
More Efficient Public-Key Cryptography with
Leakage and Tamper Resilience

Shuai Han1,2 , Shengli Liu2,3(�) , and Dawu Gu1,3

1 School of Cyber Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

slliu@sjtu.edu.cn

Abstract. In this paper, we study the design of efficient signature and
public-key encryption (PKE) schemes in the presence of both leakage and
tampering attacks. Firstly, we formalize the strong leakage and tamper-
resilient (sLTR) security model for signature, which provides strong ex-
istential unforgeability, and deals with bounded leakage and restricted
tampering attacks, as a counterpart to the sLTR security introduced by
Sun et al. (ACNS 2019) for PKE. Then, we present direct constructions
of signature and chosen-ciphertext attack (CCA) secure PKE schemes in
the sLTR model, based on the matrix decisional Diffie-Hellman (MDDH)
assumptions (which covers the standard symmetric external DH (SXDH)
and k-Linear assumptions) over asymmetric pairing groups. Our schemes
avoid the use of heavy building blocks such as the true-simulation ex-
tractable non-interactive zero-knowledge proofs (tSE-NIZK) proposed by
Dodis et al. (ASIACRYPT 2010), which are usually needed in construct-
ing schemes with leakage and tamper-resilience. Especially, our SXDH-
based signature and PKE schemes are more efficient than the existing
schemes in the leakage and tamper-resilient setting: our signature scheme
has only 4 group elements in the signature, which is about 5×∼8×
shorter, and our PKE scheme has only 6 group elements in the ciphertext,
which is about 1.3×∼3.3× shorter. Finally, we note that our signature
scheme is the first one achieving strong existential unforgeability in the
leakage and tamper-resilient setting, where strong existential unforge-
ability has important applications in building more complex primitives
such as signcryption and authenticated key exchange.

Keywords: digital signature, public-key encryption, leakage attacks, tampering
attacks

1 Introduction

Traditionally, when analyzing and proving security of cryptographic schemes,
it is always assumed that the only way for an adversary to get information

https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-0504-9538

about the secret keys is through black-box access to the cryptographic devices.
In reality, however, an adversary may go far beyond black-box access, and obtain
secret key information by directly accessing/tampering with the memory or the
internal computation of the devices. To deal with these threats, leakage and
tamper-resilient cryptography emerges with the aim of designing provably secure
cryptographic schemes in such scenarios.

Leakage-resilient security. The motivation for leakage-resilient cryptography
is the increasing popularity of various side-channel attacks [23, 29, 28], includ-
ing timing measurements, power analysis, electromagnetic measurements and
microwave attacks, through which an adversary can recover partial information
about the secret keys. Such a capability is usually formulated by a leakage oracle,
which allows the adversary to specify arbitrary leakage functions L and obtain
the results L(sk) of applying L to the secret key sk. Leakage-resilient security re-
quires that the cryptographic schemes remain secure even for the adversary who
has access to the leakage oracle. In this work, we focus on the bounded leakage-
resilient security [1, 32], where the total amount |L(sk)| of leakage information
is less than the whole secret key |sk| and in particular bounded.

Tamper-resilient security. The attacks that leakage-resilient cryptography
considers are in fact passive attacks, while the adversary may also launch active
attacks such as fault injection and memory tampering attacks [6, 19], through
which the adversary can force the cryptographic devices to operate under a
different but related secret key, and observe the input-output behaviour of the
device under the modified secret key. The theoretical treatment of such attacks
was initiated by Bellare and Kohno [3], where the capability of adversaries is
modeled by a class of tampering functions T on the secret key space. Tamper-
resilient security stipulates that the cryptographic schemes remain secure even
for the adversary who has access to the schemes executed under the related keys
T (sk), with T ∈ T chosen by the adversary.

As observed by Gennaro et al. [21], it is impossible to achieve tamper-resilient
security against any polynomial number of arbitrary tampering queries, without
making further assumptions, such as key-updating or self-destruct mechanism1.

Leakage and Tamper-resilient public-key cryptography. In light of the
fact that physical attacks in the real world include both passive and active
attacks, Kalai et al. [26] initiate the study of designing public-key cryptographic
schemes that are resilient to both leakage and tampering attacks.

Up to now, there are several models for leakage and tamper-resilient security.
The first model is proposed by Kalai et al. [26] and considers continual tampering
and leakage (i.e., the CTL model). This model provides a very strong security
guarantee, but at the price of inevitably relying on key-updating or self-destruct
mechanism. Kalai et al. [26] construct a signature scheme in the CTL model
using a true-simulation extractable non-interactive zero-knowledge (tSE-NIZK)

1 Key-updating mechanism enables the secret key to be periodically updated. Self-
destruct mechanism enables the cryptographic device to blow up and erase all inter-
nal states, including sk, once a tampering attempt is detected.

2

proof system [12] as a building block. As shown in [12], tSE-NIZK can be built
generically from a chosen-ciphertext attack (CCA) secure public-key encryption
(PKE) and a regular NIZK. However, even using the efficient Groth-Sahai NIZK
[22], it would lead to a tSE-NIZK with proof consisting of at least 20 group
elements, and so does the signature of the resulting signature scheme. Kalai et
al. [26] also present a PKE scheme with chosen-plaintext attack (CPA) secure in
the CTL model, meaning that the adversary is not allowed to observe the effect
of tampering on the decryption oracle. Fujisaki et al. [18] further investigate how
to construct CCA-secure PKE in the CTL model, and present a scheme based
on the one-time lossy filter technique [33]. The ciphertext of their PKE scheme
consists of about 8 group elements.

The second model is introduced by Damg̊ard et al. [10] and considers both
bounded leakage and bounded tampering (i.e., the BLT model). Here bounded
tampering means that the adversary is only allowed to make a limited number
of tampering queries, and consequently, it does not need key-updating or self-
destruct mechanisms. To achieve BLT security, they propose a novel approach
which reduces tampering to leakage. The benefit of this approach is that it could
achieve tampering-resilience against arbitrary function class T . However, the
approach suffers from two disadvantages, one being that the amount of leakage
tolerated by the leakage-resilience is largely decreasing, and the other being
that for PKE it does not allow “post-challenge” tampering queries2. Under this
approach, Damg̊ard et al. [10] propose a signature scheme from Σ-protocol via
the Fiat-Shamir heuristic [17] in the random oracle model and a CCA-secure
PKE scheme from tSE-NIZK [12]. Faonio et al. [15] also follow the approach,
and prove that the leakage-resilient signature scheme in [12] and the leakage-
resilient CCA-secure PKE scheme in [33] are secure in the BLT model. However,
the signature scheme also uses tSE-NIZK, and its signature consists of more
than 34 group elements. Their PKE scheme avoids the use of NIZK, but the
ciphertext is over composite order groups and has a length of more than 5000
bits at the 128-bit security level, which corresponds to about 19 group elements
in typical prime order groups (where each group element is about 256 bits).

The third model is formalized by Sun et al. [36] and is called the leakage and
tampering-resilient (LTR) model. This model also considers bounded leakage,
but for tampering, it allows an unbounded number of tampering queries, while
the tampering functions are restricted in a predefined function class T , the same
as the tampering-resilient security introduced by Bellare and Kohno [3]. Similar
to the BLT model, the LTR model does not need key-updating or self-destruct
mechanisms, and not only that, it also allows “post-challenge” tampering queries
for PKE. Subsequently, Sun et al. [35] strengthen the LTR model to the strong
LTR (sLTR) model, by imposing only minimal restrictions on the adversary’s
decryption queries. These two works [36, 35] focus on PKE, and construct CCA-
secure PKE schemes from tSE-NIZK and new variants of hash proof systems
[9] in the LTR model and the sLTR model, respectively. Their schemes achieve

2 Namely, the adversary is not allowed to make any tampering queries after it receives
the challenge ciphertext.

3

tamper-resilience against affine function class. However, due to the inefficiency
of tSE-NIZK, the ciphertext of their schemes would consist of at least 20 group
elements. Accordingly, Sun et al. [35] leave the construction of CCA-secure PKE
in the sLTR model without using tSE-NIZK as an interesting future work.

The fourth model is due to Chakraborty and Rangan [7] and extends the
BLT model in the presence of split-state mechanism3. This model is called the
post-challenge BLT (pcBLT) model, since it serves as an alternative way to
make “post-challenge” tampering (and also leakage) queries for PKE possible.
Chakraborty and Rangan [7] also focus on PKE and construct a CCA-secure
PKE scheme from tSE-NIZK in the pcBLT model. Similarly, the ciphertext of
their scheme would consist of at least 20 group elements.

There are also other models such as the line of research which protects cryp-
tosystems against leakage and tampering attacks by leveraging (leakage-resilient)
non-malleable codes [13, 30, 16, 25]. However, these works usually rely on hard-
ware requirements such as key-updating, self-destruct or split-state mechanisms,
and the proposed schemes are more like feasibility results and less efficient.

Our Contributions. In this work, we study the design of efficient signature
and PKE schemes in the sLTR model, without using tSE-NIZK (or other heavy
building blocks). Our contributions are three-fold.

• We formalize the strong LTR (sLTR) model for signature schemes, as a
counterpart to the sLTR model for PKE introduced in [35]. Here “strong”
means the strong existential unforgeability of signatures, which even guar-
antees that the adversary cannot forge a new signature for an already signed
message. Moreover, for the adversary to win, we impose only minimal restric-
tions on the forgery produced by the adversary, thus our security provides a
very strong guarantee (see Remark 1 for more discussions).

• We give direct constructions of signature and CCA-secure PKE schemes in
the sLTR model. Both of the schemes are designed in the standard model,
over asymmetric pairing groups and without using tSE-NIZK, thus accom-
plishing the interesting future work left by Sun et al. [35].

Both of our schemes are proven secure based on the standard matrix de-
cisional Diffie-Hellman (MDDH) assumptions [14], which cover the standard
symmetric external DH (SXDH)4 and k-Linear assumptions. Our signature
scheme achieves leakage-resilience with leakage rate5 1

4 − o(1) and our PKE
scheme with leakage rate 1

3 − o(1). Both of our schemes achieve tamper-
resilience against affine function class, the same as the existing schemes
[36, 35] in the (s)LTR model.

3 Split-state mechanism ensures that the secret key is split into two (or more) dis-
joint parts and the adversary can obtain leakages from each of the secret key parts
independently and tamper each of the parts independently.

4 SXDH is a standard assumption that simply requires the DDH assumption to hold
in both source groups G1 and G2 of the asymmetric pairing groups.

5 Leakage rate is defined as the ratio of the leakage amount that can be tolerated to
the secret key size.

4

Our SXDH-based schemes are more efficient than the existing schemes in
the leakage and tamper-resilient setting (i.e., no matter in the CTL, BLT,
LTR, sLTR, or pcBLT model) [26, 18, 10, 15, 36, 35, 7]. More precisely,
our signature scheme has only 4 group elements in the signature, which is
about 5×∼8× shorter, and our PKE scheme has only 6 group elements in
the ciphertext, which is about 1.3×∼3.3× shorter. We refer to Remark 2
and Remark 4 for a detailed efficiency analysis of our schemes.

• To our best knowledge, our signature scheme is the first one achieving strong
existential unforgeability in the leakage and tamper-resilient setting. We note
that strong existential unforgeability has important applications in building
more complex primitives such as signcryption [2] and authenticated key ex-
change (AKE) [11], where it can help signcryption to achieve ciphertext
integrity [4] and AKE to achieve strong notion of “matching conversations”
security [5]. We also stress that the Generalized Boneh-Shen-Waters (GBSW)
transform [34], which converts a (non-strongly) secure signature scheme to
a strongly secure one with the help of chameleon hash, does not work in the
presence of leakage and tampering. The reason is, the resulting signature
scheme contains the trapdoor of chameleon hash in its secret key, thus the
leakage and tampering of secret key means the leakage and tampering of
trapdoor, which is not supported by the security of chameleon hash.

2 Preliminaries

Notations. Let λ ∈ N denote the security parameter throughout the paper,
and all algorithms, distributions, functions and adversaries take 1λ as an implicit
input. If x is defined by y or the value of y is assigned to x, we write x := y. For
a set X , denote by x ←$ X the procedure of sampling x from X uniformly at
random. If D is distribution, x←$ D means that x is sampled according to D.
All our algorithms are probabilistic unless stated otherwise. We use y ←$ A(x)
to define the random variable y obtained by executing algorithm A on input
x. If A is deterministic we write y ← A(x). “PPT” abbreviates probabilistic
polynomial-time. Denote by negl some negligible function. By Pri[·] we denote
the probability of a particular event occurring in game Gi.

For two random variables X and Y , the min-entropy of X is defined as
H∞(X) := − log(maxx Pr[X = x]), and the statistical distance between X and
Y is defined as ∆(X,Y) := 1

2 ·
∑

x |Pr[X = x]− Pr[Y = x]|.

Lemma 1 (Leftover Hash Lemma [24]). Let H = {H : X → Y} be a family
of universal hash functions, i.e., for any x1 ̸= x2 ∈ X , Pr[H(x1) = H(x2)] ≤
1/|Y|, where H ←$ H. Then for any random variable X on X , it holds that

∆((H,H(X)), (H,U)) ≤
√
|Y| · 2−H∞(X), where H ←$ H and U ←$ Y.

2.1 Digital Signatures

Definition 1 (SIG). A digital signature (SIG) scheme SIG = (Setup,Gen,Sign,
Vrfy) with message spaceM consists of four PPT algorithms:

5

– pp←$ Setup: The setup algorithm outputs a public parameter pp, which
serves as an implicit input of other algorithms.

– (vk, sk)←$ Gen(pp): Taking pp as input, the key generation algorithm out-
puts a pair of verification key and signing key (vk, sk).

– σ ←$ Sign(sk,m): Taking as input a signing key sk and a message m ∈M,
the signing algorithm outputs a signature σ.

– 0/1← Vrfy(vk,m, σ): Taking as input a verification key vk, a message m ∈
M and a signature σ, the deterministic verification algorithm outputs a bit
indicating whether σ is a valid signature for m w.r.t. vk.

Correctness requires that for all pp←$ Setup, (vk, sk)←$ Gen(pp) and m ∈M,
it holds that Pr

[
σ ←$ Sign(sk,m) : Vrfy(vk,m, σ) = 1

]
≥ 1− negl(λ).

2.2 Public-Key Encryption

Definition 2 (PKE). A public-key encryption (PKE) scheme PKE = (Setup,
Gen,Enc,Dec) with message spaceM consists of four PPT algorithms:

– pp←$ Setup: The setup algorithm outputs a public parameter pp, which
serves as an implicit input of other algorithms.

– (pk, sk)←$ Gen(pp): Taking pp as input, the key generation algorithm out-
puts a pair of public key and secret key (pk, sk).

– ct←$ Enc(pk,m): Taking as input a public key pk and a message m ∈ M,
the encryption algorithm outputs a ciphertext ct.

– m/⊥ ← Dec(sk, ct): Taking as input a secret key sk and a ciphertext ct, the
deterministic decryption algorithm outputs either a message m ∈ M or a
special symbol ⊥ indicating the failure of decryption.

Correctness requires that for all pp←$ Setup, (pk, sk) ←$ Gen(pp) and m ∈M,
it holds that Pr

[
ct←$ Enc(pk,m) : Dec(sk, ct) = m

]
≥ 1− negl(λ).

2.3 Collision-Resistant Hash Functions

Definition 3 (Collision-resistant hash functions). A family of hash func-
tions H is collision-resistant, if for any PPT adversary A, it holds that

AdvcrH,A(λ) := Pr[H ←$ H, (x1, x2)←$ A(H) : x1 ̸= x2∧H(x1) = H(x2)] ≤ negl(λ).

2.4 Pairing Groups and MDDH Assumptions

Let PGGen be a PPT algorithm outputting a description of pairing group gpar =
(G1,G2,GT , p, e, P1, P2, PT), where G1, G2 and GT are additive cyclic groups of
prime order p > 22λ, e : G1 ×G2 −→ GT is a non-degenerated bilinear pairing,
and P1, P2, PT are generators of G1,G2,GT , respectively, with PT := e(P1, P2).
We assume that the operations in G1, G2, GT and the pairing e are efficiently
computable. We consider Type-III asymmetric pairing group, where G1 ̸= G2

6

and there is no efficient homomorphism between them. We require gpar to be an
implicit input of other algorithms.

We use implicit representation of group elements as in [14]. For s ∈ {1, 2, T}
and a ∈ Zp, denote by [a]s = aPs ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (ai,j) ∈ Zn×m

p we define [A]s as the implicit
representation of A in Gs. Span(A) := {Ar|r ∈ Zm

p } ⊆ Zn
p denotes the linear

span of A, and similarly Span([A]s) := {[Ar]s|r ∈ Zm
p } ⊆ Gn

s . Note that given
A, [B]s, [C]s and D with matching dimensions, one can efficiently compute
[AB]s, [B+C]s, [CD]s, and given [A]1 and [B]2, we let e([A]1, [B]2) := [AB]T .

Let ℓ, k ∈ N be integers with ℓ > k. A probabilistic distribution Dℓ,k is
called a matrix distribution, if it outputs matrices in Zℓ×k

p of full rank k in
polynomial time. Without loss of generality, we assume that the first k rows
of A←$ Dℓ,k form an invertible matrix. Let Dk := Dk+1,k. Denote by Uℓ,k the
uniform distribution over all matrices in Zℓ×k

p . Let Uk := Uk+1,k.

Definition 4 (Dℓ,k-MDDH Assumption). Let s ∈ {1, 2}. The Dℓ,k-MDDH
assumption holds over group Gs, if for any PPT adversary A, it holds that
Advmddh

Dℓ,k,Gs,A(λ) :=
∣∣Pr[A([A]s, [Aw]s) = 1] − Pr[A([A]s, [u]s) = 1]

∣∣ ≤ negl(λ),

where the probability is over A←$ Dℓ,k, w ←$ Zk
p and u ←$ Zℓ

p.

MDDH assumption covers many well-studied assumptions, such as the DDH
and the k-Linear (k-LIN) assumptions, by specifying the matrix distribution as

LIN 1 and LIN k respectively [14], where LIN k : A =


a1

. . .
ak

1 · · · 1

 ∈ Z(k+1)×k
p .

MDDH also covers the standard symmetric external DH (SXDH) assumption,
which simply requires the DDH assumption to hold both in G1 and G2.

Several relations among MDDH assumptions parameterized by different ma-
trix distributions were established in [14, 20].

Lemma 2 (Dℓ,k-MDDH⇒ Uk-MDDH [14]⇒ Uℓ′,k-MDDH [20]). For any

PPT adversary A, there exists a PPT B s.t. Advmddh
Uk,Gs,A(λ) ≤ Advmddh

Dℓ,k,Gs,B(λ).

For any PPT A, there exists a PPT B s.t. Advmddh
Uℓ′,k,Gs,A(λ) ≤ Advmddh

Uk,Gs,B(λ).

Consequently, for any ℓ > k, Uℓ,k-MDDH assumption is tightly implied by
the k-LIN assumption (i.e., LIN k-MDDH).

We also define the Dℓ,k-Kernel Matrix DH (Dℓ,k-KerMDH) assumption ac-
cording to [31] which is a natural search variant of the Dℓ,k-MDDH assumption.

Definition 5 (Dℓ,k-KerMDH Assumption). Let s ∈ {1, 2}. The Dℓ,k-KerMDH
assumption holds over group Gs, if for any PPT adversary A, it holds that
Advkmdh

Dℓ,k,Gs,A(λ) := Pr
[
[x]3−s ∈ Gℓ

3−s ←$ A([A]s) : x⊤A = 0 ∧ x ̸= 0
]
≤

negl(λ), where the probability is over A ←$ Dℓ,k.

The following lemma shows that the Dℓ,k-KerMDH assumption is implied
by the Dℓ,k-MDDH assumption, since one can use a non-zero [x]3−s satisfying
x⊤A = 0 to test membership in Span([A]s).

7

Lemma 3 (Dℓ,k-MDDH ⇒ Dℓ,k-KerMDH [31]). For any PPT adversary

A, there exists a PPT B s.t. Advkmdh
Dℓ,k,Gs,A(λ) ≤ Advmddh

Dℓ,k,Gs,B(λ) + 1/(p− 1).

3 More Efficient SIG with Leakage and Tamper-Resilience

In this section, we present a direct and efficient construction of signature scheme
with leakage and tamper-resilience, over asymmetric pairing groups based on the
MDDH assumptions.

Concretely, in Subsect. 3.1, we formalize the leakage and tamper-resilient
security for signature schemes, i.e., the strong LTR-CMA (sLTR-CMA) security,
and then in Subsect. 3.2 and Subsect. 3.3, we present our signature scheme and
its security proof, respectively.

3.1 Definition of sLTR-CMA Security

The standard security notion for signatures is existential unforgeability under
chosen-message attacks (EUF-CMA). Here we extend it to (κ, T)-sLTR-CMA,
parameterized by an integer κ and a function set T : it additionally considers
leakages attacks, where the total amount of leakage is bounded by κ bits, and
tampering attacks, where the tampering functions are chosen from T . Moreover,
it provides strong existential unforgeability which further guarantees that the
adversary cannot even forge a new signature for a message that it has ever
queried. Below we present the formal definition of (κ, T)-sLTR-CMA security.

Definition 6 (sLTR-CMA Security for SIG). Let κ = κ(λ) ∈ N, and T be a
set of functions from SK to SK where SK is the secret key space. A signature
scheme SIG = (Setup,Gen,Sign,Vrfy) is (κ, T)-sLTR-CMA secure, if for any PPT
adversary A, it holds that Advsltr-cma

SIG,A,κ,T (λ) := Pr[Expsltr-cma
SIG,A,κ,T ⇒ 1] ≤ negl(λ),

where the experiment Expsltr-cma
SIG,A,κ,T is defined in Fig. 1.

Expsltr-cma
SIG,A,κ,T :

pp ←$ Setup, (vk, sk) ←$ Gen(pp)

Qid := ∅ �Record the signing queries

�under the identity function

ℓ := 0 �Record the leakage length

(m∗, σ∗) ←$ AOSign(·,·),OLeak(·)(pp, vk)

If ((m∗, σ∗) /∈ Qid) ∧ (Vrfy(vk,m∗, σ∗) = 1):

Return 1;

Else: Return 0

OSign(T,m):

If T /∈ T : Return ⊥
σ ←$ Sign(T (sk),m)

If T = id: Qid := Qid ∪ {(m,σ)}
Return σ

OLeak(L): �at most κ leakage bits

If ℓ+ |L(sk)| > κ: Return ⊥
ℓ := ℓ+ |L(sk)|
Return L(sk)

Fig. 1. The (κ, T)-sLTR-CMA security experiment Expsltr-cma
SIG,A,κ,T for SIG, where id de-

notes the identity function and |L(sk)| denotes the bit-length of L(sk).

8

Remark 1 (On the formalization of sLTR-CMA security). In the experi-
ment Expsltr-cma

SIG,A,κ,T defined in Fig. 1, oracle OSign captures the ability of the ad-
versary to implement tampering attacks and obtain signatures under tampered
signing keys T (sk) with T ∈ T , and oracle OLeak captures the ability of the ad-
versary to implement leakage attacks and obtain bounded leakage information
L(sk) about the signing key.

For the adversary to win, the condition (m∗, σ∗) /∈ Qid is the minimal re-
striction on the adversary’s forgery, since otherwise the adversary can query
OSign(id,m

∗) for an arbitrary message m∗ to obtain a signature σ∗ and simply
output (m∗, σ∗) as the forgery, and as a result, the adversary would trivially win
and it is impossible to achieve the above security.

If we replace the condition (m∗, σ∗) /∈ Qid with a stronger one, namely requir-
ing m∗ to be different from all messages that the adversary has queried OSign, we
call it (non-strong) LTR-CMA security with standard existential unforgeability.
Furthermore, if T contains only the identity function id, we obtain the leakage-
resilience security, while if κ = 0, we obtain the tamper-resilience security. If
both T = {id} and κ = 0, we recover the standard EUF-CMA security.

3.2 Construction of SIG from MDDH

Now we present our direct construction of sLTR-CMA secure SIG scheme over
asymmetric pairing groups based on the MDDH assumptions. Let Dk be a matrix
distribution with k ∈ N, and letH be a family of collision resistant hash functions
from {0, 1}∗ to Zp. Our SIG scheme SIG = (Setup,Gen,Sign,Vrfy) is shown in
Fig. 2, where the message space is M = {0, 1}∗ and the secret key space is

SK = Z(k+1)×(k+1)
p . Correctness of SIG follows by inspection: for any honestly

generated signature σ = ([c]1, [d]1), we have [c]1 = [U]1w with w ←$ Zk
p and

[d]1 = K[c]1 + [(K0 + τK1)U]1w = [(K+K0 + τK1)c]1, which directly implies

e([c⊤]1, [(K
⊤ +K⊤

0 + τK⊤
1)A]2) = e([c⊤(K⊤ +K⊤

0 + τK⊤
1)]1, [A]2) = e([d⊤]1, [A]2).

Moreover, since U output by Dk is of full rank, [c]1 = [U]1w ̸= [0]1 holds as
long as w ̸= 0 holds, which happens with overwhelming probability 1− 1/pk.

Next, we show its (κ, T aff)-sLTR-CMA security under κ ≤ log p − Ω(λ) bits
of leakage information and under the set of affine functions

T aff = {T(a,B) : K ∈ SK 7→ aK+B ∈ SK | a ∈ Zp,B ∈ SK}. (1)

Theorem 1 ((κ, T aff)-sLTR-CMA Security of SIG). Let κ ≤ log p−Ω(λ) and
let T aff be the set of affine functions defined in (1). Assume that the Dk-MDDH
assumption holds over both G1 and G2, and H is collision-resistant. Then the
SIG scheme in Fig. 2 is (κ, T aff)-sLTR-CMA secure.

Concretely, for any PPT adversary A who makes at most Q times of OSign

queries, there exist PPT adversaries B1, · · · ,B5, such that

Advsltr-cma
SIG,A,κ,T aff

(λ) ≤ Advmddh
Dk,G2,B1

(λ) + AdvcrH,B2
(λ) + Advmddh

Dk,G2,B3
(λ)

+Q ·
(
Advmddh

Dk,G1,B4
(λ) + Advmddh

Dk,G1,B5
(λ)

)
+ 2−Ω(λ).

9

pp←$ Setup:
gpar = (G1,G2,GT , p, e, P1, P2, PT) ←$ PGGen.

U,A ←$ Dk, where U,A ∈ Z(k+1)×k
p .

K0,K1 ←$ Z(k+1)×(k+1)
p .

H ←$ H.
Return pp := (gpar, [U]1, [K0U]1, [K1U]1,

[A]2, [K
⊤
0 A]2, [K

⊤
1 A]2, H).

(vk, sk)←$ Gen(pp):

sk := K ←$ Z(k+1)×(k+1)
p .

vk := [K⊤A]2 ∈ G(k+1)×k
2 .

Return (vk, sk).

σ ←$ Sign(sk,m):

vk := [K⊤A]2.
w ←$ Zk

p.

[c]1 := [U]1w ∈ Gk+1
1 .

τ := H(vk,m, [c]1) ∈ Zp.

[d]1 := K[c]1 + [(K0 + τK1)U]1w ∈ Gk+1
1 .

Return σ := ([c]1, [d]1) ∈ Gk+1
1 ×Gk+1

1 .

0/1← Vrfy(vk,m, σ):

Parse σ = ([c]1, [d]1).
τ := H(vk,m, [c]1) ∈ Zp.

If e([c⊤]1, [(K
⊤ +K⊤

0 + τK⊤
1)A]2)

= e([c⊤]1, [K
⊤A]2) · e([c⊤]1, [(K⊤

0 + τK⊤
1)A]2)

= e([d⊤]1, [A]2)

∧ [c]1 ̸= [0]1 : Return 1.

Else: Return 0.

Fig. 2. Construction of SIG = (Setup,Gen,Sign,Vrfy) based on MDDH, where

the framed boxes and the gray boxes are used to help explain the intuitions be-
hind the construction in Remark 3.

The proof of Theorem 1 is postponed to Subsect. 3.3. Before presenting the
formal proof, we give a detailed efficiency analysis and explain the main intuitions
of our SIG construction in the following two remarks, respectively.

Remark 2 (Efficiency of our SIG). Let x ·G denote x elements in a group
G. Our SIG scheme in Fig. 2 is parameterized by the MDDH parameter k ∈ N,
and has public parameter pp : (3k2 + 3k) ·G1 + (3k2 + 3k) ·G2, verification key
vk : (k2+k) ·G2, signing key sk : (k2+2k+1) ·Zp and signature σ : (2k+2) ·G1.
The verification involves (2k2 + 2k) pairing operations.

For k = 1, we get an efficient SIG scheme with pp : 6 · G1 + 6 · G2, veri-
fication key vk : 2 · G2, signing key sk : 4 · Zp and signature σ : 4 · G1, and
the verification involves only 4 pairing operations. The resulting SIG scheme is
(κ, T aff)-sLTR-CMA secure based on the standard SXDH assumption, and sup-
ports κ = log p − Ω(λ) bits key leakage. The leakage rate (i.e., κ/bit-length of

sk) is log p−Ω(λ)
4 log p = 1

4 − o(1) asymptotically as p grows.

Remark 3 (Intuitions of our SIG). On a high level, our SIG in Fig. 2 can

be parsed as two components: the terms in framed boxes (which are related

to K) and the terms in gray boxes (which are related to K0 and K1) .

Our first idea is to let sk = K involve only term of the first component.
With such a design, to achieve sLTR-CMA security, we only need to analyze
the first component in the leakage and tampering-resilient setting, while for the
second component we can analyze it without being disturbed by the leakage and
tampering attacks on it.

10

Our second idea is to integrate the two components carefully during the gen-

eration (and verification) of signatures, such that the terms [(K0 + τK1)U]1w

in the second component can trigger randomness of certain forms to hide (partial

information of) the terms K[c]1 in the first component, so that the signatures

generated under tampered signing keys do not leak much information about
sk = K beyond vk to the adversary in the sLTR-CMA security experiment. Con-
sequently, the signing oracle is of no use to the adversary, and the sLTR-CMA
security of our SIG essentially reduces to the security against no-message attacks
(i.e., where the adversary obtains no signatures) in the key leakage setting, which
is much easier to achieve and is mainly guaranteed by the first component.

Below we explain the intuitions behind these two components in more detail.

Intuitions behind The First Component. Intuitively, the terms in framed

boxes can be viewed as a publicly verifiable function on Gk+1
1 :

– the function is defined by sk = K , and it maps [c]1 ∈ Gk+1
1 to K[c]1 ;

– given vk = [K⊤A]2 , one can verify the correctness of function value

[d]1 = K[c]1 (2)

publicly via pairing equations:

e([c⊤]1, [K
⊤A]2) = e([d⊤]1, [A]2). (3)

Observe that (2) and (3) are equivalent under the Dk-KerMDH assumption
on [A]2 (which is further implied by the Dk-MDDH assumption according
to Lemma 3), since otherwise [c⊤K⊤−d⊤]1 constitutes a non-zero vector in
the kernel of [A]2, which is hard to find under the Dk-KerMDH assumption.

This publicly verifiable function enjoys a useful property:

– in the presence of only vk = [K⊤A]2 , the function value K[c]1 of any

[c]1 ̸= [0]1 retains enough entropy fromK, so that it is information-theoretically

hard to produce ([c]1, [d]1) satisfying (2) (and thus computationally hard to
satisfy (3) under MDDH assumption).

To see why this property holds more concretely, we can let a⊥ ∈ Zk+1
p be a non-

zero vector in the kernel of A ∈ Z(k+1)×k
p such that (a⊥)⊤A = 0, and sample

sk = K←$ Z(k+1)×(k+1)
p equivalently via

K := K̃+ a⊥k⊤

where K̃←$ Z(k+1)×(k+1)
p and k←$ Zk+1

p . On the one hand, note that k is com-

pletely hidden in vk since vk = [K⊤A]2 = [(K̃⊤ + k(a⊥)⊤)A]2 = [K̃⊤A]2. On

11

the other hand, for any [c]1 ̸= [0]1, its function value is

K[c]1 = (K̃+ a⊥k⊤)[c]1 = K̃[c]1 + [a⊥(k⊤c)]1,

where the term a⊥(k⊤c) is uniformly distributed over Span(a⊥) = {γa⊥|γ ∈

Zp} due to the randomness of k and non-zero of c. So the function value K[c]1

has log p bits of entropy conditioned on vk, as shown by the term a⊥(k⊤c) ,

and consequently it is hard to produce ([c]1, [d]1) satisfying (2) and (3).

Insufficiency of The First Component and Arising of The Second.
The first component and the aforementioned useful property serve as the basis
for the security of our SIG. In particular, if the adversary A does not obtain any
signatures in the security experiment, then it is hard for A to forge a signature

satisfying (3), since the function value K[c]1 has enough entropy (i.e., log p bits

entropy) conditioned on vk. Moreover, the argument holds even if the adversary
obtains bounded leakage information about sk = K, as long as the amount of
leakage κ satisfies log p− κ ≥ Ω(λ) so that there are still log p− κ ≥ Ω(λ) bits

entropy left in K[c]1 . This shows the security against no-message attacks in

the leakage setting of our SIG.
However, in the sLTR-CMA security experiment, A can obtain signatures as

many as it wants, under tampered signing keys T(a,B)(sk) = aK+B. So A will

obtain multiple (aK+B)[c]1 contained in the signatures σ = ([c]1, [d]1), which

would leak additional information about sk = K beyond vk.
To rescue the above arguments, we resort to the terms in gray boxes . Roughly

speaking, we use [(K0 + τK1)U]1w to hide (partial information of) (aK+B)[c]1

in the generation of [d]1:

[d]1 = (aK+B)[c]1 + [(K0 + τK1)U]1w , (4)

so that A will not learn much information about sk = K beyond vk from the
obtained signatures, and then we can use the above arguments to show the
security of our SIG.

More Explanations about The Second Component. It remains to give
the intuitions of the terms in gray boxes in more detail, and in particular, ex-

plain how [(K0 + τK1)U]1w hide (aK+B)[c]1 in the generation of [d]1 in

(4).

From a high-level perspective, the terms in gray boxes can be viewed as the

one-time simulation-sound (OTSS) NIZK scheme proposed by Kiltz and Wee
[27, Section 3.3], and they essentially prove that [c]1 = [U]1w belongs to the
linear subspace Span([U]1): in the signing algorithm Sign of our SIG, the term

[(K0 + τK1)U]1w corresponds to the generation of OTSS-NIZK proof; in the

12

verification algorithm Vrfy, the term e([c⊤]1, [(K
⊤
0 + τK⊤

1)A]2) corresponds to

the verification of OTSS-NIZK proof.

– On the one hand, the generation and verification of OTSS-NIZK proofs do
not involve any secret key, so they do not introduce additional elements to
sk. This is very helpful in the key leakage and tampering-resilient setting,
since the leakage and tampering of sk do not affect the terms in gray boxes,
and we can use properties of this component without the need of considering
any leakage and tampering.

– However, the OTSS property is insufficient for our purpose, since in the
security experiment of SIG, the adversary can obtain multiple NIZK proofs

[(K0 + τK1)U]1w contained in the multiple signatures σ = ([c]1, [d]1),

rather than a single NIZK proof allowed in the OTSS property.

Instead, we resort to another property about the second component [(K0 + τK1)U]1w ,

namely it can trigger randomness of certain forms in a computationally indis-
tinguishable way, as observed in [27]. To be more concrete, we can prove that
the multiple pairs of

([c]1 = [U]1w, [(K0 + τK1)U]1w)

contained in the signatures that A obtains are computationally indistinguishable
from

([c]1 = [U]1w, [(K0 + τK1)U]1w + [γa⊥]1), (5)

where γ ←$ Zp are randomnesses independently chosen for each pair, and a⊥ ∈
Zk+1
p is a non-zero vector in the kernel of A ∈ Z(k+1)×k

p such that (a⊥)⊤A = 0,
even conditioned on a single pair

([c∗]1, [(K0 + τ∗K1)c
∗]1)

contained inA’s forgery (m∗, σ∗ = ([c∗]1, [d
∗]1)) in the case of τ∗ ̸= τ . Jumping

ahead, this corresponds to the game sequence {G4.η.0 –G4.η.4}0≤η≤Q−1 and G4.Q.0

in our security proof in Subsect. 3.3. This property is different from OTSS and
is enjoyed by this specific NIZK scheme (in other words, other OTSS-NIZK
schemes may not enjoy this property).

However, this property holds only in the case of τ∗ ̸= τ , i.e., when the
following bad event never occurs.

– TagColl: the tag τ∗ = H(vk,m∗, [c∗]1) involved in A’s forgery (m∗, σ∗ =
([c∗]1, [d

∗]1)) is identical to the tag τ = H(vk′ = [(aK + B)⊤A]2,m, [c]1)
involved in some signatures that A obtains under tampered signing keys.

So to apply this property, we need to first show that the event TagColl can hardly
occur. This might be the most technical part of our security proof in Subsect. 3.3
and corresponds to Claim 2 therein. Roughly speaking, we divide TagColl into
three sub-cases and analyze them individually to show that they all rarely occur,

13

by utilizing the concrete algebraic structures of our construction, based on the
collision resistance of H and on the MDDH assumption.

Consequently, we can apply the above property, and show that the terms

[γa⊥]1 triggered by [(K0 + τK1)U]1w in (5) can be used to hide the partial

information of (aK+B)[c]1 in the generation of [d]1 in (4). To see this more

concretely, again, we sample sk = K equivalently via

K := K̃+ a⊥k⊤

where K̃←$ Z(k+1)×(k+1)
p and k←$ Zk+1

p , and then we have

[d]1 = (aK+B)[c]1 + [K0 + τK1)U]1w

c
≈ (aK+B)[c]1 + [K0 + τK1)U]1w + [γa⊥]1

=
(
a(K̃+ a⊥k⊤) +B

)
[c]1 + [K0 + τK1)U]1w + [γa⊥]1

= (aK̃+B)[c]1 + [K0 + τK1)U]1w + [aa⊥(k⊤c) + γa⊥]1.

Note that the term γa⊥ perfectly hides aa⊥(k⊤c) = (ak⊤c)a⊥ by the ran-

domness of γ ←$ Zp, thus the information of k is perfectly hidden in the multiple
signatures generated under tampered signing keys.

Putting Two Components Together. Overall, the two components enjoy
specific properties and we carefully integrate the two components in our SIG

construction to achieve sLTR-CMA security: the terms [(K0 + τK1)U]1w in

the second component can trigger randomness in the form of [γa⊥]1 , which can

then be used to hide the terms (aK+B)[c]1 in the first component, so that the

signatures generated under tampered signing keys do not leak much information
about sk = K beyond vk to the adversary, and finally the sLTR-CMA security
of our SIG follows from the useful property of the first component in the key
leakage setting.

3.3 Proof of Theorem 1

Now we present the formal proof of Theorem 1. Let A be any PPT adversary
against the (κ, T aff)-sLTR-CMA security of SIG, where A makes Q times of OSign

queries. We prove the theorem via a sequence of games G0–G3, {G4.η.0 –G4.η.4}0≤η≤Q−1

and G4.Q.0, where G0 is the (κ, T aff)-sLTR-CMA experiment (cf. Fig. 1), and in
G4.Q.0, A has a negligible advantage. A brief description of differences between
adjacent games is summarized in Table 1.

Game G0: This is the (κ, T aff)-sLTR-CMA experiment (cf. Fig. 1).

14

Table 1. Brief Description of Games G0 –G3, {G4.η.0 –G4.η.4}0≤η≤Q−1 and G4.Q.0 for the (κ, T aff)-sLTR-CMA security proof of SIG, where
the differences between adjacent games are highlighted in gray boxes. Here column “OSign(T(a,B) ∈ T aff ,m)” suggests how a signature
σ = ([c]1, [d]1) is generated: sub-column “[c]1 ←$ ” refers to the space from which [c]1 is chosen; sub-column “[d]1 =” shows the
computation of [d]1, where sk′ = K′ = T(a,B)(sk) = aK + B denotes the tampered signing key. Column “OLeak” shows the output
returned by OLeak. Column “Win’s additional check for forgery (m∗, σ∗ = ([c∗]1, [d

∗]1))” describes the additional check that A’s forgery
wins, besides the routine check (m∗, σ∗) /∈ Qid ∧ e([c∗⊤]1, [(K

⊤ +K⊤
0 + τ∗K⊤

1)A]2) = e([d∗⊤]1, [A]2) ∧ [c∗]1 ̸= [0]1, where Qtag denotes
the set of τ generated in OSign queries.

OSign(T(a,B) ∈ T aff ,m)
OLeak(L)

Win’s additional check for forgery

(m∗, σ∗ = ([c∗]1, [d
∗]1))

Justification/Assumption
[c]1 ←$ [d]1 =

G0 Span([U]1) K′[c]1 + [(K0 + τK1)U]1w L(sk) (κ, T aff)-sLTR-CMA experiment

G1 Span([U]1) (K′ +K0 + τK1)[c]1 L(sk) G0 = G1

G2 Span([U]1) (K′ +K0 + τK1)[c]1 L(sk) [d∗]1 = [(K+K0 + τ∗K1)c
∗]1 Dk-KerMDH on [A]2

G3 Span([U]1) (K′ +K0 + τK1)[c]1 L(sk) [d∗]1 = [(K+K0 + τ∗K1)c
∗]1, τ

∗ /∈ Qtag
Collision-resistance of H
& Dk-KerMDH on [A]2

G4.η.0 Span([U]1)


(K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp,

for the first η queries

(K′ +K0 + τK1)[c]1, for other queries

L(sk) [d∗]1 = [(K+K0 + τ∗K1)c
∗]1, τ

∗ /∈ Qtag G3 = G4.0.0

G4.η.1

 Gk+1
1 , for the (η + 1)-th query

Span([U]1), for other queries


(K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp,

for the first η queries

(K′ +K0 + τK1)[c]1, for other queries

L(sk) [d∗]1 = [(K+K0 + τ∗K1)c
∗]1, τ

∗ /∈ Qtag Dk-MDDH on [U]1

G4.η.2

Gk+1
1 , for the (η + 1)-th query

Span([U]1), for other queries


(K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp,

for the first η queries

(K′ +K0 + τK1)[c]1, for other queries

L(sk)
[d∗]1 = [(K+K0 + τ∗K1)c

∗]1, τ
∗ /∈ Qtag,

[c∗]1 ∈ Span([U]1)
Statistical arguments

using the leftover entropy in K0,K1

G4.η.3

Gk+1
1 , for the (η + 1)-th query

Span([U]1), for other queries


(K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp,

for the first η + 1 queries

(K′ +K0 + τK1)[c]1, for other queries

L(sk)
[d∗]1 = [(K+K0 + τ∗K1)c

∗]1, τ
∗ /∈ Qtag,

[c∗]1 ∈ Span([U]1)
Statistical arguments

using the leftover entropy in K0,K1

G4.η.4

Gk+1
1 , for the (η + 1)-th query

Span([U]1), for other queries


(K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp,

for the first η + 1 queries

(K′ +K0 + τK1)[c]1, for other queries

L(sk)
[d∗]1 = [(K+K0 + τ∗K1)c

∗]1, τ
∗ /∈ Qtag,

(((((((((
[c∗]1 ∈ Span([U]1)

Statistical arguments
using the leftover entropy in K0,K1

G4.η+1.0 Span([U]1)


(K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp,

for the first η + 1 queries

(K′ +K0 + τK1)[c]1, for other queries

L(sk) [d∗]1 = [(K+K0 + τ∗K1)c
∗]1, τ

∗ /∈ Qtag Dk-MDDH on [U]1

G4.Q.0 Span([U]1) (K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp L(sk) [d∗]1 = [(K+K0 + τ∗K1)c
∗]1, τ

∗ /∈ Qtag
Pr[Win] = negl: statistical arguments

using the leftover entropy in K

15

Let pp = (gpar, [U]1, [K0U]1, [K1U]1, [A]2, [K
⊤
0 A]2, [K

⊤
1 A]2, H) and (vk =

[K⊤A]2, sk = K). In this game, when answering an OSign query (T(a,B) ∈
T aff ,m), the challenger computes the tampered key sk′ = K′ := T(a,B)(sk) =

aK + B and vk′ := [K′⊤A]2, samples w ←$ Zk
p, and computes [c]1 := [U]1w,

τ := H(vk′,m, [c]1) and [d]1 := K′[c]1 + [(K0 + τK1)U]1w using the tampered
key sk′ = K′. Then, the challenger returns σ := ([c]1, [d]1) to A, and further
puts (m,σ) to set Qid if T(a,B) is the identity function id. For an OLeak query L,
the challenger returns L(sk) to A if the total leakage length is bounded by κ.

At the end of the game, A outputs a forgery (m∗, σ∗ = ([c∗]1, [d
∗]1)). Let

Win denote the event that

(m∗, σ∗) /∈ Qid ∧ e([c∗⊤]1, [(K
⊤ +K⊤

0 + τ∗K⊤
1)A]2) = e([d∗⊤]1, [A]2) ∧ [c∗]1 ̸= [0]1,

where τ∗ := H(vk,m∗, [c∗]1). By definition, Advsltr-cma
SIG,A,κ,T aff

(λ) = Pr0[Win].

Game G1: It is the same as G0, except that, when answering OSign queries,
the challenger computes [d]1 := (K′ +K0 + τK1)[c]1 directly from [c]1, τ and
(K′,K0,K1), without using the vector w for [c]1 = [U]1w.

Since [c]1 = [U]1w, this change is conceptual and Pr0[Win] = Pr1[Win].

Game G2: It is the same as G1, except that, the event Win is now defined as

(m∗, σ∗) /∈ Qid ∧ [d∗]1 = [(K+K0 + τ∗K1)c
∗]1 ∧ [c∗]1 ̸= [0]1.

Claim 1.
∣∣Pr1[Win]−Pr2[Win]

∣∣ ≤ Advmddh
Dk,G2,B1

(λ)+1/(p−1) for a PPT adversary
B1 against the Dk-MDDH assumption on [A]2.

Proof. By VrfyBad denote the event that A’s forgery (m∗, σ∗ = ([c∗]1, [d
∗]1))

satisfying e([c∗⊤]1, [(K
⊤ + K⊤

0 + τ∗K⊤
1)A]2) = e([d∗⊤]1, [A]2) but [d∗]1 ̸=

[(K + K0 + τ∗K1)c
∗]1. Clearly, G2 is identical to G1 unless VrfyBad occurs,

thus
∣∣Pr1[Win] − Pr2[Win]

∣∣ ≤ Pr2[VrfyBad]. To bound Pr2[VrfyBad], observe
that VrfyBad implies that

e([d∗⊤]1 − [c∗⊤(K⊤ +K⊤
0 + τ∗K⊤

1)]1︸ ︷︷ ︸
̸=[0]1

, [A]2) = [0]T ,

i.e., [d∗⊤]1− [c∗⊤(K⊤+K⊤
0 +τ∗K⊤

1)]1 is a non-zero vector in the kernel of [A]2.
Thus VrfyBad rarely occurs under the Dk-KerMDH assumption on [A]2, which
is further implied by the Dk-MDDH assumption on [A]2 according to Lemma 3.
Consequently, Pr2[VrfyBad] ≤ Advmddh

Dk,G2,B1
(λ)+ 1/(p− 1) and Claim 1 follows.

Game G3: It is the same as G2, except that, when answering OSign queries, the
challenger also puts τ to a set Qtag, and for the forgery (m∗, σ∗ = ([c∗]1, [d

∗]1))
output by A, the event Win is now defined as

(m∗, σ∗) /∈ Qid ∧ [d∗]1 = [(K+K0 + τ∗K1)c
∗]1 ∧ [c∗]1 ̸= [0]1 ∧ τ∗ /∈ Qtag .

16

Claim 2.
∣∣Pr2[Win] − Pr3[Win]

∣∣ ≤ AdvcrH,B2
(λ) + Advmddh

Dk,G2,B3
(λ) + 1/(p − 1) +

2−Ω(λ) for PPT adversaries B2 against the collision-resistance of H and B3
against the Dk-MDDH assumption on [A]2.

Proof. By TagColl denote the event that A’s forgery (m∗, σ∗ = ([c∗]1, [d
∗]1))

satisfying

(m∗, σ∗) /∈ Qid ∧ [d∗]1 = [(K+K0 + τ∗K1)c
∗]1 ∧ [c∗]1 ̸= [0]1 ∧ τ∗ ∈ Qtag.

Clearly, G2 and G3 are the same until TagColl occurs, thus
∣∣Pr2[Win]−Pr3[Win]

∣∣ ≤
Pr3[TagColl].

To bound Pr3[TagColl], we divide TagColl into the following three cases:

• Case 1: There exists an OSign query (T(a,B) ∈ T aff ,m), such that

τ∗ = H(vk,m∗, [c∗]1) = H(vk′,m, [c]1) = τ ∈ Qtag

but (vk,m∗, [c∗]1) ̸= (vk′,m, [c]1),

where vk′ is the tampered verification key involved in this OSign query.
Clearly, Case 1 suggests a collision of H, thus Pr3[Case 1] ≤ AdvcrH,B2

(λ).

• Case 2: There exists an OSign query (T(a,B) ∈ T aff ,m), such that

τ∗ = H(vk,m∗, [c∗]1) = H(vk′,m, [c]1) = τ ∈ Qtag

but (vk,m∗, [c∗]1) = (vk′,m, [c]1) ∧ T(a,B) = id,

where id denotes the identity function.
Since T(a,B) = id, the tampered signing key sk′ = K′ is in fact the original

key sk = K, and the tuple (m,σ = ([c]1, [d]1)) involved in this OSign query
is added to Qid.

Now we show that this case can never occur. On the one hand, TagColl
requires (m∗, σ∗ = ([c∗]1, [d

∗]1)) /∈ Qid and this case requires (m∗, [c∗]1) =
(m, [c]1), so it follows that [d∗]1 ̸= [d]1. On the other hand, TagColl requires
[d∗]1 = [(K + K0 + τ∗K1)c

∗]1 and this case requires τ∗ = τ , so we have
[d∗]1 = [(K+K0+ τ∗K1)c

∗]1 = [(K′+K0+ τK1)c]1 = [d]1, which leads to
a contradiction. Therefore, this case can never occur, i.e., Pr3[Case 2] = 0.

• Case 3: There exists an OSign query (T(a,B) ∈ T aff ,m), such that

τ∗ = H(vk,m∗, [c∗]1) = H(vk′,m, [c]1) = τ ∈ Qtag

but (vk,m∗, [c∗]1) = (vk′,m, [c]1) ∧ T(a,B) ̸= id.

Note that vk′ = vk means that [K′⊤A]2 = [K⊤A]2, where sk′ = K′ =
T(a,B)(sk) = aK +B is the tampered signing key. By rearranging terms, it

follows that [((a− 1)K⊤ +B⊤)A]2 = [0]2. This shows that (a− 1)K⊤ +B⊤

is a matrix in the kernel of [A]2. We claim that (a − 1)K⊤ +B⊤ is a non-
zero matrix with overwhelming probability 1− 2−Ω(λ), which will be shown
later. Thus by the Dk-KerMDH assumption on [A]2 (which is further implied

17

by the Dk-MDDH assumption on [A]2 according to Lemma 3), this case can
rarely occurs, and we have Pr3[Case 3] ≤ Advmddh

Dk,G2,B3
(λ)+1/(p−1)+2−Ω(λ).

It remains to show the claim that the matrix (a− 1)K⊤+B⊤ is non-zero
with overwhelming probability 1−2−Ω(λ). By the fact that T(a,B) ̸= id, there
are two sub-cases. The first sub-case is a = 1 and B ̸= 0. In this sub-case,
we have (a− 1)K⊤ +B⊤ = B⊤, which is clearly non-zero. The second sub-
case is a ̸= 1. In this sub-case, we will show that sk = K contains enough
entropy from A’s view, so that the matrix (a− 1)K⊤ +B⊤ is non-zero with
overwhelming probability. To see this, let u⊥ ∈ Zk+1

p (resp., a⊥ ∈ Zk+1
p)

be an arbitrary non-zero vector in the kernel of U (resp., A) such that
(u⊥)⊤U = 0 (resp., (a⊥)⊤A = 0). For the convenience of our analysis, we

sample sk = K←$ Z(k+1)×(k+1)
p equivalently via

K := K̃+ µa⊥(u⊥)⊤

where K̃←$ Z(k+1)×(k+1)
p and µ←$ Zp. Below we analyze the information

about µ that A may obtain in G3.
– Firstly, the verification key vk is

[K⊤A]2 = [(K̃⊤ + µu⊥(a⊥)⊤)A]2 = [K̃⊤A]2,

thus µ is completely hidden.
– In OSign queries, the tampered verification key vk′ is

[K′⊤A]2 = [(aK⊤ +B⊤)A]2 = [
(
a(K̃⊤ + µu⊥(a⊥)⊤) +B⊤)A]2

= [(aK̃⊤ +B⊤)A]2,

thus µ is completely hidden. Moreover, since [c]1 = [U]1w withw ←$ Zk
p,

we have

[d]1 = (K′ +K0 + τK1)[c]1 = (aK+B+K0 + τK1)[U]1w

=
(
a(K̃+ µa⊥(u⊥)⊤) +B+K0 + τK1

)
[U]1w

= (aK̃+B+K0 + τK1)[U]1w,

thus µ is also completely hidden.
– From OLeak queries, A obtains at most κ bits information L(sk) =

L(K) = L(K̃+ µa⊥(u⊥)⊤) about sk, and also about µ.
Overall, the information about µ that A learns in G3 is at most κ bits.
Thus, there are still log p − κ ≥ Ω(λ) bits of entropy left in µ, and also in

sk = K = K̃ + µa⊥(u⊥)⊤. Consequently, the probability that the matrix
(a−1)K⊤+B⊤ is non-zero is Pr[(a−1)K⊤+B⊤ ̸= 0] = 1−Pr[(a−1)K⊤+
B⊤ = 0] = 1− Pr[K = (1− a)−1B] ≥ 1− 2−Ω(λ) and the claim follows.

Putting the above three cases together, we have Pr3[TagColl] ≤ AdvcrH,B2
(λ) +

Advmddh
Dk,G2,B3

(λ) + 1/(p− 1) + 2−Ω(λ), and Claim 2 follows.

18

Next, we consider a sequence of games {G4.η.0 –G4.η.4}0≤η≤Q−1 and G4.Q.0.

Game G4.η.0, 0 ≤ η ≤ Q: It is the same as G3, except that, at the beginning of
the game, the challenger picks a non-zero vector a⊥ ∈ Zk+1

p in the kernel of A

such that (a⊥)⊤A = 0. Moreover, when answering the first η OSign queries, the
challenger computes [d]1 := (K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp chosen
uniformly and independently for each query. As for the remaining Q − η OSign

queries, the challenger still computes [d]1 := (K′ +K0 + τK1)[c]1.
It is clearly that G4.0.0 is identical to G3, thus Pr3[Win] = Pr4.0.0[Win].

Game G4.η.1, 0 ≤ η ≤ Q− 1: It is the same as G4.η.0, except that, when answer-

ing the (η + 1)-th OSign query, the challenger samples [c]1 ←$ Gk+1
1 uniformly

at random, instead of computing [c]1 := [U]1w with w ←$ Zk
p.

It is clearly that G4.η.0 and G4.η.1 are computationally indistinguishable to
A, under the Dk-MDDH assumption on [U]1. Therefore, we have

∣∣Pr4.η.0[Win]−
Pr4.η.1[Win]

∣∣ ≤ Advmddh
Dk,G1,B4

(λ) for a PPT adversary B4.

Game G4.η.2, 0 ≤ η ≤ Q− 1: It is the same as G4.η.1, except that, the event Win
is now defined as

(m∗, σ∗) /∈ Qid ∧ [d∗]1 = [(K+K0 + τ∗K1)c
∗]1 ∧ [c∗]1 ̸= [0]1 ∧ τ∗ /∈ Qtag ∧ [c∗]1 ∈ Span([U]1) .

Claim 3.
∣∣Pr4.η.1[Win]− Pr4.η.2[Win]

∣∣ ≤ 1/p.

Proof. By CBad denote the event that A’s forgery (m∗, σ∗ = ([c∗]1, [d
∗]1))

satisfying

(m∗, σ∗) /∈ Qid ∧ [d∗]1 = [(K+K0 + τ∗K1)c
∗]1 ∧ [c∗]1 ̸= [0]1 ∧ τ∗ /∈ Qtag ∧ [c∗]1 /∈ Span([U]1).

Clearly, G4.η.1 and G4.η.2 are the same until CBad occurs, thus
∣∣Pr4.η.1[Win] −

Pr4.η.2[Win]
∣∣ ≤ Pr4.η.2[CBad].

Next, we analyze Pr4.η.2[CBad]. Let u⊥ ∈ Zk+1
p be a non-zero vector in the

kernel of U such that (u⊥)⊤U = 0 but (u⊥)⊤c∗ ̸= 0. For the convenience of our

analysis, we sample K0,K1 ←$ Z(k+1)×(k+1)
p equivalently via

K0 := K̃0 + µ0a
⊥(u⊥)⊤, K1 := K̃1 + µ1a

⊥(u⊥)⊤,

where K̃0, K̃1 ←$ Z(k+1)×(k+1)
p and µ0, µ1 ←$ Zp. Below we analyze the infor-

mation about µ0 and µ1 that A may obtain in G4.η.2.

– Firstly, the public parameter pp contains [K0U]1, [K1U]1, [K
⊤
0 A]2, [K

⊤
1 A]2.

Due to the facts that (u⊥)⊤U = 0 and (a⊥)⊤A = 0, it is easy to see that

[K0U]1 = [K̃0U]1, [K1U]1 = [K̃1U]1, [K
⊤
0 A]2 = [K̃⊤

0 A]2, [K
⊤
1 A]2 = [K̃⊤

1 A]2.

Thus µ0 and µ1 are completely hidden. Moreover, the verification key vk
does not involve K0 and K1, so µ0 and µ1 are also completely hidden.

19

– In OSign queries, the tampered verification key vk′ does not involve K0 and
K1, thus also does not involve µ0 and µ1. Next we analyze the information
about µ0 and µ1 contained in [d]1.
* For the first η OSign queries, we have

[d]1 = (K′ +K0 + τK1)[c]1 + [γa⊥]1

= (K′ + K̃0 + τK̃1 + (µ0 + τµ1)a
⊥(u⊥)⊤)[c]1 + [γa⊥]1.

Due to fact that [c]1 = [U]1w with w ←$ Zk
p, we have

[d]1 = (K′ + K̃0 + τK̃1)[c]1 + [γa⊥]1.

Therefore, µ0 and µ1 are completely hidden.
* For the (η + 1)-th OSign query, we have

[d]1 = (K′ +K0 + τK1)[c]1

= (K′ + K̃0 + τK̃1 + (µ0 + τµ1)a
⊥(u⊥)⊤)[c]1,

so the information of µ0 and µ1 contained in [d]1 is limited in (µ0+τµ1).
* For the remaining (Q− η − 1) OSign queries, we also have [d]1 = (K′ +

K0+ τK1)[c]1 = (K′+K̃0+ τK̃1+(µ0+ τµ1)a
⊥(u⊥)⊤)[c]1. Due to fact

that [c]1 = [U]1w with w ←$ Zk
p, we have [d]1 = (K′ + K̃0 + τK̃1)[c]1.

Therefore, µ0 and µ1 are completely hidden.

– From OLeak queries, A obtains leakage information about sk = K. It does
not involve K0 and K1, thus also does not involve µ0 and µ1.

Overall, the information that A might learn about µ0 and µ1 is limited in (µ0 +
τµ1).

For CBad to occur,A’s forgery (m∗, σ∗ = ([c∗]1, [d
∗]1)) should satisfy (m∗, σ∗) /∈

Qid, [c
∗]1 ̸= [0]1, τ

∗ /∈ Qtag, [c
∗]1 /∈ Span([U]1), and

[d∗]1 = [(K+K0 + τ∗K1)c
∗]1 = [(K+ K̃0 + τ∗K̃1)c

∗ + (µ0 + τ∗µ1)a
⊥(u⊥)⊤c∗]1.

Below we argue that A can hardly compute such [d∗]1. Since τ
∗ /∈ Qtag, the term

(µ0+τ∗µ1) is pairwise independent from the information (µ0+τµ1) that Amight
learn, thus (µ0+τ∗µ1) is uniformly distributed over Zp from A’s view. Moreover,
u⊥ ∈ Zk+1

p is chosen to satisfy (u⊥)⊤c∗ ̸= 0 since [c∗]1 /∈ Span([U]1). Therefore,

(µ0 + τ∗µ1)a
⊥(u⊥)⊤c∗ is uniformly distributed over Span(a⊥) = {γ∗a⊥|γ∗ ∈

Zp} from A’s view, and consequently, A can compute such [d∗]1 with probability
at most 1/p. This shows that Pr4.η.2[CBad] ≤ 1/p and Claim 3 follows.

Game G4.η.3, 0 ≤ η ≤ Q− 1: It is the same as G4.η.2, except that, when an-
swering the (η + 1)-th OSign query, the challenger computes [d]1 := (K′ +K0 +
τK1)[c]1 + [γa⊥]1 with γ ←$ Zp, instead of [d]1 := (K′ +K0 + τK1)[c]1.

Claim 4.
∣∣Pr4.η.2[Win]− Pr4.η.3[Win]

∣∣ ≤ 1/p.

20

Proof. We will show that G4.η.2 and G4.η.3 are identically distributed, except
with probability 1/p. To see this, let u⊥ ∈ Zk+1

p be a non-zero vector in the

kernel of U such that (u⊥)⊤U = 0. Similar to the proof of Claim 3, we sample

K0,K1 ←$ Z(k+1)×(k+1)
p equivalently via K0 := K̃0 + µ0a

⊥(u⊥)⊤ and K1 :=

K̃1+µ1a
⊥(u⊥)⊤, where K̃0, K̃1 ←$ Z(k+1)×(k+1)

p and µ0, µ1 ←$ Zp. Recall that
in the proof of Claim 3, we observe that µ0 and µ1 are completely hidden in the
public parameter pp, the verification key vk, all OSign queries except the (η+1)-
th OSign query, and OLeak queries. Moreover, due to the game change in G4.η.2,
the event Win checks [d∗]1 = [(K+K0 + τ∗K1)c

∗]1 only if [c∗]1 ∈ Span([U]1),
and when [c∗]1 ∈ Span([U]1), the check becomes

[d∗]1 = [(K+K0 + τ∗K1)c
∗]1 = [(K+ K̃0 + τ∗K̃1)c

∗ + (µ0 + τ∗µ1)a
⊥(u⊥)⊤c∗]1

= [(K+ K̃0 + τ∗K̃1)c
∗]1,

where µ0 and µ1 are also completely hidden. Therefore, the only place that
involves µ0 and µ1 lies in the computation of [d]1 in the (η + 1)-th OSign query,
where in G4.η.2, we have

[d]1 = (K′ +K0 + τK1)[c]1 = (K′ + K̃0 + τK̃1)[c]1 + [(µ0 + τµ1)a
⊥(u⊥)⊤c]1,

(6)
while in G4.η.3, we have

[d]1 = (K′ +K0 + τK1)[c]1 + [γa⊥]1

= (K′ + K̃0 + τK̃1)[c]1 + [(µ0 + τµ1)a
⊥(u⊥)⊤c+ γa⊥]1,

(7)

with γ ←$ Zp. Note that due to the game change in G4.η.1, in the (η + 1)-th
OSign query, [c]1 is chosen uniformly from Gk+1

1 , thus except with probability
1/p, we have (u⊥)⊤c ̸= 0, and in this case, both the term (µ0 + τµ1)a

⊥(u⊥)⊤c
in (6) and the term (µ0 + τµ1)a

⊥(u⊥)⊤c+ γa⊥ in (7) are uniformly distributed
over Span(a⊥) = {γ∗a⊥|γ∗ ∈ Zp}, due to the randomness of µ0 and µ1. Con-
sequently, G4.η.2 (which computes [d]1 in the (η + 1)-th OSign query according
to (6)) and G4.η.3 (which computes [d]1 in the (η + 1)-th OSign query according
to (7)) are identically distributed, except with probability 1/p. This shows that∣∣Pr4.η.2[Win]− Pr4.η.3[Win]

∣∣ ≤ 1/p, and Claim 4 follows.

Game G4.η.4, 0 ≤ η ≤ Q− 1: It is the same as G4.η.3, except that, the event Win
is changed back to

(m∗, σ∗) /∈ Qid ∧ [d∗]1 = [(K+K0 + τ∗K1)c
∗]1 ∧ [c∗]1 ̸= [0]1 ∧ τ∗ /∈ Qtag ∧ (((((((((

[c∗]1 ∈ Span([U]1) .

The transition from G4.η.3 to G4.η.4 is reverse to the transition from G4.η.1 to
G4.η.2. Similar to Claim 3, we have the following claim.

Claim 5.
∣∣Pr4.η.3[Win]− Pr4.η.4[Win]

∣∣ ≤ 1/p.

Now we analyze the difference between G4.η.4 and G4.η+1.0. The only differ-
ence is the distribution of [c]1 in the (η + 1)-th OSign query, where in G4.η.4,

21

[c]1 ←$ Gk+1
1 is chosen uniformly at random, while in G4.η+1.0, [c]1 := [U]1w

with w ←$ Zk
p. It is clearly that G4.η.4 and G4.η+1.0 are computationally indis-

tinguishable to A, under the Dk-MDDH assumption on [U]1. Therefore, we have∣∣Pr4.η.4[Win]− Pr4.η+1.0[Win]
∣∣ ≤ Advmddh

Dk,G1,B5
(λ) for a PPT adversary B5.

Finally, we arrive at G4.Q.0, which is restated as follows.

Game G4.Q.0: It is the same as G3, except that, at the beginning of the game,
the challenger picks a non-zero vector a⊥ ∈ Zk+1

p in the kernel of A such that

(a⊥)⊤A = 0. Moreover, when answering all OSign queries, the challenger com-
putes [d]1 := (K′ +K0 + τK1)[c]1 + [γa⊥]1 with γ ←$ Zp chosen uniformly and
independently for each query.

We have the following claim regarding Pr4.Q.0[Win].

Claim 6. Pr4.Q.0[Win] ≤ 2−Ω(λ).

Proof. For the convenience of our analysis, we sample sk = K←$ Z(k+1)×(k+1)
p

equivalently via

K := K̃+ a⊥k⊤

where K̃←$ Z(k+1)×(k+1)
p and k ←$ Zk+1

p . Below we analyze the information
about k that A may obtain in G4.Q.0.

– Firstly, the verification key vk is

[K⊤A]2 = [(K̃⊤ + k(a⊥)⊤)A]2 = [K̃⊤A]2,

thus k is completely hidden.
– In OSign queries, the tampered verification key vk′ is

[K′⊤A]2 = [(aK⊤ +B⊤)A]2 = [
(
a(K̃⊤ + k(a⊥)⊤) +B⊤)A]2

= [(aK̃⊤ +B⊤)A]2,

thus k is completely hidden. Moreover, due to the game change in G4.Q.0,
we have

[d]1 = (K′ +K0 + τK1)[c]1 + [γa⊥]1

= (aK+B+K0 + τK1)[c]1 + [γa⊥]1

=
(
a(K̃+ a⊥k⊤) +B+K0 + τK1

)
[c]1 + [γa⊥]1

= (aK̃+B+K0 + τK1)[c]1 + [aa⊥k⊤c+ γa⊥]1.

Since γ ←$ Zp, the term γa⊥ perfectly hides aa⊥k⊤c = (ak⊤c)a⊥. Conse-
quently, k is also completely hidden.

– From OLeak queries, A obtains at most κ bits information L(sk) = L(K) =

L(K̃+ a⊥k⊤) about sk, and also about k.

22

Overall, the information about k that A learns in G4.Q.0 is at most κ bits.
ForWin to occur,A’s forgery (m∗, σ∗ = ([c∗]1, [d

∗]1)) should satisfy (m∗, σ∗) /∈
Qid, [c

∗]1 ̸= [0]1, τ
∗ /∈ Qtag, and

[d∗]1 = [(K+K0 + τ∗K1)c
∗]1 = [(K̃+K0 + τ∗K1)c

∗ + a⊥k⊤c∗]1.

Below we argue that such [d∗]1 has high entropy so that A can hardly compute
it. We first analyze the entropy of [d∗]1 in the case κ = 0, i.e., there is no leakage
at all. In this case, k is uniformly distributed over Zk+1

p from A’s view, and by

[c∗]1 ̸= [0]1, it follows that k
⊤c∗ is uniformly distributed over Zp from A’s view.

Therefore, a⊥k⊤c∗ is uniformly distributed over Span(a⊥) = {γ∗a⊥|γ∗ ∈ Zp}
from A’s view, and consequently, such [d∗]1 has log p bits of entropy from A’s
view. Next, we analyze the entropy of [d∗]1 for any κ ≤ log p − Ω(λ). Even
in the presence of κ bits leakage information, [d∗]1 still has entropy at least
log p − κ ≥ Ω(λ) bits from A’s view. Consequently, A can compute such [d∗]1
with probability at most 2−Ω(λ). This shows that Pr4.Q.0[Win] ≤ 2−Ω(λ) and
Claim 6 follows.

Taking all things together, Theorem 1 follows. ⊓⊔

4 More Efficient PKE with Leakage andTamper-Resilience

In this section, we present a direct and efficient construction of public-key en-
cryption (PKE) scheme with leakage and tamper-resilience, over asymmetric
pairing groups based on the MDDH assumptions.

Concretely, in Subsect. 4.1, we formalize the leakage and tamper-resilient
security for PKE, i.e., the strong LTR-CCA (sLTR-CCA) security, according to
[35], and then in Subsect. 4.2 and Subsect. 4.3, we present our PKE scheme and
its security proof, respectively.

4.1 Definition of sLTR-CCA Security

Below we recall the sLTR-CCA security for PKE defined in [35].

Definition 7 (sLTR-CCA Security for PKE). Let κ = κ(λ) ∈ N, and T
be a set of functions from SK to SK where SK is the secret key space. A PKE
scheme PKE = (Setup,Gen,Enc,Dec) is (κ, T)-sLTR-CCA secure, if for any PPT
adversary A, it holds that Advsltr-ccaPKE,A,κ,T (λ) :=

∣∣Pr[Expsltr-ccaPKE,A,κ,T ⇒ 1] − 1
2

∣∣ ≤
negl(λ), where the experiment Expsltr-ccaPKE,A,κ,T is defined in Fig. 3.

In the experiment Expsltr-ccaPKE,A,κ,T defined in Fig. 3, it imposes only minimal
restrictions on the ODec queries that A can make, i.e., (T, ct) ̸= (id, ct∗). This
is formulated in [35], as a strengthening of the (non-strong) LTR-CCA security
defined in [36] where (T, ct) is subject to ct ̸= ct∗.

23

Expsltr-ccaPKE,A,κ,T :

pp ←$ Setup, (pk, sk) ←$ Gen(pp)

ℓ := 0 �Record the leakage length

(m0,m1, st) ←$ AODec(·,·),OLeak(·)(pp, pk)

If |m0| ̸= |m1|: Return ⊥
β ←$ {0, 1} �Challenge bit

ct∗ ←$ Enc(pk,mβ)

β′ ←$ AODec(·,·)(st, ct∗)

If β′ = β: Return 1; Else: Return 0

ODec(T, ct):

If T /∈ T : Return ⊥
If (T, ct) = (id, ct∗): Return ⊥
Return Dec(T (sk), ct)

OLeak(L): �at most κ leakage

If ℓ+ |L(sk)| > κ: Return ⊥
ℓ := ℓ+ |L(sk)|
Return L(sk)

Fig. 3. The (κ, T)-sLTR-CCA security experiment Expsltr-ccaPKE,A,κ,T for PKE, where id de-
notes the identity function and |L(sk)| denotes the bit-length of L(sk).

4.2 Construction of PKE from MDDH

Now we present our direct construction of sLTR-CCA secure PKE scheme over
asymmetric pairing groups based on the MDDH assumptions. Let Dk be a matrix
distribution with k ∈ N, let Uk+2,k be the uniform distribution, and let H be a
family of collision resistant hash functions from {0, 1}∗ to Zp. Our PKE scheme
PKE = (Setup,Gen,Enc,Dec) is shown in Fig. 4, where the message space is
M = G1 and the secret key space is SK = Zk+2

p . Correctness of PKE follows by
inspection: for any honestly generated ciphertext ct = ([c]1, [d]1, [e]1), we have
[c]1 = [U]1w, [d]1 = [k⊤U]1w+m = k⊤[c]1+m and [e]1 = [(K0+τK1)U]1w =
[(K0 + τK1)c]1, which implies

e([c⊤]1, [(K
⊤
0 + τK⊤

1)A]2) = e([c⊤(K⊤
0 + τK⊤

1)]1, [A]2) = e([e⊤]1, [A]2).

Next, we show its (κ, T aff)-sLTR-CCA security under κ ≤ log p−Ω(λ) bits of
leakage information and under the set of affine functions

T aff = {T(a,b) : k ∈ SK 7→ ak+ b ∈ SK | a ∈ Zp,b ∈ SK}. (8)

Theorem 2 ((κ, T aff)-sLTR-CCA Security of PKE). Let κ ≤ log p−Ω(λ) and
let T aff be the set of affine functions defined in (8). Assume that the Dk-MDDH
assumption holds over both G1 and G2, and H is collision-resistant. Then the
PKE scheme in Fig. 4 is (κ, T aff)-sLTR-CCA secure.

Concretely, for any PPT adversary A, there exist PPT adversaries B1, · · · ,B4,
such that

Advsltr-ccaPKE,A,κ,T (λ) ≤ Advmddh
Dk,G2,B1

(λ) + AdvcrH,B2
(λ) + Advmddh

Uk+2,k,G1,B3
(λ)

+Advmddh
Uk+2,k,G1,B4

(λ) + 2−Ω(λ).

The proof of Theorem 2 is postponed to Subsect. 4.3. Before presenting the
formal proof, we give a detailed efficiency analysis and explain the main intuitions
of our PKE construction in the following two remarks, respectively.

24

pp←$ Setup:
gpar = (G1,G2,GT , p, e, P1, P2, PT)←$ PGGen.

U ←$ Uk+2,k, where U ∈ Z(k+2)×k
p .

A ←$ Dk, where A ∈ Z(k+1)×k
p .

K0,K1 ←$ Z(k+1)×(k+2)
p .

H ←$ H.
Return pp := (gpar, [U]1, [K0U]1, [K1U]1,

[A]2, [K
⊤
0 A]2, [K

⊤
1 A]2, H).

(pk, sk)←$ Gen(pp):

sk := k ←$ Zk+2
p .

pk := [k⊤U]1 ∈ G1×k
1 .

Return (pk, sk).

ct←$ Enc(pk,m ∈ G1):

w ←$ Zk
p, [c]1 := [U]1w ∈ Gk+2

1 .

[d]1 := [k⊤U]1w +m ∈ G1.

τ := H(pk, [c]1, [d]1) ∈ Zp.

[e]1 := [(K0 + τK1)U]1w ∈ Gk+1
1 .

Return ct := ([c]1, [d]1, [e]1) ∈ Gk+2
1 ×G1 ×Gk+1

1 .

m/⊥ ← Dec(sk, ct):

Parse ct = ([c]1, [d]1, [e]1).

pk := [k⊤U]1 .

τ := H(pk, [c]1, [d]1) ∈ Zp.

If e([c⊤]1, [(K
⊤
0 + τK⊤

1)A]2) = e([e⊤]1, [A]2):

Return m := [d]1 − k⊤[c]1 ∈ G1.

Else: Return ⊥.

Fig. 4. Construction of PKE = (Setup,Gen,Enc,Dec) based on MDDH, where

the framed boxes and the gray boxes are used to help explain the intuitions be-
hind the construction in Remark 5.

Remark 4 (Efficiency of our PKE). Let x ·G denote x elements in a group
G. Our PKE scheme in Fig. 4 is parameterized by the MDDH parameter k ∈ N,
and has public parameter pp : (3k2 + 4k) · G1 + (3k2 + 5k) · G2, public key
pk : k · G1, secret key sk : (k + 2) · Zp and ciphertext ct : (2k + 4) · G1. The
decryption involves (2k2 + 3k) pairing operations.

For k = 1, we get an efficient PKE scheme with pp : 7 · G1 + 8 · G2, pub-
lic key pk : 1 · G2, secret key sk : 3 · Zp and ciphertext ct : 6 · G1, and the
decryption involves only 5 pairing operations. The resulting PKE scheme is
(κ, T aff)-sLTR-CCA secure based on the standard SXDH assumption, and sup-

ports κ = log p−Ω(λ) bits key leakage. The leakage rate is log p−Ω(λ)
3 log p = 1

3 −o(1)
asymptotically as p grows.

Remark 5 (Intuitions of our PKE). Similar to our SIG scheme proposed
in Subsect. 3.2, our PKE in Fig. 4 can also be parsed as two components:

the terms in framed boxes (which are related to k) and the terms in gray boxes

(which are related to K0 and K1) .

Our first idea is to let sk = k involve only term of the first component,
similar to our SIG scheme, so that we only need to analyze the first component
in the leakage and tampering-resilient setting.

Our second idea is to use the first component to mask the message during
the generation of ciphertext, while use the second component to prove the well-
formedness of ciphertext. More concretely, the first component can be viewed as
the CPA-secure variant of the Cramer-Shoup PKE scheme [8] (which corresponds
to the [c]1, [d]1 in our ct), and the second component can be viewed as the one-
time simulation-sound (OTSS) NIZK scheme proposed by Kiltz and Wee [27]

25

(which corresponds to the [e]1 in our ct and essentially proves that [c]1 belongs
to the linear subspace Span([U]1)). The efficiency of our PKE scheme benefits
from the efficiency of their schemes. For example, the Kiltz-Wee OTSS-NIZK
has a very short proof, which is much shorter than the tSE-NIZK [12] usually
required when constructing schemes in the leakage and tamper-resilient setting.
However, the sLTR-CCA security of our PKE scheme does not simply follow
from the CPA-security of the Cramer-Shoup PKE variant and the OTSS of the
Kiltz-Wee NIZK. In fact, our sLTR-CCA security proof also relies on the concrete
algebraic structures of the schemes and involves many subtleties similar to the
sLTR-CMA security proof of our SIG scheme in Subsect. 3.2, as explained later.

Below we explain the intuitions behind these two components in more detail.

Intuitions behind The First Component. Intuitively, the terms in framed

boxes can be viewed as the CPA-secure variant of the Cramer-Shoup PKE
scheme [8]:

– the secret key is sk = k and the public key is pk = [k⊤U]1 ;

– the ciphertext of message m ∈ G1 is simply

([c]1 = [U]1w, [d]1 = [k⊤U]1w +m), with w ←$ Zk
p, (9)

and the decryption simply computes m = [d]1 − k⊤[c]1 .

It is worthwhile to briefly recall why this component is CPA secure. Its CPA
security proof consists of two main steps.

• Firstly, we change the generation of the challenge ciphertext as follows

([c∗]1 ←$ Gk+2
1 , [d∗]1 = [k⊤c∗]1 +m). (10)

Observe that (10) is computationally indistinguishable from (9) under the
Uk+2,k-MDDH assumption on [U]1 (which is further implied by the Dk-
MDDH assumption according to Lemma 2).

• Since [c∗]1 ←$ Gk+2
1 is uniformly chosen, the mapping k 7→ [k⊤c∗]1 indexed

by [c∗]1 is a universal hash function.

Note that in the presence of only pk = [k⊤U]1 , where U ∈ Z(k+2)×k
p ,

sk = k retains 2 log p bits of entropy, so it can be extracted by the universal

hash function to yield a (statistically close to) uniform element [k⊤c∗]1 ∈
G1 in (10) (according to the leftover hash lemma, i.e., Lemma 1). Conse-

quently, the term [k⊤c∗]1 in (10) hides the message m.

Insufficiency of The First Component and Arising of The Second.
The first component and its CPA security proof serve as the basis for the security
of our PKE. Moreover, the first component is in fact resilient to bounded key

26

leakage, as noted by Naor and Segev in [32]. This is because the above argument
for CPA security holds even if the adversary obtains bounded leakage information
about sk = k, as long as the amount of leakage κ satisfies log p − κ ≥ Ω(λ) so

that there are still 2 log p − κ ≥ log p + Ω(λ) bits entropy left in k to extract

a uniform group element [k⊤c∗]1 ∈ G1. This shows the CPA security in the

leakage setting of our PKE.
However, in the sLTR-CCA security experiment, A has also access to a de-

cryption oracle, through which A can obtain the decryption results of multiple
ciphertexts, under tampered secret keys T(a,b)(sk) = ak + b. So the decryption
oracle would leak additional information about sk = k beyond pk.

To rescue the above arguments, we resort to the terms in gray boxes . Roughly

speaking, we use [(K0 + τK1)U]1w as a OTSS-NIZK, as shown in [27], to prove

the well-formedness of ciphertexts. This guarantees that the decryption result of

a ciphertext ct = ([c]1, [d]1, [e]1) is not⊥, i.e., [e]1 satisfies e([c⊤]1, [(K
⊤
0 + τK⊤

1)A]2) =

e([e⊤]1, [A]2), only when one of the following two cases occur:

– Case 1: [c]1 ∈ Span([U]1), or

– Case 2: the tag τ = H(pk′ = [(ak + b)⊤U]1, [c]1, [d]1) is identical to the
tag τ∗ = H(pk = [k⊤U]1, [c

∗]1, [d
∗]1) involved in the challenge ciphertext

ct∗ = ([c∗]1, [d
∗]1, [e

∗]1).

If Case 1 occurs, i.e., [c]1 = [U]1w for some w ∈ Zk
p, then the decryption

result under tampered secret key T(a,b)(sk) = ak + b would be m = [d]1 −
(ak⊤ + b⊤)[c]1 = [d]1 − (a[k⊤U]1w + b⊤[c]1) , which leaks no information

about sk = k beyond pk = [k⊤U]1 to A.
However, for all decryption queries made by A, the OTSS property can only

ensure either Case 1 or Case 2 occur. So, it is important for us to prove that
Case 2 can hardly occur and it is always Case 1 that occurs, then we can
use the above argument to show that the decryption oracle does not leak any
information about sk beyond pk to A.

To show that Case 2 hardly occurs, we can use similar techniques as the
analysis of TagColl in the security proof of our SIG, i.e., dividing Case 2 into
three sub-cases and analyzing them individually to show that they all rarely
occur, by utilizing the concrete algebraic structures of our construction, based
on the collision resistance of H and on the MDDH assumption.

Putting Two Components Together. Overall, we carefully design our PKE
construction so that the two components interplay with each other properly and

help us to achieve sLTR-CCA security: the terms [(K0 + τK1)U]1w in the sec-

ond component ensure that the decryption oracle under tampered secret keys do

not leak any information about sk = k beyond pk to the adversary, so that the
decryption oracle is of no use to the adversary, and then the sLTR-CCA security
of our PKE follows from the CPA security of the first component in the key
leakage setting.

27

4.3 Proof of Theorem 2

Now we present the formal proof of Theorem 2. Let A be any PPT adversary
against the (κ, T aff)-sLTR-CCA security of PKE, where A makes Q times of ODec

queries. We prove the theorem via a sequence of games G0–G6, where G0 is
the (κ, T aff)-sLTR-CCA experiment, and in G6, A has no advantage. A brief
description of differences between adjacent games is summarized in Table 2.

Table 2. Brief Description of Games G0 –G6 for the (κ, T aff)-sLTR-CCA security
proof of PKE, where the differences between adjacent games are highlighted in gray
boxes. Here column “Challenge ciphertext ct∗” suggests how the challenge cipher-
text ct∗ = ([c∗]1, [d

∗]1, [e
∗]1) is generated: sub-column “[c∗]1 ←$ ” refers to the

space from which [c∗]1 is chosen; sub-columns “[d∗]1 =” and “[e∗]1 =” show the
computation of [d∗]1 and [e∗]1 respectively, where τ∗ := H(pk, [c∗]1, [d

∗]1). Col-
umn “ODec’s additional check” describes the additional check made by ODec upon
a decryption query (T(a,b) ∈ T aff , ct = ([c]1, [d]1, [e]1)), besides the routine check
(T(a,b), ct) ̸= (id, ct∗) ∧ e([c⊤]1, [(K

⊤
0 + τK⊤

1)A]2) = e([e⊤]1, [A]2); ODec outputs ⊥ if
the check fails. Column “OLeak” shows the output returned by OLeak. Recall that A is
not allowed to query OLeak after receiving the challenge ciphertext.

Challenge ciphertext ct∗ ODec(T(a,b) ∈ T aff , ct = ([c]1, [d]1, [e]1))’s

additional check
OLeak(L) Justification/Assumption

[c∗]1 ←$ [d∗]1 = [e∗]1 =

G0 Span([U]1) [k⊤U]1w
∗ +mβ [(K0 + τ∗K1)U]1w

∗ L(sk) (κ, T aff)-sLTR-CCA experiment

G1 Span([U]1) k⊤[c∗]1 +mβ (K0 + τ∗K1)[c
∗]1 L(sk) G0 = G1

G2 Span([U]1) k⊤[c∗]1 +mβ (K0 + τ∗K1)[c
∗]1 [e]1 = [(K0 + τK1)c]1 L(sk) Dk-KerMDH on [A]2

G3 Span([U]1) k⊤[c∗]1 +mβ (K0 + τ∗K1)[c
∗]1 [e]1 = [(K0 + τK1)c]1, τ ̸= τ∗ L(sk)

Collision-resistance of H
& Uk+2,k-KerMDH on [U]1

G4 Gk+2
1 k⊤[c∗]1 +mβ (K0 + τ∗K1)[c

∗]1 [e]1 = [(K0 + τK1)c]1, τ ̸= τ∗ L(sk) Uk+2,k-MDDH on [U]1

G5 Gk+2
1 k⊤[c∗]1 +mβ (K0 + τ∗K1)[c

∗]1 [e]1 = [(K0 + τK1)c]1, τ ̸= τ∗, [c]1 ∈ Span([U]1) L(sk)
Statistical arguments

using the leftover entropy in K0,K1

G6 Gk+2
1 random (K0 + τ∗K1)[c

∗]1 [e]1 = [(K0 + τK1)c]1, τ ̸= τ∗, [c]1 ∈ Span([U]1) L(sk)

Statistical arguments
using the leftover entropy in K

Pr[Win] = 1
2 in G6

Game G0: This is the (κ, T aff)-sLTR-CCA experiment (cf. Fig. 3). LetWin denote

the event that β′ = β. By definition, Advsltr-ccaPKE,A,κ,T (λ) = |Pr0[Win]− 1
2 |.

Let pp = (gpar, [U]1, [K0U]1, [K1U]1, [A]2, [K
⊤
0 A]2, [K

⊤
1 A]2, H) and (pk =

[k⊤U]1, sk = k). In this game, the challenge ciphertext ct∗ that encrypts mβ

is generated as follows. The challenger samples w∗ ←$ Zk
p, computes [c∗]1 :=

[U]1w
∗, [d∗]1 := [k⊤U]1w

∗ +mβ , τ
∗ := H(pk, [c∗]1, [d

∗]1) ∈ Zp, [e
∗]1 := [(K0 +

τ∗K1)U]1w
∗, and returns the challenge ciphertext ct∗ := ([c∗]1, [d

∗]1, [e
∗]1) to

A. Upon an ODec query (T(a,b) ∈ T aff , ct = ([c]1, [d]1, [e]1)), the challenger

computes the tampered key sk′ = k′ := T(a,b)(sk) = ak+b and pk′ := [k′⊤U]1,
computes τ := H(pk′, [c]1, [d]1), and checks whether (T(a,b), ct) ̸= (id, ct∗) ∧
e([c⊤]1, [(K

⊤
0 + τK⊤

1)A]2) = e([e⊤]1, [A]2) holds. If the check passes, the chal-
lenger computes m := [d]1−k′⊤[c]1 using the tampered key sk′ = k′ and returns

28

m to A; otherwise, the challenger returns ⊥. For an OLeak query L, the chal-
lenger returns L(sk) to A if the total leakage length is bounded by κ. Recall that
A can query ODec throughout the game, but is only allowed to query OLeak be-
fore receiving the challenge ciphertext.

Game G1: It is the same as G0, except that, when generating the challenge
ciphertext ct∗, the challenger computes [d∗]1 := k⊤[c∗]1 + mβ and [e∗]1 :=
(K0+ τ∗K1)[c

∗]1 directly from [c∗]1, mβ , τ
∗ and (k,K0,K1), without using the

vector w∗ for [c∗]1 = [U]1w
∗.

Since [c∗]1 = [U]1w
∗, the changes are conceptual and Pr0[Win] = Pr1[Win].

Game G2: It is the same as G1, except that, when answering ODec(T(a,b) ∈
T aff , ct = ([c]1, [d]1, [e]1)), the challenger returns ⊥ to A directly if the following
check fails:

(T(a,b), ct) ̸= (id, ct∗) ∧ [e]1 = [(K0 + τK1)c]1 .

Claim 7.
∣∣Pr1[Win]−Pr2[Win]

∣∣ ≤ Advmddh
Dk,G2,B1

(λ)+1/(p−1) for a PPT adversary
B1 against the Dk-MDDH assumption on [A]2.

Proof sketch. The proof is similar to the proof of Claim 1. Clearly, G2 is identical
to G1 unless that A ever makes a ODec query such that

e([c⊤]1, [(K
⊤
0 + τK⊤

1)A]2) = e([e⊤]1, [A]2) ∧ [e]1 ̸= [(K0 + τK1)c]1.

We denote such an event by DecBad. Similar to the proof of Claim 1, DecBad
rarely happens under the Dk-KerMDH assumption on [A]2 (which is further
implied by the Dk-MDDH assumption on [A]2 according to Lemma 3). Conse-
quently, Claim 7 follows.

Game G3: It is the same as G2, except that, when answering ODec(T(a,b) ∈
T aff , ct = ([c]1, [d]1, [e]1)), the challenger now returns ⊥ to A directly if the
following check fails:

(T(a,b), ct) ̸= (id, ct∗) ∧ [e]1 = [(K0 + τK1)c]1 ∧ τ ̸= τ∗ ,

where τ := H(pk′, [c]1, [d]1) and τ∗ := H(pk, [c∗]1, [d
∗]1) are the tags involved

in this ODec query and in the challenge ciphertext ct∗, respectively.

Claim 8.
∣∣Pr2[Win]−Pr3[Win]

∣∣ ≤ AdvcrH,B2
(λ)+Advmddh

Uk+2,k,G1,B3
(λ)+1/(p−1)+

2−Ω(λ) for PPT adversaries B2 against the collision-resistance of H and B3
against the Uk+2,k-MDDH assumption on [U]1.

Proof sketch. The proof is similar to the proof of Claim 2. Clearly, G3 is identical
to G2 unless that A ever makes a ODec query such that

(T(a,b), ct) ̸= (id, ct∗) ∧ [e]1 = [(K0 + τK1)c]1 ∧ τ = τ∗.

29

We denote such an event by TagColl. Similar to the proof of Claim 2, we can
divide the event TagColl into three cases, analyze them individually and finally
obtain Claim 8.

Game G4: It is the same as G3, except that, when generating the challenge ci-

phertext ct∗, the challenger samples [c∗]1 ←$ Gk+2
1 uniformly at random, instead

of computing [c∗]1 := [U]1w
∗ with w∗ ←$ Zk

p.
By the Uk+2,k-MDDH assumption on [U]1, G3 and G4 are computationally

indistinguishable, and we have
∣∣Pr3[Win]−Pr4[Win]

∣∣ ≤ Advmddh
Uk+2,k,G1,B4

(λ) for a
PPT adversary B4.

Game G5: It is the same as G4, except that, when answering ODec(T(a,b) ∈
T aff , ct = ([c]1, [d]1, [e]1)), the challenger now returns ⊥ to A directly if the
following check fails:

(T(a,b), ct) ̸= (id, ct∗) ∧ [e]1 = [(K0 + τK1)c]1 ∧ τ ̸= τ∗ ∧ [c]1 ∈ Span([U]1) .

Claim 9.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ Q/p.

Proof sketch. The proof is similar to the proof of Claim 3. Clearly, G5 is identical
to G4 unless that A ever makes a ODec query such that

(T(a,b), ct) ̸= (id, ct∗) ∧ [e]1 = [(K0 + τK1)c]1 ∧ τ ̸= τ∗ ∧ [c]1 /∈ Span([U]1).

We denote such an event by CBad. Similar to the proof of Claim 3, we can an-
alyze the information about K0 and K1 that A may obtain in G5, and use the
leftover entropy in K0 and K1 to show that CBad occurs in a particular ODec

query with probability at most 1/p. Consequently, by a union bound over Q
times of ODec queries, Claim 9 follows.

Game G6: It is the same as G5, except that, when generating the challenge
ciphertext ct∗, the challenger samples [d∗]1 ←$ G1 uniformly at random, instead
of computing [d∗]1 := k⊤[c∗]1 +mβ .

Claim 10.
∣∣Pr5[Win]− Pr6[Win]

∣∣ ≤ 2−Ω(λ).

Proof. We will show that the [d∗]1 := k⊤[c∗]1 +mβ in G5 is statistically close
to the [d∗]1 ←$ G1 in G6, with statistical distance at most 2−Ω(λ).

For the convenience of our analysis, we sample sk = k ←$ Zk+2
p equivalently

via

k := k̃+U⊥ · r,

where k̃←$ Zk+2
p and r←$ Z2

p are uniformly sampled, and U⊥ ∈ Z(k+2)×2
p is a

non-zero vector in the kernel of U ∈ Z(k+2)×k
p such that (U⊥)⊤ ·U = 0. Below

we analyze the information about r that A may obtain in G5 (except for the
challenge ciphertext ct∗).

30

– Firstly, the public key pk is

[k⊤U]1 = [(k̃⊤ + r⊤ · (U⊥)⊤)U]1 = [k̃⊤U]1,

thus r is completely hidden.
– In ODec queries, the tampered public key pk′ is

[k′⊤U]1 = [(ak⊤+b⊤)U]1 = [
(
a(k̃⊤+r⊤·(U⊥)⊤)+b⊤)U]1 = [(ak̃⊤+b⊤)U]1,

thus r is completely hidden. Moreover, due to the game change in G5, the
challenger will not output m := [d]1 − k′⊤[c]1 unless [c]1 ∈ Span([U]1), and
for [c]1 ∈ Span([U]1), we have

m = [d]1 − k′⊤[c]1 = [d]1 − (ak⊤ + b⊤)[c]1

= [d]1 −
(
a(k̃⊤ + r⊤ · (U⊥)⊤) + b⊤)[c]1

= [d]1 − (ak̃⊤ + b⊤)[c]1,

thus r is also completely hidden.
– From OLeak queries, A obtains at most κ bits information L(sk) = L(k) =

L(k̃+U⊥ · r) about sk, and also about r.

Overall, the information about r that A learns in G5 (except for the challenge
ciphertext ct∗) is at most κ bits. Thus, there are still 2 log p−κ = log p+(log p−
κ) ≥ log p+Ω(λ) bits of entropy left in r, and also in sk = k = k̃+U⊥ · r.

On the other hand, for the challenge ciphertext ct∗, note that [c∗]1 is uni-
formly chosen from Gk+2

1 due to the game change in G4, thus the mapping
k 7→ k⊤[c∗]1 indexed by [c∗]1 is a universal hash function. By the leftover hash
lemma (i.e., Lemma 1), k⊤[c∗]1 is statistically close to the uniform distribution

over G1, with statistical distance at most
√

p · 2−(log p+Ω(λ)) =
√
2−Ω(λ), which

is also 2−Ω(λ). Consequently, the [d∗]1 := k⊤[c∗]1 + mβ in G5 is also statisti-
cally close to the uniform distribution, with statistical distance at most 2−Ω(λ).
Therefore, G5 and G6 are statistically indistinguishable to A, and Claim 10 fol-
lows.

Finally in G6, [d
∗]1 is uniformly chosen regardless of the value of β, thus the

challenge bit β is completely hidden to A. Then Pr6[Win] = 1
2 .

Taking all things together, and noting that by Lemma 2, the Uk+2,k-MDDH
assumption is implied by the Dk-MDDH assumption, Theorem 2 follows. ⊓⊔

Acknowledgments. We would like to thank the reviewers for their valuable
comments. Shuai Han and Shengli Liu were partially supported by National Nat-
ural Science Foundation of China (Grant Nos. 62372292, 61925207), the National
Key R&D Program of China under Grant 2022YFB2701500, Guangdong Major
Project of Basic and Applied Basic Research (2019B030302008), and Young Elite
Scientists Sponsorship Program by China Association for Science and Technol-
ogy (YESS20200185). Dawu Gu was partially supported by the National Key
R&D Program of China under Grant 2020YFA0712302.

31

References

[1] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore
bits and cryptography against memory attacks. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (Mar 2009).
https://doi.org/10.1007/978-3-642-00457-5 28

[2] An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7 6

[3] Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (May 2003).
https://doi.org/10.1007/3-540-39200-9 31

[4] Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (Dec 2000).
https://doi.org/10.1007/3-540-44448-3 41

[5] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug
1994). https://doi.org/10.1007/3-540-48329-2 21

[6] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052259

[7] Chakraborty, S., Rangan, C.P.: Public key encryption resilient to post-challenge
leakage and tampering attacks. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol.
11405, pp. 23–43. Springer, Heidelberg (Mar 2019). https://doi.org/10.1007/978-
3-030-12612-4 2

[8] Cramer, R., Shoup, V.: A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO’98. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (Aug 1998).
https://doi.org/10.1007/BFb0055717

[9] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (Apr / May
2002). https://doi.org/10.1007/3-540-46035-7 4

[10] Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience:
How to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (Dec
2013). https://doi.org/10.1007/978-3-642-42045-0 8

[11] Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 1–31. Springer, Heidelberg (May 2021). https://doi.org/10.1007/978-3-030-
75248-4 1

[12] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-
key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (Dec 2010).
https://doi.org/10.1007/978-3-642-17373-8 35

[13] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS 2010. pp. 434–452. Tsinghua University Press (Jan 2010)

32

https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-030-12612-4_2
https://doi.org/10.1007/978-3-030-12612-4_2
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-42045-0_8
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-642-17373-8_35

[14] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for
Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013).
https://doi.org/10.1007/978-3-642-40084-1 8

[15] Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leak-
age and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part I. LNCS, vol. 10031, pp. 877–907. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53887-6 32

[16] Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (Feb 2014). https://doi.org/10.1007/978-3-642-54242-8 20

[17] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-
7 12

[18] Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tam-
pering and leakage of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 908–938. Springer, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53887-6 33

[19] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Çetin Kaya., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Heidelberg (May 2001). https://doi.org/10.1007/3-540-
44709-1 21

[20] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption
without pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part I. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (May 2016).
https://doi.org/10.1007/978-3-662-49890-3 1

[21] Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (Feb 2004). https://doi.org/10.1007/978-3-540-24638-1 15

[22] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3 24

[23] Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security 2008.
pp. 45–60. USENIX Association (Jul / Aug 2008)

[24] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999).
https://doi.org/10.1137/S0097539793244708

[25] Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-46494-6 19

[26] Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9 21

[27] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46803-6 4

33

https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-662-53887-6_32
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53887-6_33
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-642-22792-9_21
https://doi.org/10.1007/978-3-662-46803-6_4

[28] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/3-540-68697-5 9

[29] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (Aug 1999).
https://doi.org/10.1007/3-540-48405-1 25

[30] Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-642-32009-
5 30

[31] Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031,
pp. 729–758. Springer, Heidelberg (Dec 2016). https://doi.org/10.1007/978-3-662-
53887-6 27

[32] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (Aug
2009). https://doi.org/10.1007/978-3-642-03356-8 2

[33] Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg
(Dec 2013). https://doi.org/10.1007/978-3-642-42045-0 20

[34] Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforge-
able signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-
RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (Feb 2007).
https://doi.org/10.1007/11967668 23

[35] Sun, S., Gu, D., Au, M.H., Han, S., Yu, Y., Liu, J.K.: Strong leakage and
tamper-resilient PKE from refined hash proof system. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. pp. 486–506 (2019).
https://doi.org/10.1007/978-3-030-21568-2 24

[36] Sun, S., Gu, D., Parampalli, U., Yu, Y., Qin, B.: Public key encryption resilient
to leakage and tampering attacks. Journal of Computer and System Sciences 89,
142–156 (2017). https://doi.org/10.1016/j.jcss.2017.03.004

34

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-642-42045-0_20
https://doi.org/10.1007/11967668_23
https://doi.org/10.1007/978-3-030-21568-2_24
https://doi.org/10.1016/j.jcss.2017.03.004

	More Efficient Public-Key Cryptography with Leakage and Tamper Resilience
	Introduction
	Preliminaries
	Digital Signatures
	Public-Key Encryption
	Collision-Resistant Hash Functions
	Pairing Groups and MDDH Assumptions

	More Efficient SIG with Leakage and Tamper-Resilience
	Definition of sLTR-CMA Security
	Construction of SIG from MDDH
	Proof of Theorem 1

	More Efficient PKE with Leakage and Tamper-Resilience
	Definition of sLTR-CCA Security
	Construction of PKE from MDDH
	Proof of Theorem 2

