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Abstract

We introduce zkTree, a general framework for constructing a tree by recursively verifying
children’s zero-knowledge proofs (ZKPs) in a parent ZKP node, while enabling the retrieval of
membership proofs for user-supplied zk proofs. We also outline a construction pipeline that allows
zkTree to be built and verified on-chain with constant gas cost and low data processing pipeline
overhead. By aggregating a large number of user proofs into a single root proof, zkTree makes
ZKP on-chain verification cost-effective. Once the root proof is verified, all user proofs can be
verified by providing Merkle membership proofs.

zkTree can be implemented using Plonky2 [34], which combines PLONK [24] and FRI [17],
with its root proof recursively verified in Groth16 [27].

Furthermore, we demonstrate how to employ zkTree to verify the default signature scheme
of Tendermint [31] consensus by validating ed25519 signatures [5] in a single proof within the
Ethereum Virtual Machine (EVM).

1 Introduction

Zero-knowledge proofs are a powerful tool for protecting user privacy and are widely used in blockchains
to verify the validity of private transactions, such as Zcash [35]. Another significant application of zero-
knowledge proofs is computation compression, where a short on-chain verification can prove that a
lengthy off-chain computation has been performed correctly. This verification process requires less
time and gas than executing the original computation on-chain. zkEVMs [8] [11], zkRollups [28][13],
and zkBridges [36] are examples of such applications.

However, zero-knowledge provers are known for their slow performance. Typically, the time com-
plexity of a prover is at least linear in the size of the arithmetic circuit. In practice, algorithms that
are fast on CPUs are not always easily expressed as zk arithmetic circuits. For instance, the widely
used EdDSA digital signature scheme over curve25519 [5] requires more than 2 million gates in a zk
circuit and a 12-second proving time [3]. Additionally, on-chain verification costs are high, especially
on Ethereum (ETH), where the cheapest zk verifier costs around 230k gas [29] and up to 5m gas for
a STARK verification [2]. Consequently, many innovative applications, such as zkBridge and zkIBC
[32], cannot be deployed due to extended prover proving times and expensive gas costs for on-chain
verification.

Our work’s primary contribution is the introduction of the zkTree structure and the prototyping of
the zkTree recursive proving pipeline to enhance prover performance and reduce verification costs. By
distributing proof generation across different machines and recursively composing proofs through zk-
Tree, the prover can achieve near-unbounded computation power and rapid proving speeds. Moreover,
by sharing the same on-chain verifier with ZKP membership proofs, different systems or companies can
share the invariant on-chain verification costs. By saving time and reducing expenses, zkTree opens
up new possibilities for future zk development.
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2 Background

2.1 Zero-Knowledge Proofs

A non-interactive zero-knowledge system consists of a prover P and a verifier V . The prover aims to
demonstrate that they executed a computation C with some public input x and some secret input w,
which we call a witness. The prover can send a proof π generated from a public trusted arithmetic
circuit implementing C: P (x,w) → π. The verifier then verifies the proof with V (x, π) → true/false,
without needing to know w. When the computation complexity of |C| > |V |, the computation is
compressed from the verifier’s perspective. The proving work can be moved off-chain, and the on-
chain verifier only needs to verify a short proof. This paper focuses on reducing the running time of
P and maintaining the complexity and cost of V at a low level.

Numerous zero-knowledge proof protocols exist [27] [24] [33] [30], and they differ in various prop-
erties such as trust minimization, security assumptions, proving time, and verification time. Two of
the most compelling zero-knowledge technologies on the market today are zk-STARKs [18] and zk-
SNARKs [20]. Zk-STARK stands for zero-knowledge scalable transparent argument of knowledge, and
zk-SNARK stands for zero-knowledge succinct non-interactive argument of knowledge. At their core,
zk-SNARKs depend on elliptic curves for their security, while zk-STARKs rely on collision-resistant
hash functions. Consequently, zk-STARKs do not require an initial trusted setup and achieve quantum
resistance. However, zk-STARKs have significantly larger proof sizes than zk-SNARKs, resulting in
longer verification times and higher gas costs [23].

2.2 Recursive ZKP

One of the latest advancements in efficient zk proof generation is recursive proofs. A recursive zk
proof is a proof that verifies some zk proofs inside of its circuit. The prover proves that they verified
some inner proofs P (x1, π1, x2, π2, ...) → π. The proving circuit implements the constraints of zk proof
verifiers for the inner proofs. When the verifier verifies the outer proof π, the inner proofs π1, π2, ...
are also verified. V (x, π) → true ⇒ π1, π2, ... are true.

Recursive proofs offer the significant advantage of enabling parallel proof generation. This allows the
total proving work to be distributed among multiple computers, rather than relying on a single device.
Such an approach results in considerable performance improvements for proving multiple circuits or a
single circuit that can be divided into small parts. Since the prover carries out work proportional to
the circuit size, breaking a large circuit into smaller components will yield performance gains.

Recursive proof composition was first introduced in [21] and later realized in practice using cycles
of elliptic curves [19]. Subsequent research, such as Halo [22] and Nova [30], has continued to enhance
recursion speed and verification cost. Plonky2 [34], the most recent implementation, employs tech-
niques from PLONK [24] and FRI [17]. It requires only 300ms to generate a recursive proof on a 2021
Macbook Air [34]. In our work, we utilize Plonky2 to implement zkTree due to its rapid recursion
speed.

Tree structures are frequently employed in recursive ZKPs to generate the final proof that is verified
on-chain. The concept of sharing verification costs by recursively verifying proofs within a tree was
first introduced by [10]. zkEVMs [13] also utilize recursion trees for their specific use cases. Our work
further improves this approach by enabling the inclusion of heterogeneous zk proofs within a single zk
tree.

2.3 Tendermint Light Client

A light client is an application that tracks the consensus state of a blockchain without maintaining
complete state [7]. Light clients form the state layer of IBC [25] allow different blockchain protocols
to communicate with each other without needing trusted third parties. Recursive zk technology can
potentially reduce the on-chain computation costs of executing light client logic. It does this by
distributing the cost of verifying different light clients on-chain through recursive proof composition.
This will lead to higher throughput, greater speed, and reduced costs for state verification at scale.

Without zk technology, this wouldn’t be possible on chains like ETH. For example, Tendermint is
a Byzantine Fault Tolerant consensus algorithm [31]. Verifying only the Tendermint light client logic
on ETH can exceed the block gas limit [14]. With zk technology, the light client computation can be
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Figure 1: zkTree proof types.

moved off-chain. Additionally, using recursive zk technology, multiple light client computations can
be composed into one simple zk proof. This allows for the ability to verify the consensus of different
blockchains with constant gas costs [29]. In this paper, we demonstrate how to utilize zkTree to verify
ed25519, the default signature scheme of Tendermint, on-chain in the EVM.

3 zkTree

zkTree is a tree data structure in which each node represents a zk proof, and every parent node
recursively verifies its children’s zk proofs. Employing zkTree to prove multiple proofs within a single
proof allows for a significant distribution of on-chain verification costs compared to verifying proofs
individually. When the root node of zkTree is verified on-chain, all included proofs are also verified
on-chain. Figure 2 depicts an example zkTree proof that recursively verifies four user proofs.

A non-interactive proof system comprises a triple (S, P, V ). Here, V represents the verifier, P the
prover, and S the set of public parameters or common reference strings. These strings typically consist
of two parts: verifier data VD and prover data PD. The set S is calculated by preprocessing the public
arithmetic circuits. The public inputs of the proof are denoted by x. For the sake of simplicity, private
inputs are not discussed in this paper.

There are three types of proofs in a zkTree, as depicted in Figure 1: the user proof π, leaf proof υ,
and node proof ω. User proof πi may be generated from various circuits using different zk schemes and
configurations. Each πi is associated with a unique VDi. Distinct υi proofs are produced by different
Leaf circuits of the same zk scheme, while separate ωi proofs are generated by the same Node circuit in
the same zk scheme as υi. A zkTree is mathematically constructed using the sets π, υ, and ω, subject
to the following constraints:

User i executes
Pi({xi}) → πi,VDi

to generate the user proof πi for inclusion in a zkTree with public inputs {xi} and verifier data VDi.
The zkTree Leaf builder runs

Li(πi, {xi},VDi) → υi, hi, ci

to verify πi with other inputs and generate the leaf proof υi. Here ci = H(VDl||VDi), VDl is the hash
of verifier data of the Leaf circuit, and hi = H({xi}) is the hash of all the user proof’s public inputs.
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Figure 2: A zkTree example with four user proofs.

To construct a node, the zkTree node builder can use two leaves, one leaf and one node or two
nodes as the inputs:

N({υi, hi, ci}, {υj , hj , cj}) → ωk, hk, ck

N({υi, hi, ci}, {ωj , hj , cj}) → ωk, hk, ck

N({ωi, hi, ci}, {ωj , hj , cj}) → ωk, hk, ck

Circuit N verifies two input proofs in the node circuit. hk = H(hi||hj) and ck = H(ci||VDn||cj), where
VDn is the verifier data of the Node circuit.

When implementing zkTree using Plonky2, the hash of the verifier data can be replaced with the
circuit hash, which includes an encoding of gate constraints. The circuit hash and input hash computed
in the root node correspond to the Merkle roots of all circuit hashes and public inputs. To verify if a
user proof is included in the root proof, it is only necessary to validate the Merkle path of its input
hash and circuit hash. For example, as depicted in Figure 2, to confirm that user proof 4 is included in
root proof Node 3, the circuit hashes c4, c7, c9 and the input hashes h4, h3, h5 must be provided. cl and
cn represent the circuit hashes of the leaf circuit and node circuit, respectively. As public parameters,
they are used to verify the security of the zkTree builder circuits.
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Figure 3: zkTree ETH verifier.

4 On Chain Verifier

Plonky2 proofs are costly to verify on-chain within the EVM. Two steps in the Plonky2 verifier that are
particularly expensive include the evaluation of PLONK custom gate constraints and the verification
of the FRI protocol. Both steps necessitate heavy computations, such as arithmetic operations over
the Goldilocks field [34] and hashing. Even with the substitution of the hash function with an EVM-
friendly hash function like keccak256, which has a special EVM opcode with a 36 gas cost per operation,
the total gas costs remain infeasible. For instance, verifying a 50KB Plonky2 proof in the EVM with
keccak256 hashing incurs approximately 18M gas [12].

To mitigate this cost, we suggest a method to recursively prove the zkTree root Plonky2 proof into
a Groth16 proof, which only requires 230k gas with the precompiled contract of pairing checks in the
EVM [6].

For recursively proving a ZKP, the complexity is the sum of prover and verifier complexities. In
FRI-based protocols like Plonky2, hashing presents the main bottleneck for both the prover and verifier
[17]. Plonky2 employs Goldilocks-based Poseidon hashing [26], with about 75% of the recursive circuit
dedicated to hashing operations for verifying Merkle proofs [34].

Groth16, PLONK, or other KZG-based zk-SNARK schemes [29] require a pairing-friendly prime
field. Since the Goldilocks field is not pairing-friendly, it is necessary to implement the Goldilocks-based
circuit in a different field, such as bn128 or bls12-381. Non-native field operations entail expensive range
checks and can constitute a significant portion of the recursive circuit. To optimize the Groth16 circuit
and reduce overall proving time, we introduce an intermediate Plonky2 proof utilizing a Poseidon-
based hash function over a pairing-friendly field within the Plonky2 prover. The Groth16 circuit size
is optimized by eliminating numerous non-native range checks when executing hashing in the FRI
protocol verification. For example, in the ETH zkTree verifier shown in Figure 3, an intermediate
Plonky2 proof using a bn128 field-based Poseidon hash function serves as the middle recursive proof.

5 Distributed Proof Generation

Unlike the approach in [36], which relies on circuit splitting and proof aggregation, zkTree features
independent proofs at the same level, eliminating the need for communication costs to generate same-
level proofs. Theoretically, zkTree generation time is equal to log(n) times the time required to prove a
node proof, plus the time needed for transmission of a node proof between workers. Here, n represents
the number of user proofs. The total communication cost is n times the size of a proof. For a
Plonky2-based zkTree construction, the size of a proof is approximately 130 KB.

The zkTree generation process is highly adaptable, allowing for extensive customization in produc-
tion. Depending on the hardware configuration of the workers, multiple nodes can be generated by a
single worker. As illustrated in Figure 4, worker 1 may have a lower computational load than worker
2. This heterogeneous load distribution helps reduce communication costs. Additionally, the zkTree
ingestion pipeline can be implemented using a data streaming engine. When a high-priority user proof
arrives, it can be promptly incorporated into a zkTree construction at a shallower depth compared to
other user proofs.

For further acceleration, the Groth16 circuit used to verify Plonky2 proof can be divided into
multiple sub-circuits. For instance, each query round in FRI could be placed into a single circuit,
while the hash of the public inputs and outputs of each sub-circuit must be verified on-chain to ensure
they originate from the same Plonky2 proof. By splitting the Groth16 circuit, a trade-off is made
between prover speed and on-chain verification cost. Verification costs increase with the number of
sub-circuits.
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Figure 4: zkTree generation.

Stage Time Machine Used
Ed25519 proof generation 17s 32 64-core 64GB VM
zkTree generation 5s 16 64-core 64GB VM
Recursive bn128 poseidon based proof generation 9s 1 32-core 256GB VM
Recursive Groth16 witness generation 10s 1 32-core 256GB VM
Recursive Groth16 proof generation 36s 1 32-core 256GB VM

Table 1: Time used for different stages of the zkTree pipeline.

6 Results

We implemented zkTree using Plonky2 and developed an ingestion pipeline with Apache Beam [1]. The
Groth16 implementation of the Plonky2 verifier, used for proving the root zkTree proof, is implemented
in Circom utilizing rapidsnark [9].

To showcase the practicality of zkTree, we created a prototype for verifying ed25519 signatures and
compared the results with other state-of-the-art proving systems. In a Tendermint-based blockchain,
such as Cosmos, each block header contains approximately 128 EdDSA signatures (using SHA-512
and Curve25519), with 32 top signatures required to achieve super-majority stakes [15]. To verify
Ed25519 proofs on Ethereum, we must simulate curve25519 on curve bn128, resulting in large circuits
and extended prover times. However, zkTree enables the distribution of Ed25519 proof generation
across multiple machines and the aggregation of these proofs using zkTree.

For zkTree proof generation, we used a test machine, the Google Cloud n2d-highcpu-64, equipped
with 64 vCPUs and 64GB RAM. The machine responsible for running Circom witness generation and
Rapidsnark prover was a Google Cloud n2-highmem-32, featuring 32 vCPUs and 256GB RAM [4].

In Table 1, we present the time required for each stage of the pipeline. As discussed in the
previous section, when the Groth16 recursive circuit is divided, the prover time decreases while on-
chain verification costs increase. The balance between cost and time can be adjusted according to the
specific needs of a use case, as demonstrated in Figure 5. During the ed25519 proof generation stage,
the Plonky2 ed25519 circuit can be partitioned into sub-circuits for inclusion in zkTree, thus further
reducing the time.
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Figure 5: zkTree runtime and cost estimation of verifying 32 ed25519 on ETH.

Method Time Machine Used Communication Cost (gas)
zkTree 77s 32 64-core VM + 1 32-core VM <0.1GB 230K
deVirgo 18s 32 96-core VM 32.24GB 230K
Circom-Ed25519[3] 12s 32 16-core VM <0.1GB 7.36M
Circom-Ed25519 96s 8 16-core VM <0.1GB 1.64M
Circom-Ed25519 384s 1 16-core VM <0.1GB 230K

Table 2: Comparison of different methods of verifying 32 ed25519 on ETH.

In Table 2, we compare the speed and cost of several state-of-the-art systems for generating 32
ed25519 proofs. All of these methods use Groth16 for the final on-chain verification proof. It is
important to note that the verification cost of zkTree can be significantly reduced by sharing the cost
with other systems through the inclusion of more proofs in the tree. Although deVirgo [36] has the
lowest total runtime, it depends on a central machine for communication between ordinary machines,
making it more susceptible to single points of failure. As the deVirgo circuits grow in size, for example,
aggregating 5,000 proofs, the communication cost would be around 5TB. Network bandwidth and the
primary machine’s hardware would become limiting factors. Finally, since deVirgo is based on circuit-
splitting, it lacks the flexibility of zkTree. Any changes to the circuit would necessitate redeploying
the updated sub-circuits to every machine.

7 Conclusion and Future Work

zkTree facilitates fast and cost-effective recursive composition of zk proofs. Thousands of ZKPs can
be recursively composed and verified on-chain using Merkle membership proofs in approximately one
minute and at a cost of 230k gas within a single Groth16 proof. zkTree is flexible, allowing for cost
and speed adjustments based on varying use case requirements. The Groth16 proof in the final step
can be substituted with a PLONK proof, which does not necessitate a per-circuit trusted setup. By
incorporating custom gates, the immediate proof in Figure 3 can be eliminated, allowing for direct
verification of the Plonky2 proof in a PLONK proof in less time.

Employing hardware acceleration techniques such as FPGA and ASIC can further enhance the
performance of the Plonky2 and Groth16 provers [16]. As a result, the overall time required for zkTree
construction and Groth16 proof recursion could be further optimized in the future.
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