
Two-Round Stateless Deterministic
Two-Party Schnorr Signatures

From Pseudorandom Correlation Functions

Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy

Aarhus University, Aarhus, Denmark
yash@ykondi.net, orlandi@cs.au.dk, ldr709@gmail.com

Abstract. Schnorr signatures are a popular choice due to their simplicity, provable security, and linear
structure that enables relatively easy threshold signing protocols. The deterministic variant of Schnorr
(where the nonce is derived in a stateless manner using a PRF from the message and a long term
secret) is widely used in practice since it mitigates the threats of a faulty or poor randomness generator
(which in Schnorr leads to catastrophic breaches of security). Unfortunately, threshold protocols for the
deterministic variant of Schnorr have so far been quite inefficient, as they make non black-box use of
the PRF involved in the nonce generation.
In this paper, we present the first two-party threshold protocol for Schnorr signatures, where signing is
stateless and deterministic, and only makes black-box use of the underlying cryptographic algorithms.
We present a protocol from general assumptions which achieves covert security, and a protocol that
achieves full active security under standard factoring-like assumptions. Our protocols make crucial use
of recent advances within the field of pseudorandom correlation functions (PCFs).
As an additional benefit, only two-rounds are needed to perform distributed signing in our protocol,
connecting our work to a recent line of research on the trade-offs between round complexity and cryp-
tographic assumptions for threshold Schnorr signatures.

Table of Contents

1 Introduction . 2
1.1 Distributed Schnorr Signing with Stateless Determinism . 3
1.2 Our Techniques . 5
1.3 Related Work . 7

2 Definitions . 8
2.1 Semiprime-Related Assumptions . 8
2.2 Pseudorandom Correlation Functions . 9
2.3 Discrete Log Pseudorandom Correlation Functions . 10

3 Deterministic Signing from Pseudorandom Discrete Logarithm Nonce Derivation Functions 11
4 Covert Security from SoftSpoken VOLE . 14

4.1 Efficiency . 17
5 Full Security from Pseudorandom Correlation Functions . 17

5.1 Efficiency . 18
5.2 Implementation . 19
5.3 Completeness . 20
5.4 Soundness . 21
5.5 Pseudorandom Nonces . 24

Bibliography . 26
A Specification of FPCF

Setup and FRDL
Com−ZK . 29

B Reduction to Strong RSA . 29

mailto:yash@ykondi.net
mailto:orlandi@cs.au.dk
mailto:ldr709@gmail.com

C Bandwidth Cost of [Lin22, NRS21] . 30
C.1 Bandwidth Cost of [Lin22] . 30
C.2 Bandwidth Cost of [NRS21] . 31

1 Introduction

Schnorr [Sch91] provides a simple method to leverage the hardness of computing discrete logarithms
in some group of known prime order, to construct a provably unforgable signature scheme [PS96].
Although the adoption of Schnorr signatures was initially hampered by a patent, following the
patent’s expiration in 2008 its footprint in real-world use has been rapidly growing. For instance
EdDSA [BDL+11] (a carefully parameterized instantion of Schnorr) already enjoys wide support in
several standard libraries, and even more recently Schnorr signatures have seen interest from the
Bitcoin community [WNR]. Along with their increasing deployment, interest in mechanisms for key
protection of Schnorr signatures has grown in the recent past. One common method of mitigating
single points of failure in the storage and use of such keys is via threshold signatures [Des88].
Informally, a threshold signature allows its key to be secret shared amongst multiple devices, so
that a qualified quorum of these devices must collaborate in order to perform signing operations
with the key.

The linear nature of Schnorr’s signature scheme is known to be conducive to simple distributed
signing protocols, with several classic [SS01, NKDM03, GJKR07], and recent [MPSW19, KG20,
NRS21, AB21] constructions. At a high level, a Schnorr signature under public key pk = sk · G is
of the form (R = r ·G, s = sk · e + r), where e = H(R, pk, m), and so a multiparty signing protocol
consists of sampling the nonce R with standard distributed key generation techniques [Ped91] and
computing s by taking a linear combination the shares of sk and r.

Deterministic Nonce Derivation. Schnorr’s original proposal required the random sampling of r, and
a line of works on secret key recovery from nonce bias [HS01, ANT+20, MH20] has shown that even
a slight noticeable deviation from the uniform distribution can induce catastrophic failure. Taken in
combination with empirical observations on the ubiquity of randomness failures in practice [Hen22],
this sensitivity to nonce bias makes the nonce sampling step a significant potential attack surface
for Schnorr signatures. In order to mitigate this threat, early proposals [Bar97, Wig97] called for
deterministic nonce generation.

Statelessness. One may consider deriving nonces by maintaining a stateful pseudorandom number
generator, for example. However such an approach then becomes vulnerable to state reuse, which
implies nonce reuse in this context. Reliably maintaining state can be surprisingly non-trivial in a
variety of scenarios, and is studied under the umbrella of state continuity [PLD+11, SP16, MAK+17]
in the systems literature. One such scenario that is particularly relevant to modern cloud deployment
conditions is that of incorrectly instantiating Virtual Machines [EZJ+14, KASN15]—stale state is
not typically detectable within the context provided to cryptographic APIs.

This problem could in principle be addressed by general solutions for state continuity based
on trusted hardware [PLD+11, SP16]. However, such solutions come with extra hardware costs
and qualitative disadvantages due to heuristic hardware-based trust assumptions, in addition to
suffering a high latency for simple operations (over 60ms to increment an SGX Trusted Monotonic
Counter [BCLK17]). We refer the reader to Garillot et al. [GKMN21] for a more detailed discussion.

Modern instantiations of Schnorr’s scheme such as EdDSA are therefore both deterministic, and
stateless—nonces are derived by applying a hash function (or PRF) on the message being signed,
along with a long-term secret. In particular, given a PRF F : {0, 1}∗ 7→ Zq the signer samples a

2

PRF seed sd ← {0, 1}κ during key generation, and computes r ← Fsd(m) to use in signing the
message. Our goal in this work is to translate this template for stateless derandomization to the
distributed setting, which is known to be a challenging problem [MPSW19]. We focus on the two-
party setting in this work, as it is the base case for the challenging dishonest majority setting, and
is already sufficient for a number of useful applications including cryptocurrency wallets, two-factor
authentication, etc. As one indicator of real-world interest in solutions to this problem, the recent
draft NIST Internal Report on Threshold EdDSA/Schnorr signatures [BD22] and subsequent call
for multiparty threshold schemes considers stateless deterministic signing as a potentially desirable
mode of operation.

1.1 Distributed Schnorr Signing with Stateless Determinism

We first explain the obstacle to translating the benefits of the simple stateless deterministic nonce
derivation technique described above to the distributed signing setting, and then we discuss existing
approaches to the problem.

The Obstacle. Consider a setting in which parties P0, P1 have signing key shares sk0, sk1, and wish
to sign a message m under their joint signing key sk = sk0 + sk1. The protocol of Nicolosi et
al. [NKDM03] roughly proceeds as follows: each Pi samples ri ← Zq and computes Ri = ri ·G, and
P0 first sends a commitment C = Com(R0) to P1. Upon receiving C, party P1 sends R1 to P0, who
then establishes the signing nonce R = R0 +R1, which in turn determines e = H(R, pk, m). Finally,
P0 computes s0 = sk0 · e + r0 locally and sends this value (along with the opening of C to R0) to
P1, who is able to compute s1 = sk1 · e + r1 and complete the signature (R = R0 + R1, s = s0 + s1).

A naive method to statelessly derandomize such a protocol would be to instruct each Pi to
sample a long-term secret seed sdi, and begin the protocol by computing ri = Fsdi

(m) using a
pseudorandom function F rather than sampling one afresh. This naive approach already solves the
problem in the semi-honest setting. However, it runs into the following issue for malicious security:
a corrupt P1 could initiate two signature sessions to sign the same message, behaving honestly
in the first instance, and in the second instance using r∗1 ̸= Fsd1(m) in place of the correct r1
(equivalently R∗1 ̸= R1). As P0’s choice of r0 depends only on (sd0, m), its nonce share R0 stays
the same in both instances. This leads to different nonces R = R0 + R1 and R∗ = R0 + R∗1 with
corresponding e = H(R, pk, m) and e∗ = H(R∗, pk, m) in the two instances, which induces P0
to reveal s0 = sk0e + r0 and s∗0 = sk0e∗ + r0 to P1. As s0, s∗0 constitute two independent linear
combinations of the same two values (one of which is sk0), P1 can simply solve for sk0 and recover
the whole signing key. This flavour of issue was first documented by Maxwell et al. [MPSW19], and
has been notoriously difficult to mitigate.

Existing Approaches. To our knowledge, there are only two papers in the literature that present
techniques to mitigate the above issue: those of Nick et al. [NRSW20], and Garillot et al. [GKMN21].
Both works take a GMW-type approach [GMW87] of having each party prove in zero-knowledge
that it executed the naive semi-honest stateless deterministic protocol correctly. Conceptually, the
approach is simple: each Pi provides a one-time commitment to its long-term seed sdi—perhaps
during distributed key generation—and subsequently when signing a message, each Pi proves in
zero-knowledge that its claimed nonce Ri is indeed of the form Ri = Fsdi

(m) · G, where sdi is
contained in the commitment.

This simple approach is non-trivial to implement with concrete efficiency, as the statement
being proven consists of an algebraic component (by virtue of the elliptic curve operations), and
a complex non-algebraic one (due to the PRF). Nick et al. [NRSW20] reconcile this difference by

3

designing a custom arithmetization-friendly PRF to use along with a succinct proof system, i.e.
Bulletproofs [BBB+18]. On the other hand, Garillot et al. [GKMN21] take the opposite approach;
they start with a standard block-cipher based PRF—such as AES or SHA—and optimize garbled
circuit based ZK proofs [JKO13] for this setting.

Both approaches (and indeed any approach based on the GMW paradigm) are bottlenecked
by having to prove cryptographic statements involving F in zero-knowledge; the efficiency of such
approaches inherently depends on the circuit complexity of pseudorandom functions. It is therefore
natural to ask,

Can we design a distributed, stateless, deterministic, Schnorr signing scheme that makes
only blackbox use of cryptographic primitives?

Our Results. In this work, we develop a new methodology for distributing Schnorr signing while
retaining stateless determinism, that makes blackbox use of an increasingly general cryptographic
primitive—pseudorandom correlation functions, or PCFs [BCG+20]. Just as the single party algo-
rithm is easily derandomized with PRFs, we invoke PCFs to natively translate the derandomization
technique to the distributed setting. Roughly, PCFs are the multiparty analogue of PRFs—they
compress exponentially large correlated random tapes into short keys. This way, the random tape
for all signing nonces is effectively committed during distributed key generation; when signing a
message the parties access the relevant portion to obtain their nonce shares, and use the correlation
to validate each other’s shares.

The complexity of the correlation determines the efficiency of the PCF, and so we show that
the relatively simple Vector Oblivious Linear Evaluation (VOLE) correlation suffices for our task.
We present two instantiations of our methodology:
– Our first construction is based on the SoftSpoken VOLE PCF by Roy [Roy22], and makes black-

box use of any PRF. While the original construction worked only for small fields, we generalize it
to arbitrary ones to be able to use it in our context. The computation overhead of this approach
is barely noticeable relative to the naive semi-honest protocol (only additions in Zq), and the
bandwidth overhead is a single group element. However, it only achieves covert security [AL07].

– Our second construction achieves full malicious security, and correspondingly requires a VOLE
PCF for a large field. Our starting point is the Paillier encryption based PCF of Orlandi et
al. [OSY21]. Since their PCF generates correlation modulo a biprime, we need to carefully devise
a technique to obtain VOLE correlations modulo a prime while preserving active security which
can be used in our context. We construct a secure translation and consistency checking mechanism
for this purpose, whose security we reduce to the Decisional Composite Residuosity (DCR) and
Strong RSA assumptions. Besides instantiating a fundamentally new approach, our construction
achieves the lowest bandwidth consumption of any known stateless deterministic Schnorr signing
scheme (only a few hundred bytes), at reasonable computation overhead (a few exponentiations).
We report on a proof-of-concept implementation in Section 5.2.

As an interesting additional benefit, our constructions achieve two-round signing, which has been no-
toriously difficult to accomplish even in the randomized setting [DEF+19]. Existing two-round sign-
ing protocols either rely on the Algebraic Group Model or interactive assumptions [KG20, NRS21,
AB21], or make use of non-black-box zero-knowledge proofs of cryptographic statements [NRSW20].
We give a comparison of our approaches to those from the literature in Table 1.1.

Key Generation/Setup. Our protocols make use of an ideal setup oracle FPCF
Setup to sample and dis-

tribute the PCF keys. In principle, this oracle can be realized by MPC to obtain a fully distributed

4

St
at

el
es

s
&

D
et

er
m

in
is

tic

R
ou

nd
s

B
an

dw
id

th
(K

B
)

A
ss

um
pt

io
ns

B
la

ck
bo

x

Se
cu

rit
y

[Lin22] % 3 0.9 RO ✓ Malicious
[NRS21] % 2 0.1 RO+OMDL ✓ Malicious

[NRSW20] ✓ 2 1.1 RO+DDHa % Malicious
[GKMN21] ✓ 3 307 RO+PRF % Malicious

This work ✓ 2 0.1 OT+PRF ✓ Covert
This work ✓ 2 0.5 RO+DCR+Strong RSA ✓ Malicious

a DDH in a custom elliptic curve, not the same one as the signature.

Table 1.1: Comparison of different techniques to distribute Schnorr signing. Computation com-
plexity is not represented in this table as it is best measured empirically, and not all works are
implemented. Note that our protocols invoke an ideal oracle FPCF

Setup during key generation, which is
not the focus in this work. Bandwidth cost represents data transmitted per party when signing with
a 256-bit elliptic curve, and is either derived analytically here (see Appendix C for [Lin22, NRS21]
and Sections 4.1 and 5.1 for our work) or taken from previous work. “Blackbox” refers to the use
of cryptographic tools as a black box, in order to avoid dependence on their circuit complexity. For
instance, Schnorr’s proof of knowledge of discrete logarithm is blackbox as it uses the group as an
oracle, whereas proving statements that involve the circuit representation of group operations is
not.

protocol. The focus of this work is on the signing phase, and so we do not focus on the concrete effi-
ciency or optimizations in realizing FPCF

Setup beyond remarking that a single all-but-one OT suffices for
our covert construction, and a note for our maliciously secure construction in Section 5.1. Moreover,
as discussed by Abram et al. [ANO+22], in many practical applications of threshold cryptography
there is a natural “trusted dealer” that can execute FPCF

Setup, namely the owner of the cryptocurrency
wallet distributing its secret key.

Future Work. As shown in Table 1.1, our results achieve either malicious security, or security under
generic assumptions (OT and PRF). Achieving both at the same time remains an interesting open
question.

1.2 Our Techniques

In this work, we retain the approach of having each Pi prove that their claimed nonce was derived
correctly, but we do not look to the literature on zero-knowledge proofs to instantiate such an
object. Instead, we view this problem through the lens of Pseudorandom Correlation Functions
(PCFs) [BCG+20]. Informally, a two-party PCF produces two keys k0, k1 so that for any public x ∈
{0, 1}κ, it holds that a0 = PCF.Eval(k0, x) and a1 = PCF.Eval(k1, x) are correlated per some useful
function. As an example, a PCF for the (Random) Oblivious Transfer correlation would enforce that
a0 = (m0, m1) ∈ {0, 1}2×κ, and a1 = (b, mb) ∈ {0, 1} × {0, 1}κ. The ‘pseudorandomness’ property
intuitively guarantees that (a0, a1) is distributed pseudorandomly in the appropriate domain.

5

Feasibility of the Ideal PCF. We begin by considering what the ideal PCF might look like for
the task of nonce derivation. Consider a “nonce correlation”, which enforces that (a0, a1) are of
the form a0 ∈ Zq and a1 = a0 · G ∈ G. It is immediate how such a PCF would be useful in
the design of two-party Schnorr signing—to sign a message m, each Pi derives its nonce as ri =
PCF.Eval(ki,0, m) while P1−i derives the corresponding Ri = PCF.Eval(ki,1, m). As each party Pi

can derive the other’s nonce share R1−i locally via the PCF, the common nonce R = R0 + R1 is
established non-interactively just by fixing the message, and it only remains for the parties to locally
compute and exchange their si values. This gives a conceptually simple non-interactive stateless
deterministic two-party Schnorr signing protocol. While it is feasible to construct such a PCF via
generic techniques [DHRW16, BCG+20], it is unclear how to instantiate it with reasonable concrete
efficiency, or even blackbox in the group G.

The VOLE PCF is Nearly Ideal. The Vector Oblivious Linear Evaluation (VOLE) correlation
enforces that (a0, a1) be of the form a0 = (u, v) and a1 = (w, ∆) such that w− v = u∆, where ∆ is
fixed across all evaluations with the same key pair. If the correlation holds mod q, the value u can
be used as ri directly, and v, w, ∆ can serve to authenticate Ri = u ·G. In particular, if P0 and P1
derive (a0, a1) as above, and P0 sends R0 = u ·G and V = v ·G to P1, party P1 can then check the
correlation in the exponent, i.e. validate w ·G− V

?= ∆ ·Ri. The probability that P0 tricks P1 into
accepting a false R∗0 ̸= R0 is essentially equivalent to the probability that P0 is able to guess ∆.

The VOLE PCF is therefore conducive to a two-round Schnorr signing protocol: each Pi derives
ri, vi, w1−i, ∆1−i locally—correlated as wi−vi = ri∆ for each i ∈ {0, 1}—and sends the correspond-
ing Ri, Vi to P1−i. Upon receiving R1−i, V1−i, each Pi validates the correlation with w1−i, ∆i in the
exponent, and sets R = R0 + R1. The parties then locally compute and exchange their respective
si = ski · e + ri values, and complete the signature as (R, s = s0 + s1).

First Instantiation: SoftSpoken VOLE. As a building block for OT extension, Roy [Roy22] intro-
duced a PCF for the VOLE correlation called SoftSpoken VOLE, which makes blackbox use of any
PRF. However, this PCF was designed to create VOLE correlations in F2O(log κ) as a generalization
of the IKNP OT extension technique [IKNP03]. In order to use it in our context, we generalize the
SoftSpoken VOLE technique so that it can produce such correlations in any field, even exponen-
tially large ones. However, an important caveat of this adjustment is that while u is uniform in say
Zq, in order for the PCF evaluation to be efficient (i.e. polynomial in κ), the ∆ component of the
correlation is restricted to a polynomially large subset of Zq. This means that a corrupt P ∗i could
fool P1−i into accepting an incorrect R∗i with small but noticeable probability, and thus our first
instantiation only achieves covert security.

Second Instantiation: Paillier PCF. Orlandi et al. [OSY21] presented a PCF for the VOLE cor-
relation based on Paillier’s encryption scheme. For concreteness, assume that P0 owns k0, and P1
owns k1 which allow them to non-interactively generate shares w − v of u∆ in ZN . Although the
PCF can produce exponentially large ∆ values, the correlations it produces hold over the ring ZN

where N is the product of two large primes—this factorization of N is known only to the party
that holds key k0. We therefore have to design an additional protocol to carefully ‘translate’ this
correlation from ZN to a correlation in Zq.

This translation problem turns out to be surprisingly non-trivial, as demonstrated by our initial
failed approaches. We first explored techniques such as rounded division (u′ =

⌊uq
N

⌉
) and remainder

(u′ = (u mod N) mod q) to convert from ZN to Zq. Any such conversion introduces errors into
the shares, which is quite difficult to securely correct to a valid correlation over Zq. Consider an
IKNP OT extension [IKNP03] type approach, where P0 sends a “correction word” to account for

6

the error. The challenge then is to ensure that P0 is unable to send a malformed correction word
without being detected. One might try adding a VOLE consistency checking protocol to verify
the correlation, but validity of the correlation alone does not suffice in our setting; P0 must be
unable to change its output u′ ∈ Zq in repeated invocations of the protocol. One approach that we
explored at this point is having P0 prove that the corrected u′ is “small”, i.e. fully reduced modulo
q. However this led us to a general issue with (approximate) range proofs: any such proof system
that we could develop achieved at most a soundness of 1

2 per repetition. This stems from an issue
where P0 can add an error of 1

2 mod N at some point in the protocol, which has a noticeable chance
of escaping detection when multiplied by a (small) even number. We refer the reader to Couteau
et al. [CKLR21, Section 2.1] for a detailed discussion of this flavour of issue.

In Section 5 we present our solution to this translation problem that finally worked. Roughly,
our translation to Zq mechanism works as follows: First, the parties translate their shares over ZN

into shares over Z, removing the modulus by using a technique from the Paillier HSS constructions
of [OSY21, RS21]. This requires sending a correction, to force u to be small compared to N . Then,
the parties take their shares modulo q to get shares suitable for use in two-party Schnorr. To handle
P0’s possible lies, we introduce some carefully crafted checks which only allow P0 to lie by a multiple
of some parameter M , which we require to be divisible by q (thus having no impact on the final
result). The most important of these checks is an “integer consistency check” in the exponent, using
a different group generated by g ∈ (ZNV)×, where NV is another semiprime, making g’s order be
unknown. Performing a check over Z instead of ZN avoids the issue of wraparound, as multiplying
two large numbers cannot output a small number. We defer a more detailed technical description
to Section 5.

1.3 Related Work

As discussed earlier, to our knowledge the works of Nick et al. [NRSW20] and Garillot et al. [GKMN21]
are the only ones to present distributed Schnorr signing protocols where signing is stateless and
deterministic. Both use zero-knowledge proofs to prove the consistency of claimed nonces with
respect to committed nonce derivation keys. Our full security PCF construction achieves better
communication complexity than both, while staying within the realm of standard assumptions.

Smart and Alaoui [ST19], and Dalskov et al. [DOK+20] observed that SPDZ-style MACs can
be checked in the exponent, and showed how to apply this principle in the context of distributing
the computation of ECDSA signatures. Our techniques in this paper can be viewed as a PCF
interpretation of a similar idea, i.e. that VOLE correlations can be useful for authentication in the
exponent.

Abram et al. [ANO+22] used Pseudorandom Correlation Generators (PCGs) to generate useful
correlations to distribute the computation of ECDSA. Like us, they follow a pseudorandom cor-
relation paradigm in a threshold signature context, however the setting in their paper is entirely
different; their work optimizes storage and ‘online’ bandwidth complexity of distributing ECDSA,
and their techniques rely on maintaining state.

Bonte et al. [BST21] investigate the cost of using MPC to distribute the EdDSA signing algo-
rithm, which derives nonces by hashing the message to be signed with a long-term secret. While
the ideal functionality that they achieve is stateless and deterministic, the protocol itself is not—i.e.
their protocol relies on keeping state and/or sampling fresh randomness online.

Several works on threshold ECDSA make use of Paillier encryption [GG18, LN18, CGG+20]
for Oblivious Linear Evaluation (OLE). Their techniques are fundamentally different; they rely on
a classic OLE protocol that leverages the additive homomorphism of Paillier encryption [Gil99],
and make use of expensive range proofs to enforce the correctness of the OLE. In contrast, our full

7

security construction does not directly make use of the homomorphism of Paillier encryption, and
rather than use range proofs to enforce honesty, we design a custom mechanism to guarantee that
the VOLE correlation is correctly ‘translated’ from ZN to Zq.

2 Definitions

Notation. We define the modulus operation to be symmetric, meaning that a mod b ∈ [− b
2 , b

2)∩Z.
This works together with rounding ⌊a

b ⌉ as quotient and remainder: a = b⌊a
b ⌉+ a mod b.

2.1 Semiprime-Related Assumptions

There are many cryptographic schemes built on using a semiprime’s factorization as the trapdoor.
Here, we will present the assumptions we need. First, we need to choose a distribution for the
semiprimes.
N, φ← RSA.Gen(1κ): Sample primes p, q ∈ (2ℓ(κ)/2−1, 2ℓ(κ)/2) uniformly at random. Output N =
pq ∈ (2ℓ(κ)−2, 2ℓ(κ)) and φ = (p− 1)(q − 1).
N, φ← RSA.GenSafe(1κ): Sample safe primes p, q ∈ (2ℓ(κ)/2−1, 2ℓ(κ)/2) uniformly at random. I.e.
sample primes p, q such that p−1

2 and q−1
2 are also prime. Compute N, φ as in RSA.Gen.

The polynomial ℓ(κ) should be chosen to make the related hardness assumptions achieve κ-bit
security.1

First, we the DCR assumption for the security of the Paillier cryptosystem.

Definition 2.1. The decisional composite residuosity (DCR) assumption states that the following
distributions are indistinguishable. RSA.Gen

(N, ϕ)← RSA.Gen(1κ)
r ← (ZN2)×
return N, r

(N, ϕ)← RSA.Gen(1κ)
r ← (ZN2)×
return N, rN

Second, we will use a consistency check based on a group of unknown order, for which we use
multiplication modulo a semiprime (similarly to [DF02]). For security, we need two properties. First,
it must be hard to find roots of unity other than ±1, i.e., to find elements x ∈ (ZN)× \ {±1} of low
multiplicative order. If N is sampled with GenSafe, the only small order possible is 2, and a square
root of unity would allow N to be factored. Second, it must be hard to compute modular roots. We
use a version of the RSA assumption.

Definition 2.2. The Strong RSA assumption states that all PPT adversaries A must have negli-
gible chance of winning the following game.

(N, ϕ)← RSA.GenSafe(1κ)
g ← (ZN)×
(z, e)← A(N)
win if |e| > 1 and ze = g

1 Assuming that the adversary uses the general number field sieve, ℓ(κ) = Θ̃(κ3).

8

2.2 Pseudorandom Correlation Functions

We will use the Pailler-based pseudorandom correlation function (PCF) of [OSY21]. There are a
couple of issues, however, with applying their definition to Pailler PCF for VOLE correlations. First,
the output ring of the correlation, ZN for a semiprime N , is sampled randomly. However, there is
no feature in their definition that allows the group to be sampled. Second, the master secret key
msk for VOLE is ∆, and it is supposed to be both output as part of y1. But their reverse sampling
definition requires that the output distribution be the same for two different choices of msk.

Below we have modified their definitions to fix these issues.

Definition 2.3. Let 1 ≤ ℓ0(κ), ℓ1(κ) ≤ poly(κ) be output-length functions, and letMi be a set of
allowed master keys for party i. Let (Setup,Y) be a tuple of probabilistic algorithms, such that
– Setup(1κ, msk0 ∈M0,M1) samples a distribution key pk and an (optional) trapdoor sk.
– Y(pk, msk0, msk1), returns a pair of outputs (y0, y1) ∈ {0, 1}ℓ0(κ) × {0, 1}ℓ1(κ).

We say that the tuple (Setup,Y) defines a reverse sampleable correlation with setup if there
exists a probabilistic polynomial time algorithm RSample such that
– RSample(pk, msk0, msk1, σ ∈ {0, 1}, yσ ∈ {0, 1}ℓσ(κ)) returns y1−σ ∈ {0, 1}ℓ1−σ(κ) such that for all

msk0 ∈M0, msk1 ∈M1 and all σ ∈ {0, 1}, the distributions of (pk, sk, yσ, y1−σ) and (pk, sk, yσ, y∗)
are statistically close, where:(pk, sk, y0, y1, y∗)

∣∣∣∣∣∣∣∣
(pk, sk)← Setup(1κ, msk0, msk1)
(y0, y1)← Y(pk, msk0, msk1)

y∗ ← RSample(pk, msk0, msk1, σ, yσ)


To show how this reverse sampling definition works, we next give the distribution for VOLE

correlations.

Definition 2.4. A reverse sampleable correlation (Setup,Y) is a VOLE correlation if M0 = {⊥},
M1 ⊆ Z, pk outputs a public modulus N , and the distribution Y(N,⊥, ∆) samples u, v ← ZN ,
computes w := u∆ + v, and outputs ((u, v), w).

Definition 2.5. Let (Setup,Y) fix a reverse-sampleable correlation with setup which has output
length functions ℓ0(κ), ℓ1(κ) and sets M0,M1 of allowed master keys, and let κ ≤ n(κ) ≤ poly(κ)
be an input length function. Let (PCF.Gen, PCF.Eval) be a pair of algorithms with the following
syntax:
– PCF.Gen(pk, sk, msk0, msk1) is a probabilistic polynomial time algorithm that outputs a pair of

keys (k0, k1);
– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input σ ∈ {0, 1}, key kσ

and input value x ∈ {0, 1}n(κ), outputs a value yσ ∈ {0, 1}ℓσ(κ).
We say (PCF.Gen, PCF.Eval) is a (weak) pseudorandom correlation function (PCF) for Y, if the
following conditions hold:
– Pseudorandom Y-correlated outputs. For every msk0 ∈ M0, msk1 ∈ M1, and non-uniform ad-

versary A of size poly(κ), and every Q = poly(κ), it holds that

|Pr[Exppr
0 (κ) = 1]− Pr[Exppr

1 (κ) = 1]| ≤ negl(κ)

for all sufficiently large κ, where Exppr
b (κ) for b ∈ {0, 1} is defined as follows. (In particular,

where the adversary is given access to Q(κ) samples.)

9

Exppr
0 (κ):

(pk, sk)← Setup(1κ, msk0, msk1)

for i = 1 to Q(κ):
x(i) ← {0, 1}n(κ)

(y(i)
0 , y

(i)
1)← Y (1κ, msk)

b← A(1κ, pk, (x(i), y
(i)
0 , y

(i)
1)i∈[Q(κ)])

return b

Exppr
1 (κ):

(pk, sk)← Setup(1κ, msk0, msk1)
(k0, k1)← PCF.Gen(pk, sk, msk0, msk1)
for i = 1 to Q(κ):

x(i) ← {0, 1}n(κ)

for σ ∈ {0, 1}: y
(i)
σ ← PCF.Eval(σ, kσ , x(i))

b← A(1κ, pk, (x(i), y
(i)
0 , y

(i)
1)i∈[Q(κ)])

return b

– Security. For each σ ∈ {0, 1} there is a simulator Sσs such that for every msk0 ∈M0, msk1 ∈M1,
any every non-uniform adversary A of size B(κ), and every Q = poly(κ), it holds that

|Pr[Expsec
0 (κ) = 1]− Pr[Expsec

1 (κ) = 1]| ≤ negl(κ)

for all sufficiently large κ, where Expsec
b (κ) for b ∈ {0, 1} is defined as follows (again, with Q(κ)

samples).
Expsec

0 (κ):
(pk, sk)← Setup(1κ, msk0, msk1)
(k0, k1)← PCF.Gen(pk, sk, msk0, msk1)
for i = 1 to Q(κ):

x(i) ← {0, 1}n(κ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ , x(i))

b← A(1κ, pk, kσ , (x(i), y
(i)
1−σ)i∈[Q(κ)])

return b

Expsec
1 (κ):

(pk, sk)← Setup(1κ, msk0, msk1)
kσ ← Sσ(pk, sk, mskσ)
for i = 1 to Q(κ):

x(i) ← {0, 1}n(κ)

y
(i)
σ ← PCF.Eval(σ, kσ , x(i))

y
(i)
1−σ ← RSample(1κ, msk0, msk1, σ, y

(i)
σ)

b← A(1κ, pk, kσ , (x(i), y
(i)
1−σ)i∈[Q(κ)])

return b

2.3 Discrete Log Pseudorandom Correlation Functions

As we wish to enable a diversity of techniques and instantiations for our approach, rather than
present a protocol that uses a specific type of PCF directly, we instead make use of an intermediate
object that we define here, called an (ε,G)-PCFDL. Roughly, an (ε,G)-PCFDL produces two keys
(kP, kV) through a setup algorithm. Given public input m (which can be for e.g. a message to be
signed), kP can be used to derive a rm ∈ Zq and an accompanying πR, which serves as a proof
that the nonce Rm = rm ·G was correctly derived. These nonces must be pseudorandom, and the
probability that a verifier is fooled into accepting an incorrect R∗m ̸= Rm is bounded by ε.

We formalize these intuitive properties below, accounting for subtleties that will be important
for the simulation of our UC-secure signing protocol.

Definition 2.6. An (ε,G)-PCFDL is characterized by five algorithms (Setup, P, V,S,V). The algo-
rithms P and V are not provided with random tapes. The security parameter is taken to be equal
to the size of the group, i.e. κ = |G|. These algorithms must satisfy the following properties:
– Completeness: For any efficient adversary A interacting with the oracle Ocompl, the chance of

an abort is negligible.

(kP, kV)← Setup(κ)
Ocompl(m):

(rm, πR)← P(kP, m)
Rm = rm ·G
abort if V(kV, m, Rm, πR) ̸= 1
return rm, πR

10

– ε-Soundness: For any efficient algorithm A:

Pr

R∗ ̸= Rm ∧ V(kV, m, R∗, π∗R) = 1 :

(kP, kV) ← Setup(κ)
(m, R∗, π∗R)← A(kP)

(rm, πR) ← P(kP, m)
Rm = rm ·G

 ≤ ε(κ)

– Pseudorandom Nonces With Simulatable Proofs: Define two oracles, the first beingOP(kP),
which on query m ∈ {0, 1}κ computes (rm, πR) ← P(kP, m) and returns (Rm, πR) where Rm =
rm ·G. The second oracle OS(kV) is defined as follows:
1. Upon initialization, sample a random tape ρ ∈ {0, 1}κ for S
2. Upon receiving a query m ∈ {0, 1}∗, if Rm is undefined, then sample Rm ← G and πR ←
S(kV, m, Rm, ; ρ)

3. Return (Rm, πR)
There is a negligible function negl such that for any efficient adversary A,∣∣∣∣∣ Pr[AOS(kV)(kV) = 1 : (kP, kV)← Setup(κ)]

−Pr[AOP(kP)(kV) = 1 : (kP, kV)← Setup(κ)]

∣∣∣∣∣ ≤ negl(κ)

– Simulatable Proof Validation: Define the oracle OV(kP, ·) as follows:
Upon receiving (m, R∗m, π∗R) as input:
1. If flag is already defined, and flag ̸= 1, then ignore the query.
2. Otherwise if flag is undefined, sample a random integer coin← [1, 1/ε(κ)].
3. Set flag = coin · V(kP, m, R∗m, π∗R), and return flag ?= 1.
The oracles OV(kP, ·) and V(kV, ·) are indistinguishable to any efficient A(kP) that queries only
incorrect nonces (i.e. R∗m ̸= rm ·G where (rm, ·)← P(kP, m)) over choice of (kP, kV)← Setup(κ).

Remark 2.7. Simulatable Proof Validation follows directly from ε-Soundness when ε is negligible
in κ. This is due to a canonical V that simply rejects all incorrect R∗m—by soundness, it follows
that any incorrect R∗m will be accepted by a verifier only with negligible probability.
Remark 2.8. The P and V algorithms are deterministic, and do not allow state by syntax, which
will result in a stateless deterministic distributed Schnorr protocol later on.

3 Deterministic Signing from Pseudorandom Discrete Logarithm Nonce
Derivation Functions

Given an (ε,G)-PCFDL, we show how to distribute the computation of Schnorr signatures so that
the signing protocol enjoys stateless determinism. We begin by describing the ideal UC functionality
that we will realize.
Functionality 3.1. Fε

Schnorr. Threshold Schnorr Signing With Error
This two-party functionality is parameterized by the group (G, G, q), error ε such that η = 1/ε
is an integer, and the hash function H. All messages are adversarially delayed.

Key Generation: Run once.
1. Upon receiving (sid, init) from both parties, sample sk← Zq, and compute pk = sk ·G
2. In case an entry prefixed by sid does not already exist, send (sid, public-key, pk) to both

parties, and store (sid, keys, pk, sk) in memory.

11

Signing a message: Run arbitrarily many times.
1. Ignore any queries prefixed by sid if (sid, keys, pk, sk) does not exist in memory.
2. Upon receiving (sid, sign, m) from both parties, if m has not previously been signed, sample

rm ← Zq and store (sid, nonce, m, rm) in memory. Otherwise retrieve (sid, nonce, m, rm)
from memory.

3. Compute Rm = rm · G and in case Pi is corrupt, send it (sid, nonce, Rm) and wait for
(sid, proceed, m).

4. Compute
s = sk ·H(Rm, pk, m) + rm

and send (sid, sig, Rm, s) to both parties.

Cheat: If Pi is corrupt, it may send (sid, cheat, m) instead of (sid, proceed, m) upon receiving
(sid, nonce, Rm). If initialized and cheat has not previously been sent, then:
1. Uniformly sample a random integer coin← [1, η]
2. If coin = 1 then Pi is given control of this functionality (i.e. henceforth Pi receives all

messages and responds on behalf of Fε
Schnorr) without notifying P1−i.

3. Otherwise, send (sid, cheat-detected) to both P0 and P1, and stop accepting further in-
structions.

Observe that if ε(κ) is negligible in κ, then Fε
Schnorr is effectively equivalent to the standard

Schnorr signing functionality (up to syntax); sending (sid, cheat, m) to Fε
Schnorr in this case is

equivalent to instructing the standard Schnorr signing functionality to abort.
Our protocol makes use of an FPCF

Setup hybrid functionality, which upon receipt of the initialization
commands for an sid (i.e. prover-init and verifier-init) simply executes the Setup algorithm
of the (ε,G)-PCFDL and returns the resulting kP and kV to the appropriate parties. We give the
exact description in Appendix A. While such a functionality can always be instantiated generically
by MPC, we discuss instantiations tailored to each (ε,G)-PCFDL construction in their respective
sections. The focus of this work is on the round complexity and stateless determinism of the signing
protocol, and so we do not prioritize the optimization of the instantiation of the one-time setup
phase. We now give the our distributed Schnorr signing protocol.
Protocol 3.2. πSch. Stateless Deterministic Threshold Schnorr Signing

This two-party protocol is parameterized by the group (G, G, q), where |G| = κ, an (ε,G)-
PCFDL characterized by algorithms (Setup, P, V,S,V), and optionally εκ = ε(κ) such that
η = 1/εκ is an integer. This protocol additionally makes use of ideal functionalities FPCF

Setup and
FRDL

Com−ZK, which are given in Appendix A.
All superscripts in the protocol descriptions are indices.

Key Generation: For i ∈ {0, 1}, each Pi does the following:
1. Send (sidi, prover-init) and (sid1−i, verifier-init) to FPCF

Setup and wait for responses
(sid, prover-key, ki

P) and (sid, verifier-key, k1−i
V) respectively.

2. Sample ski ← Zq, compute pki = ski ·G and send (commit, sidi, pki, ski) to FRDL
Com−ZK

3. Wait for (committed, sid1−i) from FRDL
Com−ZK and send (open, sidi)

4. Wait for (opened, sid1−i, pk1−i) and set pk = pk0 + pk1

12

Signing a message m: For i ∈ {0, 1}, each Pi does the following:
1. Compute (ri

m, πi
R)← P(ki

P) and Ri
m = ri

m ·G
2. Send (Ri

m, πi
R) to P1−i and wait for (R1−i

m , π1−i
R) in response

3. If V(ki
V, m, R1−i

m , π1−i
R) = 0, then abort. Otherwise, set Rm = R0

m + R1
m

4. Send si = ski ·H(Rm, pk, m) + ri
m to P1−i, and wait for s1−i in response

5. Compute s = s0 + s1, and output (s, Rm) after verifying that it is a Schnorr signature on
m.

Theorem 3.3. πSch UC-realizes Fε
Schnorr in the FPCF

Setup,FRDL
Com−ZK-hybrid model in the presence of

up to one static active corruption, assuming that (Setup, P, V,S,V) is an (ε,G)-PCFDL.

Proof. (Sketch) We briefly describe how to simulate the view of a corrupt Pi.
Key Generation. For each i ∈ {0, 1}, the simulator runs (ki

P, ki
V)← Setup(1κ). The keys (ki

P, k1−i
V)

are given to Pi on behalf of FPCF
Setup. Additionally, (pki, ski) is received from Pi on behalf of FRDL

Com−ZK.
Upon receiving pk from Fε

Schnorr, compute pk1−i = pk − pki and send pk1−i to Pi on behalf of
FRDL

Com−ZK.
Signing a message m.
1. Upon receiving the nonce Rm from Fε

Schnorr, compute (ri
m, πi

R)← P(ki
P) and Ri

m = ri
m ·G.

2. Compute R1−i
m = Rm − Ri

m and π1−i
R ← S(kP, R1−i

m), and send (R1−i
m , π1−i

R) to Pi on behalf of
P1−i.

3. Upon receiving (Ri∗
m, πi∗

R) from Pi,
(a) If Ri∗

m = Ri
m and V(kV, m, Ri

m, πi∗
R) = 1 then send proceed to Fε

Schnorr, and receive the
signature (R, s) in response. Compute s1−i = s − (ski ·H(Rm, pk, m) + ri

m) and send s1−i

to Pi.
(b) Otherwise when Ri∗

m ̸= Ri
m, if no cheat has been attempted before, then send cheat to

Fε
Schnorr. If the cheat is successful (or has been successful in the past), and V(kP, m, Ri∗

m, πi∗
R) =

1, obtain sk and rm from the Fε
Schnorr, set R′m = R1−i

m + Ri∗
m, and sk1−i = sk − ski and

r1−i
m = rm − ri

m. Compute s1−i = sk1−i ·H(R′m, pk, m) + ri
m and send s1−i to Pi. Addition-

ally, upon receiving si from Pi, instruct Fε
Schnorr to send (R′m, si + s1−i) to P1−i.

(c) Abort in any case not explicitly handled above.

Indistinguishability of simulation. The simulation of the key generation phase is merely syntactically
different from the real protocol. In the simulation of the signing phase, (R1−i

m , π1−i
R) is distributed

indistinguishably from the real protocol by virtue of the Pseudorandom Nonces With Simulatable
Proofs property. As for (Ri∗

m, πi∗
R) being ‘accepted’, there are two main cases:

– Ri∗
m = Ri

m, in which case the real protocol and simulation behave identically (i.e. they proceed
or abort conditional on V(kV, m, Ri

m, πi∗
R)).

– Ri∗
m ̸= Ri

m, in which case the real protocol proceeds conditional on V(kV, m, Ri∗
m, πi∗

R), whereas
the simulation proceeds conditional on coin = 1 where coin is a random integer sampled from
[1/η] by Fε

Schnorr and V(kP, m, Ri∗
m, πi∗

R) = 1. These two methods of validating (Ri∗
m, πi∗

R) are
indistinguishable, by the Simulatable Proof Validation property. Note that since this property
only accounts for incorrect nonces, in the reduction to this property, one must be able to simulate
the output of V(kV) when it is sent correct nonces. We claim that this oracle can be simulated
in the reduction by simply always accepting correct nonces (even if the accompanying π∗R is
incorrect), at no loss of advantage. This is because a correct Rm accompanied by an π∗R that

13

was not computed honestly induces one of two outcomes: (1) the honest V accepts anyway, in
which case the reduction made the correct choice, or (2) the honest V aborts, in which case the
adversary (and hence the reduction) would have failed anyway.

Finally, conditional on (Ri∗
m, πi∗

R) having been ‘accepted’, both the simulation and and the real
protocol compute s1−i in the exact same way (up to syntax).

Corollary 3.4. πSch UC-realizes FSchnorr in the presence of up to one static active corruption,
assuming that (Setup, P, V,S) is an (ε,G)-PCFDL where ε is negligible in κ.

4 Covert Security from SoftSpoken VOLE

With our (ε,G)-PCFDL abstraction and the protocol πSch to use it in place, we turn our focus to
how to instantiate an (ε,G)-PCFDL. As a first construction, we adapt the SoftSpoken VOLE PCF
of Roy [Roy22] to our context. Roughly, kP consists of η = 1/ε(κ) independently sampled PRF
keys, and kV consists of all but one of them—the missing index is labelled ∆, and kP contains no
information about ∆. In order to evaluate (ε,G)-PCFDL at a public point m, P simply adds up the
result of evaluating the PRF with each of the keys to derive rm, and computes πR by taking a linear
combination of the PRF evaluations. Given ∆ and all but the ∆th PRF keys, V uses the structure
of the SoftSpoken VOLE PCF to derive w correlated with πR, Rm, ∆ and verifies the correlation
in the exponent. The omission of the ∆th PRF key in kV keeps Rm pseudorandom, and soundness
follows from the fact that forging an πR for an incorrect Rm is exactly equivalent to guessing ∆.
We give our entire construction below.

Algorithm 4.1. ssPCFε,G,F. (ε,G)-PCFDL from SoftSpoken VOLE
This algorithm is parameterized by the group (G, G, q), where |G| = κ, and εκ = ε(κ) such that
η = 1/εκ is an integer. Additionally, this algorithm makes blackbox use of a pseudorandom
function F : {0, 1}κ → Zq

Setup(κ): .
1. Sample a random integer index ∆← [η]
2. Sample η keys, {ki}i∈[η] ← {0, 1}κ×η

3. Assemble and output kP = {ki}i∈[η], and kV =
(
∆, {ki}i∈[η]\∆

)
P(kP, m): Output rm = −

∑
i∈[η]

Fki
(m), and πR =

(∑
i∈[η]

i · Fki
(m)

)
·G

V(kV, m, R, πR): .
1. Compute w =

∑
i∈[η]\∆

(i−∆) · Fki
(m)

2. Output 1 iff w ·G ?= πR −∆ ·Rm, and 0 otherwise

Theorem 4.2. Algorithm ssPCFε,G,F is a (ε,G)-PCFDL for any G and ε(κ) ∈ poly(κ), assuming
that F is a pseudorandom function.

Proof. Completeness. Observe that since (i −∆) = 0 when i = ∆, for any (Rm, πR) ← P(kP =

14

{ki}i∈[η]) it holds that

w ·G =

 ∑
i∈[η]\∆

(i−∆) · Fki
(m)

 ·G =

∑
i∈[η]

(i−∆) · Fki
(m)

 ·G
=

∑
i∈[η]

i · Fki
(m)

 ·G−∆ ·

∑
i∈[η]

Fki
(m)

 ·G
= πR −∆ ·Rm

which is exactly the condition that induces V to output 1, proving completeness.

Soundness. First, note that any given prover’s key kP allows for η different corresponding kV
values, each of which is equally likely. For a given kP and message m, we will call a nonce R ∈ G
‘honest’ if (rm, πR) = P(kP, m) and rm ·G = R, and ‘malformed’ otherwise. A given kP, m induces a
unique honest nonce and proof which we will denote (Rm, πm

R). Now, consider the following claims:

Claim 4.3. For a given prover’s key kP = {ki}i∈[η], message m, and honest nonce Rm, there is a
unique value πm

R ∈ G such that V(kV, m, R∗, πm
R) = 1.

Claim 4.4. For a given prover’s key kP = {ki}i∈[η], message m, and malformed nonce R∗, each
possible choice of verification key kV = (∆, {ki}i∈[η]\∆) implies a unique value π∗R,∆ ∈ G such that
V(kV, m, R∗, π∗R,∆) = 1.

Both of the above claims follow from the fact that for any R∗ = Rm + D, the proof π∗R,∆ ∈ G that
induces the verifier to accept is given by:

π∗R,∆ = w ·G + ∆ ·R∗

= πm
R −∆ ·Rm + ∆ ·R∗

= πm
R + ∆ ·D

therefore if D = 0 the only accepting proof is πm
R independent of ∆, otherwise π∗R,∆ is unique for

each choice of ∆ ∈ [η].

Corollary 4.5. Denote by fooledB the event that (m, R∗, π∗R)← B(kP) induces V(kV, m, R∗, π∗R) =
1, where (kP, kV)← Setup(κ). Then, Pr[fooledB] ≤ 1/η for any algorithm B.

The corollary follows immediately from Claim 4.4 and the fact that there are η different, equally
likely choices of kV for each kP.

Corollary 4.5 therefore gives us that for any algorithm A:

Pr

R∗ ̸= Rm ∧ V(kV, m, R∗, π∗R) = 1 :

(kP, kV) ← Setup(κ)
(m, R∗, π∗R)← A(kP)

(rm, πR) ← P(kP, m)
Rm = rm ·G


= Pr[fooledA∗] ≤ 1/η = ε(κ)

and this satisfies soundness.
Extending the above soundness proof to Simulatable Proof Validation is straightforward—given

a dishonest (R∗m, π∗R) the algorithm V simply enumerates all possible π∗R,∆ values (as per Claim 4.4),

15

and outputs 1 if π∗R is among them, and 0 otherwise.
Pseudorandom Nonces With Simulatable Proofs. We first define the simulator S as follows.
S(kV, m, Rm; ρ):
1. Parse (∆, {ki}i∈[η]\∆) from kV, and compute w =

∑
i∈[η]\∆

(i−∆) · Fki
(m)

2. Output πR = w ·G + ∆ ·Rm

We now show that with the above simulator, OP(kP) and OS(kV) are computationally indis-
tinguishable assuming that F is a pseudorandom function. Consider a hybrid oracle OH1(kP, kV)
defined as follows:
1. Compute rm,∆ = Fk∆

(m)
2. Compute rm = −rm,∆ −

∑
i∈[η]\∆

Fki
(m) (equivalent to P(kP))

3. Set Rm = rm ·G, and compute πR = OS(kV)
4. Output (Rm, πR)

Claim 4.6. The oracles OH1 and OP are distributed identically, i.e. for any adversary A,∣∣∣∣∣Pr[AOH1(kP,kV)(kV) = 1 : (kP, kV)← Setup(κ)]
−Pr[AOP(kP)(kV) = 1 : (kP, kV)← Setup(κ)]

∣∣∣∣∣ = 0

The above claim follows from the fact that rm is computed in exactly the same way by both OP and
OH1, and that the computation of πR by S (denote it πSR) is equivalent to the way that P computes
it (denote it πP

R), in particular:

πSR = w ·G + ∆ ·Rm

=
∑

i∈[η]\∆
(i−∆) · Fki

(m) + ∆ ·
∑
i∈[η]

Fki
(m)

=
∑
i∈[η]

((i−∆) · Fki
(m) + ∆ · Fki

(m))

=
∑
i∈[η]

i · Fki
(m)

= πP
R

Now we define the next hybrid oracle OH2(kV) as follows:
1. Sample rm,∆ ← Zq

2. Compute rm = −rm,∆ −
∑

i∈[η]\∆
Fki

(m)

3. Set Rm = rm ·G, and compute πR = OS(kV)
4. Output (Rm, πR)

Claim 4.7. Assuming that F is a pseudorandom function, the oracles OH1 and OH2 are computa-
tionally indistinguishable. i.e. There is a negligible function negl such that for any efficient adversary
A: ∣∣∣∣∣ Pr[AOH2(kV)(kV) = 1 : (kP, kV)← Setup(κ)]

−Pr[AOH1(kP,kV)(kV) = 1 : (kP, kV)← Setup(κ)]

∣∣∣∣∣ ≤ negl(κ)

16

The above claim follows from a straightforward perfect reduction to the PRF game. Notice that
the difference between OH2 and OS is merely syntactic. From Claims 4.6 and 4.7, we have that∣∣∣∣∣ Pr[AOS(kV)(kV) = 1 : (kP, kV)← Setup(κ)]

−Pr[AOP(kP)(kV) = 1 : (kP, kV)← Setup(κ)]

∣∣∣∣∣ ≤ negl(κ)

for some negligible function negl. This completes the proof of the Pseudorandom Nonces With
Simulatable Proofs property, and hence proves the theorem.

4.1 Efficiency

A single P evaluation costs η F invocations, one (fixed base) exponentiation in G, and 2η additions
in Zq—the partial sums produced when computing rm can be saved and reused to compute πR. A
verification by V costs η − 1 F invocations, η small Zq multipications, as many Zq additions, and
two G exponentiations (one fixed base and one variable base). The dominant computation cost for
say ε = 10% (i.e. a 90% chance of a cheater being caught) in most situations will likely be the three
G exponentiations—i.e. roughly the same computation cost profile as generating and then verifying
a Schnorr signature.

In terms of bandwidth, πR consists of a single G element, i.e. half the size of a Schnorr signature
in most common representations.

5 Full Security from Pseudorandom Correlation Functions

Algorithm 5.1 provides a formal description of our protocol. We provide some intuitions here: in a
nutshell, the PCF setup provides P and V with keys k0, k1 which allow them to non-interactively
generate shares w − v of u∆ in ZNP . The main challenge we need to solve is to translate these
shares into Zq, where q is the prime used in Schnorr signatures. Roughly, our translation mechanism
works as follows: First, the parties translate their correlated shares into shares over Z, removing the
modulus by using a technique similar to what is used in the Paillier HSS constructions of [OSY21,
RS21]. Essentially, note that shares w − v of u∆ (modulo NP) are very likely to be shares of u∆
without any modulus, as long as |u∆| ≪ NP. However, u is uniformly random in ZNP , so party
P must partially derandomize u to get a correlation for a smaller value ulo. That is, P expresses
u in terms of its quotient and residue w.r.t. a second modulus M ≪ NP

∆ , i.e. (uhi, ulo) such that
uhi ·M + ulo = u. Then, P reveals uhi so both parties can locally compute shares wlo − v of ulo∆.
Taking these shares modulo q then gives the desired VOLE correlation, with r = ulo mod q.

But what if P is malicious and tries to cheat? Note that P could send an incorrect uhi to get
shares of ulo∆ modulo NP, where ulo = u∗lo +M(u∗hi−uhi), and (u∗hi, u∗lo) are what these would be if
P were honest. We combine three protections to stop P from cheating. First, we have q |M , so that
if the parties get shares of ulo∆ over Z (i.e., if ulo is small) then the cheating makes no difference,
as ulo ≡ u∗lo mod q anyway. Second, we add an “integer consistency check” in the exponent, using
a different group generated by g ∈ (ZNV)×, where NV is a semiprime so that g’s order is unknown.
We let P send gulo and gv, and V checks that gwlo−v = gulo∆. To pass this check, a corrupted P must
guess a linear function of ∆ that equals the number of times ulo∆ mod NP wraps around, which
is only possible when ulo is very close to a multiple of NP. Finally, V enforces an upper bound on
|uhi| so that the only values of ulo near a multiple of NP are near 0 (i.e., the case we already solved
by requiring q |M).

Dealing with a corrupted V is much easier, and only requires setting M to be large enough so
that gulo and ulo mod q are statistically independent.

17

Algorithm 5.1. modPCFG,PCF. (ε,G)-PCFDL from Paillier PCF
Parameters and constants:
1. A random oracle H : {0, 1}∗ → {0, 1}n(κ).
2. A group G of odd order q, written additively. We require that q < 2ℓ(κ)/2−2.
3. The number η ≥ 2 ln(2)ℓ′2κ of possible verifier secrets ∆. We require that η < 2ℓ(κ)/2−2 and

that q has no factors below η.
4. The Paillier key size, ℓ′ ≥ log2(qη) + κ + ℓ(κ) + 2.
Setup(κ):
1. Sample (NP, φP)← RSA.Gen(1κ′), where κ′ > κ is chosen so that ℓ(κ′) = ℓ′.
2. Sample (NV, φV)← RSA.GenSafe(1κ) and g ← (ZNV)×.
3. Setup the smaller modulus M := qNV.
4. Sample the verifier secret index ∆← [−η

2 , η
2) ∩ Z.

5. Set up the PCF: (k0, k1)← PCF.Gen(1κ, NP, φP,⊥, ∆).
6. Output kP = (k0, NP, NV, M, g), and kV = (k1, NP, NV, M, g, ∆).

P((k0, NP, NV, M, g), m):
1. Compute (u, v) := PCF.Eval(0, k0, H(m)).
2. Find uhi :=

⌊
u
M

⌉
, ulo := u−Muhi = u mod M .

3. Compute the proof s := gulo and t := gv.
4. Output rm := u mod q, and πR := (uhi, s, t, v ·G).

V((k1, NP, NV, M, g, ∆), m, Rm, πR):
1. Compute w := PCF.Eval(1, k1, H(m)).
2. Let (uhi, s, t, V) := πR.
3. Correct w as wlo := (w −Muhi∆) mod NP.
4. Output 1 if all of the following checks pass. Otherwise output 0.

(a) |uhi| ≤ NP
2M

(b) gwlo
?= ±t s∆

(c) wlo ·G
?= V + ∆ ·Rm

5.1 Efficiency

Notice that t and V are only used to check an equality. This allows an optimization where P sends
htV = H ′(|t|, V) instead of t and V , and V checks that htV

?= H ′(|gwlos−∆|, wlo ·G−∆ ·Rm). This
is still sound, because in the soundness proof we can extract |t| = ±t and V from htV .

We now give a summary of the complexity of the protocol with the hash optimization, for both
communication and computation. The proof πR that P sends contains uhi for log2(NP/M) bits, s
for log2(NV) bits, and htV for 2κ bits. The total is C = ℓ′ − log2(q) + 2κ bits, because M = qNV.
Set η = 2 ln(2)ℓ′2κ. 2 We get that ℓ′ − log2(ℓ′) ≥ log2(q) + 2κ + ℓ(κ) + 3 + log2(ln(2)). Since
A − log2(A) ≥ B can be solved by A = B + log2(2B) when B ≥ 2, and since log2(ln(2)) < 0, we

2 η really should be rounded up to an integer, but this makes almost no difference.

18

can set
ℓ′ ≥ log2(q) + 2κ + ℓ(κ) + 4 + log2(log2(q) + 2κ + ℓ(κ) + 3).

Since q ≪ ℓ(κ) for our application, we have that ℓ(κ) is bigger than all the other terms put together,
which let’s us simplify by choosing a slightly bigger ℓ′. We can compute the total communication
cost using ℓ′.

ℓ′ = log2(q) + 2κ + ℓ(κ) + log2(ℓ(κ)) + 5
C = ℓ(κ) + log2(ℓ(κ)) + 5 + 4κ

For computation, P performs two exponentiations in (ZN2
P
)× (for the PCF) and two in (ZNV)×

(for the check), while V computes one exponentiation in (ZN2
P
)× and two in (ZNV)×. The CRT

optimization can be applied to P’s exponentiations in (ZN2
P
)× and to V’s exponentiations in (ZNV)×,

since they know the factorizations of their respective moduli.
We illustrate our scheme’s efficiency with concrete parameters for the κ = 128-bit security level.

To evaluate ℓ(κ), we follow NIST’s recommendations for RSA key sizes, which is 3072 bits for 128-bit
security [Bar20, Table 2]. Let q ≈ 2252 be the prime order subgroup used for the Ed25519 signature
scheme [BDL+11]. We then get ℓ′ = 3597 bits (rounding up), with a total communication cost of
C = 3601 bits, or 451 bytes. When used with Protocol 3.2, each party must send an additional
curve point and element of Zq, so the per-party communication cost is 514 bytes.

A Note on Setup Efficiency. As written, the setup functionality samples NP and NV itself, which
appears to require distributed sampling of an RSA modulus. However, observe that the factorization
of the moduli need not be hidden from both parties simultaneously—NP’s factorization is known
by the prover, and it is fine to give NV’s to the verifier. This opens the door for protocols where the
appropriate party simply samples the RSA modulus itself, and proves that it is well-formed (as is
common in widely deployed Paillier-based Threshold ECDSA protocols [CGG+20]). As the focus
is on the signing protocols in this work, rather than the instantiation of the setup functionality, we
leave optimizing the setup phase for future work.

5.2 Implementation

We made a prototype implementation using the GMP library. When running on a single thread of
a laptop (with a Ryzen 7 5800H processor), the prover takes 56ms while the verifier takes 130ms,
leading to a per-party computation time of 188ms per ed25519 signature. These estimates indicate
that our construction is considerably more computationally efficient than prior work based on Bul-
letproofs: from [NRSW20, Table 1], their prover runs in 943ms and the verifier between 10-50ms
depending on the batch size, making our protocol approximately 5 times faster in total. Of course
the benchmarks are not directly comparable as they are measured in different environments, but
they provide an overall picture of the efficiency comparison. We do not estimate our construction to
be computationally lighter than prior work based on garbled circuits [GKMN21], which is however
much heavier on bandwidth consumption than this work.

Theorem 5.2. Algorithm modPCFG,PCF is a (ε,G)-PCFDL, assuming that PCF is a pseudorandom
correlation function for a VOLE reverse sampleable correlation.

The proof is given in the following sections, split between the three properties.

19

5.3 Completeness

Theorem 5.3. modPCFG,PCF satisfies completeness, as defined in (ε,G)-PCFDL. More specifically,
assume that at most Q unique queries to H are made (either by the adversary or P). Then the
chance of failure is at most Q(1

2 + η−1)2−κ + AdvPCF.Pseudorandom.

Proof. We will ignore the output (rm, πR) from Ocompl, instead proving that modPCFG,PCF will
remain complete even when A is given kP. In the worst case, every message m input to H will be
given to Ocompl, and because the time of abort does not matter, we can assume m is given to Ocompl
at the same time as H(m) is sampled. Therefore, we compute an upper bound A on the probability
of abort for Ocompl(m), assuming that that H(m) is freshly random. The overall game then aborts
with probability at most QA, by the union bound.

First, let’s check the bounds on ulo and uhi. We have |ulo| = |ui mod M | ≤ M
2 , because we are

using a symmetric modulus operation. Also,

|uhi| =
∣∣∣∣⌊ u

M

⌉∣∣∣∣ ≤ ⌊NP
2M

⌉
≤
⌊

NP
2M

⌋
+ 1,

so check (a) will pass except for when |uhi| takes the maximal value
⌊

NP
2M

⌋
+ 1. If it fails,

|u| ≥
⌊

NP
2M

⌋
M + M

2 >
NP
2M

M −M + M

2 = NP −M

2 .

Therefore, u would be in a set of size at most 2
(

NP
2 −

NP−M
2

)
= M , which has probability at most

M

NP
< q2ℓ(κ)−ℓ′+2 < q2− log2(qη)−κ = η−12−κ, (1)

by the pseudorandomness of PCF.
Next, for checks (b) and (c) we need the following lemma.

Lemma 5.4. ([RS21, Lemma 19]). For any NP ∈ Z+, x ∈ Z, and uniformly random r ∈ ZNP , we
have

Pr
[
x = (r + x) mod NP − r mod NP

]
= max

(
1− |x|

NP
, 0
)

.

We will use this lemma on the correlation between wlo and v. Notice that

wlo − v ≡ w − v − uhiM∆ ≡ u∆− uhiM∆ ≡ ulo∆ mod NP,

and |ulo∆| ≤ M η
2 is small compared to NP. By the pseudorandomness of PCF, v will be uniform.

As both v and wlo are reduced modulo NP, by Lemma 5.4 we can remove the modulus to get
wlo − v = ulo∆, except with probability Mη

2NP
≤ 2−κ−1. Checks (b) and (c) then must be satisfied,

as they are gwlo
?= gv+ū∆ and wlo · G

?= (v + ∆u) · G respectively. For check (c), notice that
u = ulo + Muhi ≡ u mod q because q |M .

Therefore, we have the bound A = (1
2 + η−1)2−κ, which after multiplying by Q matches the

theorem statement.

20

5.4 Soundness

Theorem 5.5. modPCFG,PCF satisfies ε-Soundness, for

ε = Q(2−κ + 5η−1) + 2η−1 + 2−ℓ(κ)/2+3 < Q(2−κ + 6η−1),

plus the advantages against the underlying hardness assumptions: Θ(AdvStrongRSA)+AdvPCF.Security+
AdvPCF.Pseudorandom. Here, we assume that at most Q unique queries to H are made.

Proof. Our proof overall is structured as a hybrid argument. The first hybrid, H1, is a straight-
forward change from PCF evaluation to reverse sampling, based on the security of PCF. First,
change k0 to be sampled with PCF.S0(NP, ϕ,⊥), and remove the call to PCF.Gen. Let (u, v) =
PCF.Eval(0, k0, H(m)) be the correlation that would be computed by an honest prover. Then change
V to equivalently compute w as v + u∆, instead of evaluating the PCF with k1 (which is no longer
defined). Define ulo = u−Muhi, where uhi is the value sent by the adversary. Then

wlo = (w −Muhi∆) mod NP = (v + ulo∆) mod NP.

Let
D = {∆ ∈ [−η

2 ,
η

2) | g(v+ulo∆) mod NP = ±t s∆},

and replace check (b) with the equivalent check ∆ ∈ D.

Claims. With the notation defined inH1, we can now analyze the consistency check in modPCFG,PCF.
The bulk of our proof will be about finding the size and structure of D, as this is what determines
whether the attacker can succeed in lying about Rm. We first give a series of claims that should
hold when the consistency check passes, except with negligible probability. More precisely, a claim
stating X means that Pr[consistency check passes ∧¬X] is negligible. The final claim will be that
the scheme is sound, i.e., Rm must take its honest value. We will justify these claims with hybrids,
changing the protocol until all of the claims are true unconditionally.

Claim 5.6. In addition to the actually checked value ∆, D contains a second element ∆′ ̸= ∆.

Claim 5.7. From ∆, ∆′, we can efficiently find nonzero integers a, b such that ga = ±sb, where
|a| ≤ NP and |b| ≤ η.

Claim 5.8. From ∆, ∆′, we can efficiently extract integers ūlo = a/b and v̄ such that s = ±gūlo

and t = ±gv̄.

Claim 5.9. g2 generates the subgroup of perfect squares in (ZNV)×.

Claim 5.10. ūlo ≡ ulo mod NP and v̄ ≡ v mod NP.

Claim 5.11. D =
{

∆ ∈ [−η
2 , η

2) | |v̄ + ūlo∆| ≤ NP
2

}
,

Claim 5.12. We can assume without loss of generality that ∆′ = ∆± 1.

Claim 5.13. ūlo = ulo.

Claim 5.14. Rm = rm ·G.

Now we present the remaining hybrids to show that these claims hold.

21

H2. Change the verifier to abort if |D| < 2, and otherwise sample D′ as a uniformly random
element of D \ {∆}. This makes Claim 5.6 hold trivially. This change is only distinguishable
when |D| ≤ 1, in which case the adversary has to guess that ∆ is the unique value in D, when
∆ is uniformly random over η possibilities. Therefore, passing check (b) has probability at
most η−1 in H1, and zero probability in H2. This bounds the advantage at η−1.

Claim 5.7 also holds in this hybrid. Because ∆, ∆′ ∈ D, we have g(v+ulo∆) mod NP = ±t s∆,
and the same for ∆′. Taking the ratio between the two equations gives ga = ±sb, where

a = (v + ulo∆′) mod NP − (v + ulo∆) mod NP, b = ∆′ −∆.

The bounds are |a| ≤ NP and |b| ≤ η, because a is the difference of two values below NP and
b is the difference of two values below η.

Note that this hybrid is not efficiently computable. We will fix this in a later hybrid, but
until then we will use only statistical security (like here), or give a reduction that avoids this
issue.

H3. Add checks requiring that b | a and s = ±gūlo . Here, we let

ūlo = a

b
and v̄ = (v + ulo∆) mod NP − ūlo∆. (2)

That is, ūlo and v̄ are defined to be the slope and intercept of the line through (∆, (v +
ulo∆) mod NP) and (∆′, (v+ulo∆′) mod NP). Then s = ±gūlo implies that t = ±gv̄. Therefore,
Claim 5.8 holds as of this hybrid.

The indistinguishability of this hybrid follows from a reduction to Strong RSA. This re-
duction is deferred to Appx. B.

H4. Require that g2 generates the subgroup of perfect squares in (ZNV)×, which can be checked
efficiently using that we know a prime factorization p′ · q′ of NV, and that p′ and q′ are safe
primes. This makes Claim 5.9 hold trivially. The order of the group of perfect squares is (p′−1

2) ·
(q′−1

2), which is a semiprime. Therefore, g2 generates it with probability
(
1− 2

p′−1

)(
1− 2

q′−1

)
≥

1− 2−ℓ(κ)/2+3, so this change is indistinguishable.
Proof of Claim 5.10. Using Claim 5.8, we now have ∆∗ ∈ D if and only if

g(v+ulo∆∗) mod NP = ±gv̄+ūlo∆∗

Since g2 generates the perfect squares of (ZNV)×, which has odd order φV/4, squaring both
sides gives

(v + ulo∆∗) mod NP ≡ v̄ + ūlo∆∗ mod φV/4. (3)

Additionally, this last equation holds without the modulus for ∆∗ = ∆ and ∆∗ = ∆′, because
ūlo and v̄ come from interpolating a line through these two points over Z (see Equation (2)).
Taking both sides modulo NP gives

v + ulo∆ ≡ v̄ + ūlo∆ mod NP

v + ulo∆′ ≡ v̄ + ūlo∆′ mod NP

(ulo − ūlo)(∆′ −∆) ≡ 0 mod NP.

Since ∆′−∆ ̸= 0 is smaller than η < 2ℓ(κ)/2−2 < 2ℓ′/2−1 < min(p, q), ∆′−∆ is coprime to NP.
Therefore, ulo ≡ ūlo mod NP, and so v ≡ v̄ mod NP as well.

22

Proof of Claim 5.11. We can now substitute ūlo, v̄ for ulo, v in Equation (3), simplifying it
to get

(v̄ + ūlo∆∗) mod NP − v̄ − ūlo∆∗ ≡ 0 mod φV/4

−NP

⌊
v̄ + ūlo∆∗

N P

⌉
≡ 0 mod φV/4⌊

v̄ + ūlo∆∗

N P

⌉
≡ 0 mod φV/4.

We used that NP is coprime to φV/4 because they are both semiprimes and NP’s prime factors
are much larger than φV/4. Recall that (v + ulo∆) mod NP− v̄− ūlo∆, so we can upper bound
the value being rounded:

∣∣∣∣ v̄ + ūlo∆∗

N P

∣∣∣∣ =
∣∣∣∣(v + ulo∆∗) mod NP + ūlo(∆∗ −∆)

N P

∣∣∣∣ ≤ 1
2 + η < φV/4,

since ūlo ≤ |a| ≤ NP. Therefore, we can remove the modulus, showing that ∆∗ ∈ D im-
plies

⌊
v̄+ūlo∆

NP

⌉
= 0, or equivalently |v̄ + ūlo∆| ≤ NP

2 . Conversely, if |v̄ + ūlo∆| ≤ NP
2 then

g(v+ulo∆∗) mod NP = g(v̄+ūlo∆∗) mod NP = gv̄+ūlo∆∗ , so ∆∗ ∈ D.

H5. Instead of samplingD′ as a uniformly random element ofD\{∆}, just check the two neighboring
elements ∆ ± 1. By Claim 5.11, D is an interval, and by Claim 5.6 it contains at least two
elements. Therefore, any element ∆ ∈ D has a neighboring element ∆′ ∈ D, so this change is
indistinguishable. All the preceding claims merely require that ∆ and ∆′ be distinct elements
of D, so they will still hold with this choice of ∆′. Therefore, Claim 5.12 holds.

Note that this hybrid is now efficiently computable, by removing the sampling introduced
in H2.

H6. In this hybrid, add a new check requiring that ūlo = ulo so that Claim 5.13 is trivially true.
To notice this change, the adversary must find ūlo ̸= ulo while passing the check ∆ ∈ D. They
have probability at most |D|η of passing, so we want to upper bound |D|. By Claim 5.11, ∆

must be in a width NP
ūlo

interval, which can contain at most NP
ūlo

+ 1 integers.

The adversary is limited in how it can pick ūlo. By Claim 5.10, ūlo ≡ ulo mod NP, and
we defined ulo = u − Muhi. We also have |uhi| ≤ NP

2M from check (a). Therefore, |ulo| ≤
|u|+ M |uhi| ≤ |u|+ NP

2 . The adversary must shift ulo by at least NP in either direction to get
ūlo ̸= ulo, so |ūlo| ≥ NP − |ulo| ≥ NP

2 − |u|.

The only control that the adversary exercises over u is through the message m, as u is the
honest output from the PCF. For the ith random oracle query H(mi), let Pmi be the probabil-
ity that the adversary selects mi and passes the check. Then ηPmi ≤ E

[
NP

NP
2 −|umi |

+ 1
]
, where

(umi , vmi) = PCF.Eval(0, k0, H(mi)). By the pseudorandomness of PCF, |umi | is indistinguish-

23

able from a uniformly random integer in [0, NP−1
2]. Therefore,

ηPmi ≤ 1 + 2
NP + 1

NP−1
2∑

j=0

NP
NP
2 − j

= 1 + 4NP
NP + 1 + 2

NP + 1

NP−3
2∑

x=0

NP
NP
2 − x

≤ 5 +
∫ NP−1

2

0

2
NP
2 − x

dx

= 5 + 2 ln(NP/2)− 2 ln(1/2) = 5 + 2 ln(NP).

The second inequality uses the summation as a left Riemann sum; this gives a lower bound on
the integral because NP

NP
2 −x

is an increasing function. Finally, apply the union bound over all

queries i to upper bound the distinguisher’s advantage at Q5+2 ln(NP)
η ≤ Q(5η−1 + 2−κ), where

Q is the total number of queries to H.
H7. In this final hybrid, we require that Claim 5.14 be true. That is, we make V fail whenever Rm

is not its honest value rm ·G = u ·G. This makes the soundness game trivially impossible for
the adversary to attack. We will bound the chance that the adversary passes all the previous
checks, but fails this final check.

Let A = Rm − u ·G and B = V − v̄ ·G. Then check (c) becomes

B + v̄ ·G + ∆ ·A + ∆u ·G = wlo ·G
B + ∆ ·A = ((v̄ + ūlo∆) mod NP − v̄ −∆ūlo) ·G

B + ∆ ·A = −NP

⌊
v̄ + ūlo∆

N P

⌉
·G = 0,

because ūlo = ulo = u−Muhi ≡ u mod q since q |M . Next, since q has no prime factors below
η, ∆ · A will uniquely identify ∆ when A ̸= 0. When A = 0, Rm = rm · G and so the newly
added check will pass. Therefore, any adversary distinguishing H7 from H6 has advantage at
most η−1.

5.5 Pseudorandom Nonces

Theorem 5.15. modPCFG,PCF satisfies the pseudorandomness property defined in (ε,G)-PCFDL.
Assuming that at most Q unique queries to H are made, by either the adversary or the oracles, the
distinguisher advantage is bounded by

Q((1 + η−1)2−κ−1 + 2−ℓ(κ)/2+2) < Q2−κ

plus the advantage against PCF, which is AdvPCF.Security + AdvPCF.Pseudorandom.

Proof. Let the simulator S(kV, m, Rm) work as follows.
1. Compute the verifier’s share w := PCF.Eval(1, k1, H(m)).
2. Sample u← [−Nround

2 , Nround
2) ∩ Z, where Nround = M

⌊
NP
M

⌉
is the multiple of M nearest to NP.

3. Compute uhi, ulo, and s as in the prover.

24

4. Compute wlo := (w − Muhi∆) mod NP as in the verifier, then set t := gwlos−∆ and V :=
wlo ·G−∆ ·Rm.

5. Output πR := (uhi, s, t, V).
We need to show that the simulation OS(kV) is indistinguishable from the real prover OP(kP). To
do so, we give a hybrid proof, going from the real prover to the simulation. We assume that the
queries to H are exactly the queries to OP(kP), as the adversary can always be made to query
OP(kP) at the extra locations. During the proof, we focus on only a single execution of OP(kP)
and a single oracle query H(m), so all statistical bounds must be multiplied by Q in the overall
advantage.

H1. By the security of the PCF, we can replace the prover’s PCF evaluations (u, v)← PCF.Eval(0,
k0, H(m)) with computing the verifier’s share w and sampling (u, v) ← RSample(1κ, ∆, 1, w).
More concretely, RSample chooses u uniformly in [−NP

2 , NP
2) ∩ Z and finds the corresponding

v := (w− u∆) mod NP. We also have to change k1 to be sampled with PCF.S1(NP, ϕ, ∆), and
remove k0 and the call to PCF.Gen.

H2. Sample u← [−Nround
2 , Nround

2) ∩ Z instead. This has advantage at most

|NP −Nround|
NP

= |NP mod M |
NP

≤ M

2N
< η−12−κ−1,

by Equation (1).
H3. Instead of computing t := gv and V := v ·G, calculate them based on the consistency checks

as t := gwlos−∆ and V := wlo · G − ∆ · Rm. These formulas are equivalent as long as wlo =
v +ulo∆ (without any modulus). As argued in Theorem 5.3, this holds except with probability
2−κ−1 + AdvPCF.Pseudorandom.

H4. Currently ulo = u mod M is uniformly random in ZM . Add a bad event asserting that ulo ∈
[−MφV

2 ,
MφV

2), where MφV = qφV. The bad event occurs with probability

M −MφV

M
= NV − φV

NV
= 1

p′
+ 1

q′
− 1

NV
< 2−ℓ(κ)/2+2,

where p′ · q′ is the prime factorization of NV.
Assuming that this bad event does not occur, we can divide ulo into two components using

the Chinese remainder theorem, which applies because q and φV) are coprime. That is, φV has
prime factoriztaion 4 · (p′−1

2) · (q′−1
2) because p′ and q′ are safe primes, and q is an odd number

below 2ℓ(κ)/2−1 < min(p′−1
2 , q′−1

2). Therefore, the possible values of ulo are in bijection with
pairs (uq, uφV), where uq = ulo mod q and uφV = ulo mod φV. The only places ulo is used are
in s := gulo and rm := u mod q. Instead, compute these with uφV and uq, respectively.

H5. Instead of computing uq = ulo mod q, sample uq ← Zq (while leaving ulo unchanged). This is
indistinguishable because uq is uniformly random in both hybrids, and because u and ulo are
not used directly.

H6. Factor out the computation of Rm into OS . The simulator S is now exactly the modified prover,
so we are now at the simulated distribution.

+

25

Acknowledgments. The research described in this paper received funding from: the Concordium
Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Foundation under the
Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme under grant agreement
No 803096 (SPEC); the Danish Independent Research Council under Grant-ID DFF-0165-00107B
(C3PO).

Bibliography

[AB21] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip schnorr multi-signatures via
delinearized witnesses. In CRYPTO 2021, Part I, August 2021.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In TCC 2007, February 2007.

[ANO+22] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlomovits. Low-
bandwidth threshold ECDSA via pseudorandom correlation generators. In 43rd IEEE
Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26,
2022, pages 2554–2572. IEEE, 2022.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and Yuval
Yarom. LadderLeak: Breaking ECDSA with less than one bit of nonce leakage. In ACM
CCS 2020, November 2020.

[Bar97] George Barwood. Digital signatures using elliptic curves, message 32f519ad.
19609226@news.dial.pipex.com posted to sci.crypt., 1997.

[Bar20] Elaine Barker. Recommendation for key management: Part 1 – general. Technical
Report NIST Special Publication (SP) 800-57, Part 1, Rev. 5, National Institute of
Standards and Technology, Gaithersburg, MD, 2020.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018
IEEE Symposium on Security and Privacy, May 2018.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Correlated pseudorandom functions from variable-density LPN. In 61st FOCS, Novem-
ber 2020.

[BCLK17] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger Kapitza. Roll-
back and forking detection for trusted execution environments using lightweight collec-
tive memory. In DSN 2017, 2017.

[BD22] Luís T. A. N. Brandão and Michael Davidson. NISTIR 8214B, Notes on Threshold Ed-
DSA/Schnorr Signatures. https://csrc.nist.gov/publications/detail/nistir/
8214b/draft, 2022.

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-
speed high-security signatures. In CHES 2011, September / October 2011.

[BST21] Charlotte Bonte, Nigel P. Smart, and Titouan Tanguy. Thresholdizing hasheddsa: MPC
to the rescue. Int. J. Inf. Sec., 20(6):879–894, 2021.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled.
UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In ACM CCS
2020, November 2020.

[CKLR21] Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle. Efficient range
proofs with transparent setup from bounded integer commitments. In EURO-
CRYPT 2021, Part III, October 2021.

26

https://csrc.nist.gov/publications/detail/nistir/8214b/draft
https://csrc.nist.gov/publications/detail/nistir/8214b/draft

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven,
and Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE
Symposium on Security and Privacy, May 2019.

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In
CRYPTO’87, August 1988.

[DF02] Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In ASIACRYPT 2002, December 2002.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO 2016, Part III, August 2016.

[DOK+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shul-
man. Securing DNSSEC keys via threshold ECDSA from generic MPC. In ES-
ORICS 2020, Part II, September 2020.

[EZJ+14] Adam Everspaugh, Yan Zhai, Robert Jellinek, Thomas Ristenpart, and Michael M.
Swift. Not-so-random numbers in virtualized linux and the whirlwind RNG. In 2014
IEEE Symposium on Security and Privacy, May 2014.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In CRYPTO 2005, August 2005.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast
trustless setup. In ACM CCS 2018, October 2018.

[Gil99] Niv Gilboa. Two party RSA key generation. In CRYPTO’99, August 1999.
[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed

key generation for discrete-log based cryptosystems. Journal of Cryptology, (1), January
2007.

[GKMN21] François Garillot, Yashvanth Kondi, Payman Mohassel, and Valeria Nikolaenko. Thresh-
old Schnorr with stateless deterministic signing from standard assumptions. In
CRYPTO 2021, Part I, August 2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In CRYPTO’86,
August 1987.

[Hen22] Nadia Heninger. RSA, DH and DSA in the Wild. In Joppe Bos and Martijn Stam,
editors, Computational Cryptography, chapter 6, pages 140–181. Cambridge University
Press, 2022.

[HS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital signature
schemes. Des. Codes Cryptogr., 23(3):283–290, 2001.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In CRYPTO 2003, August 2003.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using gar-
bled circuits: how to prove non-algebraic statements efficiently. In ACM CCS 2013,
November 2013.

[KASN15] Rashmi Kumari, Mohsen Alimomeni, and Reihaneh Safavi-Naini. Performance Analysis
of Linux RNG in Virtualized Environments. In ACM Workshop on Cloud Computing
Security Workshop - CCSW ’15, New York, New York, USA, 2015.

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold
signatures. In SAC 2020, October 21-23, 2020.

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability.
Cryptology ePrint Archive, Report 2022/374, 2022. https://eprint.iacr.org/2022/
374.

27

https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. In ACM CCS 2018, October
2018.

[MAK+17] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, Arthur
Gervais, Ari Juels, and Srdjan Capkun. ROTE: Rollback protection for trusted execu-
tion. In USENIX Security 2017, August 2017.

[MH20] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys from partial
information, by example. Cryptology ePrint Archive, Report 2020/1506, 2020. https:
//eprint.iacr.org/2020/1506.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multi-signatures with applications to bitcoin. Designs, Codes and Cryptography,
87(9):2139–2164, 2019.

[NKDM03] Antonio Nicolosi, Maxwell N. Krohn, Yevgeniy Dodis, and David Mazières. Proactive
two-party signatures for user authentication. In NDSS 2003, February 2003.

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr
multi-signatures. In CRYPTO 2021, Part I, August 2021.

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In ACM CCS 2020, November 2020.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic
secret sharing and public-key silent OT. In EUROCRYPT 2021, Part I, October 2021.

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In EUROCRYPT’91, April 1991.

[PLD+11] Bryan Parno, Jacob R. Lorch, John R. Douceur, James W. Mickens, and Jonathan M.
McCune. Memoir: Practical state continuity for protected modules. In 2011 IEEE
Symposium on Security and Privacy, May 2011.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In EU-
ROCRYPT’96, May 1996.

[Roy22] Lawrence Roy. SoftSpokenOT: Communication–Computation Tradeoffs in OT Exten-
sion. In CRYPTO ’22, 2022.

[RS21] Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR
and applications. In CRYPTO 2021, Part III, August 2021.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology, (3), January 1991.

[SP16] Raoul Strackx and Frank Piessens. Ariadne: A minimal approach to state continuity.
In USENIX Security 2016, August 2016.

[SS01] Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures
and a (t, n) threshold scheme for implicit certificates. In ACISP 01, July 2001.

[ST19] Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve based protocol.
In 17th IMA International Conference on Cryptography and Coding, December 2019.

[Wig97] John Wigley. Removing need for rng in signatures, message
5gov5d$pad@wapping.ecs.soton.ac.uk posted to sci.crypt. http://groups.google.
com/group/sci.crypt/msg/a6da45bcc8939a89, 1997.

[WNR] Pieter Wuille, Jonas Nick, and Tim Ruffing. BIP 340: Schnorr Signatures for secp256k1.
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki.

28

https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
http://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89
http://groups.google.com/group/sci.crypt/msg/a6da45bcc8939a89
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

A Specification of FPCF
Setup and FRDL

Com−ZK

Functionality A.1. FPCF
Setup. Threshold Schnorr Signing With Error

This two-party functionality is parameterized by the (ε,G)-PCFDL characterized by algorithms
(Setup, P, V,S,V). All messages are adversarially delayed.

Upon receiving (sid, prover-init) from party Pi and (sid, verifier-init) and (sid,
verifier-init) from party P1−i for some i ∈ {0, 1} if no such message pair has previ-
ously been received for this sid, sample (kP, kV) ← Setup(1κ). Send (sid, prover-key, kP)
and (sid, verifier-key, kV) to parties Pi and P1−i respectively.

Functionality A.2. FRDL
Com−ZK. Commitment and ZKPoK of DLog

This two-party functionality is parameterized by the group (G, G, q). All messages are adver-
sarially delayed.

Commit Proof: On receiving (commit, sid, X, x) from Pi, where x ∈ Zq and X ∈ G, store
(received, sid, X, x) and send (committed, i) to P1−i.

Decommit Proof: On receiving (open, sid) from Pi, if (received, sid, X, x) exists in memory:
1. If X = x ·G, send (opened, sid, X) to P1−i .
2. Otherwise send (failed, sid) to P1−i.

B Reduction to Strong RSA

Lemma B.1. In the soundness proof Theorem 5.5, hybrids H2 and H3 are indistinguishable,
assuming the hardness of Strong RSA.

Proof. Reduction. We prove that any adversary A that distinguishes H3 from the H2 with advan-
tage P can be turned into an attack against Strong RSA (Definition 2.2). If D ≥ P is the chance
of passing check (b), then the reduction will succeeds with probability Θ(D). It’s expected compu-
tational complexity is 2 exponentiations (2/D for worst case complexity), plus the computation in
A and V. Note that if the adversary succeeds with non-negligible probability then 2/D ≤ 2/P will
be bounded by a polynomial infinitely often.

The reduction will be given a modulus N ′ and a uniformly random element g∗ ∈ (ZN ′)×, and
asked to find a pair (z, e) such that g∗ = ze. Sample a uniformly random sign σ = ±1, and set
g = σg∗. Now run the game representing the previous hybrid, except using these values of N ′ and g.
When V runs, if the check ∆ ∈ D succeeds then try to find ∆′ by repeatedly sampling ∆′ ← [−η

2 , η
2)

and checking whether ∆′ ∈ D. Retry the sampling up to 2/D times, and abort if no ∆′ ∈ D is
found.

Next, compute a and b as before, and use the extended Euclidean algorithm to find x, y ∈ Z
such that ax + by = gcd(a, b). When b | a we require the reduction to use x = 1 and y = |b|−a

b ,
which works because gcd(a, b) = |b|. Claim 5.7 implies that ggcd(a,b) = gax+by = ±(sxgy)b, so if we
let r = (sxgy)b / gcd(a,b) then (rg−1)gcd(a,b) = ±1. That is, rg−1 is a (2 gcd(a, b))th root of unity. We
claim that if rg−1 ̸= ±1 then we can efficiently factor N ′.

Let p′ · q′ be the prime factorization of N ′, and λ(N ′) = lcm(p′ − 1, q′ − 1) be the Carmichael
function, so that the order of every element in (ZN ′)× divides λ(N ′). Then rg−1 must be a gcd(2a,

29

2b, λ(N ′))th root of unity. The prime factorization of λ(N ′) is 2 · (p′−1
2) · (q′−1

2), as p′ and q′ are safe
primes. We can then infer that gcd(2a, 2b, λ(N ′)) = 2, because

|b| ≤ η < 2ℓ(κ)/2−2 ≤ min
(

p′ − 1
2 ,

q′ − 1
2

)
.

Because rg−1 is a square-root of unity, if rg−1 ̸= ±1 then we can factor N ′ by finding gcd(rg−1 −
1, N ′), and use the factorization to solve Strong RSA.

Otherwise, we have rg−1 = ±1, so rσg−1 = rg∗−1 = ±1 as well. Because σ is independent from
(r, g), with probability 1/2 we have rg∗−1 = 1. If so, r = (sxgy)b / gcd(a,b) = g∗, and the reduction
outputs (z, e) for z = sxgy and e = b/ gcd(a, b). If b ∤ a then |e| > 1 and the reduction succeeds.

Analysis. We need to show that the reduction will succeed with probability Θ(D). First, we
lower bound the probability that ∆ and ∆′ will be found. It is

E
[
|D|
η

(
1−

(
1− |D| − 1

η

)2/D
)]

= D − E
[
|D|
η

(
1 + η−1 − |D|

η

)2/D
]

≥ D − 1 + η−1

2
D + 1

(
1 + η−1 − 1 + η−1

2
D + 1

)2/D

≥ D − 1 + η−1

2
D

= D

2 (1− η−1) = Θ(D).

In the first inequality we used that |D|η = 1+η−1

2/D+1 maximizes the expectation, and in the second we
used D ≥ 2

η because 2
η is negligible and D is not.

Assume that ∆′ is found by the search. We now show that when the previous hybrid’s checks
pass, but this hybrid’s new checks would abort, then the reduction will succeed with constant
probability. That is, when |D| ≥ 2, ∆, ∆′ ∈ D, and either b ∤ a or s ̸= ±gūlo . If b ∤ a then we
argued above that either rg−1 = ±1, and we get a solution to Strong RSA with probability 1/2,
or rg−1 is another square-root of unity, and we can factor N ′ to solve Strong RSA. If b | a then if
rg−1 ̸= ±1 then we could factor N ′ like before. Alternatively, ±g = r = (sxgy)b / gcd(a,b). Assume
without loss of generality that b > 0, so gcd(a, b) = b, x = 1, and y = 1− a

b . Then ±g = sg1−a
b and

s = ±g
a
b = gūlo , so both hybrids behave identically in this case.

The expected running time of the reduction is 2 exponentiations more than A’s runtime. That
is, we use an extra 2/D exponentiation, but only when ∆ ∈ D, which has probability D.

C Bandwidth Cost of [Lin22, NRS21]

We show here how we derived the bandwidth costs for Table 1.1.

C.1 Bandwidth Cost of [Lin22]

Each party transmits a UC commitment in the first round (2κ ≈ |G| bits), and in the second round
opens this to a group element (1 × |G|) and its proof of knowledge of discrete logarithm obtained
via Fischlin’s compiler [Fis05]. This PoK permits a tradeoff in computation and bandwidth by
adjusting the number of repetitions in Fischlin’s compiler; for our calculation we will assume 10
repetitions. Each repetition involves transmitting |G| + Zq + κ ≈ 2.5|G| bits. Finally, a single Zq

element is transmitted to assemble the signature. This brings the total to ≈ 28|G| = 896 Bytes.

30

C.2 Bandwidth Cost of [NRS21]

Each party transmits two group elements in the first round (2|G| bits), and a single Zq element in
the second round, bringing the total to 3|G| = 96 Bytes.

31

	Introduction
	Distributed Schnorr Signing with Stateless Determinism
	Our Techniques
	Related Work

	Definitions
	Semiprime-Related Assumptions
	Pseudorandom Correlation Functions
	Discrete Log Pseudorandom Correlation Functions

	Deterministic Signing from Pseudorandom Discrete Logarithm Nonce Derivation Functions
	Covert Security from SoftSpoken VOLE
	Efficiency

	Full Security from Pseudorandom Correlation Functions
	Efficiency
	Implementation
	Completeness
	Soundness
	Pseudorandom Nonces

	Bibliography
	Specification of [func:setup]FPCFSetup and [func:comdl]FRDLCom-ZK
	Reduction to Strong RSA
	Bandwidth Cost of EPRINT:Lindell22,C:NicRufSeu21
	Bandwidth Cost of EPRINT:Lindell22
	Bandwidth Cost of C:NicRufSeu21

