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Abstract. A private puncturable pseudorandom function (PRF) en-
ables one to create a constrained version of a PRF key, which can be
used to evaluate the PRF at all but some punctured points. In addition,
the constrained key reveals no information about the punctured points
and the PRF values on them. Existing constructions of private punc-
turable PRFs are only proven to be secure against a restricted adversary
that must commit to the punctured points before viewing any informa-
tion. It is an open problem to achieve the more natural adaptive security,
where the adversary can make all its choices on-the-fly.
In this work, we solve the problem by constructing an adaptively secure
private puncturable PRF from standard lattice assumptions. To achieve
this goal, we present a new primitive called explainable hash, which al-
lows one to reprogram the hash function on a given input. The new prim-
itive may find further applications in constructing more cryptographic
schemes with adaptive security. Besides, our construction has collusion
resistant pseudorandomness, which requires that even given multiple con-
strained keys, no one could learn the values of the PRF at the punctured
points. Private puncturable PRFs with collusion resistant pseudoran-
domness were only known from multilinear maps or indistinguishability
obfuscations in previous works, and we provide the first solution from
standard lattice assumptions.

1 Introduction

A constrained pseudorandom function (PRF) [BW13,KPTZ13,BGI14] is a fam-
ily of PRF [GGM84] that allows one to derive a constrained key for a predicate
from a PRF key. The constrained key can be used to evaluate the PRF on in-
puts satisfying the predicate, but it reveals no information about the PRF values
at other points. The latter requirement is denoted as (constrained) pseudoran-
domness and is the main security property of a constrained PRF. Besides, a
constrained PRF is said to be private [BLW17] if the constrained keys also hide
the constraint predicates.

As shown in [BW13, KPTZ13, BGI14], private constrained PRFs for the
prefix-fixing constraint, where the predicate outputs 1 on inputs starting with



a specified string, can be constructed from any one-way function via the GGM
framework [GGM84]. From this framework, we can also construct constrained
PRFs for the puncturing constraint (a.k.a. puncturable PRFs), where the pred-
icate outputs 1 on all but some punctured points. This simple construction does
not provide privacy, and the first private puncturable PRF is constructed from
multilinear maps in [BLW17]. Then in [BKM17], Boneh et al. construct private
puncturable PRFs from standard lattice assumptions.

Constrained PRFs for more complicated constraint predicates are also pro-
posed in the linterature. In particular, constrained PRFs for circuits are con-
structed from multilinear maps and indistinguishability obfuscation in [BW13,
CRV16] and [BZ14], respectively. Moreover, via using (differing-input) indistin-
guishability obfuscation, constrained PRFs for Turing machines are presented in
[AFP16,AF16,DKW16,DDM17]. Besides, private constrained PRFs for circuits
are constructed from indistinguishability obfuscation in [BLW17].

Subsequent works focus on constructing constrained PRFs for general con-
straints without using heavy tools such as multilinear maps or obfuscations.
In [BV15], Brakerski and Vaikuntanathan construct the first constrained PRF
for circuits from standard lattice assumptions. Then in [CC17,BTVW17,PS18,
CVW18,PS20], lattice-based private constrained PRFs for circuits are provided.
Besides, in [Bit17, GHKW17, AMN+18], (private) constrained PRFs are also
constructed from Diffie-Hellman type assumptions in traditional groups.

Adaptively Secure (Private) Constrained PRFs. When defining security
properties of a (private) constrained PRF, we usually consider an adversary that
is able to query some oracles, and the scheme has adaptive security if the ad-
versary can query these oracles in an arbitrary order. Most previous (private)
constrained PRFs are only proved to have a weaker selective security, where
the adversary has to query the oracles in some predefined order. To achieve
adaptive security generically, one can use complexity leveraging, but this would
introduce an exponentially large reduction loss. In addition, the GGM frame-
work based constrained PRFs are proved to have adaptive pseudorandomness
in [FKPR14,JKK+17], but the reduction loss is still super-polynomial. Besides,
(private) constrained PRFs with adaptive security for various constraints are
also proposed in the random oracle model in [BW13,HKKW19,AMN+18].

The first adaptively secure constrained PRF in the standard model with a
polynomial reduction loss is given in [HKW15], for the puncturing constraint. In
the same setting, adaptively secure constrained PRFs for NC1 circuits and any
polynomial-size circuits are presented in [AMN+19] and [DKN+20], respectively.
However, all three constructions need an indistinguishability obfuscation and are
not private. Recently, (private) constrained PRFs with adaptive pseudorandom-
ness are also constructed from simple assumptions such as one-way function and
standard lattice assumptions in [DKN+20], but the constructions only support
constraints that can be implemented by an inner-product predicate and do not
have adaptive privacy.
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Collusion Resistant (Private) Constrained PRFs. A (private) constrained
PRF is collusion resistant if its security properties hold against an adversary
that sees multiple constrained keys, and in contrast, it is single-key secure
if it is only secure against an adversary that sees one constrained key. Col-
lusion resistance is generally satisfied by constructions from multilinear maps
or indistinguishability obfuscation (e.g., [BW13, BZ14, BLW17]). However, it is
quite difficult to achieve it without using these strong primitives. Especially, as
shown in [CC17], a private constrained PRF with collusion resistant privacy (for
certain constraints) implies indistinguishability obfuscation. Besides, previous
constructions of collusion resistant constrained PRFs from standard assump-
tions [BW13, KPTZ13, BGI14, BFP+15, DKN+20] only support constraints in
subclasses of the inner-product predicate, including the prefix-fixing constraint,
the left/right predicate, and the O(1)-CNF predicate. We refer the readers to
[DKN+20] for definitions of these constraints and their relations with the inner-
product predicate.

This Work. In this work, we consider private constrained PRFs with adaptive
security and collusion resistant pseudorandomness. Both security requirements
are necessary for many applications illustrated in [BW13, BZ14, BLW17] and
would also be useful in future applications. In addition, to prevent potential
security risk (e.g., quantum attacks), we focus on constructions in the stan-
dard model from standard lattice assumptions, with a polynomial reduction
loss. Existing private constrained PRFs constructed in this “standard setting”
with either adaptive security or collusion resistant pseudorandomness [BW13,
KPTZ13, BGI14, DKN+20] only support constraints that can be implemented
by the inner-product predicate. This raises the following natural question:

Can we construct private constrained PRFs with the desired security
requirements in the standard setting for beyond inner-product predicates?

To answer the question, we focus on private puncturable PRFs. Note that
as demonstrated in [PTW20], in some special cases, constrained PRFs for the
inner-product predicate exist, but it is impossible to construct a secure punc-
turable PRF. Thus, the puncturing constraint cannot be implemented by the
inner-product predicate. Besides, private puncturable PRFs are useful in con-
structing many advanced cryptographic primitives, including symmetric deni-
able encryption [CDNO97], cryptographic watermarking [CHN+16], restricted
searchable symmetric encryption [SWP00,BLW17], and distributed point func-
tion [GI14,BGI15]. Some of the applications (e.g., collusion resistant watermark-
ing) need a collusion resistant (private) puncturable PRF, and some applications
will achieve new desirable features immediately if the employed private punc-
turable PRF has adaptive security1. Moreover, the new security properties might

1 For example, if we use an adaptively secure private puncturable PRF in the construc-
tion of restricted searchable encryption given in [BLW17], the scheme will addition-
ally achieve adaptive security, which allows the database owner to issue restricted
search keys on restrictions determined after the system has been put in use.
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Pseudorandomness Privacy Constraint

[BW13,KPTZ13,BGI14] selective poly selective poly Prefix

[BFP+15] selective poly 7 7 Prefix

[BV15] selective 1 7 7 P/Poly

[BKM17] selective 1 selective 1 Puncturing

[CC17,CVW18] selective 1 selective 1 NC1

[BTVW17,PS18,PS20] selective 1 selective 1 P/Poly

[DKN+20]
adaptive O(1) weak 1 O(1)-CNF

adaptive 1 weak 1 IP

This Work adaptive poly adaptive 1 Puncturing

Table 1: Properties achieved by constrained PRFs that can be instantiated from
standard lattice assumptions (including one-way function) in the standard model. For
either pseudorandomness or privacy, we use “adaptive” to denote adaptive security and
use “selective” to denote selective security. Both the adaptive security and the selective
security consider adversaries that can make queries to an evaluation oracle (see Sec.
4.1 for more details), and we use “weak” to denote that the scheme has privacy against
a weaker adversary that is not allowed to query the evaluation oracle. Besides, we
use the terms 1, O(1), and poly to denote that the adversary can obtain 1, constant,
and polynomial constrained key(s) when attacking the security properties. For the
constraints, “Prefix” denotes the prefix-fixing constraint and “Puncturing” denotes the
puncturing constraint. We use “NC1” and “P/Poly” to denote NC1 circuits and any
polynomial-size circuits. Also, we use “IP” to denote the inner-product predicate and
use “O(1)-CNF” to denote the O(1)-CNF predicate. Note that the predicates Prefix ⊆
O(1)-CNF ⊆ IP.

inspire more potential applications. Therefore, it is of both theoretical and prac-
tical interest to study private puncturable PRFs with adaptive security and
collusion resistance.

1.1 Our Results

In this work, we construct a private puncturable PRF from standard lattice
assumptions in the standard model, where the reduction loss is polynomial in
the security parameter. The scheme has collusion resistant pseudorandomness
against an adaptive adversary. In addition, it has adaptive (single-key) privacy.
The latter property (i.e., adaptive privacy) is not achieved in previous construc-
tion of private constrained PRFs for any constraint from any assumption in the
standard model without using complexity leveraging. We summarize features
of our construction and compare it with previous constructions of constrained
PRFs in the standard setting in Table 1.

To accomplish our goal, we provide new techniques for constructing adap-
tively secure and collusion resistant private constrained PRFs. Especially, we
present a new primitive called explainable hash and construct it from lattices.
The new primitive enables us to upgrade a selectively secure private punc-
turable PRF to have adaptive security, and it could be applied to construct
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other adaptively secure cryptographic schemes. We also introduce a new ap-
proach to achieve collusion resistance from standard assumptions. The idea is
very different from previous methods and would inspire new constructions of
collusion resistant constrained PRFs for a wider class of constraints.

1.2 Technical Overview

In this section, we provide an overview of our main techniques for construct-
ing private puncturable PRFs with collusion resistant pseudorandomness and
adaptive security. We first describe our main ideas for achieving either adaptive
security or collusion resistance. Then we demonstrate how to combine the ideas
to construct a private puncturable PRF with both desirable security properties.

On Achieving Adaptive Security. First, we explain how to achieve adaptive
security. The adaptive security requires that the adversary cannot break security
of the scheme even if it can make queries to a constrain oracle and an evaluation
oracle in an arbitrary order, where the constrain oracle returns a constrained key
punctured on the submitted set, and the evaluation oracle evaluates the PRF on
the submitted input. Here, we consider private 1-puncturable2 PRF with single-
key security and present a general construction that upgrades a selectively secure
scheme to have adaptive security in this setting.3

The Difficulty. First, note that it is easy to answer evaluation oracle queries
after the constrain oracle query, since the evaluation results can be computed
by the constrained key returned to the adversary and will not leak additional
information. However, for the evaluation oracle queries before the constrain or-
acle query, it seems that they must be answered by the original PRF key since
the puncture point is still unknown now. Thus, the evaluation results may leak
information about the PRF key, which may help the adversary to break security
of the scheme. This is the main difficulty for achieving adaptive security.

Our solution. To overcome the difficulty, we introduce a new primitive called
explainable hash function. At a high level, an explainable hash H is an injective
keyed function that can reprogram the output on a given input to a predefined
value. More precisely, in its security definition, the adversary can first make
queries to an evaluation oracle H(hk, ·) before viewing the hash key hk, and
then it receives hk after submitting a challenge input x∗ that is not queried
before. Its security requires that the adversary’s view in above experiment can
be simulated by a simulator, and it is guaranteed that the returned hash key hk

2 A 1-puncturable PRF punctures each PRF key on only one input.
3 The general construction also works for larger puncture sets if we use a stronger

building block in the construction. Looking ahead, this needs an explainable hash
that can reprogram the outputs on multiple inputs simultaneously, which is much
more difficult to construct (compared to the standard explainable hash constructed
in this work).
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satisfies H(hk, x∗) = u∗, where u∗ is a uniform output sampled in the beginning
of the security experiment.4

Next, let PRF0 be a private puncturable PRF with selective security, i.e., it
is secure against an adversary that can make queries to the evaluation oracle
after querying the constrain oracle. Then we show how to construct adaptively
secure private puncturable PRF from PRF0 and an explainable hash H. In our
new construction, the PRF key is a PRF key k of PRF0 and a hash key hk of H.
Then, given an input x, the PRF outputs PRF0(k,H(hk, x)). Besides, on input
a punctured point x∗, the constraining algorithm punctures k on H(hk, x∗) and
outputs the constrained version of k and the hash key hk. Since H is injective,
H(hk, x) 6= H(hk, x∗) if x 6= x∗. Therefore, the constrained key allows one to
evaluate the PRF at all points not equal to x∗.

Now, to prove adaptive security (either pseudorandomness or privacy) of the
above construction, we can puncture the secret key k on a random string u∗

in the beginning and then use this constrained key (denoted as ku∗) and the
simulator of H to answer the evaluation oracle queries from the adversary. Next,
after receiving the puncture point x∗, we can use the simulator of H to generate a
hash key hk s.t. H(hk, x∗) = u∗ and return (ku∗ , hk) to the adversary. Adaptive
security then comes from security of H and selective security properties of PRF0.

Constructing Explainable Hash with 1-bit output. It remains to show how to con-
struct an explainable hash function. We first present a basic construction of
(non-injective) explainable hash with 1-bit output. In a nutshell, the construc-
tion embeds an admissible hash function [BB04] into a lattice-based PRF using
the matrix embedding mechanism given in [BGG+14].

An admissible hash allows one to partition an input space such that for any
polynomial-size set Q of inputs and any input x∗ 6∈ Q, we have

∀x ∈ Q, P(K,x) = 0 ∧ P(K,x∗) = 1

with a non-negligible probability, where P is the partitioning function and K is
a random partitioning key. Again, we omit the non-negligible failing probability
here and only consider the case that the partitioning succeeds.

To embed the partitioning key K = (K1, . . . ,KN ) into a matrix A, we set

A =
[
B1 −K1 ·G | . . . | BN −KN ·G

]
where B1, . . . ,BN ∈ Zn×mq are random matrices and G is the standard powers-
of-two gadget matrix [MP12]. Then given the matrix A and an input x (note
that the partitioning key K is not needed), one can get an encoding of P(K,x)
as

Ax =
[
B1 | . . . | BN

]
· T − P(K,x) ·G

where T is a low-norm matrix.

4 In the formal definition of explainable hash, the simulator may fail and abort with
a non-negligible probability. In this overview, we assume that the simulator always
succeeds for simplicity.

6



Now, we are ready to describe our construction of the explainable hash H0.
The hash key is a random matrix A ∈ Zn×m·Nq and a random vector s ∈ Znq .
Given an input x, the evaluation algorithm first computes Ax from A and x.
Then it outputs 0 if

sᵀ ·Ax ·G−1(v1) ∈ [0,
q

2
]

and outputs 1 otherwise, where v1 = ( q−1
2 , 0, . . . , 0)ᵀ ∈ Znq , and G−1(v1) de-

composes each element in v1 into bits and satisfies G ·G−1(v1) = v1.

Next, we demonstrate how the simulator works. Recall that the simulator
will first answer the evaluation oracle queries from an adversary, and then after
the adversary submits an input x∗, the simulator needs to output a hash key,
which is compatible with the evaluation oracle outputs and can map x∗ to a
given bit u∗.5 Inspired by [LST18, DKN+20], we use the lossy mode of A for
the simulator. More precisely, let n̄ � n be an integer, the simulator embeds a
random partitioning key K to the matrix A as follows:

A =
[
B1 −K1 ·G | . . . | BN −KN ·G

]
where

∀i ∈ [1, N ], Bi =

(
rᵀ · B̄
B̄

)
· Si + Ei

r
$← {0, 1}n−1, B̄

$← Z(n−1)×n̄
q , ∀i ∈ [1, N ], Si

$← Zn̄×mq

and Ei is a low-norm noise matrix. Note that A still looks uniform in Zn×m·Nq

due to the learning with errors (LWE) assumption and the leftover hash lemma.
In addition, for any input x, we have

Ax =

[(
rᵀ · B̄
B̄

)
· S1 + E1 | . . . |

(
rᵀ · B̄
B̄

)
· SN + EN

]
· T − P(K,x) ·G

≈
(
rᵀ · B̄
B̄

)
·
[
S1 | . . . | SN

]
· T − P(K,x) ·G

The simulator also samples a random vector s
$← Znq and uses the hash key

(s,A) to answer the evaluation oracle queries from the adversary. Then given an
input x∗ and a bit u∗, the simulator computes u† = H0((s,A), x∗). It outputs
(s,A) if u† = u∗ and outputs (s + d,A) otherwise, where d = (−1, rᵀ)ᵀ.

Notice that if the partitioning is successful (i.e., P(K,x) = 0 for all queried
x and P(K,x∗) = 1), then for any queried x, we have

dᵀ ·Ax ·G−1(v1) ≈ dᵀ ·
(
rᵀ · B̄
B̄

)
·
[
S1 | . . . | SN

]
· T ·G−1(v1) = 0

5 Here, the adversary cannot view the hash key before submitting x∗, and this allows
the simulator to choose a suitable hash key after receiving x∗.
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Thus, H0((s,A), x) = H0((s+d,A), x) for all queried x,6 and therefore the hash
key outputted by the simulator, which is either (s,A) or (s + d,A), is always
compatible with its answers to the evaluation oracle. In addition,

dᵀ ·Ax∗ ·G−1(v1) ≈ dᵀ ·
(
rᵀ · B̄
B̄

)
·
[
S1 | . . . | SN

]
·T ·G−1(v1)−dᵀ ·v1 =

q − 1

2

Thus, we have H0((s,A), x∗) 6= H0((s + d,A), x∗), i.e., if the bit u∗ 6= H0((s,
A), x∗), then u∗ = H0((s + d,A), x∗). Therefore the simulator can succeed in
mapping x∗ to u∗.

Explainable hash with injectivity. We next describe how to construct injective
explainable hash functions from the above (non-injective) explainable hash H0.
The construction runs multiple instances of H0 and rerandomize the outputs.

More precisely, let l be the length of the inputs, then we define the new hash
function as

H(HK,x) = (H0(hki,j , x)⊕ vi,j,x[i])i∈[1,l],j∈[1,L]

where L = O(l) is large enough, HK = (hki,j , vi,j,0, vi,j,1)i∈[1,l],j∈[1,L], and for
i ∈ [1, l], j ∈ [1, L], hki,j is a random hash key of H0 and vi,j,0, vi,j,1 are random
bits.

For any inputs x 6= x′, there exists i s.t. x[i] 6= x′[i]. Thus, vi,j,x[i] and vi,j,x′[i]
are random and independent bits and therefore, for all j ∈ [1, L], we have

Pr[H0(hki,j , x)⊕ vi,j,x[i] = H0(hki,j , x
′)⊕ vi,j,x′[i]] =

1

2

This implies that Pr[H(HK,x) = H(HK,x′)] ≤ 1
2L

. Then, as there are at most

22l possible pairs of distinct inputs (x, x′), we have

Pr[∃x, x′ s.t. x 6= x′ ∧ H(HK,x) = H(HK,x′)] ≤ 22l

2L

which can be made negligible for large enough L. That is, with all but negligible
probability over the choice of the random hash key, the hash function will be
injective. Besides, given an input x∗ and a string u∗ ∈ {0, 1}l·L, the simulator of
H can invoke the simulator of H0 to generate hki,j satisfying

H0(hki,j , x
∗) = u∗i,j ⊕ vi,j,x∗[i]

for i ∈ [1, l], j ∈ [1, L], and security of the new construction follows.

On Achieving Collusion Resistant Pseudorandomness. Next, we describe
how to achieve collusion resistant pseudorandomness, which requires that given
a constrained key punctured on a set P1 and a constrained key punctured on
a set P2, the adversary cannot learn the PRF value at an input x ∈ P1 ∩ P2

7.

6 This also relies on the fact that sᵀ ·Ax ·G−1(v1) is not close to the borders (i.e., 0
and q

2
), which can be guaranteed by adding an additional random element to it.

7 Note that if x 6∈ P1 ∩ P2, i.e., x 6∈ P1 or x 6∈ P2, then the PRF value at x can be
trivially learned from one of the constrained keys.
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The starting point is a single-key secure private puncturable PRF with special
properties. Concretely, we will use the private constrained PRF given in [PS18].

The [PS18] PRF. In a nutshell, the secret key of the PRF is a vector s ∈ Znq ,
where s[1] = 1 and for i ∈ [2, n], s[i] is a random element in Zq. Also, given an
input x, the PRF outputs

bp
q
· (sᵀ ·Ax)[1]e

where Ax ∈ Zn×mq is a random matrix determined by x and some public matrices
A1, . . . ,AN+k. The constrained key for a constraint predicate C includes a vector

aC = sᵀ · [A1 + ct1 ·G | . . . | AN + ctN ·G
| AN+1 + sk1 ·G | . . . | AN+k + skk ·G] + eᵀ

and a ciphertext ct = (ct1, . . . , ctN ), where ct is the ciphertext that encrypts
the constraint C using a fully homomorphic encryption (FHE) scheme, sk is the
secret key of the FHE scheme, and e is a low-norm noise vector. Besides, given
the constrained key (aC, ct) and an input x, the constrained evaluation algorithm
first computes

ax ≈ (sᵀ ·Ax)[1] + (1− C(x)) · rx

via another version of the matrix embedding technique [BGG+14, GVW15],
where rx is a pseudorandom element in Zq determined by x. Then, it rounds ax
to Zp and outputs the rounding result. Note that ax is close to (sᵀ ·Ax)[1] if
C(x) = 1, and is pseudorandom (and thus hides the real PRF value) if C(x) = 0.
Then the correctness8 and the pseudorandomness follow. In addition, its privacy
comes from security of the FHE scheme and the LWE assumption, which implies
that aC is a pseudorandom vector and thus hides sk.

The difficulty for achieving collusion resistance. In above construction (denoted
as PRF0 here), one can recover the PRF key s from constrained keys for two
different constraints C(1) and C(2). First, since the constraints are different, the
ciphertexts ct(1) and ct(2) that encrypt C(1) and C(2) respectively will also be

different. That is, there exists i s.t. ct
(1)
i 6= ct

(2)
i and w.l.o.g., assume that ct

(1)
i =

1 and ct
(2)
i = 0. Then, from the constrained keys, one can get

(sᵀ(Ai + ct
(1)
i ·G) + eᵀ1)− (sᵀ(Ai + ct

(2)
i ·G) + eᵀ2) = sᵀ ·G + eᵀ

from which recovering s is easy. Similar collusion attacks also work for many
other lattice-based constrained PRFs (e.g., [BV15,BKM17,BTVW17]).

The first attempt. To get around the above obstacle and construct collusion re-
sistant τ -puncturable PRFs (i.e., the PRF can be punctured at τ points), our
initial idea is to split the PRF key into τ parts and puncture each part on one

8 This also relies on the fact that (sᵀ ·Ax)[1] is not close to the “rounding border”,
which can be ensured either by the 1D-SIS assumption [Reg04,BV15,BKM17] or via
adding an additional random element to it. In this work, we use the latter method.
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input.9 In particular, let t1, . . . , tτ be τ independent secret keys of PRF0, then
the new PRF key is (t1, . . . , tτ ). Moreover, given an input x, the PRF outputs

τ∑
i=1

PRF0(ti, x)

and on input a puncture set P = {x1, . . . , xτ}, the constraining algorithm punc-
tures the secret key ti on xi and outputs the constrained versions of all ti.

Now, given two puncture sets P(1) = {x(1)
1 , . . . , x

(1)
τ } and P(2) = {x(2)

1 , . . . ,

x
(2)
τ } and supposing x

(1)
1 = x

(2)
1 = x1, then t1 is punctured on the same input x1

in the two constrained keys. Next, by the single-key security of PRF0, PRF0(t1,
x1) is pseudorandom given the constrained keys, which implies the pseudoran-

domness of the PRF value at x1. Note that if x
(1)
2 6= x

(2)
2 , then one can still

recover t2 from the constrained keys via the attack described above. Nonethe-
less, this will not affect security of the t1 part, since t1 and t2 are independent.

The above approach works only if we can assign the “correct” input to each
part of the PRF key. Especially, let x ∈ P1 ∩ P2, then we need to assign x (but
no other inputs) to the same ti in both constrained keys. We can ensure that x
is assigned to a fixed ti by using a deterministic function that maps each input
into an index in [1, τ ] in the constraining algorithm. However, since the input
space is exponentially large, there will be collisions here and we have to puncture
ti also on some other inputs, which will cause the attacks. On the other hand,
if we do not use such map, it seems impossible to assign x to the same index i
in independent constraining procedures.

Our solution. To solve this problem, we generate the secret vector tx for each
punctured point x on-the-fly.10 In more detail, the PRF key of our construction
is a PRF key s of PRF0, and the PRF outputs PRF0(s, x) given an input x.
Then to puncture s on a set P = {x1, . . . , xτ}, the constraining algorithm first
derives txi , which is also a PRF key of PRF0, from xi via a standard PRF. Then
it punctures txi on xi and computes t0 = s−

∑τ
i=1 txi . The constrained key for

P includes t0 and the constrained version of each txi .

Correctness of PRF0 guarantees that given a constrained key for P = {x1,
. . . , xτ} and an input x 6∈ P, one can compute PRF0(txi , x) and PRF0(t0, x).

9 A similar idea is also employed in [BKM17] to achieve τ -puncture PRF from 1-
puncture PRF. However, as discussed below, we cannot achieve collusion resistance
merely from this approach.

10 As a byproduct, this also leads to puncturable PRFs for puncture sets of unbounded
sizes.
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Then by the key-homomorphism property of PRF0,11 we have

PRF0(t0, x) +

τ∑
i=1

PRF0(txi , x) = PRF0(t0 +

τ∑
i=1

txi , x) = PRF0(s, x)

and the correctness of our new construction follows.

Next, we explain why the construction has collusion resistant pseudorandom-
ness. Given constrained keys for P1 and P2, and let x ∈ P1 ∩ P2. Then tx is
punctured on the same input x in both constrained keys. Thus, the adversary
cannot learn any information about PRF0(tx, x) from the constrained version of
tx due to the single-key security of PRF0. We also need to show that other parts
of the constrained keys reveal no information about tx and PRF0(tx, x). Note
that we have

t
(1)
0 +

∑
x′∈P1\{x}

tx′ = t
(2)
0 +

∑
x′∈P2\{x}

tx′ = s− tx

where t
(1)
0 and t

(2)
0 are the t0 vectors in the two constrained keys. Since s and

tx are random vectors with the first coordinate set to be 112, tx can be masked

by s and cannot be learned from other secret vectors, namely, t
(1)
0 , t

(2)
0 and

tx′ for x′ ∈ (P1 ∪ P2)\{x}. As PRF0(tx, x) (and thus PRF0(s, x)) is pseudoran-
dom for an adversary that sees multiple constrained keys, the collusion resistant
pseudorandomness property follows.

The above proof strategy, however, cannot be applied to prove the collusion
resistant privacy of our construction. This is because the solution does not pro-
vide any protection for an input x ∈ (P1∪P2)− (P1∩P2), given the constrained
keys for P1 and P2. Thus, the adversary can still learn these inputs and know if
it belongs to P1 or P2, from the constrained keys. Therefore, our construction
only has 1-key privacy, which is guaranteed by the 1-key privacy of PRF0.

Remark 1.1. The construction described above is nearly generic. In particular,
it can transform a single-key secure private puncturable PRF F into a private
puncturable PRF with collusion resistant pseudorandomness if (1) F is key-
homomorphic and (2) the distribution of t1 + t2 is identical to the distribution
of t3, where t1, t2, t3 are PRF keys of F. Although there are no lattice-based
private puncturable PRFs satisfying either of the properties, the transform still
works for some concrete instantiations (e.g., the one presented in [PS18]) with
weaker form of key-homomorphism and suitable PRF key distribution, as we
have just shown.

11 The key-homomorphism property requires that PRF0(t1, x) + PRF0(t2, x) =
PRF0(t1 + t2, x). Actually, due to the rounding operation, PRF0 is only “almost key-
homomorphic”, i.e., there may exist a small difference between PRF0(t1, x)+PRF0(t2,
x) and PRF0(t1 + t2, x). We close the gap by summing the variables before rounding
and then rounding the result to Zp.

12 Recall that both s and tx are PRF keys of PRF0.
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Putting It All Together. We have described a general construction of adap-
tively secure private 1-puncturable PRF from any selectively secure private 1-
puncturable PRF. Also, we have shown how to construct a private puncturable
PRF with collusion resistant pseudorandomness from the private puncturable
PRF given in [PS18]. Next, we explain how to combine the techniques to get a
private puncturable PRF with both adaptive security and collusion resistance.

The construction proceeds in two steps. First, we apply the general construc-
tion for achieving adaptive security to the private puncturable PRF from [PS18].
This leads to an adaptively secure private 1-puncturable PRF with single-key
security. Note that the new scheme has the same PRF key distribution (ex-
cluding the hash key of explainable hash) as the original one, and it is still
key-homomorphic (before rounding). So, we can apply our ideas for obtaining
collusion resistance to upgrade this scheme to have both adaptive security and
collusion resistant pseudorandomness.

1.3 Related Work

Constrained PRFs with Additional Features. There are many works con-
structing (private) constrained PRFs with additional features. For example, in
[CRV14, Fuc14, DDM17], constrained PRFs supporting verifiability of evalua-
tion results are constructed. Also, in [BKW17], Boneh et al. present constrained
PRFs that allow one to invert the PRF evaluation with a (constrained) key.
Besides, in order to construct watermarking schemes for PRFs [CHN+16], (pri-
vate) puncturable PRFs that support testing of punctured points are proposed
in [BLW17,KW17,KW19]. We note that while watermarkable PRFs and punc-
turable PRFs are highly related, and collusion resistant watermarkable PRFs
have been constructed from standard lattice assumptions in [YAYX20], the con-
struction ideas cannot be applied to construct collusion resistant puncturable
PRFs.

Private Programmable PRFs. Our notion of explainable hash is close to the
notion of private programmable PRF [BLW17], which is a private puncturable
PRF that allows one to reprogram the PRF output on a punctured point. It
seems that a private programmable PRF with adaptive privacy and injectiv-
ity implies an explainable hash. However, existing private programmable PRFs
[BLW17, PS18, PS20] only have selective security. On the other hand, a private
programmable PRF with adaptive privacy can be constructed from a selectively-
secure private programmable PRF and an explainable hash using the techniques
provided in this work.

2 Preliminaries

In this section, we give notations and background knowledge that we require. In
Appendix A, we recall definitions of cryptographic primitives that we employ.
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Notations. We write negl(·) to denote a negligible function, and write poly(·)
to denote a polynomial. For integers a ≤ b, we write [a, b] to denote all integers
from a to b. Let s be a string, we use |s| to denote the length of s. For integers
a ≤ |s|, we use s[a] to denote the a-th character of s and for integers a ≤ b ≤ |s|,
we use s[a : b] to denote the substring (s[a], s[a + 1], . . . , s[b]). Let S be a finite

set, we use |S| to denote the size of S, and use s
$← S to denote sampling an

element s uniformly from set S. Let D be a distribution, we use d← D to denote
sampling d according to D.

We will use bold lower-case letters to denote vectors, and use bold upper-
case letters to denote matrices. All elements in vectors and matrices are integers
unless otherwise specified. Let v be a vector of length n, we use v[i] to denote
the i-th element of v for i ∈ [1, n] and use v[i : j] to denote the vector (v[i],
v[i + 1], . . . ,v[j])ᵀ for 1 ≤ i < j ≤ n. We use ‖v‖∞ = maxi∈[n]|v[i]| to denote
the infinity-norm of v. For an m-by-n matrix A, we use A[i, j] to denote the
element on the i-th row and the j-th columon of A for i ∈ [1,m] and j ∈ [1, n].

For any positive integers p, q s.t. p ≤ q, and for any y ∈ Zq, we define
byep = bpq ·ye ∈ Zp. Without loss of generality, we use integers in [0, q−1] (resp.

[0, p− 1]) to represent elements in Zq (resp. Zp).

Leftover Hash Lemma. In this work, we use the following corollary of the
leftover hash lemma [ILL89,DRS04].

Lemma 2.1. Let λ be the security parameter. Let q > 2 be a prime. Let n,m be
positive integers that are polynomial in λ and satisfy m ≥ n · dlog qe+ ω(log λ).

Let A
$← Zn×mq , r

$← {0, 1}m, b = A · r mod q, and b′
$← Znq . Then (A, b) is

statistically indistinguishable from (A, b′).

Discrete Gaussian Distribution. We use Dσ to denote the discrete Gaussian
distribution over Z with standard deviation σ. Let λ be a security parameter,
we use D̃σ to denote the truncated discrete Gaussian distribution over Z, which
samples x ← Dσ, and then it outputs x if |x| ≤ λ · σ and outputs 0 otherwise.
By the following lemma, Dσ and D̃σ are statistically indistinguishable.

Lemma 2.2 ([Lyu12]). For any k > 0, Pr[|z| > kσ : z ← Dσ] ≤ 2e
−k2
2 .

Gadget Matrix. For any positive integers n,m, q s.t. m = n · dlog qe, we define
the gadget matrix Gn,q ∈ Zn×m as

Gn,q =


1 2 4 . . . 2dlog qe−1

1 2 4 . . . 2dlog qe−1

. . .

1 2 4 . . . 2dlog qe−1

 (1)

For any positive integer l, we also define the inverse function G−1
n,q : Zn×lq → {0,

1}m×l to be a function that decomposes each element a ∈ Zq of a matrix into
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a column of size dlog qe consisting of the binary representation of a. For any
matrix A ∈ Zn×lq , we have

Gn,q ·G−1
n,q(A) = A

The LWE Assumption. We will use the LWE assumption in this paper.

Definition 2.1 (Decision-LWEn,m,q,χ). Given a random matrix A ∈ Zm×nq ,
and a vector b ∈ Zmq , where b is generated according to either of the following
two cases:
1. b = A · s + e mod q, where s

$← Znq and e← χm

2. b
$← Zmq

distinguish which is the case with non-negligible advantage.

Let m = poly(n), poly(n) ≤ q ≤ 2poly(n), and χ = Dσ (or D̃σ) be a (trun-
cated) discrete Gaussian error distribution with standard deviation σ ≥ O(

√
n),

then solving the decision-LWEn,m,q,χ problem is as hard as solving the GapSVPγ
problem on arbitrary n-dimensional lattices by a quantum algorithm [Reg05],
where γ = Õ(nq/σ). In subsequent works [Pei09, BLP+13], classical reductions
from LWE to GapSVP are also presented for different parameterizations.

Note that the hardness of the LWE problem depends only on n, q, σ, thus,
we write LWEn,m,q,χ as LWEn,q,χ for short.

A Border Avoiding Lemma. We use the following lemma in our security
proofs, which is implicitly used in [DKN+20].

Lemma 2.3. Let λ be the security parameter. Let q be a positive integer and let
B ⊆ Zq be a set. Let l be a positive integer that is polynomial in λ and let f be
a function from {0, 1}l to Zq. If q ≥ 2l+ω(log λ) · |B|, then we have

Pr[v
$← Zq : ∃x ∈ {0, 1}l, y ∈ B s.t. v + f(x) = y mod q] ≤ negl(λ)

Proof. For any fixed x ∈ {0, 1}l and fixed y ∈ B, we have

Pr[v
$← Zq : v + f(x) = y mod q] =

1

q

Then by the union bound, we have

Pr[v
$← Zq : ∃x ∈ {0, 1}l, y ∈ B s.t. v + f(x) = y mod q] ≤ 2l · |B|

2l+ω(log λ) · |B|
≤ 1

2ω(log λ)

which is negligible.

3 Explainable Hash Functions

3.1 The Definition

In this section, we provide the definition of explainable hash. Roughly speaking,
an explainable hash is an injective function that can generate a hash key mapping
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a given input to a predefined output and being compatible with previous hash
evaluations. Formally, an explainable hash H = (KeyGen, Eval) with input space
X and output space U consists of the following probabilistic polynomial-time
(PPT) algorithms:

• KeyGen(1λ) → hk : On input the security parameter 1λ, the key generation
algorithm outputs the hash key hk.

• Eval(hk, x) → u : On input the hash key hk and an input x ∈ X , the
deterministic evaluation algorithm outputs an output u ∈ U .

We require that the hash function is injective for nearly all hash keys.

Definition 3.1 (Injectivity). Let hk ← KeyGen(1λ), then the probability that
there exist distinct x1, x2 ∈ X s.t. Eval(hk, x1) = Eval(hk, x2) is negligible.

Besides, its explainability property requires that there exists a simulator that
can simulate the hash function evaluation oracle to an adversary, and then after
the adversary submits an input, the simulator can generate a hash key that
maps this input to a predefined uniform output and is compatible with previous
evaluation oracle outputs. Here, we allow the simulator to abort with a non-
negligible probability and require that the simulator aborts if and only if the
inputs submitted to the evaluation oracle and the final input do not pass a
validity check algorithm.

Definition 3.2 (Explainability). For any polynomial Q and non-negligible
real value δ ∈ (0, 1], we first define two algorithms (VKeyGenQ,δ, VerifyQ,δ) as
follows:

• VKeyGenQ,δ(1
λ)→ vk : On input the security parameter 1λ, the verification

key generation algorithm outputs the verification key vk.
• VerifyQ,δ(vk,Q, x∗) → α : On input the verification key vk, a set Q ⊂ X

s.t. |Q| ≤ Q and an input x∗ ∈ X , the deterministic verification algorithm
outputs a bit α ∈ {0, 1}.

The explainability property has the following two requirements:

• Abort Probability. There exists Γmin, Γmax that for any set Q ⊂ X s.t.
|Q| ≤ Q and for any input x∗ ∈ X\Q

Γmin ≤ Pr
[
vk ← VKeyGenQ,δ(1

λ) : VerifyQ,δ(vk,Q, x∗) = 1
]
≤ Γmax

and

T = Γmin · δ − (Γmax − Γmin)

is a non-negligible positive real value.
• Indistinguishability. There exists a stateful simulator SIM such that for

any PPT and stateful adversary A, we have

|Pr[ExpRealA(1λ) = 1]− Pr[ExpIdealA,SIM(1
λ) = 1]| ≤ negl(λ)
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where the experiments ExpReal and ExpIdeal are defined as follows

ExpRealA(1λ) :

vk ← VKeyGenQ,δ(1
λ);

hk ← KeyGen(1λ);

x∗ ← AEval(hk,·)(1λ);

If VerifyQ,δ(vk,Q, x
∗) = 1 :

out = (hk, Eval(hk, x∗));

Otherwise :

out =⊥;

b← A(out);

Output b;

ExpIdealA,SIM(1
λ) :

vk ← VKeyGenQ,δ(1
λ);

u∗
$← U ;

SIM(vk, u∗);

x∗ ← ASIM(·)(1λ);

If VerifyQ,δ(vk,Q, x
∗) = 1 :

hk ← SIM(x∗);

out = (hk, u∗);

Otherwise :

out =⊥;

b← A(out);

Output b;

In above experiments, Q is the set of inputs submitted to the (simulated)
evaluation oracle and we require that (1) |Q| ≤ Q and (2) x∗ 6∈ Q. In the
third step of the experiment ExpIdeal, the stateful simulator SIM takes as
input (vk, u∗) and updates its internal state, but it does not output anything
in this step.

3.2 The Construction

In this section, we present our construction of explainable hash. Let λ be the
security parameter. Let l, k, t be positive integers that are polynomial in λ such
that k = 4l + λ. Let n̄, n,m, σ,Σ be positive integers that are polynomial in λ,
and let q be a positive odd prime, which satisfy: m = n·dlog qe, n = n̄·dlog qe+λ,
Σ = 2tm3λσ, and q ≥ 2l+ω(log λ)(4Σ + 2). Let

Hadm : {0, 1}l → {0, 1}t

be a balanced admissible hash function and let

EvalAdm : (Zn×mq )2t × {0, 1}t → Zn×mq

be the algorithm defined in Lemma A.7. Let G = Gn,q and write G−1
n,q as G−1.

Let

h = G−1((
q − 1

2
, 0, . . . , 0)ᵀ) ∈ {0, 1}m

We construct the explainable hash function H = (KeyGen, Eval), which has
input space {0, 1}l and output space {0, 1}l·k as follows:
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• KeyGen. On input the security parameter 1λ, the key generation algorithm
samples

Az
$← Zn×mq for z ∈ [1, 2t]

si,j
$← Znq for i ∈ [1, l], j ∈ [1, k]

vi,j,ι
$← Zq for i ∈ [1, l], j ∈ [1, k], ι ∈ {0, 1}

and outputs the hash key

hk = ((Az)z∈[1,2t], (si,j)i∈[1,l],j∈[1,k], (vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1})

• Eval. On input the hash key hk = ((Az)z∈[1,2t], (si,j)i∈[1,l],j∈[1,k],

(vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1}), and an input x ∈ {0, 1}l, the evaluation algorithm
first computes:

w = Hadm(x), Aw = EvalAdm(A1, . . . ,A2t, w), bw = Aw · h mod q

Let u1, . . . ,ul be k-dimension binary vectors, then for i ∈ [1, l], j ∈ [1, k], it
computes:

yi,j = sᵀi,j · bw + vi,j,x[i] mod q

and sets

ui[j] =

{
0 if yi,j ∈ [0, q−1

2 ]

1 otherwise

Finally, it outputs

u = (uᵀ
1 , . . . ,u

ᵀ
l )ᵀ

Theorem 3.1. If Hadm is a balanced admissible hash as defined in Definition
A.1, then H is a secure explainable hash assuming the hardness of LWEn̄,q,D̃σ .

We present proof of Theorem 3.1 in Appendix B.

Parameters. Next, we give an instantiation for the parameters of H. Security
of H relies on the hardness of LWEn̄,q,D̃σ . In addition, we require that

q ≥ 2l+ω(log λ) · (4Σ + 2) ≥ 2l+ω(log λ) · poly(λ) ≥ 2l+ω(log λ)

Let ε ∈ (0, 1) be a constant real value. We set n̄ = (l+ λ)
1
ε and set q = 2O(l+λ).

This makes the approximation factor γ = O(n̄q/σ) of the underlying worst-case
lattices problems to be 2O(n̄ε).

Now, assume that the input length l = O(λ), then the output length will be
in O(λ2) and the hash key size will be

|hk| = 2t · nmdlog qe+ lk · ndlog qe+ 2lk · dlog qe = O(λ5+ 2
ε )
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4 Private Puncturable PRFs

4.1 The Definition

In this section, we provide the definition of private puncturable PRF, which
is adapted from definitions in previous works (e.g., [BW13, HKW15, BLW17,
BKM17, DKN+20]). More precisely, a private puncturable pseudorandom func-
tion PRF = (KeyGen, Eval, Constrain, ConstrainEval) with key space K, input
space X , and output space Y consists of the following four PPT algorithms:

• KeyGen(1λ) → k : On input the security parameter 1λ, the key generation
algorithm outputs the secret key k ∈ K.

• Eval(k, x) → y : On input the secret key k ∈ K and an input x ∈ X , the
evaluation algorithm outputs an output y ∈ Y.

• Constrain(k,P)→ ck : On input the secret key k ∈ K and a polynomial-size
set13 P ⊂ X , the constraining algorithm outputs a constrained key ck.

• ConstrainEval(ck, x) → y : On input the constrained key ck and an input
x ∈ X , the constrained evaluation algorithm outputs an output y ∈ Y.

Besides, it should satisfy the correctness, pseudorandomness, and privacy prop-
erties defined as follows.

Correctness. The correctness of a private puncturable PRF requires that the
constrained key can preserve the functionality of the PRF on unpunctured
points. In this work, we consider a statistical notion of correctness.

Definition 4.1 (Correctness). Let k ← KeyGen(1λ), then the probability that
there exists polynomial-size set P∗ ⊂ X , input x∗ ∈ X\P∗, and constrained
key ck ← Constrain(k,P∗) satisfying Eval(k, x∗) 6= ConstrainEval(ck, x∗) is
negligible.

Pseudorandomness. The pseudorandomness of a private puncturable PRF
requires that given a constrained key, the PRF values at the punctured points
are pseudorandom. As shown in [BKM17], this property implies the standard
pseudorandomness of the PRF.

In this work, we consider adaptive collusion resistant pseudorandomness, i.e.,
the adversary can make queries to the evaluation oracle and the constrain oracle
both before and after seeing the challenge in an adaptive manner, and it can
make a priori unbounded number of queries to the constrain oracle.

Definition 4.2 (Pseudorandomness). For any PPT adversary A = (A1,
A2), we have

Pr[b
$← {0, 1}, ExpPRA,b(1

λ) = 1] ≤ 1/2 + negl(λ)

13 We implicitly assume that a set P is described by listing all elements in P, thus, the
puncture set is always of polynomial-size in this paper.
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ExpPRA,b(1
λ):

1. k ← KeyGen(1λ);

2. (x∗, state)← AEval(k,·),Constrain(k,·)
1 (1λ);

3. y∗0 = Eval(k, x∗), y∗1
$← Y;

4. b′ ← AEval(k,·),Constrain(k,·)
2 (state, y∗b );

5. If b = b′, output 1; If b 6= b′, output 0.

ExpPrivA,b(1
λ) :

1. k ← KeyGen(1λ);

2. (P∗0 ,P∗1 , state)← A
Eval(k,·)
1 (1λ);

3. ck∗ ← Constrain(k,P∗b );

4. b′ ← AEval(k,·)
2 (state, ck∗);

5. Output b′;

Fig. 1 The experiments ExpPR and ExpPriv.

where the experiment ExpPR is defined in Figure 1. Let x1, . . . , xQe be the inputs
submitted to the evaluation oracle Eval(k, ·) and let P1, . . . ,PQc be the sets sub-
mitted to the constrain oracle Constrain(k, ·). To prevent the adversary from
trivially winning in the experiment, we require that:

∀i ∈ [1, Qe], x
∗ 6= xi ∧ ∀i ∈ [1, Qc], x

∗ ∈ Pi (2)

Remark 4.1 (Weak Adaptivity). We say that a private puncturable PRF has
weakly adaptive pseudorandomness if the adversary A1 in Definition 4.2 is not
allowed to query the constrain oracle.14

The following theorem states that weakly adaptive pseudorandomness implies
the fully adaptive pseudorandomness defined in Definition 4.2, and we provide
the proof of Theorem 4.1 in Appendix C.

Theorem 4.1. Let PRF be a private puncturable PRF with weakly adaptive
pseudorandomness, then it also satisfies the pseudorandomness property defined
in Definition 4.2.

Privacy. The privacy of a private puncturable PRF requires that the con-
strained key can hide the punctured points. In this work, we consider adaptive
1-key privacy, i.e., the adversary can only obtain 1 constrained key, and it can
make queries to the evaluation oracle both before and after seeing the constrained
key adaptively.

Definition 4.3 (Privacy). For any PPT adversary A = (A1,A2), we have

|Pr[ExpPrivA,0(1λ) = 1]− Pr[ExpPrivA,1(1λ) = 1]| ≤ negl(λ)

where the experiment ExpPriv is defined in Figure 1. Let x1, . . . , xQe be the
inputs submitted to the evaluation oracle Eval(k, ·), to prevent the adversary
from trivially winning in the experiment, we require that:

∀i ∈ [1, Qe], (xi ∈ P∗0 ∧ xi ∈ P∗1 ) ∨ (xi 6∈ P∗0 ∧ xi 6∈ P∗1 ) (3)

Besides, we require that
|P∗0 | = |P∗1 | (4)

14 In this setting, A1 can still make queries to the evaluation oracle, and A2 can still
query the evaluation oracle and the constrain oracle adaptively for a priori un-
bounded number of times.
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Remark 4.2. The requirement of Equation (4) is necessary if |X | is superpolyno-
mial in λ and we do not have an a priori bound on the sizes of the puncture sets.
In particular, assume there exists a private puncturable PRF PRF = (KeyGen,
Eval, Constrain, ConstrainEval) that can achieve privacy without requiring
Equation (4). Let x be an arbitrary input, let n be the upper bound on the size
of ck ← Constrain(K, {x}), and let U ⊂ X be an arbitrary set with (n + λ)
inputs. Also, let P be a random subset of U and let ck′ ← Constrain(K,P).
Then with all but negligible probability, we have |ck′| ≤ n as otherwise, the
adversary can distinguish the constrained key for x from the constrained key for
P by comparing the lengths of the constrained keys. In addition, given a con-
strained key ck′, we can test if ck′ is punctured on an input x ∈ U via checking
if Eval(K,x) 6= ConstrainEval(ck′, x), this will succeed with all but negligible
probability due to the correctness and the pseudorandomness of PRF. That is,
from PRF, we can construct a mechanism that compresses a random (n+ λ)-bit
string15 into an (n + 1)-bit code16 and then recover the input from the code,
with all but negligible probability. This is information theoretically impossible.

Remark 4.3. Previous works on puncturable PRFs (e.g., [HKW15,BKM17,PS18])
mainly consider the τ -puncturable PRF, where the sizes of the puncture sets
should be equal to (or not greater than) a predefined polynomial τ .17 One can
construct τ -puncturable PRF from our puncturable PRF PRF = (KeyGen, Eval,
Constrain, ConstrainEval) as follows:

• KeyGen′(1λ, 1τ ). Output k ← KeyGen(1λ).

• Eval′(k, x). Output y = Eval(k, 0‖x).

• Constrain′(k,P). Pad P ′ = {0‖x}x∈P ∪ {1‖x̄i}i∈[τ−|P|] and output ck ←
Constrain(k,P ′).
• ConstrainEval′(ck, x). Output y = ConstrainEval(ck, 0‖x).

where x̄i are some random inputs and are used to pad the puncture set P. Note
that the real input and the dummy inputs for padding P have different prefix.
It is easy to check that correctness, pseudorandomness, and privacy of the new
construction follow from the security properties of PRF. Especially, after padding
all puncture sets to be of size τ , Equation (4) in the privacy game will always
be satisfied. In contrast, it seems difficult to extend existing constructions of
τ -puncturable PRF to be the puncturable PRF defined in this work.

Remark 4.4. A simulation-based definition, which can capture the correctness,
pseudorandomness, and privacy in a single definition, is used in [CC17, PS18].
As shown in [CC17], our indistinguishability-based definitions (from Definition
4.1 to Definition 4.3) implies this simulation-based definition.

15 Note that there are 2n+λ possible subsets of U .
16 We can use (n+ 1)-bit strings to represent all strings with length not larger than n.
17 Since the sizes of the puncture sets are a priori bounded, the restriction described

by Equation (4) is not needed.
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4.2 The Construction

In this section, we present our main construction of private puncturable PRF.
Our construction can be roughly divided into two steps. In this first step, we
construct an adaptively secure private puncturable PRF from the selectively
secure private puncturable PRF given in [PS18], and then in the second step, we
upgrade the scheme to have collusion resistant pseudorandomness. An overview
for how both steps proceed and how to combine the steps is provided in Sec.
1.2, and below we give a concrete construction of private puncturable PRF with
both adaptive security and collusion resistant pseudorandomness from scratch.

Let λ be the security parameter. Let l, L, c, k, n,m, q, p,κ, N, σ,Σ′, Σ, d,D
be positive integers that satisfy:

• l, L, c, k, n, p, σ are polynomial in λ.

• κ = dlog qe, m = n · κ, and N = (L+ κ) · c.
• d = O(logL) = O(log λ).

• D = d · poly(log λ, log log q) = poly(log λ, log log q).

• Σ′ ≥ κ · λ · σ · (kO(d) + k ·mO(D)).

• Σ ≥ 2ω(log λ) ·Σ′.
• q ≥ 2L+ω(log λ) · p · (2Σ + 1).

• p is an odd prime and q is a power of p.

Let G = Gn,q and write G−1
n,q as G−1. Let GS : RGS → Zm be an algo-

rithm that takes as input a random string from its randomness space RGS and
outputs an m-dimension vector e that follows the truncated discrete Gaussian
distribution D̃m

σ .
The construction is built on the following building blocks:

• The GSW fully homomorphic encryption scheme FHE = (FHE. KeyGen,
FHE. Enc,FHE. Dec,FHE. Eval), where the message space is {0, 1}, the ci-
phertext space is {0, 1}c, and the secret key space is Zkq . Here, we use RKeyGen

and REnc to denote the randomness space for the algorithms FHE. KeyGen
and FHE. Enc respectively.

• An explainable hash function H = (H. KeyGen,H. Eval) with input space
{0, 1}l and output space {0, 1}L.

• A PRF F = (F. KeyGen,F. Eval) with input space {0, 1}L and output space
RKeyGen ×RL+κ

Enc × Zq × Zn−1
q ×RN+k+1

GS .

Besides, for any u ∈ {0, 1}L and j ∈ [1,κ], we define equ,j : {0, 1}L × {0,
1}κ → {0, 1} of depth d as

equ,j(u
∗, r) =

{
r[j] if u∗ = u

0 otherwise

and for any u ∈ {0, 1}L, j ∈ [1,κ], and ι ∈ [1, k], we define Cu,j,ι : {0, 1}N → {0,
1} of depth D as

Cu,j,ι(ct) = FHE. Eval(j, equ,j , ct)[ι]
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Let
EvalPK : CN,D × (Zn×mq )N+1 → Zn×mq

EvalCT : CN,D × (Zn×mq )N+1 × (Zmq )N+1 × {0, 1}N → Zmq
be the algorithms defined in Lemma A.1, where we use CN,D to denote the set
of polynomial-size circuit from {0, 1}N → {0, 1} with depth at most D, and let

IPEvalPK : (Zn×mq )k × (Zn×mq )k → Zn×mq

IPEvalCT : (Zn×mq )k × (Zmq )k × (Zmq )k × {0, 1}k → Zmq

be the algorithms defined in Lemma A.2.
We construct the private puncturable PRF PRF = (KeyGen, Eval, Constrain,

ConstrainEval) with input space {0, 1}l and output space Zp as follows:

• KeyGen. On input the security parameter 1λ, the key generation algorithm
generates:

Ai
$← Zn×mq for i ∈ [0, N ]

Bi
$← Zn×mq for i ∈ [1, k]

s̄
$← Zn−1

q s = (1, s̄ᵀ)ᵀ v
$← Zq

kH ← H. KeyGen(1λ) kF ← F. KeyGen(1λ)

and outputs the PRF key

K = ((Ai)i∈[0,N ], (Bi)i∈[1,k], s, v, kH, kF)

• Eval. On input the PRF key K = ((Ai)i∈[0,N ], (Bi)i∈[1,k], s, v, kH, kF) and

an input x ∈ {0, 1}l, the evaluation algorithm first computes u = H. Eval(kH,
x). Then it computes

Cj,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ) for j ∈ [1,κ], ι ∈ [1, k]

and
Dj = IPEvalPK(Cj,1, . . . ,Cj,k,B1, . . . ,Bk) for j ∈ [1,κ]

Finally, it computes

ȳ = (

κ∑
j=1

sᵀ ·Dj)[1] + v mod q

and outputs
y = bȳep mod p

• Constrain. The constraining algorithm takes as input the PRF key K =
((Ai)i∈[0,N ], (Bi)i∈[1,k], s, v, kH, kF) and a set P ⊂ {0, 1}l.
Let P = {x1, . . . , x|P|}, then for i ∈ [1, |P|], the constraining algorithm first
prepares:
1. ui = H. Eval(kH, xi).
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2. (RK,i, (RE,i,j)j∈[1,L+κ], r̄i, t̄i, (RG,i,j)j∈[0,N+k]) = F. Eval(kF, ui).

3. ti =

(
1
t̄i

)
.

4. ri = G−1
1,q(r̄i).

5. (pki, ski) = FHE. KeyGen(1λ, 1d;RK,i).

6. ei,j = GS(RG,i,j) for j ∈ [0, N + k].

Next, it computes the ciphertexts

cti,j = FHE. Enc(pki, ui[j];RE,i,j) for j ∈ [1, L]

cti,L+j = FHE. Enc(pki, ri[j];RE,i,L+j) for j ∈ [1,κ]

and encodes the ciphertexts and the secret key into matrices as

aᵀ
i,0 = tᵀi · (A0 + G) + eᵀi,0

aᵀ
i,j = tᵀi · (Aj + cti[j] ·G) + eᵀi,j for j ∈ [1, N ]

bᵀi,j = tᵀi · (Bj + ski[j] ·G) + eᵀi,N+j for j ∈ [1, k]

where cti = (cti,1‖ . . . ‖cti,L+κ).
Besides, it computes

t0 = s−
|P|∑
i=1

ti

and generates encodings of 0 as

e0,0 ← D̃m
σ , aᵀ

0,0 = tᵀ0 · (A0 + G) + eᵀ0,0

e0,j ← D̃m
σ , aᵀ

0,j = tᵀ0 · (Aj + 0 ·G) + eᵀ0,j for j ∈ [1, N ]

e0,N+j ← D̃m
σ , bᵀ0,j = tᵀ0 · (Bj + 0 ·G) + eᵀ0,N+j for j ∈ [1, k]

Finally, the algorithm outputs:

CK = ((Ai)i∈[0,N ], (Bi)i∈[1,k], v, kH,

(a0,j)j∈[0,N ], (b0,j)j∈[1,k],

{(ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti}i∈[1,|P|])

• ConstrainEval. On input the constrained key CK = ((Ai)i∈[0,N ], (Bi)i∈[1,k],
v, kH, (a0,j)j∈[0,N ], (b0,j)j∈[1,k], {(ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti}i∈[1,P ]) and an

input x ∈ {0, 1}l, the constrained evaluation algorithm first computes u =
H. Eval(kH, x). Let ct0 = 0N , then for i ∈ [0, P ], j ∈ [1,κ], and ι ∈ [1, k], the
algorithm computes

c̃ti,j,ι = Cu,j,ι(cti)

ci,j,ι = EvalCT(Cu,j,ι,A0, . . . ,AN ,ai,0, . . . ,ai,N , cti)
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Also, for i ∈ [0, P ] and j ∈ [1,κ], it computes

di,j = IPEvalCT(B1, . . . ,Bk, ci,j,1, . . . , ci,j,k, bi,1, . . . , bi,k, c̃ti,j,1, . . . , c̃ti,j,k)

Finally, it computes

ȳ = (

P∑
i=0

κ∑
j=1

di,j)[1] + v mod q

and outputs
y = bȳep mod p

Theorem 4.2. If FHE is a secure FHE scheme with additional properties de-
fined in Lemma A.4, H is a secure explainable hash function, and F is a secure
PRF, then PRF is a secure private puncturable PRF as defined in Sec. 4.1 as-
suming the hardness of LWEn−1,q,D̃σ

.

We present proof of Theorem 4.2 in Appendix D.

Parameters. Next, we give an instantiation for the parameters of PRF. Security
of PRF relies on the hardness of LWEn−1,q,D̃σ

and LWEO(k/dlog qe),q,D̃σ , where
the latter is required to guarantee the security of FHE. Besides, we require

q ≥ 2L+ω(log λ) · p · (2Σ + 1) ≥ 2L+ω(log λ) · p · 2ω(log λ) ·Σ′

≥ 2L+ω(log λ) · p · κ · λ · σ · (kO(d) + k ·mO(D))

≥ 2L+ω(log λ) · 2poly(log λ,log log q) ≥ 2L+poly(log λ,log log q)

Let ε ∈ (0, 1) be a constant real value. We set k = O(n · dlog qe), n = (L+ λ)
1
ε

and q = 2O(L+λ). This makes the approximation factor γ = O(nq/σ) of the
underlying worst-case lattices problems to be 2O(nε).

Now, assume that the input length and the output length are in O(λ), then
the size of the PRF key will be

|K| = (N + 1) · nmdlog qe+ k · nmdlog qe+ ndlog qe+ |kH|+ |kF| = O(λ10+ 8
ε )

In addition, assume that the size of the puncture set is constant, then the size
of the constrained key will be

|CK| = (N + 1) · nmdlog qe+ k · nmdlog qe+ dlog qe+ |kH|+ |P| · (L+ κ) · c

+ (|P|+ 1) · ((N + 1) ·mdlog qe+ k ·mdlog qe) = O(λ10+ 8
ε )

Given the huge key sizes and the large approximation factor of the underlying
lattice problems, our construction is far from practical. It is an interesting and
challenging open problem to reduce the parameters and construct a practical
private puncturable PRF with the desired security properties.
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[LST18] Benôıt Libert, Damien Stehlé, and Radu Titiu. Adaptively secure dis-
tributed PRFs from LWE. In TCC, pages 391–421. Springer, 2018.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions
from the DH-DDH separation. In CRYPTO, pages 597–612. Springer,
2002.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755. Springer, 2012.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT, pages 700–718. Springer, 2012.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest
vector problem. In STOC, pages 333–342, 2009.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming
PRFs, the LWE way. In PKC, pages 675–701. Springer, 2018.

[PS20] Chris Peikert and Sina Shiehian. Constraining and watermarking PRFs
from milder assumptions. In PKC, pages 431–461. Springer, 2020.

[PTW20] Naty Peter, Rotem Tsabary, and Hoeteck Wee. One-one constrained
pseudorandom functions. In ITC, 2020.

27



[Reg04] Oded Regev. Lattices in computer science-average case hardness. Lecture
Notes for Class (scribe: Elad Verbin), 2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93. ACM, 2005.

[SS96] Michael Sipser and Daniel A Spielman. Expander codes. IEEE transac-
tions on Information Theory, 42(6):1710–1722, 1996.

[SWP00] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In S&P , pages 44–55. IEEE, 2000.

[Yam17] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs
and verifiable random functions via generalized partitioning techniques.
In CRYPTO, pages 161–193. Springer, 2017.

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion re-
sistant watermarkable PRFs from standard assumptions. In CRYPTO,
pages 590–620. Springer, 2020.

[Zém01] Gillés Zémor. On expander codes. IEEE Transactions on Information
Theory, 47(2):835–837, 2001.

A Additional Preliminaries

A.1 Pseudorandom Function

A PRF [GGM84] with input space X and output space Y consists of two PPT
algorithms:

• KeyGen. On input the security parameter 1λ, the key generation algorithm
outputs a PRF key k.
• Eval. On input the PRF key k and an input x ∈ X , the evaluation algorithm

outputs an output y ∈ Y.

Also, it satisfies the following condition:

• Pseudorandomness. Let k ← KeyGen(1λ), and f be a random function
from X to Y. Also, let O0(·) be an oracle that takes as input a string x ∈ X
and returns Eval(k, x), and let O1(·) be an oracle that takes as input a string
x ∈ X and returns f(x). Then for all PPT adversary A, we have:

| Pr[AO0(·)(1λ) = 1]− Pr[AO1(·)(1λ) = 1] |≤ negl(λ)

A.2 Matrix Embeddings

The matrix embedding technique [BGG+14,GVW15,BV15,BKM17] embeds bits

x1, . . . , xN into matrices A0,A1, . . . ,AN ∈ Zn×n·dlog qe
q and then computes cir-

cuits on these matrices.
Let m = n · dlog qe, G = Gn,q and write G−1

n,q as G−1. Also, let s ∈ Znq , then
each bit xi is encoded into the matrix Ai as an LWE sample

aᵀ
i = sᵀ(Ai + xi ·G) + eᵀi
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where ei is the error term as required in the LWE assumption. We also need an
auxiliary encoding of 1 defined as

aᵀ
0 = sᵀ(A0 + G) + eᵀ0

Given two encodings ai,aj of xi, xj , we can add them as

aᵀ
+ =aᵀ

i + aᵀ
j

=sᵀ(Ai + xi ·G) + eᵀ
i + sᵀ(Aj + xj ·G) + eᵀ

j

=sᵀ(Ai + Aj + (xi + xj) ·G) + (eᵀ
i + eᵀ

j )

and multiply them as

aᵀ
× =xj · aᵀ

i − aᵀ
j ·G

−1(Ai)

=xj · (sᵀ(Ai + xi ·G) + eᵀ
i )− (sᵀ(Aj + xj ·G) + eᵀ

j ) ·G
−1(Ai)

=sᵀ(xj ·Ai + xixj ·G) + xj · eᵀ
i − sᵀ(Aj ·G−1(Ai) + xj ·Ai)− eᵀ

j ·G
−1(Ai)

=sᵀ(−Aj ·G−1(Ai) + xixj ·G) + (xj · eᵀ
i − eᵀ

j ·G
−1(Ai))

(5)

Then we can compute the encoding for the NAND of xi and xj as

aᵀ
Z =aᵀ

0 − aᵀ
×

=sᵀ(A0 + G) + eᵀ
0 − sᵀ(−Aj ·G−1(Ai) + xixj ·G)− (xj · eᵀ

i − eᵀ
j ·G

−1(Ai))

=sᵀ(A0 + Aj ·G−1(Ai) + (1− xixj) ·G) + (eᵀ
0 − xj · e

ᵀ
i + eᵀ

j ·G
−1(Ai))

(6)

Let
AZ = A0 + Aj ·G−1(Ai) (7)

and eᵀZ = eᵀ0 − xj · e
ᵀ
i + eᵀj ·G

−1(Ai), then we can write

aᵀ
Z = sᵀ(AZ + (1− xixj) ·G) + eᵀZ

Now, if we perform Equation (7) on the matrices and perform Equation (5) and
Equation (6) on the encodings inductively, going through the gates of a circuit
C (composed exclusively by NAND gates), then we get the encoding for C(x) as

aᵀ
C = sᵀ(AC + C(x) ·G) + eᵀC

Formally, we have the following Lemma.

Lemma A.1 ([BGG+14]). Let n,m, q,B, d,N be positive integers that m =
n ·dlog qe. Let C : {0, 1}N → {0, 1} be a depth-d Boolean circuit. Also, let s ∈ Znq ,
A0,A1, . . . ,AN ∈ Zn×mq , x1, . . . , xN ∈ {0, 1}, and a0,a1, . . . ,aN ∈ Zmq , where

‖aᵀ
0 − sᵀ(A0 + G)‖∞ ≤ B ∧ ∀i ∈ [1, N ], ‖aᵀ

i − sᵀ(Ai + xi ·G)‖∞ ≤ B

There exists the following two deterministic algorithms:

• EvalPK(C,A0, . . . ,AN )→ AC ∈ Zn×mq .
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• EvalCT(C,A0, . . . ,AN ,a0, . . . ,aN , x1, . . . , xN )→ aC ∈ Zmq .

such that for AC = EvalPK(C,A0, . . . ,AN ) and aC = EvalCT(C,A0, . . . ,AN ,a0,
. . . ,aN , x1, . . . , xN ), we have

‖aᵀ
C − sᵀ(AC + C(x) ·G)‖∞ ≤ (m+ 2)d ·B

Note that in the description above, to multiply the two encodings ai and aj ,
we do not need to know xi. In addition, the error term of the new encoding is
independent of xi. Thus, we can compute encoding of the inner product of a
binary vector x and a vector y in Zq, without knowing y. Formally, we have:

Lemma A.2 ([GVW15]). Let n,m, q,B, k be positive integers that m = n ·
dlog qe. Also, let s ∈ Znq , A1, . . . ,Ak,B1, . . . ,Bk ∈ Zn×mq , x1, . . . , xk ∈ {0, 1},
y1, . . . , yk ∈ Zq, and a1, . . . ,ak, b1, . . . , bk ∈ Zmq , where

∀i ∈ [1, k], ‖aᵀ
i − sᵀ(Ai + xi ·G)‖∞ ≤ B ∧ ‖bᵀi − sᵀ(Bi + yi ·G)‖∞ ≤ B

There exists the following two deterministic algorithms:

• IPEvalPK(A1, . . . ,Ak,B1, . . . ,Bk)→ CIP ∈ Zn×mq .
• IPEvalCT(B1, . . . ,Bk,a1, . . . ,ak, b1, . . . , bk, x1, . . . , xk)→ cIP ∈ Zmq .

such that for CIP = IPEvalPK(A1, . . . ,Ak,B1, . . . ,Bk) and cIP = IPEvalCT(B1,
. . . ,Bk,a1, . . . ,ak, b1, . . . , bk, x1, . . . , xk), we have

‖cᵀIP − sᵀ(CIP +

k∑
i=1

xi · yi ·G)‖∞ ≤ k · (m+ 1) ·B

Now, consider the case that each Ai is also embedded with a bit, that is

A0 = B0 −G and ∀i ∈ [1, N ],Ai = Bi − xi ·G

Then if we compute Equation (7), we get

AZ =A0 + Aj ·G−1(Ai)

=B0 −G + (Bj − xj ·G) ·G−1(Ai)

=B0 −G + Bj ·G−1(Ai)− xj · (Bi − xi ·G)

=(B0 + Bj ·G−1(Ai)− xj ·Bi)− (1− xixj) ·G
=(B0,Bj ,Bi) ·R− (1− xixj) ·G

where

R =

 I

G−1(Ai)
−xj · I

 ∈ {−1, 0, 1}3m×m

has at most (m+ 2) non-zero items in each column.
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Lemma A.3 ([BGG+14]). Let n,m, q, d,N be positive integers that m = n ·
dlog qe. Let C : {0, 1}N → {0, 1} be a depth-d Boolean circuit. Also, let A0,A1,
. . . ,AN ,B0,B1, . . . ,BN ∈ Zn×mq , and x1, . . . , xN ∈ {0, 1}, where

A0 = B0 −G ∧ ∀i ∈ [1, N ],Ai = Bi − xi ·G

There exists the following deterministic algorithm:

• EvalPK(C,A0, . . . ,AN )→ AC ∈ Zn×mq .

such that for AC = EvalPK(C,A0, . . . ,AN ), there exists T ∈ [−(m + 2)d, (m +
2)d]m·(N+1)×m satisfying

AC = (B0, . . . ,BN ) · T − C(x) ·G

A.3 Fully Homomorphic Encryption

We use the (leveled) fully homomorphic encryption [Gen09] scheme proposed in
[GSW13]. A leveled FHE scheme consists of four PPT algorithms:

• KeyGen(1λ, 1d)→ (pk, sk). On input the security parameter 1λ and a depth
bound d, the key generation algorithm outputs a public key pk and a secret
key sk.
• Enc(pk, µ) → ct. On input the public key pk and a message µ ∈ {0, 1}, the

encryption algorithm outputs a ciphertext ct.
• Dec(sk, ct)→ µ. On input the secret key sk and a ciphertext ct, the decryp-

tion algorithm outputs a message µ.
• Eval(C, ct)→ ct′. For any polynomial N , on input a circuit C : {0, 1}N → {0,

1} of depth at most d and a vector of N ciphertexts ct, the evaluation
algorithm outputs a ciphertext ct′.

Also, it satisfies the following properties:

• Perfect Correctness. For any N, d, any messages µ1, . . . , µN ∈ {0, 1},
any circuit C : {0, 1}N → {0, 1} of depth at most d, and any (pk, sk) ←
KeyGen(1λ, 1d), we have:

Pr[Dec(sk, Eval(C, (Enc(pk, µi))i∈[1,N ])) = C(µ1, . . . , µN )] = 1

• Security. For any PPT adversary A = (A1,A2) and for any d = poly(λ),
we have:

Pr


(pk, sk)← KeyGen(1λ, 1d);

(m∗0,m
∗
1, state)← A1(pk);

b
$← {0, 1};

ct∗ ← Enc(pk,m∗b)

: A2(ct∗, state) = b

 ≤ 1/2 + negl(λ)
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The GSW FHE Scheme. Our construction relies on some specific properties
of the GSW FHE scheme:

Lemma A.4 ([GSW13]). Let λ be the security parameter and d = poly(λ).
Let n, k, q, c, σ be positive integers such that n, σ are polynomial in λ, k = O(n ·
dlog qe), c = O(n2 log2q), and q > λ · σ · kO(d). Then there exists a secure
FHE scheme FHE = (FHE. KeyGen,FHE. Enc,FHE. Dec,FHE. Eval) for circuits
with depth at most d with the following properties, assuming the LWEn,q,D̃σ
assumption:

• The secret key of FHE is in Zkq .
• The encryption algorithm takes in a message in {0, 1} and outputs a cipher-

text in {0, 1}c.
• The evaluation algorithm can additionally take as input an integer ` ∈ [1,
dlog qe] and output a ciphertext in {0, 1}k.
• Given any boolean circuit of depth at most d, the evaluation algorithm can be

evaluated by a Boolean circuit of depth at most D = d · poly(log λ, log log q).
• For any polynomial N, d, any ` ∈ [1, dlog qe], any messages µ1, . . . , µN ∈ {0,

1}, and any boolean circuit C : {0, 1}N → {0, 1} of depth at most d, let
(pk, sk) ← FHE. KeyGen(1λ, 1d) and for i ∈ [1, N ], let cti ← FHE. Enc(pk,
µi). Also let

ct′ ← Eval(`, C, (ct1, . . . , ctN ))

ν =

k∑
i=1

sk[i] · ct′[i] mod q

then we have
|ν − C(µ1, . . . , µN ) · 2`−1| ≤ λ · σ · kO(d)

A.4 Admissible Hash

We use the (balanced) admissible hash function [BB04, Jag15] in our construc-
tion. The following definition is adapted from the definition given in [Jag15],
where we modify the definition of τ in Equation (9) below.

Definition A.1. Let λ be the security parameter. Let l, t be positive integers
that are polynomial in λ. Let

Hadm : {0, 1}l → {0, 1}t

be an efficiently computable function. For K ∈ {0, 1,⊥}t, let PK : {0, 1}t → {0,
1} be defined as

PK(w) =

{
1 if ∀i ∈ [1, t],K[i] =⊥ ∨ K[i] = w[i]

0 otherwise
(8)

We say that Hadm is a balanced admissible hash function if for any polynomial
Q and non-negligible real value δ ∈ (0, 1], there exits a PPT algorithm
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• AdmSmpQ,δ(1
λ) → K. On input the security parameter 1λ, the algorithm

outputs K ∈ {0, 1,⊥}t.

and non-negligible real values γmin and γmax such that for all x1, . . . , xQ, x
∗ ∈ {0,

1}l with x∗ 6∈ {x1, . . . , xQ}18, we have

γmin ≤ Pr[PK(Hadm(x∗)) = 1 ∧ ∀i ∈ [1, Q],PK(Hadm(xi)) = 0] ≤ γmax
and

τ = γmin · δ − (γmax − γmin) (9)

is a non-negligible positive real value, where the probability is taken over the
choice of K ← AdmSmpQ,δ(1

λ).

The (balanced) admissible hash function presented in [Lys02,FHPS13,Jag15],
which are constructed from an error correcting code with suitable minimal dis-
tance (see e.g., [SS96, Zém01, Gol08] for explicit constructions of such codes),
also satisfy Definition A.1. We formally state this in Lemma A.5 and for com-
pleteness, we give its proof in Appendix A.4.1.

Lemma A.5. Let c be a constant and t = O(l). Let C : {0, 1}l → {0, 1}t be a
family of code with minimal distance c · t (i.e., for any distinct x1, x2 ∈ {0, 1}l,
C(x1) and C(x2) differ in at least c · t positions). Then C is a balanced admissible
hash function defined in Definition A.1.

We need the following lemma from [KY16,DKN+20] when using admissible
hash functions in the security proof.

Lemma A.6 ([KY16, DKN+20]). Let D be a PPT algorithm that takes as
input a bit b ∈ {0, 1} and outputs (x, b′) ∈ X × {0, 1}, where X is some domain.
Define

δ = |Pr[b
$← {0, 1}, (x, b′)← D(b) : b = b′]− 1

2
|

Let γ be a map that maps an element in X to a real value in [0, 1] and
γmin, γmax be real values such that ∀x ∈ X , γmin ≤ γ(x) ≤ γmax.

Let D′ be a PPT algorithm that takes as input a bit b ∈ {0, 1} and outputs
(x, b′) ∈ X × {0, 1}. In particular, given an input b, D′ first runs (x, b1)← D(b)

and samples b2
$← {0, 1}, then it outputs (x, b1) with probability γ(x) and outputs

(x, b2) with probability 1− γ(x). Then, the following holds:

|Pr[b
$← {0, 1}, (x, b′)← D′(b) : b = b′]− 1

2
| ≥ γmin · δ −

γmax − γmin
2

Embedding PK into Matrices. In our constructions, we need to embed
the evaluation of PK into matrices. The task can be completed by applying
Lemma A.3 directly, where each element of T is roughly bounded by mO(log t).
In [Yam17], Yamada improves the parameter to be roughly O(m2 · t) by refining
the process of evaluation. We give a variant of this construction, which is simpler
and also improves the parameter. We present the formal description of the result
in Lemma A.7 and provide the proof in Appendix A.4.2.

18 We allow xi = xj for some distinct i, j ∈ [1, Q].
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Lemma A.7. Let t be a polynomial in λ. Let K ∈ {0, 1,⊥}t and let PK : {0,
1}t → {0, 1} be the function defined in Equation (8). For i ∈ [1, t], let

(Ki,0,Ki,1) =

{
(0, 0) if K[i] =⊥
(1,K[i]) otherwise

Let n,m, q be positive integers that m = n · dlog qe. Also, let A1,0,A1,1, . . . ,At,0,
At,1,B1,0,B1,1, . . . ,Bt,0,Bt,1 ∈ Zn×mq , where

∀i ∈ [1, t], Ai,0 = Bi,0 −Ki,0 ·G, Ai,1 = Bi,1 −Ki,1 ·G

There exists the following deterministic algorithm:

• EvalAdm(A1,0,A1,1, . . . ,At,0,At,1, w)→ AP ∈ Zn×mq .

such that for any w ∈ {0, 1}t and for AP = EvalAdm(A1,0,A1,1, . . . ,At,0,At,1,
w), there exists T ∈ [−m,m]2tm×m satisfying

AP = (B1,0,B1,1, . . . ,Bt,0,Bt,1) · T − PK(w) ·G

A.4.1 Proof of Lemma A.5

Following [Jag15], we set the output space of the algorithm AdmSmpQ,δ as the set

of all strings in {0, 1}t with exactly

d = d log (2Q+ 2Q/δ)

− log (1− c)
e

components not equal to ⊥, and the algorithm outputs a uniform element from
this set.19 As shown in [Jag15], we can set20

γmax = 2−d and γmin = (1−Q(1− c)d) · 2−d

19 We change the value of d here.
20 The computation of γmax and γmin does not use the concrete value of d.
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Thus, we have

τ = γmin · δ − (γmax − γmin)

= (1−Q(1− c)d) · 2−d · δ − (2−d − (1−Q(1− c)d) · 2−d)
= 2−d · (δ − δ ·Q(1− c)d − 1 + 1−Q(1− c)d)

= 2−d · (δ − (δ + 1) ·Q(1− c)d
log (2Q+2Q/δ)
− log (1−c) e)

≥ 2−d · (δ − (δ + 1) ·Q(1− c)
log (2Q+2Q/δ)
− log (1−c) )

= 2−d · (δ − (δ + 1) · Q

2Q+ 2Q/δ
)

= 2−d · (δ − (δ + 1) · δ

2δ + 2
)

= 2−d
log (2Q+2Q/δ)
− log (1−c) e · δ

2

≥ 2−(
log (2Q+2Q/δ)
− log (1−c) +1) · δ

2

=
1

(2Q+ 2Q/δ)c′
· δ

4

where c′ = −1
log (1−c) is a positive constant. Since Q is a polynomial and δ is

non-negligible, τ is also non-negligible. That completes the proof of Lemma A.5.

A.4.2 Proof of Lemma A.7

We can compute PK(w) as follows:

1. For i ∈ [1, t]:

(a) Li = 1− w[i] ·Ki,1 − (1− w[i])(1−Ki,1).

(b) Mi = 1−Ki,0 · Li.

2. Output
∏t
i=1Mi.

It is easy to see Li,Mi ∈ {0, 1} and the output is equal to PK(w).
Given inputs A1,0,A1,1, . . . ,At,0,At,1 and w ∈ {0, 1}t, the EvalAdm algo-

rithm works as follows:

1. For i ∈ [1, t]:

(a) Di = −G− w[i] ·Ai,1 − (1− w[i]) · (−G−Ai,1).

(b) F i = −G + Ai,0 ·G−1(Di).

2. H1 = F 1.

3. For i ∈ [2, t]:

(a) Hi = −F i ·G−1(Hi−1).

4. Output AP = Ht.
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Note that for i ∈ [1, t],

Di = −G− w[i] ·Ai,1 − (1− w[i]) · (−G−Ai,1)

= −G− w[i] · (Bi,1 −Ki,1 ·G)− (1− w[i]) · (−Bi,1 − (1−Ki,1) ·G)

= (1− 2w[i]) ·Bi,1 − (1− w[i] ·Ki,1 − (1− w[i]) · (1−Ki,1)) ·G
= (1− 2w[i]) ·Bi,1 − Li ·G

and
F i = −G + Ai,0 ·G−1(Di)

= −G + (Bi,0 −Ki,0 ·G) ·G−1(Di)

= −G + Bi,0 ·G−1(Di)−Ki,0 · ((1− 2w[i]) ·Bi,1 − Li ·G)

= Bi,0 ·G−1(Di)−Ki,0 · (1− 2w[i]) ·Bi,1 − (1−Ki,0 · Li) ·G
= Ei −Mi ·G

where Ei = (Bi,0,Bi,1) ·Ri and

Ri =

(
G−1(Di)

−Ki,0 · (1− 2w[i]) · I

)
is a matrix in {−1, 0, 1}2m×m.

Also, assume that there exists S1, . . . ,Si−1 ∈ {−1, 0, 1}m×m s.t.

Hi−1 =

i−1∑
j=1

Ej · Sj −
i−1∏
j=1

Mj ·G

then we have

Hi = −F i ·G−1(Hi−1)

= −(Ei −Mi ·G) ·G−1(Hi−1)

= −Ei ·G−1(Hi−1) +Mi · (
i−1∑
j=1

Ej · Sj −
i−1∏
j=1

Mj ·G)

=

i∑
j=1

Ej · S′j −
i∏

j=1

Mj ·G

where S′j = Mi · Sj for j ∈ [1, i − 1] and S′i = −G−1(Hi−1), i.e. S′j ∈ {−1, 0,
1}m×m for j ∈ [1, i]. Since H1 = F 1 = E1−M1 ·G also satisfies the assumption,
there exists S1, . . . ,St ∈ {−1, 0, 1}m×m s.t.

Ht =

t∑
j=1

Ej · Sj − PK(w) ·G

Now, let

T =

R1 · S1

...
Rt · St


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then we have

Ht = (B1,0,B1,1, . . . ,Bt,0,Bt,1) · T − PK(w) ·G

In addition, as elements in Ri and Si are in {−1, 0, 1}, each element in T is in
[−m,m], i.e., T ∈ [−m,m]2tm×m. This completes proof of Lemma A.7.

B Security Analysis of Explainable Hash

We present proof of Theorem 3.1 in this section. More precisely, we will prove
the injectivity and the explainability of H.

Injectivity. For any fixed integer i∗ ∈ [1, l] and for any fixed inputs x(1), x(2) ∈
{0, 1}l s.t. x(1)[i∗] 6= x(2)[i∗], we first bound the probability that Eval(hk, x(1)) =
Eval(hk, x(2)) for a random hash key hk.

Let
y

(1)
i∗,j = sᵀi∗,j · bHadm(x(1)) + vi∗,j,x(1)[i∗] mod q

and u
(1)
i∗ [j] be the variables used in evaluating Eval(hk, x(1)). For a random hk,

we have vi∗,j,x(1)[i∗] uniform in Zq for any j ∈ [1, k], and thus y
(1)
i∗,j is also uniform

in Zq. Therefore, we have

Pr[u
(1)
i∗ [j] = 0] =

1

2
+

1

2q

Similarly, let

y
(2)
i∗,j = sᵀi∗,j · bHadm(x(2)) + vi∗,j,x(2)[i∗] mod q

and u
(2)
i∗ [j] be the variables used in evaluating Eval(hk, x(2)), then we also have

Pr[u
(2)
i∗ [j] = 0] =

1

2
+

1

2q

Note that as x(1)[i∗] 6= x(2)[i∗], the random variables u
(1)
i∗ [j] and u

(2)
i∗ [j] are

independent. Therefore, we have

Pr[u
(1)
i∗ [j] = u

(2)
i∗ [j]] = (

1

2
+

1

2q
)2 + (

1

2
− 1

2q
)2 =

1

2
+

1

2q2
≤ 2

3

for any j ∈ [1, k], and this implies that

Pr[u
(1)
i∗ = u

(2)
i∗ ] ≤ (

2

3
)k ≤ 1

22l+λ/2

i.e.,

Pr[Eval(hk, x(1)) = Eval(hk, x(2))] ≤ 1

22l+λ/2
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Next, by the union bound, for any fixed i∗ ∈ [1, l], the probability that there
exists x(1), x(2) ∈ {0, 1}l s.t. x(1)[i∗] 6= x(2)[i∗] and Eval(hk, x(1)) = Eval(hk,
x(2)) will not exceed

1

22l+λ/2
· 22l =

1

2λ/2

Finally, using the union bound again, the probability that there exists x(1),
x(2) ∈ {0, 1}l s.t. x(1) 6= x(2) and Eval(hk, x(1)) = Eval(hk, x(2)) will not exceed
l

2λ/2
, which is negligible.

This completes the proof of injectivity.

Explainability. For any polynomial Q and non-negligible δ, let AdmSmpQ,δ and
P be the algorithm and function defined in Definition A.1, then the algorithms
(VKeyGenQ,δ, VerifyQ,δ) work as follows:

• VKeyGenQ,δ. On input the security parameter 1λ, the verification key gener-

ation algorithm computes K ← AdmSmpQ,δ(1
λ) and sets vk = K.

• VerifyQ,δ. On input the verification key vk = K, a set Q ⊂ {0, 1}l s.t.

|Q| ≤ Q and an input x∗ ∈ {0, 1}l, the deterministic verification algorithm
outputs 1 if

PK(Hadm(x∗)) = 1 ∧ ∀x ∈ Q,PK(Hadm(x)) = 0

and outputs 0 otherwise.

We next argue that the two requirements in Definition 3.2 are satisfied.

Abort Probability. For any set Q ⊂ {0, 1}l s.t. |Q| ≤ Q and for any input x∗ 6∈ Q,
let x1, . . . , x|Q| be the distinct inputs in Q. Also, if |Q| < Q, let x|Q|+1 =
x|Q|+2 = . . . = xQ = x1. Then we have

Pr
[
vk ← VKeyGenQ,δ(1

λ) : VerifyQ,δ(vk,Q, x
∗) = 1

]
= Pr

[
K ← AdmSmpQ,δ(1

λ) : PK(Hadm(x∗)) = 1 ∧ ∀i ∈ [1, |Q|],PK(Hadm(xi)) = 0
]

= Pr
[
K ← AdmSmpQ,δ(1

λ) : PK(Hadm(x∗)) = 1 ∧ ∀i ∈ [1, Q],PK(Hadm(xi)) = 0
]

∈[γmin, γmax]

where γmin, γmax are defined in Definition A.1. Thus, we can define Γmin =
γmin and Γmax = γmax. Note that since in Definition A.1, we require that
γmin · δ− (γmax− γmin) is a non-negligible positive real value, we also have that

T = Γmin · δ − (Γmax − Γmin)

is a non-negligible positive real value. Therefore, the algorithms (VKeyGenQ,δ,
VerifyQ,δ) satisfy the requirement on abort probability.

Indistinguishability. Next, we prove the indistinguishability property. First, we
define the simulator SIM as follows:

1. In the beginning, on receiving a verification key vk = K ∈ {0, 1,⊥}t and a
random string u∗ ∈ {0, 1}lk, the simulator computes:

38



(a) Ã
$← Z(n−1)×n̄

q .

(b) r
$← {0, 1}n−1.

(c) Ā =

(
rᵀ · Ã
Ã

)
mod q.

(d) For z ∈ [1, 2t]:

i. Sz
$← Zn̄×mq .

ii. Ez ← D̃n×m
σ .

iii. A′z = Ā · Sz + Ez mod q.

(e) For i ∈ [1, t]:
i. If K[i] =⊥:

A. A2i−1 = A′2i−1.

B. A2i = A′2i.

ii. Otherwise:
A. A2i−1 = A′2i−1 −G mod q.

B. A2i = A′2i −K[i] ·G mod q.

(f) d = (−1, rᵀ)ᵀ.

(g) For i ∈ [1, l], j ∈ [1, k]:

i. ŝi,j
$← Znq .

ii. ši,j = ŝi,j + d mod q.

(h) For i ∈ [1, l], j ∈ [1, k], ι ∈ {0, 1}: vi,j,ι
$← Zq.

(i) Set ĥk = ((Az)z∈[1,2t], (ŝi,j)i∈[1,l],j∈[1,k], (vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1}).

(j) Set ȟk = ((Az)z∈[1,2t], (ši,j)i∈[1,l],j∈[1,k], (vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1}).

(k) Initialize α = 0.

2. Then, the simulator answers evaluation queries from A. In particular, given
an input x(`), the simulator proceeds as follows:
(a) If α = 0:

i. If PK(Hadm(x(`))) = 0:

A. Return Eval(ĥk, x(`)).

ii. If PK(Hadm(x(`))) = 1:
A. For i ∈ [1, l], j ∈ [1, k]:

ci,j
$← {0, 1}.

si,j =

{
ŝi,j if ci,j = 0

ši,j if ci,j = 1
.

hk = ((Az)z∈[1,2t], (si,j)i∈[1,l],j∈[1,k], (vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1}).

B. Return Eval(hk, x(`)).

C. Set α = 1.

(b) If α = 1:
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i. Return Eval(hk, x(`)).

3. Next, if the simulator is further given an input x∗ (i.e., α is still 0 now), the
simulator proceeds as follows:
(a) û∗ = Eval(ĥk, x∗).

(b) For i ∈ [1, l], j ∈ [1, k]:

i. si,j =

{
ŝi,j if u∗[(i− 1)k + j] = û∗[(i− 1)k + j]

ši,j if u∗[(i− 1)k + j] 6= û∗[(i− 1)k + j]
.

(c) Return hk = ((Az)z∈[1,2t], (si,j)i∈[1,l],j∈[1,k], (vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1})

Then, to prove the indistinguishability between the two experiments, we de-
fine the following games between the challenger and a PPT adversary A:

• Game 0. This is the experiment ExpReal. In particular, the challenger in-
teracts with the adversary as follows:
1. In the beginning, the challenger first samples

Az
$← Zn×mq for z ∈ [1, 2t]

si,j
$← Znq for i ∈ [1, l], j ∈ [1, k]

vi,j,ι
$← Zq for i ∈ [1, l], j ∈ [1, k], ι ∈ {0, 1}

and K ← AdmSmpQ,δ(1
λ).

2. Then it answers evaluation queries from A. In particular, given an input
x(`), the challenger proceeds as follows:
(a) w(`) = Hadm(x(`)).

(b) Aw(`) = EvalAdm(A1, . . . ,A2t, w
(`)).

(c) bw(`) = Aw(`) · h mod q.

(d) Let u
(`)
1 , . . . ,u

(`)
l be k-dimension binary vectors.

(e) For i ∈ [1, l]:
i. For j ∈ [1, k]:

A. y
(`)
i,j = sᵀi,j · bw(`) + vi,j,x(`)[i] mod q.

B. u
(`)
i [j] =

{
0 if y

(`)
i,j ∈ [0, q−1

2 ]

1 otherwise
.

(f) Return u(`) =


u

(`)
1
...

u
(`)
l

.

3. Next, after A submits x∗ ∈ {0, 1}l, the challenger returns ⊥ to the
adversary if

PK(Hadm(x∗)) = 0 ∨ ∃` ∈ [1, Q′],PK(Hadm(x(`))) = 1

where Q′ ≤ Q is the number of inputs submitted to the evaluation oracle.
Otherwise, it proceeds as follows:
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(a) w∗ = Hadm(x∗).

(b) Aw∗ = EvalAdm(A1, . . . ,A2t, w
∗).

(c) bw∗ = Aw∗ · h mod q.

(d) Let u∗1, . . . ,u
∗
l be k-dimension binary vectors.

(e) For i ∈ [1, l]:

i. For j ∈ [1, k]:

A. y∗i,j = sᵀi,j · bw∗ + vi,j,x∗[i] mod q.

B. u∗i [j] =

{
0 if y∗i,j ∈ [0, q−1

2 ]

1 otherwise
.

(f) Set u∗ =

u∗1
...
u∗l

.

(g) Set hk = ((Az)z∈[1,2t], (si,j)i∈[1,l],j∈[1,k], (vi,j,ι)i∈[1,l],j∈[1,k],ι∈{0,1})

and returns (hk,u∗) to the adversary.

4. Finally, the challenger outputs what A outputs.

• Game 1. This is identical to Game 0 except that after receiving an input
x(`) from the adversary, the challenger aborts and outputs 2 if

∃(i, j) ∈ [1, l]×[1, k], y
(`)
i,j ∈ [

q − 1

2
−Σ, q − 1

2
+Σ]∪[0, Σ]∪[q−Σ, q−1] (10)

In addition, after receiving x∗, the challenger aborts and outputs 2 if

∃(i, j) ∈ [1, l]×[1, k], y∗i,j ∈ [
q − 1

2
−Σ, q − 1

2
+Σ]∪[0, Σ]∪[q−Σ, q−1] (11)

• Game 2. This is identical to Game 1 except that the challenger changes the
way to generate A1, . . . ,A2t. In particular, in the beginning, the challenger

samples A′z
$← Zn×mq for z ∈ [1, 2t]. Then for i ∈ [1, t], it sets

A2i−1 = A′2i−1 and A2i = A′2i

if K[i] =⊥, and sets

A2i−1 = A′2i−1 −G mod q and A2i = A′2i −K[i] ·G mod q

otherwise (i.e., if K[i] ∈ {0, 1}).
• Game 3. This is identical to Game 2 except that the challenger changes

the way to generate A′1, . . . ,A
′
2t. In particular, the challenger samples Ā

$←
Zn×n̄q . Then for z ∈ [1, 2t], it samples Sz

$← Zn̄×mq , Ez ← D̃n×m
σ and com-

putes

A′z = Ā · Sz + Ez mod q

41



• Game 4. This is identical to Game 3 except that the challenger changes the

way to generate Ā. In particular, the challenger samples Ã
$← Z(n−1)×n̄

q and

r
$← {0, 1}n−1, then it sets

Ā =

(
rᵀ · Ã
Ã

)
mod q

• Game 5. This is identical to Game 4 except that the challenger changes the
way to generate si,j . Let

d =

(
−1
r

)
then for i ∈ [1, l], j ∈ [1, k], the challenger first samples ŝi,j

$← Znq and

computes ši,j = ŝi,j + d mod q. Next, it samples ci,j
$← {0, 1} and sets

si,j =

{
ŝi,j if ci,j = 0

ši,j if ci,j = 1

• Game 6. This is identical to Game 5 except that after receiving an input x(`)

from the adversary and checking if Equation (10) is satisfied, the challenger
additionally computes

ŷ
(`)
i,j = ŝᵀi,j · bw(`) + vi,j,x(`)[i] mod q

y̌
(`)
i,j = šᵀi,j · bw(`) + vi,j,x(`)[i] mod q

and

û
(`)
i [j] =

{
0 if ŷ

(`)
i,j ∈ [0, q−1

2 ]

1 otherwise

ǔ
(`)
i [j] =

{
0 if y̌

(`)
i,j ∈ [0, q−1

2 ]

1 otherwise

for i ∈ [1, l], j ∈ [1, k]. Then it aborts and outputs 3 if

PK(Hadm(x(`))) = 0 ∧ ∃(i, j) ∈ [1, l]× [1, k], û
(`)
i [j] 6= ǔ

(`)
i [j]

• Game 7. This is identical to Game 6 except that after receiving the input x∗

from the adversary and checking if Equation (11) is satisfied, the challenger
additionally computes

ŷ∗i,j = ŝᵀi,j · bw∗ + vi,j,x∗[i] mod q

y̌∗i,j = šᵀi,j · bw∗ + vi,j,x∗[i] mod q

and

û∗i [j] =

{
0 if ŷ∗i,j ∈ [0, q−1

2 ]

1 otherwise
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ǔ∗i [j] =

{
0 if y̌∗i,j ∈ [0, q−1

2 ]

1 otherwise

for i ∈ [1, l], j ∈ [1, k]. Then it aborts and outputs 3 if

PK(Hadm(x∗)) = 1 ∧ ∃(i, j) ∈ [1, l]× [1, k], û∗i [j] = ǔ∗i [j]

• Game 8. This is identical to Game 7 except that the challenger does not
perform the checks introduced in Game 1.

• Game 9. This is identical to Game 8 except that the challenger uses ŝi,j
instead of si,j to answer evaluation oracle queries from the adversary until
the adversary submits an input x(`) s.t. PK(Hadm(x(`))) = 1. Note that in
Game 9, the challenger can postpone the generation of ci,j and si,j after
the adversary submits such “bad” evaluation oracle queries, or after the
adversary submits x∗ in case PK(Hadm(x(`))) = 0 for all ` ∈ [1, Q′].

• Game 10. This is identical to Game 9 except that the challenger changes the
way to compute si,j in case VerifyQ,δ(K, {x(1), . . . , x(Q′)}, x∗) = 1. In more

detail, in this case, after receiving x∗, the challenger samples ui,j
$← {0, 1}

and sets

si,j =

{
ŝi,j if ui,j = û∗i [j]

ši,j if ui,j 6= û∗i [j]

for i ∈ [1, l], j ∈ [1, k].
• Game 11. This is identical to Game 10 except that the challenger samples
ui,j in the beginning. In addition, at the end of the game, it sets u∗ = (u1,1,

. . . , ul,k)ᵀ if VerifyQ,δ(K, {x(1), . . . , x(Q′)}, x∗) = 1.
• Game 12. This is identical to Game 11 except that the challenger does not

perform the check introduced in Game 6 and Game 7.

It is easy to see that Game 12 is identical to the experiment ExpIdealA,SIM
for the simulator SIM defined above. Let Ei be the output of Game i for i ∈ [0,
12]. We next show that |Pr[E0 = 1] − Pr[E12 = 1]| ≤ negl(λ) via proving the
following lemmas.

Lemma B.1. |Pr[E0 = 1]− Pr[E1 = 1]| ≤ Pr[E1 = 2] ≤ negl(λ).

Proof. First, Game 0 and Game 1 are identical unless the challenger aborts and
outputs 2 in Game 1. Thus, we have

|Pr[E0 = 1]− Pr[E1 = 1]| ≤ Pr[E1 = 2]

Next, define the function fi,j : {0, 1}l → Zq as

fi,j(x) = sᵀi,j · EvalAdm(A1, . . . ,A2t,Hadm(x)) · h

Note that for i, j, ι ∈ [1, l]× [1, k]×{0, 1}, vi,j,ι is a random element in Zq that is
independent of fi,j . Then by Lemma 2.3 and the fact that q ≥ 2l+ω(log λ)(4Σ+2),
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for any i, j, ι ∈ [1, l]× [1, k]× {0, 1}, the probability that there exists x ∈ {0, 1}l
s.t.

vi,j,ι + f(x) ∈ [
q − 1

2
−Σ, q − 1

2
+Σ] ∪ [0, Σ] ∪ [q −Σ, q − 1]

is negligible. Therefore, the probability that Equation (10) or Equation (11) is
satisfied is also negligible and as a result, Pr[E1 = 2] ≤ negl(λ).

Lemma B.2. For b ∈ {1, 2}, |Pr[E1 = b]− Pr[E2 = b]| = 0.

Proof. Game 1 and Game 2 only differ in the way for generating A1, . . . ,A2t.
Since in both Game 1 and Game 2, A1, . . . ,A2t are uniform matrices in Zn×mq ,
the two games are identical.

Lemma B.3. For b ∈ {1, 2}, |Pr[E2 = b]− Pr[E3 = b]| ≤ negl(λ).

Proof. Indistinguishability between Game 2 and Game 3 comes from the hard-
ness of LWEn̄,q,D̃σ by viewing Ā as the public matrix, each column of Sz as the
secret vector, and each column of Ez as the error vector.

Lemma B.4. For b ∈ {1, 2}, |Pr[E3 = b]− Pr[E4 = b]| ≤ negl(λ).

Proof. Indistinguishability between Game 3 and Game 4 comes from the leftover
hash lemma (Lemma 2.1) directly.

Lemma B.5. For b ∈ {1, 2}, |Pr[E4 = b]− Pr[E5 = b]| = 0.

Proof. Game 4 and Game 5 only differ in the way for generating si,j . Since for
i ∈ [1, l], j ∈ [1, k], si,j is a uniform vector in Znq in both games, thus, the two
games are identical.

Lemma B.6. For b ∈ {1, 2}, |Pr[E5 = b]− Pr[E6 = b]| = Pr[E6 = 3] = 0.

Proof. First, by Lemma A.7, for any ` ∈ [1, Q′], there exists T (`) ∈ [−m,
m]2tm×m s.t.

Aw(`) = (A′1, . . . ,A
′
2t) · T

(`) − PK(w(`)) ·G

Thus, for any i ∈ [1, l], j ∈ [1, k], we have

y̌
(`)
i,j − ŷ

(`)
i,j

=(šᵀ
i,j · bw(`) + vi,j,x(`)[i])− (ŝᵀ

i,j · bw(`) + vi,j,x(`)[i])

=(šᵀ
i,j − ŝᵀ

i,j) · bw(`)

=dᵀ · bw(`)

=dᵀ ·Aw(`) · h

=dᵀ · ((A′1, . . . ,A′2t) · T (`) − PK(w(`)) ·G) · h

=dᵀ · ((Ā · (S1, . . . ,S2t) + (E1, . . . ,E2t)) · T (`) − PK(w(`)) ·G) · h

=dᵀ · Ā · (S1, . . . ,S2t) · T (`) · h + E(`) − dᵀ · PK(w(`)) ·G · h

=E(`) − dᵀ · PK(w(`)) ·G · h

mod q (12)
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where the last equality comes from the fact that dᵀ ·Ā = 0 mod q and we define

E(`) = dᵀ · (E1, . . . ,E2t) · T (`) · h

Note that d ∈ {−1, 0, 1}n, (E1, . . . ,E2t) ∈ [−λ · σ, λ · σ]n×2tm, T (`) ∈ [−m,
m]2tm×m, and h is a binary vector with at most dlog qe non-zero elements, thus
we have

|E(`)| ≤ 2tm3λσ = Σ

Therefore, if PK(w(`)) = 0, we have

|y̌(`)
i,j − ŷ

(`)
i,j | ≤ Σ

Note that, we have either y
(`)
i,j = y̌

(`)
i,j or y

(`)
i,j = ŷ

(`)
i,j , and w.l.o.g., we assume

y
(`)
i,j = y̌

(`)
i,j . Now, further assuming that Equation (10) is not satisfied (i.e., the

challenger will not abort and output 2 before performing the new check intro-
duced in Game 6), then we have

y̌
(`)
i,j ∈ (Σ,

q − 1

2
−Σ) ∪ (

q − 1

2
+Σ, q −Σ)

That is, if ǔ
(`)
i [j] = 0 (i.e., y̌

(`)
i,j ∈ (Σ, q−1

2 −Σ)), then we have ŷ
(`)
i,j ∈ [1, q−1

2 − 1]

and therefore û
(`)
i [j] = 0; and if ǔ

(`)
i [j] = 1 (i.e., y̌

(`)
i,j ∈ ( q−1

2 +Σ, q −Σ)), then

we have ŷ
(`)
i,j ∈ [ q+1

2 , q − 1] and therefore û
(`)
i [j] = 1. That is, we always have

û
(`)
i [j] = ǔ

(`)
i [j].

To summarize, if the challenger does not outputs 2 and PK(w(`)) = 0, we

always have û
(`)
i [j] = ǔ

(`)
i [j] for any i ∈ [1, l], j ∈ [1, k]. Therefore, the challenger

will never outputs 3 in Game 6 and as a result, Game 5 and Game 6 are identical.

Lemma B.7. For b ∈ {1, 2}, |Pr[E6 = b]− Pr[E7 = b]| = Pr[E7 = 3] = 0.

Proof. First, similar to Equation (12), there exists E∗ ∈ [−Σ,Σ] s.t.

y̌∗i,j − ŷ∗i,j
=E∗ − dᵀ · PK(w∗) ·G · h

=E∗ − PK(w∗) · dᵀ ·


q−1
2

0
...
0


=E∗ + PK(w∗) · q − 1

2

mod q

Again, assume w.l.o.g. that y∗i,j = y̌∗i,j and suppose that Equation (11) is not
satisfied, then we have

y̌∗i,j ∈ (Σ,
q − 1

2
−Σ) ∪ (

q − 1

2
+Σ, q −Σ)
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Also assume that PK(w∗) = 1. Then if ǔ∗i [j] = 0 (i.e., y̌∗i,j ∈ (Σ, q−1
2 −Σ)), then

we have

ŷ∗i,j = y̌∗i,j − E∗ −
q − 1

2
∈ [

q + 3

2
, q − 1]

and therefore û∗i [j] = 1; and if ǔ∗i [j] = 1 (i.e., y̌∗i,j ∈ ( q−1
2 +Σ, q −Σ)), then we

have

ŷ∗i,j = y̌∗i,j − E∗ −
q − 1

2
∈ [1,

q − 1

2
]

and therefore û∗i [j] = 0. That is, we always have û∗i [j] 6= ǔ∗i [j].
To summarize, if the challenger does not outputs 2 and PK(w∗) = 1, we

always have û∗i [j] 6= ǔ∗i [j] for any i ∈ [1, l], j ∈ [1, k]. Therefore, the challenger
will never outputs 3 in Game 7 and as a result, Game 6 and Game 7 are identical.

Lemma B.8. For b ∈ {1, 3}, |Pr[E7 = b]− Pr[E8 = b]| ≤ negl(λ).

Proof. Game 7 and Game 8 are identical unless Game 7 outputs 2. From Lemma
B.1 to Lemma B.7, we have Pr[E7 = 2] ≤ negl(λ). Thus, the probability that
the two games differ is also negligible.

Lemma B.9. For b ∈ {1, 3}, |Pr[E8 = b]− Pr[E9 = b]| = 0.

Proof. In Game 9, the challenger outputs

û(`) =


û

(`)
1
...

û
(`)
l


instead of u(`) for the first Q† evaluation oracle queries if PK(w(`)) = 0 for ` ∈ [1,

Q†]. As for all i ∈ [1, l], j ∈ [1, k], û
(`)
i [j] = ǔ

(`)
i [j] = u

(`)
i [j] unless the challenger

outputs 321, the outputs of the two games are identically distributed.

Lemma B.10. For b ∈ {1, 3}, |Pr[E9 = b]− Pr[E10 = b]| = 0.

Proof. Game 9 and Game 10 only differ in the way for generating si,j in case

that VerifyQ,δ(K, {x(1), . . . , x(Q′)}, x∗) = 1 (i.e., PK(x(`)) = 0 for all ` ∈ [1, Q′]
and PK(x∗) = 1). In Game 10, as ui,j is a uniform bit, the probability that
ui,j = û∗i [j] is 1

2 . Thus, in both Game 9 and Game 10, we have

Pr[si,j = ŝi,j ] = Pr[si,j = ši,j ] =
1

2

Therefore, the two games are identical.

Lemma B.11. For b ∈ {1, 3}, |Pr[E10 = b]− Pr[E11 = b]| = 0.

21 In this case, the challenger aborts the game and will not return û(`) to the adversary.
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Proof. First, as ui,j is sampled uniformly at random and is independent from
other variables, it will not change the game if we sample ui,j in beginning.

In addition, assume that VerifyQ,δ(K, {x(1), . . . , x(Q′)}, x∗) = 1 and the

challenger does not output 3, then for all i ∈ [1, l], j ∈ [1, k], û∗i [j] 6= ǔ
(`)
i [j].

Thus, if ui,j 6= û∗i [j], then ui,j = ǔ∗i [j]. This implies that

ui,j = u∗i [j] for all i ∈ [1, l], j ∈ [1, k]

Thus, if the challenger does not output 3, then it will not change the game
if we replace u∗i [j] with ui,j . On the other hand, if the challenger outputs 3
here, then u∗ will not be returned to the adversary, and the two games are still
identical.

Lemma B.12. |Pr[E11 = 1]− Pr[E12 = 1]| ≤ negl(λ).

Proof. Game 11 and Game 12 are identical unless Game 11 outputs 3. From
Lemma B.7 to Lemma B.11, we have Pr[E11 = 3] ≤ negl(λ). Thus, the proba-
bility that the two games differ is also negligible.

Combining Lemma B.1 to Lemma B.12, we have |Pr[E0 = 1]−Pr[E12 = 1]| ≤
negl(λ), i.e., |Pr[ExpRealA(1λ) = 1] − Pr[ExpIdealA,SIM(1

λ) = 1]| ≤ negl(λ).
This completes the proof of indistinguishability required in the explainability
property.

C Proof of Theorem 4.1

We present proof of Theorem 4.1 in this section. Let PRF = (KeyGen, Eval,
Constrain, ConstrainEval) be a private puncturable PRF with weakly adaptive
pseudorandomness. We prove that it also has the fully adaptive pseudorandom-
ness defined in Definition 4.2. We first define the following games between the
challenger and a PPT adversary A. Here, we use τ = poly(λ) to denote the
upper bound on the sizes of sets submitted to the constrain oracle by A.

We also assume w.l.o.g. that the adversary A has made at least one constrain
oracle query before submitting the challenge x∗. This is because for any adversary
A, we can construct an adversary A′ that is identical to A except that before
submitting the challenge x∗, it first submits {x∗} to its constrain oracle. Note
that A′ can succeed in breaking the pseudorandomness of PRF if A succeeds and
it satisfies Equation (2) in Definition 4.2 if A satisfies this equation.

• Game 0. This is the experiment ExpPR defined in Definition 4.2 (with a
random b).
• Game 1. This is identical to Game 0 except that the challenger samples an

integer α
$← [1, τ ] and b†

$← {0, 1} in the beginning of the game. Let P1 =
{x1,1, . . . , x1,t} be the first set submitted to the constrain oracle, where x1,1

to x1,t are in lexicographic order. Then at the end of the game, if x∗ = x1,α,
the challenger outputs 1 if b′ = b and output 0 if b′ 6= b. Otherwise, it outputs
1 if b† = b and outputs 0 if b† 6= b.
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• Game 2. This is identical to Game 2 except that after receiving x∗ from
the adversary, the challenger aborts the game if x1,α 6= x∗.22 In case the
challenger aborts, it outputs 1 if b† = b and outputs 0 if b† 6= b.

Let Ei be the output of Game i and let δi = |Pr[Ei = 1] − 1
2 | for i ∈ [0, 2]. We

next show that δ0 is negligible via proving the following lemmas.

Lemma C.1. δ1 ≥ δ0
τ .

Proof. First, by Equation (2), we always have x∗ ∈ P1, i.e., there exists i∗ ∈ [1, t]
s.t. x1,i∗ = x∗. Also, by definition, we have t ≤ τ . Since α is a random integer
in [1, τ ], the probability that α = i∗ is 1

τ . That is, the probability that Game 1

resamples the output of A is 1− 1
τ and then by Lemma A.6 we have δ1 ≥ δ0

τ .

Lemma C.2. δ2 = δ1.

Proof. Game 2 and Game 1 are identically proceeded if x1,α = x∗. In case that
x1,α 6= x∗, both games will output 1 with probability 1/2. Thus, the output of
the two games are identical.

Lemma C.3. δ2 ≤ negl(λ).

Proof. This comes from the weakly adaptive pseudorandomness of PRF by a di-
rect reduction. More precisely, assume δ2 is non-negligible, then we can construct
an adversary B that breaks the weakly adaptive security of PRF.

The adversary B first samples α
$← [1, τ ] and b†

$← {0, 1}. Then it invokes
the adversary A and answers its evaluation oracle queries via redirecting the
query to its own evaluation oracle. Then after A makes the first constrain oracle
query P1 = {x1,1, . . . , x1,t}, where x1,1 to x1,t are in lexicographic order, B
submits x1,α as its own challenge and receives a response y∗. Next, B answers
the evaluation oracle queries and constrain oracle queries from A via redirecting
the queries to its own evaluation oracle and constrain oracle. Then on receiving
the challenge x∗ from A, B outputs b† if x1,α 6= x∗. Otherwise it returns y∗ to
A. The adversary B then answers the evaluation oracle queries and constrain
oracle queries from A via redirecting the queries to its own evaluation oracle
and constrain oracle. Finally, on receiving a bit b′ from A, B outputs b′.

It is easy to see, B can simulate Game 2 perfectly and B succeeds in guessing
b iff Game 1 outputs 1. Thus, B breaks the weakly adaptive pseudorandomness
of PRF if δ2 is non-negligible. This completes the reduction.

Combining Lemma C.1 to Lemma C.3, we have δ0 ≤ τ · negl(λ), which is
also negligible. This completes the proof of Theorem 4.1.

22 Recall that we assume w.l.o.g. that the adversary will query the constrain oracle for
at least one time before submitting x∗, thus the challenger knows x1,α at this time.
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D Security Analysis of Private Puncturable PRF

We present proof of Theorem 4.2 in this section. More precisely, we will prove
the correctness, pseudorandomness, and privacy of PRF.

The following lemmas are useful in the proofs of these three properties.

Lemma D.1. Let A0, . . . ,AN ,B1, . . . ,Bk ∈ Zn×mq , and s ∈ Znq s.t. s[1] = 1.

Let u∗ ∈ {0, 1}L, r̄ ∈ Zq and r = G−1
1,q(r̄). Also, let (pk, sk)← FHE. KeyGen(1λ,

1d) and let ct be encryption of (u∗, r) under the public key pk. Let

aᵀ
0 = sᵀ · (A0 + G) + eᵀ0 , aᵀ

j = sᵀ · (Aj + ct[j] ·G) + eᵀj for j ∈ [1, N ]

bᵀj = sᵀ · (Bj + sk[j] ·G) + eᵀN+j for j ∈ [1, k]

where ej ← D̃m
σ for j ∈ [0, N + k]. Let u ∈ {0, 1}L and let

Cj,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ) for j ∈ [1,κ], ι ∈ [1, k]

Dj = IPEvalPK(Cj,1, . . . ,Cj,k,B1, . . . ,Bk) for j ∈ [1,κ]

Let
c̃tj,ι = Cu,j,ι(ct) for j ∈ [1,κ], ι ∈ [1, k]

cj,ι = EvalCT(Cu,j,ι,A0, . . . ,AN ,a0, . . . ,aN , ct) for j ∈ [1,κ], ι ∈ [1, k]

dj = IPEvalCT(B1, . . . ,Bk, cj,1, . . . , cj,k, b1, . . . , bk, c̃tj,1, . . . , c̃tj,k) for j ∈ [1,κ]

Now, let β be a bit that β = 1 if u = u∗ and β = 0 if u 6= u∗. Then we have

|
κ∑
j=1

(dᵀ
j − sᵀ ·Dj)[1]− β · r̄| ≤ Σ′

Proof. First, by Lemma A.1, we have

‖cᵀj,ι − sᵀ(Cj,ι + Cu,j,ι(ct) ·G)‖∞ ≤ (m+ 2)D · λ · σ

Then by Lemma A.2, we have

‖dᵀ
j − sᵀ(Dj +

k∑
ι=1

Cu,j,ι(ct) · sk[ι] ·G)‖∞ ≤ k · (m+ 1) · (m+ 2)D · λ · σ

This implies that

|(dᵀ
j − sᵀ(Dj +

k∑
ι=1

Cu,j,ι(ct) · sk[ι] ·G))[1]| ≤ k · (m+ 1) · (m+ 2)D · λ · σ

Since s[1] = 1, we have (sᵀ ·G)[1] = 1. Therefore, we have

|(dᵀ
j − sᵀDj)[1]−

k∑
ι=1

Cu,j,ι(ct) · sk[ι]| ≤ k · (m+ 1) · (m+ 2)D · λ · σ (13)

49



In addition, as ct is encryption of u∗‖r, by Lemma A.4, we have

|
k∑
ι=1

Cu,j,ι(ct) · sk[ι]− 2j−1 · equ,j(u
∗, r)| ≤ λ · σ · kO(d)

Since equ,j(u
∗, r) is equal to r[j] if u = u∗ and is equal to 0 otherwise, we have

|
k∑
ι=1

Cu,j,ι(ct) · sk[ι]− 2j−1 · β · r[j]| ≤ λ · σ · kO(d) (14)

Then by the triangle inequality, Equation (13) and Equation (14), we have

|(dᵀ
j − sᵀDj)[1]− 2j−1 · β · r[j]|

≤|
k∑
ι=1

Cu,j,ι(ct) · sk[ι]− 2j−1 · β · r[j]|+ |(dᵀ
j − sᵀDj)[1]−

k∑
ι=1

Cu,j,ι(ct) · sk[ι]|

≤λ · σ · kO(d) + k · (m+ 1) · (m+ 2)D · λ · σ

Finally, we have

|
κ∑
j=1

(dᵀ
j − sᵀ ·Dj)[1]− β · r̄|

=|
κ∑
j=1

(dᵀ
j − sᵀ ·Dj)[1]−

κ∑
j=1

β · 2j−1 · r[j]|

=|
κ∑
j=1

((dᵀ
j − sᵀ ·Dj)[1]− β · 2j−1 · r[j])|

≤
κ∑
j=1

|(dᵀ
j − sᵀ ·Dj)[1]− β · 2j−1 · r[j]|

≤κ · (λ · σ · kO(d) + k · (m+ 1) · (m+ 2)D · λ · σ)

≤κ · λ · σ · (kO(d) + k ·mO(D))

≤Σ′

Lemma D.2. Let ȳ, ȳ′ ∈ Zq and E ∈ [−Σ,Σ] satisfying ȳ − ȳ′ = E mod q.
Also, let y = bȳep mod p and y′ = bȳ′ep mod p. If

ȳ′ 6∈ {z ∈ Zq : ∃a ∈ [0, p− 1], |z − q

p
· (a+

1

2
)| ≤ Σ}

then we have y = y′ mod p.
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Proof. First, since y′ = bȳ′ep mod p, there exists ∆ ∈ [− q
2p ,

q
2p ) s.t.

ȳ′ = (
q

p
· y′ +∆) mod q

Also, since ȳ′ 6∈ {z ∈ Zq : ∃a ∈ [0, p− 1], |z − q
p · (a+ 1

2 )| ≤ Σ}, we have

ȳ′ − q

p
· (y′ − 1

2
) > Σ ∧ q

p
· (y′ + 1

2
)− ȳ′ > Σ

and thus we can restrict the range of ∆ to be (−( q2p −Σ), q2p −Σ). So, we have

ȳ = ȳ′ + E = (
q

p
· y′ +∆+ E) = (

q

p
· y′ +∆′) mod q

where ∆′ ∈ (− q
2p ,

q
2p ). Therefore, we have

y = bp
q
· ȳe = bp

q
· (q
p
· y′ +∆′)e = by′ + p

q
·∆′e = y′ mod p

Correctness. Let K = ((Ai)i∈[0,N ], (Bi)i∈[1,k], s, v, kH, kF) be a random PRF
key of PRF. We define Col to be the event that

∃x1, x2 ∈ {0, 1}l : x1 6= x2 ∧ H. Eval(kH, x1) = H. Eval(kH, x2)

In addition, for any u ∈ {0, 1}L, let

C
(u)
j,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ) for j ∈ [1,κ], ι ∈ [1, k]

D
(u)
j = IPEvalPK(C

(u)
j,1 , . . . ,C

(u)
j,k ,B1, . . . ,Bk) for j ∈ [1,κ]

ȳ(u) = (

κ∑
j=1

sᵀ ·D(u)
j )[1] + v mod q

Then we define Borderline to be the event that

∃u ∈ {0, 1}L : ȳ(u) ∈ {z ∈ Zq : ∃a ∈ [0, p− 1], |z − q

p
· (a+

1

2
)| ≤ Σ}

We prove the correctness of PRF via arguing the following lemmas.

Lemma D.3. Pr[Col] ≤ negl(λ).

Proof. This comes from the injectivity of the explainable hash H directly.

Lemma D.4. Pr[Borderline] ≤ negl(λ).
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Proof. We define the function

f(u) = (

κ∑
j=1

sᵀ ·D(u)
j )[1] mod q

Note that
ȳ(u) = f(u) + v mod q

where v is sampled uniformly at random and is independent of f . Then by
Lemma 2.3 and the fact that q ≥ 2L+ω(log λ)·p·(2Σ+1), we have Pr[Borderline] ≤
negl(λ).

Lemma D.5. If neither Col nor Borderline occurs, then for any polynomial-
size set P ⊂ {0, 1}l and any input x ∈ {0, 1}l\P, we have

Pr[CK ← Constrain(K,P) : Eval(K,x) = ConstrainEval(CK, x)] = 1

Proof. For any P = {x1, . . . , x|P|} of polynomial size and any x 6∈ P, let

CK = ((Ai)i∈[0,N ], (Bi)i∈[1,k], v, kH,

(a0,j)j∈[0,N ], (b0,j)j∈[1,k],

{(ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti}i∈[1,|P|])

be the output of Constrain(K,P). Let u = H. Eval(kH, x). Let y(1) = Eval(K,
x) and let

(Cj,ι)j∈[1,κ],ι∈[1,k], (Dj)j∈[1,κ], ȳ
(1)

be the variables used in evaluating Eval(K,x). Also, let y(2) = ConstrainEval(CK,
x) and let

(ci,j,ι)i∈[0,|P|],j∈[1,κ],ι∈[1,k], (di,j)i∈[0,|P|],j∈[1,κ], ȳ
(2)

be variables used in evaluating ConstrainEval(CK, x).
First, by Lemma D.1, for i ∈ [1, |P|], we have

|
κ∑
j=1

(dᵀ
i,j − tᵀi ·Dj)[1]− βi · r̄i| ≤ Σ′

where βi = 1 if H. Eval(kH, xi) = u and βi = 0 if H. Eval(kH, xi) 6= u. Since
x 6∈ P and the event Col does not occur, we have H. Eval(kH, xi) 6= H. Eval(kH,
x) = u. Therefore, we have

|
κ∑
j=1

(dᵀ
i,j − tᵀi ·Dj)[1]| ≤ Σ′

Moreover, similar to the proof of Lemma D.1, for j ∈ [1,κ], we have

‖dᵀ
0,j − tᵀ0(Dj +

k∑
ι=1

Cu,j,ι(ct0) · sk0[ι] ·G)‖∞ ≤ k · (m+ 1) · (m+ 2)D · λ · σ
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by Lemma A.1 and Lemma A.2. Also, note that sk0[ι] = 0 for ι ∈ [1, k], thus we
have

‖dᵀ
0,j − tᵀ0Dj‖∞ ≤ k · (m+ 1) · (m+ 2)D · λ · σ

which implies that

|(dᵀ
0,j − tᵀ0Dj)[1]| ≤ k · (m+ 1) · (m+ 2)D · λ · σ ≤ k ·mO(D) · λ · σ

Therefore, we have

|
κ∑
j=1

(dᵀ
0,j − tᵀ0 ·Dj)[1]| ≤

κ∑
j=1

|(d0,j − tᵀ0 ·Dj)[1]| ≤ κ · k ·mO(D) · λ · σ ≤ Σ′

Now, for i ∈ [0, |P|], let Ei =
∑κ
j=1(dᵀ

i,j − tᵀi ·Dj)[1], then we have |Ei| ≤ Σ′
and

ȳ(2) − ȳ(1)

=((

|P|∑
i=0

κ∑
j=1

di,j)[1] + v)− ((

κ∑
j=1

sᵀ ·Dj)[1] + v)

=(

|P|∑
i=0

κ∑
j=1

dᵀ
i,j −

κ∑
j=1

sᵀ ·Dj)[1]

=(

|P|∑
i=0

κ∑
j=1

dᵀ
i,j −

|P|∑
i=0

κ∑
j=1

tᵀi ·Dj)[1]

=(

|P|∑
i=0

κ∑
j=1

(dᵀ
i,j − tᵀi ·Dj))[1]

=

|P|∑
i=0

Ei

mod q

Let E =
∑|P|
i=0Ei, then we have

|E| ≤ (|P|+ 1) ·Σ′ ≤ 2ω(log λ) ·Σ′ ≤ Σ

and
ȳ(2) − ȳ(1) = E mod q

Next, since the event Borderline does not occur, we have

ȳ(1) 6∈ {z ∈ Zq : ∃a ∈ [0, p− 1], |z − q

p
· (a+

1

2
)| ≤ Σ}

Then by Lemma D.2, we have y(1) = y(2) mod p. This completes the proof of
Lemma D.5.

Correctness of PRF comes from Lemma D.3 to Lemma D.5 directly.
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Pseudorandomness. Next, we prove the pseudorandomness of PRF. Note that
by Theorem 4.1, it it sufficient to prove that PRF has a weak version of adaptive
pseudorandomness, where the adversary is not allowed to make queries to the
constrain oracle before submitting the challenge x∗.

If PRF does not have such pseudorandomness, then there exists a PPT adver-
sary A that wins in the experiment with probability 1

2 +δ for some non-negligible
δ. We next prove that such adversary does not exist. First, we define the following
games between a challenger and the adversary A.

• Game 0. This is the experiment ExpPR defined in Definition 4.2 (with a
random b), where the adversary cannot query the constrain oracle in Step 2.
More precisely, the challenger interacts with the adversary as follows.

1. First, the challenger samples b
$← {0, 1} and generates

(a) For i ∈ [0, N ]: Ai
$← Zn×mq .

(b) For i ∈ [1, k]: Bi
$← Zn×mq .

(c) s̄
$← Zn−1

q , s = (1, s̄ᵀ)ᵀ.

(d) v
$← Zq.

(e) kH ← H. KeyGen(1λ).

(f) kF ← F. KeyGen(1λ).

2. Then it answers the evaluation oracle queries from the adversary. In
particular, given an input x, it computes y as follows and returns y to
the adversary.
(a) u = H. Eval(kH, x).

(b) For j ∈ [1,κ]:
i. For ι ∈ [1, k]: Cj,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ).

ii. Dj = IPEvalPK(Cj,1, . . . ,Cj,k,B1, . . . ,Bk).

(c) ȳ = (
∑κ
j=1 s

ᵀ ·Dj)[1] + v mod q.

(d) y = bȳep mod p.

3. Next, after the adversary submits a challenge x∗, the challenger samples

y∗1
$← Zp and computes y∗0 as follows. Then it returns y∗b to the adversary.

(a) u∗ = H. Eval(kH, x
∗).

(b) For j ∈ [1,κ]:
i. For ι ∈ [1, k]: C∗j,ι = EvalPK(Cu∗,j,ι,A0, . . . ,AN ).

ii. D∗j = IPEvalPK(C∗j,1, . . . ,C
∗
j,k,B1, . . . ,Bk).

(c) ȳ∗ = (
∑κ
j=1 s

ᵀ ·D∗j )[1] + v mod q.

(d) y∗0 = bȳ∗ep mod p.

4. Then it answers the evaluation oracle queries and the constrain oracle
queries from the adversary. The evaluation oracle queries are answered
identically as in Step 2, and given a polynomial-size set P, the challenger
computes CK as follows and returns it to the adversary.
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(a) Let P = {x1, . . . , x|P|}.
(b) For i ∈ [1, |P|]:

i. ui = H. Eval(kH, xi).

ii. (RK,i, (RE,i,j)j∈[1,L+κ], r̄i, t̄i, (RG,i,j)j∈[0,N+k]) = F. Eval(kF, ui).

iii. ti =

(
1
t̄i

)
.

iv. ri = G−1
1,q(r̄i).

v. (pki, ski) = FHE. KeyGen(1λ, 1d;RK,i).

vi. ei,j = GS(RG,i,j) for j ∈ [0, N + k].

vii. For j ∈ [1, L]: cti,j = FHE. Enc(pki, ui[j];RE,i,j).

viii. For j ∈ [1,κ]: cti,L+j = FHE. Enc(pki, ri[j];RE,i,L+j).

ix. cti = (cti,1‖ . . . ‖cti,L+κ).

x. aᵀ
i,0 = tᵀi · (A0 + G) + eᵀi,0.

xi. For j ∈ [1, N ]: aᵀ
i,j = tᵀi · (Aj + cti[j] ·G) + eᵀi,j .

xii. For j ∈ [1, k]: bᵀi,j = tᵀi · (Bj + ski[j] ·G) + eᵀi,N+j .

(c) t0 = s−
∑|P|
i=1 ti.

(d) For j ∈ [0, N + k], e0,j ← D̃m
σ .

(e) aᵀ
0,0 = tᵀ0 · (A0 + G) + eᵀ0,0.

(f) For j ∈ [1, N ]: aᵀ
0,j = tᵀ0 · (Aj + 0 ·G) + eᵀ0,j .

(g) For j ∈ [1, k]: bᵀ0,j = tᵀ0 · (Bj + 0 ·G) + eᵀ0,N+j .

(h) Set CK = ((Ai)i∈[0,N ], (Bi)i∈[1,k], v, kH, (a0,j)j∈[0,N ], (b0,j)j∈[1,k],
{(ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti}i∈[1,|P|]).

5. Finally, after the adversary submits a bit b′, the challenger outputs 1 if
b = b′ and outputs 0 otherwise.

• Game 1. Let Q = poly(λ) be the upper bound on the number of the evalu-
ation oracle queries made by A in Game 0, and recall that we assume Game
0 outputs 1 with probability 1/2 + δ. Let (VKeyGenQ,δ, VerifyQ,δ) be the
algorithms used in defining the explainability of H (Definition 3.2).
Game 1 and Game 0 are identical except that in the beginning of the game,

the challenger samples vk ← VKeyGenQ,δ(1
λ) and b†

$← {0, 1}. Then at Step
5 of the game, after the adversary submits a bit b′, the challenger runs

ζ = VerifyQ,δ(vk, {x1, . . . , xQ′}, x∗)

where x1, . . . , xQ′ are the inputs submitted to the evaluation oracle at Step
2. If ζ = 1, it outputs 1 if b′ = b and outputs 0 if b′ 6= b; otherwise, it outputs
1 if b† = b and outputs 0 if b† 6= b.
• Game 2. This is identical to Game 1 except that at Step 3 of the game, the

challenger aborts the game if VerifyQ,δ(vk, {x1, . . . , xQ′}, x∗) = 0. In case

the challenger aborts, it outputs 1 if b† = b and outputs 0 if b† 6= b.
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• Game 3. In Game 3, the challenger maintains a list L, which is initialized as
an empty list. Then for each evaluation oracle query x, it puts (x,H. Eval(kH,
x)) to the list L. Also, for each constrain oracle query P = {x1, . . . , x|P|}
and for i ∈ [1, |P|], it puts (xi,H. Eval(kH, xi)) to L. Besides, in Step 3, it
puts (x∗, u∗) to L. Finally, at Step 5, if there exists (x, u), (x′, u′) ∈ L s.t.

(x 6= x′ ∧ u = u′) ∨ (x = x′ ∧ u 6= u′) (15)

then the challenger outputs 1 if b† = b and outputs 0 if b† 6= b.
• Game 4. This is identical to Game 3 except that the challenger uses the

simulator of H. In more detail, let SIM be the stateful simulator of H as
defined in Definition 3.2, then the challenger modifies its behaviors at each
step as follows:
1. At step 1, the challenger does not generate kH. In addition, it samples

u∗
$← {0, 1}L and invokes SIM(vk, u∗).

2. At Step 2, for each evaluation oracle query x, it computes u ← SIM(x)
instead of computing it as u = H. Eval(kH, x), where u is used to answer
the evaluation oracle query and is recorded in L.

3. At Step 3, if VerifyQ,δ(vk, {x1, . . . , xQ′}, x∗) = 1, it computes kH ←
SIM(x∗). Note that, the challenger has sampled u∗ in the beginning.

4. It proceeds identically as in Game 3 for Step 4 and Step 5.
• Game 5. This is identical to Game 4 except that the challenger uses a

random function f instead of the pseudorandom function F. Eval(kF, ·) when
answering the constrain oracle queries.
• Game 6. This is identical to Game 5 except that when answering the con-

strain oracle queries, the challenger samples (R
(x)
K , (R

(x)
E,j )j∈[1,L+κ], r̄

(x), t̄
(x)
,

(R
(x)
G,j )j∈[0,N+k]) from the output space of F instead of computing it as

(R
(x)
K , (R

(x)
E,j )j∈[1,L+κ], r̄

(x), t̄
(x)
, (R

(x)
G,j )j∈[0,N+k]) = f(H. Eval(kH, x))

for each x ∈ P1 ∪ . . .∪PQc , where P1, . . . ,PQc are the sets submitted to the
constrain oracle.
• Game 7. This is identical to Game 6 except that at Step 1 of the game, the

challenger generates

1. t̄
∗ $← Zn−1

q , t∗ = (1, t̄
∗ᵀ

)ᵀ.

2. r̄∗
$← Zq, r∗ = G−1

1,q(r̄
∗).

3. (pk∗, sk∗)← FHE. KeyGen(1λ, 1d).

4. e∗j ← D̃m
σ for j ∈ [0, N + k].

5. For j ∈ [1, L]: ct∗j ← FHE. Enc(pk∗, u∗[j]).

6. For j ∈ [1,κ]: ct∗L+j ← FHE. Enc(pk∗, r∗[j]).

7. ct∗ = (ct∗1‖ . . . ‖ct∗L+κ).

8. a∗ᵀ0 = t∗ᵀ · (A0 + G) + e∗ᵀ0 .
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9. For j ∈ [1, N ]: a∗ᵀj = t∗ᵀ · (Aj + ct∗[j] ·G) + e∗ᵀj .

10. For j ∈ [1, k]: b∗ᵀj = t∗ᵀ · (Bj + sk∗[j] ·G) + e∗ᵀN+j .

11. s̃ = s− t∗ mod q.
Then at Step 4, for each constrain oracle query P = {x1, . . . , x|P|}, let
xi∗ = x∗23, then the challenger sets

cti∗ = ct∗, ai∗,j = a∗j for j ∈ [0, N ], bi∗,j = b∗j for j ∈ [1, k]

and computes

t0 = s̃−
∑

i∈[1,|P|]\{i∗}

ti

• Game 8. This is identical to Game 7 except that the challenger changes the
way to answer the evaluation oracle query. In particular, given an evaluation
oracle query x, the challenger first computes{

u← SIM(x) At Step 2

u = H. Eval(kH, x) At Step 4

Then it computes y as follows and returns y to the adversary.
1. For j ∈ [1,κ]:

(a) For ι ∈ [1, k]: Cj,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ).

(b) Dj = IPEvalPK(Cj,1, . . . ,Cj,k,B1, . . . ,Bk).

2. For j ∈ [1,κ]:
(a) For ι ∈ [1, k]:

i. c̃tj,ι = Cu,j,ι(ct
∗).

ii. cj,ι = EvalCT(Cu,j,ι,A0, . . . ,AN ,a
∗
0, . . . ,a

∗
N , ct

∗).

(b) dj = IPEvalCT(B1, . . . ,Bk, cj,1, . . . , cj,k, b
∗
1, . . . , b

∗
k, c̃tj,1, . . . , c̃tj,k).

3. ȳ = (
∑κ
j=1(s̃ᵀ ·Dj + dj))[1] + v mod q.

4. y = bȳep mod p.
• Game 9. This is identical to Game 8 except that the challenger changes the

way to generate y∗0 . In particular, it computes y∗0 as follows:
1. For j ∈ [1,κ]:

(a) For ι ∈ [1, k]: C∗j,ι = EvalPK(Cu∗,j,ι,A0, . . . ,AN ).

(b) D∗j = IPEvalPK(C∗j,1, . . . ,C
∗
j,k,B1, . . . ,Bk).

2. For j ∈ [1,κ]:
(a) For ι ∈ [1, k]:

i. c̃t
∗
j,ι = Cu∗,j,ι(ct

∗).

ii. c∗j,ι = EvalCT(Cu∗,j,ι,A0, . . . ,AN ,a
∗
0, . . . ,a

∗
N , ct

∗).

(b) d∗j = IPEvalCT(B1, . . . ,Bk, c
∗
j,1, . . . , c

∗
j,k, b

∗
1, . . . , b

∗
k, c̃t

∗
j,1, . . . , c̃t

∗
j,k).

3. ȳ∗ = (
∑κ
j=1(s̃ᵀ ·D∗j + d∗j ))[1] + v − r̄∗ mod q.

23 Recall that such i∗ always exists as required in Equation (2).
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4. y∗0 = bȳ∗ep mod p.
• Game 10. This is identical to Game 9 except that the challenger samples

¯̃s
$← Zn−1

q and sets s̃ = (0, ¯̃s
ᵀ
)ᵀ instead of computing it from s and t∗.

• Game 11. This is identical to Game 10 except that the challenger samples

a∗j
$← Zmq for j ∈ [0, N ], b∗j

$← Zmq for j ∈ [1, k]

• Game 12. This is identical to Game 11 except that the challenger computes

ct∗j ← FHE. Enc(pk∗, 0)

for j ∈ [1, L+ κ] and sets ct∗ = (ct∗1‖ . . . ‖ct∗L+κ).

Let Ei be the output of Game i for i ∈ [0, 12]. We have the following lemmas.

Lemma D.6. If δ is non-negligible, then |Pr[E1 = 1]− 1
2 | is also non-negligible.

Proof. First, as Q is the upper bound on the number of the evaluation oracle
queries made by A, we have Q′ ≤ Q. Also, by Equation (2) required in the
definition of pseudorandomness, for all i ∈ [1, Q′], we have x∗ 6= xi. Then by
the “Abort Probability” requirement in the explainability property of H, there
exists Γmin, Γmax that

Γmin ≤ Pr[VerifyQ,δ(vk, {x1, . . . , xQ′}, x∗) = 1] ≤ Γmax

and
Γmin · δ − (Γmax − Γmin)

is a non-negligible positive real value.
Next, note that δ = |Pr[E0 = 1]− 1

2 | = |Pr[b = b′]− 1
2 |, then by Lemma A.6,

we have

|Pr[E1 = 1]− 1

2
| ≥ Γmin · δ −

Γmax − Γmin
2

≥ Γmin · δ − (Γmax − Γmin)

which is non-negligible.

Lemma D.7. |Pr[E1 = 1]− Pr[E2 = 1]| = 0.

Proof. Game 2 and Game 1 are identically proceeded if VerifyQ,δ(vk, {x1, . . . ,
xQ′}, x∗) = 1. In case that VerifyQ,δ(vk, {x1, . . . , xQ′}, x∗) = 0, both games will
output 1 with probability 1/2. Thus, the output distributions of the two games
are identical.

Lemma D.8. |Pr[E2 = 1]− Pr[E3 = 1]| ≤ negl(λ).

Proof. Game 2 and Game 3 are identical unless Equation (15) is satisfied. First,
for all items (x, u) ∈ L (including (x∗, u∗)), we have u = H. Eval(kH, x). Since
H. Eval is a deterministic algorithm, for any (x, u), (x′, u′) ∈ L we always have
u = u′ if x = x′. Besides, by the injectivity of H, the probability that there exists
distinct x, x′ ∈ {0, 1}l s.t. H. Eval(kH, x) = H. Eval(kH, x

′) is negligible. That is,
the probability that there exists (x, u), (x′, u′) ∈ L s.t. u = u′ but x 6= x′ is also
negligible. Thus, the probability that Equation (15) is satisfied is negligible, and
indistinguishability between Game 2 and Game 3 follows.
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Lemma D.9. |Pr[E3 = 1]− Pr[E4 = 1]| ≤ negl(λ).

Proof. This comes from the indistinguishability requirement in the explainability
property of H by a direct reduction.

Lemma D.10. |Pr[E4 = 1]− Pr[E5 = 1]| ≤ negl(λ).

Proof. This comes from the pseudorandomness of F by a direct reduction.

Lemma D.11. |Pr[E5 = 1]− Pr[E6 = 1]| = 0.

Proof. The adversary’s views in Game 5 and Game 6 are identical unless there
exists x, x′ ∈ P1 ∪ . . . ∪ PQc s.t. x 6= x′ and H. Eval(kH, x) = H. Eval(kH, x

′),
and in this case, since both (x,H. Eval(kH, x)) and (x′,H. Eval(kH, x

′)) are in
the list L, the games will output 1 with probability 1/2. Therefore, the output
distributions of the two games are identical.

Lemma D.12. |Pr[E6 = 1]− Pr[E7 = 1]| = 0.

Proof. In Game 7, the challenger precomputes parts of the constrained keys. The
adversary’s views in Game 6 and Game 7 are identical unless u∗ 6= H. Eval(kH,
x∗), and in this case, since both (x∗, u∗) and (x∗,H. Eval(kH, x

∗)) are in the list L,
the games will output 1 with probability 1/2. Therefore, the output distributions
of the two games are identical.

Lemma D.13. |Pr[E7 = 1]− Pr[E8 = 1]| ≤ negl(λ).

Proof. Let u,Cj,ι,Dj , cj,ι,dj , ȳ be the variables used in computing the response
y to an evaluation oracle query x in Game 8. Then by Lemma D.1, we have

|
κ∑
j=1

(dᵀ
j − t∗ᵀ ·Dj)[1]− β · r̄∗| ≤ Σ′

where β = 1 if u = u∗ and β = 0 if u 6= u∗. Next, assuming that u 6= u∗, we have

|
κ∑
j=1

(dᵀ
j − t∗ᵀ ·Dj)[1]| ≤ Σ′

Let E =
∑κ
j=1(dᵀ

j − t∗ᵀDj)[1], then we have

|E| ≤ Σ′ ≤ Σ

and

ȳ =(

κ∑
j=1

(s̃ᵀ ·Dj + dᵀ
j ))[1] + v

=(

κ∑
j=1

((s− t∗)ᵀ ·Dj + dᵀ
j ))[1] + v

=(

κ∑
j=1

sᵀ ·Dj)[1] + E + v

mod q
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Now, let ȳ′ be the variable used in computing the response y′ to the evaluation
oracle query x in Game 7. Note that

ȳ′ = (

κ∑
j=1

sᵀ ·Dj)[1] + v mod q

Thus, we have

ȳ − ȳ′ = E mod q

Also, similar to the proof of Lemma D.4, we have

Pr[ȳ′ ∈ {z ∈ Zq : ∃a ∈ [0, p− 1], |z − q

p
· (a+

1

2
)| ≤ Σ}] ≤ negl(λ)

from Lemma 2.3. Then by Lemma D.2, we have Pr[y 6= y′ mod p] ≤ negl(λ).
That is, each evaluation oracle query is answered identically in Game 7 and
Game 8 with all but negligible probability if u 6= u∗.

Next, as required by Equation (2), we have x∗ 6= x. Then, if u = u∗, the games
will output 1 with probability 1/2 if it does not abort at Step 3. In addition, the
games still outputs 1 with probability 1/2 if it aborts at Step 3.

To summarize, the adversary’s view in these two games are close before it
submits an evaluation oracle query making u 6= u∗, and even if such query is
made, the games’ outputs are identical. Thus, the difference between the output
distributions of the two games is negligible.

Lemma D.14. |Pr[E8 = 1]− Pr[E9 = 1]| ≤ negl(λ).

Proof. Let u∗,C∗j,ι,D
∗
j , c
∗
j,ι,d

∗
j , ȳ
∗ be the variables used in computing the chal-

lenge y∗0 in Game 9. First, by Lemma D.1, we have

|
κ∑
j=1

(d∗ᵀj − t∗ᵀ ·D∗j )[1]− r̄∗| ≤ Σ′

Let E =
∑κ
j=1(d∗ᵀj − t∗ᵀD∗j )[1]− r̄∗, then we have

|E| ≤ Σ′ ≤ Σ

and

ȳ∗ =(

κ∑
j=1

(s̃ᵀ ·D∗j + d∗ᵀj ))[1] + v − r̄∗

=(

κ∑
j=1

((s− t∗)ᵀ ·D∗j + d∗ᵀj ))[1] + v − r̄∗

=(

κ∑
j=1

sᵀ ·D∗j )[1] + E + v

mod q
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Now, let ȳ∗′ be the variable used in computing the challenge y∗′0 in Game 8.
Note that

ȳ∗′ = (

κ∑
j=1

sᵀ ·D∗j )[1] + v mod q

Thus, we have
ȳ∗ − ȳ∗′ = E mod q

Also, similar to the proof of Lemma D.4, we have

Pr[ȳ∗′ ∈ {z ∈ Zq : ∃a ∈ [0, p− 1], |z − q

p
· (a+

1

2
)| ≤ Σ}] ≤ negl(λ)

from Lemma 2.3. Then by Lemma D.2, we have Pr[y∗0 6= y∗′0 mod p] ≤ negl(λ).
Since with all but negligible probability, the view of the adversary in Game

8 and Game 9 are identical, the difference between the output distributions of
the two games is negligible.

Lemma D.15. |Pr[E9 = 1]− Pr[E10 = 1]| = 0.

Proof. Game 9 and Game 10 only differ in the way for generating s̃. In Game
9, s̃ = s− t∗ = (0, (s̄− t̄

∗
)ᵀ)ᵀ mod q, and in Game 10, the challenger samples

¯̃s
$← Zn−1

q and sets s̃ = (0, ¯̃s
ᵀ
)ᵀ. Note that, in Game 9, s̄

$← Zn−1
q and is only

used for generating s̃. Thus, the adversary’s views are identical in these two
games.

Lemma D.16. |Pr[E10 = 1]− Pr[E11 = 1]| ≤ negl(λ).

Proof. Indistinguishability between Game 10 and Game 11 comes from the hard-
ness of LWEn−1,q,D̃σ

by viewing A = (A′0, . . . ,A
′
N ,B

′
1, . . . ,B

′
k)ᵀ as the public

matrix, t̄
∗

as the secret vector, and (e∗ᵀ0 , . . . , e∗ᵀN+k)ᵀ as the error vector, where

A′0 is the last n− 1 rows of (A0 +G), for j ∈ [1, N ], A′j is the last n− 1 rows of

(Aj + ct∗[j] ·G), and for j ∈ [1, k], B′j is the last n− 1 rows of (Bj + sk∗[j] ·G).

Note that A is a random matrix in Zm·(N+1+k)×(n−1)
q since A0, . . . ,AN ,B1, . . . ,

Bk are all random matrices.

Lemma D.17. |Pr[E11 = 1]− Pr[E12 = 1]| ≤ negl(λ).

Proof. In Game 11, sk∗ is hidden from the adversary’s view, thus, indistinguisha-
bility between Game 11 and Game 12 comes from the security of FHE by a direct
reduction.

Lemma D.18. |Pr[E12 = 1]− 1
2 | = 0.

Proof. In Game 12, r̄∗ is sampled uniformly at random and is only used for
generating ȳ∗. Thus, we have ȳ∗ uniform in Zq. In addition, since q is a multiple
of p, y∗0 = bȳ∗ep mod p is also uniform in Zp. As both y∗0 and y∗1 are uniform
in Zp, the adversary’s views are identical in cases that b = 0 and that b = 1.
Therefore, we always have Pr[b′ = b] = 1

2 and Pr[b† = b] = 1
2 , and this implies

that Game 12 will output 1 with probability 1/2.
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From Lemma D.6 to Lemma D.17, |Pr[E12 = 1] − 1
2 | is non-negligible if the

adversary’s advantage δ in Game 0 is non-negligible. This contradicts Lemma
D.18. Thus, such adversary does not exist and pseudorandomness of PRF follows.

Privacy. Next, we prove the privacy of PRF. We first define the following games
between a challenger and a PPT adversary A. Here, we use τ = poly(λ) to denote
the upper bound on the size of the puncture sets submitted by A.

• Game 0. This is the experiment ExpPrivA,0 defined in Definition 4.3.

Let P∗0 = {x(0)
1 , . . . , x

(0)
P } and P∗1 = {x(1)

1 , . . . , x
(1)
P } be the puncture sets

submitted by the adversary, where P = |P∗0 | = |P∗1 |. We can sort elements
in P∗0 and P∗1 in arbitrary order and this will not change the view of the
adversary since the variables ((ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti) in CK, which are

related to x
(0)
i or x

(1)
i , are put into an unordered set. Concretely, let P̂ =

|P∗0 ∩ P∗1 | and let P̌ = P − P̂ , we sort elements in P∗0 and P∗1 as follows:

1. For b ∈ {0, 1}, x(b)
1 , . . . , x

(b)

P̌
∈ P∗b − (P∗0 ∩ P∗1 ) and they are sorted in

lexicographic order.

2. For b ∈ {0, 1}, x(b)

P̌+1
, . . . , x

(b)
P ∈ (P∗0 ∩ P∗1 ) and they are sorted in lexico-

graphic order.

Note that for i ∈ [P̌ + 1, P ], x
(0)
i = x

(1)
i .

• Game Hh. For h ∈ [0, τ ], Game Hh is identical to Game 0 except that,
the challenger returns ck∗ ← Constrain(k,P∗) to the adversary after the
adversary submits the puncture sets, where

P∗ = {x(1)
i }i∈[1,min(h,P )] ∪ {x

(0)
i }i∈[h+1,P ]

Remark D.1. Note that for any i ∈ [1,min(h, P )], j ∈ [h + 1, P ], we always

have x
(1)
i 6= x

(0)
j . This is because if i ≤ P̌ , then we have x

(1)
i 6∈ P∗0 and thus

x
(1)
i 6= x

(0)
j ; and if i > P̌ , then we have x

(1)
i = x

(0)
i < x

(0)
j . Therefore, we still

have |P∗| = P .

• Game 1. This is the experiment ExpPrivA,1 defined in Definition 4.3.

It is obvious that Game H0 is identical to Game 0 and Game Hτ is identical
to Game 1. Thus privacy of PRF (i.e., indistinguishability between Game 0 and
Game 1) comes from the following lemma by a standard hybrid argument.

Lemma D.19. For h ∈ [0, τ ], let Hh be the output of Game Hh. Then we have
|Pr[Hh−1 = 1]− Pr[Hh = 1]| ≤ negl(λ) for h ∈ [1, τ ].

Proof. First, for any h ∈ [0, τ ], we define the experiment Exph,A as follows:

• In the beginning, the challenger samples a bit b
$← {0, 1};

• Then it interacts with the adversary A as in Game Hh−1 if b = 0 and it
interacts with A as in Game Hh if b = 1;
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• Finally, after the adversary A returns a bit b′, the challenger outputs 1 if
b = b′ and it outputs 0 if b 6= b′.

Then we have

|Pr[Exph,A(1λ) = 1]− 1

2
|

=|1
2
· (1− Pr[Hh−1 = 1]) +

1

2
· Pr[Hh = 1]− 1

2
|

=
1

2
· |Pr[Hh = 1]− Pr[Hh−1 = 1]|

Thus, it is sufficient to prove that for any h ∈ [1, τ ],

|Pr[Exph,A(1λ) = 1]− 1

2
| ≤ negl(λ) (16)

Now, if Equation (16) is not satisfied, then there exists a non-negligible prob-
ability that δ = |Pr[Exph,A(1λ) = 1]− 1

2 |. Next, we prove that this does not occur.
We first define the following hybrids between a challenger and the adversary A.

• Hybrid 0. This is the experiment Exph,A. More precisely, the challenger
interacts with the adversary as follows.

1. First, the challenger samples b
$← {0, 1} and generates

(a) For i ∈ [0, N ]: Ai
$← Zn×mq .

(b) For i ∈ [1, k]: Bi
$← Zn×mq .

(c) s̄
$← Zn−1

q , s = (1, s̄ᵀ)ᵀ.

(d) v
$← Zq.

(e) kH ← H. KeyGen(1λ).

(f) kF ← F. KeyGen(1λ).

2. Then it answers the evaluation oracle queries from the adversary. In
particular, given an input x, it computes y as follows and returns y to
the adversary.
(a) u = H. Eval(kH, x).

(b) For j ∈ [1,κ]:
i. For ι ∈ [1, k]: Cj,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ).

ii. Dj = IPEvalPK(Cj,1, . . . ,Cj,k,B1, . . . ,Bk).

(c) ȳ = (
∑κ
j=1 s

ᵀ ·Dj)[1] + v mod q.

(d) y = bȳep mod p.

3. Next, the adversary will submit two sets P∗0 = {x(0)
1 , . . . , x

(0)
P } and P∗1 =

{x(1)
1 , . . . , x

(1)
P }, where P = |P∗0 | = |P∗1 |. Let P̂ = |P∗0 ∩ P∗1 | and let

P̌ = P − P̂ . Then, if h− 1 ≥ P̌ , the challenger sets

x∗i = x
(1)
i for i ∈ [1, P ]
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and otherwise (i.e., h− 1 < P̌ ), it sets

x∗i =


x

(1)
i if i ∈ [1, h− 1]

x
(b)
h if i = h

x
(0)
i if i ∈ [h+ 1, P ]

Then it computes the constrained key CK for {x∗1, . . . , x∗P } as follows
and returns it to the adversary.24

(a) For i ∈ [1, P ]:
i. ui = H. Eval(kH, x

∗
i ).

ii. (RK,i, (RE,i,j)j∈[1,L+κ], r̄i, t̄i, (RG,i,j)j∈[0,N+k]) = F. Eval(kF, ui).

iii. ti =

(
1
t̄i

)
.

iv. ri = G−1
1,q(r̄i).

v. (pki, ski) = FHE. KeyGen(1λ, 1d;RK,i).

vi. ei,j = GS(RG,i,j) for j ∈ [0, N + k].

vii. For j ∈ [1, L]: cti,j = FHE. Enc(pki, ui[j];RE,i,j).

viii. For j ∈ [1,κ]: cti,L+j = FHE. Enc(pki, ri[j];RE,i,L+j).

ix. cti = (cti,1‖ . . . ‖cti,L+κ).

x. aᵀ
i,0 = tᵀi · (A0 + G) + eᵀi,0.

xi. For j ∈ [1, N ]: aᵀ
i,j = tᵀi · (Aj + cti[j] ·G) + eᵀi,j .

xii. For j ∈ [1, k]: bᵀi,j = tᵀi · (Bj + ski[j] ·G) + eᵀi,N+j .

(b) t0 = s−
∑P
i=1 ti.

(c) For j ∈ [0, N + k], e0,j ← D̃m
σ .

(d) aᵀ
0,0 = tᵀ0 · (A0 + G) + eᵀ0,0.

(e) For j ∈ [1, N ]: aᵀ
0,j = tᵀ0 · (Aj + 0 ·G) + eᵀ0,j .

(f) For j ∈ [1, k]: bᵀ0,j = tᵀ0 · (Bj + 0 ·G) + eᵀ0,N+j .

(g) Set CK = ((Ai)i∈[0,N ], (Bi)i∈[1,k], v, kH, (a0,j)j∈[0,N ], (b0,j)j∈[1,k],
{(ai,j)j∈[0,N ], (bi,j)j∈[1,k], cti}i∈[1,P ]).

4. Then it answers the evaluation oracle queries as in Step 2.

5. Finally, after the adversary submits a bit b′, the challenger outputs 1 if
b = b′ and it outputs 0 otherwise.

• Hybrid 1. Let Q = poly(λ) be the upper bound on the number of the evalu-
ation oracle queries made by the adversaryA in Hybrid 0. Let (VKeyGenQ,δ/2,
VerifyQ,δ/2) and Γmin, Γmax be the algorithms and parameters used in
defining the explainability of H (Definition 3.2). Also, let Q be the set of
inputs submitted to the evaluation oracle at Step 2.

24 From Remark D.1, there does not exist distinct i, j s.t. x∗i = x∗j , thus, the following
procedure is identical to running the constraining algorithm with input {x∗1, . . . , x∗P }.
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Check

Input: (β, α, vk), (P̌ ,Q, x∗h)

1. If β = 0:
(a) If h− 1 ≥ P̌ ∧ α = 1:

Output 1.

(b) Otherwise: Output 0.

2. If β = 1:
(a) If h−1 < P̌∧VerifyQ,δ/2(vk,Q, x∗h) = 1:

Output 1.

(b) Otherwise: Output 0.

Check′

Input: (β, α), P̌

1. If β = 0:
(a) If h− 1 ≥ P̌ ∧ α = 1:

Output 1.

(b) Otherwise: Output 0.

2. If β = 1:
(a) If h− 1 < P̌ ∧ α = 1:

Output 1.

(b) Otherwise: Output 0.

Fig. 2 The functions Check and Check′.

Hybrid 1 and Hybrid 0 are identical except that in the beginning of the

hybrid, the challenger samples a bit β
$← {0, 1}, sets the bit α to be 1

with probability (Γmin + Γmax)/2, and generates a verification key vk ←
VKeyGenQ,δ/2(1λ). It also samples b†

$← {0, 1}. Then at Step 5 of the hybrid,
after the adversary submits a bit b′, the challenger runs

ζ = Check((β, α, vk), (P̌ ,Q, x∗h))

where we define the function Check in Figure 2. Finally, if ζ = 1, it outputs
1 if b′ = b and outputs 0 if b′ 6= b; otherwise, it outputs 1 if b† = b and
outputs 0 if b† 6= b.

• Hybrid 2. This is identical to Hybrid 1 except that at Step 3 of the hybrid,
the challenger runs ζ = Check((β, α, vk), (P̌ ,Q, x∗h)).25 It aborts the hybrid
if ζ = 0. In case it aborts, it outputs 1 if b† = b and outputs 0 if b† 6= b.

• Hybrid 3. In Hybrid 3, the challenger maintains a list L, which is ini-
tialized as an empty list. Then for each evaluation oracle query x, it puts

(x,H. Eval(kH, x)) to the list L. Also, for i ∈ [1, P ], it puts (x
(0)
i ,H. Eval(kH,

x
(0)
i )) and (x

(1)
i ,H. Eval(kH, x

(1)
i )) into L after receiving P∗0 and P∗1 . Finally,

at Step 5 of the hybrid, if there exists (x, u), (x′, u′) ∈ L s.t.

x 6= x′ ∧ u = u′ (17)

the challenger outputs 1 if b† = b and outputs 0 if b† 6= b.
• Hybrid 4. This is identical to Hybrid 3 except that if β = 1, the challenger

uses the simulator of H. In more detail, let SIM be the stateful simulator of
H as defined in Definition 3.2, then the challenger modifies its behaviors at
each step as follows if β = 1:
1. At step 1, the challenger does not generate kH. In addition, it samples

u∗
$← {0, 1}L and invokes SIM(vk, u∗).

2. At Step 2, for each evaluation oracle query x, it computes u ← SIM(x)
instead of computing it as u = H. Eval(kH, x), where u is used to answer
the evaluation oracle query and is recorded in L.

25 Note that all inputs to Check are known at Step 3.
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3. At Step 3, if the challenger does not abort, it computes kH ← SIM(x∗h)

and sets uh = u∗. It also stores (x
(b)
h , u∗) instead of (x

(b)
h ,H. Eval(kH,

x
(b)
h )) into L. Then it computes the remaining parts identically as in

Hybrid 3.

4. It proceeds identically as in Hybrid 3 for Step 4 and Step 5.
• Hybrid 5. This is identical to Hybrid 4 except that if β = 1, the challenger

uses a random function f instead of the PRF F. Eval(kF, ·) at Step 3.
• Hybrid 6. This is identical to Hybrid 5 except that at Step 1 of the hybrid,

the challenger generates

1. t̄
∗ $← Zn−1

q , t∗ = (1, t̄
∗ᵀ

)ᵀ.

2. r̄∗
$← Zq, r∗ = G−1

1,q(r̄
∗).

3. (pk∗, sk∗)← FHE. KeyGen(1λ, 1d).

4. e∗j ← D̃m
σ for j ∈ [0, N + k].

5. For j ∈ [1, L]: ct∗j ← FHE. Enc(pk∗, u∗[j]).

6. For j ∈ [1,κ]: ct∗L+j ← FHE. Enc(pk∗, r∗[j]).

7. ct∗ = (ct∗1‖ . . . ‖ct∗L+κ).

8. a∗ᵀ0 = t∗ᵀ · (A0 + G) + e∗ᵀ0 .

9. For j ∈ [1, N ]: a∗ᵀj = t∗ᵀ · (Aj + ct∗[j] ·G) + e∗ᵀj .

10. For j ∈ [1, k]: b∗ᵀj = t∗ᵀ · (Bj + sk∗[j] ·G) + e∗ᵀN+j .

11. s̃ = s− t∗ mod q.
Then at Step 3, if β = 1 and the challenger does not abort, it sets

cth = ct∗, ah,j = a∗j for j ∈ [0, N ], bh,j = b∗j for j ∈ [1, k]

and computes

t0 = s̃−
∑

i∈[1,P ]\{h}

ti

• Hybrid 7. This is identical to Hybrid 6 except that the challenger changes
the way to answer the evaluation oracle query if β = 1. In particular, given
an evaluation oracle query x, the challenger first computes{

u← SIM(x) At Step 2

u = H. Eval(kH, x) At Step 4

Then it computes y as follows and returns y to the adversary.
1. For j ∈ [1,κ]:

(a) For ι ∈ [1, k]: Cj,ι = EvalPK(Cu,j,ι,A0, . . . ,AN ).

(b) Dj = IPEvalPK(Cj,1, . . . ,Cj,k,B1, . . . ,Bk).

2. For j ∈ [1,κ]:
(a) For ι ∈ [1, k]:

i. c̃tj,ι = Cu,j,ι(ct
∗).
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ii. cj,ι = EvalCT(Cu,j,ι,A0, . . . ,AN ,a
∗
0, . . . ,a

∗
N , ct

∗).

(b) dj = IPEvalCT(B1, . . . ,Bk, cj,1, . . . , cj,k, b
∗
1, . . . , b

∗
k, c̃tj,1, . . . , c̃tj,k).

3. ȳ = (
∑κ
j=1(s̃ᵀ ·Dj + dj))[1] + v mod q.

4. y = bȳep mod p.

• Hybrid 8. This is identical to Hybrid 7 except that if β = 1, the challenger

samples ¯̃s
$← Zn−1

q and sets s̃ = (0, ¯̃s
ᵀ
)ᵀ.

• Hybrid 9. This is identical to Hybrid 8 except that if β = 1, the challenger
samples

a∗j
$← Zmq for j ∈ [0, N ], b∗j

$← Zmq for j ∈ [1, k]

• Hybrid 10. This is identical to Hybrid 9 except that if β = 1, the challenger
computes

ct∗j ← FHE. Enc(pk∗, 0)

for j ∈ [1, L+ κ] and sets ct∗ = (ct∗1‖ . . . ‖ct∗L+κ).

• Hybrid 11. This is identical to Hybrid 10 except that the challenger stops
using the simulator of H. In more detail, the challenger modifies its behaviors
at each step as follows if β = 1:

1. At step 1, the challenger samples kH ← H. KeyGen(1λ). Also, it does not
sample u∗ and invoke SIM(vk, u∗).

2. At Step 2, for each evaluation oracle query x, it computes u = H. Eval(kH,
x) instead of computing it with the simulator, where u is used to answer
the evaluation oracle query and is recorded in L.

3. At Step 3, if the challenger does not abort, it does not invoke the simu-
lator to generate a hash key of H. Besides, it computes uh = H. Eval(kH,

x
(b)
h ) and stores (x

(b)
h , uh) instead of (x

(b)
h , u∗) into L (note that uh is

not needed in generating the constrained key). Then it computes the
remaining parts identically as in Hybrid 10.

4. It proceeds identically as in Hybrid 10 for Step 4 and Step 5.

• Hybrid 12. This is identical to Hybrid 11 except that the challenger does
not check if Equation (17) is satisfied (introduced in Hybrid 3) at Step 5.
Also it does not maintain the list L.

• Hybrid 13. This is identical to Hybrid 12 except that the challenger does
not compute the Check function at Step 3. Note that, it still runs the Check

function at Step 5.

• Hybrid 14. This is identical to Hybrid 13 except that at Step 5 of the hybrid,
the challenger runs Check′ instead of Check, where the function Check′ is
defined in Figure 2 and we use red underline to highlight the difference
between Check and Check′.

Let Ei be the output of Hybrid i for i ∈ [0, 14]. We have the following claims.

Claim D.1. If δ is non-negligible, then |Pr[E1 = 1]− 1
2 | ≥

Γmin
2 · δ− Γmax−Γmin

4 .
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Proof. Hybrid 1 is identical to Hybrid 0 except that at the end of the hybrid, the
challenger uses a random bit (i.e., b†) to replace the response of the adversary
if the output of Check is 0. Let X = (P̌ ,Q, x∗h) ∈ Z× ({0, 1}l)∗ × {0, 1}l be any
possible (partial) input to the function Check in Hybrid 1, and let

γ(X) = Pr[β
$← {0, 1}, α← B(Γmin+Γmax)/2,

vk ← VKeyGenQ,δ/2(1λ) : Check((β, α, vk), X) = 1]

where the distributionB(Γmin+Γmax)/2 outputs 1 with probability (Γmin+Γmax)/2.

Note that if h− 1 ≥ P̌ , then

γ(X) = Pr[β = 0 ∧ α = 1] =
Γmin + Γmax

4

On the other hand, if h− 1 < P̌ , then

γ(X) = Pr[β = 1∧VerifyQ,δ/2(vk,Q, x∗h) = 1] =
Pr[VerifyQ,δ/2(vk,Q, x∗h) = 1]

2

Next, we bound the probability Pr[VerifyQ,δ/2(vk,Q, x∗h) = 1] in case h−1 < P̌ .
First, as Q is the upper bound on the number of the evaluation oracle queries

made by A, we have |Q| ≤ Q. In addition, since h − 1 < P̌ , we have h ≤
P̌ , and thus x

(b)
h 6∈ P∗1−b. Then by Equation (3) required in the definition of

privacy, x∗h = x
(b)
h 6∈ Q. Next, by the “Abort Probability” requirement in the

explainability property of H, we have Γmin ≤ Pr[VerifyQ,δ/2(vk,Q, x∗) = 1] ≤
Γmax. Therefore, if h− 1 < P̌ , we have

Γmin
2
≤ γ(X) ≤ Γmax

2

Since we also have Γmin+Γmax
4 ∈ [Γmin2 , Γmax2 ], for any possible input X, we have

γ(X) ∈ [
Γmin

2
,
Γmax

2
]

Next, note that δ = |Pr[E0 = 1]− 1
2 | = |Pr[b = b′]− 1

2 |, then by Lemma A.6,
we have

|Pr[E1 = 1]− 1

2
| ≥ Γmin

2
· δ − Γmax − Γmin

4

Claim D.2. |Pr[E1 = 1]− Pr[E2 = 1]| = 0.

Proof. Hybrid 2 and Hybrid 1 are identically proceeded if the function Check

outputs 1, and in case that it outputs 0, both hybrids will output 1 with prob-
ability 1/2. Thus, the output distributions of the two hybrids are identical.

Claim D.3. |Pr[E2 = 1]− Pr[E3 = 1]| ≤ negl(λ).
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Proof. Hybrid 2 and Hybrid 3 are identical unless Equation (17) is satisfied.
This will occur with negligible probability due to the injectivity of H.

Claim D.4. |Pr[E3 = 1]− Pr[E4 = 1]| ≤ negl(λ).

Proof. This comes from the indistinguishability requirement in the explainabil-
ity property of H. More precisely, assume that |Pr[E3 = 1] − Pr[E4 = 1]| is
non-negligible, then we can construct an adversary B that breaks the indistin-
guishability of H.

In the beginning, the adversary B samples b
$← {0, 1} and generates (A0,

. . . ,AN ,B1, . . . ,Bk, s, v, kF) as in Hybrid 3 and Hybrid 4. Then it answers the
evaluation oracle queries from A. In particular, given an input x, it submits x to
its own oracle, and on receiving a response u, it stores (x, u) to a list L, runs the
remaining parts of the evaluation algorithm with u and returns the result y to

A. Next, A will submit two sets P∗0 = {x(0)
1 , . . . , x

(0)
P } and P∗1 = {x(1)

1 , . . . , x
(1)
P },

and let P̂ = |P∗0 ∩P∗1 |, P̌ = P − P̂ . Then if h−1 ≥ P̌ , B chooses an input x∗ that
is different from all evaluation queries, submits it as its challenge, and outputs
1 with probability 1/2 no matter what response it receives from its challenger.

Otherwise, it submits x
(b)
h as its challenge26. If the response is ⊥, it outputs 1

with probability 1/2. Otherwise, given the response (kH, u
∗) it sets uh = u∗,

stores (x
(b)
h , u∗) to L and then proceeds identically as in Hybrid 3 and Hybrid 4.

Finally, after A submits a bit b′, B outputs 1 with probability 1/2 if Equation
(17) is satisfied. Otherwise, it outputs 1 if b′ = b.

It is easy to see, B can simulate Hybrid 3 (with β = 1) perfectly if it is in the
experiment ExpReal, and it can simulate Hybrid 4 (with β = 1) perfectly if it
is in the experiment ExpIdeal. In addition, B outputs 1 iff the hybrids outputs
1. Also, note that Hybrid 3 and Hybrid 4 are identical if β = 0. Thus, from
the indistinguishability of H, we have |Pr[E3 = 1]− Pr[E4 = 1]| ≤ negl(λ). This
completes the reduction.

Claim D.5. |Pr[E4 = 1]− Pr[E5 = 1]| ≤ negl(λ).

Proof. This comes from the pseudorandomness of F by a direct reduction.

Claim D.6. |Pr[E5 = 1]− Pr[E6 = 1]| = 0.

Proof. In Hybrid 6, the challenger precomputes parts of the constrained key.
The adversary’s view in Hybrid 5 and Hybrid 6 are identical unless there exists
i 6= h s.t. u∗ = H. Eval(kH, x

∗
i ). First, by Remark D.1, we have x∗i 6= x∗h. Thus, if

u∗ = H. Eval(kH, x
∗
i ), both hybrids will output 1 with probability 1/2. Therefore,

the output distributions of the two hybrids are identical.

Claim D.7. |Pr[E6 = 1]− Pr[E7 = 1]| ≤ negl(λ).

26 Note that as shown in the proof of Claim D.1, x
(b)
h is different from all evaluation

queries in case h− 1 < P̌ .

69



Proof. Hybrid 6 and Hybrid 7 only differ in the way for answering the evaluation
oracle if β = 1. Let B1 be the event that xbh has been submitted to the evaluation
oracle, and let B2 be the event that Equation (17) is satisfied. Then, we can prove
that the responses to the evaluation oracle queries are identical in Hybrid 6 and
Hybrid 7 with all but negligible probability unless B1 or B2 occurs.27 Note that
as shown in the proof of Claim D.1, B1 occurs only if h−1 ≥ P̌ , and in this case
(recall that β = 1) both hybrids will output 1 with probability 1/2. In addition,
if B2 occurs and the abortion condition at Step 3 is not triggered, then both
hybrids will also output 1 with probability 1/2. Besides, if a hybrid aborts at
Step 3, it still outputs 1 with probability 1/2. That is, even if the adversary may
detect the non-negligible difference between the two hybrids in case B1 or B2

occurs, the hybrid will always output 1 with probability 1/2 in this case.
To summarize, the adversary’s view in Hybrid 6 and Hybrid 7 are close unless

the event B1 or B2 occurs, and in case at least one of them occurs, the outputs
of the two hybrids are identical. Thus, the difference between the probabilities
that the two hybrids outputs 1 is negligible.

Claim D.8. |Pr[E7 = 1]− Pr[E8 = 1]| = 0.

Proof. Hybrid 7 and Hybrid 8 only differ in the way for generating s̃ in case
β = 1. In Hybrid 7, s̃ = s − t∗ = (0, (s̄ − t̄

∗
)ᵀ)ᵀ mod q, and in Hybrid 8, the

challenger samples ¯̃s
$← Zn−1

q and sets s̃ = (0, ¯̃s
ᵀ
)ᵀ. Note that, in Hybrid 7,

s̄
$← Zn−1

q and is only used for generating s̃. Thus, the adversary’s views are
identical in these two hybrids.

Claim D.9. |Pr[E8 = 1]− Pr[E9 = 1]| ≤ negl(λ).

Proof. Indistinguishability between Hybrid 8 and Hybrid 9 comes from the hard-
ness of LWEn−1,q,D̃σ

by a direct reduction.

Claim D.10. |Pr[E9 = 1]− Pr[E10 = 1]| ≤ negl(λ).

Proof. Indistinguishability between Hybrid 9 and Hybrid 10 comes from the
security of FHE by a direct reduction.

Claim D.11. |Pr[E10 = 1]− Pr[E11 = 1]| ≤ negl(λ).

Proof. This comes from the indistinguishability requirement in the explainability
property of H. The reduction is similar to the proof of Claim D.4, and we omit
the details here.

Claim D.12. |Pr[E11 = 1]− Pr[E12 = 1]| ≤ negl(λ).

Proof. This comes from the injectivity of the explainable hash H directly.

Claim D.13. |Pr[E12 = 1]− Pr[E13 = 1]| = 0.

27 The proof is identical to the proof of Lemma D.13 and we omit the details here.
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Proof. Hybrid 12 and Hybrid 13 are identically proceeded if the function Check

outputs 1. In case that the function outputs 0, both hybrids will output 1 with
probability 1/2. Thus, the output distributions of the two hybrids are identical.

Claim D.14. |Pr[E13 = 1]− Pr[E14 = 1]| ≤ 3(Γmax−Γmin)
4 .

Proof. Hybrid 13 and Hybrid 14 are identical before the adversary outputs b′. Let
b, β, α, vk, b† be the random variables sampled by the challenger at the beginning
of the hybrid. Let Q be the set of inputs submitted to the evaluation oracle at

Step 2 of the hybrid. Let P∗0 = {x(0)
1 , . . . , x

(0)
P } and P∗1 = {x(1)

1 , . . . , x
(1)
P } be the

two puncture sets submitted by the adversary at Step 3, and let P̂ = |P∗0 ∩P∗1 |,
P̌ = P − P̂ . Also, let b′ be the output of the adversary. We consider the following
four cases:

• C1 : β = 0 ∧ h− 1 ≥ P̌ ∧ α = 1. In this case, both the Check algorithm and
the Check′ algorithm will output 1. Thus, we have

Pr[E13 = 1 | C1] = Pr[b = b′ | C1] = Pr[E14 = 1 | C1]

• C2 : β = 0∧ (h− 1 < P̌ ∨α = 0). In this case, both the Check algorithm and
the Check′ algorithm will output 0. Thus, we have

Pr[E13 = 1 | C2] = Pr[b = b† | C2] = Pr[E14 = 1 | C2]

• C3 : β = 1∧h−1 ≥ P̌ . In this case, both the Check algorithm and the Check′

algorithm will output 0. Thus, we have

Pr[E13 = 1 | C3] = Pr[b = b† | C3] = Pr[E14 = 1 | C3]

• C4 : β = 1 ∧ h− 1 < P̌ . In this case, we have

|Pr[E13 = 1 | C4]− Pr[E14 = 1 | C4]|

=|Pr[b = b′ ∧ VerifyQ,δ/2(vk,Q, x(b)h ) = 1 | C4]

+ Pr[b = b† ∧ VerifyQ,δ/2(vk,Q, x(b)h ) = 0 | C4]

− (Pr[b = b′ ∧ α = 1 | C4] + Pr[b = b† ∧ α = 0 | C4])|

=|Pr[VerifyQ,δ/2(vk,Q, x(b)h ) = 1 | b = b′ ∧ C4] · Pr[b = b′ | C4]

+
1

2
(1− Pr[VerifyQ,δ/2(vk,Q, x(b)h ) = 1 | C4])

− (
Γmin + Γmax

2
· Pr[b = b′ | C4] +

1

2
· (1− Γmin + Γmax

2
))|

Note that vk is not used before running the check algorithms in both Hybrid

13 and Hybrid 14. In addition, as shown in the proof of Claim D.1, x
(b)
h 6∈ Q if

h−1 < P̌ . Then by the “Abort Probability” requirement in the explainability
property of H, there exists p1, p2 ∈ [Γmin, Γmax] s.t.

p1 = Pr[VerifyQ,δ/2(vk,Q, x(b)
h ) = 1 | b = b′ ∧ C4]
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p2 = Pr[VerifyQ,δ/2(vk,Q, x(b)
h ) = 1 | C4]

Therefore, we have

|Pr[E13 = 1 | C4]− Pr[E14 = 1 | C4]|

=|(p1 −
Γmin + Γmax

2
) · Pr[b = b′ | C4] +

1

2
(
Γmin + Γmax

2
− p2)|

≤3(Γmax − Γmin)

4

To summarize, we have

|Pr[E13 = 1]− Pr[E14 = 1]| ≤
4∑
i=1

Pr[Ci] · |Pr[E13 = 1 | Ci]− Pr[E14 = 1 | Ci]|

≤ |Pr[E13 = 1 | C4]− Pr[E14 = 1 | C4]| ≤ 3(Γmax − Γmin)

4

Claim D.15. Pr[E14 = 1] = 1
2 .

Proof. In Hybrid 14, the uniform bit b is only used to check if b = b′ or if b† = b
at the end of the hybrid. Thus, we always have Pr[b′ = b] = 1

2 and Pr[b† = b] = 1
2 ,

and this implies that Hybrid 14 will output 1 with probability 1/2.

Combining Claim D.1 to Claim D.14, we have

|Pr[E14 = 1]− 1

2
| ≥|Pr[E1 = 1]− 1

2
| −

13∑
i=1

|Pr[Ei = 1]− Pr[Ei+1 = 1]|

≥Γmin
2
· δ − Γmax − Γmin

4
− negl(λ)− 3(Γmax − Γmin)

4

=Γmin ·
δ

2
− (Γmax − Γmin)− negl(λ)

which is non-negligible due to the “Abort Probability” requirement in the ex-
plainability property of H (recall that the parameter we used is (Q, δ/2)). This
contradicts Claim D.15. Thus, the advantage of the adversary A in distinguish-
ing Game Hh−1 and Game Hh cannot be non-negligible. This completes proof
of Lemma D.19, and privacy of PRF follows.
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