1
]
− Pr

[
Expsel-1ct

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Here, (1, 1) means that A is given one encryption key EK2 and one challenge ciphertext vector (CT1, CT2).

The security definition above is a special case of (t, q)-sel-ind security by Goldwasser et al. [GGG+14], where t is
the number of corrupted encryption keys and q is the number of challenge ciphertext vectors.

Theorem B.15 ([GGG+14]). If there exist IO and OWFs, there exists (1, 1)-sel-ind secure 2-input FE for all polynomial-
size circuits.

Although Goldwasser et al. proved a more general theorem ((t, q)-sel-ind secure n-input FE where t ≤ n and q is
an a-priori bounded polynomial), the simplified version above is sufficient for our purpose.

79

B.2 Variants of Security Definitions
We can consider the secret-key variant of Definition 3.9, where Setup generates only a master secret key MSK and Enc
uses MSK instead of MPK. Correctness of public-slot SKFE is a natural extension of Definition 3.10. We omit syntax
and correctness for public-slot SKFE.

Below, we introduce variants of security definitions for public-slot SKFE.

Definition B.16 (Single-Key Security of Public-Slot SKFE). Let Σ = (Setup, KeyGen, Enc, Dec) be a public-slot
SKFE scheme. We consider the following security experiment Expada-1ct

Σ,A (λ, b) against a QPT adversary A .

1. The challenger runs MSK← Setup(1λ).

2. A is allowed to make arbitrarily many key queries. For the ℓ-th key query, the challenger receives fℓ ∈ F ,
computes sk fℓ ← KeyGen(MSK, fℓ), and sends sk fℓ to A .

3. A can send a challenge plaintext pair (m0, m1) ∈ M2 to the challenger.

4. The challenger computes CT← Enc(MSK, mb) and sends CT to A .

5. Again, A is allowed to make arbitrarily many key queries.

6. A outputs b′ ∈ {0, 1}. If fℓ(m0, pub) = fℓ(m1, pub) holds for all key queries fℓ and public inputs pub ∈ P ,
the experiment outputs b′. Otherwise, it outputs ⊥.

We say that Σ is adaptively single-ciphertext secure if for any QPT adversary A it holds that

Advada-1ct
Σ,A (λ) :=

∣∣∣Pr
[
Expada-1ct

Σ,A (λ, 0) = 1
]
− Pr

[
Expada-1ct

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

If the adversary must declare the challenge plaintext pair (m0, m1) at the very beginning of the experiment, we say that
Σ is selectively single-ciphertext secure and denote the advantage and experiment by Advsel-1ct

Σ,A (λ) and Expsel-1ct
Σ,A (λ),

respectively.
If the adversary is allowed to make only one key query, we say Σ is adaptively/selectively single-key single-ciphertext

secure and denote the advantage and experiment by Advxxx-1key-1ct
Σ,A (λ) and Expxx-1key-1ct

Σ,A (λ), respectively, where
xxx ∈ {sel, ada}.

B.3 Adaptively Single-Key Single-Ciphertext Public-Slot SKFE Scheme
Selectively single-ciphertext public-slot SKFE. First, we present our selectively single-ciphertext public-slot SKFE
scheme 1selFE.

Ingredients.

• (1, 1)-sel-ind secure 2-input FE 2FE = 2FE.(Setup, KeyGen, Enc, Dec) for all polynomial-size circuits.

Scheme description. Our scheme 1selFE = 1selFE.(Setup, KeyGen, Enc, Dec) is as follows.

1selFE.Setup(1λ):

1. Generate (2fe.msk, 2fe.ek1, 2fe.ek2)← 2FE.Setup(1λ).
2. Output MSK := (2fe.msk, 2fe.ek1, 2fe.ek2).

1selFE.KeyGen(MSK, f):

1. Parse MSK = (2fe.msk, 2fe.ek1, 2fe.ek2).
2. Generate 2fe.SK f ← 2FE.KeyGen(2fe.msk, f).

80

3. Output SK f := 2fe.sk f .

1selFE.Enc(MSK, m):

1. Parse MSK = (2fe.msk, 2fe.ek1, 2fe.ek2).
2. Generate 2fe.ct1 ← 2FE.Enc(2fe.ek1, m).
3. Output CT := (2fe.ct1, 2fe.ek2).

1selFE.Dec(SK f , CT, pub):

1. Parse SK f = 2fe.sk f and CT = (2fe.ct1, 2fe.ek2).
2. Compute 2fe.ct2 ← 2FE.Enc(2fe.ek2, pub).
3. Compute and output y := 2FE.Dec(2fe.sk f , 2fe.ct1, 2fe.ct2).

Correctness. It is easy to see correctness holds due to correctness of 2FE.

Theorem B.17. If 2FE is (1, 1)-sel-ind secure 2-input FE for all polynomial-size circuits, 1selFE is selectively
single-ciphertext public-slot SKFE for all polynomial-size circuits.

This theorem immediately yields a selectively single-key single-ciphertext public-slot SKFE for all polynomial-size
circuits.

Proof. Let Expsel-1ct
1selFE,A(λ, b) denote the selective single-ciphertext security of public-slot SKFE. We construct an

algorithm B that breaks (1, 1)-sel-ind security of 2FE by using an adversary A that breaks selectively single-ciphertext
security of 1selFE. B does the following.

1. First, A sends (m0, m1). Then, B chooses a random y←M, sets (x0, x1) := (m0, m1) and (y0, y1) := (y, y),
and passes ((x0, y0), (x1, y1)) to its challenger.

2. When B receives (2fe.ek2, 2fe.ct1, 2fe.ct2) from its challenger, B sets CT := (2fe.ct1, 2fe.ek2) and passes CT to
A

3. When A sends a key query fi, B passes fi to its challenger, receives 2fe.sk fi
← 2FE.KeyGen(2fe.msk, fi), and

passes SK fi
:= 2fe.sk fi

to A .

4. When A outputs b′, B outputs b′.

If A is valid in the experiment of selective single-ciphertext security for public-slot SKFE 1selFE, it holds fi(x0, y′) =
fi(x1, y′) for all i ∈ [q] and y′ ∈ M. Then, B is also a valid adversary in the experiment of (1, 1)-sel-ind security for
2FE since B received 2fe.ek2. It is easy to see the following.

• If 2fe.ct1 ← 2FE.Enc(2fe.msk, x0) and 2fe.ct2 ← 2FE.Enc(2fe.msk, y), B perfectly simulates Expsel-1ct
1selFE,A(λ, 0).

• If 2fe.ct1 ← 2FE.Enc(2fe.msk, x1) and 2fe.ct2 ← 2FE.Enc(2fe.msk, y), B perfectly simulates Expsel-1ct
1selFE,A(λ, 1).

Thus, if A distinguishes Expsel-1ct
1selFE,A(λ, 0) from Expsel-1ct

1selFE,A(λ, 1), B distinguishes Expsel-1ct
2FE,B (λ, 0) from Expsel-1ct

2FE,B (λ, 1).
This completes the proof.

Adaptively single-key single-ciphertext public-slot SKFE. Next, we present our adaptively single-key single-
ciphertext public-slot SKFE scheme 1adaFE.

Ingredients.

• Selectively single-key single-ciphertext public-slot SKFE 1selFE = 1selFE.(Setup, KeyGen, Enc, Dec) for all
polynomial-size circuits.

• Receiver non-committing encryption NCE = NCE.(KeyGen, Enc, Dec, Fake, Reveal).

81

Scheme description. Our scheme 1adaFE = 1adaFE.(Setup, KeyGen, Enc, Dec) is as follows.

1adaFE.Setup(1λ):

1. Generate sel.msk← 1selFE.Setup(1λ).
2. Generate (nce.ek, nce.dk, nce.aux)← NCE.KeyGen(1λ).
3. Output MSK := (sel.msk, nce.ek, nce.dk, nce.aux).

1adaFE.KeyGen(MSK, f):

1. Parse MSK = (sel.MSK, nce.ek, nce.dk, nce.aux).
2. Generate sel.sk f ← 1selFE.KeyGen(sel.msk, f).
3. Generate nce.ct← NCE.Enc(nce.ek, fe.sk f).
4. Output SK f := nce.ct.

1adaFE.Enc(MSK, m):

1. Parse MSK = (sel.msk, nce.ek, nce.dk, nce.aux).
2. Generate sel.ct← 1selFE.Enc(sel.msk, m).
3. Output CT := (sel.ct, nce.dk).

1adaFE.Dec(SK f , CT, pub):

1. Parse SK f = nce.ct and CT = (sel.ct, nce.dk).
2. Compute sk′f ← NCE.Dec(nce.dk, nce.ct).

3. Compute and output y := 1selFE.Dec(sk′f , sel.ct, pub).

Correctness. It is easy to see correctness holds due to correctness of 1selFE and NCE.

Theorem B.18. If 1selFE is selectively single-key single-ciphertext secure public-slot SKFE for all polynomial-size
circuits and NCE is RNC secure, 1adaFE is adaptively single-key single-ciphertext public-slot SKFE for all polynomial-
size circuits.

Proof. Let Hyb0(b) denote Expada-1key-1ct
1adaFE,A (λ, b). We define a hybrid game Hyb1(b) as follows.

Hyb1(b): This is the same as Expada-1key-1ct
1adaFE,A (λ, b) except that:

1. if A sends a key query f before an encryption query (m0, m1), we generate nce.c̃t← NCE.Fake(nce.ek, nce.aux)
instead of nce.ct← NCE.Enc(nce.ek, sel.sk f) and return SK f := nce.c̃t for the key query.

2. when A sends an encryption query (m0, m1) after the key query f above, we generate sel.ct ←
1selFE.Enc(sel.msk, mb), sel.sk f ← 1selFE.KeyGen(sel.msk, f), and nce.d̃k ← NCE.Reveal(nce.ek,
nce.aux, nce.c̃t, sel.sk f), and return CT := (sel.ct, nce.d̃k) for the encryption query.

First, we show the following.

Proposition B.19. It holds |Pr[Hyb0(b) = 1]− Pr[Hyb1(b) = 1]| ≤ negl(λ) if NCE is RNC secure.

We construct an algorithm B that breaks RNC security of NCE by using an adversary A that breaks adaptive
single-key single-ciphertext security of 1adaFE. Note that if A sends an encryption query (m0, m1) before a key query
f , these two games are the same. We focus on the case where A sends a key query f before an encryption query
(m0, m1). B does the following.

1. First, B generates sel.msk← 1selFE.Setup(1λ).

82

2. When A sends a key query f , B generates sel.sk f ← 1selFE.KeyGen(sel.msk, f), sends sel.sk f to its challenger,
and receives (nce.ct∗, nce.dk∗). B passes SK f := nce.ct∗ to A .

3. After the key query f above, for an encryption query (m0, m1), B generates sel.ct← 1selFE.Enc(sel.msk, mb)
and returns CT := (sel.ct, nce.dk∗) to A .

4. When A outputs b′, B outputs b′.

It is easy to see the following.

• If nce.ct∗ ← NCE.Enc(nce.ek, sel.sk f) and nce.dk∗ = nce.dk where (nce.ek.nce.dk, nce.aux)← NCE.KeyGen(1λ),
B perfectly simulates Hyb0(b).

• If nce.ct∗ := nce.c̃t← NCE.Fake(nce.ek, nce.aux) and nce.dk∗ ← NCE.Reveal(nce.ek, nce.aux, nce.c̃t, sel.sk f),
B perfectly simulates Hyb1(b).

Thus, if A distinguishes Hyb0(b) from Hyb1(b), B distinguishes Expsk-rec-nc
NCE.B (λ, b).

Next, we show the following.

Proposition B.20. It holds |Pr[Hyb1(0) = 1]− Pr[Hyb1(1) = 1]| ≤ negl(λ) if 1selFE is selectively single-key
single-ciphertext secure.

We construct an algorithm B that breaks selective single-key single-ciphertext security of 1selFE by using an
adversary A that breaks adaptive single-key single-ciphertext security of 1adaFE. B does the following.

1. First, B generates (nce.ek, nce.dk, nce.aux)← NCE.KeyGen(1λ).

2. There are the following two cases:

• When A sends a key query f before an encryption query (m0, m1), B generates nce.c̃t← NCE.Fake(nce.ek,
nce.aux) passes SK f := nce.c̃t to A . After the key query f above, for an encryption query (m0, m1),
B passes (m0, m1) to its challenger and receives sel.ct∗. Then, B sends f to its challenger and receives
sel.sk f ← 1selFE(sel.msk, f). Finally, B generates nce.d̃k← NCE.Reveal(nce.ek, nce.dk, nce.c̃t, sel.sk f)

and sends CT := (sel.ct∗, nce.d̃k) to A .
• When A sends an encryption query (m0, m1) before a key query f , B passes (m0, m1) to its challenger,

receives sel.ct∗, and returns CT := (sel.ct∗, nce.dk) to A . After the encryption query (m0, m1) above, for a
key query f , B passes f to its challenger and receives sel.sk f ← 1selFE.KeyGen(sel.msk, f). B returns
SK f := nce.ct← NCE.Enc(nce.ek, sel.sk f) to A .

3. When A outputs b′, B outputs b′.

Note that B sends (m0, m1) to its challenger before it sends f as a key query in the both cases above. If A is a valid
adversary in the experiment of adaptive single-key single-ciphertext security for public-lot SKFE 1adaFE, it holds
f (m0, y′) = f (m1, y′) for all y′ ∈ M. Then, B is also a valid adversary in the experiment of selective single-key
single-ciphertext security for public-slot SKFE 1selFE. In addition, it is easy to see the following.

• If sel.ct∗ ← 1selFE.Enc(sel.msk, m0), B perfectly simulates Hyb1(0).

• If sel.ct∗ ← 1selFE.Enc(sel.msk, m1), B perfectly simulates Hyb1(1).

Thus, if A distinguishes Hyb1(0) from Hyb1(1), B distinguishes Expsel-1key-1ct
1selFE,B (λ, 0) from Expsel-1key-1ct

1selFE,B (λ, 1).
Therefore, we obtain |Pr[Hyb0(0) = 1]− Pr[Hyb0(1) = 1]| ≤ negl(λ), which is our goal.

B.4 Adaptively Secure Public-Slot PKFE Scheme
Note that the construction in this section is bassically the same as that by Ananth and Sahai [AS16] except that we use
single-key single-ciphertext public-slot SKFE as a building block istead of single-key single-ciphertext standard SKFE.

83

Ingredients.

• Selectively secure PKFE PKFE = PKFE.(Setup, KeyGen, Enc, Dec) for all polynonial-size circuits.

• Selectively single-key function private SKFE 1KeySKFE = 1KeySKFE.(Setup, KeyGen, Enc, Dec) for polynomial-
size circuits.

• Adaptively single-key single-ciphertext public-slot SKFE SKFE = SKFE.(Setup, KeyGen, Enc, Dec) for
polynomial-size circuits.

• A PRF PRF : K× {0, 1}λ → {0, 1}λ.

• SKE with pseudorandom ciphertext SKE = SKE.(Setup, Enc, Dec).

Scheme description. The adaptively secure public-slot PKFE scheme FE = FE.(Setup, KeyGen, Enc, Dec) is as
follows.

Setup(1λ):

1. Generate (pkfe.MPK, pkfe.MSK)← PKFE.Setup(1λ).
2. Output MPK := pkfe.MPK and MSK := pkfe.MSK.

KeyGen(msk, f):

1. Parse MSK = pkfe.MSK.
2. Sample Cske ← {0, 1}ℓske(λ) where ℓske(λ) is the length of a SKE ciphertext that encrypts a string of length

ℓskfe(λ) + ℓ1keyskfe(λ). We denote ℓskfe(λ) by the length of a SKFE secret key and ℓ1keyskfe(λ) by the
length of a 1KeySKFE ciphertext.

3. Sample τ ← {0, 1}4λ

4. Generate pkfe.skg[f ,Cske,τ] ← PKFE.KeyGen(pkfe.MSK, g[f , Cske, τ]) where g[f , Cske, τ] is a function
described in Figure 4.

5. Output sk f = pkfe.skg[f ,Cske,τ].

Enc(MPK, m):

1. Parse MPK = pkfe.MPK.
2. Sample K← K.
3. Generate 1keyskfe.MSK← 1KeySKFE.Setup(1λ).
4. Generate 1keyskfe.skh[m] ← 1KeySKFE.KeyGen(1keyskfe.MSK, h[m]) where h[m] is a function described

in Figure 5.
5. Compute pkfe.ct← PKFE.Enc(pkfe.MPK, (1keyskfe.MSK, K,⊥, 0)).
6. Output ct = (1keyskfe.skh[m], pkfe.ct).

Dec(sk f , ct, y):

1. Parse sk f = pkfe.skg[f] and ct = (1keyskfe.skh[m], pkfe.ct).
2. Compute (skfe.sk f , 1keyskfe.ct)← PKFE.Dec(pkfe.skg[f], pkfe.ct).
3. Compute skfe.ct← 1KeySKFE.Dec(1keyskfe.skh[m], 1keyskfe.ct).

4. Compute m′ ← SKFE.Dec(skfe.sk f , skfe.ct, y)

5. Output m′.

84

g[f , Cske, τ]

Input: 1keyskfe.MSK, K, ske.SK, β

1. Parse τ = (τ0∥τ1∥τ2∥τ3).
2. If β = 0 then

• Compute Ri ← PRF(K, τi) for i ∈ {0, 1, 2, 3}.
• Generate skfe.MSK← SKFE.Setup(1λ; R0).
• Compute skfe.sk f ← SKFE.KeyGen(skfe.MSK, f ; R1).
• Compute 1keyskfe.ct← 1KeySKFE.Enc(1keyskfe.MSK, (skfe.MSK, R2, 0); R3).
• Output (skfe.sk f , 1keyskfe.ct).

3. Else,
• Compute (skfe.sk f , 1keyskfe.ct)← SKE.Dec(ske.SK, Cske).
• Output (skfe.sk f , 1keyskfe.ct).

Figure 4: The description of the function g[f , CE, τ]

h[m]

Input: skfe.MSK, R, α

1. If α = 0 then
• Compute skfe.ct← SKFE.Enc(skfe.MSK, m; R).
• Output skfe.ct.

2. Else, output ⊥.

Figure 5: The description of the function h[m]

85

The security proof is almost the same as that of Ananth and Sahai [AS16]. We provide the proof for confirmation
since we use adaptively single-key single-ciphertext public-slot SKFE.

Theorem B.21. If PKFE is selectively secure PKFE for P/poly, 1KeySKFE is selectively single-key function private
SKFE for P/poly, SKFE is adaptively single-key single-ciphertext public-slot SKFE for P/poly, PRF is a secure PRF,
and SKE is ciphertext pseudorandom, FE is adaptively indistinguishable-secure public-slot PKFE for P/poly.

We immediately obtain Theorem 3.12 from the thereom above.

Correctness. Let ct = (1keyskfe.skh[m], pkfe.ct) be an honestly generated ciphertext encrypting a message m and
sk f = pkfe.skg[f] be an honestly generated secret key corresponding to a function f . Firstly, we note that pkfe.ct
is an encryption of the message (1keyskfe.MSK, K,⊥, 0) and g[f] is a function that takes (1keyskfe.MSK, K,⊥, 0)
as input and outputs a SKFE secret key skfe.sk f corresponding to the function f and a single key SKFE ciphertext
1keyskfe.ct. Therefore, by the correctness of PKFE, the decryption algorithm PKFE.Dec(pkfe.skg[f], pkfe.ct) yields
g[f](1keyskfe.MSK, K,⊥, 0) = (skfe.sk f , 1keyskfe.ct). Secondly, we observe that 1keyskfe.ct encrypts a message
(SKFE.MSK, R2, 0) and h[m] is a function that takes (SKFE.MSK, R2, 0) an input and outputs a SKFE ciphertext
skfe.ct. Therefore, by the correctness of SKFE, the decryption algorithm 1KeySKFE.Dec(1keyskfe.skh[m], 1keyskfe.ct)
yields h[m](SKFE.MSK, R2, 0) = skfe.ct. Finally, we note that skfe.ct encrypts the message m and f is a function that
takes (m, y) as input and outputs f (m, y) where y is an input to the public slot. Thus, by the correctness of public-slot
SKFE, we obtain SKFE.Dec(skfe.sk f , skfe.ct, y) = m′ = f (m, y).

Adaptive Security. We prove Theorem B.21.

Proof of Theorem B.21. Let A be a PPT adversary against the adaptive security of the public-slot PKFE. We use the
following sequence of hybrids to prove the security. Let Pr[Hybi = 1] be the winning probability of A in Hybi for all i.

Hyb0: This is the original adaptive security experiment where the challenge bit set to 0. Specifically, it works as follows:

1. The challenger generates (pkfe.MPK, pkfe.MSK) ← PKFE.Setup(1λ), sets MPK := pkfe.MPK and
MSK := pkfe.MSK, and sends MPK to A.

2. The challenger samples a PRF key K∗ ← K and generate a master secret key 1keyskfe.MSK∗ ←
1KeySKFE.Setup(1λ).

3. The challenger computes pkfe.ct∗ ← PKFE.Enc(pkfe.MPK, (1keyskfe.MSK∗, K∗,⊥, 0)).
4. A can make arbitrarily many key queries at any point of the experiment. When it makes the j-th key query

for a function f j, the challenger works as follows:
(a) Sample Cj,ske, τj = (τj,0∥τj,1∥τj,2∥τj,3) uniformly at random.
(b) Generate pkfe.skg[f j ,Cj,ske,τj]

← PKFE.KeyGen(pkfe.MSK, g[f j, Cj,ske, τj]) where g[f j, Cj,ske, τj] is a
function described in Figure 4.

(c) Set sk f j
:= pkfe.skg[f j ,Cj,ske,τj]

.

The challenger sends sk f j
to A.

5. A sends (m0, m1) to the challenger. It must satisfy f (m0, y) = f (m1, y) for any public input y and for all
key queries f that are made before or after sending (m0, m1).

6. The challenger computes the ciphertext as follows:
(a) Generate 1keyskfe.sk∗h[m0]

← 1KeySKFE.KeyGen(1keyskfe.MSK∗, h[m0]) where h[m0] is a function
described in Figure 5.

(b) Set ct∗ := (1keyskfe.sk∗h[m0]
, pkfe.ct∗) where pkfe.ct∗ is computed in Step 3.

The challenger sends ct∗ to A.
7. A outputs a bit b′ which is the final output of the experiment.

86

Note that, the challenger can sample a PRF key K∗, a master secret key for the single key function-private SKFE
1keyskfe.MSK∗ before it answers any secret key query. Moreover, the challenger can also compute the part of the
challenge ciphertext pkfe.ct∗ before the key query phase.

Hyb1: This hybrid is identical to Hyb0 except the challenger samples a SKE key ske.SK∗ before it answers any key
query and sets Cj,ske to be the ciphertext of SKE which corresponds to the challenge ciphertext. More specifically,
the challenger answers to the j-th key query for a function f j as follows:

(a) Sample τj = (τj,0∥τj,1∥τj,2∥τj,3) uniformly at random.
(b) Compute Rj,i = PRF(K∗, τj,i) for all i ∈ {0, 1, 2, 3}.
(c) Generate skfe.MSKj ← SKFE.Setup(1λ; Rj,0).
(d) Compute skfe.sk f j

← SKFE.KeyGen(skfe.MSKj, f j; Rj,1).

(e) Compute 1keyskfe.ctj ← 1KeySKFE.Enc(1keyskfe.MSK∗, (skfe.MSKj, Rj,2, 0); Rj,3).
(f) Compute Cj,ske ← SKE.Enc(ske.SK∗, uj) where uj = (skfe.sk f j

, 1keyskfe.ctj).

(g) Generate pkfe.skg[f j ,Cj,ske,τj]
← PKFE.KeyGen(pkfe.MSK, g[f j, Cj,ske, τj]) where g[f j, Cj,ske, τj] is a func-

tion described in Figure 4.
(h) Set sk f := pkfe.skg[f j ,Cj,ske,τj]

.

The challenger sends sk f j
to A. The indistinguishability between Hyb0 and Hyb1 follows from the security

of SKE since the view of the adversary A can be simulated without the knowledge of ske.SK∗ and using the
challenger of the security experiment of SKE. In particular, consider B1 to be an adversary against the security of
SKE. When A queries a secret key for a function f j, B1 proceeds as in Step (a) to (f) and sends the message
uj = (skfe.sk f j

, 1keyskfe.ctj) to it’s challenger. Upon receiving a ciphertext Cj,ske from the challenger, B1
computes pkfe.skg[f j ,Cj,ske,τj]

and sends it to A. If B1 receives a random string then it simulates Hyb0, otherwise,
if B1 is sent an encryption of uj then it simulates Hyb1. Therefore, the wining probability of B1 is the same as
|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl. Hence, by the security of SKE, it holds that

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Hyb2: This hybrid is identical to Hyb1 except the challenger computes

pkfe.ct∗ ← PKFE.Enc(pkfe.MPK, (⊥,⊥, ske.SK∗, 1))

instead of computing pkfe.ct∗ ← PKFE.Enc(pkfe.MPK, (1keyskfe.MSK∗, K∗,⊥, 0)). In particular, the mode
of decryption is changed to β = 1 from β = 0 meaning that ske.SK∗ is used to decrypt Cj,ske to get an output
of (skfe.sk f j

, 1keyskfe.ctj) while decryption of ct∗ is performed by the j-th secret key sk f := pkfe.skg[f j ,Cj,ske,τj]
.

The indistinguishability between Hyb1 and Hyb2 follows from the security of PKFE since the view of the
adversary A can be simulated without the knowledge of pkfe.MSK and using the challenger of the security
experiment of PKFE. Let us consider an adversary B2 against the security of PKFE. Firstly, B2 sends a pair of
challenge message ((1keyskfe.MSK∗, K∗,⊥, 0), (⊥,⊥, ske.SK∗, 1)) to it’s challenger and receives the public
key pkfe.MPK and a ciphertext pkfe.ct∗. Note that B2 can choose the challenge message independent of all the
queries of A. Therefore, a selectively secure PKFE is sufficient for arguing the indistinguishability between the
hybrids. Whenever B2 receives a secret key query from A for a function f j, it queries for a secret key to it’s
challenger for a function g[f j, Cj,ske, τj] and returns the output to A. Firstly, B2 is an admissible adversary as

g[f j, Cj,ske, τj](1keyskfe.MSK∗, K∗,⊥, 0) = g[f j, Cj,ske, τj](⊥,⊥, ske.SK∗, 1)

holds for all j. If B2 receives an encryption of (1keyskfe.MSK∗, K∗,⊥, 0) then it simulates Hyb1, otherwise, if
B2 receives an encryption of (⊥,⊥, ske.SK∗, 1) then it simulates Hyb2. Therefore, the winning probability of B2
is essentially the same as |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl. Hence, by the security of PKFE, it holds that

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

87

h[m, m′, v]

Input: skfe.MSK, R, α

1. If α = 0 then
• Compute skfe.ct← SKFE.Enc(skfe.MSK, m; R).
• Output skfe.ct.

2. If α = 1 then
• Compute skfe.ct← SKFE.Enc(skfe.MSK, m′; R).
• Output skfe.ct.

3. Else, output v.

Figure 6: The description of the function h[m, m′, v]

Hyb3: This hybrid is identical to Hyb2 except the challenger samples Rj,i uniformly at random for all j, i, while answering
the secret key queries instead of computing these values using the PRF key K∗. The indistinguishability between
Hyb2 and Hyb3 follows from the security of PRF since the view of the adversary A can be simulated without the
knowledge of K∗ and using the challenger of the security experiment of PRF. In other words, if B3 is an adversary
against the security of PRF then the winning probability of B3 is the same as |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤
negl. Hence, by the security of PRF, it holds that

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Hyb4: This hybrid is identical to Hyb3 except the challenger generates

1keyskfe.sk∗h[m0,m1,v] ← 1KeySKFE.KeyGen(1keyskfe.MSK∗, h[m0, m1, v])

and sets the challenge ciphertext as ct∗ := (1keyskfe.sk∗h[m0,m1,v], pkfe.ct∗) where h[m0, m1, v] is a function
described in Figure 6 and v is a random string. The indistinguishability between Hyb3 and Hyb4 follows
from the security of 1KeySKFE since the view of the adversary A can be simulated without the knowledge
of 1keyskfe.MSK∗ and using the challenger of the security experiment of 1KeySKFE. Let us consider an
adversary B4 against the security of 1KeySKFE. We assume that Q be the total number of secret key queries
the adversary A makes in the experiment. At first, B4 prepares a list of Q challenge messages (M1, . . . , MQ)
where Mj = (skfe.MSKj, Rj,2, 0) for j ∈ [Q]. More precisely, B sends (Mj, Mj) for all j ∈ [Q] and receives
the ciphertexts as {1keyskfe.ctj}j∈[Q] which is used in answering A’s secret key queries as in Hyb3 or Hyb4.
When A sends the challenge message tuple (m0, m1), B4 queries for a secret key with the pair of functions
(h[m0], h[m0, m1, v]) to it’s challenger. Then, B4 uses the output from it’s challenger to create the challenge
ciphertext for A. It is easy to see that B4 is an admissible adversary for the security experiment of 1KeySKFE
since

h[m0](skfe.MSKj, Rj,2, 0) = h[m0, m1, v](skfe.MSKj, Rj,2, 0)

holds for all j ∈ [Q]. If B4 receives a secret key 1keyskfe.sk∗h[m0]
then it simulates Hyb3, otherwise, if B4 receives

a secret key 1keyskfe.sk∗h[m0,m1,v] then it simulates Hyb4. Therefore, the winning probability of B4 is essentially
the same as |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ negl. Hence, by the security of 1KeySKFE, it holds that

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ negl(λ).

88

Hyb5: This hybrid is identical to Hyb4 except the challenger computes

1keyskfe.ctj ← 1KeySKFE.Enc(1keyskfe.MSK∗, (skfe.MSKj, Rj,2, 1); Rj,3)

while generating the j-th secret key corresponding to a function f j for all j. In Lemma B.22, we show that

|Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ).

Hyb6: This hybrid is identical to Hyb5 except the challenger generates

1keyskfe.sk∗h[m1,m1,v] ← 1KeySKFE.KeyGen(1keyskfe.MSK∗, h[m1, m1, v])

and sets the challenge ciphertext as ct∗ := (1keyskfe.sk∗h[m1,m1,v], pkfe.ct∗) where h[m1, m1, v] is a function as
described in Figure 6. The indistinguishability between Hyb5 and Hyb6 follows from the security of 1KeySKFE
since the view of the adversary A can be simulated without the knowledge of 1keyskfe.MSK∗ and using the
challenger of the security experiment of 1KeySKFE. The simulation strategy is similar to Hyb4. By the security
of 1KeySKFE, it holds that

|Pr[Hyb5 = 1]− Pr[Hyb6 = 1]| ≤ negl(λ).

Hyb7: This hybrid is identical to Hyb6 except the challenger computes

1keyskfe.ctj ← 1KeySKFE.Enc(1keyskfe.MSK∗, (skfe.MSKj, Rj,2, 0); Rj,3)

while generating the j-th secret key corresponding to a function f j for all j. Moreover, the challenger generates

1keyskfe.sk∗h[m1]
← 1KeySKFE.KeyGen(1keyskfe.MSK∗, h[m1])

and sets the challenge ciphertext as ct∗ := (1keyskfe.sk∗h[m1]
, pkfe.ct∗) where h[m1] is a function as described in

Figure 5. The indistinguishability between Hyb6 and Hyb7 follows from the security of 1KeySKFE since the
view of the adversary A can be simulated without the knowledge of 1keyskfe.MSK∗ and using the challenger of
the security experiment of 1KeySKFE. Let us consider an adversary B7 against the security of 1KeySKFE.

At first, B7 prepares a list of Q challenge message pairs ((M(0)
1 , M(1)

1), . . . , (M(0)
Q , M(1)

Q)) where

M(0)
j = (skfe.MSKj, Rj,2, 1) and M(1)

j = (skfe.MSKj, Rj,2, 0)

for j ∈ [Q]. More precisely, B7 sends (M(0)
j , M(1)

j) for all j ∈ [Q] and receives the ciphertexts as
{1keyskfe.ctj}j∈[Q] which is used in answering A’s secret key queries. When A sends the challenge message
tuple (m0, m1), B7 queries for a secret key with the pair of functions (h[m1, m1, v], h[m1]) to it’s challenger.
Then, B7 uses the output from it’s challenger to create the challenge ciphertext for A. It is easy to see that B7 is
an admissible adversary for the security experiment of 1KeySKFE since

h[m1, m1, v](skfe.MSKj, Rj,2, 1) = h[m1](skfe.MSKj, Rj,2, 0)

holds for all j ∈ [Q]. If B7 receives ciphertexts for the messages M(0)
j and a secret key 1keyskfe.sk∗h[m1,m1,v]

then it simulates Hyb6, otherwise, if B7 receives ciphertexts for the messages M(1)
j and a secret key

1keyskfe.sk∗h[m1]
then it simulates Hyb7. Therefore, the winning probability of B7 is essentially the same

as |Pr[Hyb6 = 1]− Pr[Hyb7 = 1]| ≤ negl. Hence, by the security of 1KeySKFE, it holds that

|Pr[Hyb6 = 1]− Pr[Hyb7 = 1]| ≤ negl(λ).

89

Hyb8: This hybrid is identical to Hyb7 except the challenger samples

Rj,i = PRF(K∗, τj,i) for all i ∈ {0, 1, 2, 3}

instead of sampling these values uniformly at random for all j, i, while answering the secret key queries. The
indistinguishability between Hyb7 and Hyb8 follows from the security of PRF since the view of the adversary A
can be simulated without the knowledge of K∗ and using the challenger of the security experiment of PRF. In
other words, it holds that

|Pr[Hyb7 = 1]− Pr[Hyb8 = 1]| ≤ negl(λ).

Hyb9: This hybrid is identical to Hyb8 except the challenger computes

pkfe.ct∗ ← PKFE.Enc(pkfe.MPK, (1keyskfe.MSK∗, K∗,⊥, 0))

instead of computing pkfe.ct∗ ← PKFE.Enc(pkfe.MPK, (⊥,⊥, ske.SK∗, 1)). The indistinguishability between
Hyb8 and Hyb9 follows from the security of PKFE since the view of the adversary A can be simulated without
the knowledge of pkfe.MSK and using the challenger of the security experiment of PKFE. In other words, it holds
that

|Pr[Hyb8 = 1]− Pr[Hyb9 = 1]| ≤ negl(λ).

Hyb10: This hybrid is identical to Hyb9 except the challenger does not sample ske.SK∗ and chooses Cj,ske uniformly at
random while answering to the j-th secret key query of A for all j. More specifically, the challenger answers to
the j-th key query for a function f j as follows:

(a) Sample Cj,ske, τj = (τj,0∥τj,1∥τj,2∥τj,3) uniformly at random.
(b) Generate pkfe.skg[f j ,Cj,ske,τj]

← PKFE.KeyGen(pkfe.MSK, g[f j, Cj,ske, τj]) where g[f j, Cj,ske, τj] is a func-
tion described in Figure 4.

(c) Set sk f j
:= pkfe.skg[f j ,Cj,ske,τj]

.

The challenger sends sk f j
to A. The indistinguishability between Hyb9 and Hyb10 follows from the security

of SKE since the view of the adversary A can be simulated without the knowledge of ske.SK and using the
challenger of the security experiment of SKE. In other words, it holds that

|Pr[Hyb9 = 1]− Pr[Hyb10 = 1]| ≤ negl(λ).

We observe that Hyb10 is identical to original adaptive security experiment where the challenge bit set to 1.
Combining the advantage of A in all the consecutive hybrids and applying the triangular inequality, we have
|Pr[Hyb0 = 1]− Pr[Hyb10 = 1]| ≤ negl(λ).

This completes the proof of Theorem B.21 if we prove Lemma B.22.

Lemma B.22. If 1KeySKFE is selectively single key function-private secure and public-slot SKFE SKFE is adaptively
single-key single-ciphertext secure then for any λ ∈ [n],

|Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ).

Proof of Lemma B.22. We prove this lemma using a sequence of hybrids Hyb4,q,1, Hyb4,q,2, Hyb4,q,3, Hyb4,q,4 for q ∈ [Q]
where Q denotes the total number of secret key queried made by the adversary A. Let us denote Hyb4,Q+1,1 = Hyb5.

Hyb4,q,1 : This is exactly the same as Hyb4 except the challenger sets v to be the output of SKFE.Enc(skfe.MSKq, m0; Rq,2).
More precisely, the hybrid works as follows:

90

1. The challenger generates (pkfe.MPK, pkfe.MSK) ← PKFE.Setup(1λ), sets MPK := pkfe.MPK and
MSK := pkfe.MSK, and sends MPK to A.

2. The challenger generates a master secret key 1keyskfe.MSK∗ ← 1KeySKFE.Setup(1λ).
3. The challenger generates a secret key ske.SK∗ ← SKE.Setup(1λ).
4. The challenger computes pkfe.ct∗ ← PKFE.Enc(pkfe.MPK, (⊥,⊥, ske.SK∗, 1)).
5. The challenger sets uq as follows:

(a) Sample τq = (τq,0∥τq,1∥τq,2∥τq,3) and Rq,i uniformly at random for all i ∈ {0, 1, 2, 3}.
(b) Generate skfe.MSKq ← SKFE.Setup(1λ; Rq,0).
(c) Compute skfe.sk fq ← SKFE.KeyGen(skfe.MSKq, fq; Rq,1).
(d) Compute 1keyskfe.ctq ← 1KeySKFE.Enc(1keyskfe.MSK∗, (skfe.MSKq, Rq,2, 0); Rq,3).
(e) Set uq = (skfe.sk fq , 1keyskfe.ctq).

6. A can make arbitrarily many key queries at any point of the experiment. When it makes the j-th key query
for a function f j, the challenger works as follows:
If j ̸= q :
(a) Sample τj = (τj,0∥τj,1∥τj,2∥τj,3) and Rj,i uniformly at random for all i ∈ {0, 1, 2, 3}.
(b) Generate skfe.MSKj ← SKFE.Setup(1λ; Rj,0).
(c) Compute skfe.sk f j

← SKFE.KeyGen(skfe.MSKj, f j; Rj,1).
(d) Compute

1keyskfe.ctj ← 1KeySKFE.Enc(1keyskfe.MSK∗, (skfe.MSKj, Rj,2, 1); Rj,3) if j < q
1keyskfe.ctj ← 1KeySKFE.Enc(1keyskfe.MSK∗, (skfe.MSKj, Rj,2, 0); Rj,3) if j > q

(e) Compute Cj,ske ← SKE.Enc(ske.SK∗, uj) where uj = (skfe.sk f j
, 1keyskfe.ctj).

(f) Generate pkfe.skg[f j ,Cj,ske,τj]
← PKFE.KeyGen(pkfe.MSK, g[f j, Cj,ske, τj]) where g[f j, Cj,ske, τj] is a

function described in Figure 4.
(g) Set sk f := pkfe.skg[f j ,Cj,ske,τj]

.
If j = q :
(a) Set Cq,ske ← SKE.Enc(ske.SK∗, uq).
(b) Generate pkfe.skg[fq ,Cq,ske,τq] ← PKFE.KeyGen(pkfe.MSK, g[fq, Cq,ske, τq]) where g[fq, Cq,ske, τq] is

a function described in Figure 4.
The challenger sends sk f j

to A.

7. A sends (m0, m1) to the challenger. It must satisfy f (m0, y) = f (m1, y) for any public input y and for all
key queries f that are made before or after sending (m0, m1).

8. The challenger computes the ciphertext as follows:
(a) Set v := SKFE.Enc(skfe.MSKq, m0; Rq,2)

(b) Generate 1keyskfe.sk∗h[m0,m1,v] ← 1KeySKFE.KeyGen(1keyskfe.MSK∗, h[m0, m1, v])where h[m0, m1, v]
is a function described in Figure 6.

(c) Set ct∗ := (1keyskfe.sk∗h[m0,m1,v], pkfe.ct∗) where pkfe.ct∗ is computed in Step 3.

The challenger sends ct∗ to A.
9. A outputs a bit b′ which is the final output of the experiment.

The indistinguishability between Hyb4 and Hyb4,1,1 follows from the security of 1KeySKFE since the view of the
adversary A can be simulated without the knowledge of 1keyskfe.MSK∗ and using the challenger of the security
experiment of 1KeySKFE. Let us consider an adversary B4,1 against the security of 1KeySKFE.

91

At first, B4,1 prepares a list of Q challenge message pairs (M1, . . . , MQ) where

Mj = (skfe.MSKj, Rj,2, 1) if 1 ≤ j < q
Mj = (skfe.MSKj, Rj,2, 0) if q ≤ j ≤ Q.

for j ∈ [Q]. More precisely,B4,1 sends (Mj, Mj) for all j ∈ [Q] and receives the ciphertexts as {1keyskfe.ctj}j∈[Q]

which is used in answering A’s secret key queries. When A sends the challenge message tuple (m0, m1), B4,1
queries for a secret key with the pair of functions (h[m0, m1, v], h[m0, m1, v′]) to it’s challenger where v is a
random string of appropriate length and v′ = SKFE.Enc(skfe.MSKq, m0; Rq,2). Then, B4,1 uses the output from
it’s challenger to create the challenge ciphertext forA. It is easy to see that B4,1 is an admissible adversary for the
security experiment of 1KeySKFE since h[m0, m1, v](Mj) = h[m0, m1, v′](Mj) holds for all j ∈ [Q]. This is
because h[m0, m1, v](∗, ∗, k) = h[m0, m1, v′](∗, ∗, k) if k ̸= 2. If B4,1 receives a secret key 1keyskfe.sk∗h[m0,m1,v]
then it simulates Hyb4, otherwise, if B4,1 receives a secret key 1keyskfe.sk∗h[m0,m1,v′] then it simulates Hyb4,1,1.
Therefore, the winning probability of B4,1 is essentially the same as

∣∣Pr[Hyb4 = 1]− Pr
[
Hyb4,1,1 = 1

]∣∣ ≤ negl.
Hence, by the security of 1KeySKFE, it holds that∣∣Pr[Hyb4 = 1]− Pr

[
Hyb4,1,1 = 1

]∣∣ ≤ negl(λ).

Hyb4,q,2 : This is exactly the same as Hyb4,q,1 except the challenger changes the mode from α = 0 to α = 2 while
decrypting the challenge ciphertext using the q-th secret key. More precisely, the challenger computes 1keyskfe.ctq
as follows:

1keyskfe.ctq ← 1KeySKFE.Enc(1keyskfe.MSK∗, (0, 0, 2); Rq,3).

The indistinguishability between Hyb4,q,1 and Hyb4,q,2 follows from the security of 1KeySKFE since the view
of the adversary A can be simulated without the knowledge of 1keyskfe.MSK∗ and using the challenger of the
security experiment of 1KeySKFE. This can be shown similarly as we discussed in the previous hybrid since

h[m0, m1, v](skfe.MSKq, Rq,2, 0) = h[m0, m1, v](0, 0, 2)

holds where v = SKFE.Enc(skfe.MSKq, m0; Rq,2). Hence, by the security of 1KeySKFE, it holds that∣∣∣Pr
[
Hyb4,q,1 = 1

]
− Pr

[
Hyb4,q,2 = 1

]∣∣∣ ≤ negl(λ).

Hyb4,q,3 : This is exactly the same as Hyb4,q,2 except the challenger changes v to be the encryption of m1, that is, it sets
v as follows:

v := SKFE.Enc(skfe.MSKq, m1; Rq,2)

The indistinguishability between Hyb4,q,2 and Hyb4,q,3 follows from the security of SKFE since the view of the
adversary A can be simulated without the knowledge of skfe.MSKq and using the challenger of the security
experiment of SKFE. Let us consider an adversary B4,3 against the security of adaptively single-key single-
ciphertext secure public-slot SKFE. Note that, B4,3 queries only a single secret key skfe.sk fq corresponding to
the function fq and a single ciphertext v corresponding to the challenge message pair (m0, m1). In particular,
B4,3 can adaptively query the secret key skfe.sk fq at any point whenever A asks for a secret key for fq and sets
uq = (skfe.sk fq , 1keyskfe.ctq). We observe that B4,3 is an admissible adversary since A is only allowed to query
for a secret key for fq and challenge message pair (m0, m1) such that fq(m0, y) = fq(m1, y) holds for is an arbitrary
input y to the public slot of f . If B4,3 receives a ciphertext v = SKFE.Enc(skfe.MSKq, m0) then it simulates
Hyb4,q,2, otherwise, if B4,3 receives a ciphertext v = SKFE.Enc(skfe.MSKq, m1) then it simulates Hyb4,q,3.

Therefore, the winning probability of B4,3 is essentially the same as
∣∣∣Pr

[
Hyb4,q,2 = 1

]
− Pr

[
Hyb4,q,3 = 1

]∣∣∣ ≤
negl. Hence, by the security of SKFE, it holds that∣∣∣Pr

[
Hyb4,q,2 = 1

]
− Pr

[
Hyb4,q,3 = 1

]∣∣∣ ≤ negl(λ).

92

Hyb4,q,4 : This is exactly the same as Hyb4,q,3 except the challenger changes the mode from α = 2 to α = 1 while
decrypting the challenge ciphertext using the q-th secret key. More precisely, the challenger computes 1keyskfe.ctq
as follows:

1keyskfe.ctq ← 1KeySKFE.Enc(1keyskfe.MSK∗, (skfe.ctq, Rq,2; 1); Rq,3).

The indistinguishability between Hyb4,q,3 and Hyb4,q,4 follows from the security of 1KeySKFE since the view
of the adversary A can be simulated without the knowledge of 1keyskfe.MSK∗ and using the challenger of the
security experiment of 1KeySKFE. This can be shown similarly as we discussed in the previous hybrid since

h[m0, m1, v](0, 0, 2) = h[m0, m1, v](skfe.MSKq, Rq,2, 1)

holds where v = SKFE.Enc(skfe.MSKq, m1; Rq,2). Hence, by the security of 1KeySKFE, it holds that∣∣∣Pr
[
Hyb4,q,3 = 1

]
− Pr

[
Hyb4,q,4 = 1

]∣∣∣ ≤ negl(λ).

Combining the advantage of A in all the consecutive hybrids and applying the triangular inequality, we have
|Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ). This completes the proof of Lemma B.22.

C Secret and Public Key Encryption with Certified Everlasting Deletion
In Appendix C.1, we define SKE and PKE with certified everlasting deletion. In Appendix C.2 and Appendix C.3,
we construct a certified everlasting secure SKE scheme with and without QROM, respectively. In Appendix C.4 and
Appendix C.5, we construct a certified everlasting secure PKE scheme with and without QROM, respectively.

C.1 Definition
Definition C.1 (SKE with Certified Everlasting Deletion (Syntax)). Let λ be a security parameter and let p,
q, r and s be some polynomials. An SKE with certified everlasting deletion scheme is a tuple of algorithms
Σ = (KeyGen, Enc, Dec, Del , Vrfy) with plaintext spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), secret key
space SK := {0, 1}q(λ), verification key space VK := {0, 1}r(λ), and deletion certificate space D := Q⊗s(λ).

KeyGen(1λ)→ sk: The key generation algorithm takes the security parameter 1λ as input and outputs a secret key
sk ∈ SK.

Enc(sk, m)→ (vk, ct): The encryption algorithm takes sk and a plaintext m ∈ M as input, and outputs a verification
key vk ∈ VK and a ciphertext ct ∈ C.

Dec(sk, ct)→ m′ or ⊥: The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈ M or ⊥.

Del (ct)→ cert: The deletion algorithm takes ct as input, and outputs a certification cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

Remark C.2. Although we consider quantum certificates in Appendix C.3, we consider classical certificates by default.
In the quantum certificate case, we need to use cert and Vrfy in the syntax.

We require that an SKE with certified everlasting deletion scheme satisfies correctness defined below.

Definition C.3 (Correctness for SKE with Certified Everlasting Deletion). There are three types of correctness,
namely, decryption correctness, verification correctness, and special correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

m′ ̸= m

∣∣∣∣∣∣
sk← KeyGen(1λ)
(vk, ct)← Enc(sk, m)
m′ ← Dec(sk, ct)

 ≤ negl(λ).

93

Verification Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
sk← KeyGen(1λ)
(vk, ct)← Enc(sk, m)
cert← Del (ct)

 ≤ negl(λ).

Minimum requirements for correctness are decryption correctness and verification correctness. However, we also
require special correctness and verification correctness with QOTP in this work because we need special correctness for
the construction of the garbling scheme in Appendix E.2, and verification correctness with QOTP for the construction of
FE in Section 4.3.

Definition C.4 (Special Correctness). There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr
[
Dec(sk2, ct) ̸= ⊥

∣∣∣∣ sk2, sk1 ← KeyGen(1λ)
(vk, ct)← Enc(sk1, m)

]
≤ negl(λ).

Definition C.5 (Verification Correctness with QOTP). There exists a negligible function negl and a PPT algorithm
Recover such that for any λ ∈N and m ∈ M,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣
sk← KeyGen(1λ)
(vk, ct)← Enc(sk, m)

a, b← {0, 1}p(λ)

c̃ert← Del (ZbXact XaZb)
cert∗ ← Recover(a, b, c̃ert)

 ≤ negl(λ).

As security, we consider two definitions, Definition C.6 and Definition C.7 given below. The former is just the
standard IND-CPA security and the latter is the certified everlasting security that we newly define in this paper. Roughly,
the everlasting security guarantees that any QPT adversary cannot obtain plaintext information even if it becomes
computationally unbounded and obtains the secret key after it issues a valid certificate.

Definition C.6 (IND-CPA Security for SKE with Certified Everlasting Deletion). Let Σ = (KeyGen, Enc, Dec, Del ,
Vrfy) be an SKE with certified everlasting deletion scheme. We consider the following security experiment
Expind-cpa

Σ,A (λ, b) against a QPT adversary A .

1. The challenger computes sk← KeyGen(1λ).

2. A sends an encryption query m to the challenger. The challenger computes (vk, ct)← Enc(sk, m), and returns
(vk, ct) to A . A can repeat this process polynomially many times.

3. A sends (m0, m1) ∈ M2 to the challenger.

4. The challenger computes (vk, ct)← Enc(sk, mb), and sends ct to A .

5. A sends an encryption query m to the challenger. The challenger computes (vk, ct)← Enc(sk, m), and returns
(vk, ct) to A . A can repeat this process polynomially many times.

6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that Σ is IND-CPA secure if, for any QPT A , it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition C.7 (Certified Everlasting IND-CPA Security for SKE). Let Σ = (KeyGen, Enc, Dec, Del , Vrfy) be a
certified everlasting SKE scheme. We consider the following security experiment Expcert-ever-ind-cpa

Σ,A (λ, b) against a
QPT adversary A1 and an unbounded adversary A2.

94

1. The challenger computes sk← KeyGen(1λ).

2. A1 sends an encryption query mi to the challenger. The challenger computes (vki, ct i) ← Enc(sk, mi), and
returns (vki, ct i) to A1. A1 can repeat this process polynomially many times.

3. A1 sends (m0, m1) ∈ M2 to the challenger.

4. The challenger computes (vk, ct)← Enc(sk, mb), and sends ct to A1.

5. A1 sends an encryption query mi to the challenger. The challenger computes (vki, ct i) ← Enc(sk, mi), and
returns (vki, ct i) to A1. A1 can repeat this process polynomially many times.

6. At some point, A1 sends cert to the challenger and sends the internal state to A2.

7. The challenger computes Vrfy(vk, cert). If the output is ⊥, the challenger outputs ⊥, and sends ⊥ to A2.
Otherwise, the challenger outputs ⊤, and sends sk to A2.

8. A2 outputs b′ ∈ {0, 1}.

9. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that Σ is certified everlasting IND-CPA secure if, for any QPT A1 and any unbounded A2, it holds that

Advcert-ever-ind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-ind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-ind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition C.8 (PKE with Certified Everlasting Deletion (Syntax)). Let λ be a security parameter and let p,
q, r, s and t be polynomials. A PKE with certified everlasting deletion scheme is a tuple of algorithms Σ =

(KeyGen, Enc, Dec, Del , Vrfy) with plaintext spaceM := {0, 1}n, ciphertext space C := Q⊗p(λ), public key space
PK := {0, 1}q(λ), secret key space SK := {0, 1}r(λ), verification key space VK := {0, 1}s(λ) and deletion certificate
space D := Q⊗t(λ).

KeyGen(1λ)→ (pk, sk): The key generation algorithm takes the security parameter 1λ as input and outputs a public
key pk ∈ PK and a secret key sk ∈ SK.

Enc(pk, m)→ (vk, ct): The encryption algorithm takes pk and a plaintext m ∈ M as input, and outputs a verification
key vk ∈ VK and a ciphertext ct ∈ C.

Dec(sk, ct)→ m′ or ⊥: The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈ M or ⊥.

Del (ct)→ cert: The deletion algorithm takes ct as input and outputs a certification cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

Remark C.9. Although we consider quantum certificates in Appendix C.5, we consider classical certificates by default.
In the quantum certificate case, we need to use cert and Vrfy in the syntax.

We require that a PKE with certified everlasting deletion scheme satisfies correctness defined below.

Definition C.10 (Correctness for PKE with Certified Everlasting Deletion). There are two types of correctness,
namely, decryption correctness and verification correctness.

Decryption Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

m′ ̸= m

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, ct)← Enc(pk, m)
m′ ← Dec(sk, ct)

 ≤ negl(λ).

95

Verification Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, ct)← Enc(pk, m)
cert← Del (ct)

 ≤ negl(λ).

Minimum requirements for correctness are decryption correctness and verification correctness. However, we also
require verification correctness with QOTP in this work because we need it for the construction of FE in Section 4.3.

Definition C.11 (Verification Correctness with QOTP). There exists a negligible function negl and a PPT algorithm
Recover such that for any λ ∈N and m ∈ M,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, ct)← Enc(pk, m)

a, b← {0, 1}p(λ)

c̃ert← Del (ZbXact XaZb)
cert∗ ← Recover(a, b, c̃ert)

 ≤ negl(λ).

As security, we consider two definitions, Definition C.12 and Definition C.13 given below. The former is just the
standard IND-CPA security and the latter is the certified everlasting security that we newly define in this paper. Roughly,
the everlasting security guarantees that any QPT adversary cannot obtain plaintext information even if it becomes
computationally unbounded and obtains the secret key after it issues a valid certificate.

Definition C.12 (IND-CPA Security for PKE with Certified Everlasting Deletion). Let Σ = (KeyGen, Enc, Dec, Del ,
Vrfy) be a PKE with certified everlasting deletion scheme. We consider the following security experiment Expind-cpa

Σ,A (λ, b)
against a QPT adversary A .

1. The challenger generates (pk, sk)← KeyGen(1λ), and sends pk to A .

2. A sends (m0, m1) ∈ M2 to the challenger.

3. The challenger computes (vk, ct)← Enc(pk, mb), and sends ct to A .

4. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that the Σ is IND-CPA secure if, for any QPT A , it holds that

Advind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition C.13 (Certified Everlasting IND-CPA Security for PKE). Let Σ = (KeyGen, Enc, Dec, Del , Vrfy) be a
PKE with certified everlasting deletion scheme. We consider the following security experiment Expcert-ever-ind-cpa

Σ,A (λ, b)
against a QPT adversary A1 and an unbounded adversary A2.

1. The challenger computes (pk, sk)← KeyGen(1λ), and sends pk to A1.

2. A1 sends (m0, m1) ∈ M2 to the challenger.

3. The challenger computes (vk, ct)← Enc(pk, mb), and sends ct to A1.

4. At some point, A1 sends cert to the challenger, and sends the internal state to A2.

5. The challenger computes Vrfy(vk, cert). If the output is ⊥, the challenger outputs ⊥, and sends ⊥ to A2.
Otherwise, the challenger outputs ⊤, and sends sk to A2.

6. A2 outputs b′ ∈ {0, 1}.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that the Σ is certified everlasting IND-CPA secure if for any QPT A1 and any unbounded A2, it holds that

Advcert-ever-ind-cpa
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-ind-cpa

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-ind-cpa

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

96

C.2 SKE Scheme with QROM
In this section, we construct an SKE with certified everlasting deletion scheme with QROM. Our construction is similar
to that of the certified everlasting commitment scheme in [HMNY22b]. The difference is that we use SKE instead of
commitment.

Our certified everlasting secure SKE scheme. We construct a certified everlasting secure SKE scheme Σcesk =
(KeyGen, Enc, Dec, Del , Vrfy) from the following primitives.

• A one-time SKE with certified deletion scheme (Definition 2.19) Σskcd = CD.(KeyGen, Enc, Dec, Del , Vrfy).

• A SKE scheme (Definition 2.8) Σsk = SKE.(KeyGen, Enc, Dec) with plaintext space {0, 1}λ.

• A hash function H modeled as a quantum random oracle.

KeyGen(1λ):

• Generate ske.sk← SKE.KeyGen(1λ).
• Output sk := ske.sk.

Enc(sk, m):

• Parse sk = ske.sk.
• Generate cd.sk← CD.KeyGen(1λ) and R← {0, 1}λ.
• Compute ske.ct← SKE.Enc(ske.sk, R).
• Compute h := H(R)⊕ cd.sk and cd.ct ← CD.Enc(cd.sk, m).
• Output ct := (h, ske.ct, cd.ct) and vk := cd.sk.

Dec(sk, ct):

• Parse sk = ske.sk and ct = (h, ske.ct, cd.ct).
• Compute R′ or ⊥ ← SKE.Dec(ske.sk, ske.ct). If it outputs ⊥, Dec(sk, ct) outputs ⊥.
• Compute cd.sk′ := H(R′)⊕ h.
• Compute m′ ← CD.Dec(cd.sk′, cd.ct).
• Output m′.

Del(ct):

• Parse ct = (h, ske.ct, cd.ct).
• Compute cd.cert← CD.Del (cd.ct).
• Output cert := cd.cert.

Vrfy(vk, cert):

• Parse vk = cd.sk and cert = cd.cert.
• Compute b← CD.Vrfy(cd.sk, cd.cert).
• Output b.

Correctness: It is easy to see that correctness of Σcesk comes from those of Σsk and Σskcd. Special correctness holds
due to that of Σsk. Verifcation correctness with QOTP holds due to that of Σskcd.

97

Security: The following two theorems hold.

Theorem C.14. If Σsk satisfies the OW-CPA security (Definition 2.11) and Σskcd satisfies the OT-CD security (Defini-
tion 2.19), Σcesk satisfies the IND-CPA security (Definition C.6).

Its proof is similar to that of Theorem C.15, and therefore we omit it.

Theorem C.15. If Σsk satisfies the OW-CPA security (Definition 2.11) and Σskcd satisfies the OT-CD security (Defini-
tion 2.19), Σcesk satisfies the certified everlasting IND-CPA security (Definition C.7).

Its proof is similar to that of [HMNY22b, Theorem 5.8].

C.3 SKE Scheme without QROM
In this section, we construct an SKE with certified everlasting deletion scheme without QROM. Note that unlike the
construction with QROM (Appendix C.2), in this construction the plaintext space is of constant size. However, the size
can be extended to the polynomial size via the standard hybrid argument. Our construction is similar to that of revocable
quantum timed-release encryption in [Unr15]. The difference is that we use SKE instead of timed-release encryption.

Our certified everlasting secure SKE scheme without QROM. Let k1 and k2 be constants such that k1 > k2.
Let p, q, r, s and t be polynomials. Let (C1, C2) be a CSS code with parameters q, k1, k2, t. We construct a
certified everlasting secure SKE scheme Σcesk = (KeyGen, Enc, Dec, Del , Vrfy) with plaintext spaceM = C1/C2
(isomorphic to {0, 1}k1−k2), ciphertext space C = Q⊗(p(λ)+q(λ)) × {0, 1}r(λ) × {0, 1}q(λ)/C1 × C1/C2, secret key
space SK = {0, 1}s(λ), verification key space VK = {0, 1}p(λ) × [p(λ) + q(λ)]p(λ) × {0, 1}p(λ) and deletion
certificate space D = Q⊗(p(λ)+q(λ)) from the following primitive.

• An SKE scheme (Definition 2.8) Σsk = SKE.(KeyGen, Enc, Dec) with plaintext space M = {0, 1}p(λ) ×
[p(λ) + q(λ)]p(λ) × {0, 1}p(λ) × C1/C2, secret key space SK = {0, 1}s(λ) and ciphertext space C =

{0, 1}r(λ).

The construction is as follows. (We will omit the security parameter below.)

KeyGen(1λ):

• Generate ske.sk← SKE.KeyGen(1λ).
• Output sk := ske.sk.

Enc(sk, m):

• Parse sk = ske.sk.
• Generate B ← {0, 1}p, Q ← [p + q]p, y ← C1/C2, u ← {0, 1}q/C1, r ← {0, 1}p, x ← C1/C2,

w← C2.
• Compute ske.ct← SKE.Enc (ske.sk, (B, Q, r, y)).
• Let UQ be the unitary that permutes the qubits in Q into the first half of the system. (I.e., UQ

∣∣x1x2 · · · xp+q
〉
=∣∣∣xa1 xa2 · · · xap xb1 xb2 · · · xbq

〉
with Q := {a1, a2, · · · , ap} and {1, 2, · · · , p+ q}\Q := {b1, b2, · · · , bq}.)

• Construct a quantum state |Ψ⟩ := U†
Q(HB ⊗ I⊗q)(|r⟩ ⊗ |x⊕ w⊕ u⟩).

• Compute h := m⊕ x⊕ y.
• Output ct := (|Ψ⟩ , ske.ct, u, h) and vk := (B, Q, r).

Dec(sk, ct):

• Parse sk = ske.sk, ct = (|Ψ⟩ , ske.ct, u, h).

98

• Compute (B, Q, r, y)/⊥ ← SKE.Dec(ske.sk, ske.ct). If ⊥ ← SKE.Dec(ske.sk, ske.ct), Dec(sk, ct)
outputs ⊥ and aborts.

• Apply UQ to |Ψ⟩, measure the last q-qubits in the computational basis and obtain the measurement outcome
γ ∈ {0, 1}q.

• Compute x := γ⊕ u mod C2.
• Output m′ := h⊕ x⊕ y.

Del(ct):

• Parse ct = (|Ψ⟩ , ske.ct, u, h).
• Output cert := |Ψ⟩.

Vrfy(vk, cert):

• Parse vk = (B, Q, r) and cert = |Ψ⟩.
• Apply (HB ⊗ I⊗q)UQ to |Ψ⟩, measure the first p-qubits in the computational basis and obtain the

measurement outcome r′ ∈ {0, 1}p.
• Output ⊤ if r = r′ and output ⊥ otherwise.

Correctness. Correctness easily follows from that of Σsk. Special correctness holds due to that of Σsk. Verifcation
correctness with QOTP holds since Recover is the decryption algorithm of QOTP.

Security. The following two theorems hold.

Theorem C.16. If Σsk is IND-CPA secure (Definition 2.12), then Σcesk is IND-CPA secure (Definition C.6).

Its proof is straightforward, so we omit it.

Theorem C.17. If Σsk is IND-CPA secure (Definition 2.12) and tp/(p + q)− 4(k1 − k2)ln2 is superlogarithmic, then
Σcesk is certified everlasting IND-CPA secure (Definition C.7).

Its proof is similar to that of [Unr15, Theorem 3].
Note that the plaintext space is of constant size in our construction. However, via the standard hybrid argument , we

can extend it to the polynomial size.

C.4 PKE Scheme with QROM
In this section, we construct a certified everlasting secure PKE scheme with QROM. Our construction is similar to
that of the certified everlasting commitment scheme in [HMNY22b]. The difference is that we use PKE instead of
commitment.

Our certified everlasting secure PKE scheme. We construct a certified everlasting secure PKE scheme Σcepk =
(KeyGen, Enc, Dec, Del , Vrfy) from a one-time SKE with certified deletion scheme Σskcd = SKE.(KeyGen, Enc, Dec,
Del , Vrfy) (Definition 2.19), a PKE scheme Σpk = PKE.(KeyGen, Enc, Dec) with plaintext space {0, 1}λ (Defini-
tion 2.15) and a hash function H modeled as quantum random oracle.

KeyGen(1λ):

• Generate (pke.pk, pke.sk)← KeyGen(1λ).
• Output pk := pke.pk and sk := pke.sk.

Enc(pk, m):

99

• Parse pk = pke.pk.
• Generate ske.sk← SKE.KeyGen(1λ).
• Randomly generate R← {0, 1}λ.
• Compute pke.ct← PKE.Enc(pke.pk, R).
• Compute h := H(R)⊕ ske.sk and ske.ct ← SKE.Enc(ske.sk, m).
• Output ct := (h, ske.ct , pke.ct) and vk := ske.sk.

Dec(sk, ct):

• Parse sk = pke.sk and ct = (h, ske.ct , pke.ct).
• Compute R′ ← PKE.Dec(pke.sk, pke.ct).
• Compute ske.sk′ := h⊕ H(R′).
• Compute m′ ← SKE.Dec(ske.sk′, ske.ct).
• Output m′.

Del(ct):

• Parse ct = (h, ske.ct , pke.ct).
• Compute ske.cert← SKE.Del (ske.ct).
• Output cert := ske.cert.

Vrfy(vk, cert):

• Parse vk = ske.sk and cert = ske.cert.
• Compute b← SKE.Vrfy(ske.sk, ske.cert).
• Output b.

Correctness: Correctness easily follows from those of Σpk and Σskcd. Verifcation correctness with QOTP holds due
to that of Σskcd.

Security: The following two theorems hold. Their proofs are similar to those of Theorems C.14 and C.15, and
therefore we omit them.

Theorem C.18. If Σpk satisfies the OW-CPA security (Definition 2.17) and Σskcd satisfies the OT-CD security (Defini-
tion 2.22), Σcepk is IND-CPA secure (Definition C.12).

Theorem C.19. If Σpk satisfies the OW-CPA security (Definition 2.17) and Σskcd satisfies the OT-CD security (Defini-
tion 2.22), Σcepk is certified everlasting IND-CPA secure (Definition C.13).

C.5 PKE Scheme without QROM
In this section, we construct a certified everlasting secure PKE scheme without QROM. Our construction is similar to that
of quantum timed-release encryption presented in [Unr15]. The difference is that we use PKE instead of timed-release
encryption.

100

Our certified everlasting secure PKE scheme without QROM. Let k1 and k2 be some constant such that k1 > k2.
Let p, q, r, s, t and u be some polynomials. Let (C1, C2) be a CSS code with parameters q, k1, k2, t. We construct a
certified everlasting secure PKE scheme Σcepk = (KeyGen, Enc, Dec, Del , Vrfy), with plaintext spaceM = C1/C2

(isomorphic {0, 1}(k1−k2)), ciphertext space C = Q⊗(p(λ)+q(λ)) × {0, 1}r(λ) × {0, 1}q(λ)/C1 × C1/C2, public key
space PK = {0, 1}u(λ), secret key space SK = {0, 1}s(λ), verification key space VK = {0, 1}p(λ) × [p(λ) +
q(λ)]p(λ) × {0, 1}p(λ) and deletion certificate space D = Q⊗(p(λ)+q(λ)) from the following primitive.

• A PKE scheme (Definition 2.15) Σpk = PKE.(KeyGen, Enc, Dec) with plaintext space M = {0, 1}p(λ) ×
[p(λ)+ q(λ)]p(λ)×{0, 1}p(λ)×C1/C2, public key spacePK = {0, 1}u(λ), secret key spaceSK = {0, 1}s(λ)

and ciphertext space C = {0, 1}r(λ).

The construction is as follows. (We will omit the security parameter below.)

KeyGen(1λ):

• Generate (pke.pk, pke.sk)← PKE.KeyGen(1λ).
• Output pk := pke.pk and sk := pke.sk.

Enc(pk, m):

• Parse pk = pke.pk.
• Generate B ← {0, 1}p, Q ← [p + q]p, y ← C1/C2, u ← {0, 1}q/C1, r ← {0, 1}p, x ← C1/C2,

w← C2.
• Compute pke.ct← PKE.Enc (pke.pk, (B, Q, r, y)).
• Let UQ be the unitary that permutes the qubits in Q into the first half of the system. (I.e., UQ

∣∣x1x2 · · · xp+q
〉
=∣∣∣xa1 xa2 · · · xap xb1 xb2 · · · xbq

〉
with Q := {a1, a2, · · · , ap} and {1, 2, · · · , p+ q} \Q := {b1, b2, · · · , bq}.)

• Generate a quantum state |Ψ⟩ := U†
Q(HB ⊗ I⊗q)(|r⟩ ⊗ |x⊕ w⊕ u⟩).

• Compute h := m⊕ x⊕ y.
• Output ct := (|Ψ⟩ , pke.ct, u, h) and vk := (B, Q, r).

Dec(sk, ct):

• Parse sk = pke.sk and ct = (|Ψ⟩ , pke.ct, u, h).
• Compute (B, Q, r, y)← PKE.Dec(pke.sk, pke.ct).
• Apply UQ to |Ψ⟩, measure the last q-qubits in the computational basis and obtain the measurement outcome

γ.
• Compute x := γ⊕ u mod C2.
• Output m′ := h⊕ x⊕ y.

Del (ct):

• Parse ct = (|Ψ⟩ , pke.ct, u, h).
• Output cert := |Ψ⟩.

Vrfy(vk, cert):

• Parse vk = (B, Q, r) and cert = |Ψ⟩.
• Apply (HB ⊗ I⊗q)UQ to |Ψ⟩, measure the first p-qubits in the computational basis and obtain the

measurement outcome r′.
• Output ⊤ if r = r′ and output ⊥ otherwise.

101

Correctness. Correctness easily follows from that of Σpk. Verifcation correctness with QOTP holds since Recover is
the decryption algorithm of QOTP.

Security. The following two theorems hold.

Theorem C.20. If Σpk is IND-CPA secure (Definition 2.18), then Σcepk is IND-CPA secure (Definition C.12).

Its proof is straightforward, and therefore we omit it.

Theorem C.21. If Σpk is IND-CPA secure (Definition 2.18) and tp/(p + q)− 4(k1 − k2)ln2 is superlogarithmic, then
Σcepk is certified everlasting IND-CPA secure (Definition C.13).

Its proof is similar to that of [Unr15, Theorem 3]. Note that the plaintext space is of constant size in our construction.
However, via the standard hybrid argument, we can extend it to the polynomial size.

D Receiver Non-Committing Encryption with Certified Everlasting Deletion
In this section, we define and construct receiver non-committing encryption with certified everlasting deletion. In
Appendix D.1, we define RNCE with certified everlasting deletion. In Appendix D.2, we construct a certified everlasting
RNCE scheme from certified everlasting secure PKE (Appendix C).

D.1 Definition
Definition D.1 (RNCE with Certified Everlasting Deletion (Syntax)). Let λ be the security parameter and let p,
q, r, s, t, u, and v be polynomials. An RNCE with certified everlasting deletion scheme is a tuple of algorithms
Σ = (Setup, KeyGen, Enc, Dec, Fake, Reveal, Del , Vrfy) with plaintext spaceM := {0, 1}n, ciphertext space C :=
Q⊗p(λ), public key space PK := {0, 1}q(λ), master secret key space MSK := {0, 1}r(λ), secret key space
SK := {0, 1}s(λ), verification key space VK := {0, 1}t(λ), deletion certificate space D := Qu(λ), and auxiliary state
space AUX := {0, 1}v(λ).

Setup(1λ)→ (pk, MSK): The setup algorithm takes the security parameter 1λ as input, and outputs a public key
pk ∈ PK and a master secret key MSK ∈ MSK.

KeyGen(MSK)→ sk: The key generation algorithm takes the master secret key MSK as input, and outputs a secret
key sk ∈ SK.

Enc(pk, m)→ (vk, ct): The encryption algorithm takes pk and a plaintext m ∈ M as input, and outputs a verification
key vk ∈ VK and a ciphertext ct ∈ C.

Dec(sk, ct)→ m′ or ⊥: The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈ M or ⊥.

Fake(pk)→ (vk, c̃t , aux): The fake encryption algorithm takes pk as input, and outputs a verification key vk ∈ VK, a
fake ciphertext c̃t ∈ C and an auxiliary state aux ∈ AUX .

Reveal(pk, MSK, aux, m)→ s̃k: The reveal algorithm takes pk, MSK, aux and m as input, and outputs a fake secret
key s̃k ∈ SK.

Del (ct)→ cert: The deletion algorithm takes ct as input and outputs a certification cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

We require that an RNCE with certified everlasting deletion scheme satisfies correctness defined below.

Definition D.2 (Correctness for RNCE with Certified Everlasting Deletion). There are two types of correctness,
namely, decryption correctness and verification correctness.

102

Decryption Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

m′ ̸= m

∣∣∣∣∣∣∣∣
(pk, MSK)← Setup(1λ)
(vk, ct)← Enc(pk, m)
sk← KeyGen(MSK)
m′ ← Dec(sk, ct)

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈N and m ∈ M,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, MSK)← Setup(1λ)
(vk, ct)← Enc(pk, m)
cert← Del (ct)

 ≤ negl(λ).

As security, we consider two definitions, Definition D.3 and Definition D.4 given below. The former is just the
standard receiver non-committing security and the latter is the certified everlasting security that we newly define in this
paper. Roughly, the everlasting security guarantees that any QPT adversary cannot distinguish whether the ciphertext
and the secret key are properly generated or not even if it becomes computationally unbounded and obtains the master
secret key after it issues a valid certificate.

Definition D.3 (Receiver Non-Committing Security for RNCE with Certified Everlasting Deletion). Let Σ =
(Setup, KeyGen, Enc, Dec, Fake, Reveal, Del , Vrfy) be an RNCE with certified everlasting deletion scheme. We consider
the following security experiment Exprec-nc

Σ,A (λ, b) against a QPT adversary A .

1. The challenger runs (pk, MSK)← Setup(1λ) and sends pk to A .

2. A sends m ∈ M to the challenger.

3. The challenger does the following:

• If b = 0, the challenger generates (vk, ct)← Enc(pk, m) and sk← KeyGen(MSK), and sends (ct , sk) to
A .

• If b = 1, the challenger generates (vk, c̃t , aux) ← Fake(pk) and s̃k ← Reveal(pk, MSK, aux, m), and
sends (c̃t , s̃k) to A .

4. A outputs b′ ∈ {0, 1}.

We say that Σ is receiver non-committing (RNC) secure if, for any QPT A , it holds that

Advrec-nc
Σ,A (λ) :=

∣∣Pr
[
Exprec-nc

Σ,A (λ, 0) = 1
]
− Pr

[
Exprec-nc

Σ,A (λ, 1) = 1
]∣∣ ≤ negl(λ).

Definition D.4 (Certified Everlasting RNC Security for RNCE). Let Σ = (Setup, KeyGen, Enc, Dec, Fake, Reveal,
Del , Vrfy) be a certified everlasting RNCE scheme. We consider the following security experiment Expcert-ever-rec-nc

Σ,A (λ, b)
against a QPT adversary A1 and an unbounded adversary A2.

1. The challenger runs (pk, MSK)← Setup(1λ) and sends pk to A1.

2. A1 sends m ∈ M to the challenger.

3. The challenger does the following:

• If b = 0, the challenger generates (vk, ct)← Enc(pk, m) and sk← KeyGen(MSK), and sends (ct , sk) to
A1.

• If b = 1, the challenger generates (vk, c̃t , aux) ← Fake(pk) and s̃k ← Reveal(pk, MSK, aux, m), and
sends (c̃t , s̃k) to A1.

4. At some point, A1 sends cert to the challenger and its internal state to A2.

103

5. The challenger computes Vrfy(vk, cert). If the output is ⊤, the challenger outputs ⊤ and sends MSK to A2. If the
output is ⊥, the challenger outputs ⊥ and sends ⊥ to A2.

6. A2 outputs b′ ∈ {0, 1}.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that Σ is certified everlasting RNC secure if for any QPT A1 and any unbounded A2, it holds that

Advcert-ever-rec-nc
Σ,A (λ) :=

∣∣Pr
[
Expcert-ever-rec-nc

Σ,A (λ, 0) = 1
]
− Pr

[
Expcert-ever-rec-nc

Σ,A (λ, 1) = 1
]∣∣ ≤ negl(λ).

D.2 Construction
In this section, we construct a certified everlasting RNCE scheme from a certified everlasting PKE scheme (Definition C.8).
Our construction is similar to that of the secret-key RNCE scheme presented in [KNTY19]. The difference is that we
use a certified everlasting secure PKE scheme instead of a standard SKE scheme.

Our certified everlasting secure RNCE scheme. We construct a certified everlasting secure RNCE scheme
Σcence = (Setup, KeyGen, Enc, Dec, Fake, Reveal, Del , Vrfy) from a certified everlasting secure PKE scheme Σcepk =
PKE.(KeyGen, Enc, Dec, Del , Vrfy), which was introduced in Definition C.8.

Setup(1λ):

• Generate (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for all i ∈ [n] and α ∈ {0, 1}.
• Output pk := {pke.pki,α}i∈[n],α∈{0,1} and MSK := {pke.ski,α}i∈[n],α∈{0,1}.

KeyGen(MSK):

• Parse MSK = {pke.ski,α}i∈[n],α∈{0,1}.

• Generate x ← {0, 1}n.
• Output sk := (x, {pke.ski,x[i]}i∈[n]).

Enc(pk, m):

• Parse pk = {pke.pki,α}i∈[n],α∈{0,1}.

• Compute (pke.vki,α, pke.ct i,α)← PKE.Enc(pke.pki,α, m[i]) for all i ∈ [n] and α ∈ {0, 1}.
• Output vk := {pke.vki,α}i∈[n],α∈{0,1} and ct := {pke.ct i,α}i∈[n],α∈{0,1}.

Dec(sk, ct):

• Parse sk = (x, {pke.ski}i∈[n]) and ct = {pke.ct i,α}i∈[n],α∈{0,1}.

• Compute m[i]← PKE.Dec(pke.ski, pke.ct i,x[i]) for all i ∈ [n].

• Output m := m[1]||m[2]|| · · · ||m[n].

Fake(pk):

• Parse pk = {pke.pki,α}i∈[n],α∈{0,1}.

• Generate x∗ ← {0, 1}n.
• Compute (pke.vki,x∗ [i], pke.ct i,x∗ [i]) ← PKE.Enc(pke.pki,x∗ [i], 0) and (pke.vki,x∗ [i]⊕1, pke.ct i,x∗ [i]⊕1) ←

PKE.Enc(pke.pki,x∗ [i]⊕1, 1) for all i ∈ [n].

• Output vk := {pke.vki,α}i∈[n],α∈{0,1}, c̃t := {pke.ct i,α}i∈[n],α∈{0,1} and aux = x∗.

104

Reveal(pk, MSK, aux, m):

• Parse pk = {pke.pki,α}i∈[n],α∈{0,1}, MSK = {pke.ski,α}i∈[n],α∈{0,1} and aux = x∗.

• Output s̃k :=
(

x∗ ⊕m, {pke.ski,x∗ [i]⊕m[i]}i∈[n]

)
.

Del (ct):

• Parse ct = {pke.ct i,α}i∈[n],α∈{0,1}.

• Compute pke.certi,α ← PKE.Del (pke.ct i,α) for all i ∈ [n] and α ∈ {0, 1}.
• Output cert := {pke.certi,α}i∈[n],α∈{0,1}.

Vrfy(vk, cert):

• Parse vk = {pke.vki,α}i∈[n],α∈{0,1} and cert = {pke.certi,α}i∈[n],α∈{0,1}.

• Compute ⊤/⊥ ← PKE.Vrfy(pke.vki,α, pke.certi,α) for all i ∈ [n] and α ∈ {0, 1}. If all results are ⊤,
Vrfy(vk, cert) outputs ⊤. Otherwise, it outputs ⊥.

Correctness: Correctness easily follows from that of Σcepk.

Security: The following two theorems hold.

Theorem D.5. If Σcepk is IND-CPA secure (Definition C.12), Σcence is RNC secure (Definition D.3).

Its proof is similar to that of Theorem D.6, and therefore we omit it.

Theorem D.6. If Σcepk is certified everlasting IND-CPA secure (Definition C.13), Σcence is certified everlasting RNC
secure (Definition D.4).

Proof of Theorem D.6. To prove the theorem, let us introduce the sequence of hybrids.

Hyb0: This is identical to Expcert-ever-rec-nc
Σcence,A (λ, 0). For clarity, we describe the experiment against any adversary

A = (A1, A2), where A1 is any QPT adversary and A2 is any unbounded adversary.

1. The challenger generates (pke.pki,α, pke.ski,α)← PKE.KeyGen(1λ) for all i ∈ [n] and α ∈ {0, 1}.
2. The challenger sends {pke.pki,α}i∈[n],α∈{0,1} to A1.
3. A1 sends m ∈ M to the challenger.
4. The challenger generates x ← {0, 1}n, computes (pke.vki,α, pke.ct i,α)← PKE.Enc(pke.pki,α, m[i]) for all

i ∈ [n] and α ∈ {0, 1}, and sends ({pke.ct i,α}i∈[n],α∈{0,1}, (x, {pke.ski,x[i]}i∈[n])) to A1.

5. A1 sends {pke.certi,α}i∈[n],α∈{0,1} to the challenger and its internal state to A2.

6. The challenger computes PKE.Vrfy(pke.vki,α, pke.certi,α) for all i ∈ [n] and α ∈ {0, 1}. If all results are
⊤, the challenger outputs ⊤ and sends {pke.ski,α}i∈[n],α∈{0,1} to A2. Otherwise, the challenger outputs ⊥
and sends ⊥ to A2.

7. A2 outputs b′ ∈ {0, 1}.
8. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment

is ⊥.

Hyb1: This is identical to Hyb0 except that the challenger generates (pke.vki,x[i]⊕1, pke.ct i,x[i]⊕1)← PKE.Enc(pke.pki,x[i]⊕1,
m[i]⊕ 1) for all i ∈ [n] instead of computing (pke.vki,x[i]⊕1, pke.ct i,x[i]⊕1) ← PKE.Enc(pke.pki,x[i]⊕1, m[i])
for all i ∈ [n].

Hyb2: This is identical to Hyb1 except for the following three points.

105

1. The challenger generates x∗ ← {0, 1}n instead of generating x ← {0, 1}n.
2. For all i ∈ [n], the challenger generates (pke.vki,x∗ [i], pke.ct i,x∗ [i]) ← PKE.Enc(pke.pki,x∗ [i], 0) and

(pke.vki,x∗ [i]⊕1, pke.ct i,x∗ [i]⊕1)← PKE.Enc(pke.pki,x∗ [i]⊕1, 1) instead of computing (pke.vki,x[i], pke.ct i,x[i])

← PKE.Enc(pke.pki,x[i], m[i]) and (pke.vki,x[i]⊕1, pke.ct i,x[i]⊕1)← PKE.Enc(pke.pki,x[i]⊕1, m[i]⊕ 1).

3. The challenger sends ({pke.ct i,α}i∈[n],α∈{0,1}, (x∗ ⊕m, {pke.ski,x∗ [i]⊕m[i]}i∈[n])) to A1 instead of sending
({pke.ct i,α}i∈[n],α∈{0,1}, (x, {pke.ski,x[i]}i∈[n])) to A1.

It is clear that Hyb0 is identical to Expcert-ever-rec-nc
Σ,A (λ, 0) and Hyb2 is identical to Expcert-ever-rec-nc

Σ,A (λ, 1). Hence,
Theorem D.6 easily follows from the following Propositions D.7 and D.8 (whose proof is given later.).

Proposition D.7. If Σcepk is certified everlasting IND-CPA secure, it holds that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤
negl(λ).

Proposition D.8. |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof of Proposition D.7. For the proof, we use Lemma D.9. We assume that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is
non-negligible, and construct an adversary B that breaks the security experiment Expmulti-cert-ever

Σcepk,B (λ, b) defined
in Lemma D.9. This contradicts the certified everlasting IND-CPA security of Σcepk from Lemma D.9. Let us describe
how B works below.

1. B receives {pke.pki,α}i∈[n],α∈{0,1} from the challenger of Expmulti-cert-ever
Σcepk,B (λ, b).

2. B sends {pke.pki,α}i∈[n],α∈{0,1} to A1.

3. A1 chooses m ∈ M and sends m to B.

4. B generates x ← {0, 1}n and sends (x, m[1], · · · , m[n], m[1] ⊕ 1, · · · , m[n] ⊕ 1) to the challenger of
Expmulti-cert-ever

Σcepk,B (λ, b).

5. B receives ({pke.ski,x[i]}i∈[n], {pke.ct i,x[i]⊕1}i∈[n]) from the challenger of Expmulti-cert-ever
Σcepk,B (λ, b).

6. B computes ({pke.vki,x[i]}i∈[n], {pke.ct i,x[i]}i∈[n])← PKE.Enc(pke.pki,x[i], m[i]) for i ∈ [n].

7. B sends ({pke.ct i,α}i∈[n],α∈{0,1}, (x, {pke.ski,x[i]}i∈[n])) to A1.

8. A1 sends {pke.certi,α}i∈[n],α∈{0,1} to B and the internal state to A2.

9. B sends {pke.certi,x[i]⊕1}i∈[n] to the challenger, and receives {pke.ski,x[i]⊕1}i∈[n] or ⊥. If B receives ⊥, it
outputs ⊥ and aborts.

10. B sends {pke.ski,α}i∈[n],α∈{0,1} to A2.

11. A2 outputs b′.

12. B computes PKE.Vrfy(pke.vki,x[i], pke.certi,x[i]) for all i ∈ [n]. If all results are ⊤, B outputs b′. Otherwise, B
outputs ⊥.

It is clear that Pr[1← B | b = 0] = Pr[Hyb0 = 1] and Pr[1← B | b = 1] = Pr[Hyb1 = 1]. By assumption,
|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| is non-negligible. Therefore, |Pr[1← B | b = 0]− Pr[1← B | b = 1]| is also non-
negligible, which contradicts the certified everlasting IND-CPA security of Σcepk from Lemma D.9.

Proof of Proposition D.8. It is obvious that the joint probability distribution that A1 receives ({pke.ct i,α}i∈[n],α∈{0,1},
(x, {pke.ski,x[i]}i∈[n])) in Hyb1 is identical to the joint probability distribution that A1 receives ({pke.ct i,α}i∈[n],α∈{0,1},
(x∗ ⊕m, {pke.ski,x∗ [i]⊕m[i]}i∈[n])) in Hyb2. Hence, Proposition D.8 follows.

106

We use the following lemma for the proof of Theorem D.6 and Theorem E.7. The proof is shown with the standard
hybrid argument. It is also easy to see that a similar lemma holds for IND-CPA security.

Lemma D.9. Let s be some polynomial of the security parameter λ. Let Σ := (KeyGen, Enc, Dec, Del , Vrfy) be a
certified everlasting secure PKE scheme. Let us consider the following security experiment Expmulti-cert-ever

Σ,A (λ, b)
against A consisting of any QPT adversary A1 and any unbounded adversary A2.

1. The challenge generates (pki,α, ski,α)← KeyGen(1λ) for all i ∈ [s] and α ∈ {0, 1}, and sends {pki,α}i∈[s],α∈{0,1}
to A1.

2. A1 chooses f ∈ {0, 1}s and (m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) ∈ M2s, and sends (f , m0[1], m0[2],
· · · , m0[s], m1[1], m1[2], · · · , m1[s]) to the challenger.

3. The challenger computes (vki, f [i]⊕1, ct i, f [i]⊕1)← Enc(pki, f [i]⊕1, mb[i]) for all i ∈ [s], and sends ({ski, f [i]}i∈[s],
{ct i, f [i]⊕1}i∈[s]) to A1.

4. At some point, A1 sends {certi, f [i]⊕1}i∈[s] to the challenger, and sends its internal state to A2.

5. The challenger computes Vrfy(vki, f [i]⊕1, certi, f [i]⊕1) for every i ∈ [s]. If all results are ⊤, the challenger outputs
⊤, and sends {ski, f [i]⊕1}i∈[s] to A2. Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

6. A2 outputs b′.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

If the Σ satisfies the certified everlasting IND-CPA security,

Advmulti-cert-ever
Σ,A (λ) :=

∣∣∣Pr
[
Expmulti-cert-ever

Σ,A (λ, 0) = 1
]
− Pr

[
Expmulti-cert-ever

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ)

for any QPT adversary A1 and any unbounded adversary A2.

Proof of Lemma D.9. Let us consider the following hybrids for j ∈ {0, 1, · · · , s}.

Hybj:

1. The challenger generates (pki,α, ski,α) ← KeyGen(1λ) for every i ∈ [s] and α ∈ {0, 1}, and sends
{pki,α}i∈[s],α∈{0,1} to A1.

2. A1 chooses f ∈ {0, 1}s and (m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) ∈ M2s, and sends
(f , m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) to the challenger.

3. The challenger computes

(vki, f [i]⊕1, ct i, f [i]⊕1)← Enc(pki, f [i]⊕1, m1[i])

for i ∈ [j] and

(vki, f [i]⊕1, ct i, f [i]⊕1)← Enc(pki, f [i]⊕1, m0[i])

for i ∈ {j + 1, j + 2, · · · , s}, and sends ({ski, f [i]}i∈[s], {ct i, f [i]⊕1}i∈[s]) to A1.

4. At some point, A1 sends {certi, f [i]⊕1}i∈[s] to the challenger, and sends its internal state to A2.

5. The challenger computes Vrfy(vki, f [i]⊕1, certi, f [i]⊕1) for every i ∈ [s]. If all results are ⊤, the challenger
outputs ⊤, and sends {ski, f [i]⊕1}i∈[s] to A2. Otherwise, the challenger outputs ⊥, and sends ⊥ to A2.

6. A2 outputs b′.
7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment

is ⊥.

107

It is clear that Pr[Hyb0 = 1] = Pr
[
Expmulti-cert-ever

Σ,A (λ, 0) = 1
]

and Pr[Hybs = 1] = Pr
[
Expmulti-cert-ever

Σ,A (λ, 1) = 1
]
.

Furthermore, we can show ∣∣∣Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣∣ ≤ negl(λ)

for each j ∈ {0, 1, · · · , s− 1}. (Its proof is given below.) From these facts, we obtain Lemma D.9.
Let us show the remaining one. To show it, let us assume that

∣∣∣Pr
[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣∣ is non-negligible.
Then, we can construct an adversary B that can break the certified everlasting IND-CPA security of Σ as follows.

1. B receives pk from the challenger of Expcert-ever-ind-cpa
Σ,B (λ, b).

2. B generates β← {0, 1} and sets pkj+1,β := pk.

3. B generates (pki,α, ski,α)← KeyGen(1λ) for i ∈ {1, · · · , j, j+ 2, · · · , s} and α ∈ {0, 1}, and (pkj+1,β⊕1, skj+1,β⊕1)←
KeyGen(1λ).

4. B sends {pki,α}i∈[s],α∈{0,1} to A1.

5. A1 chooses f ∈ {0, 1}s and (m0[1], m0[2], · · · , m0[s], m1[1], m1[2], · · · , m1[s]) ∈ M2s, and sends (f , m0[1], m0[2],
· · · , m0[s], m1[1], m1[2], · · · , m1[s]) to the challenger.

6. If f [j + 1] = β, B aborts the experiment, and outputs ⊥.

7. B computes

(vki, f [i]⊕1, ct i, f [i]⊕1)← Enc(pki, f [i]⊕1, m1[i])

for i ∈ [j] and

(vki, f [i]⊕1, ct i, f [i]⊕1)← Enc(pki, f [i]⊕1, m0[i])

for i ∈ {j + 2, · · · , s}.

8. B sends (m0[j + 1], m1[j + 1]) to the challenger of Expcert-ever-ind-cpa
Σ,B (λ, b). The challenger computes

(vkj+1, f [j+1]⊕1, ct j+1, f [j+1]⊕1)← Enc(pkj+1, f [j+1]⊕1, mb[j + 1]) and sends ct j+1, f [j+1]⊕1 to B.

9. B sends ({ski, f [i]}i∈[s], {ct i, f [i]⊕1}i∈[s]) to A1.

10. A1 sends {certi}i∈[s] to B, and sends its internal state to A2.

11. B sends certj+1 to the challenger, and receives skj+1, f [j+1]⊕1 or ⊥ from the challenger. If B receives ⊥ from the
challenger, it outputs ⊥ and aborts.

12. B sends {ski, f [i]⊕1}i∈[s] to A2.

13. A2 outputs b′.

14. B computes Vrfy for all certi, and outputs b′ if all results are ⊤. Otherwise, B outputs ⊥.

Since pkj+1,β and pkj+1,β⊕1 are identically distributed, it holds that Pr[f [j + 1] = β] = Pr[f [j + 1] = β⊕ 1] = 1
2 . If

b = 0 and f [j + 1] = β⊕ 1, B simulates Hybj. Therefore, we have

Pr[1← B | b = 0] = Pr[1← B ∧ f [j + 1] = β⊕ 1 | b = 0]
= Pr[1← B | b = 0, f [j + 1] = β⊕ 1] · Pr[f [j + 1] = β⊕ 1]

=
1
2

Pr
[
Hybj = 1

]
.

108

If b = 1 and f [j + 1] = β⊕ 1, B simulates Hybj+1. Similarly, we have Pr[1← B | b = 1] = 1
2 Pr

[
Hybj+1 = 1

]
. By

assumption,
∣∣∣Pr

[
Hybj = 1

]
− Pr

[
Hybj+1 = 1

]∣∣∣ is non-negligible, and therefore |Pr[1← B | b = 0]− Pr[1← B | b = 1]|
is non-negligible, which contradicts the certified everlasting IND-CPA security of Σ.

E Garbling Scheme with Certified Everlasting Deletion
In Appendix E.1, we define a garbling scheme with certified everlasting deletion. In Appendix E.2, we construct a
certified everlasting secure garbling scheme from a certified everlasting secure SKE scheme.

E.1 Definition
We define a garbling scheme with certified everlasting deletion below. An important difference from a standard classical
garbling scheme is that the garbled circuit C̃ (i.e., an output of Grbl) is a quantum state.

Definition E.1 (Garbling Scheme with Certified Everlasting Deletion (Syntax)). Let λ be a security parameter and
p, q, r and s be polynomials. Let Cn be a family of circuits that take n-bit inputs. A garbling scheme with certified
everlasting deletion is a tuple of algorithms Σ = (Setup, Garble, Eval , Del , Vrfy) with label space L := {0, 1}p(λ),
garbled circuit space C := Q⊗q(λ), verification key space VK := {0, 1}r(λ) and deletion certificate spaceD := Q⊗s(λ).

Setup(1λ)→ {Li,α}i∈[n],α∈{0,1}: The sampling algorithm takes a security parameter 1λ as input, and outputs 2n
labels {Li,α}i∈[n],α∈{0,1} with Li,α ∈ L for each i ∈ [n] and α ∈ {0, 1}.

Garble(1λ, C, {Li,α}i∈[n],α∈{0,1})→ (C̃ , vk): The garbling algorithm takes 1λ, a circuit C ∈ Cn and 2n labels
{Li,α}i∈[n],α∈{0,1} as input, and outputs a garbled circuit C̃ ∈ C and a verification key vk ∈ VK.

Eval (C̃ , {Li,xi}i∈[n])→ y: The evaluation algorithm takes C̃ and n labels {Li,xi}i∈[n] where xi ∈ {0, 1} as input, and
outputs y.

Del (C̃)→ cert: The deletion algorithm takes C̃ as input, and outputs a certificate cert ∈ D.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm takes vk and cert as input, and outputs ⊤ or ⊥.

We require that a garbling scheme with certified everlasting deletion satisfies correctness defined below.

Definition E.2 (Correctness for Garbling Scheme with Certified Everlasting Deletion). There are two types of
correctness, namely, evaluation correctness and verification correctness.

Evaluation Correctness: There exists a negligible function negl such that for any λ ∈N, C ∈ Cn and x ∈ {0, 1}n,

Pr

y ̸= C(x)

∣∣∣∣∣∣∣
{Li,α}i∈[n],α∈{0,1} ← Setup(1λ)

(C̃ , vk)← Garble(1λ, C, {Li,α}i∈[n],α∈{0,1})
y← Eval (C̃ , {Li,xi}i∈[n])

 ≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for any λ ∈N,

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
{Li,α}i∈[n],α∈{0,1} ← Setup(1λ)

(C̃ , vk)← Garble(1λ, C, {Li,α}i∈[n],α∈{0,1})
cert← Del (C̃)

 ≤ negl(λ).

Minimum requirements for correctness are evaluation correctness and verification correctness. However, we also
require verification correctness with QOTP in this work because we need it for the construction of FE in Section 4.3.

109

Definition E.3 (Verification Correctness with QOTP). There exists a negligible function negl and a PPT algorithm
Recover such that for any λ ∈N,

Pr

Vrfy(vk, cert∗) = ⊥

∣∣∣∣∣∣∣∣∣∣∣

{Li,α}i∈[n],α∈{0,1} ← Setup(1λ)

(C̃ , vk)← Garble(1λ, C, {Li,α}i∈[n],α∈{0,1})

a, b← {0, 1}q(λ)

c̃ert← Del (ZbXaC̃ XaZb)
cert∗ ← Recover(a, b, c̃ert)

 ≤ negl(λ).

As security, we consider two definitions, Definition E.4 and Definition E.5 given below. The former is just the
standard selective security and the latter is the certified everlasting security that we newly define in this paper. Roughly,
the everlasting security guarantees that any QPT adversary with the garbled circuit C̃ and the labels {Li,x[i]}i∈[n] cannot
obtain any information beyond C(x) even if it becomes computationally unbounded after it issues a valid certificate.

Definition E.4 (Selective Security for Garbling Scheme with Certified Everlasting Deletion). Let Σ = (Setup, Garble,
Eval , Del , Vrfy) be a garbling scheme with certified everlasting deletion. We consider the following security experiment
Expsel-gbl

Σ,A (1λ, b) against a QPT adversary A . Let Sim be a QPT algorithm.

1. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.

2. The challenger computes {Li,α}i∈[n],α∈{0,1} ← Setup(1λ).

3. If b = 0, the challenger computes (C̃ , vk)← Garble(1λ, C, {Li,α}i∈[n],α∈{0,1}), and returns (C̃ , {Li,xi}i∈[n]) to
A . If b = 1, the challenger computes C̃ ← Sim(1λ, 1|C|, C(x), {Li,xi}i∈[n]), and returns (C̃, {Li,xi}i∈[n]) to A .

4. A outputs b′ ∈ {0, 1}. The experiment outputs b′.

We say that Σ is selective secure if there exists a QPT simulator Sim such that for any QPT adversary A it holds that

Advsel-gbl
Σ,A (λ) :=

∣∣∣Pr
[
Expsel-gbl

Σ,A (1λ, 0) = 1
]
− Pr

[
Expsel-gbl

Σ,A (1λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Definition E.5 (Selective Certified Everlasting Security for Garbling Scheme). Let Σ = (Setup, Garble, Eval , Del ,
Vrfy) be a garbling scheme with certified everlasting deletion. We consider the following security experiment
Expcert-ever-sel-gbl

A ,Σ (1λ, b) against a QPT adversary A1 and an unbounded adversary A2. Let Sim be a QPT algorithm.

1. A1 sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.

2. The challenger computes {Li,α}i∈[n],α∈{0,1} ← Setup(1λ).

3. If b = 0, the challenger computes (C̃ , vk)← Garble(1λ, C, {Li,α}i∈[n],α∈{0,1}), and returns (C̃ , {Li,xi}i∈[n]) to
A1. If b = 1, the challenger computes (C̃ , vk)← Sim(1λ, 1|C|, C(x), {Li,xi}i∈[n]), and returns (C̃ , {Li,xi}i∈[n])
to A1.

4. At some point, A1 sends cert to the challenger, and sends the internal state to A2.

5. The challenger computes Vrfy(vk, cert). If the output is ⊥, then the challenger outputs ⊥, and sends ⊥ to A2.
Otherwise, the challenger outputs ⊤, and sends ⊤ to A2.

6. A2 outputs b′ ∈ {0, 1}.

7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

We say that Σ is selective certified everlasting secure if there exists a QPT simulator Sim such that for any QPT A1 and
any unbounded A2 it holds that

Advcert-ever-sel-gbl
Σ,A (λ) :=

∣∣∣Pr
[
Expcert-ever-sel-gbl

Σ,A (1λ, 0) = 1
]
− Pr

[
Expcert-ever-sel-gbl

Σ,A (1λ, 1) = 1
]∣∣∣ ≤ negl(λ).

110

E.2 Construction
In this section, we construct a certified everlasting secure garbling scheme from a certified everlasting secure SKE
scheme (Definition C.1). Our construction is similar to Yao’s construction of a standard garbling scheme [Yao86], but
there are two important differences. First, we use a certified everlasting secure SKE scheme instead of a standard SKE
scheme. Second, we use XOR secret sharing, although [Yao86] used double encryption. The reason why we cannot use
double encryption is that our certified everlasting SKE scheme has quantum ciphertext and classical plaintext.

Before introducing our construction, let us quickly review notations for circuits. Let C be a boolean circuit. A
boolean circuit C consists of gates, gate1, gate2, · · · , gateq, where q is the number of gates in the circuit. Here,
gatei := (g, wa, wb, wc), where g : {0, 1}2 → {0, 1} is a function, wa, wb are the incoming wires, and wc is the
outgoing wire. (The number of outgoing wires is not necessarily one. There can be many outgoing wires, but we
use the same label wc for all outgoing wires.) We say C is leveled if each gate has an associated level and any gate
at level ℓ has incoming wires only from gates at level ℓ− 1 and outgoing wires only to gates at level ℓ+ 1. Let
out1, out2, · · · , outm be the m output wires. For any x ∈ {0, 1}n, C(x) is the output of the circuit C on input x. We
consider that gate1, gate2, · · · , gateq are arranged in the ascending order of the level.

Our certified secure everlasting garbling scheme. We construct a certified everlasting secure garbling scheme Σcegc =
(Setup, Garble, Eval , Del , Vrfy) from a certified everlasting secure SKE scheme Σcesk = SKE.(KeyGen, Enc, Dec,
Del , Vrfy) (Definition C.1). Let K be the key space of Σcesk. Let C be a leveled boolean circuit. Let n, m, q, and p be
the input size, the output size, the number of gates, and the total number of wires of C, respectively.

Setup(1λ):

• For each i ∈ [n] and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).

• Output {Li,σ}i∈[n],σ∈{0,1} := {ske.skσ
i }i∈[n],σ∈{0,1}.

Garble(1λ, C, {Li,σ}i∈[n],σ∈{0,1}):

• For each i ∈ {n + 1, · · · , p} and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).

• For each i ∈ [q], compute

(vki, g̃i)← GateGrbl (gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}),

where gatei = (g, wa, wb, wc) and GateGrbl is described in Fig 7.

• For each i ∈ [m], set d̃i := [(ske.sk0
outi

, 0), (ske.sk1
outi

, 1)].

• Output C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]) and vk := {vki}i∈[q].

Eval(C̃, {Li,xi}i∈[n]):

• Parse C̃ = ({g̃i}i∈[q], {d̃i}i∈[m]) and {Li,xi}i∈[n] = {ske.sk′i}i∈[n].

• For each i ∈ [q], compute ske.sk′c ← GateEval (g̃i, ske.sk′a, ske.sk′b) in the ascending order of the level,
where GateEval is described in Fig 8. If ske.sk′c = ⊥, output ⊥ and abort.

• For each i ∈ [m], set y[i] = σ if ske.sk′outi
= ske.skσ

outi
. Otherwise, set y[i] = ⊥, and abort.

• Output y := y[1]||y[2]|| · · · ||y[m].

Del(C̃):

• Parse C̃ = ({g̃i}i∈[q], {d̃i}i∈[m]).

• For each i ∈ [q], compute certi ← GateDel (g̃i), where GateDel is described in Fig 9.
• Output cert := {certi}i∈[q].

111

Vrfy(vk, cert):

• Parse vk = {vki}i∈[q] and cert = {certi}i∈[q].

• For each i ∈ [q], compute ⊥/⊤ ← GateVrfy(vki, certi), where GateVrfy is described in Fig 10.
• If ⊤ ← GateVrfy(vki, certi) for all i ∈ [q], then output ⊤. Otherwise, output ⊥.

Gate Garbling Circuit GateGrbl

Input: gatei , {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}.

Output: g̃i and vki .

1. Parse gatei = (g, wa, wb, wc).

2. Sample γi ← S4.a

3. For each σa, σb ∈ {0, 1}, sample pσa ,σb
c ← K.

4. For each σa, σb ∈ {0, 1}, compute (ske.vkσa ,σb
a , ske.ct σa ,σb

a) ← SKE.Enc(ske.skσa
a , pσa ,σb

c) and (ske.vkσa ,σb
b , ske.ct σa ,σb

b) ←
SKE.Enc(ske.skσb

b , pσa ,σb
c ⊕ ske.skg(σa ,σb)

c).

5. Output g̃i := {ske.ct σa ,σb
a , ske.ct σa ,σb

b }σa ,σb∈{0,1} in the permutated order of γi and vki := {ske.vkσa ,σb
a , ske.vkσa ,σb

b }σa ,σb∈{0,1} in
the permutated order of γi .

aS4 is the symmetric group of order 4.

Figure 7: The description of GateGrbl

Gate Evaluating Circuit GateEval

Input: A garbled gate g̃i and (ske.sk′a, ske.sk′b).
Output: ske.skc or ⊥.

1. Parse g̃i = {ske.ct σa ,σb
a , ske.ct σa ,σb

b }σa ,σb∈{0,1}.

2. For each σa, σb ∈ {0, 1}, compute qσa ,σb
a ← SKE.Dec(ske.sk′a, ske.ct σa ,σb

a) and qσa ,σb
b ← SKE.Dec(ske.sk′b, ske.ct σa ,σb

b).

3. If there exists a unique pair (σa, σb) ∈ {0, 1}2 such that qσa ,σb
a ̸= ⊥ and qσa ,σb

b ̸= ⊥, then compute ske.sk
′σa ,σb
c := qσa ,σb

a ⊕ qσa ,σb
b

and output ske.sk′c := ske.sk
′σa ,σb
c . Otherwise, output ske.sk′c := ⊥.

Figure 8: The description of GateEval

Gate Deletion Circuit GateDel

Input: A garbled gate g̃i .

Output: certi

1. Parse g̃i = {ske.ct σa ,σb
a , ske.ct σa ,σb

b }σa ,σb∈{0,1}.

2. For each σa, σb ∈ {0, 1}, compute ske.certσa ,σb
a ← SKE.Del (ske.ct σa ,σb

a).

3. For each σa, σb ∈ {0, 1}, compute ske.certσa ,σb
b ← SKE.Del (ske.ct σa ,σb

b).

4. Output certi := {ske.certσa ,σb
a , ske.certσa ,σb

b }σa ,σb∈{0,1}.

Figure 9: The description of GateDel

Correctness: Correctness easily follows from that of Σcesk.

112

Gate Verification Circuit GateVrfy
Input: vki and certi .

Output: ⊤ or ⊥.

1. Parse vki = {ske.vkσa ,σb
a , ske.vkσa ,σb

b }σa ,σb∈{0,1} and certi = {ske.certσa ,σb
a , ske.certσa ,σb

b }σa ,σb∈{0,1}.

2. For each σa, σb ∈ {0, 1}, compute ⊤/⊥ ← SKE.Vrfy(ske.vkσa ,σb
a , ske.certσa ,σb

a).

3. For each σa, σb ∈ {0, 1}, compute ⊤/⊥ ← SKE.Vrfy(ske.vkσa ,σb
b , ske.certσa ,σb

b).

4. If all the outputs are ⊤, then output ⊤. Otherwise, output ⊥.

Figure 10: The description of GateVrfy

Security: The following two theorems hold.

Theorem E.6. If Σcesk satisfies the IND-CPA security (Definition C.6), Σcegc satisfies the selective security (Defini-
tion E.4).

Its proof is similar to that of Theorem E.7, and therefore we omit it.

Theorem E.7. If Σcesk satisfies the certified everlasting IND-CPA security (Definition C.7), Σcegc satisfies the selective
certified everlasting security (Definition E.5).

Let ĝate1, ĝate2, · · · , ĝateq be the topology of the gates gate1, gate2, · · · , gateq which indicates how gates are
connected. In other words, if gatei = (g, wa, wb, wc), then ĝatei = (⊥, wa, wb, wc).

Proof of Theorem E.7. First, let us define a simulator Sim as follows.

The simulator Sim(1λ, 1|C|, C(x), {Li,xi}i∈[n]):

1. Parse {Li,xi}i∈[n] := {ske.skxi
i }i∈[n].

2. For i ∈ [n], generate ske.skxi⊕1
i ← SKE.KeyGen(1λ).

3. For i ∈ {n + 1, n + 2, · · · , p} and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).

4. For each i ∈ [q], compute (vki, g̃i) ← Sim .GateGrbl (ĝatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}), where

Sim .GateGrbl is described in Fig 11 and ĝatei = (⊥, wa, wb, wc).

5. For each i ∈ [m], generate d̃i :=
[(

ske.sk0
outi

, C(x)i

)
,
(

ske.sk1
outi

, C(x)i ⊕ 1
)]

.

6. Output C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]) and vk := {vki}i∈[q].

For each j ∈ [q], we define a QPT algorithm (a simulator) InputDep.Sim j as follows.

The simulator InputDep.Sim j(1λ, C, x, {Li,xi}i∈[n]):

1. Parse {Li,xi}i∈[n] = {ske.skxi
i }i∈[n].

2. For i ∈ [n], generate ske.skxi⊕1
i ← SKE.KeyGen(1λ).

3. For i ∈ {n + 1, n + 2, · · · , p} and σ ∈ {0, 1}, generate ske.skσ
i ← SKE.KeyGen(1λ).

4. For i ∈ [j], compute (vki, g̃i) ← InputDep.GateGrbl (gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}), where

InputDepGateGrbl is described in Fig. 12 and gatei = (g, wa, wb, wc)

5. For each i ∈ {j+ 1, j+ 2, · · · , q}, compute (vki, g̃i)← GateGrbl (gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}),

where GateGrbl is described in Fig 7 and gatei = (g, wa, wb, wc).

113

Simulation Gate Garbling Circuit Sim .GateGrbl

Input: (ĝatei , {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}).

Output: g̃i and vki .

1. For each σa, σb ∈ {0, 1}, sample pσa ,σb
a,b ← K.

2. Sample γi ← S4.

3. For each σa, σb ∈ {0, 1}, compute (ske.vkσa ,σb
a , ske.ct σa ,σb

a) ← SKE.Enc(ske.skσa
a , pσa ,σb

c) and (ske.vkσa ,σb
b , ske.ct σa ,σb

b) ←
SKE.Enc(ske.skσb

b , pσa ,σb
c ⊕ ske.sk0

c).

4. Output g̃i := {ske.ct σa ,σb
a , ske.ct σa ,σb

b }σa ,σb∈{0,1} in permutated order of γi and vki := {ske.vkσa ,σb
a , ske.vkσa ,σb

b }σa ,σb∈{0,1} in
permutated order of γi .

Figure 11: The description of Sim .GateGrbl

Input Dependent Gate Garbling Circuit InputDep.GateGrbl

Input: gatei , {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}.

Output: g̃i and vki .

1. For each σa, σb ∈ {0, 1}, sample pσa ,σb
c ← K.

2. Sample γi ← S4.

3. For each σa, σb ∈ {0, 1}, compute (ske.vkσa ,σb
a , ske.ct σa ,σb

a) ← SKE.Enc(ske.skσa
a , pσa ,σb

c) and (ske.vkσa ,σb
b , ske.ct σa ,σb

b) ←
SKE.Enc(ske.skσb

b , pσa ,σb
c ⊕ ske.skv(c)

c). Here, v(c) is the correct value of the bit going over the wire c during the computation of
C(x).

4. Output g̃i := {ske.ct σa ,σb
a , ske.ct σa ,σb

b }σa ,σb∈{0,1} in permutated order of γi and vki := {ske.vkσa ,σb
a , ske.vkσa ,σb

b }σa ,σb∈{0,1} in
permutated order of γi .

Figure 12: The description of InputDep.GateGrbl

6. For each i ∈ [m], generate d̃i :=
[(

ske.sk0
outi

, 0
)

,
(

ske.sk1
outi

, 1
)]

.

7. Output C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]) and vk := {vki}i∈[q].

For each j ∈ {0, 1, · · · , q}, let us define a sequence of hybrid games {Hybj}j∈{0,1,··· ,q} against any adversary
A := (A1, A2), where A1 is any QPT adversary and A2 is any unbounded adversary. Note that

InputDep.Sim0(1λ, C, x, {Li,xi}i∈[n]) = Garble(1λ, C, {Li,α}i∈[n],α∈{0,1}).

The hybrid game Hybj:

1. A1 sends a circuit C ∈ Cn and an input x ∈ {0, 1}n to the challenger.
2. The challenger computes {Li,α}i∈[n],α∈{0,1} ← Smp(1λ).

3. The challenger computes (C̃ , vk)← GC.InputDep.Sim j(1λ, C, x, {Li,xi}i∈[n]), and sends (C̃ , {Li,xi}i∈[n])
to A1.

4. At some point, A1 sends cert to the challenger and the internal state to A2.
5. The challenger computes Vrfy(vk, cert) → ⊤/⊥. If the output is ⊥, then the challenger outputs ⊥ and

sends ⊥ to A2. Else, the challenger outputs ⊤ and sends ⊤ to A2.
6. A2 outputs b′ ∈ {0, 1}.
7. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment

is ⊥.

114

Note that Hyb0 is identical to Expcert-ever-sel-gbl
Σcegc,A (1λ, 0) by definition. Therefore, Theorem E.7 easily follows from

the following Propositions E.8 and E.9 (whose proofs are given later).

Proposition E.8. If Σcesk satisfies the certified everlasting IND-CPA security, it holds that
∣∣∣Pr

[
Hybj−1 = 1

]
− Pr

[
Hybj = 1

]∣∣∣ ≤
negl(λ) for all j ∈ [q].

Proposition E.9.
∣∣∣Pr

[
Hybq = 1

]
− Pr

[
Expcert-ever-sel-gbl

Σcegc,A (1λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition E.8. For the proof, we use Lemma E.10 whose statement and proof are given later. We construct
an adversary B that breaks the security experiment of Expparallel-cert-ever

Σcesk,B (λ, b), which is described in Lemma E.10,

assuming that
∣∣∣Pr

[
Hybj−1 = 1

]
− Pr

[
Hybj = 1

]∣∣∣ is non-negligible. This contradicts the certified everlasting IND-CPA
security of Σcesk from Lemma E.10. Let us describe how B works below.

1. B receives C ∈ Cn and x ∈ {0, 1}n from A1. Let gatej = (g, wα, wβ, wγ).

2. The challenger of Expparallel-cert
Σcesk,B ever(λ, b) generates ske.skv(α)⊕1

α ← SKE.KeyGen(1λ) and ske.skv(β)⊕1
β ←

SKE.KeyGen(1λ)24.

3. For each i ∈ [p] \ {α, β} and σ ∈ {0, 1}, B generates ske.skσ
i ← SKE.KeyGen(1λ). B generates ske.skv(α)

α ←
SKE.KeyGen(1λ) and ske.skv(β)

β ← SKE.KeyGen(1λ). B sets {Li,xi}i∈[n] := {ske.skxi
i }i∈[n].

4. For each i ∈ [j − 1], B computes (vki, g̃i) ← InputDep.GateGrbl (gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}),

where InputDep.GateGrbl is described in Fig 12 and gatei = (g, wa, wb, wc). B calls the encryption query of
Expparallel-cert-ever

Σcesk,B (λ, b) if it needs to use ske.skv(α)⊕1
α or ske.skv(β)⊕1

β to run (vki, g̃i)← InputDep.GateGrbl (gatei,
{ske.skσ

a , ske.skσ
b , ske.skσ

c }σ∈{0,1}).

5. B samples pv(α),v(β)
γ ← K. B computes

(ske.vkv(α),v(β)
α , ske.ct v(α),v(β)

α)← SKE.Enc(ske.skv(α)
α , pv(α),v(β)

γ),

(ske.vkv(α),v(β)
β , ske.ct v(α),v(β)

β)← SKE.Enc(ske.skv(β)
β , pv(α),v(β)

γ ⊕ ske.skv(γ)
γ).

6. B sets

(x0, y0, z0) := (ske.skg(v(α),v(β)⊕1)
γ , ske.skg(v(α)⊕1,v(β))

γ , ske.skg(v(α)⊕1,v(β)⊕1)
γ),

(x1, y1, z1) := (ske.skv(γ)
γ , ske.skv(γ)

γ , ske.skv(γ)
γ),

and sends (ske.skv(α)
α , ske.skv(β)

β , {xσ, yσ, zσ}σ∈{0,1}) to the challenger of Expparallel-cert-ever
Σcesk,B (λ, b).

7. The challenger samples (x, y, z) ← K3 and (ske.skv(α)⊕1
α , ske.skv(β)⊕1

β) ← KeyGen(1λ). The challenger
computes

(ske.vkv(α),v(β)⊕1
α , ske.ct v(α),v(β)⊕1

α)← Enc(ske.skv(α)
α , x),

(ske.vkv(α),v(β)⊕1
β , ske.ct v(α),v(β)⊕1

β)← Enc(ske.skv(β)⊕1
β , x⊕ xb),

(ske.vkv(α)⊕1,v(β)
α , ske.ct v(α)⊕1,v(β)

α)← Enc(ske.skv(α)⊕1
α , y),

(ske.vkv(α)⊕1,v(β)
β , ske.ct v(α)⊕1,v(β)

β)← Enc(ske.skv(β)
β , y⊕ yb),

(ske.vkv(α)⊕1,v(β)⊕1
α , ske.ct v(α)⊕1,v(β)⊕1

α)← Enc(ske.skv(α)⊕1
α , z),

(ske.vkv(α)⊕1,v(β)⊕1
β , ske.ct v(α)⊕1,v(β)⊕1

β)← Enc(ske.skv(β)⊕1
β , z⊕ zb),

24Recall that v(α) is the correct value of the bit going over the wire α during the computation of C(x).

115

and sends

(ske.ct v(α),v(β)⊕1
α , ske.ct v(α),v(β)⊕1

β , ske.ct v(α)⊕1,v(β)
α , ske.ct v(α)⊕1,v(β)

β , ske.ct v(α)⊕1,v(β)⊕1
α , ske.ct v(α)⊕1,v(β)⊕1

β)

to B.

8. B samples γj ← S4. B sets g̃j := {ske.ct
σα ,σβ
α , ske.ct

σα ,σβ

β }σα ,σβ∈{0,1} in the permutated order of γj.

9. For each i ∈ {j + 1, j + 2, · · · , q}, B computes (vki, g̃i)← GateGrbl (gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}),

where B calls the encryption query of Expparallel-cert-ever
Σcesk,B (λ, b) if B needs to use ske.skv(α)⊕1

α or ske.skv(β)⊕1
β to

run (vki, g̃i)← GateGrbl (gatei, {ske.skσ
a , ske.skσ

b , ske.skσ
c }σ∈{0,1}).

10. B computes d̃i := [(ske.sk0
outi

, 0), (ske.sk1
outi

, 1)] for i ∈ [m], sets C̃ := ({g̃i}i∈[q], {d̃i}i∈[m]), and sends
(C̃ , {Li,xi}i∈[n]) to A1.

11. At some point, A1 sends cert := {certi}i∈[q] to B and the internal state to A2, respectively.

12. B re-sorts certj = {ske.certσα ,σβ
α , ske.certσα ,σβ

β }σα ,σβ∈{0,1} according to γj. B sends

(ske.certv(α),v(β)⊕1
α , ske.certv(α),v(β)⊕1

β , ske.certv(α)⊕1,v(β)
α , ske.certv(α)⊕1,v(β)

β , ske.certv(α)⊕1,v(β)⊕1
α , ske.certv(α)⊕1,v(β)⊕1

β)

to the challenger of Expparallel-cert-ever
Σcesk,B (λ, b) and receives ⊥ or (ske.sk

′v(α)⊕1
α , ske.sk

′v(β)⊕1
β) from the challenger.

B computes SKE.Vrfy(ske.vkv(α),v(β)
α , ske.certv(α),v(β)

α) and SKE.Vrfy(ske.vkv(α),v(β)
β , ske.certv(α),v(β)

β). B com-
putes GateVrfy(vki, certi) for each i ∈ {1, 2, · · · , j− 1, j+ 1, j+ 2, · · · , q}, where GateVrfy is described in Fig10.
If B receives (ske.sk

′v(α)⊕1
α , ske.sk

′v(β)⊕1
β) from the challenger,⊤ ← SKE.Vrfy(ske.vkv(α),v(β)

α , ske.certv(α),v(β)
α),

⊤ ← SKE.Vrfy(ske.vkv(α),v(β)
β , ske.certv(α),v(β)

β), and⊤ ← GateVrfy(certi, vki) for all i ∈ {1, 2, · · · , j− 1, j +
1, j + 2, · · · , q}, then B sends ⊤ to A2. Otherwise, B sends ⊥ to A2, and aborts.

13. B outputs the output of A2.

It is clear that Pr[1← B | b = 0] = Pr
[
Hybj−1 = 1

]
and Pr[1← B | b = 1] = Pr

[
Hybj = 1

]
. Therefore, if for an

adversary A ,
∣∣∣Pr

[
Hybj−1 = 1

]
− Pr

[
Hybj = 1

]∣∣∣ is non-negligible, then∣∣∣Pr
[
Expparallel-cert-ever

Σcesk,B (λ, 0) = 1
]
− Pr

[
Expparallel-cert-ever

Σcesk,B (λ, 1) = 1
]∣∣∣

is non-negligible. From Lemma E.10, it contradicts the certified everlasting IND-CPA security of Σcesk , which
completes the proof.

Proof of Proposition E.9. To show Proposition E.9, it is sufficient to prove that the probability distribution of C̃ in
Expcert-ever-select

Σcegc,A (1λ, 1) is statistically identical to that of C̃ in Hybq.
First, let us remind the difference between Hybq and Expcert-ever-select

Σcegc,A (1λ, 1). In both experiments , C̃ consists of
{g̃i}i∈[q] and {d̃i}i∈[m]. On the other hand the contents of {g̃i}i∈[q] and {d̃i}i∈[m] are different in each experiments. In
Hybq, g̃i consists of (ske.ct σa ,σb

a , ske.ct σa ,σb
b) where

(ske.vkσa ,σb
a , ske.ct σa ,σb

a)← SKE.Enc(ske.skσa
a , pσa ,σb

c),

(ske.vkσa ,σb
b , ske.ct σa ,σb

b)← SKE.Enc(ske.skσb
b , pσa ,σb

c ⊕ ske.skv(c)
c),

116

and d̃i is

[(ske.sk0
outi , 0), (ske.sk1

outi , 1)].

In Expcert-ever-select
Σcegc,A (1λ, 1), g̃i consists of (ske.ct σa ,σb

a , ske.ct σa ,σb
b) where

(ske.vkσa ,σb
a , ske.ct σa ,σb

a)← SKE.Enc(ske.skσa
a , pσa ,σb

c),

(ske.vkσa ,σb
b , ske.ct σa ,σb

b)← SKE.Enc(ske.skσb
b , pσa ,σb

c ⊕ ske.sk0
c),

and d̃i is

[(ske.sk0
outi , C(x)i), (ske.sk1

outi , C(x)i ⊕ 1)].

The resulting distribution of ({g̃i}i∈[q], {d̃i}i∈[m]) in Hybq is statistically identical to the resulting distribution of
({g̃i}i∈[q], {d̃i}i∈[m]) in Expcert-ever

Σcegc,A select(1λ, 1). This is because, at any level that is not output, the keys ske.sk0
c , ske.sk1

c

are used completely identically in the subsequent level so there is no difference between always encrypting ske.skv(c)
c

and ske.sk0
c . At the output level, there is no difference between encrypting ske.skv(c)

c and giving the real mapping
ske.skv(c)

c → v(c) or encrypting ske.sk0
c and giving the programming mapping ske.sk0

c → C(x)i, which completes the
proof.

We use the following lemma for the proof of Proposition E.8. The proof is shown with the standard hybrid argument.
It is also easy to see that a similar lemma holds for IND-CPA security.

Lemma E.10. Let Σ := (KeyGen, Enc, Dec, Del , Vrfy) be a certified everlasting secure SKE scheme. Let us consider
the following security experiment Expparallel-cert-ever

Σ,A (λ, b) against A consisting of any QPT adversary A1 and any
unbounded adversary A2.

1. The challenger generates (sk′0, sk′1)← KeyGen(1λ).

2. A1 can call encryption queries. More formally, it can do the followings: A1 chooses β ∈ {0, 1}, sk ∈ SK and
m ∈ M. A1 sends (β, sk, m) to the challenger.

• If β = 0, the challenger generates m∗ ←M, computes (vk0
m, ct 0

m) ← Enc(sk′0, m∗) and (vk1
m, ct 1

m) ←
Enc(sk, m⊕m∗), and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

• If β = 1, the challenger generates m∗ ← M, computes (vk1
m, ct 1

m) ← Enc(sk′1, m ⊕ m∗) and
(vk0

m, ct 0
m)← Enc(sk, m∗), and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

A1 can repeat this process polynomially many times.

3. A1 generates (sk0, sk1)← KeyGen(1λ) and chooses two triples of messages (x0, y0, z0) ∈ M3 and (x1, y1, z1) ∈
M3, and sends (sk0, sk1, {xσ, yσ, zσ}σ∈{0,1}) to the challenger.

4. The challenger generates (x, y, z)←M3. The challenger computes

(vk0
x, ct 0

x)← Enc(sk0, x), (vk1
x, ct 1

x)← Enc(sk′1, x⊕ xb)

(vk0
y, ct 0

y)← Enc(sk′0, y), (vk1
y, ct 1

y)← Enc(sk1, y⊕ yb)

(vk0
z , ct 0

z)← Enc(sk′0, z), (vk1
z , ct 1

z)← Enc(sk′1, z⊕ zb)

and sends {ct σ
x , ct σ

y , ct σ
z }σ∈{0,1} to A1.

5. A1 can call encryption queries. More formally, it can do the followings: A1 chooses β ∈ {0, 1}, sk ∈ SK and
m ∈ M. A1 sends (β, sk, m) to the challenger.

117

• If β = 0, the challenger generates m∗ ←M, computes (vk0
m, ct 0

m) ← Enc(sk′0, m∗) and (vk1
m, ct 1

m) ←
Enc(sk, m⊕m∗), and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

• If β = 1, the challenger generates m∗ ← M, computes (vk1
m, ct 1

m) ← Enc(sk′1, m ⊕ m∗) and
(vk0

m, ct 0
m)← Enc(sk, m∗), and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

A1 can repeat this process polynomially many times.

6. A1 sends {certσ
x , certσ

y , certσ
z }σ∈{0,1} to the challenger, and sends the internal state to A2.

7. The challenger computes Vrfy(vkσ
x , certσ

x), Vrfy(vkσ
y , certσ

y) and Vrfy(vkσ
z , certσ

z) for each σ ∈ {0, 1}. If all
results are ⊤, then the challenger outputs ⊤, and sends {sk′σ}σ∈{0,1} to A2. Otherwise, the challenger outputs
⊥, and sends ⊥ to A2.

8. A2 outputs b′ ∈ {0, 1}.

9. If the challenger outputs ⊤, then the output of the experiment is b′. Otherwise, the output of the experiment is ⊥.

If the Σ satisfies the certified everlasting IND-CPA security,

Advparallel-cert-ever
Σ,A (λ) :=

∣∣∣Pr
[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr

[
Expparallel-cert-ever

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ)

for any QPT adversary A1 and any unbounded adversary A2.

Proof of Lemma E.10. We define the following hybrid experiment.

Hyb1: This is identical to Expparallel-cert-ever
Σ,A (λ, 0) except that the challenger encrypts (x0, y0, z1) instead of encrypting

(x0, y0, z0).

Hyb2: This is identical to Hyb1 except that the challenger encrypts (x0, y1, z1) instead of encrypting (x0, y0, z1).

Lemma E.10 easily follows from the following Propositions E.11 to E.13 (whose proof is given later.).

Proposition E.11. If Σ is certified everlasting IND-CPA secure, it holds that∣∣∣Pr
[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr[Hyb1 = 1]

∣∣∣ ≤ negl(λ).

Proposition E.12. If Σ is certified everlasting IND-CPA secure, it holds that

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proposition E.13. If Σ is certified everlasting IND-CPA secure, it holds that∣∣∣Pr[Hyb2 = 1]− Pr
[
Expparallel-cert-ever

Σ,A (λ, 1) = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition E.11. We assume that
∣∣∣Pr

[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr[Hyb1(1) = 1]

∣∣∣ is non-negligible,

and construct an adversary B that breaks the security experiment of Expcert-ever-ind-cpa
Σ,B (λ, b). This contradicts the

certified everlasting IND-CPA security of Σ. Let us describe how B works.

1. The challenger of Expcert-ever-ind-cpa
Σ,B (λ, b) generates sk′0 ← KeyGen(1λ), and B generates sk′1 ← KeyGen(1λ).

2. A1 chooses β ∈ {0, 1}, sk ∈ K and m ∈ M. A1 sends (β, sk, m) to B.

• If β = 0, B generates m∗ ← M, sends m∗ to the challenger, receives (vk0
m, ct 0

m) from the challenger,
computes (vk1

m, ct 1
m)← Enc(sk, m⊕m∗), and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

118

• If β = 1, B generates m∗ ← M, computes (vk1
m, ct 1

m) ← Enc(sk′1, m ⊕ m∗) and (vk0
m, ct 0

m) ←
Enc(sk, m∗) and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

B repeats this process when (β, sk, m) is sent from A1.

3. B receives (sk0, sk1, {xσ, yσ, zσ}σ∈{0,1}) from A1.

4. B generates (x, y, z)←M3. B computes

(vk0
x, ct 0

x)← Enc(sk0, x), (vk1
x, ct 1

x)← Enc(sk′1, x⊕ x0),

(vk1
y, ct 1

y)← Enc(sk1, y⊕ y0),

(vk1
z , ct 1

z)← Enc(sk′1, z⊕ z0).

5. B sets m0 := z and m1 := z⊕ z0 ⊕ z1. B sends (m0, m1) to the challenger.

6. The challenger computes (vk0
z , ct 0

z)← Enc(sk′0, mb), and sends ct 0
z to B.

7. B sends an encryption query y to the challenger, and receives (vk0
y, ct 0

y).

8. B sends {ct σ
x , ct σ

y , ct σ
z }σ∈{0,1} to A1.

9. A1 chooses β ∈ {0, 1}, sk ∈ K and m ∈ M. A1 sends (β, sk, m) to B.

• If β = 0, B generates m∗ ← M, sends m∗ to the challenger, receives (vk0
m, ct 0

m) from the challenger,
computes (vk1

m, ct 1
m)← Enc(sk, m⊕m∗), and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

• If β = 1, B generates m∗ ← M, computes (vk1
m, ct 1

m) ← Enc(sk′1, m ⊕ m∗) and (vk0
m, ct 0

m) ←
Enc(sk, m∗) and sends {vkσ

m, ct σ
m}σ∈{0,1} to A1.

B repeats this process when (β, sk, m) is sent from A1.

10. A1 sends {certσ
x , certσ

y , certσ
z }σ∈{0,1} to B, and sends the internal state to A2.

11. B sends cert0
z to the challenger, and receives sk′0 or ⊥ from the challenger. If B receives ⊥, it outputs ⊥ and

aborts.

12. B sends {sk′σ}σ∈{0,1} to A2.

13. A2 outputs b′.

14. B computes Vrfy(vkσ
x , certσ

x) and Vrfy(vkσ
y , certσ

y) for each σ ∈ {0, 1}, and Vrfy(vk1
z , cert1

z). If all results are ⊤,
B outputs b′. Otherwise, B outputs ⊥.

It is clear that Pr[1← B | b = 0] = Pr
[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
. Since z is uniformly distributed, (z, z⊕ z1)

and (z⊕ z0 ⊕ z1, z⊕ z0) are identically distributed. Therefore, it holds that Pr[1← B | b = 1] = Pr[Hyb1 = 1]. By
assumption,

∣∣∣Pr
[
Expparallel-cert-ever

Σ,A (λ, 0) = 1
]
− Pr[Hyb1 = 1]

∣∣∣ is non-negligible, and therefore

|Pr[1← B | b = 0]− Pr[1← B | b = 1]|

is non-negligible, which contradicts the certified everlasting IND-CPA security of Σcesk.

Proof of Proposition E.12. The proof is very similar to that of Proposition E.11. Therefore we skip the proof.

Proof of Proposition E.13. The proof is very similar to that of Proposition E.11. Therefore, we skip the proof.

119

	Introduction
	Background
	Our Results
	Concurrent and Independent Work
	Subsequent Work
	Technical Overview: Collusion-Resistant FE
	Technical Overview: Bounded Collusion-Resistant FE
	Technical Overview: Compute-and-Compare Obfuscation
	More on Related Works

	Preliminaries
	Notations
	Quantum Computations
	Cryptographic Tools

	Collusion-Resistant Functional Encryption with Certified Everlasting Deletion
	Definitions
	Tools
	Collusion-Resistant Construction

	Bounded Collusion-Resistant Functional Encryption with Certified Everlasting Deletion
	Definitions
	1-Bounded Construction with Non-Adaptive Security
	1-Bounded Construction with Adaptive Security
	q-Bounded Construction with Adaptive Security for NC1 circuits
	Discussion on q-Bounded Consturction for All Circuits

	Compute-and-Compare Obfuscation with Certified Everlasting Deletion
	Definition
	Construction

	Predicate Encryption with Certified Everlastng Deletion
	Definition
	Construction

	Omitted Proofs for Collusion-Resistant FE
	Adaptively Secure Public-Slot PKFE
	Building Blocks
	Variants of Security Definitions
	Adaptively Single-Key Single-Ciphertext Public-Slot SKFE Scheme
	Adaptively Secure Public-Slot PKFE Scheme

	Secret and Public Key Encryption with Certified Everlasting Deletion
	Definition
	SKE Scheme with QROM
	SKE Scheme without QROM
	PKE Scheme with QROM
	PKE Scheme without QROM

	Receiver Non-Committing Encryption with Certified Everlasting Deletion
	Definition
	Construction

	Garbling Scheme with Certified Everlasting Deletion
	Definition
	Construction

