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Abstract

Verifiable random functions (VRFs) are essentially pseudorandom functions for which selected outputs
can be proved correct and unique, without compromising the security of other outputs. VRFs have
numerous applications across cryptography, and in particular they have recently been used to implement
committee selection in the Algorand protocol.

Elliptic Curve VRF (ECVRF) is an elegant construction, originally due to Papadopoulos et al., that is
now under consideration by the Internet Research Task Force. Prior work proved that ECVRF possesses
the main desired security properties of a VRF, under suitable assumptions. However, several recent
versions of ECVRF include changes that make some of these proofs inapplicable. Moreover, the prior
analysis holds only for classical attackers, in the random-oracle model (ROM); it says nothing about
whether any of the desired properties hold against quantum attacks, in the quantumly accessible ROM. We
note that certain important properties of ECVRF, like uniqueness, do not rely on assumptions that are
known to be broken by quantum computers, so it is plausible that these properties could hold even in the
quantum setting.

This work provides a multi-faceted security analysis of recent versions of ECVRF, in both the classical
and quantum settings. First, we motivate and formally define new security properties for VRFs, like
non-malleability and binding, and prove that recent versions of ECVRF satisfy them (under standard
assumptions). Second, we identify a subtle obstruction in proving that recent versions of ECVRF have
uniqueness via prior indifferentiability definitions and theorems, even in the classical setting. Third, we fill
this gap by defining a stronger notion called relative indifferentiability, and extend prior work to show that
a standard domain extender used in ECVRF satisfies this notion, in both the classical and quantum settings.
This final contribution is of independent interest and we believe it should be applicable elsewhere.

1 Introduction

A Verifiable Random Function (VRF), as introduced by Micali, Rabin, and Vadhan [MRV99], is a cryptographic
primitive that allows one to prove that outputs of a pseudorandom function (PRF) are correct, without
compromising the pseudorandomness of other outputs. More precisely, a prover first generates a secret
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key sk and a related public key pk. Then for any function input α, the prover can use sk to compute the
function output β := Fsk(α), together with a proof π ← Provesk(α) of its correctness. A verifier can
then use pk to check a claimed proof for a given input-output pair. Importantly, for any fixed pk—even a
maliciously generated one—each input should have a unique output for which it is feasible to prove correctness.
Moreover, outputs for which proofs have not yet been published should remain pseudorandom. Uniqueness
and pseudorandomness are just the two main security properties we ask of a VRF, and certain applications
may require other properties (see below).

VRFs have found applications in, for example, zero-knowledge proofs [MR01], lottery systems [MR02],
electronic cash [BCKL09], and DNS security [PWH+17, VGP+18]. Recently, they have received wide
attention thanks to their applications to cryptocurrencies like Algorand [GHM+17, CM19], Cardano [BGK+18,
DGKR18], and the Dfinity Blockchain [AMNR18]. More specifically, VRFs are used to implement
cryptographic sortition, in which a small ‘committee’ of protocol participants is selected periodically; a party
is in the committee when its VRF output (on a certain public input) is within some specified range. The
VRF’s uniqueness property helps to ensure that a party cannot improperly include itself in the committee,
while the pseudorandomness property conceals the committee’s makeup until the members verifiably reveal
themselves.1

ECVRF. A particularly elegant and efficient VRF construction is the Elliptic Curve VRF (ECVRF) of
Papadopoulos et al. [PWH+17], an ‘Internet draft’ version of which [GRPV22] is currently under consideration
by the Crypto Forum Research Group of the Internet Research Task Force. Its security is analyzed in the
Random Oracle Model (ROM), under the Decisional Diffie–Hellman (DDH) assumption for particular
elliptic-curve groups. In practice, an implementation of ECVRF is used for cryptographic sortition in the
deployed Algorand protocol.

There are certain differences between the original version of ECVRF [PWH+17] and some recent versions
of the Internet draft [GRPV22], which make significant parts of the security analysis from [PWH+17] no
longer applicable (see below for details). Moreover, the prior analysis is only for classical attackers, in
the classical ROM; it says nothing about whether the desired security properties hold against a quantum
attacker, including one in the quantumly accessible ROM (QROM) [BDF+11], where the adversary can query
a random oracle on superpositions of inputs.

At first glance, it may appear nonsensical to consider the ‘post-quantum’ security of a cryptographic
primitive like ECVRF that relies on ‘pre-quantum’ assumptions like the hardness of DDH or computing
discrete logs, which do not hold in the quantum setting due to Shor’s algorithm [Sho94]. However, a closer
look reveals that while ECVRF certainly requires such an assumption for pseudorandomness (because given a
discrete-log oracle, it is trivial to compute the secret key from the public key), it is less clear whether there are
efficient quantum attacks on ECVRF’s other desirable properties, like uniqueness.

Mixed pre- and post-quantum security. Specific motivation for understanding the mixture of ECVRF’s pre-
and post-quantum security properties comes from its use in applications like sortition. Here, pseudorandomness
is needed only in the ‘medium term’, i.e., during the public key’s lifetime in the protocol, to conceal which
parties will be selected for committees. So, a quantum adversary that breaks pseudorandomness many years
in the future, after a key is no longer in use, may not be a concern at all.

1We caution that while uniqueness is a critical property for secure sortition, it alone does not suffice to prevent a malicious party
from improperly including itself in committees. Specifically, it does not preclude the generation of a malformed public key that
induces a constant function (whose outputs are always in the relevant range). Sortition protocols include additional measures to
ensure that even maliciously generated public keys do not result in biases like this.
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By contrast, uniqueness may be needed in the ‘long term’: proofs of correct VRF evaluation may need to
be verified far into the future, e.g., to ensure correct committee membership when verifying a blockchain’s
history. Without post-quantum uniqueness, a future quantum attacker could potentially forge valid-looking
proofs and ‘fork’ the chain from any point in its history.

Therefore, systematically investigating post-quantum security is important for evaluating the actual
consequences of quantum computers for ECVRF and its applications. Positive results may allow new versions
of these applications to use simpler or less costly protections against future quantum attacks.

1.1 Contributions and Technical Overview

This work provides a multi-faceted security analysis of ECVRF as defined in (recent versions of) the Internet
draft [GRPV22], in both the classical and quantum settings. The main contributions are threefold.

Non-malleability and binding. First, we propose a new security notion called non-malleability (Section 5.1),
which essentially says that it is infeasible to generate a valid proof (for an honestly generated public key,
but an adversarially chosen input and output) that is different from all the proofs generated by the honest
prover. This property addresses the following potential issue in an application to distributed ledgers or
cryptocurrencies: an honest prover may announce a valid VRF proof, but while the proof is being ‘gossiped’
through the network, a malicious gossiper might try to modify the proof to a different valid one. This may
make it difficult for honest parties to reach consensus on which proof is the ‘correct’ one.2

In Section 5.3, we show that ECVRF (as defined in versions 10 and later of [GRPV22]) is non-malleable in
the ROM, assuming the hardness of the discrete-logarithm problem.3 (Conversely, since discrete logs are easy
to compute in the quantum setting, ECVRF is easily malleable by a quantum attacker.) Our proof technique is
similar to the one for Schnorr’s signature scheme [Sch89], using the generic forking lemma [BN06], though
the details are somewhat different. We note that this results in a quadratically loose concrete security bound
(see Theorem 5.6). However, just as with Schnorr signatures, we do not know if there is a matching attack,
i.e., the looseness might just be an artifact of the proof technique. (See Section 1.2 for further discussion.)

Additionally, in Section 5.2 we show that ECVRF satisfies another new notion we call full binding
(Section 5.1), assuming only that the hash functions used in ECVRF are collision resistant. In particular,
this proof holds even in the quantum setting. Full binding means that it is infeasible to generate two
distinct public-key-input-output tuples along with a single proof that is valid for both of them. In other
words, a valid proof is bound to a unique key, input, and output. (This notion is quite similar to binding
concepts for signatures, as recently defined in [BCJZ21, CGN20, CDF+21].) Lastly on this front, we show
in Theorem 5.4 that non-malleability combined with ‘trusted’ binding (a weaker notion than full binding)
implies strong non-malleability, i.e., given oracle access to the prover, it is infeasible to generate a ‘new’ valid
input-output-proof tuple.

Uniqueness: classical and post-quantum. Second, in Section 4 we prove the uniqueness of ECVRF as
defined in the Internet draft [GRPV22], against both classical and quantum attacks in the (Q)ROM. To see
that post-quantum uniqueness is even plausible, we first observe that the prior proof of classical uniqueness
is information theoretic: it does not rely on any intractability assumption (e.g., the hardness of computing
discrete logs), only the adversary’s bounded query complexity in the ROM. This is because an ECVRF proof

2We stress that this is only a hypothetical scenario, and we do not know of any proposed protocol that actually has this issue.
However, future applications might implicitly assume non-malleability of VRF proofs, for reasons like the ones described above.

3Version 10 was updated at our suggestion to achieve non-malleability; previous versions were trivially malleable.
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is essentially a statistically sound interactive proof of discrete-log equality [CP92], made non-interactive via
the Fiat–Shamir transform [FS86]. Indeed, we show that the soundness of this non-interactive proof system
(against a classical or quantum attacker) implies the uniqueness of ECVRF (against the same kind of attacker).
However, attempting to prove the soundness of ECVRF as defined in versions 2–10 of [GRPV22] ends up
revealing significant and subtle difficulties.4

Although the differences between the original and later versions of the Internet draft are syntactically
minor and well motivated, it turns out to be non-trivial to adapt the prior soundness proof to the latter. The key
difference is that, in the original version, the ‘challenge’ in the proof is defined as c := H(X,HTC(α),W ),
whereas in [GRPV22, versions 2 through 10] it is defined as c := H(HTC(X,α),W ), where H and HTC
are modeled as random oracles (and X is the public key, α is the VRF input, and W consists of some
additional data). Because X , which is part of the ‘statement’ to be proved, is no longer an explicit input
to H, we can no longer directly apply known (classical or quantum) soundness theorems for the Fiat–Shamir
transform [BR93, Unr17, DFMS19] to the modified construction.

At first glance, it may seem that the above issue can easily be overcome by using the fact that the ‘domain
extender’

C(x1, x2) := H2(H1(x1), x2) (1.1)

is indifferentiable from a random oracle [MRH04, CDMP05], even in the quantum setting [Zha19]. So, an
adversary has essentially the same advantage in breaking ECVRF’s soundness in the ‘real’ world as in the
‘ideal’ world, where the challenge is defined as c := H′(X,α,W ) for a random oracle H′, and HTC,H are
simulated using access to H′.

Unfortunately, this application of indifferentiability does not yield any useful conclusion for our purposes,
because it is easy to break soundness in the ‘ideal’ world. The essence of the problem is that the existing
indifferentiability definitions give the simulator too much power in our context. More specifically, the
simulator is allowed to ‘program’ the value of H := HTC(X,α), and the soundness experiment does not
make this query until after the adversary sees the challenge c = H′(X,α,W ) and outputs its attempted break.
Since H is part of the ‘statement’ that the adversary is attempting to prove, the simulator can easily tailor H
based on c, to yield a false statement for which the adversary’s proof verifies.

We stress that the above-described issue does not translate to an actual attack on any version of ECVRF;
it merely shows that the prior indifferentiability definitions and theorems are unsuitable for proving soundness
of certain versions of [GRPV22]. In particular, the simulator that is used to prove indifferentiability does not
exhibit the above-described ‘malicious’ behavior, but this fact is not exposed by the definitions and theorems.
To bridge this gap, we define and achieve an alternative notion called relative indifferentiability (summarized
below), which circumvents the above-described difficulties by suitably weakening the simulator in the ideal
world. Combining this with a careful sequence of steps, including the use of prior soundness theorems for
Fiat–Shamir [BR93, DFMS19], we ultimately prove the soundness, and hence uniqueness, of ECVRF in the
classical and quantum settings; see Theorem 4.14 for the formal statement.

We remark that in the classical setting, our ultimate concrete security bounds for uniqueness are fairly tight,
and are even meaningful for typical ECVRF parameters (i.e., concrete elliptic-curve groups and challenge
spaces). However, in the quantum setting the concrete bounds are necessarily looser, because they inherit
the prior Fiat–Shamir and indifferentiability bounds, which are nearly matched by known quantum attacks.
Therefore, ECVRF parameters will likely need to be adjusted in order to obtain meaningful levels of concrete
quantum security.

4In response to our observations, version 11 of [GRPV22] introduced a change to restore a more straightforward proof of (classical)
soundness using standard techniques. However, it is still useful to formally support the approach taken in earlier versions, which may
be used elsewhere, and to investigate post-quantum security.
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Relative indifferentiability and find-input oracles. As our final main contribution, in Section 3 we propose
a stronger notion of indifferentiability called indifferentiability relative to an auxiliary oracle—or relative
indifferentiability for short—and prove that the domain extender from Equation (1.1) satisfies this notion
(for a suitable kind of auxiliary oracle) in both the classical and quantum settings. This contribution is of
independent interest, and we believe that it should be applicable elsewhere.

Essentially, relative indifferentiability is an analog of ordinary indifferentiability where the construction
(in the real world), the simulator (in the ideal world), and the distinguisher all have access to the same auxiliary
oracle. Critically, the simulator has only query access to this auxiliary oracle; it does not get to simulate or
‘program’ it. For this reason, relative indifferentiability is a strengthening of ordinary indifferentiability, as
long as the auxiliary oracle is (efficiently) computable.

Our main theorems on this front (Theorems 3.13 and 3.18) say that the domain extender from Equation (1.1)
is indifferentiable from a random oracle, relative to a slightly augmented ‘inner’ function H1 (or HTC in the
ECVRF context), in both the classical and quantum settings. Essentially, making the inner function ‘honest’
by removing it from the simulator’s control circumvents the above-described difficulties in proving soundness
of ECVRF using indifferentiability.

Our relative-indifferentiability theorems for domain extension are analogs of prior ones showing ordinary
indifferentiability [CDMP05, Zha19], and our proofs can be seen as ‘refactorings’ of the prior proofs. The
key observation is that in the prior proofs, the simulators use very little of their ability to program the inner
function: they merely simulate it ‘honestly,’ as a (‘lazy’ classical, or ‘compressed’ quantum) random oracle.
So, the inner function can be ‘moved outside of’ the simulators, and instead be made an auxiliary oracle.
However, the simulators also need to be able to look up prior queries (if any) to the inner function that yields
certain outputs. We address this by augmenting the auxiliary oracle with an additional ‘find-input’ interface
that exposes exactly this functionality.

Ultimately, in an application of relative indifferentiability (like ours), one would typically need to show
that a construction is secure in the ‘ideal’ world, where the attacker has access to the auxiliary oracle, e.g., a
find-input oracle. In many (but certainly not all!) cases, including our own, this is fairly straightforward,
because the adversary already ‘knows’ all the queries that are made in the attack experiment (i.e., the
experiment does not make any secret queries). This task is more subtle in the quantum setting, but one can
use tools for ‘recording’ quantum queries, as provided in [Zha19].

1.2 Related and Future Work

As mentioned above, our non-malleability theorem for ECVRF has a quadratic concrete security loss. It is
natural to ask two questions: first, is such a loss inherent for black-box reductions from the ordinary discrete
logarithm problem? In the other direction, is there a tighter reduction under a stronger assumption, or in
a stronger model? Given recent tighter security analysis for Schnorr signatures in the Algebraic Group
Model (AGM) [FPS20] and under “higher-moment” discrete-log assumptions [RS21], analogous results for
ECVRF’s non-malleability seem plausible.

The recent work of [ESLR22] formalizes a folklore generic construction for VRFs, and analyzes the
uniqueness of all VRF schemes that fit this framework, including ECVRF. However, its analysis is in the
classical setting; in particular, it only considers the ROM, not the quantumly-accessible ROM. A future
direction would be to extend the analysis to the QROM, which would cover the uniqueness of ECVRF as a
special case.

Acknowledgments. We thank Mark Zhandry and Dominique Unruh for very helpful discussions about
compressed oracles and our ‘find-input’ variation thereof, Leo Reyzin for helpful discussions about ECVRF
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and its variants, and Iñigo Azurmendi, Peter Gǎzi, and Romain Pellerin for initial observations about the
malleability of early versions of ECVRF.

2 Preliminaries

We write x ← X for sampling an element x uniformly at random from a finite set X . For a randomized
algorithm A, we write y := A(x1, . . . ; ρ) for running A on input x1, . . . with random tape ρ to obtain
output y, and we write y ← A(x1, . . .) when ρ is chosen uniformly at random. IfA is deterministic, we write
y := A(x1, . . .).

2.1 Oracles

A quantumly accessible oracle is an oracle that, when queried, applies some unitary U on particular register(s)
of the querying algorithm. Any quantumly accessible oracle also has a generic classical interface, which
additionally measures the query register(s) before and after applying U . In particular, this allows a classical
algorithm to query the oracle (in a more limited way); note that here the query register(s), which hold classical
values, are already ‘measured’ prior to the query.

We say that a procedure with access to an oracle has query complexity Q if it makes at most Q queries
to that oracle. For a procedure with access to multiple oracles, its query complexity Q is a tuple whose ith
component is an upper bound on the number of queries it makes to its ith oracle. For notational convenience,
we sometimes also let Q denote the sum of its components, i.e., the procedure’s total query complexity.

In the (classical) random-oracle model (ROM) [BR93], a uniformly random functionH (having a specified
finite domain and range) is chosen at the beginning of the security experiment, and all parties—including
the ‘honest’ algorithms of the cryptographic construction, and the adversary attacking it—have classical
query access to H as an oracle. The quantum random-oracle model (QROM) [BDF+11] is defined in
the same way, except with quantum oracle access to H . Specifically, the oracle’s unitary is defined as
U |x, y⟩ = |x, y ⊕H(y)⟩, where ⊕ denotes the group operation on the range of H (which is a group without
loss of generality).

2.2 Cryptographic Assumptions

Here and in all subsequent definitions, there may be some fixed public parameters (e.g., the description of a
group) that are known to all algorithms and not explicitly written.

Definition 2.1 (Discrete Logarithm Problem). Let G be a cyclic group with known order q and known
generator B. We say that the discrete logarithm problem is (t, ϵ)-hard for (G, q, B) if, for any algorithm A
running in time at most t,

AdvDL(A) := Pr

[
x ∈ Zq and
X = Bx :

X ← G \ {e}
x← A(X)

]
≤ ϵ.

Note that the element X is chosen uniformly from the non-identity elements of the group G. We define the
discrete logarithm problem in this way so that it is identical to the problem of finding the secret key in the
ECVRF construction (Algorithm 1), where the public key is likewise required to be a non-identity element.
This is needed for certain ‘full’ security properties; see [GRPV22, Section 3].
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Definition 2.2 (Collision Resistance). Let H be a function with domain D. We say that H is (t, ϵ)-collision
resistant if, for any algorithm A running in time at most t,

AdvCR(A) := Pr

 x0, x1 ∈ D and
x0 ̸= x1 and

H(x0) = H(x1)
: (x0, x1)← A()

 ≤ ϵ.
Note that in the above experiment, A takes no explicit input. However, in the random-oracle model, the
oracle’s outputs act as A’s inputs, and the probability is quantified over the oracle and A’s random choices.

In the standard model, the above notion is not meaningful as defined, since there exists an adversary that
simply outputs a ‘hard-coded’ collision (whenever the function’s range is smaller than its domain). This
issue is usually addressed by considering a keyed family {Hk} of functions, giving A a randomly chosen
key k as input, requiring it to find a collision in Hk, and taking the probability over the choice of k and A’s
random tape. However, even without this change, it is still meaningful to consider the advantage of a specific
adversary, e.g., a reduction that breaks collision resistance given oracle access to an adversary against some
other security property. This is the approach we take in this work.

2.3 Verifiable Random Functions

Definition 2.3 (Verifiable Random Function). Let X ,Y respectively denote a domain and range, with Y
finite. A verifiable random function (VRF) from X to Y is a tuple of algorithms(Gen,Prove,Verify), where:

• The randomized key-generation algorithm Gen() outputs a public-secret key pair (pk, sk).
• For a secret key sk and function input α ∈ X , the (possibly randomized) proving algorithm
Provesk(α) := Prove(sk, α) outputs a proof π.

• For a public key pk, function input α ∈ X , and proof π, the deterministic verification algorithm
Verifypk(α, π) := Verify(pk, α, π) outputs some β ∈ Y ∪ {⊥}, where β ∈ Y denotes a valid proof
with associated function output β, and ⊥ ̸∈ Y is a distinguished value denoting an invalid proof.

The syntax presented above follows that of [GRPV22], and differs slightly from what is considered
in some earlier works, where there is a separately defined evaluation procedure Evalsk(α) := Eval(sk, α)
that takes a secret key sk and function input α ∈ X , and outputs a function value β ∈ Y ∪ {⊥}. The
above-defined syntax directly yields such an evaluation algorithm, which runs π ← Provesk(α) and outputs
β := Verifypk(α, π). For ECVRF, evaluation can even be done deterministically, because the output β is the
same regardless of the random choices made by Prove.

We require a VRF to have the following correctness property.

Definition 2.4 (Completeness). A VRF is (perfectly) complete if for a correctly generated key and proof,
verification always succeeds. That is, for any input α ∈ X ,

Pr

[
Verifypk(α, π) ∈ Y :

(pk, sk)← Gen()
π ← Provesk(α)

]
= 1.

We next consider various security properties for VRFs.

7



Definition 2.5 (Full Uniqueness). A VRF that uses one or more oracles is (Q, ϵ)-fully unique if any
algorithm A with query complexity Q can produce a public key, a VRF input, and two valid proofs that yield
different function outputs with probability at most ϵ. That is,

Advf-uniq(A) := Pr

 β0 := Verifypk∗(α
∗, π∗0) ̸= ⊥ and

β1 := Verifypk∗(α
∗, π∗1) ̸= ⊥ and

β0 ̸= β1

: (pk∗, α∗, π∗0, π
∗
1)← A()

 ≤ ϵ.
Note that in the above definition,A takes no explicit input, but it has access to a random oracle (which is what
the probability is taken over).

We note that the original uniqueness definition for a VRF is perfect, i.e., for any (possibly malformed)
public key and any function input, there is at most a single function output for which a valid proof exists.
However, the full uniqueness property is merely computational, i.e., it says that it is infeasible to find a
violation of uniqueness.

Other previously defined properties of VRFs include (trusted or full) collision resistance, pseudorandom-
ness, and unpredictability. We will not need any of these in this work, so we leave them undefined here and
refer the interested reader to the prior works [MRV99, PWH+17].

2.4 ECVRF

Algorithm 1 formally defines the version of ECVRF of primary interest for this work. In brief, a secret key is
a nonzero exponent x ∈ Zq \ {0}, and the corresponding public key isX = Bx ∈ G. Each VRF input α ∈ X
maps to some H ∈ G via a hash function HTC, which stands for ‘hash to curve’ (see, e.g., [FHSS+22]). The
prover computes Z := Hx and proves that (B,X,H,Z), after cofactor clearing, is a Diffie–Hellman tuple.
(This is done using a Fiat–Shamir-transformed variant of the Chaum–Pedersen protocol; see Section 4 for
details.) The actual VRF output is a hash of Z after cofactor clearing.

Comparison to other versions. The ECVRF construction defined in Algorithm 1 very closely follows
version 10 of [GRPV22], with the following main differences:5

• In [GRPV22], the blinding term r in Line 7 of Prove is not chosen uniformly at random, but instead is
generated in a deterministic manner by applying a pseudorandom function to the secret key x and the
hash digest H (hence the entire proof procedure is also deterministic). For simplicity, we treat r as
uniformly random in our description and analysis.

• In [GRPV22], Verify has a ‘key validation’ option, which additionally checks that the public keyX , after
cofactor clearing, is not the identity element. While key validation is essential for certain properties of
ECVRF (like collision resistance), it is not needed for any of the properties studied in this work, so for
simplify we omit it from our presentation.

Other versions of [GRPV22], and its precursor [PWH+17], define the ‘challenge’ value c differently,
by using different inputs to one or both of the hash functions HTC,H. Most notably, in response to our
observations about the technical difficulties in proving uniqueness for versions 2 through 10 of [GRPV22],
versions 11 and later define c := H(X,H,Z,RB, RH) on Line 8 (and they check this equality on Line 14).

5Another slight difference is that in [GRPV22], the input to HTC is more general: it consists of a ‘salt’ value together with α,
where the salt is determined by the specific choice of ciphersuite (see [GRPV22, Section 7.9]). In every ECVRF ciphersuite defined
in [GRPV22], the salt is simply the public key X , which matches our presentation.
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Algorithm 1 Elliptic Curve VRF (ECVRF)
Public parameters:

• X ,Y respectively denote the domain and range of the VRF.
• (G, q, B) denotes a cyclic group of prime order q with generator B, which is a subgroup of a group E

(for which checking membership is meant to be fast), and the cofactor f = |E|/|G| is not divisible by q.
• HTC : E×X → G and H : E4 → H, where H ⊆ Zq is sufficiently large, are two hash functions (often

modeled as random oracles).
• E : E→ Y is another hash function (not necessarily modeled as a random oracle).

Transformations between elements of Zq, H, or E and their representations as bit strings are omitted, though
we emphasize that canonical encodings and decodings are needed for non-malleability.

1: function Gen()
2: x← Zq \ {0}; X := Bx ∈ G
3: return (pk := X, sk := x)

4: function Prove(x ∈ Zq, α ∈ X )
5: H := HTC(X,α) ∈ G
6: Z := Hx ∈ G
7: r ← Zq; RB := Br ∈ G; RH := Hr ∈ G
8: c := H(H,Z,RB, RH) ∈ H
9: s := r + x · c ∈ Zq

10: return π := (Z, c, s)

11: function Verify(X ∈ E, α ∈ X , π = (Z ∈ E, c ∈ H, s ∈ Zq))
12: H := HTC(X,α) ∈ G
13: RB := BsX−c ∈ E; RH := HsZ−c ∈ E
14: if c = H(H,Z,RB, RH) then return E(Zf ) ∈ Y else return ⊥

Note that here X is an explicit input to H, even though it is also used to derive the H-input H := HTC(X,α).
Our analysis in Sections 4 and 5 shows that properties like binding, non-malleability, and uniqueness can be
proved even for the earlier versions of [GRPV22], though new ideas are needed. The differences in hashing
do not substantially affect the prior proofs of other properties like pseudorandomness and collision resistance.

3 Relative Indifferentiability and Domain Extension

In this section, we put forth the notion of indifferentiability relative to an auxiliary oracle, or simply relative
indifferentiability, in both the classical and quantum settings. This will be needed later in our analysis of the
full uniqueness property of ECVRF (Section 4).

3.1 Indifferentiability Relative to an Auxiliary Oracle

Our definition of indifferentiability relative to an auxiliary oracle is a natural extension of the original definition
from [MRH04]: all entities—the distinguisher D, the simulator S , and the construction C—additionally have
access to some auxiliary oracle O. In the quantum setting (as considered in, e.g., [Zha19]), all oracles can be
queried in superposition.
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Definition 3.1. Let H′ be a random function, and CO,H be a procedure with the same domain and range
as H′, which can query a (possibly stateful) oracle O and a random function H. We say that CO,H is
(QD, QS , ϵ)-indifferentiable from a random oracle relative to O if there exists a simulator SO,H′ with query
complexity QS per invocation such that, for any distinguisher D with query complexity QD,

|Pr[DO,H,CO,H
accepts]− Pr[DO,SO,H′

,H′
accepts]| ≤ ϵ.

In ordinary indifferentiability, the simulator S gets to simulate (to the distinguisher D) all the oracles
to which the construction C has access. By contrast, in relative indifferentiability, the simulator S does
not simulate the auxiliary oracle O; instead, S (and D) can merely query O. This implies that relative
indifferentiability is at least as strong as ordinary indifferentiability (for a corresponding query complexity),
as long as O is computable. That is, if CO,H is (classically or quantumly) indifferentiable from a random
oracle relative to O, then it is also (resp., classically or quantumly) indifferentiable from a random oracle
in the ordinary sense. This is simply because, instead of S having O as an oracle, S can just implement O
internally to answer O-queries for itself and the distinguisher.

Remark 3.2. Definition 3.1 is tailored to this work’s focus on information-theoretic security, i.e., both the
simulator S and distinguisher D can use unbounded computation; their number of queries is the only
complexity measure. In the context of computational security, one may additionally require the simulator to
be efficient, either asymptotically or concretely. All of the indifferentiability simulators considered in this
work are efficient according to any reasonable notion, even when the distinguishers are not required to be.

Indistinguishability and consistency. Indifferentiablity is implied by the conjunction of two weaker notions
called indistinguishability and consistency, as defined in [Zha19]. Here we adapt those definitions to work
relative to an auxiliary oracle.

Definition 3.3. Let H, H′, and O be as in Definition 3.1. A simulator SO,H′ is (QD, ϵ)-indistinguishable
from a random oracle relative to O if for any distinguisher D with query complexity QD,

|Pr[DO,H accepts]− Pr[DO,SO,H′
accepts]| ≤ ϵ.

Definition 3.4. Let H′ and O be as in Definition 3.1. A simulator SO,H′ is (QD, ϵ)-consistent for C relative
to O if, for any distinguisher D with query complexity QD,

|Pr[DO,SO,H′ ,CO,SO,H′

accepts]− Pr[DO,SO,H′ ,H′
accepts]| ≤ ϵ.

Lemma 3.5 (Adapted from [Zha19, Lemma 6]). LetH′ andCO,H be as in Definition 3.1, and suppose thatC
has query complexity QC = (QC,1, QC,2) per invocation. Then CO,H is (QD, QS , ϵ1 + ϵ2)-indifferentiable
from a random oracle relative to O if there is a simulator SO,H′ with query complexity QS per invocation
that is both ((QD,1 +QC,1 ·QD,3, QD,2 +QC,2 ·QD,3), ϵ1)-indistinguishable from a random oracle, and
(QD, ϵ2)-consistent for C, relative to O.

The proof is an easy adaptation of the (straightforward) one given in [Zha19], so we only provide a brief
sketch: the proof goes through one intermediate hybrid experiment where the distinguisher is given the oracles
O,SO,H′

,CO,SO,H′ . It directly invokes consistency to show that this hybrid is indistinguishable from the ‘ideal’
experiment in Definition 3.1, and uses indistinguishability to show that the hybrid is also indistinguishable
from the ‘real’ experiment. This latter connection uses a reduction that internally evaluates C using its
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two oracles whenever the distinguisher queries its third oracle, which yields the query complexity from the
indistinguishability hypothesis.

We stress that for the above lemma to apply, the same simulator S must be both indistinguishable and
consistent. This is why these are defined as properties of the simulator, not the procedure C.

3.2 Find-Input Oracles

Definition 3.1 above introduces a more general notion of indifferentiability, which requires specifying an
auxiliary oracle O. In this work, we focus on what we call find-input oracles. These implement a (classical)
‘lazy’ or (quantum) ‘compressed’ random oracle, and also have a second interface that exposes what is called
the FindInput function. (As usual, in the quantum setting, this interface is accessible in superposition.) In
essense, FindInput takes a value in the range of the oracle, and returns a previously queried input that maps to
that range value, or a failure symbol if no such input exists. We first recall a few formalisms that will be used
to define (both classical and quantum) find-input oracles.

Definition 3.6 (Database). Let X ,Y be two finite sets, and let ⊥ ̸∈ X ∪ Y denote a distinguished value. A
database D over domain X and range Y is an ordered list of pairs from (X × Y) ∪ {(⊥,⊥)}, where:6

• the pairs are sorted by their first entries (under some suitable ordering of X ),
• all (⊥,⊥) pairs are at the end of the list,
• for each x ∈ X , there is at most one y ∈ Y for which (x, y) ∈ D; if there is such a y, we write
D(x) = y, otherwise we write D(x) = ⊥.

We say that D contains a collision if it has two pairs (x, y), (x′, y) for some distinct x, x′ ∈ X and some
y ∈ Y .

Definition 3.7 (Database insertion). For a database D over domain X and range Y having at least one
(⊥,⊥) pair, and a pair (x, y) ∈ X × Y where D(x) = ⊥, define D ∪ (x, y) to be the new database obtained
by inserting (x, y) into D at the appropriate location (to maintain the sorted order), and removing one (⊥,⊥).

We remark that the assumed existence and removal of a (⊥,⊥) pair ensure that the database has the same
size before and after the insertion operation, which is convenient in the quantum setting (though it is not
needed in the classical setting).

Definition 3.8 (FindInput). For a database D over domain X and range Y , and some y ∈ Y , the (classical)
procedure FindInput(D, y) outputs an element of X ′ := X ∪ {⊥} as follows: it checks whether there is an
x ∈ X for which (x, y) ∈ D. If so, it outputs the smallest such x; otherwise, it outputs ⊥.7

Definition 3.9 (FILO). For finite domain X and range Y , a classical find-input lazy oracle (FILO) is a
stateful oracle O = (G,FIG) that is initialized with an empty database D and provides two classical interfaces,
G and FIG, as follows:

• On query G(x) where x ∈ X , first append a (⊥,⊥) entry to D. Then, if D(x) = ⊥, choose y ← Y
and set D := D ∪ (x, y). Finally, return D(x).

6See Remark 3.11 below for a simpler alternative formulation that suffices for information-theoretic results.
7This definition of FindInput has some minor syntactic differences from the one given in [Zha19, Section 5.3], where the input is a

pair (y, x2), and the output is (1, (x, x2)) when the search succeeds, and (0,0) otherwise. Either version can trivially be constructed
from the other, so they are equivalent. Our version is better suited to the definition of find-input oracles, because it does not involve
any inputs to other oracles (namely, x2).
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• On query FIG(y) where y ∈ Y , return FindInput(D, y).

Queries to both interfaces are counted toward query complexity for this oracle.

In short, a FILO implements a lazy random oracle G, and also finds preimages of given G-outputs
according to the query history thus far.

Definition 3.10 (FICO). For finite domain X and range Y , a find-input compressed oracle (FICO) is a
stateful oracle O = (G,FIG) that is initialized with an empty database D and provides two interfaces, G
and FIG, defined as follows. However, the classical interface, which is needed by classical cryptographic
constructions, is limited to G alone (following Section 2.1).

1. G is implemented as an ordinary ‘compressed standard oracle’ CStO (or equivalently, a ‘compressed
phase oracle’ CPhsO) with (growing) database D in superposition, as defined in [Zha19, Section 3].
Essentially, CStO applies an efficient ‘decompression’ unitary called StdDecomp to the database,
followed by the standard query unitary, followed by ‘recompression’ (which is actually identical to
decompression, since it is an involution).

2. FIG performs the unitary defined on the computational basis states as

|y, z⟩ ⊗ |D⟩ 7→ |y, z ⊕ FindInput(D, y)⟩ ⊗ |D⟩

for y ∈ Y and z ∈ X ′ = X ∪ {⊥}, where X ′ is (without loss of generality) an abelian group with
operation ⊕ and identity element ⊥.
Equivalently, FIG can be defined to have a ‘phase interface,’ which performs the unitary defined by

|y, χ⟩ ⊗ |D⟩ 7→ χ(FindInput(D, y)) · |y, χ⟩ ⊗ |D⟩,

where χ ∈ X̂ ′ is a character of X ′, i.e., a group homomorphism from X ′ to the complex unit circle.8
Since χ outputs a scalar ‘phase,’ this interface can be seen as introducing the phase to either the query
registers |y, χ⟩, or the database D itself.

As with a FILO, queries to both interfaces are counted toward the query complexity for this oracle.

In short, a FICO implements a compressed oracle, and also gives superposition access to preimages
according to the query history. Zhandry [Zha19] shows that having (quantum) access to a compressed oracle
alone—equivalently, having access to a FICO without using its find-input interface—is identical to having
quantum access to a random oracle.

Remark 3.11. We note that because all of our results relating to compressed oracles are information theoretic
(i.e., they depend only on the adversary’s query complexity and not its running time), we could alternatively
use the computationally inefficient but technically simpler approach of representing find-input oracles using
the full ‘value tables’ of partial functions, as explicated in [Unr21, Section 3.1]. In this approach, the state
of a FILO (or FICO) reflects a partial function (in superposition) from X to Y , which is represented by an
|X |-dimensional vector over Y ∪ {⊥} (initialized to the empty function), and FindInput is defined in the
obvious way. We adhere to the efficient compact representations from [Zha19] in order to make all of our
(quantum) algorithms efficient, which may be useful in future work.

8Recall that the character group X̂ ′ is isomorphic to X ′, but non-canonically. The equivalence of FIG’s standard and phase
interfaces follows by applying the (inverse) quantum Fourier transform before and after each query.
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Quantum query bounds. Several known bounds on quantum query complexity for random oracles, which
were re-proved using compressed oracles in [Zha19], also extend easily to FICOs. Here we state this formally
for collision finding, which will be used in our quantum indifferentiability proofs. Similar results hold for the
optimality of Grover search [Gro96] and for more general relation-finding, including the k-sum problem, by
adapting the arguments in [Zha19, Section 4] to FICOs.

Lemma 3.12 (Adapted from [Zha19, Theorem 2]). Let O = (G,FIG) be a FICO with range Y and (grow-
ing) database D. After an adversary makes Q queries to G and any number of queries to FIG, we have

∥P · |ψ⟩∥ ≤ O(
√
Q3/|Y|),

where |ψ⟩ is the joint state of the adversary and the oracle, and P is the projection onto the span of basis
states where D contains a collision. In particular, the database will contain a collision with probability
O(Q3/|Y|).

Proof summary. The proof closely parallels the ones from [Zha19, Theorems 1 and 2], so we do not repeat
the details. The only difference is that we need to address the effect of FIG-queries. It suffices to observe that
an FIG-query does not increase ∥P · |ψ⟩∥, because it does not alter the database D; it only changes the phases
in the joint state |ψ⟩. Formally, we have that ∥P · FIG · |ψ⟩∥ = ∥P · |ψ⟩∥. Finally, the prior analysis of the
effect of G-queries goes through unchanged here, because it is agnostic to phases.

3.3 Relative Indifferentiability of a Domain Extender

Let O = (H1,FIH1) be a (classical or quantum) find-input oracle with domain X1 and range Y1, and
H2 : Y1 ×X2 → Y2 be a random oracle. Define CO,H2 : X1 ×X2 → Y2 as

CO,H2(x1, x2) = H2(H1(x1), x2).

Notice that C does not query the FIH1 interface of O, so it can be instantiated with just ordinary (classical or
quantumly accessible) random oracles H1,H2. Clearly, C’s query complexity per invocation is QC = (1, 1)
in the classical setting, and QC = (2, 1) in the quantum setting; here the first entry is 2 because C also needs
to ‘uncompute’ the intermediate value H1(x1) after invoking H2.

The ordinary indifferentiability of CH1,H2 from a random oracle is proved in [CDMP05, Lemma 1] for the
classical setting, and in [Zha19, Theorem 4] for the quantum setting. Here we extend these results to show
that C satisfies our stronger notion of indifferentiability relative to the find-input oracle O, where only H2 is
simulated.

Our proofs of relative indifferentiability are mainly ‘refactorings’ of the proofs of ordinary indifferentiability
from [CDMP05, Zha19]. The key observation is that, while ordinary indifferentiability allows the simulator
to simulate H1 in whatever fashion it chooses, the cited works’ simulators actually use very little of this
power: they merely implement H1 as an ordinary (lazy or compressed) oracle, and suitably ‘record’ the
distinguisher’s queries to it. This is in contrast to their simulations of H2, which use more sophisticated
strategies that rely on having suitable access to the H1 database. Our main insight is that both H1 and this
database access can be encapsulated as a find-input oracle and made ‘external’ to the simulator (instead of
being simulated by it), and the proofs can be adapted to this setting of relative indifferentiability. We note that
this adaptation is not entirely trivial, because the distinguisher also gets find-input access to H1, so we need to
extend the proof techniques to show that this extra power does not help the distinguisher.

We also point out that in both the classical and quantum settings, the simulators from our proofs of
indifferentiability never query the H1 interface of oracle O. Furthermore, looking ahead, in our analysis of

13



the full uniqueness of ECVRF (Section 4), the distinguisher never queries the FIH1 interface of O. Therefore,
for our application, it would suffice to define the indifferentiability experiments so that S has access to FIH1

but not H1, and D has access to H1 but not FIH1 . We choose to give both S and D full access to O in because
this yields a more natural and general extension of indifferentiability, which may be useful in other contexts.

3.3.1 Classical Indifferentiability

We start with the classical setting, proving the following theorem.

Theorem 3.13. When O = (H1,FIH1) is a FILO and H2 is a classical random oracle, the domain exten-
der C is (QD = (QD,1, QD,2, QD,3), QS = (1, 1), ϵ)-indifferentiable from a random oracle relative to O
(Definition 3.1), where

ϵ =
2(QD,1 +QD,2)QD,3 + (QD,1 +QD,3)

2

2|Y1|
≤

3Q2
D

4|Y1|
.

Proof. We need to construct a simulator SO,H′ that has access to O and a random oracle H′ : X1 ×X2 → Y2,
and simulates answers to a distinguisher D’s H2-queries. For simplicity, assume that D never repeats a query
to H1, nor to its second or third oracles; this is without loss of generality because H1,H2,H

′ are functions,
and S can also be implemented as a function using memorization. Note that D may repeat queries to FIH1 ,
because it is stateful and its answers may change as queries are made to H1.

The simulator S is defined as follows: on query (y, x2), it queries x1 := FIH1(y). If x1 ̸= ⊥ (i.e., if
x1 ∈ X1), then S queries H′(x1, x2) and forwards the response to D. Otherwise, S returns a uniformly
random element in Y2. Clearly, S has query complexity QS = (1, 1) per invocation.

The indistinguishability and consistency of S (with suitable bounds, and using the fact that CH1,H2

has classical query complexity QC = (1, 1) per invocation) are shown below in Lemmas 3.14 and 3.15,
respectively. By Lemma 3.5, this establishes the claim.

Lemma 3.14. For any Q̃ = (Q̃1, Q̃2), the simulator S defined in the proof of Theorem 3.13 is (Q̃, 0)-
indistinguishable (Definition 3.3), i.e., the simulation is perfect.

Proof. Following the definition of indistinguishability, consider a distinguisher D̃ with query complexity Q̃
that is given access either to oraclesO,H2 (the ‘real’ experiment) or to oraclesO,SO,H′ (the ‘ideal’ experiment).
As above, we assume without loss of generality that D̃ never repeats a query to H1 or to its second oracle
(whether H2 or S).

We next observe that the database D1 for O grows identically in both experiments. This is because FIH1-
and H2-queries do not change D1, and S never queries H1, hence it also does not change D1. Therefore, D1

can be changed only by an explicit H1-query made by D̃. This implies that answers to D̃’s O-queries are
answered identically in both experiments, since the answers are determined solely by D1.

Now we consider D̃’s queries to its second oracle, i.e., H2 in the real experiment and S in the ideal one.
Consider a query (y, x2), which by assumption has never been queried before. In the real experiment, the
answer is a fresh uniformly random element of Y2. In the ideal experiment there are two cases:

• If there is no x1 such that D1(x1) = y, then S returns a fresh uniformly random element y ← Y2 as
the answer.

14



• Otherwise, there was a previous H1(x1) query (by D̃) whose output is y, i.e., D1(x1) = y. Recall
that S queries H′(x1, x2) and forwards the answer to D̃. We claim that S has not queried H′(x1, x2)
previously, so the answer is a fresh uniformly random element of Y2. To see this, observe that any
previous H′(x1, x2) query by S must have been induced by a previous (y′, x2) query to S (by D̃) where
y′ = D(x1) = y. Therefore, D̃ previously queried (y, x2), which contradicts the hypothesis that it is a
new query.

So, in both experiments, each of D̃’s queries to its second oracle is answered by a fresh uniform element
of Y2. This completes the proof.

Lemma 3.15. The simulator S defined in the proof of Theorem 3.13 is (QD, ϵ)-consistent (Definition 3.4),
where QD, ϵ are as in the statement of Theorem 3.13.

Proof. Following the definition of consistency, consider a distinguisher D̃ with query complexity QD =

(QD,1, QD,2, QD,3) that is given access either to oracles O,SO,H′
,CO,SO,H′

(the ‘real’ experiment) or to
oracles O,SO,H′

,H′ (the ‘ideal’ experiment), where H′ : X1 ×X2 → Y2 is a random oracle.
The rest of the proof proceeds via a series of hybrid experiments, starting from the ideal experiment and

ending with the real experiment.

Hybrid 0 is the ideal experiment.

Hybrid 1 is the ideal experiment, except that whenever D̃ queries its third oracle on (x1, x2), the experiment
first queries y := H1(x1) before answering with H′(x1, x2). Note that this adds (x1, y) to the
database D1 underlying O, if it was not already present.

Claim 3.16. The difference between the probabilities that D̃ accepts in Hybrids 0 and 1 is at most

(QD,1 +QD,2) ·QD,3

|Y1|
≤

Q2
D

4|Y1|
.

Let Query be the event that there ever exists an x1 ∈ X1 such that D̃ has queried its third oracle on (x1, x2)
for some x2, and FIH1(y) for y = D1(x1) has been queried (either directly, or indirectly by querying S(y, x′2)
for some arbitrary x′2), but D̃ has not queried H1(x1) directly. We claim that if Query does not occur, then D̃’s
views in Hybrids 0 and 1 are identically distributed, so the distinguishing advantage between Hybrids 0 and 1
is at most Pr[Query], and that this is at most the bound stated in the claim.

To see this, suppose that D̃ has queried its third oracle on some (x1, x2) and has not (yet) queried H1(x1)
directly. Then (x1, y = D1(x1)) is in D1 in Hybrid 1, but not in Hybrid 0. However, the only way this
difference can possibly affect D̃’s view is if FIH1(y) is eventually queried (either directly or indirectly),
because no other queries’ answers are affected by this additional database entry. In addition, since y is
uniformly random and independent of D̃’s view until FIH1(y) is queried, every (direct or indirect) query
to FIH1 has probability at most 1/|Y1| of making Query occur due to this particular x1. Since FIH1 is queried
at most QD,1 +QD,2 times, and there are at most QD,3 values of x1 that may cause Query to happen, the
claimed bound on Pr[Query] follows by the union bound.

Hybrid 2 is the same as Hybrid 1, except that whenever D̃ queries its third oracle on (x1, x2), causing the
experiment to query y := H1(x1), the experiment sets x′1 := FIH1(y) and returns H′(x′1, x2). (Observe
that x′1 ̸= ⊥ because (x1, y) ∈ D1 when FIH1(y) is called.)
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Claim 3.17. The difference between the probabilities that D̃ accepts in Hybrids 1 and 2 is at most

(QD,1 +QD,3)
2

2|Y1|
≤

Q2
D

2|Y1|
.

Let Collision be the event that there ever exist distinct x1, x′1 ∈ X1 such that D1(x1) = D1(x
′
1). Clearly,

D̃’s views in Hybrids 1 and 2 are identically distributed unless Collision happens, because in the absence of
any collisions, x′1 = x1 in the above procedure. Since an entry can be added to D1 only when D̃ queries H1

or its third oracle, the distinguishing advantage between Hybrids 1 and 2 is at most Pr[Collision], which is
bounded by the expression in the above claim.

Finally, we argue that Hybrid 2 is identical to the real experiment. In the latter, D̃’s third oracle is CO,SO,H′ ,
where recall that C(x1, x2) = S(H1(x1), x2). Unrolling this according to the definition of S , this first queries
y := H1(x1), then queries x′1 := FIH1(y), and since x′1 ̸= ⊥ because (x1, y) is in the database, the answer is
H′(x′1, x2). This is exactly Hybrid 2, as claimed. This completes the proof of Lemma 3.15.

Comparison with [CDMP05]. We briefly discuss the differences between our proof of Theorem 3.13 and
that of [CDMP05, Lemma 1], which states that C satisfies ordinary indifferentiability.

In the security experiment for the ordinary indifferentiability of CH1,H2 , the distinguisher D has access
to H1 but not FIH1 , and S additionally gets to simulate H1. In the proof from [CDMP05], S internally
implements H1 via lazy sampling, maintaining a database D1 so that it can compute FIH1 on its own
whenever D makes an H2-query. By contrast, our simulator does not simulate H1, and to handle H2 queries it
explicitly queries FIH1 .

Another important difference is the following: observe that in both [CDMP05] and here, D can
conditionally induce an H1-query by querying its third oracle (either C or H′), which in the real experiment
can change the database D1 but in the ideal experiment cannot. (Note that D does not receive the output
from H1.) Since D has access to FIH1 in our setting, we must take into account the possibility that D tries
to distinguish the two experiments by querying FIH1 on the output of H1 for such an induced query. This
is handled by Claim 3.16, and is the reason why our concrete security bound is slightly worse (by a small
constant factor) than the one in [CDMP05].

3.3.2 Quantum Indifferentiability

We now turn to the quantum setting, and prove the following theorem.

Theorem 3.18. When O = (H1,FIH1) is a FICO and H2 is a quantumly accessible random oracle, CO,H2 is
(QD = (QD,1, QD,2, QD,3), QS = (2, 1), ϵ)-indifferentiable from a random oracle relative to O, where

ϵ = O(Q2
D/

√
|Y1|).

A more refined bound on ϵ can be obtained from Lemmas 3.19 and 3.20 below. The constant factors
hidden by the O(·) notation are explicit and moderate, and can be extracted from the proofs given in [Zha19].

Proof. We define a simulator SO,H′ that simulates quantum access to an oracle H2 : Y1 × X2 → Y2 as
follows. It internally implements a random function H̃ : Y1 ×X2 → Y2 as a compressed oracle, and answers
H2-queries by applying the unitary defined by the following action on basis states:

|(y1, x2), z⟩ 7→

{
|(y1, x2), z ⊕ H′(x1, x2)⟩ if x1 := FIH1(y1) ̸= ⊥
|(y1, x2), z ⊕ H̃(y1, x2)⟩ otherwise.
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This unitary is straightforward to implement with a single query to each of H′, H̃ and two queries to FIH1 ,
almost exactly as done in [Zha19, Appendix B.4]. The only difference is that the previous simulator’s
local FindInput computation (and uncomputation) are here implemented by querying FIH1 . So, S’s query
complexity per invocation is QS = (2, 1).

The indistinguishability and consistency of S (with suitable bounds, and using the fact that CH1,H2

has quantum query complexity QC = (2, 1) per invocation) are shown below in Lemmas 3.19 and 3.20,
respectively. By Lemma 3.5, this establishes the claim.

The following two lemmas show the relative indistinguishability and consistency of S. They closely
parallel [Zha19, Lemmas 8 and 13], which show the ordinary versions of these properties for an analogous
simulator. The proofs even use the same hybrid experiments as in [Zha19], except that here the distinguisher
additionally has (quantum) access to FIH1 . It is straightforward to extend the analysis from the prior proofs to
handle this setting; we give the modified proofs in Appendix A.

Lemma 3.19. For any Q̃ = (Q̃D,1, Q̃D,2), the simulator S from the proof of Theorem 3.18 is (Q̃, ϵ)-
indistinguishable (Definition 3.3), where

ϵ = O(Q̃D,1 · (Q̃1/2
D,1 + Q̃D,2)/

√
|Y1|).

Lemma 3.20. The simulator S from the proof of Theorem 3.18 is (QD, ϵ)-consistent (Definition 3.4),
where QD is as in the statement and

ϵ = O((QD,1 +QD,3)
3/2/

√
|Y1|) = O(Q

3/2
D /

√
|Y1|).

4 Full Uniqueness of ECVRF

In this section we show that ECVRF unconditionally has full uniqueness (Definition 2.5) against both classical
and quantum attackers, in the random-oracle model (ROM) and the quantumly accessible random-oracle
model (QROM), respectively. To achieve this, we proceed along several steps.

In Section 4.1 we recall the necessary background on proof systems. Then in Section 4.2 we give (a slight
variant of) the Chaum–Pedersen Σ-protocol for proving equality of discrete logarithms [CP92], along with a
self-contained proof of its soundness in our setting. In Section 4.3 we apply the Fiat–Shamir transformation
to obtain a non-interactive proof system, and (unconditionally) obtain the soundness of its verifier in the
ROM and QROM using the approach of [FS86, BR93] and a theorem of [DFMS19], respectively. However,
the resulting non-interactive proof does not quite match the one implicit in ECVRF, due to differences in
how the hashing is done, and prior indifferentiability theorems are not sufficient (for the reasons given in
the introduction). To bridge this gap, in Section 4.4 we invoke the theorems on relative indifferentiability
from Section 3.3. Finally, in Section 4.5 we show that the soundness of the non-interactive proof implies full
uniqueness of ECVRF.

4.1 Proof Systems

As background, here we recall the notion of a Σ-protocol and a noninteractive proof system, and the definitions
of soundness for them.
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Definition 4.1 (Σ-protocol). A Σ-protocol for a language L, with challenge space H, is a three-message
interactive proof system consisting of a prover P = (P0, P1) and a deterministic verifier V .9 For a given
statement x and a witness w, the protocol proceeds as follows:

1. P computes a commitment R← P0(x,w).
2. A uniformly random challenge c← H is chosen and given to P .
3. P then generates a response s← P1(c).
4. V (x,R, c, s) either accepts or rejects.

A variety of security properties are often associated with Σ-protocols and other proof systems, such as
(honest-verifier) zero knowledge, special and simulation soundness, etc. In this work, we only need the notion
of ordinary soundness (we do not even explicitly need completeness). For a comprehensive description of
other properties, including in the quantum setting, see [Unr17].

Definition 4.2 (Soundness, Σ-protocol). A Σ-protocol (or just its verifier) for a language L has soundness
error ϵ if no (computationally unbounded) algorithm A = (A0,A1), acting as a prover, can cause the verifier
to accept an invalid statement (of A’s choice) with probability more than ϵ. That is,

Advsound
V (A) := Pr

 V (x,R, c, s) accepts
and x /∈ L :

(x,R)← A0()
c← H

s← A1(c)

 ≤ ϵ.
Note that the above definition is statistical, i.e., it places no restrictions on the adversary’s running time.

Definition 4.3 (Non-interactive proof system). A non-interactive proof system for a language L is a pair of
algorithms (P, V ), where:

• Given a statement x and a witness w, the prover P (x,w) outputs a proof π.
• Given a statement x and a proof π, the deterministic verifier V (x, π) either accepts or rejects.

Definition 4.4 (Soundness, non-interactive proof system). A non-interactive proof system (P, V ) (or just
its verifier V ) for a languageL that uses one or more oracles is (Q, ϵ)-sound if no (computationally unbounded)
algorithm A with query complexity Q can cause the verifier to accept an invalid statement (of A’s choice)
with probability more than ϵ. That is,

Advsound
V (A) := Pr

[
V (x, π) accepts

and x /∈ L : (x, π)← A()
]
≤ ϵ.

Note that in the above definition, A takes no explicit input, but it has access to one or more (typically random)
oracles, which is what the probability is taken over.

Fiat–Shamir. In Algorithm 2 we recall the Fiat–Shamir transformation [FS86], which transforms a
Σ-protocol into a non-interactive proof system.

The following result addresses the soundness of the Fiat–Shamir transformation on Σ-protocols, in the
(Q)ROM. The first part, which concerns the ROM, is from [FS86, BR93]. The second part, which concerns
the QROM, is from [DFM20, Theorem 3] (improving on [DFMS19, Theorem 8]). We point out that all these

9The component P1 represents a ‘continuation’ of P0, and implicitly has access to all of its inputs and random choices.
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Algorithm 2 Fiat–Shamir transformation of Σ-protocol (P, V ) with challenge space H

Public parameters: Random oracle H whose range is H.
1: function PFS(x,w)
2: R← P0(x,w); c := H(x,R); s← P1(c)
3: return π = (R, s)

4: function VFS(x, π)
5: Parse π = (R, s) (and reject if this fails)
6: c := H(x,R)
7: return V (x,R, c, s)

results ‘relativize,’ i.e., they hold even in the presence of other, possibly stateful or quantumly accessible,
oracle(s): the reductions simply pass along all queries to, and answers from, these extra oracles without using
them in any other way.10

Proposition 4.5. Suppose that a Σ-protocol has soundness error ϵ in the presence of some (possibly stateful
or quantumly accessible) oracle(s). Then for any Q ≥ 0, and in the presence of the same oracle(s), the
protocol’s Fiat–Shamir transformation (Algorithm 2) is:

1. (Q, (Q+ 1)ϵ)-sound when H is a classical random oracle.

2. (Q, (2Q+ 1)2ϵ = O(Q2ϵ))-sound when H is a quantumly accessible random oracle.

4.2 Chaum–Pedersen Protocol

As in ECVRF (Algorithm 1), fix a cyclic group (G, q, B) of known prime order q with known generator B,
where G is a subgroup of a group E (for which checking membership is meant to be fast) having cofactor
f = |E|/|G| that is not divisible by q. Throughout this section, for a group element G ∈ E, let Ĝ := Gf ∈ G.
In addition, fix a challenge space H ⊆ Zq, which should be sufficiently large for soundness.

The Chaum–Pedersen Σ-protocol (slightly generalized to our setting of two groups G ⊆ E) is for
statements of the form (X ∈ E, H ∈ G, Z ∈ E), and it proves membership in the language L = LR of the
relation

R := {((X,H,Z), x) : X̂ = Bx and Ẑ = Hx}.

In other words, (X,H,Z) is in the language exactly when (B, X̂,H, Ẑ) ∈ G4 is a Diffie-Hellman tuple.
The protocol proceeds as follows. The prover and verifier are given a statement (X ∈ E, H ∈ G, Z ∈ E),

and the prover is additionally given its witness x (when the statement is in the language).

1. The prover chooses r ← Zq and lets its commitment be RB := Br ∈ G, RH := Hr ∈ G.
2. A uniformly random challenge c← H is chosen and given to the prover.
3. The prover lets its response be s := r + x · c ∈ Zq.

10We remark that Unruh [Unr17, Corollary 36] proved a similar result for the QROM. However, Unruh’s reduction does not
attack the soundness of the underlying Σ-protocol, but instead solves a kind of search problem on the QRO, in a manner that for
technical reasons is not suitable for our setting. In brief, we need a reduction that ‘relativizes’ in the presence of an auxiliary stateful
oracle, without making any additional queries to it (only the ones made by the adversary itself). This is the case for the reduction
from [DFMS19], but not for the one from [Unr17] in our context. Furthermore, the concrete security bound in [Unr17] is slightly
worse than that in [DFMS19].
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4. The verifier, given the statement and RB, RH , c, s, accepts if RB = BsX−c and RH = HsZ−c;
otherwise, it rejects.11

We remark that the protocol is complete (i.e., the prover causes the verifier to accept) for the sublanguage
L ∩G3, i.e., tuples (X,H,Z) ∈ L where all three components are elements of G ⊆ E. This is sufficient for
the completeness of ECVRF, because all honestly generated elements are in G. However, completeness of
ECVRF can also be seen on its own, irrespective of this Σ-protocol.

Lemma 4.6. The (variant) Chaum–Pedersen protocol has soundness error 1/|H| (Definition 4.2).

Proof. Consider an arbitrary statement (X ∈ E, H ∈ G, Z ∈ E) ̸∈ L that is not in the language. We
separately consider two cases: either H is the identity element e ∈ G, or it is not. In both cases we show that,
once a potentially malicious prover sends its initial message, there exists at most one challenge value c ∈ H
for which the proof can be completed to make the verifier accept. Because the challenge is chosen uniformly
and independently of the prover’s initial message, the soundness error is 1/|H|.

If H = e, then (X,H,Z) /∈ L implies that Ẑ ̸= e, so Ẑ is a generator of G (because G is a prime-order
cyclic group). Suppose than an adversarial prover sends some RH ∈ E in its initial message. (Note
that RH ∈ E without loss of generality, because otherwise the verification equations cannot be satisfied.) A
uniformly random challenge c ∈ H is chosen, and the prover generates some s. In order for the verifier to
accept, by raising the second verification equation to the f power and rearranging, it must be the case that

R̂HẐ
c = Ĥs = e,

and thus c = − logẐ R̂H . (Note that s has no effect here.) So, the prover cannot make the verifier accept
unless this unique value of c is chosen as the challenge.

Next, if H ̸= e, then H is a generator of G, and logB X̂ ̸= logH Ẑ. Since f is coprime with q, there
exist distinct x, x′ ∈ Zq such that X̂ = B̂x and Ẑ = Ĥx′ . Suppose that an adversarial prover sends some
RB, RH ∈ E as its initial message, and let r = logB̂ R̂B , r′ = logĤ R̂H . (Note that r, r′ need not be equal,
but they are uniquely defined because B̂, Ĥ are generators of G.) A uniformly random challenge c ∈ H
is then chosen. In order for there to exist some s ∈ Zq that would make the verifier accept, by raising the
verification equations to the f power and rearranging, it must be the case that

B̂s = R̂BX̂
c = B̂r(B̂x)c = B̂r+x·c

Ĥs = R̂HẐ
c = Ĥr′(Ĥx′

)c = Ĥr′+x′·c

and thus s = r + x · c = r′ + x′ · c (mod q). This implies that c = (r − r′)(x′ − x)−1 ∈ Zq, which is well
defined because x ̸= x′ and q is prime. So, the prover cannot make the verifier accept unless this unique
value of c is chosen as the challenge.

In order to link the above protocol to the ECVRF construction, from now on we consider statements of
the form (X ∈ E, α ∈ X , Z ∈ E), which define the associated statements (X,H = HTC(X,α), Z), where
HTC : E×X → G is the oracle used in ECVRF. In other words, we consider the ‘language’

LHTC := {(X,α,Z) : (X,H = HTC(X,α), Z) ∈ L}.

Note that, since HTC in our context is usually treated as a FILO or FICO, which are defined ‘lazily,’
membership in LHTC may not be determined until H = HTC(X,α) is queried (classically). Therefore, the

11Note that because B,X,H,Z ∈ E, these checks implicitly guarantee that RB , RH ∈ E as well.
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soundness experiments from Definitions 4.2 and 4.4 implicitly perform this query at the very end, when
testing membership. But also note that a typical verifier, including all the ones considered in this work, would
have already performed this query when deciding whether to accept.

The Chaum–Pedersen protocol can be naturally extended to a Σ-protocol for LHTC, simply by augmenting
the prover and verifier to compute H := HTC(X,α) and then proceed as before. The following lemma shows
that this protocol is sound even if the attacker also gets find-input access to HTC (see Section 3.2); we need to
give the attacker this extra power when we use our results on relative indifferentiability in Section 4.4 below.

Lemma 4.7. For any query complexity QO, the described Σ-protocol for LHTC is

1. (QO, 1/|H|)-sound (Definition 4.4) in the presence of a FILO O = (HTC,FIHTC).

2. (QO, 1/|H|+O(QO/
√
|G|))-sound in the presence of a FICO O = (HTC,FIHTC).

We note that in the additive O(QO/
√
|G|) term from Item 2 above, QO can be replaced by just the

number of FIHTC-queries made between when the adversarial prover outputs its chosen statement (X,α,Z)
and when it outputs the final message of its attempted proof. In addition, the term may not be tight, and could
potentially be improved or even eliminated.

Proof. LetA′ be an attacker against the soundness of the above extended protocol for LHTC, which has query
complexity QO to the FILO/FICO. We transform it into an attacker A against the ordinary Chaum–Pedersen
protocol for L.

We start with the classical case. The attacker A internally implements a FILO and uses it to answer
the queries of A′. When A′ outputs a chosen statement (X,α,Z) that it will attempt to prove, A internally
queries H = HTC(X,α), with the modification that if this query was not previously made by A′, then this
query-response pair is not added to the FILO database until A′ queries (X,α), if ever.12 Then A outputs
(X,H,Z) as the statement it will attempt to prove. When A′ outputs the initial message of its proof, A
outputs the same; then A receives a challenge c ∈ H, which it forwards to A′; then A′ outputs the final
message of its attempted proof, and A outputs the same. By inspection, it is straightforward to see that A
perfectly simulates the soundness attack game to A′, and that A succeeds in its attack game exactly when A′

succeeds in its own, which establishes the claim.
The quantum case is more subtle: because A′ can make FIHTC- and HTC-queries (in superposition) after

sending its chosen statement (X,α,Z), it is not obvious whether the (classical) query HTC(X,α) can be
moved from the end of the experiment to the point where A′ outputs the statement. Fortunately, we show that
this is indeed the case.

Hybrid 0 is the original soundness experiment. Recall that a classical FICO query H := HTC(X,α) is
explicitly made at the end of the experiment, after A′ has finished.

Hybrid 1 is the same as Hybrid 0, except that the aforementioned query is made earlier, right afterA′ outputs
its chosen statement (X,α,Z).

Claim 4.8. The difference between the probabilities that A′ succeeds in Hybrids 0 and 1 is O(QO/
√
|G|).

First observe that the timing of the measurements associated with the classical FICO query in question
has no effect on the success probabilities, because the input (X,α) is already classical, and the measured

12This behavior ensures that the find-input queries of A′ are answered exactly as in the real experiment, which does not explicitly
query HTC(X,α) until after A′ finishes.
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output is in a private register of the experiment. In addition, any of the adversary’s measurements between
outputting its statement and its final message can be deferred to the latter point in time, again without affecting
its success probability. So, it suffices to analyze the effect of moving the underlying (quantum) HTC-query.

In Hybrid 0, between when A′ outputs (X,α,Z) and the experiment’s HTC(X,α) query, A′ may make
some HTC- and FIHTC-queries. Note that any two HTC-queries on different registers commute with each
other (this can be seen because the StdDecomp operations at the end of the first query and beginning of the
second query cancel out, and the internal query steps on the decompressed database trivially commute), and
any HTC-query and FIHTC-query O(1/

√
|G|)-‘almost commute’, using [Zha19, Lemma 7]. (This is because

the only steps in an HTC-query that change the FICO database are the two StdDecomp operations, which
O(1/

√
|G|)-almost commute with FIHTC.) Since A′ makes at most QO FIHTC-queries, the claim follows.

Claim 4.9. The probability that A′ succeeds in Hybrid 1 is at most 1/|H|.

This can be seen similarly to the classical case. The reduction A works as defined there, except that
when A′ outputs (X,α,Z), it simply queries HTC(X,α) without any modifications. Combining the two
claims above yields the lemma.

4.3 Fiat–Shamir-Transformed Proof

Algorithm 3 Verifier (and optimization) from the Fiat–Shamir-transformed proof system for LHTC
Public parameters: hash functions HTC : E×X → G and H′ : E×X × E3 → H, where H ⊆ Zq.

1: function VFS((X ∈ E, α ∈ X , Z ∈ E), π = (RB ∈ E, RH ∈ E, s ∈ Zq))
2: H := HTC(X,α) ∈ G
3: c := H′(X,α,Z,RB, RH) ∈ H
4: if RB = BsX−c and RH = HsZ−c then accept else reject
5: function V ′

FS((X ∈ E, α ∈ X , Z ∈ E), π′ = (c ∈ H, s ∈ Zq))
6: H := HTC(X,α) ∈ G
7: RB := BsX−c ∈ E, RH := HsZ−c ∈ E
8: if c = H′(X,α,Z,RB, RH) then accept else reject

We now make the Σ-protocol for LHTC non-interactive via the Fiat–Shamir transform. Algorithm 3 gives
the verifier from the transformed proof system, along with an optimized version where the proof contains the
challenge c instead of the commitment RB, RH . (Because we are concerned only with soundness here, from
this point on we deal only with verifiers, and omit any treatment of provers.) Combining Lemma 4.7 with
Proposition 4.5—which, to recall, holds even relative to stateful oracles like FILOs and FICOs—we get the
following results on the soundness of the Fiat–Shamir-transformed verifiers.

Lemma 4.10. For any Q = (QO, QH′), the verifier VFS from Algorithm 3 is:

1. (Q, ϵ = (QH′ + 1)/|H|)-sound for a FILO O = (HTC,FIHTC) and a random oracle H′;

2. (Q, ϵ = O(Q2
H′/|H| + Q2

H′QO/
√
|G|))-sound for a FICO O = (HTC,FIHTC) and a quantumly

accessible random oracle H′.

Lemma 4.11. V ′
FS is ((QO, QH′), ϵ)-sound for a FILO or FICO O = (HTC,FIHTC) and random oracle H′,

if VFS is ((QO + 1, QH′), ϵ)-sound for the same oracles.
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Proof. For any adversary A′ with query complexity (QO, QH′) against the soundness of V ′
FS, we construct an

adversaryAwith query complexity (QO+1, QH′) that attacks the soundness of VFS: A runsA′, forwarding the
queries ofA′ toA’s own oracles (and forwarding the answers back toA′). WhenA′ outputs a statement-proof
pair ((X ∈ E, α ∈ X , Z ∈ E), π′ = (c ∈ H, s ∈ Zq)), A queries H := HTC(X,α) ∈ H, computes RB :=
BsX−c ∈ E and RH := HsZ−c ∈ E, and outputs the statement-proof pair ((X,α,Z), π = (RB, RH , s)).
By inspection, A makes at most one more HTC-query than A′ does, perfectly simulates the attack game
against V ′

FS to A′, and succeeds in its attack game against VFS whenever A′ succeeds in its own, which
establishes the claim.

4.4 Using Relative Indifferentiability

Algorithm 4 Non-interactive proof verifier used in ECVRF
Public parameters: hash functions HTC : E×X → G and H : E4 → H, where H ⊆ Zq.

1: function VECVRF((X ∈ E, α ∈ X , Z ∈ E), π = (c ∈ H, s ∈ Zq))
2: H := HTC(X,α) ∈ G
3: RB := BsX−c ∈ E, RH := HsZ−c ∈ E
4: if c = H(H,Z,RB, RH) then accept else reject

We now show the soundness of the non-interactive proof verifier VECVRF implicit in ECVRF, which
is given in Algorithm 4. The only difference between V ′

FS and VECVRF is that the former uses a separate
independent hash function H′ to derive the challenge c, whereas the latter uses a composition of H and HTC.
This difference is addressed using our results on relative indifferentiability from Section 3, which we use to
show that any attack against the soundness of VECVRF implies a similarly effective attack against the soundness
of V ′

FS.
We stress that, in contrast to the usual applications of indifferentiability, the verifiers VECVRF and V ′

FS use
the ‘inner’ function HTC for purposes beyond just its composition with H, namely, the value RH is derived
from H = HTC(X,α) and is used to verify the proof. Because of this, we cannot allow an indifferentiability
simulator to simulate HTC, because this is not allowed in the soundness attack game against V ′

FS (indeed,
allowing it might even make V ′

FS unsound). Our notion of relative indifferentiability circumvents this difficulty,
by making HTC external to the simulator, and allowing it to simulate only H using its access to HTC and H′.
This lets us construct a legal attack against V ′

FS from any attack against VECVRF, as shown in the following
lemma.

Lemma 4.12. VECVRF (Algorithm 4) is (Q = (QO, QH), ϵ)-sound for a FILO (respectively, FICO) O =
(HTC,FIHTC) and a random oracle (resp., quantumly accessible random oracle) H, if V ′

FS is (Q′, ϵ′)-sound
for the same O and a random oracle (resp., quantumly accessible random oracle) H′, where

Q′ = (Q′
O, Q

′
H′) = (QO +QH, QH) , ϵ = ϵ′ +

3(Q′ + 2)2

4|G|
= ϵ′ +O(Q2/|G|)

in the classical setting, and

Q′ = (Q′
O, Q

′
H′) = (QO + 2QH, QH) , ϵ = ϵ′ +O(Q2/

√
|G|)

in the quantum setting.
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Proof. The only difference between V ′
FS and VECVRF is that c is checked against H′(X,α,Z,RB, RH) in V ′

FS,
and against CHTC,H(X,α,Z,RB, RH) := H(HTC(X,α), Z,RB, RH) in VECVRF. We handle this distinction
using the results on relative indifferentiability from Section 3.3.

We give a detailed proof for the quantum setting; the classical setting follows essentially identically
from Theorem 3.13 with the appropriate bounds. By Theorem 3.18, there exists an algorithm SO,H′ with
query complexity QS = (2, 1) per invocation such that, for any distinguisher D with query complexity
QD = (QD,1, QD,2, QD,3),

|Pr[DO,H,CHTC,H
accepts]− Pr[DO,SO,H′ ,H′

accepts]| = O(Q2
D/

√
|G|), (4.1)

where H : E4 → H is a random oracle. Recall that S simulates only oracle H.
Let AO,H be a quantum adversary with query complexity Q = (QO, QH) that attacks the soundness

of VECVRF. We construct a quantum reduction RO,H′ that attacks the soundness of V ′
FS. Essentially, R is

just the composition of A and S. More specifically,R internally runs both A and S, forwarding any of A’s
O-queries to its own O oracle, and answering any of A’s H-queries using S (by forwarding S’s queries to its
own O or H′ oracle, as appropriate). Finally,R outputs whatever statement-proof pair A outputs. Observe
thatR’s query complexity is (Q′

O, Q
′
H′) = (QO+2QH, QH), because it merely forwards all ofA’s O-queries

to its own O, and each of A’s H-queries is handled by S making two FIHTC-queries and one H′-query.
In order to relate the advantages of A and R in their respective attack games, we define and analyze

a quantum distinguisher D that aims to distinguish between the tuples of oracles (O,H,CHTC,H) and
(O,SO,H′

,H′), as follows: D internally runs A, forwarding A’s O- and H-queries to its own first and second
oracles (respectively), until A outputs a statement-proof pair (x = (X,α,Z), π = (c, s)). Then, D checks
whether x ∈ LHTC, i.e., whether (X,H = HTC(X,α), Z) ∈ L, and rejects if so.13 Next, D checks the
‘validity’ of the proof: it computes RB = BsX−c, RH = HsZ−c, checks whether its third oracle outputs c
when queried on (X,α,Z,RB, RH), and accepts if this holds, rejecting otherwise. Clearly, D’s query
complexity is QD = (QD,1, QD,2, QD,3) = (QO + 1, QH, 1): it makes at most QO and QH queries to its
first and second oracles (respectively) while running A, one more query to its first oracle in order to check
membership in LHTC, and one query to its third oracle to check the proof’s validity.

We now analyze D in the two experiments and relate it to the advantages of A and R. Observe by
inspection that if D’s oracles are O,H,CHTC,H (the ‘real’ experiment), then D perfectly simulates the
soundness attack game against VECVRF to A, and accepts exactly when A succeeds (this is where we use the
fact that D rejects when x ∈ LHTC). So,

Pr[DO,H,CHTC,H
accepts] = Advsound

VECVRF
(A).

On the other hand, if D’s oracles are O,SO,H′
,H′, then observe by inspection that D, together with SO,H′ ,

simulates to A exactly the same experiment as RO,H′ does. Moreover, the checks that D performs on the
statement-proof pair output by A (equivalently, byR) are exactly those that define the success condition in
the attack game against the soundness of V ′

FS (in part, because D’s third oracle is H′). Therefore,

Pr[DO,SO,H′ ,H′
accepts] = Advsound

V ′
FS

(R).

By Equation (4.1) and the hypothesis on V ′
FS, we therefore have Advsound

VECVRF
(A) ≤ Advsound(R) +

O(Q2/
√
|G|) ≤ ϵ′ +O(Q2/

√
|G|), as needed.

13Note that D can perform this check by brute force, because it can be computationally unbounded; its query complexity is the
only relevant metric here.
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4.5 Full Uniqueness

Lemma 4.13. For any Q = (QO, QH), ECVRF (Algorithm 1) is (Q, ϵ)-fully unique (Definition 2.5) for a
FILO O = (HTC,FIHTC) and a random oracle H (respectively, for a FICO O = (HTC,FIHTC) and a random
oracle H), if VECVRF is (Q, ϵ/2)-sound.

Proof. Let AO,H be an adversary with query complexity Q that attacks the full uniqueness of ECVRF. We
construct a reduction RO,H that attacks the soundness of VECVRF as follows: R runs A, and forwards A’s
O- and H-queries to R’s own oracles, relaying the answers back to A. On A’s output (X,α, π0 =
(Z0, c0, s0), π1 = (Z1, c1, s1)), R chooses b ← {0, 1} uniformly at random, sets (Z, c, s) := (Zb, cb, sb),
and outputs ((X,α,Z), π = (c, s)).14 Clearly,R perfectly simulates the full-uniqueness attack game to A,
and its query complexity is the same as A’s.

We now relate the advantages of R and A in their respective attack games. Suppose that A succeeds
in the full-uniqueness attack game against ECVRF. Then we claim that at least one of the two statements
(X,α,Zb) ̸∈ LHTC, so in this eventR has probability at least 1/2 of succeeding in its game. Indeed:

• For either choice of b ∈ {0, 1} we have VerifyX(α, (Z, c, s)) ̸= ⊥, i.e., c = H(H,Z,RB, RH), where
H = HTC(X,α), RB = BsX−c, and RH := HsZ−c. So, VECVRF((X,α,Z), (c, s)) accepts.

• Also, β0 = E(Ẑ0) ̸= E(Ẑ1) = β1, so Ẑ0 ̸= Ẑ1, and thus (X,α,Z0) and (X,α,Z1) cannot be both
in LHTC. This is because for any fixed X ∈ E, α ∈ X , we have X̂ = Bx for some unique x ∈ Zq, so
Ẑ = HTC(X,α)x ∈ G is uniquely defined when (X,α,Z) ∈ LHTC.

Combining the above, we have that Advsound
VECVRF

(R) ≥ 1
2Advf-uniq(A), and the lemma follows.

Finally, our ultimate theorem on the full uniqueness of ECVRF follows by Lemmas 4.10 to 4.13 and
parameter bookkeeping. Note that the full uniqueness in the ordinary (quantumly accessible) random-oracle
model—i.e., without any find-input access—is an immediate corollary of this theorem.

Theorem 4.14. For any Q = (QO, QH), ECVRF (Algorithm 1) is (Q, ϵ)-fully unique (Definition 2.5) for a
FILO O = (HTC,FIHTC) and a random oracle H, where

ϵ =
2(QH + 1)

|H|
+

3(QO + 2QH + 2)2

2|G|
= 2(QH + 1)/|H|+O(Q2/|G|),

and for a FICO O = (HTC,FIHTC) and a quantumly accessible random oracle H, where

ϵ = O(Q2/|H|+Q3/
√
|G|).

Proof. In the classical setting,

• By Lemmas 4.10 and 4.11, V ′
FS is (Q′ = (Q′

O, Q
′
H′), (Q′

H′ + 1)/|H|)-sound for any Q′.

• Then by Lemma 4.12 (setting Q′
O = QO +QH and Q′

H′ = QH), VECVRF is(
(QO, QH),

QH + 1

|H|
+

3(QO + 2QH + 2)2

4|G|

)
-sound.

14Alternatively, R could determine which (X,α,Zb) ̸∈ LHTC by brute force. This would improve its advantage by a factor of two,
at the cost of one more HTC-query and an enormous amount of computation.
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• Finally, by Lemma 4.13, ECVRF is(
(QO, QH),

2(QH + 1)

|H|
+

3(QO + 2QH + 2)2

2|G|

)
-fully unique.

In the quantum setting,

• By Lemmas 4.10 and 4.11, V ′
FS is (Q′ = (Q′

O, Q
′
H′), O((Q′

H′)2/|H|+ (Q′
H′)2Q′

O/
√
|G|))-sound for

any Q′.

• Then by Lemma 4.12 (setting Q′
O = QO + 2QH and Q′

H′ = QH), VECVRF is(
(QO, QH), O(Q2/|H|+Q3/

√
|G|)

)
-sound.

• Finally, by Lemma 4.13, ECVRF is(
(QO, QH), O(Q2/|H|+Q3/

√
|G|)

)
-fully unique.

5 Binding and Non-Malleability of ECVRF

In this section we consider the new notions of (trusted or full) binding and (strong) non-malleability for VRFs.
In Section 5.1 we formally define these concepts, and relate them to each other (Theorem 5.4). Then in
Section 5.2 we show that assuming the collision resistance of its hash functions, ECVRF satisfies full binding,
even against quantum attacks. Finally, in Section 5.3 we show that against classical (but not quantum) attacks
and assuming the intractability of the discrete logarithm problem, ECVRF additionally satisfies (strong)
non-malleability.

5.1 New Security Notions

Here we introduce the notions of binding and non-malleability for VRFs.

Binding. Binding says, informally, that a proof uniquely determines (computationally) the input (or input
and public key) for which it is valid, if any. This is closely related to notions of binding that have recently been
defined for signature schemes [BCJZ21, CGN20, CDF+21]. We mainly consider two notions at opposite ends
of a spectrum: the weaker one, called trusted binding, requires that the public key is generated correctly; the
stronger one, called full binding, allows the adversary to generate public keys on its own, possibly maliciously.

Definition 5.1 (Trusted binding). A VRF is (t, Q, ϵ)-trusted binding if no algorithm A running in time at
most t and with query complexity Q, given oracle access to the proving procedure (possibly among other
oracles), can produce two different function inputs and one proof that is valid for both inputs with probability
more than ϵ. That is,

Advt-bind(A) := Pr

 Verifypk(α
∗
0, π

∗) ̸= ⊥ and
Verifypk(α

∗
1, π

∗) ̸= ⊥ and
α∗
0 ̸= α∗

1

:
(pk, sk)← Gen()

(α∗
0, α

∗
1, π

∗)← AProvesk(·)(pk)

 ≤ ϵ. (5.1)
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We could also consider a stronger notion that directly gives the adversary A the secret key sk, instead of
oracle access to Provesk. However, we will not use this notion in this work.

Definition 5.2 (Full binding). A VRF is (t, ϵ)-full binding if no algorithm A running in time at most t can
produce two public key-input pairs and one proof that is valid for both pairs with probability more than ϵ.
That is,

Advf-bind(A) := Pr

 Verify(pk∗0, α
∗
0, π

∗) ̸= ⊥ and
Verify(pk∗1, α

∗
1, π

∗) ̸= ⊥ and
(pk∗0, α

∗
0) ̸= (pk∗1, α

∗
1)

: (pk∗0, α
∗
0, pk

∗
1, α

∗
1, π

∗)← A()

 ≤ ϵ. (5.2)

Note that in the above definition, A takes no explicit input. This is identical to the situation with collision
resistance as described in Section 2.2, and we treat it in the same way.

We can also consider the weaker notion of full input binding, which is the same as full binding but
additionally requires that pk∗0 = pk∗1 , and hence α∗

0 ̸= α∗
1 (so, a proof uniquely determines the function input,

but not necessarily the public key). However, we will not use this notion anywhere in this work.

(Strong) non-malleability. Non-malleability says that without knowing the secret key, it is infeasible to
produce a valid proof (for an input of one’s choice) that is different from all the proofs provided by the
legitimate prover. We note that this alone does not rule out the possibility of a legitimate proof being valid for
a different input than the one for which it was produced; we address that issue below with the notion of strong
non-malleability. We also emphasize that non-malleability does not prevent a legitimate prover, who knows
the secret key, from producing different proofs for the same input (indeed, this is easy to do in the ECVRF
construction).

Definition 5.3 (Non-malleability). A VRF is (t, Q, ϵ)-non-malleable if no algorithm A running in time at
most t and with query complexity Q, given oracle access to the proving procedure (possibly among other
oracles), can produce a valid input-proof pair where the proof was not output by the oracle with probability
more than ϵ. That is,

AdvNM(A) := Pr

[
Verifypk(α

∗, π∗) ̸= ⊥ and
π∗ was not a response to any query :

(pk, sk)← Gen()

(α∗, π∗)← AProvesk(·)(pk)

]
≤ ϵ. (5.3)

Strong non-malleability is defined in the same way via AdvSNM(A), where the event of interest is that
(α∗, π∗) was not a query-response pair of A’s oracle.

Obtaining strong non-malleability. Observe that an adversary that breaks strong non-malleability must do
so in one of two ways: either by giving a ‘new’ valid proof that it did not receive from the legitimate prover,
thus breaking non-malleability, or by giving an ‘old’ proof (that it received from the prover) that is valid for a
different input than the one(s) that yielded that proof, thus breaking trusted binding. The following theorem
shows that this intuition can be formalized: non-malleability together with trusted binding tightly implies
strong non-malleability. So, in this work we focus on obtaining the former two properties individually.

Theorem 5.4. For any t, Q, ϵ′, ϵ′′ ≥ 0 defining ϵ = ϵ′ + ϵ′′, a VRF is (t, Q, ϵ)-strongly non-malleable
(Definition 5.3) if it is (t′ = t, Q, ϵ′)-non-malleable and (t′′ ≈ t, Q, ϵ′′)-trusted binding (Definition 5.1).

Proof. Let A be any algorithm that attacks the strong non-malleability of the VRF, and has running time at
most t and query complexity Q (to the prover). In the strong non-malleability experiment with A, define two
events as follows:
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• NewProof: Verifypk(α∗, π∗) ̸= ⊥ and π∗ was not a response to any Provesk query;
• OldProof: Verifypk(α∗, π∗) ̸= ⊥ and π∗ was not a response to a Provesk(α∗) query, but was a response

to a Provesk(α) query for some α ̸= α∗.

Clearly, AdvSNM(A) = Pr[NewProof] + Pr[OldProof].
Note that the only difference between the definitions of strong non-malleability and ordinary non-

malleability is in the success condition, and the success event for non-malleability is exactly NewProof.
Therefore,

AdvNM(A) = Pr[NewProof].

We upper-bound Pr[OldProof] via a straightforward reductionR that attacks the trusted binding of the
VRF: R(pk) runs A(pk), and answers A’s Provesk queries by forwarding them to its own Provesk oracle
and relaying the answers (and similarly for any other oracles that R may have and A may expect to have).
When A outputs some (α∗, π∗), let A be the set of A’s queries to Provesk whose answer was π∗. If A = ∅ or
α∗ ∈ A, thenR aborts. Otherwise,R chooses an arbitrary α ∈ A and outputs (α, α∗, π∗).

Clearly, R’s running time is approximately A’s, and R’s query complexity is the same as A’s. Now
suppose that OldProof happens in the experiment thatR runs. Then Verifypk(α

∗, π∗) ̸= ⊥ by definition of
OldProof; Verifypk(α, π∗) ̸= ⊥ because α ∈ A so (α, π∗) was a query-response pair of Provesk, which is
valid by perfect completeness; and α∗ ̸= α because α∗ /∈ A but α ∈ A. We conclude thatR succeeds in the
trusted binding attack experiment whenever OldProof happens, so

Advt-bind(R) ≥ Pr[OldProof].

Summing up, we get
AdvNM(A) +Advt-bind(R) ≥ AdvSNM(A),

and sinceR’s running time is approximately A’s, the claim follows.

5.2 Full Binding

Here we show that ECVRF has full binding (even against quantum attacks) if the two hash functions HTC,H
are collision resistant. This hypothesis holds if the functions are modeled as random oracles (even quantumly
accessible ones) with sufficiently large output, as they are elsewhere, but for the present purposes only
collision resistance is needed. The theorem follows straightforwardly from the fact that in a valid proof, the
challenge c is a collision-resistant function of the public key and function input. (In the context of signature
schemes, essentially the same observation was made in [CDF+21].) The theorem and its proof also adapt
straightforwardly to other definitions of c, like those given in [PWH+17] and other versions of [GRPV22].

Theorem 5.5. There exist adversariesRHTC andRH (explicitly given in the proof), attacking the collision
resistance (Definition 2.2) of HTC and H respectively, such that for any (possibly quantum) adversary A
attacking the full binding (Definition 5.2) of ECVRF (Algorithm 1), we have that

AdvCR(RA
HTC) +AdvCR(RA

H ) ≥ Advf-bind(A),

where RA
HTC and RA

H use oracle access to A, and each of their total running times is approximately the
running time of A.

In particular, for any t, ϵ′, ϵ′′ ≥ 0 defining ϵ = ϵ′ + ϵ′′, ECVRF is (t, ϵ)-full binding if HTC is (t′ ≈ t, ϵ′)-
collision resistant and H is (t′′ ≈ t, ϵ′′)-collision resistant.

28



Proof. Let (X∗
0 , α

∗
0, X

∗
1 , α

∗
1, π

∗) denote A()’s output in the full binding experiment. If X∗
0 , X

∗
1 ∈ E and

α∗
0, α

∗
1 ∈ X (which must be the case if A succeeds), let H0 = HTC(X∗

0 , α
∗
0) and H1 = HTC(X∗

1 , α
∗
1).

Define HTCCol to be the event that A succeeds and H0 = H1, and HCol to be the event that A succeeds and
H0 ̸= H1. Clearly, Advf-bind(A) = Pr[HTCCol] + Pr[HCol].

Define RHTC = RA
HTC to be the algorithm that runs (X∗

0 , α
∗
0, X

∗
1 , α

∗
1, π

∗) ← A() and outputs
((X∗

0 , α
∗
0), (X

∗
1 , α

∗
1)). Clearly, RHTC’s total running time is approximately A’s. If event HTCCol hap-

pens, then (X∗
0 , α

∗
0) ̸= (X∗

1 , α
∗
1) because A succeeds, and HTC(X∗

0 , α
∗
0) = H0 = H1 = HTC(X∗

1 , α
∗
1).

Therefore,
AdvCR(RHTC) ≥ Pr[HTCCol].

Next, defineRH = RA
H to be the algorithm that:

• runs (X∗
0 , α

∗
0, X

∗
1 , α

∗
1, π

∗)← A() and parses π∗ as (Z∗ ∈ E, c∗ ∈ Zq, s
∗ ∈ Zq) (aborting otherwise),

• for each b ∈ {0, 1}, computes Hb as above and RB,b := Bs∗(X∗
b )

−c∗ , RH,b := (Hb)
s∗(Z∗)−c∗ , and

• outputs ((H0, Z
∗, RB,0, RH,0), (H1, Z

∗, RB,1, RH,1)).

Clearly,RH’s total running time is approximately A’s.
If HCol happens, then (H0, Z

∗, RB,0, RH,0) ̸= (H1, Z
∗, RB,1, RH,1) because H0 ̸= H1, and

H(H0, Z
∗, RB,0, RH,0) = c∗ = H(H1, Z

∗, RB,1, RH,1)

because A succeeds and thus both VerifyX∗
0
(α∗

0, π
∗),VerifyX∗

1
(α∗

1, π
∗) ̸= ⊥. Therefore,

AdvCR(RH) ≥ Pr[HCol].

The theorem follows by summing the advantages ofRHTC andRH.

5.3 Non-Malleability

In this section we establish the following non-malleability theorem for ECVRF.

Theorem 5.6. For any t and Q = (QP, QHTC, QH), ECVRF (Algorithm 1) is (t, Q, ϵ)-non-malleable
(Definition 5.3) for random oracles HTC and H, as long as the discrete logarithm problem in group (G, q, B)
is (t′, ϵ′)-hard (Definition 2.1), where

t′ ≈ 2t and ϵ′ =
ϵ2

QP +QH + 1
−
(
2QP

|G|
+

1

|H|

)
ϵ.

5.3.1 Forking Lemma

Our proof of Theorem 5.6, given below in Section 5.3.2, uses the forking lemma. The original forking lemma
of Pointcheval and Stern [PS96] is syntactically limited to signature schemes, and thus does not directly apply
to our setting. Instead, we use the general forking lemma of Bellare and Neven [BN06].

Lemma 5.7 (General Forking Lemma). Let Q ∈ N and H be a finite set. Let W be any randomized
algorithm that on input X and c1, . . . , cQ ∈ H, outputs an integer i ∈ {0, . . . , Q} and a side output σ, and
let IG be an input-generator algorithm forW . DefineW’s accepting probability as

Acc(W) := Pr

i ̸= 0 :
X ← IG()

c1, . . . , cQ ← H
(i, σ)←W(X, c1, . . . , cQ)

.

29



Consider the forking algorithm FW(X) (Algorithm 5) that chooses and fixesW’s random tape, runsW onX
and random inputs from H, and upon receivingW’s output i, re-runsW on X and the same inputs from H
but re-randomized from index i. The forking succeeds (i.e., FW(X) outputs 1 in the first output component)
ifW outputs the same index i in both runs, and the two sequences of random inputs differ at index i. Then

Frk(F) := Pr

[
b = 1 :

X ← IG()
(b, ·, ·)← FW(X)

]
≥ Acc(W) ·

(
Acc(W)

Q
− 1

|H|

)
.

Algorithm 5 Forking algorithm FW(X)

1: Choose a random tape ρ forW uniformly at random.
2: c1, . . . , cQ ← H
3: (i, σ) :=W(X, c1, . . . , cQ; ρ)
4: if i = 0 then return (0,⊥,⊥)
5: c′i, . . . , c

′
Q ← H

6: (i′, σ′) :=W(X, c1, . . . , ci−1, c
′
i, . . . , c

′
Q; ρ)

7: if i′ = i ∧ ci ̸= c′i then return (1, σ, σ′) else return (0,⊥,⊥)

5.3.2 Proof of Non-Malleability

Proof of Theorem 5.6. Let A be any algorithm that attacks the non-malleability of ECVRF, runs in time at
most t, and makes at most QH queries to H and at most QP queries to Provesk(·). Without loss of generality,
we assume the following about A(X)’s behavior:

• it never repeats a query to the deterministic HTC and H oracles (though it may repeat queries to Provesk,
since the proving algorithm may be randomized);

• it queries HTC(X,α) sometime before querying Provesk(α); and
• sometime before it ultimately outputs a (not necessarily valid) input-proof pair (α∗, π∗), it queries
HTC(X,α∗) and also makes the associated H-query as in VerifyX(α∗, π∗).15

Note that this final assumption may have the effect of implicitly increasing A’s number of H-queries by one.
Accordingly, let Q′ = QP +QH + 1. (The number of HTC-queries does not play any role in the security
bounds.)

We give a reductionR that uses A to attack the discrete logarithm problem in (G, q, B). To do this, we
first define a wrapper algorithmWA (Algorithm 6) that, given a sequence of values ci ∈ H representing
H-outputs, simulates answers to all of A’s oracle queries in the non-malleability experiment and, whenever A
succeeds, identifies the H-query corresponding to A’s output. We then use the generalized forking lemma
(Lemma 5.7) with this wrapper algorithm to lower-bound the probability that forking succeeds in terms of
A’s advantage. Finally, we show that whenever forking succeeds for a given public key X , we can efficiently
compute the discrete logarithm of X .

In the wrapper algorithmWA, observe that the function H can be defined at specific inputs in two different
ways: (1) when A explicitly queries H on an input for which H is not yet defined, on Line 9; and (2) whenW
simulates the proof oracle, on Line 17. We refer to the former type as ‘explicit’ definitions, and the latter type

15More specifically, for any public key X and any (not necessarily valid) input-proof pair (α ∈ X , π = (Z ∈ E, c ∈ Zq, s ∈ Zq)),
there is an associated H-input (H,Z,RB , RH), where H = HTC(X,α) ∈ G, RB = BsX−c ∈ E, and RH = HsZ−c ∈ E.
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Algorithm 6 WrapperWA(X, c1, . . . , cQ′)

1: ctr := 0; S := ∅; P := ∅; initialize an empty table T [1 . . . Q′]
2: run A(X), answering A’s oracle queries as follows:
3: on query HTC(X ′, α): ▷ no repeated queries
4: h← Zq; define HTC(X ′, α) := Bh

5: if X ′ = X then record [α, h] ▷ record h = logB(HTC(X,α))

6: return HTC(X ′, α) to A
7: on query H(H,Z,RB, RH): ▷ no repeated queries. . .
8: if H(H,Z,RB, RH) is not defined then ▷ . . . but may have been defined on Line 17
9: ctr := ctr + 1; define H(H,Z,RB, RH) := cctr

10: define T [ctr] := (H,Z,RB)

11: return H(H,Z,RB, RH) to A
12: on query Provesk(α): ▷ HTC(X,α) has been queried
13: ctr := ctr + 1; S := S ∪ {α}; s← Zq ▷ fresh s for every query
14: lookup [α, h]; H := Bh; Z := Xh ▷ simulate Z = Hx = Bhx as Xh

15: RB := BsX−cctr ; RH := HsZ−cctr

16: if H(H,Z,RB, RH) is defined then return (0,⊥) ▷ hash can’t be two different values
17: define H(H,Z,RB, RH) := cctr
18: π := (Z, cctr, s); P := P ∪ {π} ▷ construct and store proof
19: return π to A
20: When A outputs (α∗ ∈ X , π∗ = (Z∗ ∈ E, c∗ ∈ Zq, s

∗ ∈ Zq)): ▷ HTC(X,α∗) has been queried
21: H∗ := HTC(X,α∗); R∗

B := Bs∗X−c∗ ; R∗
H := (H∗)s

∗
(Z∗)−c∗

▷ H(H∗, Z∗, R∗
B, R

∗
H) has been queried

22: if VerifyX(α∗, π∗) = ⊥ ∨ π∗ ∈ P then return (0,⊥) ▷ A fails
23: Find some i ∈ {1, . . . , Q′} such that T [i] = (H∗, Z∗, R∗

B) ▷ By Claim 5.8, such i exists
24: return (i, (c∗, s∗))
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as ‘implicit’ definitions. For each definition (no matter which type),W answers with the next cctr value from
its input sequence. Thus, at most Q′ values of cctr are needed byWA.

We now justify the second-to-last line of the wrapper algorithm.

Claim 5.8. If Line 23 of Algorithm 6 is reached then it succeeds, i.e., there exists an i ∈ {1, . . . , Q′} such
that T [i] = (H∗, Z∗, R∗

B).

Proof. Suppose that Line 23 is reached. Then H(H∗, Z∗, R∗
B, R

∗
H) has been defined, because at some point

it was queried by our assumption on A (see the comment on Line 21). We show that it was defined in an
explicit (not an implicit) definition, hence such i exists due to Line 10.

Recall that A makes QP queries to Provesk, and say that for each such query it receives some answer
(Zℓ, cℓ, sℓ) (for some ℓ ∈ {1, . . . , Q′}, where cℓ is one of WA’s inputs). This answer has the associated
implicit H-definition for the input tuple

(Hℓ, Zℓ, RB,ℓ = BsℓX−cℓ , RH,ℓ = Hsℓ
ℓ Z

−cℓ
ℓ ).

We show that (H∗, Z∗, R∗
B, R

∗
H) is not among these tuples.

Suppose for contradiction that (H∗, Z∗, R∗
B, R

∗
H) = (Hℓ, Zℓ, RB,ℓ, RH,ℓ) for some ℓ. Then Z∗ = Zℓ,

and
c∗ = H(H∗, Z∗, R∗

B, R
∗
H) = H(Hℓ, Zℓ, RB,ℓ, RH,ℓ) = cℓ,

where the first equality holds because VerifyX(α∗, π∗) ̸= ⊥ (see Line 22); the second equality holds because H
is a function (and in particular WA never aborted on Line 16); and the third equality holds by Line 17.
Therefore,

Bs∗X−c∗ = R∗
B = RB,ℓ = BsℓX−cℓ ,

and since c∗ = cℓ, we have Bs∗ = Bsℓ and thus s∗ = sℓ ∈ Zq (because B is a generator of G). But
then (Z∗, c∗, s∗) = (Zℓ, cℓ, sℓ), so π∗ = (Z∗, c∗, s∗) ∈ P was an answer from one of A’s Provesk queries,
contradicting the fact that Line 23 was reached (due to Line 22).

Now let IG be the algorithm that lets (X = Bx, x ∈ Zq) ← Gen and outputs X only. The following
claim shows thatW perfectly simulates the non-malleability experiment toA, as long asW does not abort on
Line 16.

Claim 5.9. For X ← IG and c1, . . . , cQ′ ← H, suppose that W(X, c1, . . . , cQ′) never aborts on Line 16.
Then A’s ‘simulated’ view while run as a subroutine ofW is identically distributed to A’s ‘real’ view in the
non-malleability experiment (Definition 5.3) against ECVRF.

Proof. In both views, the public key X = Bx ∈ G for some uniformly random x ← Zq \ {0}. Moreover,
the HTC oracle is implemented via lazy uniform sampling from G, soA’s views of these oracles are identically
distributed. For the rest of the proof, fix some arbitrary X ∈ G (and its discrete log x) and HTC function.

We now consider H and Provesk queries (jointly). Recall that in the real view, the H oracle can
equivalently be implemented by lazy sampling from H (as it is in the simulated view), and each Provesk(α)
query is answered by (Z, c, s), where s = r + x · c ∈ Zq for a fresh uniformly random r ← Zq, and
c = H(H,Z,RB, RH) where RB = Br, RH = Hr (and H and Z are determined by α and the fixed X
and HTC). We next describe three successive changes to the implementation of the Provesk oracle that leave
the distribution of A’s view unchanged, unless a certain event occurs.
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1. First, instead of defining c := H(H,Z,RB, RH), we first choose a fresh uniformly random c ← H
and then define H(H,Z,RB, RH) := c as long as H(H,Z,RB, RH) has not already been defined, in
which case the experiment aborts; this new behavior corresponds to Lines 16 and 17 of the simulation.

2. Second, instead of choosing uniform r, we choose a fresh uniform s← Zq and set r := s− x · c ∈ Zq,
RB := Bs−x·c = Bs(Bx)−c = BsX−c and similarly RH := HsZ−c, as is done in the simulation.

3. Third, since Hx = Bhx = Xh (where h = logB(HTC(X,α))), instead of defining Z := Hx as in the
real view, we define Z := Xh as is done in the simulation.

With all these changes, the resulting view is exactly the simulated one provided byW , as desired.

We now analyze the probability that W ever aborts on Line 16. This event can happen only while
preparing the answer to a Provesk query. For each such query, s← Zq is a fresh uniformly random exponent,
so the corresponding RB = BsX−cctr ∈ G is uniformly random and independent of all the other random
variables. Note that W defines H on at most Q′ input tuples. Thus, the probability that RB is the third
component of one of these tuples (which is necessary forW to abort on Line 16) is at most Q′/|G|. So, by
the union bound, we have that

Pr[W ever aborts on Line 16] ≤ QP ·Q′

|G|
.

Because Line 23 is reached exactly when A succeeds in the simulated non-malleability experiment, and
recalling the definition of Acc(W) from Lemma 5.7, by Claim 5.9 we have

Acc(W) ≥ AdvNM(A)− Pr[W ever aborts on Line 16] ≥ AdvNM(A)− QP ·Q′

|G|
. (5.4)

Let F = FW be the forking algorithm (see Lemma 5.7) associated withW . Then by the forking lemma,

Frk(F) ≥ Acc(W)

(
Acc(W)

Q′ − 1

|H|

)
.

Algorithm 7 ReductionR(X)

(b, σ, σ′)← F(X)
if (b, σ, σ′) = (0,⊥,⊥) then return ⊥
parse σ = (c, s) and σ′ = (c′, s′); return x = (s− s′)(c− c′)−1 ∈ Zq ▷ c ̸= c′ by construction of F

We useF to construct a reductionR (Algorithm 7) that solves the discrete logarithm problem in (G, q, B).
Specifically, whenever the forking algorithm F(X) succeeds inside R(X), the latter finds the discrete
logarithm of X .

Claim 5.10. Suppose F(X) outputs (1, σ = (c, s), σ′ = (c′, s′)). ThenBsX−c = Bs′X−c′ and c ̸= c′, thus
R’s output x ∈ Zq satisfies Bx = X .

Proof. By definition of F(X), if it outputs (1, σ = (c, s), σ′ = (c′, s′)), then there exists an index
i ∈ {1, . . . , Q′} and random tape ρ such that ci ̸= c′i, and W’s two executions W(X, c1, . . . , cQ′ ; ρ) and
W(X, c1, . . . , ci−1, c

′
i, . . . , c

′
Q′ ; ρ) output (i, (c, s)) and (i, (c′, s′)), respectively.
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By definition, this implies that inW’s two executions, A respectively outputs valid input-proof pairs
(α, π = (Z, c, s)) and (α′, π′ = (Z ′, c′, s′)) that causeW to reach Line 23. That is, letting H = HTC(X,α),
RB = BsX−c, and RH be as in VerifyX(α, π) from the first execution, we have c = H(H,Z,RB, RH) = ci,
where the first equality holds because VerifyX(α, π) ̸= ⊥, and the second equality holds by Line 23. Similarly
for the second execution, let H ′ = HTC(X,α′), R′

B = Bs′X−c′ , and R′
H be as in VerifyX(α′, π′), so we

have c′ = H(H ′, Z ′, R′
B, R

′
H) = c′i.

Now observe that W’s two executions are identical until they use ci or c′i, respectively. By Line 23,
H(H,Z,RB, RH) (resp., H(H ′, Z ′, R′

B, R
′
H)) is defined explicitly, so ci (resp., c′i) is not used until after A

explicitly makes this H-query. Therefore, the two queries (H,Z,RB, RH) and (H ′, Z ′, R′
B, R

′
H) must be

equal.16 It follows that BsX−c = RB = R′
B = Bs′X−c′ , so Xc−c′ = Bs−s′ , and the claim follows.

Finally, by all of the above, we have

AdvDL(R) = Frk(F)

≥ Acc(W)

(
Acc(W)

Q′ − 1

|H|

)
≥

(
AdvNM(A)− QP ·Q′

|G|

)(
AdvNM(A)−QP ·Q′/|G|

Q′ − 1

|H|

)
=

(
AdvNM(A)− QP ·Q′

|G|

)(
AdvNM(A)

Q′ − QP

|G|
− 1

|H|

)
≥ AdvNM(A)2

Q′ −
(
2QP

|G|
+

1

|H|

)
AdvNM(A).

Finally, the running time of R is approximately that of F , which is approximately twice that ofW and A.
This completes the proof of Theorem 5.6.

Remark 5.11. We note that nothing in the proof of Theorem 5.6 uses the fact that H and RH are part of the
input to H. However, the inclusion of H was used in Section 5.2 to establish full binding, and the inclusion
of RH is needed for the soundness of the Σ-protocol that underlies the uniqueness of ECVRF (see Section 4).
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A Proofs for Section 3

Here we recall and prove the unproven lemmas from Section 3.

A.1 Quantum Indistinguishability

Lemma 3.19. For any Q̃ = (Q̃D,1, Q̃D,2), the simulator S from the proof of Theorem 3.18 is (Q̃, ϵ)-
indistinguishable (Definition 3.3), where

ϵ = O(Q̃D,1 · (Q̃1/2
D,1 + Q̃D,2)/

√
|Y1|).

Proof. Following the definition of indistinguishability, consider a distinguisher D̃ with query complexity
(Q̃D,1, Q̃D,2) that is given quantum access either to oracles O,H2 (the ‘real’ experiment) or to oracles O,SO,H′

(the ‘ideal’ experiment).
The rest of the proof closely parallels the one for [Zha19, Lemma 8], which shows ordinary indistinguisha-

bility of its simulator (not relative to any oracle). Therefore, we mainly describe the differences between the
proofs, i.e., their hybrid experiments and justifications for why adjacent hybrids are distinguishable with only
bounded advantage. Overall, the hybrids are the same as in [Zha19], except that the distinguisher additionally
has access to FIH1 in all of them.

Hybrid 0 is the ‘real’ experiment, where the distinguisher D̃ has oraclesO = (H1,FIH1) andH2, whereH1,H2

are implemented as compressed oracles with databases D1,D2 (respectively).

Hybrid 1 is the same, but with an abort condition: after each query to H1, we measure if the database D1

contains a collision, and immediately abort the experiment if so. (Conceptually, we could also measure
for a collision in D1 after each query to FIH1 or H2, but because such queries do not affect D1, this
would never detect a collision.)

Claim A.1. The difference between the probabilities that D̃ accepts in Hybrids 0 and 1 is O(Q̃
3/2
D,1/

√
|Y1|).

The only difference between the above hybrids and the corresponding ones defined in [Zha19] is that
here the distinguisher additionally has oracle access to FIH1 . By Lemma 3.12, this access cannot increase the
collision probability for D1.

Hybrid 2 is defined analogously to the one in [Zha19]. There are now three databases D1,D2,D
′.

Immediately before each query to H1, H2, or FIH1 (this addition is only difference with [Zha19]), these
three databases are ‘decoded’ to just two databases D1,D2, then the query is handled using these
databases, then they are immediately ‘encoded’ back to three databases.

Claim A.2. D̃ has the same acceptance probability in Hybrids 1 and 2.

This follows by the same reasoning as in [Zha19, Lemma 10]. Essentially, we can indistinguishably
modify Hybrid 1 to introduce an ‘encode’ immediately followed by a ‘decode’ between every pair of adjacent
queries (and also before the first one and after the last one). Each ‘encode’ then commutes with the collision
check that is done after each H1 query, yielding Hybrid 2.
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Hybrid 3 also is analogous to the one in [Zha19]: it is the ‘ideal’ experiment (where H2-queries are answered
by SO,H′) except that we still have the abort condition if a collision in D1 is ever measured after an
H1-query.
In other words, instead of handling queries by decoding the three databases to two, answering the
query, and then encoding back to three databases, we act directly on the three databases as in the
ideal experiment with S. So, for H1- and FIH1-queries, the difference with Hybrid 2 is just that the
queries are made directly using D1 (without any decoding and encoding). For H2-queries, due to our
‘refactoring’ of the simulator, the process ends up being exactly as described in [Zha19, Hybrid 3].

Claim A.3. The difference between D̃’s acceptance probabilities in Hybrids 2 and 3 isO(Q̃D,1 ·Q̃D,2/
√
|Y1|).

This follows by reasoning very similar to that in the proof of [Zha19, Lemma 11], as summarized here.
For each H1-query, it suffices to swap the order of the corresponding ‘encoding’ and CStO operations, which
by their almost-commutativity introduces O(Q̃D,1 · Q̃D,2/

√
|Y1|) total distinguishing advantage. (More

specifically, each of the at most Q̃D,1 CStO operations needs to be swapped with the at most 2Q̃D,2 FindInput
operations performed by each ‘encoding’ done in superposition.) Similarly, for each FIH1-query, it suffices to
swap the ‘encoding’ and FindInput operations; these commute (with perfect indistinguishability) because
they interact only through the contents of the database D1, which they do not alter. Finally, the handling of
H2-queries in our Hybrids 2 and 3 is exactly as in [Zha19], and as shown in the proof of [Zha19, Lemma 11],
this handling is identical in the two experiments.

Hybrid 4 is exactly the ‘ideal’ experiment, which has no abort-upon-collision condition.

Claim A.4. The difference between D̃’s acceptance probabilities in Hybrids 3 and 4 is O(Q̃
3/2
D,1/

√
|Y1|).

The only difference between Hybrids 3 and 4 is whether they abort upon a collision in D1, so the claim
again follows by Lemma 3.12. This completes the proof of Lemma 3.19.

A.2 Quantum Consistency

Lemma 3.20. The simulator S from the proof of Theorem 3.18 is (QD, ϵ)-consistent (Definition 3.4),
where QD is as in the statement and

ϵ = O((QD,1 +QD,3)
3/2/

√
|Y1|) = O(Q

3/2
D /

√
|Y1|).

Proof. Following the definition of consistency, consider a distinguisher D̃ with query complexity QD =

(QD,1, QD,2, QD,3) that is given quantum access either to oracles O,SO,H′
,CO,SO,H′ (the ‘real’ experiment)

or to oracles O,SO,H′
,H′ (the ‘ideal’ experiment), where H′ : X1 ×X2 → Y2 is a random oracle.

The rest of the proof closely parallels the one for [Zha19, Lemma 13], which shows ordinary consistency
of its simulator (not relative to any oracle). Indeed, the differences are even less significant than those in
the proof of Lemma 3.19 above, so we will be fairly brief. Overall, we use the same hybrid experiments as
in [Zha19], except that the distinguisher additionally has access to FIH1 in all of them. This only affects the
parts of the argument that use the compressed-oracle collision bound; for these we can use the FICO collision
bound (Lemma 3.12) instead.
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Hybrid 0 is the ‘real’ experiment, where the distinguisher D̃’s third oracle isCO,SO,H′ . Due to our ‘refactoring’
of the simulator, this oracle answers queries using the same process as appears at the start of the proof
of [Zha19, Lemma 13]. So, this hybrid is the same as the one from [Zha19], but with the addition of
the FIH1 interface.

Hybrid 1 is the same as the one from [Zha19], but with the addition of the FIH1 interface. (The only changes
compared to Hybrid 0 are in the procedure used for answering queries to D̃’s third oracle.)

Claim A.5. The difference between D̃’s acceptance probabilities in Hybrids 0 and 1 is O(QD,3/
√
|Y1|).

This follows by the same reasoning as in [Zha19], using almost-commutativity (the additional FIH1

interface does not affect the argument).

Hybrid 2 is the same as the one from [Zha19], but with the addition of the FIH1 interface. Namely, after
every query to H1 we measure if D1 has a collision, and abort if so.

Claim A.6. The difference between D̃’s acceptance probabilities in Hybrids 1 and 2 isO((QD,1+QD,3)
3/2/

√
|Y1|).

This follows by the same reasoning as in [Zha19], but instead using the FICO collision bound (Lemma 3.12).

Hybrids 3 and 4 are the same as the ones from [Zha19], but with the addition of the FIH1 interface. (The
only changes compared to Hybrid 2 are in the procedure used for answering queries to D̃’s third oracle.)

Claim A.7. D̃ has the same acceptance probabilities in Hybrids 2, 3, and 4.

This follows by the same reasoning as in [Zha19], which is unaffected by the additional FIH1 interface.

Hybrid 5 simply removes the abort-upon-collision condition. This is the ‘ideal’ experiment.

Claim A.8. The difference between D̃’s acceptance probabilities in Hybrids 4 and 5 is O(Q
3/2
D,1/

√
|Y1|).

This again follows from the FICO collision bound (Lemma 3.12). Note that D̃’s (at most) QD,3 queries to
the third oracle have no effect on this analysis because they do not induce any H1-queries in these hybrids.
This completes the proof.
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