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Abstract

Homomorphic Encryption (HE) is used in many fields including in-
formation storage, data protection, privacy preservation, blockchain, and
authentication. HE allows an untrusted third party to perform algebraic
operations on encrypted data. Protecting the results of HE against acci-
dental or malicious tampering attacks is still an open research challenge.
In this paper, we introduce a lightweight technique that allows a data
owner to verify the integrity of HE results performed in the cloud. The
proposed method is quick, simple, and applicable, as it depends on adding
a single digit to the encrypted message before storing it in the cloud. This
digit represents verification proof and it is later used to ensure a verifi-
able HE. Our technique can be integrated with any HE scheme that uses
encryption with non-isolated plaintext.

keywords : Data Integrity, Verifiable FHE, Homomorphic Encryp-
tion, Cloud Computing.
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1 Introduction

Cloud computing is an infrastructure where storage and processing are man-
aged by remote servers that are accessed through the Internet. Clients use
the Internet to access cloud services such as data storage, processing, software,
intelligence, and networking in a flexible on-demand approach. Cloud data ac-
cess and management are characterized by their flexibility to meet the client
needs [1]. Cloud computing is divided into several levels of services [2]. Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). Through IaaS, the cloud gives client companies access to the IT
infrastructure they need, calculations, storage, networks, security, etc. As part
of a PaaS solution, the cloud provides the client company with a development
and deployment environment in which it will be able to design its own web and
mobile applications. The SaaS model amounts to providing access to software
hosted in the cloud. This software is accessible from any point and not depends
on the company’s computer system.

Cloud services offer companies several considerable advantages, they save
storage space and computing time. The benefits of cloud computing are faced
with several security and privacy challenges that hinder their adoption. Integrity
checking and encryption are crucial to protecting users’ privacy and data. For
example, the client is generally unaware of other clients that use the same server
to perform various tasks. Therefore, the customer cannot control the processing
of his data.

Security techniques [3], confidentiality [4, 5], and data encryption [6, 7] offer
an effective solution to overcome the conflicting requirements of privacy and
cloud storage. However, classic encryption does not provide complete protec-
tion of data confidentiality and integrity. Despite being in an encrypted form
both during storage and transmission, the data must be decrypted in order to
be processed by a third party. Inexpensive cloud computing and cloud storage
have fundamentally changed how companies manage their data. Classic encryp-
tion techniques, such as AES, are extremely fast and store data in encrypted
form. Nevertheless, to perform a simple operation on the encrypted data, either
the cloud needs access to the secret key, which leads to confidentiality concerns,
or the client needs to download, decrypt, and work on data locally, which can
be costly and make a logistic challenge. Homomorphic Encryption (HE) offers
a solution to processing data in its encrypted format to reduce integrity and
confidentiality risks [8]. With HE, the cloud can directly perform on the en-
crypted data and return only an encrypted result to the client. However, HE
may suffer from some limitations such as feasibility, the impossibility of run-
ning ad-hoc/discovery-based queries, the possibility to leak private information,
keeping track of noise, and data integrity issue, which we will address in this
paper.
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2 Related work

Fully Homomorphic Encryption (FHE) is a common way to support data com-
putation in the ciphertext form by third parties who are not trusted. Untrusted
entities may return incorrect calculation results accidentally or intentionally.
To guarantee data integrity, many works in the literature presented verifiable
encryption-decryption schemes. An analysis of existing FHE integrity tech-
niques has been presented in [9], and the authors proposed a new vision for
VFHE. They analyzed a range of schemes and evaluated their performance in
different settings.

Huang et al. [10] proposed a Verifiable FHE scheme (VFHE). The plaintext
is transformed into the triangular matrix and the matrix blinding technology
is exploited to protect privacy and ensure security. Data outsourcing is used
to implement FHE based on the matrix operation principle. The verification
proof is generated according to the specific properties of the triangular matrix, so
clients can check the correctness of the results. The limitation of this technique is
that the client must keep proof of verification for each operation to be performed.
Also, it suffers from a high size and complexity (key size, ciphertext size, and
computing complexity: 2× d2, d2, and O(d2) respectively).

The authors of [11] proposed a verifiable noise-free FHE technique that uses
the ring of Lipschitz’s quaternions and allows computations over encrypted data
under a symmetric key. This probabilistic cryptosystem allows verification of
a calculation if it was performed in its correct form or not. To construct their
VFHE scheme, the authors used properties of non-commutativity of Lipschitz
integers. The drawback of this scheme is that it requires the user before en-
crypting a plaintext to transform it into a quaternion.

In [12], the authors studied the operation of verifiable delegation of compu-
tation on encrypted data. They tried to improve previous definitions in order
to tolerate attacks that learn whether or not users accept the result of a dele-
gated computation. Working in the amortized model of [13], they constructed
a technique for arbitrary calculation. They developed a homomorphic hashing
scheme that permits authenticating computation results. The problem gener-
ation algorithm in this scheme uses the secret key to encrypt a message to be
sent to the cloud to be processed and a secret value that is kept private by the
user, which takes extra storage space.

Jin et al. [14] provided a universal construction of FHE. Using the existing
FHE schemes, they constructed a general VFHE. The objective of their scheme
is the verifiability of an evaluate function f . The problem in this construction is
that f depends on the corresponding FHE scheme. Unlike our technique which
uses a single method that works with all FHE schemes.

The authors of [15] proposed a verifiable decryption for the Brakerski-Gentry-
Vaikuntanathan (BGV) scheme. They presented an interactive zero-knowledge
proof protocol to certify the correctness decryption of BGV ciphertexts. The
challenge in BGV is to provide an interactive proof system of three rounds,
which takes more time. To enforce data integrity during an outsourced com-
putation, Awadallah et al. [16] proposed a verification scheme based on the
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modular residue to validate homomorphic encryption computation over an in-
teger finite field. This scheme incurs 1.5% storage overhead. It depends on the
ciphertext size as opposed to our scheme which uses a single digit regardless of
the ciphertext size.

3 Verifiable encryption

Verifiable Encryption (VE) is an encryption technique where a party can prove
some characteristics of an encrypted message m. When an encryption technique
is secure, ciphertext Enc(m) should reveal no information about m. This prop-
erty may not be suitable in cases where checking some characteristics of the
encrypted data is required before handling the encrypted message. The defini-
tion of VE can be generalized as follows. VE allows a verifier to check some
properties of a message after performing operations in its encrypted form.

A general system model of a VE can be shown as follow.

• The client encrypts a message m to get the ciphertext c = Enc(m), also
computes the related verification proof V P . Then the client must save
V P and sends the computing function F to the third part for calculation
(TPC).

• After TPC receives data, calculates the ciphertext c according to F , and
returns the results r to client.

• The client decrypts r where m′ = Dec(r) and then verifies the correctness
of m′ according to V P . If they are valid, the computing results from TPC
will be accepted. Otherwise, r will be rejected.

Security threats in basic VE models originate from the TPC, which may
reveal and misuse the private data, may dishonestly perform the computing
operation due to other goals such as computing resource saving or software
and hardware errors, and return incorrect results. Therefore, VE scheme must
satisfy the following objectives:

• Correctness: If TPC honestly performs the computing operations; the
results must be correct and can be accepted by the client.

• Privacy: TPC can not access any sensitive data from the input or output
computing results.

• Verifiability: The client can check the correctness-incorrectness of results
returned by TPC at an extremely high probability.

Considering implementation requirements and conditions, it is difficult to
build a HE that is fully and verifiable at the same time. All the proposed VFHE
schemes are difficult to use in practice. This is why we have developed this
verification technique, which can be integrated with almost any FHE proposed
in the literature. In our scheme, it is not necessary to save the related verification
proof V P .
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Figure 1: Homomorphic encryption and data integrity

4 HE and Data integrity issue

Data integrity is an essential and sensitive requirement in the design, implemen-
tation, and use of any data system. It can be defined as the validity, complete-
ness, accuracy, and consistency of data as illustrated in Figure 1. After proper
data validation and error checking, the data owner can ensure that sensitive
data is not used, exploited, improperly classified, or stored incorrectly.

All unauthorized changes to the data during storage, computation, or re-
trieval operations, including unexpected hardware failure, malicious intent, or
human errors, will inevitably lead to errors in the data use later. Data integrity
can be guaranteed in local databases to prevent intentional data changes. But
it will be much more difficult when using a third party, e.g., an untrusted cloud,
to make operations on the encrypted data.

While validation of these homomorphic calculations is a prerequisite for data
integrity, our proposal consists of adding one digit to the ciphertext to pre-
vent any manipulations of homomorphic processing outcomes by a third party,
whether these changes are accidental or intentional.

Suppose a data owner requests the cloud to excute a homomorphic addi-
tion operation of two ciphertexts. After obtaining c3 (c3 = c1 + c2), the data
owner will utilize c3 considering that it is a valid output, i.e., c3 was not ma-
nipulated. Nevertheless, the untrusted cloud may have changed that calculated
result, whether by error or deliberately. The data owner can not discover this
change especially if many ‘addition’ operations are performed.

User: encrypts x and y, sends them to the cloud.
Cloud: cx + cy → cz, changes it to c′z (where cz ̸= c′z), sends it to the user.
User: decrypts and uses c′z, but Dec(c′z) = z′ ̸= x+ y !
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5 Proposed Technique

The core idea is to set the verification proof v equal to the sum of digits of the
plaintext recursively until a single digit is obtained (Equation 1).

v = P (m) =
∑

(
∑

(..(

j∑
i=1

di))) (1)

Where P function denotes Proof(m) andm = d1d2 . . . dj with di ∈
{
0, .., 9

}
.

We have v ∈
{
0, .., 9

}
; this calculation can be reduced and replaced by a single

operation as shown in Equation 2.

v = P (m) = m mod 9 (2)

Noting that we can use any modulus other than 9 i.e., v = m mod k where
∀k < m.

After the client calculates the verification proof v, it encrypts the message
c = Enc(m) and sends the couple (c, v) to the cloud. The client does not
need to store v locally. Finally, the cloud must store the ciphertext ci with the
corresponding verification proof vi. Note that the proposed technique does not
respond to a specific FHE scheme but it is applicable to all HE schemes.

C = (c, v) where c = Enc(m) and v = m mod 9 (3)

In each calculation operation O performed on ci by the cloud, the cloud must
do the same operation O with its vi; finally, it computes vi mod 9 to obtain a
single digit as shown in Equation 4 with O is an operation (or set of operations)
of addition or multiplication.

(c3, v3) = (c1Oc2, (v1Ov2) mod 9) (4)

The verification consists of calculating the verification poof of result decryp-
tion provided by the cloud. So, the client decrypts c3 where Dec(c3) = m3,
calculates P (m3), and checks if v3 = P (m3) or not. v3 is the proof value re-
turned by the cloud.

Verf : If v3 = P (dec(c3)) then accept computed result.
Example
Consider the following cryptosystems:

Additive scheme:
Enc(m) : c = m × k mod n ; Dec(c) : m = c × k−1 mod n ; where k is the
secret key. Let k = 1980 and n = 2017;
Multiplicative scheme:
RSA with n = 3127 , e = 3 , and d = 2011;

Client
Let plaintexts m1 = 25 and m2 = 44;

So P (m1) = 25 mod 9 = 7 and P (m2)= 44 mod 9 = 8;
c+1 = 25× 1980 mod 2017 = 1092 ;
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c+2 = 44× 1980 mod 2017 = 389 ;
c×1 = 253 mod 3127 = 3117 ;
c×2 = 443 mod 3127 = 755.

Cloud
Op1 : addition : c+ = c+1 + c+2 = (1092 + 389) mod 2017 = 1481;

v+ = (7 + 8) mod 9 = 6.
Op2 : multiplication : c× = c×1 × c×2 = (3117× 755) mod 3127 = 1831 ;
v× = (7× 8) mod 9 = 2.

Client (verf)
Op1 : m+ = Dec(c+) = c+ × k−1 mod n = 1481 × 109 mod 2017 = 69 ;

(69 = 25 + 44);
For verification: P (m+) = P (69) = 69 mod 9 = 6 it is strictly equal to v+
which is calculated by the cloud (v+ = 6). Therefore, the client acceptsm+ = 69.
Op2 : m× = Dec(c×) = cd× mod n = 18312011 mod 3127 = 1100 ; (1100 = 25
× 44);
For verification: P (m×) = P (1100) = 1100 mod 9 = 2 it is strictly equal to
v× which is calculated by the cloud (v× = 2). Therefore, the client accepts
m× = 1100

6 Scheme analysis

To show the correctness of this technique, prove the following verification con-
dition (Lemma 1).

Lemma 1. if P (Dec(c1Oc2)) = v1Ov2, then the returned result is correct.

Proof. We have both c1Oc2 and v1Ov2 calculated by the cloud, Dec() function
is used by the verifier (client). If c1Oc2 is done correctly, then Dec(c1Oc2) =
m1Om2 (Homomorphic system). Therefore, P (Dec(c1Oc2)) = P (m1Om2) =
(m1Om2) mod 9 = m1 mod 9Om2 mod 9 because (m1 + m2) mod 9 = m1

mod 9 + m2 mod 9 and (m1 × m2) mod 9 = m1 mod 9 × m2 mod 9. So,
P (m1Om2) = P (m1)OP (m2) = v1Ov2.

If we use v = m mod 9, the only information the cloud knows is
∑

digit(m) =
v and that gives the untrusted cloud no advantage for manipulating the calcu-
lated result; more security if we use k ̸= 9 but with additional storage space;
with k = 9, | v |= 1; with k ̸= 9, | v |= len(k). So, the technique is secure
because it does not give any useful information about m to the cloud. In order
for the cloud to manipulate the calculation result and at the same time keep
the correct corresponding proof, it must have the client’s secret key (assum-
ing the decryption scheme is known). The only way to generate c′ ̸= c with
their corresponding v′ ̸= v is to know the client’s secret key sk, c′ must verify
P (Decsk(c

′)) = v′.
A safe use of our scheme is for example RSA; in above instance where n

= 3127 , e = 3 , and d = 2011; with m = 25, c = 3117 , and v = 7; if the
cloud want to change v to v′ = 8, it have to change c to c′ = 3110 or 2401, etc.

7



because Dec(c′ = 3110) = 1817 and P (1817) = 8 = v′ or Dec(c′ = 2401) = 566
and P (566) = 8 = v′, that is impossible without knowing the private key d.
How the cloud can see that P (Decd(c

′)) = 8?
Unsafe use of our scheme considering the following trivial FHE scheme.

Enc(m) : c = m + r × p mod n ; Dec(c) : m = c mod p ; where p is the
secret key and r is a random number. In this example, the target m is isolated
and an adversary can attack it; we note here that Dec(c + 1) = m + 1, so if
the adversary makes c′ = c + 1 and v′ = v + 1, the verification condition is
still correct; P (Dec(c + 1)) = P (m + 1) = v + 1 = v′, the client will accept
the incorrect result c′. We can say that a scheme of encryption with isolated
plaintext m in the ciphertext means Dec(cOα) = mOα.

Because our scheme consists of a single elementary calculation regardless
of input size in both proof generation and proof verification (v = c mod 9)
operations, it realizes a computing complexity equal to O(1).

7 Conclusion

In this paper, we presented a new method to ensure data integrity, or rather
to ensure homomorphic calculations validity performed on encrypted data by
an untrusted third party, whether these errors are intentional or unintentional.
The proposed technique is lightweight and applicable, especially in environ-
ments that need to low time and storage space such as the Internet of Things.
Our method can be integrated with any FHE scheme (any encryption with
non-isolated plaintext). It consists of adding one digit to the ciphertext which
guarantees the detection of whether the results have been tampered with or not.
After presenting some concepts about the cloud and homomorphic encryption,
we explained the proposed scheme and then proved its validity, effectiveness,
and efficiency in maintaining data integrity. We plan in the future to apply this
technique in other fields that require data integrity checks.
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