
av.png fun.png rep.png

GigaDORAM: Breaking the Billion Address Barrier

Brett Falk∗

University of Pennsylvania
Rafail Ostrovsky∗

UCLA
Matan Shtepel∗

UCLA
Jacob Zhang∗

UCLA

Abstract
We design and implement GigaDORAM, a novel 3-server
Distributed Oblivious Random Access Memory (DORAM)
protocol. Oblivious RAM allows a client to read and write
to memory on an untrusted server, while ensuring the server
itself learns nothing about the client’s access pattern. Dis-
tributed Oblivious RAM (DORAM) allows a group of servers
to efficiently access a secret-shared array at a secret-shared
index.

A recent generation of DORAM implementations (e.g.
FLORAM, DuORAM) has focused on building DORAM
protocols based on Function Secret-Sharing (FSS). These pro-
tocols have low communication complexity and low round
complexity but linear computational complexity of the servers.
Thus, they work for moderate-size databases, but at a certain
size, these FSS-based protocols become computationally in-
efficient.

In this work, we introduce GigaDORAM, a hierarchical-
solution-based DORAM featuring poly-logarithmic computa-
tion and communication, but with an over 100× reduction in
rounds per query compared to previous hierarchical DORAM
protocols. In our implementation, we show that for moderate
to large databases where FSS-based solutions become com-
putation bound, our protocol is orders of magnitude more
efficient than the best existing DORAM protocols. When
N = 231, our DORAM is able to perform over 700 queries per
second.

1 Introduction

To an outside observer, traditional encryption schemes can
effectively hide the contents of memory, yet encryption alone
does not hide the memory locations being accessed. In many
cases, the access pattern of a file system can leak sensitive
information, even when the contents are encrypted.

Oblivious Random Access Memory (ORAM), introduced by
Goldreich and Ostrovsky [GO96] is a cryptographic protocol
∗Authors are in alphabetical order.

that allows a client to read and write from memory while
ensuring the physical access pattern (which is potentially
observable to someone with sufficient access to the machine)
is independent of the virtual access pattern (the underlying
data retrieved by the client). Thus, when memory is accessed
using an ORAM protocol, it is mathematically provable that
an observer learns nothing about the client’s query pattern
(beyond the number of queries).

Oblivious RAM was developed in a model where a sin-
gle client wishes to store and retrieve sensitive data from an
untrusted data store. Originally, the untrusted data store was
conceptualized as untrusted RAM on the same machine as
the client, but today we usually imagine a client storing and
retrieving data from an untrusted cloud provider. In this set-
ting, encryption can hide the data from the cloud provider,
but ORAM is necessary to hide the access pattern1. Thus,
ORAM provides the strongest possible guarantee – hiding
both the data and the access pattern.

Although ORAM was designed in the client-server setting,
a slight variant of ORAM is also useful in the context of se-
cure multiparty computation, where a group of servers needs
to access a secret-shared array at a secret-shared location. In
this setting, the secret sharing hides the data, but every partici-
pating server observes the physical access pattern. Distributed
Oblivious RAM (DORAM) provides a method for efficiently
accessing a secret-shared array at a secret-shared index, which
in turn makes it possible to do secure multiparty computation
(MPC) in the RAM model (RAM-MPC). Almost all existing
MPC protocols work in the circuit-model where the desired
computation is first converted to an arithmetic/boolean cir-
cuit before being executed securely. This conversion becomes
costly (e.g. in the case of a private database) since every
“random-access” is replaced with an O(memorySize) “MUX

1Note that most Searchable Symmetric Encryption (SSE) schemes allow
a client to efficiently query encrypted data stored in an untrusted cloud,
but they typically do not hide the access pattern from the cloud provider.
SSE schemes also target a different model, where data payloads may be of
drastically different size (in ORAM all entries are of size D) and queries may
return different numbers of “matches” [CGKO06, Nav15].

Matan Shtepel

Matan Shtepel

Matan Shtepel

operation.” RAM-MPC allows random-access programs to
be executed securely without this costly conversion, which in
turn enables much more flexible and efficient secure multi-
party computation protocols [OS97, GKK+12].

1.1 Previous DORAMs
The efficiency of a (D)ORAM protocol is usually measured
by the communication complexity of each query. Several
recent DORAM protocols (e.g. [LO13, FNO22]) achieved
(O((κ+D) log(N))) communication and computation. These
asymptotically-efficient protocols are built using the ORAM’s

“hierarchical solution”, introduced in [Ost90, Ost92], which
we describe in Section 4. The downside of these protocols is
that they have high round complexity, requiring O(log(N))
rounds of communication (with large hidden constants) per
query. In practice, network latency causes bottlenecks in the
performance of these solutions.

It has been noted that the high round complexity of the
hierarchical solution makes it unsuitable for practical ap-
plications [WHC+14], so most DORAM implementations
(e.g. [WCS15,SCSL11,GKK+12,ZWR+16,JW18,WHC+14,
Ds17, JZLR22, VHG22, BKKO20]) take a different approach.
These constructions focus on minimizing rounds while com-
promising on either asymptotic computation or asymptotic
communication costs. One common technique (most recently
applied by DuORAM [VHG22]) for creating DORAM pro-
tocols with low round complexity and low communication
complexity is Function Secret Sharing (FSS) [GI14, BGI15].
While FSS results in low communication complexity, FSS-
based protocols require O(N) computation, where N is the
size of the database. Thus, protocols like DuORAM shines
in high-latency, low-bandwidth networks at a small database
size.

By contrast, our DORAM is designed for low-latency envi-
ronments (such as co-located servers in the same data center).
This design choice is present in several current deployments,
such as Points of Presence (POP) of mutually distrustful ISP
machines present in the same Data Center in support of BGP
protocols [ACF+12, Smi21]. These mutually mistrustful yet
co-located machines offer a viable alternative to data clean
rooms, which present a single point of failure (if the secu-
rity of the clean room is breached). As another example,
Cybernetica’s commercial offering “Sharemind” MPC plat-
form is intended to be run on three servers in nearby data
centers [BKK+16]. In these low-latency environments, FSS-
based DORAMs quickly become a bottleneck of performance
for large values of N. We focus on this type of network en-
vironment because, these types of low-latency networks are
necessary for RAM-MPC, which is one of the main motiva-
tions for building DORAM protocols in the first place.2

2Although MPC can run in high-latency environments [WRK17a], in
a high-latency environment MPC can only compute simple functions that
would not benefit from a RAM-model computation.

1.2 Our Contributions
1.2.1 Protocol contributions

In this work, we design and implement a high-performance
DORAM protocol in the (3,1)-security model, i.e., where
there are three semi-honest servers, and no two of them col-
lude. Two effective techniques for building (D)ORAM pro-
tocols are “the hierarchical solution” (e.g. [AKL+20, LO13,
AKLS21, FNO22]) which yields (D)ORAM protocols with
low communication complexity, but high round complexity,
and FSS-based DORAMs (e.g. FLORAM and DuORAM)
which have very low round complexity, but high computa-
tional complexity. In this work, we show how to reduce
the round complexity of the hierarchical solution and give
round-efficient hierarchical DORAM that scales well beyond
the limits of FSS-based (D)ORAM protocols. Specifically,
our DORAM requires O((κ2 +D) logN) communication and
computation per query. At the cost of practically significant
round-cost, we can easily tweak our protocol to match the best-
known (D)ORAM complexity [AKL+20, AKLS21, LO13,
FNO22] of O((κ+D) logN) (Remark 4.1). Our work is the
first (D)ORAM protocol to achieve these asymptotics to be
implemented.

1.2.2 Code contributions

Implementing our DORAM protocol required over 9,000 lines
of custom C++ code. Additionally, we provide lightweight
client implementation in Python and JavaScript, enabling
users to utilize DORAM in the client-server setting.

In addition to the implementation of our DORAM protocol,
we contribute (1) a from-scratch competitive implementation
of the [AFL+16] general MPC framework which, in many set-
tings, is the fastest known 3-party MPC protocol.3 (2) A cus-
tom (3,1)-garbled circuits protocol built using EMP-toolkit’s
2-party garbled circuits, which can be imported separately
from ABY3’s [Rin] large framework, and (3) The first tested
circuit files of the LowMC block cipher [ARS+15], featuring
a novel optimization which reduces cache misses.

2 Preliminaries

Notation. We let N be the number of elements in the DORAM
database, D the size in bits of each element, and κ be the
computational security parameter (in practice κ = 128, in
theory κ = ω(logN)), σ the statistical security parameter (in
practice 2−40 or 2−80).

Secret sharing. Our DORAM protocol makes heavy use
of secret-sharing. Throughout this work, we use J·K to denote
a “replicated” (or CNF [CDI05]) secret sharing. In a 3-party
replicated sharing, a secret, x is split into three shares x =

3The implementation used to benchmark the results in the [AFL+16] is
proprietary, and not publicly available.

x1⊕ x2⊕ x3, and participant x gets two of the shares – every
share except xi. We use [·](i, j) to denote a simple XOR-2-
sharing between participants Pi,Pj

Obliviousness: A computation is data-oblivious if its
control-flow is independent of the input data. An Oblivious
RAM protocol is a protocol for accessing an array (indexed
by 1, . . . ,N), where the algorithm’s control flow, and in par-
ticular, the physical memory accessed, is independent of the
index being queried. ORAM protocols are designed to allow
a client to make a any sequence of queries and are often com-
posed of simpler data structures that are only oblivious on
distinct queries. A data structure (e.g. a hash table) is called
distinct-query oblivious if the control flow between any two
sequences of distinct queries is indistinguishable, but a se-
quence with repeated queries might result in a control flow
that is distinguishable from a sequence of distinct queries.

Cuckoo Hashing: A cuckoo hash table is a distinct-query
oblivious data structure for storing key-value pairs [PR01].
The cuckoo hash table consists of two arrays (“tables”)
T0 and T1 of size c · n, and two hash functions h0 and h1,
hi : X → [cn]. A key-value pair, (x,y), can be stored in the
table at location h0(x) in T0 or h1(x) in T1. It is possible that
there is no valid way to store a series of elements (e.g. if
there are x0,x1,x2 such that h0(x0) = h0(x1) = h0(x2) and
h1(x0) = h1(x2) = h1(x3)). In this case, we say there is a
“build failure.” The probability of a build failure is 1/poly(n),
but if we allow a small “stash” that can hold at most O(log(n))
elements, the probability of a build failure becomes negligible
in n [KMW09, Nob21]. In our DORAM (as in most prior
hierarchical (D)ORAM protocols) we use cuckoo hash tables
as a building block for our oblivious hash tables.

DORAM: A distributed Oblivious RAM protocol is a mul-
tiparty protocol that allows a group of participants holding
a secret-shared array Jx1K, . . . ,JxNK to access the array at a
secret-shared index, JiK, and obtain the sharing JxiK, without
revealing any information about the query, i, or the database
x1, . . . ,xn. The theoretical efficiency of a DORAM protocol is
often measured by the amortized communication complexity
the servers spend to respond to a single query. In practice, DO-
RAM protocols may be bottlenecked by the amortized com-
munication per query (e.g. [WCS15]), the amortized computa-
tion per query (e.g. [Ds17,VHG22]), or the amortized number
of communication rounds per query (e.g. [LO13, FNO22]).
To compare between these constructions targeting different
points in the solution space, we measure the practical effi-
ciency of a DORAM protocol by the number of queries per
second that it can process.

SISO-PRFs: A core building block of most DORAM pro-
tocols is a Shared-Input, Shared-Output PRF (SISO-PRF).
A SISO-PRF allows the participants to compute the secret-
sharing of a PRF output on a shared input, under a shared
key. Any regular PRF can be converted into a SISO-PRF by
implementing the PRF under a generic MPC protocol. Several
PRF protocols have been designed to be “MPC friendly” (e.g.

LowMC [ARS+15]). The basic idea which makes SISO-PRFs
useful for DORAM is that servers can generate a random,
shared key, JkK, and build a hash table where the cleartext tags
(of secret-shared payloads) are SISO-PRF evaluations of the
elements.

3 Secure Multiparty Computation

Secure multiparty computation (MPC) [Yao82, Yao86,
GMW87, CCD88] is a protocol that allows a group of partic-
ipants to securely compute a joint function on their private
inputs without revealing any information beyond the output
of the function. An MPC protocol is called (n, t)-secure if
the protocol involves n participants, and remains secure if
at most t participants collude (i.e., share private state). Our
DORAM protocol works in the standard (3,1) semi-honest se-
curity model, which assumes that there are three semi-honest
servers and no collusion between servers. We use the (3,1)-
“replicated” MPC protocol of [AFL+16] as a building block.
In one crucial place, we also use a custom implementation
of the (3,1) garbled circuit MPC protocol of ABY3 [MR18]
to reduce round complexity. Our DORAM protocol is also
an important tool in building efficient RAM-MPC protocols,
because it allows for MPC computation in the RAM model of
computation, whereas most current MPC protocols work in
the circuit model.

3.1 The Arithmetic Black-Box Model

Our DORAM protocol makes use of several “basic” oper-
ations on secret shared values, e.g. addition, comparisons,
and equality tests. In our protocol descriptions, we use the
Arithmetic Black Box (ABB) model to abstract away the un-
derlying implementations of these operations. In practice, we
use our own implementation of [AFL+16]. A formal descrip-
tion of the ABB model can be found in [GRR+16, FNO22].

In protocols, we use our ABB by invoking
FABB.FunctionalityName, where FunctionalityName
makes it obvious what the functionality achieves. For
instance, we invoke JzK = FABB.Mult(JxK,JyK) to multiply
secret shared values x,y and obtain secret shared value z s.t
z = x · y. Although the names are usually self-explanatory,
we provide a complete list of our ABB functionalities in
Appendix A.

4 Construction Overview

Section 4.1 describes known techniques which enabled build-
ing communication and computation efficient “hierarchical”
DORAM which takes many rounds of communication to ex-
ecute a single query [FNO22, LO13]. In Section 4.2 we mo-
tivate and outline several novel techniques which enable us

to significantly reduce the round complexity of standard “hi-
erarchical” DORAMs. In Section 9, we show that our round-
reduced “hierarchical” DORAM, GigaDORAM, is efficient
in practice.

4.1 The hierarchical solution

OHTable We call an efficient, oblivious-to-build, distinct-
query oblivious, hash table an OHTable. Oblivious Hash Ta-
bles have three key functionalities: Build, Query, and Extract.
FOHTable.Build(X) creates an oblivious hash table storing the
elements X , where each element in X is unique. Once the hash
table has been built, FOHTable.Query queries the table obliv-
iously, and FOHTable.Extract extracts all elements currently
stored in the table which have not been queried.
The hierarchical solution. The key idea of the hierarchi-
cal solution is that it is fairly easy to build a distinct-query
OHTable – for example, reading from a cuckoo hash table is
oblivious as long as you never query the same element twice.
With this insight, the hierarchical solution [Ost92] can be seen
as a compiler for bootstrapping a distinct-query OHTable con-
struction into a full-fledged DORAM (that remains oblivious
even if the user makes repeated queries). The hierarchical so-
lution is a powerful tool, used to build many ORAM protocols,
e.g. [Ost90, Ost92, GO96, GMOT12, KLO12, LO13, PPRY18,
AKL+20, FNO22], and is the technique used by many of the
most (asymptotically) communication efficient (D)ORAM
protocols.

A hierarchical ORAM is made up of a hierarchy of OHTa-
bles, L0, . . . ,LnumLevels, of geometrically increasing size. Usu-
ally, we have numLevels = O(logN) and the largest level,
LnumLevels, has size O(N). The smallest level, L0, is a small
“cache”. The cache itself needs to remain oblivious even if
queries are repeated. But the cache is small, so it can be im-
plemented inefficiently without dramatically increasing the
cost of a given ORAM query. For this reason, the cache is
often set be constant sized (|L0| = O(1)). This means that
the client can read the entire cache with each query (in time
O(|L0|)) and this is clearly oblivious. Each larger level, Li for
i≥ 1 holds a distinct-query OHTable of size O

(
2i
)
.

When a user queries the DORAM, the user queries each
level of the hierarchy sequentially. If the item is found at
level i, a “dummy” element is queried at subsequent levels
Li+1, . . . ,LnumLevels, and the retrieved item is reinserted into
the cache. To maintain obliviousness, if the requested item is
not found anywhere in the hierarchy, a dummy item is inserted
in the cache. When the cache (or any subsequent level of the
hierarchy) is full, all the elements from that level (and smaller
levels) are extracted and rebuilt into the next level of the
hierarchy. If |Li+1| ≥ 2 ·|Li|, then level i+1, can accommodate
all the elements in levels 0,1, . . . , i. This periodic rebuild
schedule guarantees that no element is ever queried twice at
the same level between rebuilds, because once an element has
been found at level i, it is moved to the cache, and will always

stay in a level j < i, until level i is rebuilt. Since no element
will be queried twice in any given distinct-query OHTable, the
entire construction is oblivious, even if queries are repeated.
The formal proof that the resulting hierarchical data structure
is indeed an ORAM is now standard and can be found for
example in [Ost92]. With this rebuild schedule, level Li is
rebuilt every O(|Li|) queries. We outline our instantiation of
the hierarchical protocol in Figure 4 in Section 8.

4.2 Reducing numRoundsDORAM

Our protocol is based on a 3-party implementation of the
hierarchical solution (similar to [FNO22]). Although the hi-
erarchical solution has low asymptotic communication and
computation complexity, it has high round complexity which
can make it inefficient in practice.4 This inefficiency stems
from the fact that every query to the DORAM forces a
query into every level of the hierarchy, L0, . . . ,LnumLevels. Crit-
ically, these queries must be sequential, because if the item
is found at Li, the protocol must query dummy elements at
Li+1, . . . ,LnumLevels. Thus the round complexity of a DORAM
query5 , numRoundsDORAM, can be written as

numRoundsOHTable ·numLevels+numRoundsCache (1)

where numRoundsOHTable is the number of rounds to query
Li for 1 ≤ i ≤ numLevels (which is fixed and independent
of i) and numRoundsCache is the number of rounds it takes
to query the cache, L0. The main technical contribution of
our work is to optimize the hierarchical solution to reduce its
round complexity.

In light of Equation 1, we can divide our efforts to
reduce round complexity into four parts: (1) reducing
numRoundsOHTable via our novel OHTable, ShufTable, and
SISO-PRF parallelization, (2) generalizing the hierarchical-
solution with a tuneable parameter, baseAmpFactor, to re-
duce numLevels, (3) designing a new oblivious-cache data-
structure, SpeedCache, to reduce numRoundsCache, and (4)
applying additional engineering/implementation-level opti-
mizations.

With these design improvements, we are able to signifi-
cantly reduce the round complexity of the hierarchical so-
lution, while maintaining similar asymptotic overheads to
the theoretic state-of-the-art, [FNO22]. In addition to its low
asymptotic complexity and low rounds-per-query, we show
that our DORAM design is actually quite fast in practice
(Section 9).

4The (3,1)-DORAM of [FNO22] and the 2-server ORAM of [LO13] use
the hierarchical solution to achieve amortized communication complexity of
O((κ+D) logN). We remark, however, that both these protocols have high
round complexity, and have never been implemented.

5DORAM also incurs round costs when building a level Li and extracting
from a level Li. Since the protocols are only invoked every |Li| queries and
have small, constant, round costs (where our final protocol has |L0|= O(κ)),
their round cost has negligible impact on the performance of DORAM.

We briefly explain each of our optimizations below and
expand on them in Section 5, 6, and 7 respectively.

(1) Reducing numRoundsOHTable: ShufTable & SISO-
PRF parallelization. To reduce numRoundsOHTable we
present a novel, standalone OHTable, called ShufTable, with
reduced round complexity. We also devise a method to par-
allelize the sequentially-dependent SISO-PRF evaluations
needed to query each level of the hierarchy.

The key ideas in these optimizations revolve around how
to handle queries for elements that are not in the table. This
type of query happens frequently in a hierarchical ORAM
because although each element is only stored at one level of
the hierarchy, each ORAM query results in a query to the
OHTable at every level of the hierarchy. Prior solutions for
handling these “dummy” queries were round-intensive (e.g.
the Oblivious Sets in [FNO22]), so we develop a new method.

As in prior works, our OHTable, ShufTable inserts dummy
elements (d1,⊥) . . . ,(dl ,⊥) along with the real elements, and
retrieves a dummy when the queried element is not stored
in the table. Assuming the SISO-PRF has already been eval-
uated, ShufTable requires only 5 rounds of server-to-server
communication per query. The main ingredient that enables
this round-savings is a novel “persistent shuffling” trick (Sec-
tion 5.1)6 which allows to efficiently evaluate a random per-
mutation under MPC. Our OHTable, like those in prior DO-
RAM constructions, requires an equality check on secret-
shared values. We implement this equality check using a cus-
tom implementation of a 3-party garbled circuit [MR18]. This
increases the asymptotic communication of each level’s query
from O(κ) to O(κ2), but decreases the round complexity at
each level by O(logκ). In practice, when κ ∈ {128,256}, this
dramatically improves real-world performance.

More details can be found in section 5.2 and the protocol
is given in Figure 2.

Remark 4.1. If one were focused on optimizing asymp-
totic communication complexity, this step could be replaced
by a constant-overhead-MPC-based equality check (e.g. us-
ing [AFL+16]), which would give us best known (same as
[FNO22,LO13]) asymptotic communication and computation
complexity O((κ+D) log).

In the hierarchical solution, each query into the OHTable
at level i, requires evaluating a SISO-PRF, but the query into
table Li+1 depends on whether the item was found at a lower
level. Thus, hierarchical-based (D)ORAMs wait until after
Li.Query is performed to evaluate the SISO-PRF for Li+1.

With ShufTable and most other OHTables, there are essen-
tially two types of queries that can be made at any level a
“real” query (if the desired element has not yet been found) or
a “dummy” query (if the element was found at a lower level).
A simple observation we make is that we can evaluate JriK,
the PRF evaluation needed to make a real query at Li, and

6 [LWZ11] presents various efficient shuffling protocols, but none of their
shuffles allows for the efficient evaluation of a reverse permutation at a point.

JdiK, the PRF evaluation needed to make a dummy query at Li,
in parallel for all i ∈ [numLevels]. Then, after Li is evaluated
and it is determined under MPC whether the queried element
was found, we can multiplex between Jri+1K and Jdi+1K un-
der MPC, which takes only one round. Since the outputs
of the SISO-PRF are secret-shared and since multiplexing
in MPC hides whether the table is queried for a dummy or
a real element, the DORAM remains oblivious. This opti-
mization decreases the rounds per query dedicated to evalu-
ating the SISO-PRF from numRoundsPRFEvalnumLevels to
numRoundsPRFEval/+numLevels.

Unfortunately, the above change increases communica-
tion per query by ≈ 2×. To resolve this issue, we upgrade
ShufTable with a “just-in-time” mechanism to detect if an
element is stored in the table, replacing the retrieved element
with a dummy if necessary. Due to this mechanism, only JriK
is needed to query the OHTable at Li.

In practice this optimization is noticeable, saving ∼ 100
rounds of interaction per query.

To further reduce rounds, in practice, we parallelize the
query of the cache, L0 with the evaluation of the PRFs for
L1, . . . ,LnumLevels. Note that if we knew multiple queries in
advance, we would be able to further batch evaluations, but
we do not assume that in this work.

Overall, these optimizations have a significant im-
pact of the efficiency of our protocol. We decrease
numRoundsOHTable from the 45 of [FNO22] to amortized
5+numRoundsPRFEval/numLevels ≈ 7. Additionally, we
reduce the number of expensive SISO-PRF evaluations neces-
sary by a factor of four when compared to [FNO22] which is
the state-of-the-art in low SISO-PRF hierarchical DORAMs.

(2) Generalizing the hierarchical solution to reduce
numLevels. Above, we described our techniques for reduc-
ing the round complexity of queries to individual OHTables.
Yet in the hierarchical solution, every ORAM query requires
querying each level of the hierarchy sequentially. Thus a hier-
archy of depth numLevels immediately adds a multiplicative
factor of numLevels to the round complexity of the protocol.
Since round complexity is one of the main performance bot-
tlenecks in (D)ORAM protocols, there is a strong motivation
to reduce numLevels.

In most hierarchical (D)ORAMs, level i in the ORAM hier-
archy had size 2i · |L0|, resulting in numLevels = O(log2 N).
In Section 6 we show that by introducing a new parameter,
baseAmpFactor > 2, and setting |Li+1| = baseAmpFactor ·
|Li|, we can reduce the round complexity of the protocol
with minimal impact on the communication complexity,
which we find to be less expensive in practice. This sim-
ple change immediately reduces numLevels from log2(N)
to log2(N)/ log2(baseAmpFactor). While this modification
is conceptually simple, it requires a more nuanced rebuild
schedule.

Empirically, we find that the optimal value for
baseAmpFactor is much greater than 2. For instance,

at N = 230 and the network conditions we test, we found that
baseAmpFactor = 128 is optimal. That is, each level is 128
times larger than the previous (smaller) level.

(3) Optimizing the cache: SpeedCache. In the hierarchi-
cal ORAM solution, the top level (i.e. L0, the “cache”) needs
to support oblivious accesses (compared to lower levels in
the hierarchy which only need to be distinct-query oblivious).
For this reason, L0 is usually implemented as a simple read-
all-to-read, append-to-write array. This is obviously oblivi-
ous, but its query complexity increases linearly with the size
of the cache. In particular, if the cache stores t key-value
pairs ((Jx1K,Jy1K), . . . ,(JxtK,JytK)), querying the cache is of-
ten implemented by sequentially checking whether the query,
JxK, is equal to JxiK (costs O(log log |xi|) sequential rounds)
and if so updating return value to JyiK. Unfortunately, this
simple implementation has multiplicative depth t, meaning
numRoundsCache= O(|L0| · log log |xi|).

In Section 7, we outline a simple Cache protocol Speed-
Cache that allows us to query the cache in ⌈log log |xi|⌉+1
rounds of communication (which is independent of |L0|).
Since our SpeedCache protocol has a round complexity that
is independent of the cache size, we are somewhat free to in-
crease the cache size, which has other benefits (e.g. reducing
numLevels by log2 |L0|).

(4) Gadget implementations: Minimizing the round com-
plexity of our SISO-PRF is crucial for the overall efficiency
of our protocol, so we provide the first circuit file of the
LowMC [ARS+15] block cipher within our custom MPC
implementation. Our circuit file features a novel optimization
we call “wire threading” that allows us to reduce the number
of L1-cache misses during evaluation. We multithread the
MPC evaluation of LowMC, allowing us to evaluate the PRF
6.7M times per second. See Appendix C for further details.

We adopt the Alibi reinsertion technique [FNO21] for
“caching the stash” to the distributed setting, and we provide
the first implementation of Alibi. See Appendix D for further
details.

5 ShufTable: reduce numRoundsOHTable

In this section, we present ShufTable, a novel, oblivious
distinct-query, hash table (OHTable). With ShufTable we
have numRoundsOHTable ≈ 7 (compared to [FNO22]
which required 45 rounds of communication for each
OHTable query).

In Section 8 we use the hierarchical solution and [FNO21]
to compile ShufTable into an efficient DORAM. The resulting
DORAM requires only a constant number of rounds per query,
whereas prior hierarchical DORAM protocols (e.g. [FNO22])
had a round complexity that scaled with N.

In Section 5.1 we present the “Persistent shuffle proto-
col,” a method that enables ΠShufTable, the new OHTable
protocol we present in Section 5.2. Leveraging features of

ΠShufTable.Query, in Section 5.3 we show how to amortize the
round cost of SISO-PRF evaluations across L1, . . . ,LnumLevels.

5.1 Persistent shuffle Protocol
Like many DORAM protocols, our DORAM construction
relies on an efficient oblivious shuffle, which allows players
holding a secret shared list, JXK = JX1K, . . . ,JXnK to shuffle
JXK under some random permutation π∈ Sn such that nothing
about π is learned by any player.

As presented in [LWZ11], there is an efficient, linear com-
munication (3,1)-oblivious shuffle that works as follows. The
players P1,P2,P3 reshare JXK to P1,P2, who shuffle their secret
shares according to some random agreed upon permutation,
and reshare the shuffled list to P2,P3, who shuffle and reshare
to P3,P1 who shuffle and reshare to P1,P2,P3. Since the com-
position of permutations is not known to any single player,
the final permutation is oblivious. Unfortunately, at the end
of the [LWZ11] protocol, information about the permutation,
π, is not accessible to the players. In our Persistent shuffle
(described in Figure 1), we augment the shuffling protocol to
also output a secret sharing of π.

Cost of the Persistent shuffle protocol. The Persistent
shuffle protocol requires 4 rounds of communication and
each round requires n(|Xi|+ logn) bits of communication.
For comparison, shuffling n elements using Persistent shuffle
is 6 times less bandwidth than evaluating a SISO-PRF (using
LowMC) on those elements, so shuffling contributes only
minimally to the overall communication cost of our DORAM.

Lemma 5.1. Persistent shuffle (described
in Figure 1 fulfills the functionality
FABB.ObliviousShuffle(◦ ,DistributeShuffle = True)
where the players input JXK and receive as output Jπ(X)K
and JKK = JK1K, . . . ,JKnK s.t π(i) = Ki. It also guarantees
that π is uniformly sampled from Sn and unknown to all
players.

Proof. In step 1, the 3 participants reshare the shares of the
vector X to and the indices L=(1,2, . . . ,n) to two participants.
By the security of FABB.ReshareReplicatedTo2Sharing, each
individual participant learns nothing about X (in fact each
player’s shares are uniformly random). In steps 2 & 3, pairs
of players locally shuffle their shares and reshare to the next
pair. In this case, the security of FABB.Reshare2To2Sharing
ensures that each player learns nothing about the underlying
data (the shuffled values). As in step 1, each player receives
uniformly random shares and nothing else. In step 4, pairs of
players call FABB.Reshare2SharingToReplicated, and again,
each player’s view of the protocol is a collection of uniformly
random shares.

The final list is a sharing of π(X), where π = π{3,1} ⊙
π{2,3}⊙π{1,2}. Every player knows two of the three permuta-
tions, so the resulting permutation is uniformly random from
the perspective of any player.

Setup: Each pair of players Pi,Pj agree on a random permutation π{i, j} ∈ Sn. The players also generate a sharing JLK =
J1K, . . . ,JnK.
Protocol:

1. The players reshare to the first shufflers, calling

[X](1,2) = FABB.ReshareReplicatedTo2Sharing(JXK,{P1,P2})

and
[L](3,1) = FABB.ReshareReplicatedTo2Sharing(JLK,{P3,P1})

2. Shuffle & Reshare to next shuffling pair #1:

(a) P1,P2 let [X ′](1,2) = [π{1,2}(X)](1,2). Note that since Pi,Pj hold [X](i, j) they can obtain [π(X)](i, j) for a known π

by locally shuffling their list of secret shares. P1,P2 reshare X ′ to the next shufflers, calling

[X ′′](2,3) = FABB.Reshare2To2Sharing([X ′](1,2),{P2,P3}).

(b) P3,P1 let [L′](3,1) = [π−1
{3,1}(L)]

(3,1). P1,P2 reshare L′ to the next shufflers, calling

[L′′](2,3) = FABB.Reshare2To2Sharing([L′](3,1),{P2,P3})

3. Shuffle & Reshare next shuffling pair #2:

(a) P2,P3 let [X ′′](2,3) = [π{2,3}(X ′)](2,3). P2,P3 reshare X ′′ to the next shufflers, calling

[X ′′](3,1) = FABB.Reshare2To2Sharing([X ′](2,3),{P3,P1}).

(b) P2,P3 let [L′′](2,3) = [π−1
{2,3}(L

′)](2,3). P2,P3 reshare L′′ to the next shufflers, calling

[L′′](1,2) = FABB.Reshare2To2Sharing([L′′](1,2),{P1,P2}).

4. Shuffle & Reshare back to all players #3:

(a) P3,P1 let [X ′′′](3,1) = [π{3,1}(X ′′)](3,1). P3,P1 reshare X ′′′ back to the entire group, calling

JX ′′′K = Reshare2SharingToReplicated([X ′′′](3,1)).

(b) P1,P2 let [L′′′](1,2) = [π−1
{1,2}(L

′′)](1,2). P1,P2 reshare L′′′ back to the entire group, calling

JL′′′K = Reshare2SharingToReplicated([L′′′](1,2)).

Output: The output of the protocol is Jπ(X)K,Jπ−1(L)K.

Figure 1: The Persistent shuffle protocol, FABB.ObliviousShuffle(JXK,DistributeShuffle= True)

5.2 ShufTable construction
In this section, we describe and evaluate ΠShufTable.Build and
ΠShufTable.Query, the component of our new Oblivious Hash
Table ShufTable. The pseudocode for Protocol ΠShufTable is
presented in Figure 2.

Parameters. ΠShufTable is parameterized by N, the size of
the address space, D, the size of each payload, κ, the com-
putational security parameter, n, the number of real elements
stored in the table, numDummies, the number of dummy el-
ements stored in the table, and stashSize, the minimum size
of a stash in the cuckoo hash table storing n elements such
that the probability of a build failure is less than our statistical
security parameter, σ.

On each query, we must be able to retrieve either (1) the ele-
ment being queried or (2) a new dummy element that has never
been queried (if the desired element is not in the OHTable).
Hence, the number of queries to each ShufTable is bounded
by min{numDummies,n}. Thus we set numDummies≈ n.

Since our construction uses a Cuckoo hash table (CHT), it
is also implicitly parameterized by c, the number of slots in
the CHT table, and t, the number of such tables. Instantiations
of these variables are discussed in Section 9.

Input-Output behavior of ΠShufTable.Build. The parties,
P1,P2,P3, input E = {(JX1K,JY1K), . . . ,(JXnK,JYnK)} where
n≤ N to ΠShufTable.Build. Protocol ΠShufTable.Build, outputs
secret shares of CHT held by P2,P3, [CHT](2,3), and J ˆ̂XK,J ˆ̂Y K,
special shuffling of the elements under a permutation some-
what known to P2,P3 (Step 7 of ΠShufTable.Build). The data
structure, ShufTable, stores a subset of the elements sent
to the build protocol A ⊂ E. ΠShufTable.Build also outputs
Stash = E \A, with |Stash| ≤ stashSize. In the greater DO-
RAM protocol (Section 8), Stash will be inserted into the
cache, L0. As long as X1, . . . ,Xn are distinct (as assured
by the hierarchical solution), the parties learn nothing of
(X1,Y1), . . . ,(Xn,Yn) or which elements belong to Stash.

Input-Output behavior of ΠShufTable.Query. For the t’th
query where 1 ≤ t ≤ numDummies, the players input JxtK
to ΠShufTable.Query. ΠShufTable.Query, outputs JYjK if xt = X j
for (X j,Yj) ∈ A and J⊥K otherwise (and outputs JfoundK ac-
cordingly). The security guarantee is that for any sequence of
distinct queries, x1, . . . ,xt , P1,P2,P3 do not learn whether Yj
or ⊥ was outputted, j, or Yj.

Performance analysis. The cost of ΠShufTable.Build is dom-
inated by the cost of n SISO-PRF evaluations.7 With our im-
plementation of LowMC, this requires a total of 2304n bits
of communication at κ = 128 and the computation of many
XORs. Despite this cost, ΠShufTable.Build is very efficient,
since via multi-threading LowMC (Section C) we are able to
evaluate 6.7M SISO-PRFs/s in our tests.

The time needed to evaluate ΠShufTable.Query is driven by
its round complexity since we must sequentially invoke this

7For comparison, [FNO22] requires more than twice as many SISO-PRF
evaluations (2n+numDummies) for each OHTable build.

protocol numLevels times during ΠDORAM.Query. Each step
of the query requires equality checks on secret shared ele-
ments, which we execute using 3-party garbled circuits. 8

Lemma 5.2. ΠShufTableimplements the distinct-query oblivi-
ous hash table functionality.

Proof. We begin by showing that the view of each player
during ΠShufTable.Build is independent of the input data X ,Y .
During ΠShufTable.Build, P2,P3 only receive secret shares and
operate on those secret shares using MPC. Since secret shares
are sampled from a (individually) uniformly random distribu-
tion, P2,P3’s views are independent of underlying data X ,Y .

During ΠShufTable.Build, other than operating on secret
shares, P1 receives the list Q̂ in the clear. By assumption,
X has no repetitions, so the PRF “tags” Q appear uniformly
random and independent to a computationally bounded ad-
versary. Since Q̂ is a uniformly random shuffle of Q which
P1 does not know, P1 cannot decipher any information about
X from seeing Q̂. Moreover, when deciding which elements
to place in Stash (by deciding on which indexes to place
there), P1 cannot tell which elements from (Xi,Yi) he is plac-
ing in stash (except that they aren’t dummies since Q̂i ̸=⊥).
Thus, P1’s view is independent of X ,Y , and the stash contains
uniformly random real elements.

Next, we show that in ΠShufTable.Query the view of each
player is independent of the query Xt , the output, or X ,Y pre-
viously stored. During ΠShufTable.Query, other than operating
on secret shares, P2,P3 learn q in the clear. q is either a random
or a pseudorandom element which is thus computationally
independent from P2,P3’s view (because P2,P3 did not see
Q̂ which P1 used to build CHT∪Stash). Thus, P2,P3 do not
learn anything by seeing q. Additionally, P2,P3 learn l, an
index into the ∧-shuffled list which depends on Xt ’s presence
at the level (see step 4 of ΠShufTable.Query). Yet, since l is
entirely determined by π∧ which P2,P3 don’t know, and more-
over, since they do not know which indexes of Ŷ correspond
to dummies, l is sampled from a distribution indistinguishable
from random relative to the individual view of P2,P3.

Finally, during ΠShufTable.Query, other than operating on
secret shares, P1 learns l in the clear. Yet, although P1 knows
which elements from Ŷ are dummies, due to an additional
oblivious shuffle, he does not know which elements of ˆ̂Y are
dummies (or were stashed, or were stored in the table, etc).
Hence l is independent of P1’s view.

Thus, on distinct queries and when i ̸= j =⇒ Xi ̸= X j,
P1,P2, and P3’s views are independent of the data stored and
queried, and hence ShufTable is distinct-query oblivious.

8We use 3-party garbled circuits rather than the (constant-round) 3-party
BMR protocol [BMR90] implemented in EMP because 3-party garbled
circuits are significantly more bandwidth efficient than BMR. 3-party garbled
circuits require an honest majority, while BMR does not.

ΠShufTable.Build: The players (refers to P1,P2,P3) hold (JX1K,JY1K), . . . ,(JXnK,JYnK).

1. The players create dummies to satisfy queries that were not found, letting JYiK = J⊥K, JXiK = J⊥K for i ∈ {n+1, . . . ,n+
numDummies}.

2. The players generate a κ-bit secret-shared PRF key, evaluating JkK = FABB.RandomElement(κ).

3. The players create pseudorandom tags for all the addresses, evaluating JQiK = FABB.PRFEval(JkK,JXiK) for i ∈
{1, . . . ,n} and JQiK = J⊥K for i ∈ {n+1, . . . ,n+numDummies}.

4. Players obliviously shuffle the lists before revealing Q to P1 to hide information about the elements in the table/stash,
executing JQ̂K,JX̂K,JŶ K,J jK = FABB.ObliviousShuffle(JQK,JXK,JY K,DistributeShuffle= True) (c.f. Section 5).

(a) The players locally create JDIiK= J jn+iK for all i ∈ [numDummies]. If DIi = k, that implies Xk = n+ i and Yk =⊥.
That is, the kth element of (X̂ ,Ŷ) is the ith dummy. We use DI in step 4 of Query to return a dummy if needed.

5. Revealing Qi to P1 so that it can build a CHT∪Stash containing Xi using fast, local random accesses without learning
Xi, the players call Q̂i = FABB.RevealTo(P1,JQ̂iK) for i ∈ {1, . . . ,n+numDummies}

6. P1 locally constructs the Cuckoo hash table and list of stashed indices CHT∪Stash =
BuildCHTwS((Q̂i||i)i∈[n],stashSize). CHTstores Q̂i||i for n − stashSize such different i’s where || represents
bit-wise appending.

(a) P1 secret shares CHT between P2 and P3, running [CHT](2,3) = FABB.InputTo2Sharing(CHT,P2,P3). P2,P3 will
use CHT to satisfy queries.

(b) P1 sends Stash, a cleartext list of stashSize-many indexes, s.t. i ∈ Stash indicates that (JX̂iK,JŶiK) is stashed. If
i ∈ Stash then Xi ̸=⊥. Output X stash = {JX̂iK}i∈Stash and Y stash = {JŶiK}i∈Stash. These will be reinserted into the
cache when ΠShufTable.Build is called as part ΠDORAM (Figure 4).

7. The players shuffle the data under under a permutation, ˆ̂π, only known to P2 and P3, executing J ˆ̂XKJ ˆ̂Y K =
FABB.ObliviousShuffle((JXK,JŶ K),RevealTo = {2,3}). This “rebalances the information asymmetry,” allowing P2,P3
to guide P1 to respond to queries (see step 5 of Query) s.t. P1 cannot use his privileged information from ΠShufTable.Build,
not learning anything about the query.

ΠShufTable.Query: The players hold JQqueryK = FABB.PRFEval(JXtK,JkK) (Section 5.3). Each step corresponds to a single
round of communication. We pack parallelizable/silent instructions into the same step.

1. First, the players compute JrK = FABB.RandomElement(κ) (silent generation of random κ-bit secret share) and then
compute JqK = JQqueryK+ JuseDummyK · JrK (one MPC multiplication). useDummy is an artifact of the hierarchical
solution that indicates if Xt was already found in the previous level.

2. The players reveal enable P2,P3 to query [CHT](2,3) by revealing q to them, evaluating, q = FABB.RevealTo(JqK,P2,P3).

3. P2,P3 input [CHT[h1(q)]](2,3), [CHT[h2(q)]](2,3) their secret-shares of locations in CHT where q might be stored, calling
Jq′b || i′bK = F2Share.Reshare2to3WithoutCheck(JT [hb(Q)]K) for b = 1,2.

4. The players evaluate QueryCircuit using (3,1) garbled circuits (see [MR18]), evaluating l =
FABB.EvalCircuit(3,1)GC(QueryCircuit, Inputs = Jq′1K,Ji′1K,Jq′2K,Ji′2K,JqK,JDItK), revealing l only to P2,P3.
QueryCircuit returns i′1 if q′1 = q, returns i2 if Q′2 = q, and returns DIt otherwise.

5. P2,P3 send j = ˆ̂π(l) to P1. The parties set JYout putK = J ˆ̂YjK and append j to list queriedDblhatIdxs

ΠShufTable.Extract: Output (J ˆ̂XiK,J ˆ̂YiK) for i ∈ ([n+numDummies]−queriedDblhatIdxs)

Figure 2: ΠShufTable.Build and ΠShufTable.Query.

5.3 Parallelizing sequential SISO-PRF evalua-
tions

In the hierarchical ORAM construction, each query requires
searching every level in the hierarchy, and the OHTable query
at a given level requires evaluating a SISO-PRF.

In previous constructions (e.g. [LO13,FNO22]) these SISO-
PRF were evaluated sequentially, because when performing
the OHTable query for an index, x, at level i, the SISO-PRF
input will be JxK or a dummy element depending on whether
x was found in a smaller level of the hierarchy.

Since there are only two possible SISO-PRF inputs at each
level, rather than evaluating the PRF sequentially, the players
could evaluate both the “dummy query”

JaiK = FABB.PRFEval(JN + tiK,JkK)

and the “real query”

JbiK = FABB.PRFEval(JXqueryK,JkK)

for all i ∈ {1, . . . ,numLevels} in parallel before querying L1,
then multiplex the result using MPC (which costs only a
single round) before evaluating Li.Query.

This trick will reduce the round complexity but requires
doubling the number of SISO-PRF calls per query. Since
round complexity is often the bottleneck, this improves prac-
tical performance.

In our protocol, however, we can leverage the design of
ShufTable to parallelize the SISO-PRF calls without increas-
ing communication.

The crucial observation is that we have designed ShufTable
to require only JbiK, regardless of found. That is, since pre-
vious OHTables stored and retrieved their dummy elements
from some data structure, obtaining the index of each dummy
from ai was needed. We observe that it is not necessary: us-
ing the (3,1) garbled circuits of [MR18] we “just-in-time”
detect if qi is stored in the table and output a dummy index
if necessary (ΠShufTable.Query, step 4). Thus, if foundi−1, for
ShufTable it is sufficient to set qi to be some uniformly ran-
dom κ-bit value r (ΠShufTable.Query, step 1), which, except
with negligible probability, will not be stored in the table and
will yield the desired dummy-output. This “just-in-time” trick
is largely enabled by the Persistent shuffle trick we present in
Section 5.1.

Thus to parallelize the SISO-PRF, we evaluate JbiK =
FABB.PRFEval(JXqueryK,JkK) for all i ∈ {1, . . . ,numLevels}
in parallel before querying L1. Hence we can parallelize the
SISO-PRF evaluations across the table without increasing the
total number of SISO-PRF calls. This can be seen in Step 1.b
of ΠDORAM.ReadAndWrite, Figure 4.

This optimization reduces numRoundsDORAM by
(numLevels− 1) ·numRoundsPRFEval. In our implementa-
tion numLevels ≈ 5 and numRoundsPRFEval = 9, so this
saves us ≈ 45 rounds per DORAM query.

6 Reducing the depth of the hierarchy

In most hierarchical ORAM solutions, each level is twice
as large as the level above it, i.e., |Li+1| = 2 · |Li|. Since
we must have |LnumLevels| = O(N) and generally |L0| is
a small constant, this means that numLevels = O(logN).
In our protocol, we introduce a tuneable “base amplifi-
cation factor” denoted baseAmpFactor, and set |Li+1| ≈
baseAmpFactor · |Li|. This change reduces numLevels by a
factor of log2(baseAmpFactor) (but increases communica-
tion by a factor of baseAmpFactor/ log(baseAmpFactor)).
In our testing, we find that increasing baseAmpFactor dra-
matically improves practical performance because latency
is significantly more time-expensive than bandwidth (Sec-
tion 9). For instance, for GigaDORAM we found that in-
creasing baseAmpFactor with N to maintain that |L0| ≈
28 and numLevels ≈ 4 yielded the best performance. For
N = 230, this meant setting baseAmpFactor = 27, which is
much larger than all previous protocols, which implicitly set
baseAmpFactor = 2.

In most hierarchical ORAM schemes (where
baseAmpFactor = 2), when levels L0, . . . ,Li are full,
they are reshuffled and rebuilt into Li+1 Since

i

∑
j=0
|L j|=

i

∑
j=0

2 j|L0|= (2i+1−1)|L0|

this rebuild schedule works nicely when baseAmpFactor= 2.
In our generalization, we also rebuild levels when they are

full, but for baseAmpFactor > 2 we have that

baseAmpFactori+1 · |L0| ≫
i

∑
j=0

baseAmpFactor j|L0|

thus, we must slightly adjust our rebuild schedule. In particu-
lar, we must accommodate for “partial rebuilds.” We formal-
ize this procedure in protocol ΠDORAM.Rebuild presented in
Section 8, Figure 4.

Since rebuilding level i + 1 costs
O
(
κ · |L0| ·baseAmpFactori+1) communication and

computation, the total amortized (re)build cost of the
DORAM is at most

log(N)
log(baseAmpFactor)

∑
i=1

O
(
(κ+D) · |L0| ·baseAmpFactori+1)
|L0| ·baseAmpFactori

= O
(
(κ+D) ·baseAmpFactor · log(N)

log(baseAmpFactor)

)
Since the original amortized (re)build cost of all O(logN) lev-
els of the DORAM is O((κ+D) logN), the cost of decreasing
numLevels by a factor of log2(baseAmpFactor) is a factor of
O(baseAmpFactor)/ log(baseAmpFactor)) increase in com-
munication and computation.

7 SpeedCache: Larger, optimized cache

Most hierarchical (D)ORAMs use a constant-sized “cache,”
i.e., |L0| = O(1). Since each ORAM query performs a lin-
ear scan over the cache (implying a linear communication,
computation, and number of rounds), a large cache can signifi-
cantly hurt both asymptotic and practical performance. In our
protocol, we use the Alibi reinsertion technique to “cache-the-
stash” from Cuckoo hash tables at each level of the ORAM
hierarchy. This means that we must have a moderately large
cache size, otherwise reinserting the stashes would fill the
stash and trigger an infinite chain of table rebuilds.

Thus we increase the cache size to |L0| = Ω(stashSize).
This has the additional advantage of eliminating “small” levels
from the ORAM hierarchy since |Li|> |L0| for every level in
the hierarchy.9

In order to facilitate our new, larger cache without hurting
round complexity, we create, SpeedCache, that can be queried
using O((D+ logN) · |L0|) communication and only requires
⌈log logN⌉+1 rounds of communication (that is, independent
of the number of elements in the cache – only dependent on
the size of the address space). We implement our SpeedCache
protocol in the 3-party MPC framework of [AFL+16]. We
present the protocol, ΠSpeedCache, in Figure 3.

Since the SpeedCache protocol just uses MPC to compute
secret-shared values, the security of the SpeedCache protocol
follows immediately from the security of the underlying MPC
protocol.

Experimentally we find that it is optimal to maintain
|L0| ≈ 210 a constant, rather than scaling |L0| with N. Note
that 210 > log(N) for any conceivable value of N. Concretely,
setting |L0| ≈ 29 as we do in practice allows us to reduce
numLevels by ≈ 8/ log2(baseAmpFactor). We found that
changing |L0| useful for adapting the performance of GigaDO-
RAM to different network settings. For instance when latency
is high, a larger |L0| yields better performance.

An alternative approach would be to implement the triv-
ial linear-scan cache (see Appendix B) via garbled circuits
in a constant number of rounds. When |L0| ≈ 210 we esti-
mate this would make L0.Query up to 100× slower than our
implementation of SpeedCache.

8 Full DORAM protocol ΠDORAM

We give the GigaDORAM protocol, ΠDORAM, in Figure 4.
Round-complexity: With our optimizations the final round

9Because cuckoo hash tables have higher build-failure probability when
the table size is small, many hierarchical (D)ORAMs had two types of tables,
one for the “small” levels and one for the “large” levels (e.g. [LO13,FNO22]).
Because our L0 is sufficiently large, we do not incur this complexity.

complexity of ΠDORAM.Query is

numRoundsDORAM=

numLevels ·numRoundsOHTable

+max(numRoundsCache,numRoundsPRFEval)+1
= numLevels ·5+max(log log(N)+2,9)+1

≈ 5 ·5+9+1 = 35 (when N = 231)

The term max(log log(N)+2,9) occurs because L0.Query
(log log(N)+ 2 rounds) and the SISO-PRF pre-evaluations
(9 rounds – see Section 5.3, Appendix C) can be evaluated
in parallel. Hence, compared to the over 2500-round-per-
query [FNO22] construction we draw inspiration from, Gi-
gaDORAM has a ≈ 70× reduction in round complexity. Our
overall communication and computation complexity is com-
parable to that of [LO13, FNO22] and previous hierarchical
DORAMs.

Lemma 8.1. Protocol ΠDORAM securely realizes the DORAM
functionality in the semi-honest (3,1)-setting.

Proof. Protocol ΠDORAM is a straightforward application of
the hierarchical solution to our building blocks, ΠShufTable
and ΠSpeedCache in the distributed setting. The security of the
hierarchical solution is standard (see e.g. [Ost92]).

The proof proceeds as follows. Since ShufTable will be
oblivious as long as no queries are repeated, we must show
that even if the client makes repeated queries into the DO-
RAM, no OHTable is ever queried twice between rebuilds.

To see this, suppose the user makes a series of queries,
x1, . . . ,xt and xi1 = xi2 with i1 < i2. Suppose xi1 was initially
at level ℓ. In this case, after query xi1 , the key-value pair
(xi1 ,yi1) will be inserted into the cache. As later queries come
in and the cache becomes full (xi1 ,yi+1) may get pushed to
lower levels of the hierarchy. After sufficiently many queries,
levels i = 1, . . . , ℓ−1 will be rebuilt into level ℓ. If query xi2
happens before level ℓ is rebuilt, xi2 will be found at a level
above level ℓ, and at level ℓ a (new) dummy element will be
queried. If query xi2 happens after level ℓ has been rebuilt,
then at this point xi1 has never been queried against this new
OHTable.

9 Evaluation

In this section, we evaluate the practical performance of Gi-
gaDORAM and compare its performance to previous DO-
RAM implementations. To make the comparisons fair, when-
ever possible we evaluated on the same hardware setup. To
make our results easily reproducible, we test on AWS, using
c5n.metal instances with 72vCPUs and 192GiB memory.

We measure only writes in our experiments because “reads”
vary across works (e.g. DuORAM separates “dependent” and
“independent” reads) and for all constructions, writes are at
least as expensive as reads. For each construction at each N

(⋆) symbolizes the invariant that when ΠSpeedCache.Query is called i ̸= j =⇒ xi ̸= x j ∨ xi = x j =⊥.
ΠSpeedCache.Init(): The players set the query counter t = 0. No communication.
ΠSpeedCache.Store(JxK,JyK): Let JxtK = JxK and JytK = JyK. No communication.
ΠSpeedCache.Query(JxK): (Jx1K,Jy1K), . . . ,(JxtK,JytK) are stored where xi is unique. Note that this invariant, (⋆), inductively
holds: On Init (⋆) trivially holds. On Store(x) at the end of ΠDORAM.ReadAndWrite, if x was stored at L0, it was zeroed-out
in Step 4 of ΠSpeedCache.Query (below) and thus (⋆) holds. On alibi-reinsertion from Li since Li.Build(JXK,JY K), (⋆) holds
because X is guaranteed to be a unique list and thus its reinserted subset is also unique.

1. Using MPC, the players compute equality-indicators JbiK for all i∈ [t] s.t bi = 1 iff x = xi. This takes ⌈log logN⌉ rounds
and t logN communication because each xi is logN bits.

2. Using MPC, the players zero out all the non-queried elements, computing the bit-vector product Jx′iK = Jx′iK · JbiK and
Jy′iK = JyiK · JbiK for all i ∈ [t]. This takes a single round and n(logN +D) communication.

3. The players output
⊕n

i=1Jy′iK which is JyiK if x = xi, else J⊥K This costs no communication or rounds.

4. Preparing for the next query, the players zero-out (put a dummy) at the location where xi was found (if it was found) by
setting JxiK := JxiK⊕ Jx′iK for all i ∈ [n].

ΠSpeedCache.Extract: Output (Jx1K,Jy1K), . . . ,(JxtK,JytK), set t = 0. No communication.

Figure 3: The SpeedCache protocol, ΠSpeedCache

we averaged performance across multiple writes (up to 100K
writes in faster networks). All experiments were on D = 64
bit payloads as in DuORAM’s testing.

To compare fairly with previous works, we re-benchmark
all previous DORAMs with existing implementations (with
the exception of proprietary [JZLR22]) on the same hard-
ware setup we used to test GigaDORAM. To the best of
our knowledge, this is the most comprehensive Distributed
ORAM benchmark to date.10 See Appendix E for details.

9.1 Low-latency tests
One of the primary applications of DORAM is in heavy-
compute large-scale MPC computations (where random ac-
cess could outperform circuit-based computations). Thus we
focus on low-latency network environments where large-scale
MPC becomes practical.11

With this motivation, we begin by benchmarking GigaDO-
RAM in a realistic low-latency regime. Specifically, we de-
ploy to three cluster-placed AWS c5n.metal instances.12 In

10We do not benchmark [Lau14], because it is based on the proprietary
Sharemind software, and is focused on batch queries. As noted in that work, in
the single-query setting those techniques are not expected to give significant
improvements over straightforward “ORAM in MPC” schemes.

11Although MPC is possible under poor network conditions [WRK17b], it
is only possible when the circuits are fairly simple and thus would not benefit
significantly from random access. To put this in perspective, [WRK17b]
benchmark computing the AES circuit under MPC. In GigaDORAM, we
compute AES (or LowMC) under a circuit-based MPC multiple times for
each query. Thus no DORAM that makes use of a SISO-PRF could not
possibly improve the performance of simple computations like AES.

12For some comparisons (e.g. [VHG22, JW18]) we used existing Docker

this setup, In cluster placement at region us-west-2. Via
ping -c 20 we measure latency of min/avg/max/mdev =
0.229/0.236/0.244/0.003 ms.13

Figure 5 shows that in this low-latency environment Gi-
gaDORAM outperforms all other DORAMs for 212 ≤ N ≤
231. GigaDORAM perform 700−900 queries/sec for all mea-
sured N, with oscillations that depend on the size of the hier-
archical cache L0.14

9.2 Testing in restricted networks

Previous DORAM papers benchmarked [Ds17, VHG22,
JZLR22] under artificial restrictions to the network. For ex-
ample, [VHG22] benchmarked restricted their bandwidth
to 100Mb/s with a latency of 30ms. These network condi-
tions are lower than you would expect from geographically
separated machines. For example, we measured 20ms ping
from us-east-1 to us-west-2, servers in different AWS re-
gions should enjoy several Gbit connections [Bar18], and it
is possible to achieve 1ms ping times across different cloud
providers15. Still, we compare the performance of GigaDO-

setups to simulate three parties on a single c5.metal machine in which case
we adjust the network via the tc command (see Section E).

13We observed latency fluctuating according to usage, although AWS does
not make such policies public.

14The “oscillations” seen in our performance are due to the fact log2 |L0|=
N−baseAmpFactor · (numLevels−1) and the fact that baseAmpFactor
is a power of 2, and thus for certain values of N we cannot reasonably set
|L0| as small as we’d like.

15https://medium.com/@sachinkagarwal/public-cloud-inter-r
egion-network-latency-as-heat-maps-134e22a5ff19

https://medium.com/@sachinkagarwal/public-cloud-inter-region-network-latency-as-heat-maps-134e22a5ff19
https://medium.com/@sachinkagarwal/public-cloud-inter-region-network-latency-as-heat-maps-134e22a5ff19

ΠDORAM.Init(JY K):

1. The players input the address of each payload JXiK = FReplicatedMPC.InputConstant(i) for i = 1 to N. The players build
the top level LnumLevels = FOHTable.Build(JXK,JY K,N) and initialize the cache L0.Init(). The players set the query
counter t = 0.

ΠDORAM.ReadAndWrite(JXqueryK,JYnewK, JisWriteK): |L0| is the size of the cache and is tracked externally.

1. The players increment the query counter, t, initialize numLevels-bit Alibi data accumulator JeaccumK = J0numLevelsK,
D-bit payload accumulator JYaccumK = J⊥K, and one-bit flag JfoundK = 0. Then, the players do the following in parallel
(This step takes max{numRoundsCache,numRoundsPRFEval} rounds):

(a) query the Cache, JYaccumK,JfoundK = L0.Query(JXqueryK). The players extract JeaccumK from JYaccumK (by silently
copying the last numLevels-bits).

(b) For each level ℓ ∈ numLevels evaluate JaℓK = FABB.PRFEval(JkℓK,JXqueryK)

2. For each ℓ from 1 to numLevels, if there is an OHTable at level Lℓ:

(a) Set the bit JuseDummyK = JeK[ℓ]⊕ JfoundK, i.e., locally XOR the ℓth bit of the share of e with the share of found.
Query Li, calling JYℓK,JfoundℓK = Lℓ.Query(JaℓK,JuseDummyK). This step takes numRoundsOHTable rounds.

3. Set JYnewK←− FReplicatedMPC.IfThenElse(JisWriteK,JYnewK,JYaccumK). Set the Alibi mask of JYnewK, JYnew.eK to 0. Call
FLinear.Store(JXK,JYnewK). This takes 1 round.

(a) Silently extract the numLevels-bit value JeℓK from JYℓK and update JeaccumK←− Jeaccum⊕ eℓK. Update the value of
JfoundK to found∨ foundℓ Additionally, In parallel with the first round of the next iteration of the loop, update
JYaccumK←− FReplicatedMPC.IfThenElse(JfoundℓK,JYℓK,JYaccumK). This step takes one round.

4. If t = |L0|, run the subroutine ΠDORAM.Rebuild().

ΠDORAM.Rebuild(): We define a level Li for 1 ≤ i ≤ numLevels in the DORAM to be full if it contains a ShufTable
with (baseAmpFactor−1) ·baseAmpFactori · |L0| elements. L0 is full if it has been written to |L0| times since it was last
initialized. Suppose that ℓ is the largest number such that levels L0, . . . Lℓ are full while Lℓ+1 is not, instead containing
A ·baseAmpFactorℓ|L0| elements for some A ∈ {0, . . . ,baseAmpFactor−2} If ℓ= numLevels, then necessarily A = 1.

1. By concatenating the output of L0.Extract() and Li.Extract() for i ∈ [ℓ+1], the players prepare lists JXK, JY K of length
(A+1) ·baseAmpFactorℓ · |L0| containing all the elements to be (potentially) placed in Lℓ+1.

2. If ℓ < numLevels:

In parallel, relabel the dummies, calling JX∗j K←− FReplicatedMPC.ReplaceIfNull(JX jK,JN + jK) and JY ∗j K = JYjK (syntac-
tically convenient) for j ∈ [(A+ 1) · baseAmpFactorℓ · |L0|] (this is so P1 does not learn how many dummies were
queried at the previous level).

3. If ℓ= numLevels: The players “cleanse out the dummies” by shuffling, JX̂K,JŶ K = FABB.ObliviousShuffle(JXK,JY K),
and then revealing which element is dummy by calling FABB.Reveal(FABB.Equals(JX̂ jK,⊥)) for all j.

The above will reveal exactly N 0’s and N 1’s (because we started with N “real” elements which we have maintained
and we made N queries since the last build LnumLevels. Since stale elements are relabeled (step 2.A) the invariant holds).
Compact the JX̂K and JŶ K shares corresponding to 0’s into arrays JX∗K and JY ∗K.

4. The players reinitialize the cache by calling L0 = FLinear.Init(|L0|) and build Lℓ+1 by calling JX stashK,JY stashK =
Lℓ+1.Build(JX∗K,JY ∗K)

5. For i from 1 to stashSize, update the Alibi bit JeK[ℓ+ 1] = of JY stash
i K to 1, then call FLinear.Store(JX stash

i K,JY stash
i K).

The players reset t = 0.

Figure 4: The complete DORAM protocol, ΠDORAM

15 20 25 30

100

200

300

400

500

600

700

800

900

Log number of elements (log2 N)

Q
ue

ri
es

/s
ec

on
d

GigaDORAM
DuORAM [VHG22]

PFEDORAM [JZLR22]
Circuit ORAM [WCS15]

Square Root ORAM [ZWR+16]
FLORAM-CPRG [Ds17]

FLORAM [Ds17]
3PC-ORAM [JW18]

Figure 5: Number of queries/second vs. log number of ele-
ments (N). Each query is a write of random data to a random
index. Preprocessing costs are accounted for. The number of
queries per second is an estimate of (at least) hundreds of
queries. All constructions were run in AWS cluster placement
network environment.

RAM to other DORAMs under worse network conditions
(which may be unavoidable in some applications).

Performance without cluster-placement. Figure 5 shows
the performance of GigaDORAM when the machines are
cluster-placed. When the machines were not cluster-placed
(but still in the same AWS region) the number of queries / sec
dropped by about 33% (Table 1).

Performance and breakeven points in varying laten-
cy/bandwidth. Using the tc (as in [VHG22, Ds17]) we vary
the latency and bandwidth to search for the breakeven point be-
tween GigaDORAM and DuORAM (which is the best previ-
ous DORAM in high-latency low-bandwidth environments).

Figure 6.a shows that the performance of GigaDORAM
degrades dramatically with latency while the performance of
DuORAM degrades dramatically with log(N). In particular,
we see that at log(N) = 20, for latency ⪅ 8ms GigaDORAM
outperforms DuORAM while for ⪆ 8ms latency DuORAM
edges out GigaDORAM. At log(N) = 25 GigaDORAM out-
performs DuORAM for all sub-40ms latency.

log(N) Standard Q/s Cluster Q/s Slowdown
20 543 812 33%
23 573 910 37%
26 597 877 32%
29 589 891 34%

Table 1: Benchmarking GigaDORAM using 3 different
c5n.metal machines standard placement vs cluster placement
in us-west-2. We benchmarked over 100,000 queries, using
lowMC as our SISO-PRF.

log(N) AES Q/s LowMC Q/s Slowdown
20 393 812 51%
23 405 910 55%
26 401 877 54%
29 417 891 53%

Table 2: Benchmarking GigaDORAM using AES to imple-
ment a SISO-PRF instead of LowMC. We run the benchmark
in the same setting as Figure 5.

Figure 6.b shows that the performance of neither con-
struction degrades substantially with bandwidth. Our exper-
iments show DuORAM outperforming GigaDORAM for
log(N) = 20 and GigaDORAM outperforming DuORAM for
log(N) = 25. Again, we see the performance of DuORAM
degrading significantly with log(N) while GigaDORAM’s
performance hardly changes.

9.3 The cost of GigaDORAM
Running large computations in AWS can be quite expensive,
but due to its high query/sec, GigaDORAM is cost-efficient.
Including both network and compute costs, GigaDORAM
can handle about over 120,000 queries per dollar with current
AWS pricing, which is 10× DuORAM [VHG22], which is to
the best of our knowledge, the previously most cost-efficient
DORAM. See Appendix F for the calculations.

9.4 Replacing LowMC with AES
For reference, we also evaluated GigaDORAM using AES
instead of LowMC as our SISO-PRF. The AES circuit we
use has about 10× the ANDs and 10× the AND-depth as the
LowMC circuit we use, and is thus less efficient to evaluate
under MPC. Table 2 shows approximately a 2× slowdown to
GigaDORAM when using AES instead of LowMC.

10 Conclusion

In this work we introduce GigaDORAM, the most efficient
and scalable DORAM construction to date. At N = 231, our
DORAM can perform over 700 queries per second, making

0 10 20 30 40

5

10

15

20

25

30

35

40

Latency (ms)

Q
ue

ri
es

/s
ec

on
d

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Bandwidth (Gbit/sec)

Q
ue

ri
es

/s
ec

on
d

GigaDORAM (log(N) = 20)
DuORAM (log(N) = 20)

GigaDORAM (log(N) = 25)
DuORAM (log(N) = 25)

(b)

Figure 6: (a) Number of queries/second vs. latency in millisec-
onds for fixed 1Gbit network (b) Number of queries/second
vs. Bandwidth in Gbit for fixed 8ms latency. Executed on a
single c5.metal via multiple processes restricted in communi-
cation via the tc. Preprocessing costs are accounted for. The
number of queries per second is an estimate of 5000 queries
for GigaDORAM and 128 for DuORAM.

GigaDORAM orders of magnitude faster than prior DORAM
constructions in low-latency environments. We give a custom
C++, open-source implementation of GigaDORAM. We hope
GigaDORAM will enable the first somewhat practical RAM-
MPC applications and open a new realm of possibilities for
privacy-preserving cloud data stores.

11 Acknowledgments

We thank AWS solutions engineers, the LowMC [ARS+15],
the PFEDORAM [JZLR22], the DuORAM [VHG22], and the
replicated-MPC [AFL+16] authors for their help with bench-
marking. We thank Michael Brown, Eric Chen, Matthew Day,
Daniel Noble, and Sam Kumar for helpful discussions. We
thank the USENIX reviewers for extensive feedback which

improved the quality of the exposition.
Supported in part by DARPA under Cooperative Agree-

ment HR0011-20-2-0025, the Algorand Centers of Excellence
programme managed by Algorand Foundation, NSF grants
CNS-2246355, CCF-2220450 and CNS-2001096, US-Israel
BSF grant 2015782, Amazon Faculty Award, Cisco Research
Award and Sunday Group. Any views, opinions, findings,
conclusions, or recommendations contained herein are those
of the author(s) and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of DARPA, the Department of Defense, the Algorand Foun-
dation, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright annotation
therein.

References
[ACF+12] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sar-

rar, Steve Uhlig, and Walter Willinger. Anatomy of a large
European IXP. In SIGCOMM, 2012.

[AFL+16] Toshinori Araki, Jun Furakawa, Yehuda Lindell, Ariel Nof, and
Kazuma Ohara. High-throughput semi-honest secure three-
party computation with an honest majority. In CCS, 2016.

[AKL+20] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak,
Enoch Peserico, and Elaine Shi. OptORAMa: Optimal oblivi-
ous RAM. In EUROCRYPT, 2020.

[AKLS21] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, and Elaine
Shi. Oblivious RAM with worst-case logarithmic overhead. In
CRYPTO, pages 610–640. Springer, 2021.

[ARS+15] Martin R Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE.
In EUROCRYPT, pages 430–454. Springer, 2015.

[Bar18] Jeff Bar. The floodgates are open – increased network band-
width for EC2 instances. https://aws.amazon.com/blogs
/aws/the-floodgates-are-open-increased-network
-bandwidth-for-ec2-instances/, 2018.

[BBVY21] Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and
Hailun Yan. New attacks on LowMC instances with a single
plaintext/ciphertext pair. 2021.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing. In EUROCRYPT, 2015.

[BKK+16] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane,
Ville Sokk, and Riivo Talviste. Students and taxes: a privacy-
preserving study using secure computation. Proc. Priv. En-
hancing Technol., 2016(3):117–135, 2016.

[BKKO20] Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostro-
vsky. Efficient 3-party distributed ORAM. In SCN, 2020.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round
complexity of secure protocols. In STOC, pages 503–513,
1990.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty
Unconditionally Secure Protocols. In STOC, 1988.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Sla-
manig, and Greg Zaverucha. Post-quantum zero-knowledge
and signatures from symmetric-key primitives. In CCS, pages
1825–1842, 2017.

https://aws.amazon.com/blogs/aws/the-floodgates-are-open-increased-network-bandwidth-for-ec2-instances/
https://aws.amazon.com/blogs/aws/the-floodgates-are-open-increased-network-bandwidth-for-ec2-instances/
https://aws.amazon.com/blogs/aws/the-floodgates-are-open-increased-network-bandwidth-for-ec2-instances/

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conver-
sion, pseudorandom secret-sharing and applications to secure
computation. In TCC, 2005.

[CGKO06] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostro-
vsky. Searchable symmetric encryption: Improved definitions
and efficient constructions. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS
’06, page 79–88, New York, NY, USA, 2006. Association for
Computing Machinery.

[DLMW15] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Opti-
mized interpolation attacks on lowmc. In ASIACRYPT, pages
535–560. Springer, 2015.

[Ds17] Jack Doerner and abhi shelat. Scaling ORAM for secure com-
putation. In CCS, 2017.

[FNO21] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky.
Alibi: A flaw in cuckoo-hashing based hierarchical ORAM
schemes and a solution. In EUROCRYPT, pages 338–369.
Springer, 2021.

[FNO22] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky.
3-party distributed ORAM from oblivious set membership. In
SCN, pages 437–461. Springer, 2022.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and
their applications. In EUROCRYPT, 2014.

[GKK+12] S Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando
Krell, Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis. Se-
cure two-party computation in sublinear (amortized) time. In
CCS, 2012.

[GMOT12] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko,
and Roberto Tamassia. Privacy-preserving group data access
via stateless oblivious RAM simulation. In SODA, 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game. In STOC, 1987.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious RAMs. JACM, 43(3), 1996.

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter
Scholl, and Nigel P Smart. MPC-friendly symmetric key prim-
itives. In CCS, pages 430–443, 2016.

[JW18] Stanislaw Jarecki and Boyang Wei. 3PC ORAM with low
latency, low bandwidth, and fast batch retrieval. In ACNS,
2018.

[JZLR22] Keyu Ji, Bingsheng Zhang, Tianpei Lu, and Kui Ren. Multi-
party private function evaluation for RAM. Cryptology ePrint
Archive, Paper 2022/939, 2022. https://eprint.iacr.or
g/2022/939.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)
security of hash-based oblivious RAM and a new balancing
scheme. In SODA, 2012.

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More
robust hashing: Cuckoo hashing with a stash. SIAM Journal
on Computing, 2009.

[Lau14] Peeter Laud. Privacy-preserving minimum spanning trees
through oblivious parallel RAM for secure multiparty com-
putation. IACR ePrint Archive 2014/630, 2014.

[LIM21] Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis
of full LowMC and LowMC-M with algebraic techniques. In
CRYPTO, pages 368–401, 2021.

[LO13] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for
secure two-party computation. In TCC, 2013.

[LWZ11] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-
efficient oblivious database manipulation. In ISC, 2011.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol
framework for machine learning. In CCS, pages 35–52, 2018.

[Nav15] Muhammad Naveed. The fallacy of composition of oblivious
RAM and searchable encryption. IACR ePrint 2015/688, 2015.

[NIS21] NIST. Post-quantum cryptography PQC: Round 3 submissions.
https://csrc.nist.gov/Projects/post-quantum-cry
ptography/post-quantum-cryptography-standardiza
tion/round-3-submissions, 2021.

[Nob21] Daniel Noble. An intimate analysis of cuckoo hashing with a
stash. IACR ePrint 2021/447, 2021.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage.
In STOC, volume 97, 1997.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs.
In STOC, 1990.

[Ost92] Rafail Ostrovsky. Software Protection and Simulation On
Oblivious RAMs. PhD thesis, Massachusetts Institute of Tech-
nology, 1992.

[PPRY18] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin
Yeo. PanORAMa: Oblivious RAM with logarithmic overhead.
In FOCS, 2018.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
In ESA, 2001.

[Rin] Peter Rindal. The ABY3 Framework for Machine Learning and
Database Operations. https://github.com/ladnir/aby3.

[SCSL11] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li.
Oblivious RAM with O((logN)3) worst-case cost. In ASI-
ACRYPT, 2011.

[Smi21] Philip Smith. Internet exchange point design. https://ns
rc.org/workshops/2021/marwan-cnrst-ixp/network
ing/peering-ixp/en/presentations/IXP-Design.pdf,
2021.

[VHG22] Adithya Vadapalli, Ryan Henry, and Ian Goldberg. DuORAM:
A bandwidth-efficient distributed ORAM for 2- and 3-party
computation. IACR ePrint 2022/1747, 2022.

[WCS15] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On
tightness of the Goldreich-Ostrovsky lower bound. In CCS,
2015.

[WHC+14] Xiao Shaun Wang, Yan Huang, T-H Hubert Chan, abhi she-
lat, and Elaine Shi. SCORAM: oblivious RAM for secure
computation. In CCS, 2014.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-
scale secure multiparty computation. In CCS, pages 39–56,
2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-
scale secure multiparty computation. In CCS, pages 39–56,
2017.

[Yao82] Andrew Yao. Protocols for secure computations (extended
abstract). In FOCS, 1982.

[Yao86] Andrew Yao. How to generate and exchange secrets. In FOCS,
1986.

[ZE15] Samee Zahur and David Evans. Obliv-C: A language for ex-
tensible data-oblivious computation. IACR ePrint 2015/1153,
2015.

[ZWR+16] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón,
Jack Doerner, David Evans, and Jonathan Katz. Revisiting
square-root ORAM: efficient random access in multi-party
computation. In S & P, 2016.

A ABB Functionalities

The basic ABB operations we use are described in Figure 7.

https://eprint.iacr.org/2022/939
https://eprint.iacr.org/2022/939
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://github.com/ladnir/aby3
https://nsrc.org/workshops/2021/marwan-cnrst-ixp/networking/peering-ixp/en/presentations/IXP-Design.pdf
https://nsrc.org/workshops/2021/marwan-cnrst-ixp/networking/peering-ixp/en/presentations/IXP-Design.pdf
https://nsrc.org/workshops/2021/marwan-cnrst-ixp/networking/peering-ixp/en/presentations/IXP-Design.pdf

• [x](i, j) = FABB.InputTo2Sharing(x,Pi,Pj). A single player shares creates an additive sharing of a secret, x, among
participants i and j.

• [x](i, j) =FABB.ReshareReplicatedTo2Sharing(JxK,{Pi,Pj}). Convert a 3-party CNF sharing of a secret, x, to a two-party
DNF sharing of the same secret, x, held by participants i and j.

• [x](i
′, j′) = FABB.Reshare2To2Sharing([x](i, j),{Pi′ ,Pj′}). Convert a two-party DNF sharing of a secret, x, held by partic-

ipants i and j, to a two-party DNF sharing of the same secret, x, held by participants i′ and j′.

• JxK=FABB.Reshare2SharingToReplicated([x](i, j)). Convert a two-party DNF sharing of a secret, x, held by participants
i and j to a three-party CNF sharing of the same secret, x.

• JkK = FABB.RandomElement(κ). Generate a three-party CNF sharing of a uniformly random field element (whose
value is unknown to the participants).

• x = FABB.RevealTo(Pi,JxK). Reveal a secret-shared value, JxK, to participant Pi.

We also abstract away a few more sophisticated operations:

• JyK = FABB.PRFEval(JxK,JkK). Evaluate a SISO-PRF with secret-shared key, JkK, on secret-shared input, JxK, to obtain
a secret-shared output, JyK. In our instantation, we instantiate the FABB.PRFEval(·, ·) functionality by evaluating the
LowMC block cipher [ARS+15] under MPC. Specifically, in our custom implementation of a (3,1)-MPC protocol
(based on [AFL+16]).

• JQueryCircuit(x1, . . . ,xl)K = FABB.EvalCircuit(3,1)GC(QueryCircuit, Inputs = (Jx1K, . . . ,JxlK)). Evaluate a 3-party
garbled circuit on secret-shared inputs Jx1K, . . . ,JxlK, and returns a sharing of the output of the circuit computation. We
use a custom implementation of the 3-party Garbled Circuit protocol outlined in ABY3 [MR18].

• JY K = FABB.ObliviousShuffle(JXK). This functionality implements a linear-communication, three-party shuf-
fle of secret shared values [LWZ11]. So Y = π(X) for some random permutation, unknown to the par-
ticipants. We also use a modified protocol to output a sharing of the permutation as well. JY K,JLK =
FABB.ObliviousShuffle(JXK,DistributeShuffle = True). In this setting, Y = π(X) as before, and L = π−1(1,2, . . . ,n).
We describe how to implement this novel “Persistent shuffle” in Section 5.1.

Figure 7: The ABB functionalites used in our DORAM protocol.

log(N) # of bytes sent
20 5.86 ·109

25 5.64 ·109

30 6.73 ·109

Figure 8: The number of bytes sent by a single GigaDORAM machine for
100,000 queries, using LowMC as the PRF at varying values of log(N) at the
same values of baseAmpFactor, numLevels, in which our main benchmark

was conducted (see Figure 5).

B The naïve cache protocol

The naïve cache protocol works as follows
r←⊥
for i = 1, . . . , t do

if x = xi then
r← yi

end if
end for
Return: r

This protocol has multiplicative depth, t, thus implementing
this under the MPC of [AFL+16] leads to a protocol with
numRoundsCache = |L0|. It is possible to implement this
with a garbled-circuit-based approach, (e.g. 3-party garbled
circuits [MR18] or BMR [BMR90]). This results in a constant-
round MPC protocol, but the communication complexity is
large – too inefficient for our application.

ΠSpeedCache, (described in Figure 3), parallelizes the equal-
ity tests of the naïve protocol leading to a low-depth circuit,
that we implement using the 3-party MPC of [AFL+16].

C LowMC

In this section, we discuss LowMC, an MPC-friendly block-
cipher we use to instantiate FABB.PRFEval.
LowMC. LowMC (Low Multiplicative Complex-
ity) [ARS+15] is a family of block cipher that is built
with MPC, ZK, and FHE in mind. LowMC has a variety of
instantiations which trades low number of AND gates and
a low circuit AND-depth.16 The instantiation of LowMC
we use has 46837 total gates, out of which 1134 are ANDs,
stacked into 9-AND-depth circuit. By contrast, AES has a
total of 36663 gates, out of which 6400 are ANDs, stacked
into a 60-AND-depth-circuit.17 Since the AND-depth of the
circuit is equal to the number of rounds to evaluate the circuit
under MPC, using LowMC instead of AES saves 51 rounds
of communication for each query.

We provide the first circuit files for LowMC and encode
them in the popular Bristol fashion.18 The traditional Bristol
fashion requires that each virtual “wire” to be only assigned
once, requiring more memory for the computation than neces-
sary. Threading wires through the circuit (i.e., reusing mem-
ory) we are able speed up the computation of LowMC under
the [AFL+16] MPC by a factor of 2.

Although LowMC has less analysis than AES, it’s se-
curity has been been adapted into the Picnic signature
scheme [CDG+17], a 3rd round candidate in the NIST post-
quantum digital signature contest [NIS21]. Additionally, there
have been several thorough cryptanalysis attempts [LIM21,

16LowMC provides a script to calculate this tradeoff https://github.c
om/LowMC/lowmc/blob/master/determine_rounds.py.

17We refer to Bristol Fashion AES circuit file from https://homes.es
at.kuleuven.be/~nsmart/MPC/MAND/aes_128.txt

18https://homes.esat.kuleuven.be/~nsmart/MPC/

BBVY21, DLMW15] motivated by an ongoing Microsoft-
funded challenge, none discovering an attack which made the
community doubt the security LowMC.19

D Alibi reinsertion

We ensure that ΠShufTable.Build has negligible failure prob-
ability (in N) by outputting a small stash, Stash, which we
reinsert into the cache. Naïvely, for all (JXiK,JYiK) ∈ Stash
we could call L0.Append(JXiK,JYiK), “reinserting” (JXiK,JYiK)
which could not fit in Li’s CHT into the cache. Yet, as proved
in [FNO21], the naïve reinsertion technique above compro-
mises the obliviousness of (D)ORAM. Intuitively, if we rein-
sert (JXiK,JYiK) to L0 from L j and then query JXiK, in the
aggregate, an eavesdropper could tell that we should have
queried JXiK to L j, but instead queried a dummy because we
found (JXiK,JYiK) at some previous level (it was reinserted).
Roughly speaking, our goal (∗) is to append some data to
(JXiK,JYiK) such that when (JXiK,JYiK) is reinserted from L j
and found at Lk for k < j, we will know to continue query-
ing Lk+1, . . . ,L j as if we did not find (JXiK,JYiK), and query
L j+1, . . . ,LnumLevels as if we found (JXiK,JYiK) at L j. To do
this, we store JeXiK ∈ {0,1}numLevels as the last numLevels
bits of Yi (it is assumed that D > numLevels) where eXi [j] = 1
iff (JXiK,JYiK) was reinserted from L j. We set eXi = 0numLevels

every time we query (JXiK,JYiK). When querying for JxK and
finding it at Lk where ex[j] = 1 from L j, under MPC we “de-
cide” to query according to (∗). The full details of how the
Alibi bits are used can be found Figure 4.

E Benchmarking previous DORAMs

We benchmark the (3,1) semi-honest (most efficient) DuO-
RAM variant [VHG22] via their convenient Docker setup on
a single c5n.metal machine. We use the set-networking.sh
script they provide to set .229ms latency and 25Gbit band-
width simulated network between Docker containers. We do
not restrict the number of cores their process can use, and
DuORAM used all 96 vCPUs during preprocessing.

We benchmark FLORAM, FLORAM-CPRG, Circuit
ORAM, and Square Root ORAM [Ds17, WCS15, ZWR+16]
via the obliv-c [ZE15] based setup given by [Ds17].20 We
benchmark the above 2-party constructions between two
cluster-placed c5n.metal machines. For backwards compati-
bility with obliv-c, we run tests on Ubuntu 18.04.6 LTS. We
do not restrict the network via the tc command as was done
in [Ds17].

Bingsheng Zhang kindly benchmarked the proprietary PFE-
DORAM [JZLR22] on a comparable network to ours. Zhang
executed the protocol via separate processes on the same In-
tel(R) Core i7 8700 CPU 3.2 GHz, 6 CPUs, 32 GB Memory,

19https://lowmcchallenge.github.io/
20See https://gitlab.com/neucrypt/floram/

https://github.com/LowMC/lowmc/blob/master/determine_rounds.py
https://github.com/LowMC/lowmc/blob/master/determine_rounds.py
https://homes.esat.kuleuven.be/~nsmart/MPC/MAND/aes_128.txt
https://homes.esat.kuleuven.be/~nsmart/MPC/MAND/aes_128.txt
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://lowmcchallenge.github.io/
https://gitlab.com/neucrypt/floram/

1TB SSD machine.Bandwidth between the processes was not
limited and latency was restricted to 0.05ms.

We benchmark 3PC-ORAM [JW18] via the dockerization
graciously provided by the DuORAM [VHG22] team21. Like
other constructions, we ran 3PC-ORAM with 0.229ms latency
and 25Gbit bandwidth.

F The cost of running GigaDORAM

The c5n.metal machines we rent cost $3.888 per hour, and
running DORAM requires 3 different machines. GigaDO-
RAM. Given that we get ≈ 800 queries per second, (Figure
5), we get 800 ·3600/(3.888 ·3) = 246914 queries per USD.

If we benchmark in the same region, all communication is
free. If we benchmark in different regions, according to AWS
the charge per Gigabyte in and out of AWS is $0.01.22 Accord-
ing to Table 8 it is reasonable to conservatively estimate that
GigaDORAMrequires 3 · 7 · 109/100,000 = 210,000 bytes
per query = 210,000/230 = 2 · 10−4 Gigabytes per query.
Multiplying by the dollar cost, we get that GigaDORAM
requires 2 ·10−4 · .02 = 4 ·10−6 USD per query.

Summing up communication and computation, we get that
we have 1/246914+ 4 · 10−6 = 8.05 · 10−6 which gives ap-
proximately 120,000 queries per dollar.

By comparison, DuORAM [VHG22] reports 8900 ·10−6

dollars for 128 queries (computation cost) giving 128/8900 ·
10−6 queries per dollar. For communication DuORAM gets
5 · 10−6 dollars per 128 queries, giving 128/5 · 10−6. This
gives 128/8905 ·106 = 14,374≈ 15,000 queries per dollar.

21https://git-crysp.uwaterloo.ca/iang/circuit-oram-docker
22https://aws.amazon.com/ec2/pricing/on-demand/

https://git-crysp.uwaterloo.ca/iang/circuit-oram-docker
https://aws.amazon.com/ec2/pricing/on-demand/

	Introduction
	Previous DORAMs
	Our Contributions
	Protocol contributions
	Code contributions

	Preliminaries
	Secure Multiparty Computation
	The Arithmetic Black-Box Model

	Construction Overview
	The hierarchical solution
	Reducing numRoundsDORAM

	ShufTable: reduce numRoundsOHTable
	Persistent shuffle Protocol
	ShufTable construction
	Parallelizing sequential SISO-PRF evaluations

	Reducing the depth of the hierarchy
	SpeedCache: Larger, optimized cache
	Full DORAM protocol DORAM
	Evaluation
	Low-latency tests
	Testing in restricted networks
	The cost of GigaDORAM
	Replacing LowMC with AES

	Conclusion
	Acknowledgments
	ABB Functionalities
	The naïve cache protocol
	LowMC
	Alibi reinsertion
	Benchmarking previous DORAMs
	The cost of running GigaDORAM

