
HELIOPOLIS: Verifiable Computation over Homomorphically
Encrypted Data from Interactive Oracle Proofs is Practical

Diego F. Aranha1, Anamaria Costache2, Antonio Guimarães3, and
Eduardo Soria-Vazquez4

1 Aarhus University, Denmark. dfaranha@cs.au.dk
2 NTNU, Norway. anamaria.costache@ntnu.no

3 IMDEA Software Institute, Spain. antonio.guimaraes@imdea.org
4 Technology Innovation Institute, UAE. eduardo.soria-vazquez@tii.ae

Abstract. Homomorphic encryption (HE) enables computation on encrypted data, which in turn
facilitates the outsourcing of computation on private data. However, HE offers no guarantee that the
returned result was honestly computed by the cloud. In order to have such guarantee, it is necessary
to add verifiable computation (VC) into the system.
The most efficient recent works in VC over HE focus on verifying operations on the ciphertext space of
the HE scheme, which usually lacks the algebraic structure that would make it compatible with existing
VC systems. For example, multiplication of ciphertexts in the current most efficient HE schemes requires
non-algebraic operations such as real division and rounding. Therefore, existing works for VC over HE
have to either give up on those efficient HE schemes, or incur a large overhead (an amount of constraints
proportional to the ciphertext ring’s size) in order to emulate these non-algebraic operations.
In this work, we move away from that paradigm by placing the verification checks in the plaintext
space of HE, all while the prover remains computing on ciphertexts. We achieve this by introducing a
general transformation for Interactive Oracle Proofs (IOPs) to work over HE, whose result we denote
as HE-IOPs. We apply this same transformation to the FRI [Ben-Sasson et al., ICALP 2018] IOP of
proximity and we show how to compile HE-Reed Solomon-encoded IOPs and HE-δ-correlated-IOPs
with HE-FRI into HE-IOPs. Furthermore, our construction is compatible with a prover that provides
input in zero-knowledge, and only relies on building blocks that are plausibly quantum-safe.
Aligning the security parameters of HE and FRI is a difficult task for which we introduce several
optimizations. We demonstrate their efficiency with a proof-of-concept implementation and show that
we can run FRI’s commit phase for 4096 encrypted Reed Solomon codewords with degree bound 211 in
just 5.4 seconds (using 32 threads) on a c6i.metal instance using less than 4GB of memory. Verification
takes just 12.3 milliseconds (single-threaded) for the same parameter set and can be reduced to just
5.6ms with parameters optimized for the verifier.

1 Introduction

There are many usability and economic benefits for citizens and companies to outsource data stor-
age/processing to remote servers, but cloud computing brings significant integrity and privacy
risks. Homomorphic Encryption (HE) has been referred to by many as the “holy grail” technol-
ogy to address the privacy risks of outsourced computing. Since the first scheme introduced by
Gentry in 2009 [Gen09b], numerous advances and improvements have followed [BGV12, Bra12,
FV12, CGGI20, CKKS17]. In particular, a privacy-preserving variant of the use-case of Machine
Learning as a Service (MLaaS) has been shown to be particularly suitable for HE by a recent line
of work [BMMP18, BCCW19, BGBE19].

However, HE by itself does not guarantee the integrity of the computing party. Dealing with
this issue falls within the scope of Verifiable Computation (VC), which describes a collection of
techniques ensuring that the output returned by the cloud servers is indeed the honest result of

applying the requested function to the designated data. On the other hand, VC on its own does not
protect the privacy of the outsourced yet sensitive data from the clients.

The cryptographic community realized that VC and HE are very complementary, since the lim-
itations of the one are perfectly covered by the features of the other. Combining the two techniques
is often referred to as “privacy-preserving verifiable computation" or “verifiable computation on en-
crypted data". The first solution was proposed by Gennaro, Gentry and Parno [GGP10] in 2010,
and employs a heavy combination of Yao’s garbled circuit for an one-time verifiable computation
together with HE to reuse the garbled circuit across many inputs.

The later work of [FGP14] is efficient, but very limited in expressiveness. The use of homo-
morphic MACs limits the application to depth-1 circuits and requires to keep a secret verification
key hidden from the prover, hence eliminating public verifiability. The work of [FNP20] improves
the expressiveness of [FGP14], by allowing to efficiently compute circuits of (arbitrary) constant
depth. Nevertheless, they only deal with a very narrow subset of inefficient HE schemes: a variant of
BV [BV14], where the integer ciphertext modulus q matches the (prime) order of the source groups
in the underlying pairing-based SNARK.

Both [GNS23] and [BCFK21] overcome the limitation in the selection of HE schemes in [FNP20]
by supporting an arbitrary rather than a prime ciphertext modulus q. Still, for both works, dealing
with the more complex HE operations such as modulo switching and key switching is very expensive.
This makes it unclear whether it would be more practical to support efficient but complex schemes
such as BGV and BFV, or BV with a potentially non-prime q.

The main problem for all those works is that they verify whether certain operations are done on
(simplified versions of) the ciphertext space. Furthermore, they need to emulate the arithmetic of HE
ciphertexts in one way or another, incurring large overheads. While the addition of ciphertexts can
be easily emulated (as addition of elements in the ciphertext space R2

q), the product of ciphertexts
is less algebraically structured and hard to emulate, since it mixes a number of computational steps
such as bit-wise operations, real division, rounding, the product of elements in Rq and changing q
during modulo switching operations.

As an example of how expensive these techniques were, consider trying to emulate the HE arith-
metic within Rq (as in [GNS23, FNP20]), which is arguably the closest algebraic structure. Every bit-
wise operation involved in the product of ciphertexts, such as rounding (present in the HE.ModSwitch
operation in BGV and BFV), has the cost of one constraint5 per bit of the ciphertext ring Rq.

This cost increases rapidly as the multiplicative depth of the circuit grows, not only because of the
number of such operations but also because of how the HE parameters (including ciphertext size) grow
accordingly. In the BGV scheme (as well as the BFV and CKKS one), increasing the multiplicative
depth of the circuit by one usually requires to add a prime to the prime chain that makes up the
ciphertext modulus. In more practical terms, this corresponds to increasing the ciphertext modulus
by 30−50 bits every time we increase the multiplicative depth by one. This means that the ciphertext
modulus will grow exponentially with the depth d of the circuit that one wants to evaluate (this takes
the security level into account; see for example [APS15, CP19]). Alternatively, works like [BCFK21]
circumvent the issue of doing bit-wise operations by using the BV scheme. In their work, the size
of the ciphertext ring grows exponentially with the number of ciphertext-ciphertext multiplications
that one wants to evaluate.

5 The number of constraints in R1CS or other models of computation are the main metric for the efficiency in
SNARKs.

2

In this work, we deviate from this paradigm by enabling the verification of operations on the
plaintext space of the HE scheme. At a high level, we show how to adapt holographic IOP-based
SNARKs so that, on the one hand, the prover computes obliviously on the encrypted values while,
on the other hand, the verifier performs the verification checks on the plaintext space. We choose
to focus on holographic IOPs as a departure point for our verifiable computation protocol, since
the holography property is particularly well suited for outsourcing scenarios. Nevertheless, our tech-
niques could easily be adapted to non-holographic IOPs. We call our overall framework HElIOPo-
lis, since its central components are homomorphic encryption (HE) and Interactive Oracle Proofs
(IOPs).

1.1 Technical overview

We manage to move verification from the ciphertext to the plaintext space by replacing the IOP
oracles O with encrypted oracles OHE, which are oracles to data that is homomorphically encrypted.
While the prover P does not know what the plaintexts they are computing on are, P knows how
to arrange them into oracles (i.e. P can place HE.Enc(x) into an oracle OHE, rather than x into
O). Whereas the modified IOP (denoted HE-IOP) can now only be verified by whoever has the HE
decryption key6, this new abstraction is very powerful: not only is the prover much more efficient, it
is also very simple to reduce the security of an HE-IOP to that of its corresponding IOP (Theorem 2).
Moreover, we also adapt several results in the literature compiling different variants of (zk)IOPs
into (zk)SNARKs [COS20, BGK+23]. Our resulting zkSNARKs are plausibly post-quantum, since
so are the BCS transform [BCS16, CMS19] and all the efficient HE schemes we have today.

Once oracles are replaced with encrypted oracles, our approach is black box on the different
components of these compilers. A central part of these is the use of an IOP of proximity (IOPP)
to Reed-Solomon Codes, which is interpreted either as a low degree test or a correlated agreement
test [BCI+20, BGK+23]. As done in practice for unencrypted IOPs, we choose FRI [BBHR18]
to instantiate this IOPP component. FRI is, a priori, particularly HE-friendly, in the sense that
it only runs linear operations on the functions being tested, and products in HE are particularly
expensive. Nevertheless, there are several challenges when trying to align the security parameters of
HE schemes and FRI. This constitutes a significant part of our work, for which we discuss trade-offs
and optimizations (Section 6) as well as we provide experimental data (Section 7).

Aligning security parameters. The first challenge is enabling FRI to work over a field of size
|FpD | ≈ 2256 for some prime p, This ensures that FRI remains secure when making it non-interactive
through Fiat-Shamir for any Reed-Solomon codeword we would encounter in practice when compil-
ing IOPs [BGK+23]. Using pD as a plaintext modulus in the HE scheme would result in unmanage-
able parameters. We address this by emulating FpD arithmetic using D ciphertexts, each encrypting
elements from Fp.

Reducing depth and exploiting HE packing. A second challenge to the homomorphic evaluation
of FRI is its multiplicative depth. Although it only involves multiplications between plaintexts
and ciphertexts, the noise level can increase almost as much as with ciphertext multiplications,
since plaintext are random elements of Fp. A typical implementation of FRI would have depth
2n for an input of size 2n, which represents a performance challenge for HE schemes. We solve
this problem by introducing low-depth versions of every sub-routine required to evaluate FRI, and
6 In concurrent work on IOPs over encrypted data [GGW23], the authors discuss the use of fully homomorphic

commitments [GVW15] as a way to recover public verifiability, but all known constructions for such primitive are
very inefficient.

3

show how to perform Reed-Solomon codeword encoding with small fixed depth, as opposed to the
traditional depth-n methods. We also propose a “Shallow Fold" algorithm to replace FRI’s standard
Fold operation, which reduces the depth to 1 (from n), at the cost of increasing the complexity to
O(2n log(2n)) (from O(2n)), which does not change the overall asymptotics. Additionally, we exploit
packing within the HE scheme to further reduce the cost of Reed-Solomon encoding. In more detail,
we consider packing methods that trade off memory consumption and execution time to accelerate
the prover.

Minimizing HE overhead for the verifier. Finally, we take advantage of techniques proposed
in [CGGI20, CLOT21] to implement a repacking and recomposing technique, which significantly
reduces the overhead of ciphertext decryption for the verifier. During the commit phase of FRI, the
prover performs computations using RLWE samples of dimension N encrypting N messages in Fp.
During the query phase, however, the verifier only needs to learn two evaluation points in FpD per
round for each linearity check. If those ciphertexts are fully packed, an overhead of at least N/(2D)
is introduced. In order to avoid this, we extract the evaluation points from the RLWE samples of
dimension N and repack them in another RLWE sample, but of a much smaller dimension, reducing
decryption costs up to 128 times depending on the selected parameters. One key observation is that
at this point, we do not need to preserve any homomorphic properties, as the verifier does not
perform any further operations on these. Indeed, once the commit phase is finished, we can view
the evaluation points as simply strings of bits, and our goal then becomes to encrypt them in the
smallest possible ciphertext. This also makes the HE parameters adopted by the verifier completely
independent of the ones adopted by the prover or of the input size 2n.

All our optimizations are specifically targeted for FRI. Whether other existing IOPs of proximity
(e.g. [ACY23]) or new ones could be better aligned in practice with HE schemes such as BGV and
BFV is an interesting open work that our theoretical machinery already supports.

Proof-of-Concept Implementation. To demonstrate the practicality of our construction, we im-
plement a proof-of-concept over the FRI implementation of Szepieniec et al. [S+21]. We extend it
to work over non-prime fields and connect it to optimized FHE libraries. We test two parameter
sets for encrypted codewords of size up to 216 representing polynomials with degree bound up to
d = 215. For a batch of 4096 polynomials with degree bound d = 211, our implementation takes
just 5.4 seconds to run FRI’s commit phase (including the Reed-Solomon code encoding) on 32
threads in a c6i.metal instance on AWS and requires less than 4GB of memory. Verification is
much faster, taking just 12.3ms single-threaded (also for a batch of 4096 polynomials). With a pa-
rameter set optimized for the verifier, verification time drops to just 5.6ms single-threaded, at the
cost of increasing the prover execution to 1.3 minutes. Our implementation is publicly available at
https://github.com/antoniocgj/HELIOPOLIS.

Oracle attacks. Moving verification from the ciphertext to the plaintext space inherently opens
up for side-channel and composition attacks. If the verifier signals to the prover whether verification
passes, this leaks 1 bit of information about the plaintext/secret key. A priori, it could seem that
reusing the plaintext output obtained by the verifier as input to another protocol could also leak
about the secret key, but such issues can be avoided altogether by having the prover provide Zero
Knowledge Proofs of Knowledge for any ciphertext it would use as input. We discuss these risks
in more detail in Section 3.1. We believe that, for many applications, the speed-ups we achieve
through this paradigm shift far outweigh the one-bit privacy loss. This is reflected by the lack of
implementations for works on the previous paradigm (verification over the ciphertext space), for
which, except for very low-depth circuits, their lack of efficiency is a non-starter.

4

https://github.com/antoniocgj/HELIOPOLIS

1.2 Comparison with existing works

In concurrent work [GGW23], Garg, Goel and Wang offer a framework to prove statements on values
that are hidden from the prover. Their framework is based on making FRI work over such hidden
values, and they show how to compile Polynomial IOPs into SNARKs given such a tool. Besides HE,
their work considers more general ways to hide these values from the prover, such as homomorphic
commitments and group exponentiation, grouped under the abstraction of Linearly-Homomorphic
Encapsulations.

A formal issue in [GGW23] is that their notion of a decryptable (or that of linearly-homomorphic
w.r.t. randomness) Linearly-Homomorphic Encapsulation is not sufficient when such an encapsu-
lation is a building block of more complex components such as FRI or polynomial commitments.
Namely, their notion only considers decryption of a freshly encrypted ciphertext on which no oper-
ations have been performed. This overlooks the fact that the evaluation correctness of HE schemes,
which are based on (Ring) Learning with Errors, is function-specific and needs to support the oper-
ations computed within those components. Whereas FRI only requires to perform a series of linear
combinations on the ciphertexts, it turns out that the size of the coefficients in the linear combi-
nation and the additive depth of FRI constitutes a significant obstacle for noise management in
practice (see Section 6).

While [GGW23] is more theoretical and lacks implementation, our work focuses on concretely
accelerating VC on encrypted data. In addition to various technical optimizations and trade-offs
informed by our experimentation, we address two key aspects that [GGW23] does not: scenarios
where the prover provides inputs in zero knowledge, and the direct use of FRI (e.g. by compiling δ-
correlated IOPs into (zk)SNARKs [BGK+23]), rather than going through a polynomial commitment
abstraction. The former greatly improves the parameters of the HE scheme in several applications,
such as Privacy-Preserving Machine Learning (where the prover provides their model as a plaintext
in zero-knowledge while the verifier’s input are HE ciphertexts), whereas the latter improves FRI’s
parameters by allowing to use a proximity parameter up to the Johnson bound.

2 Preliminaries

2.1 Notation

We use R[X]≤d to refer to polynomials with coefficients in a finite, commutative ring R and degree at
most d. For an element a ∈ R, we write [a]q to denote the reduction of a modulo q (coefficient-wise),
with the set of representatives of coefficients lying in {0, . . . , q − 1}. This should not be confused
with [n], which we will sometimes use to denote the set of integers {1, . . . , n}.

We use bold notation (e.g. b) to refer to vectors. We use y ← C to denote that y is the output
of a given computation C. We use a ← A for sampling an element a from a distribution A. When
A is a set rather than a distribution, we write a $← A for sampling a uniformly at random in A. We
write JfK to denote an oracle to f , and Mf to denote that M has oracle access to f . We abbreviate
Probabilistic Polynomial Time as PPT. We let λ denote a computational security parameter. We
denote computational indistinguishability by

c
≈ when no PPT algorithm can distinguish between

two distributions except with negligible probability.

5

2.2 Basic algebra and Galois theory

Next, we present some Number and Galois Theory facts that were noted in the context of FHE
in [SV14], but that are fairly standard. Let p be a prime, F (x) ∈ Fp[x] be a polynomial, deg(F) = N ,
and assume that it factorises (mod p) into ℓ factors, all of degree D, for D · ℓ = N , i.e.

F (x) =
ℓ∏

i=1

Fi(x) (mod p),

where deg(Fi) = D, ∀i ∈ [ℓ].
Then we can define Rp := Fp[x]/(F), and the following holds.

Rp
∼= Fp[x]/(F1)× . . .× Fp[x]/(Fℓ)
∼= FpD ⊗ . . .⊗ FpD . (1)

Let F = Φ2N be the 2N th cyclotomic polynomial, for N a power of two, and deg(Φ2N) = N .
We note in particular that the above implies that, if p is a prime such that Fp contains a primitive
2ℓth root of unity, we have that

Φ2N (x) =
∏

i∈(Z/2ℓZ)×
(xD − ζi) (mod p).

In the fully-splitting case, we have that D = 1, and can therefore write

Rp
∼= Fp ⊗ . . .⊗ Fp︸ ︷︷ ︸

Ncopies

.

We refer to the cases where D is small with respect to N as almost-fully splitting.

2.3 Homomorphic Encryption

Definition 1 A public-key Homomorphic Encryption scheme HE over a set of admissible circuits
Ĉirc consists of the following algorithms.

– (pp, C) ← HE.Setup(1λ,M, Ĉirc) : Given a message space M, a set of admissible circuits Ĉirc,
output the public parameters pp and the ciphertext space C such that the scheme is semantically
secure.

– (sk, pk, evk) ← HE.KeyGen(1λ, C, pp) : Given the public parameters pp and the ciphertext space
C, output the secret key sk, the public key pk and the evaluation key evk.

– ct← HE.Enc(pk,m) : Given a message m ∈M, output its encryption ct.
– m′ ← HE.Dec(sk, ct) : Given a ciphertext ct and its corresponding secret key sk, output the

decryption of ct, m′.
– ct′ ← HE.Eval(evk, ct, Ĉ) : Given a circuit Ĉ ∈ Ĉirc, output the evaluation of Ĉ on ct.

When the context is clear, we will omit specifying the sk, pk, pp, C parameters. The (standard)
definition for semantic security of HE schemes is given in Appendix B.

6

Definition 2 Let HE be a homomorphic scheme as in Definition 1. We say that HE is correct if the
equation

HE.Dec(sk, HE.Eval(evk, HE.Enc(pk,m), Ĉ)) = C(m)

holds with overwhelming probability for all admissible circuits Ĉ ∈ Ĉirc.

We note that the set Ĉ refers to the set of circuits that the scheme can support – for example,
some HE schemes support non-linear operations such as ReLu, and some do not. In particular, each
circuit Ĉ ∈ Ĉirc has a corresponding circuit C on the plaintext space. To give a concrete example, if
we want to evaluate the homomorphic multiplication of two ciphertexts, Ĉ could be a multiplication
followed by a bootstrapping, whereas C would simply be a multiplication.

2.4 Reed Solomon Codes

Reed-Solomon (RS) codes are arguably the most common linear error correction codes. Let us recall
their definition and fix some notation relative to them. In this work, we will parameterize them by
a finite field F, a multiplicative subgroup L ⊆ F∗ and a degree bound d. Hence, RS[F, L, d] is defined
as follows:

RS[F, L, d] = {(f(x))x∈L ∈ F|L| : f ∈ F[X]<d}.

The code rate of RS[F, L, d] is ρ = d/|L|. Unless we state it otherwise, in this work we will assume
that |L| = 2k, ρ = 2−R and d = 2k−R.

For two vectors u,v ∈ Fn, we let ∆(u, v) denote the relative Hamming distance between u and
v, defined as ∆(u,v) := |{ui ̸= vi|i ∈ {1, . . . , n}|/n. For a set of vectors S ⊂ Fn and any vector
u ∈ Fn, we define ∆(u, S) = ∆(S,u) := minv∈S{∆(u,v)}. For δ ∈ (0, 1), we say that u is δ-far
from S if ∆(u, S) ≥ δ. Otherwise, we say that u is δ-close to S. Equivalently, u is δ-far from S
if ∆(u, S) ≥ δ for all v ∈ S, and u is δ-close to S if there exists v∗ ∈ S such that ∆(u,v∗) < δ.
We refer to δ as the proximity parameter. When δ < (1 − ρ)/2, we say that δ is within the unique
decoding radius; and when δ < 1−√ρ, we say that δ is within the Johnson bound.

Definition 3 (Correlated agreement) Let δ ∈ (0, 1). Let V = RS[F, L, d] and let W = {w1, . . . , wk} ⊆
F|L|. We say W has δ-correlated agreement with V on an agreement set S ⊆ L if |S|/|L| ≥ 1 − δ
and there exist v1, . . . , vk ∈ V such that, ∀x ∈ S, wi(x) = vi(x).

2.5 Interactive Oracle Proofs (of Proximity)

There are several variations of the IOP abstraction [BCS16]. Polynomial IOPs (PIOPs) ask for the
IOP oracles to be polynomials evaluated over the entire field F, whereas for the weaker notion of
Reed Solomon-encoded IOPs (RS-IOPs) those are Reed-Solomon codewords (i.e. the evaluation of
a polynomial over some specific domain L ⊂ F). In this work, we focus on RS-encoded IOPs and
on δ-correlated IOPs, which were introduced in [BGK+23]. Our results could nevertheless be easily
adapted to other IOP flavors, e.g. to PIOPs as in [GGW23]. The main attractive of δ-correlated
IOPs is that they allow for a better proximity parameter δ (up to the Johnson bound, rather than
within the unique decoding radius) when they are compiled into SNARKs. When δ = 0, δ-correlated
IOPs can be seen as a subclass of RS-encoded IOPs [BCR+19, COS20].

7

Definition 4 An indexed relation R is a set of triples (i,x;w) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗. The
string x is the called input, statement or instance, the string w is called the witness and the string
i is an index. The index can be thought as something that is fixed at setup time, and chooses among
a universe of binary relations Ri = {(x;w) : (i,x;w) ∈ R}.

In the setting of holographic proofs, a good example is an indexed relation for circuit satisfiability,
where the index i is a description of the circuit, the statement x contains the “public" values on
some of the circuit’s input wires and the witness w consists in the values taken by the remaining
“private" wires.

Definition 5 ([BGK+23]) Let H ⊆ F and d ≥ 0. An indexed (F, H, d)-polynomial oracle relation
R is an indexed relation where for each (i,x,w) ∈ R, the index i and input x may contain oracles
to codewords from RS[F, H, d] and the actual codewords corresponding to these oracles are contained
in w.

Definition 6 A µ-round holographic interactive oracle proof (hIOP) for an indexed relation R is
a tuple of PPT interactive algorithms Π = (P,V) and a deterministic polynomial-time algorithm
Ind (the indexer), with two phases:

– In an offline phase, given an index i, Ind computes an encoding of it, Ind(i).
– In an online phase, P(Ind(i),x,w) and VInd(i)(x) exchange 2µ+1 messages, where P sends the

fist and last message. V gets only oracle access to P’s messages, and after P’s final message, V
either accepts or rejects.

Furthermore, an hIOP has to satisfy the two following properties:

Completeness: For all (x,w) ∈ R, we have that

Pr[⟨P(Ind(i),w),VInd(i)⟩(x) = 1] ≥ γ,

where the probability is taken over the random coins of V. If, for all x, γ = 1, then the hIOP
has perfect completeness.

Soundness: For any x /∈ LR and any unbounded malicious P∗,

Pr[⟨P∗(Ind(i),w),VInd(i)⟩(x) = 1] ≤ ϵ,

where the probability is taken over the random coins of V.

In δ-correlated hIOPs, the prover is supposed to send oracles to maps that agree with low degree
polynomials on a fraction of 1 − δ points (see Definition 3). On top of checking all the received
oracles correspond indeed to δ-correlated maps (which we capture by the relation in Definition 7),
it is necessary to verify some algebraic equalities involving some evaluations of those maps. These
are made concrete in Definition 8.

Definition 7 ([BGK+23]) Let 0 ≤ δ < 1. The δ-correlated agreement relation for RS[F, L, d] is
the following indexed (F, L, d)-polynomial oracle relation:

CoAgg =

ix
w

 =

(F, L, d, δ, r)
(JfiK)i∈[r]
(fi)i∈[r]

 :

r, δ ≥ 0, ρ = d/|L|
fi ∈ FL ∀i ∈ [r]

(fi)i∈[r] has δ-correlated agreement with
RS[F, L, d]

8

Definition 8 (δ-correlated hIOP, [BGK+23]) Let L = ⟨ω⟩ be a smooth multiplicative subgroup
of F∗ of order d = 2v/ρ for some v ≥ 1 and rate 0 < ρ < 1 and define the Reed-Solomon code
RS[F, L, d]. Let 0 ≤ δ < 1 and let R be an indexed (F, L, d)-polynomial oracle relation. Let Π be a
hIOP for R. Given a (possibly partial) transcript (x, τ) generated during Π, let Words(x, τ) be the
words from FL that fully describe the oracles appearing in (x, τ). We say that Π is δ-correlated if:

– The verifier V has oracle access to the δ-correlated agreement relation CoAgg(δ).
– For all (i,x,w) ∈ R:
• In the last round of interaction between P(Ind(i),x,w) and VInd(i),CoAgg(δ)(x), the verifier

sends a field element z uniformly sampled from a subset of (a field extension of) F and the
honest prover replies with the values:

Evals(x, τ, z) = (w(ωkw,1z), . . . , w(ωkw,nw z) : w ∈ Words(x, τ))

where τ is the transcript so far and κ = {kw,i : w ∈ Words(x, τ), i ∈ [nw]} is a fixed set of
integers which are output by Ind.
• To decide whether to accept or reject a proof, VInd(i),CoAgg(δ)(x) makes the two following

checks:
Check 1 Assert whether the received values Evals(τ, z) are a root to some multivariate

polynomial Fi,x,τ depending on i, x and τ .
Check 2 Assert whether the maps

quotients(x, τ, z) =
{w(X)− w(ωkw,jz)

X− ωkw,jz
: w ∈ Words(x, τ), j ∈ [nw]

}
have δ-correlated agreement in RS[F, L, d− 1] by using the CoAgg(δ) oracle on the oracles
to such maps.

Next, we define the notions of round-by-round (RBR) soundness and knowledge soundness
[CCH+19] for holographic IOPs. Since those are a superset of δ-correlated hIOPs, the same definition
applies to the latter.

Definition 9 A holographic IOP for an indexed relation R has round-by-round (RBR) soundness
with error ϵ if for every index i there exists a “doomed set" D(i) of partial and complete transcripts
such that:

1. If x /∈ LRi
, then (x, ∅) ∈ D(i), where ∅ denotes the empty transcript.

2. For every possible input x and complete transcript τ , if (x, τ) ∈ D(i), then VInd(i)(x, τ) =
reject.

3. If i ∈ [µ] and (x, τ) is a (i−1)-round partial transcript such that (x, τ) ∈ D(i), then Pr
c

$←Ci

[(x, τ,m, c) /∈
D(i)] ≤ ϵ(i) for every possible next prover message m.

Definition 10 A holographic IOP for an indexed relation R has round-by-round (RBR) knowledge
soundness with error ϵk if there exists a polynomial time extractor Ext and for every index i there
exists a “doomed set" D(i) of partial and complete transcripts such that:

1. For every possible input x (regardless of whether x /∈ LRi
or not), (x, ∅) /∈ D(i).

2. For every possible input x and complete transcript τ , if (x, τ) ∈ D(i), then VInd(i)(x, τ) =
reject.

9

3. Let i ∈ [µ] and (x, τ) be a (i − 1)-round partial transcript such that (x, τ) ∈ D(i). If for every
possible next prover message m it holds that

Pr
c

$←Ci

[(x, τ,m, c) /∈ D(i)] > ϵk(i),

then Ext(i,x, τ,m) outputs a valid witness for x.

Finally, let us also discuss zero knowledge, which will be particularly interesting in our work.

Definition 11 An hIOP Π for an indexed relation R has statistical zero knowledge with query
bound b if there exists a PPT simulator S such that for every (i,x,w) ∈ R and any V∗ making
less than b queries in total to its oracles, the random variables View(P(i,x,w),V∗) and SV∗

(i,x),
defined below, are statistically indistinguishable

– View(P(i,x,w),V∗) is the view of V∗, i.e. the random variable (r, a1, . . . , aq) where r is V∗
randomness and a1, . . . , aq are the responses to V∗’s queries determined by the oracles sent by
P.

– SV∗
(i,x) is the output of S(i,x) when given straightline (i,e, without rewinding) access to V∗,

prepended with V∗ randomness r.

Π is honest-verifier zero knowledge if the above holds with V∗ = VInd(i)(x).

Some examples of δ-correlated hIOPs are Plonky2, RISC Zero, ethSTARK, Aurora and Fractal
[COS20]. One particular advantage of hIOPs is how easy it is to compile them into SNARKs through
the so-called BCS transformation [BCS16]. In a nutshell, this consists in replacing oracles sent by
the prover with Merkle-tree-based commitments and then removing interaction with the verifier by
applying the Fiat-Shamir transform. It has been proved that if an hIOP is round-by-round sound,
applying the BCS transformation results in a SNARK that is adaptively knowledge sound versus
both classic and quantum adversaries in the random oracle model [CMS19, COS20].

A similar concept to the above one is that of an IOP of Proximity (IOPP), which is an IOP
to test proximity to a specific code. In this work, we restrict ourselves to IOPPs for Reed Solomon
Codes.

Definition 12 Let RS denote the family of Reed Solomon codes RS[F, L, d]. A protocol between a
pair of interactive machines ⟨P,V⟩ is an r-round interactive oracle proof of δ-proximity for RS is an
IOP with the following modifications

– Input format: The first message from P is f0 : L→ F, allegedly a RS codeword.
– Completeness: Pr[⟨P,V⟩ = 1 : ∆(f0, RS) = 0] = 1 − θ for a negligible θ. If θ = 0 we refer to

this as perfect completeness.
– ϵ-soundness: For any unbounded P∗, Pr[⟨P∗,V⟩ = 1 : ∆(f0, RS) ≥ δ] ≤ ϵ.

The next theorem summarizes the compilation results of [BGK+23]. Informally, given a δ-
correlated hIOP, it suffices to analyse its RBR knowledge soundness when δ = 0 and replace oracles
with a δ-correlation check7 to produce an RBR knowledge sound hIOP as a result. This hIOP can
then be turned into a SNARK through the usual BCS transformation [BCS16]. Interestingly, having
δ ̸= 0 (and actually up to the Johnson bound!) does not affect knowledge soundness when following
the [BGK+23] recipe, whereas previous compilers [CMS19, COS20] were restricted to the unique
decoding regime, i.e. δ < (1− ρ)/2.
7 Such as batched FRI

10

Theorem 1 ([BGK+23]). Let ΠOδ be a δ-correlated hIOP, where O is an oracle for δ-correlated
agreement. Let 0 < η ≤ 1 and ρ > 0 be such that δ = 1 − √ρ − η is strictly positive. Assume ΠO0
has RBR knowledge soundness with error ϵ. Then, ΠOδ has RBR knowledge soundness with error
ϵ/(2η

√
ρ).

Moreover if ΠCA is an IOPP for δ-correlated agreement in RS[F, L, d] with RBR soundness error
ϵCA, then the protocol ΠΠCA

δ obtained by replacing O with ΠCA in ΠOδ has RBR knowledge soundness
error ϵ1 = max{ϵ/(2η√ρ), ϵCA}.

Furthermore, given a random oracle with λ-bit output and a query bound Q, compiling ΠΠCA
δ with

the BCS transformation [BCS16] yields a SNARK with knowledge error Q ·max{ϵ/(2η√ρ), ϵCA} +
O(Q2/2λ).

3 Verifiable Computation over encrypted data

The notion of verifiable computation (VC) proposed by Gennaro et al. in [GGP10] tries to better
capture the way in which proof and argument systems are used in practice. In Definition 1 we
tweak their definition and syntax to fit our constructions. In particular, we allow for the verification
algorithm to be interactive, since we will often discuss at the IOP rather than SNARK level of
abstraction.

Furthermore, we would like to support circuits of the form C(x,wP) where (the homomorphic
encryption of) the input x is provided by the verifier, while the prover specifies wP , which includes
plaintexts and/or ciphertexts revealed to V during verification. Without threshold decryption to
prevent the verifier from unauthorized decryptions, all wP values are exposed to the verifier. Thus,
for single-client outsourcing, wP should consist only of plaintexts.

If wP must remain hidden, it can be treated as a private witness mixed with the encryption
x in zero-knowledge. For example, one could think about a private Machine-Learning-as-a-Service
[AHH+24], where the client sends encrypted queries HE.Enc(x) to the server, who applies their
private model wP . This approach, also pursued in [BCFK21, GNS23], is advantageous because
multiplying plaintexts (such as those in wP) with ciphertexts (the encryptions of x and the outputs
that result from operating on them) is much cheaper than multiplying ciphertexts.

Definition 1 (Verifiable Computation). A verifiable computation scheme VC is a tuple of poly-
nomial time algorithms (VC.Setup,VC.ProbGen,VC.Compute,VC.Ver) defined as follows.

– (SK,PK)← VC.Setup(1λ, C): A randomized key generation algorithm takes a circuit C as input
and outputs a secret key SK and a public key PK.

– (σx,VKx)← VC.ProbGen(PK,x): A randomized problem generation algorithm (to be run by V)
takes the public key PK, an input x, and outputs a public encoding σx of x, together with a
private verification key VKx.

– ηy ← VC.Compute(PK,σx,wP , C): Given a public key PK for a circuit C, the encoded input σx

and input wP , P computes ηy, which consists of an encoded version σy of the circuit’s output
y = C(x,wP) and data to answer challenges about that statement.

– acc ← VC.Ver⟨P(PK,ηy),V(SK,VKx,σy)⟩(C) : The interactive verification algorithm uses the
input-specific verification key VKx, the setup secret key SK and a proof ηy to return σy together
with a bit acc ∈ {0, 1} such that acc = 1 if VC.Decode(σy, SK) = C(x,wP) or acc = 0
otherwise.

11

– y ← VC.Decode(σy, SK): Using the secret key, the decoding algorithm outputs the value y behind
the public encoding σy.

A verifiable computation scheme can satisfy a range of properties which we next define. We
omit the VC. prefix in the different algorithms for ease of readability. In our work, we will always be
interested in all of the following ones whenever wP does not need to be kept private.

– Correctness. Correctness guarantees that if P is honest, the verification test will pass. That is,
for all C, and for all valid inputs x,wP of C the following probability equals 1− negl(λ).

Pr

 acc = 1
Decode(σy,SK) = C(x,wP)

:

(SK,PK)← Setup(1λ, C)
(σx,VKx)← ProbGen(PK,x)
ηy ← Compute(PK,σx,wP , C)

acc← Ver⟨P(PK,ηy),V(SK,VKx,σy)⟩(C)

– Outsourceability. A VC scheme is outsourceable if for any x and any ηy, the time required by
V to run ProbGen(x), Ver⟨P(PK,ηy),V(SK,VKx)⟩(C) and Decode(σy,SK) is o(T), where T is
the time required to compute C(x,wP).

– ϵ-Soundness. A VC scheme is ϵ-sound if a malicious P cannot make the verification algorithm
accept an incorrect answer for any valid circuit C. That is, a scheme is sound if the advantage
of any PPT adversary A in the game ExpV er

A defined as Pr
[
ExpV er

A [V C,C, λ] = 1
]

is ϵ.
– Verifier-Privacy. For any valid circuit C,

Pr
[
ExpV.P riv

A [V C,C, λ] = 1
]
≤ 1/2 + negl(λ).

1 Game ExpV er
A (V C,C, λ)

2 (SK,PK)← Setup(1λ, C)
3 x← A(PK, C)
4 (σx,VKx)← ProbGen(PK,x)
5 ηy ← A(PK,σx, C)
6 acc←

Ver⟨P(PK,ηy),V(SK,VKx,σy)⟩(C)
7 y ← Decode(σy, SK)
8 if acc = 1∧ ̸ ∃wP : C(x,wP) = y
9 return 1

10 return 0

1 Game ExpV.P riv
A (V C,C, λ)

2 b
$← {0, 1}

3 (SK,PK)← Setup(1λ, C)
4 (x0,x1, state)← A(PK, C)
5 (σxb

,VKxb
)← ProbGen(PK,xb)

6 b̂← A(state,σxb
)

7 return b
?
= b̂

3.1 On verifier privacy and oracle attacks

Our definition of verifier-privacy assumes that the verifier does not signal to the prover whether
verification passes or not (i.e. there are no verification oracles) and that the value y it obtains
after running the Decode algorithm is not used as input to future algorithms (which we refer to
as a decryption oracle). We briefly discuss the privacy impact of such oracles, which is inherent to
moving verification from the ciphertext to the plaintext layer.

Verification oracles: When a malicious prover provides tampered ciphertexts (e.g. by manipu-
lating their noise), the result of decryption is a function of such changes. The results of decryption

12

also depend on the secret key and underlying message. Since the actions of the verifier (such as
rejecting a proof or not, i.e. the value acc ∈ {0, 1}) depend on the decrypted ciphertexts, this is
a source of leakage. All protocols we present are non-interactive, implying that there is at most
one such verification oracle per proof sent. Hence, a malicious prover can learn at most a one-bit
leakage predicate (which evaluates to acc) about the secret key/message. Regarding leakage about
the key, the concrete security loss this incurs can be measured with tools such as the Leaky Esti-
mator [DDGR20]. Additionally, stopping any further executions with a prover for which acc = 0,
refreshing the keys and/or increasing their length are easy solutions.

Decryption oracles: First, note that the output of the decryption of the prover’s answers to
verifier challenges has no use beyond verification. Therefore, the only value we need to be concerned
about in a decryption oracle is the output of the computation itself. Consequently, decryption oracles
may only occur in the composability case – i.e., when VC.Decode(σy,SK) is used as input in another
protocol. Further, these decryption oracles arise only in the case where verification passes, as the
Verifier would otherwise abort (and then, at worst, we would be in the presence of a verification
oracle, as explained above). Finally, we note that the output of the computation (C(x,wP)) leaks
nothing unexpected, as long as wP does not contain ciphertexts for which P did not provide a
zero knowledge proof of knowledge (ZKPoK) for the underlying plaintext. In summary, the only
scenario in which a decryption oracle may pose a threat is: the prover provides as input ciphertext
without an accompanying ZKPoK, verification passes and the HELIOPOLIS output is passed along
to another protocol for further processing.

3.2 Prover privacy

In previous works on verifiable computation over encrypted data, the goal of keeping wP private was
modeled as a context-hiding property of the VC scheme [BCFK21, GNS23]. This is a reminiscence
of a similar notion in the setting where wP did not exist, but the parties running VC.ProbGen
and VC.Ver were different [FNP20]. In our following sections we will deviate from that modeling
and hence refrain from the context-hiding property. We do this not only because we focus on the
more common scenario where the verifier is running both VC.ProbGen and VC.Ver, but also because
context-hiding would not be able to model e.g. the interactivity of VC.Ver. We believe that our new
security modeling will be useful for future work in this area.

We formalize the notion of honest-verifier prover privacy (HVPP) by showing that whatever
a semi-honest V can compute by participating in the protocol, V could compute merely from its
input and prescribed output. Our definition is in the simulation paradigm and thus we have a
stateful simulator S that generates V’s view given its input and output. We remark that, since V
is semi-honest, it is guaranteed that it uses its actual input and random tapes. In particular, S can
furthermore generate V’s random tape and, at that point, generate the whole protocol transcript
on its own without ever needing to interact with V.

Definition 2. We say that a VC protocol is honest-verifier prover-private(HVPP) if there exists a
PPT simulator S such that for every circuit C:

{S(1λ,PK,x, C(x,wP))}x,wP ,λ,PK
c
≈ {ViewV(SK,PK,x,wP , λ)}x,y,λ,SK,PK

where (SK,PK) ← VC.Setup(1λ, C) and ViewV(SK,PK,x,wP , λ) denotes the view of V during an
execution of the protocol on inputs (x,wP) and security parameter λ, that is (SK,PK,x, r;m1, . . . ,me, out)

13

where r is V’s random tape, each mi value is the i-th message V receives and out denotes V’s output,
which is computed from all other values in its own view of the execution.

In Figure 1, we provide our general recipe for a correct, sound and verifier-private Verifiable
Computation scheme. Verifier-privacy follows from the use of encryption within the ProbGen step,
and correctness from the fact that such encryption is homomorphic. Soundness is less immediate,
since it requires to have an HE-IOP at hand, which is an object we define and construct in Section 4.
Notice that, since we specialize the construction to use holographic IOPs (as a means to achieve
outsourceability), the syntax of the verification is slightly modified, replacing the circuit C with the
corresponding indexer algorithm.

Verifiable Computation over encrypted data

Let IOP be an holographic Interactive Oracle Proof. Let HE be an exact homomorphic encryption scheme with
plaintext space Rp. Let ϕ : Rp →

⊗ℓ
i=1 FpD be the CRT isomorphism. Let C : Finp

p × Fwit
p → Fout

p be an
arithmetic circuit that we want to verify. Let Lx = ⌈inp/ℓ⌉, Lw = ⌈wit/ℓ⌉.

(sk, (pk, evk))← Setup(1λ, C) : Run HE setup:
1. V determines a set of admissible circuits Ĉirc which contains a circuit Ĉ that homomorphically computes

C.
2. V runs (pp, R2

q)← HE.Setup(1λ, Rp, Ĉirc).
3. V runs (sk, pk, evk)← HE.KeyGen(1λ, C, pp).
4. Given an index i for the circuit C, the indexer Ind computes an encoding of it, Ind(i).

(σx, vkx)← ProbGen(x, pk) : V parses x = (x0, . . . , xinp−1) ∈ Finp
p . For i = 0, . . . , Lx − 1, let mx,i =

ϕ−1(xiℓ, . . . , x(i+1)ℓ−1). Encrypt these inputs as σx = {HE.Enc(pk,mx,i)}Lx−1
i=0 . Set vkx = (sk,x).

w← Compute(evk,σx,wP , Ĉ) : P parses σx and evaluates Ĉ(σx,wP), by which it obtains the rest of the
witness: the values on intermediate wires wC and the circuit output σy. Notice that the whole witness
becomes w = (wP ,wC ,σy), which is a mix of plaintext values (such as wP) and ciphertext values (those
depending on any input σx).

acc← Ver⟨P(Ind(i), evk, (σx,w)),VInd(i)(sk, (vkx,σy))⟩ : P and V run the HE-IOP corresponding to the IOP for
the plaintext circuit C, i.e. ⟨P(Ind(i), evk,σx,w),VInd(i)(sk, (x, HE.Dec(sk,σy)))⟩.

y← Decode(σy, sk) : V outputs y = HE.Dec(sk,σy).

Fig. 1: Verifiable Computation over Encrypted Data through HE-IOPs.

4 Compiling Interactive Oracle Proofs to work over HE

Given an IOP which was not conceived to work over encrypted data, we show how to adapt it to
work with HE in Definition 13.

Definition 13 (HE-transformation) Let ⟨P(x,w),V(x)⟩ be an IOP, where the elements of x
and w belong to a finite field F. We define its encrypted version HE-IOP, for some HE scheme as
follows:

– There is a trusted setup (pp, C) ← HE.Setup(1λ, Rp, Ĉirc), where Rp splits into copies of F and
Ĉirc is a family of admissible circuits that captures all necessary computation within the IOP as
well as any preceding/posterior one (such as coming up with parts of the witness, or using an
IOPP and the BCS transformation to compile into a SNARK).

– There is also a trusted key generation step (sk, pk, evk) ← HE.KeyGen(1λ, C, pp). P has as an
additional input evk and V has as an additional input sk.

14

– P’s input x is replaced by its encryption HE.Enc(x). Parts of w could be also replaced by their
homomorphic encryption.

– As a result, some oracles in the HE-IOP might now contain ciphertexts. We refer to them as
HE-oracles or encrypted oracles. V has to decrypt the ciphertexts obtained from HE-oracles and
perform the same checks as in F.

If we need to refer explicitly to the HE-IOP, we denote it as ⟨P(evk, HE.Enc(x),w),V(sk,x)⟩, as
a slight abuse of notation of the original P and V. The different properties of IOPs (complete-
ness, soundness, round-by-round soundness, round-by-round knowledge soundness) can be trivially
redefined for HE-IOPs.

One of the main interests of our HE-transformation, besides its simplicity, is that it preserves
most parameters of the original IOP, with only some negligible degradation due to the use of
homomorphic encryption.

Theorem 2. Let IOP be an ϵk RBR knowledge sound, ϵrbr RBR sound, ϵ-sound, complete IOP.
It’s encrypted version HE-IOP is ϵk + negl(λ) RBR knowledge sound, ϵrbr + negl(λ) RBR sound,
ϵ+ negl(λ)-sound and complete.

Proof. Completeness follows from the evaluation correctness of the HE scheme and the way the circuit
family Ĉirc was chosen. There is only a negligible loss in γ due to the way evaluation correctness is
defined (Definition 2).

The soundness, RBR soundness and RBR (knowledge) soundness of an HE-IOP can be reduced
to that of IOP as follows. Let A be an adversary against HE-IOP with an advantage bigger than
adding a factor negl(λ) to the one for the corresponding notion of the IOP (ϵ, ϵrbr, ϵk respectively).
We will build an adversary A′ against IOP with the same such greater advantage and hence reach
a contradiction. A′ runs (sk, pk, evk)← HE.KeyGen(1λ, C, pp) for the relevant HE scheme, obtaining
in particular sk. Given any input, A′ encrypts it under pk and forwards it to A. For every message
received from V, A′ directly forwards it to A. In order to reply to those, A′ queries the encrypted
oracles JfKHE received from A at every point, decrypts the answers using sk to recover f , and then
sends the oracle JfK to V. Clearly, if A succeeds, so does A′.

The HE-transformation applies to all variants of IOPs presented in this paper, such as holo-
graphic IOPs, RS-encoded hIOPs, δ-correlated hIOPs and IOPs of proximity. In order to denote
this transformation, we will also add the HE prefix to those (HE-hIOPs, δ-correlated HE-hIOPs,
HE-IOPP, etc).

The upcoming subsections are organized as follows. In Section 4.1, we discuss how to keep w

hidden from the verifier through zero knowledge. Sections 4.2 and 4.3 show how to compile these HE-
IOPs into HE-friendly SNARKs using an HE-friendly low degree test (such as the HE transformation
of the Batched FRI protocol, which we will show in Section 5.1).

4.1 Achieving prover-privacy from ZK-IOPs

We first consider the case of honest-verifier prover-privacy (HVPP, see Definition 2), since it allows
for a more practical construction and it also acts as a stepping stone towards understanding the
malicious case. There are three main aspects to consider when compiling using IOPs for a prover-
private version of Figure 1, which we describe next. Two of them (Consideration #1 and #3) are
specific to the use of homomorphic encryption.

15

Consideration #1: Circuit privacy. A requirement for prover-private constructions is the fact that
the HE scheme needs to support circuit-privacy. Namely, all the ciphertexts of the HE-IOP that are
exposed to the verifier need to be re-randomized, since their noise carries information about the
circuit that was computed on them and hence8 about wP . We provide our own definition of the
circuit-privacy notion that is best aligned with our HVPP goal.

Definition 14 A homomorphic encryption scheme HE (see Definition 1) is circuit-private if there
exists a rerandomization algorithm HE.Rerand(evk, pk, Ĉ, ct) and a simulator SHE such that, for any
admissible circuit Ĉ with inputs HE.Enc(x1), . . . , HE.Enc(xn) and outputs cty1 , . . . , ctym , it holds
that (some inputs omitted for simplicity):

(sk, HE.Rerand(cty1), . . . , HE.Rerand(ctym))
c
≈ (sk,SHE(pk, C(x1, . . . , xn))).

One of the standard ways that the above definition can be achieved is by employing noise
flooding to instantiate HE.Rerand, as done in [Gen09a]. In more detail, we add to the verifier-
exposed ciphertexts an encryption of 0 with large enough noise to statistically hide the noise of
the circuit that led to the production of that specific ciphertext. We will denote by Ω0,C the set of
such encryptions of zero. Notice that since all messages within an encrypted oracle are susceptible
of being queried, we need to add such an encryption of zero to each of them before putting them
within the oracle.

Consideration #2: Combining zkIOPs with LDTs. Assume either a zero-knowledge RS-hIOP or a
δ-correlated hIOP is given. To compile it into a zk-IOP while making black-box use of a pre-existing
Low Degree Test (in the form of an IOPP such as FRI), it is necessary for the prover to additionally
send a random codeword r ahead of time, which is added to the linear combination of functions
that are being tested for low-degreeness. Adding such an r does not affect soundness. However, since
input to the LDT is now a random codeword, there is no need to worry about its inner workings
beyond knowing what is the amount of queries made to the random codeword (which links with
Consideration #3). For a more detailed leakage analysis when using FRI, see [Hab22].

Consideration #3: Combining zkIOPs with LDTs – query blow-up from packing. Compilers, such as
the ones discussed in Consideration #2 and the one presented in Section 4.2, incur losses in several
parameters of the resulting output IOP according to the number of queries to the LDT. This in-
cludes soundness, which in turn also loops into increasing the size of the underlying field in order to
compensate. But, most importantly, the increase in the number of queries through the introduction
of the LDT also degrades the query bound for zero knowledge (see Definition 11). As an example,
see [COS20, Theorem 8.1.]

To make things worse, the HE-transformation of these protocols replaces oracles with encrypted
oracles, where ciphertexts (rather than plaintexts) are placed within them. This means that, if the
chosen HE scheme supports plaintext packing and we are exploiting this property, whenever the veri-
fier V would need to query only one of the plaintexts mi on the ciphertext ct = HE.Enc(m1, . . . ,ml)
behind the oracle, V learns every other plaintext mj , j ̸= i within it. Effectively, this blows-up the
query loss for zero knowledge by a factor of up to l.9 Packing becomes then as devastating (or
8 Notice that one can think about the circuit evaluation C(x,wP) with a private wP as providing the evaluation of

some unspecified circuit from the family {CwP (x)}wP .
9 It could be that V sometimes happens to query values that happen to be packed within the same ciphertext,

slightly reducing the blow-up in this case.

16

even more) for zero knowledge as it is an improvement for computational efficiency, which is a very
problematic tension in practice. Hence, it is paramount to reduce the packing-induced multiplicative
loss while maintaining efficiency. We provide a solution for this in Section 6.5.

Malicious verifier We will only briefly address handling a malicious verifier. Instead of creating an
ad-hoc “malicious-verifier prover-private" notion, it is best to model security as a maliciously secure
2-party computation protocol (see [CCL15]). Beyond the precautions for an honest verifier, we must
ensure honest behavior in the Setup and ProbGen steps. This can be achieved through a trusted
setup and enforced via zero-knowledge proofs, similar to a GMW-style compiler from passive to
active security [GMW87].

For the ProbGen step, it is crucial to ensure the verifier provides valid ciphertexts, meaning
the noise must be within bounds in lattice-based HE. Using a zero-knowledge proof of knowledge
(ZKPoK) ensures the right bounds for the cleartext and encryption randomness (see e.g. [DPSZ12,
Figure 9]).

4.2 A compiler for RS-encoded IOPs

Our first compiler is for Reed-Solomon encoded IOPs, and is a result of adapting the works of
Aurora [BCR+19] and Fractal [COS20].

Protocol 1 (Aurora/Fractal) Let (PR(x,w),VR(x)) be an RS-encoded hIOP over L ⊆ F, with
maximum degree (dc, de) for an indexed relation R. Let HE-IOP be its HE-transformation. Let
(PLDT,VLDT) be an IOPP for the RS code RS[F, L, dc] with proximity parameter δ < min(1−2ρc2 , 1−ρc3 , 1−
ρe) where ρc = (dc + 1)/|L| and ρe = (de + 1)/|L|. Let HE-IOPP be its HE-transformation. Proceed
as follows:

1. Masking codeword for low-degree test: P sends V an oracle to a random r ∈ RS[F, L, dc].
This step can be skipped when not interested in obtaining a zk-HE-hIOP.

2. RS-encoded HE-IOP for R: In parallel to the above, P and V simulate (PR(HE.Enc(x),w),VR(x)).
Over the course of this protocol, the prover sends encrypted oracles containing codewords π1 ∈
RS[F, L,d1], . . . , πkR ∈ RS[F, L,dkR], and the verifier specifies a set of rational constraints C

[COS20, Definition 4.1]. Let l :=
∑kR

i=1 li + |C|.
3. Random linear combination: V samples v ∈ F2l uniformly at random and sends it to P
4. Low-degree test through HE-IOPP: P and V simulate (PLDT(v⊤Π + r),Vv⊤Π+r

LDT), where Π :=(
Π0
Π1

)
∈ F2l×L is defined as in [BCR+19, Protocol 8.2].

5. V accepts if and only if VLDT accepts

Theorem 3. Protocol 1 is an HE-hIOP for R with the following parameters, where the R (resp.
LDT) superscript denotes the parameters of the RS-encoded IOPP (resp. IOPP):

– Round complexity: kR + kLDT.
– Query complexity: qLDTπ + qLDTw (kR + 1).
– Proof length HE.Expand(LR + LLDT), where HE.Expand is a ciphertext expansion function that

depends on the specific HE scheme and how the different intermediate values are computed.
– Round-by-round soundness error: ϵ1 = max(ϵRrbr, ϵ

LDT
rbr, |L|/|F|).

– Round-by-round knowledge error: ϵ2 = max(ϵRknw, ϵ
LDT
rbr, |L|/|F|).

17

Furthermore, if the RS-encoded IOP is zero-knowledge, then so is Protocol 1, with the same
query bound.

Proof. All the claimed parameters can be reduced to the ones claimed in [COS20, Theorem 8.2].
The round and query complexity clearly remain the same as in there, and the proof length is
only affected by the ciphertext expansion of the HE scheme. Completeness and RBR (knowledge)
soundness follow from Theorem 2 and [COS20, Theorem 8.2].

4.3 A correlated-agreement-based compiler

Our second compiler allows to set the proximity parameter up to the Johnson bound, which im-
proves efficiency. It is the result of adapting one of the central theorems in [BGK+23] through the
application of the HE transformation (Definition 13). The overall compiler appears in Figure 2.

Theorem 4. Let ΠOδ be a δ-correlated HE-hIOP, where O is an HE-oracle for δ-correlated agree-
ment in RS[F, L, d]. Let 0 < η ≤ 1 and ρ > 0 be such that δ = 1 − √ρ − η is strictly positive.
Assume ΠO0 has RBR knowledge soundness with error ϵ. Then, ΠOδ has RBR knowledge soundness
with error ϵ/(2η√ρ).

Let HE be an homomorphic encryption scheme whose plaintext space Rp splits into copies of F. If
ΠHE-CA is an HE-IOPP for δ-correlated agreement in RS[F, L, d] with RBR soundness error ϵCA, then
the protocol ΠΠHE-CA

δ obtained by replacing O with ΠHE-CA in ΠOδ has RBR knowledge soundness
error ϵ1 = max{ϵ/(2η√ρ), ϵCA}.

Furthermore, given a random oracle with λ-bit output and a query bound Q, compiling ΠΠHE-CA
δ

with the BCS transformation [BCS16] yields a SNARK (over encrypted data) with knowledge error
Q ·max{ϵ/(2η√ρ), ϵCA}+O(Q2/2λ).

Proof. Consequence of combining Theorems 2 and 1.

RBR knowledge sound
0-correlated IOP

RBR knowledge sound
δ-correlated IOP

RBR knowledge sound
δ-correlated HE-IOP

RBR sound HE-IOPP for
δ-correlated agreement

RBR knowledge
sound HE-IOP

HE-SNARK

Theorem 4

[BGK+23]

HE-transformation
Definition 13

[BCS16]

Fig. 2: Summary of compilation flow for δ-correlated IOPs.

18

5 Low Degree Tests for encrypted polynomials

The compilers from Section 4 need to eventually test whether the oracles sent by the IOP prover
correspond to low-degree polynomials or not, with different variations of what such a test should
exactly verify (δ-correlated agreement or merely closeness to an RS code). First of all, we need to
think about how polynomials mix with HE. For example, the following map

f : Rp → Rp

a 7→ HE.Dec(
d∑

i=0

cti · ai), cti = HE.Enc(fi)

only corresponds to a degree-d polynomial f ∈ Rp[X] as long as f(a) =
∑d

i=0 fia
i ∀a ∈ Rp, i.e. as

long as it preserves evaluation correctness10.
In this work, as it is common in the IOP literature, polynomials are given in a point-value

representation, which matches the definition of a Reed Solomon codeword. There are a series of
operations that the prover (and maybe the verifier) will have to perform on the ciphertexts within
those oracles, so we also need to make sure to preserve evaluation correctness when presented with
such a representation. To achieve this, we introduce the notion of encrypted polynomials.

Definition 15 Let HE be a homomorphic encryption scheme with plaintext space Rp
∼=
∏ℓ

j=1 FpD

and ciphertext space R2
q . Let HE-IOPP be an HE-IOP of proximity. Let L = {xi,j}i∈[d],j∈[ℓ], L ⊆ FpD

and let ct1, . . . , ctd ∈ R2
q be alleged ciphertexts such that HE.Dec(cti) = (mi,1, . . . ,mi,ℓ) ∈

∏ℓ
j=1 FpD .

Finally, let f ∈ FpD [X]<|L| be the polynomial such that f(xi,j) = mi,j ∈ FpD for every xi,j ∈ L. We
say that ct1, . . . , ctd ∈ R2

q define an encrypted polynomial (of f , at L) if there exist admissible
circuits such that,

– On input ct1, . . . , ctd ∈ R2
q and any (α1, . . . , αℓ) ∈

∏ℓ
j=1 FpD , it returns a ciphertext ct′ such

that, with overwhelming probability, HE.Dec(ct′) = (f(α1), . . . , f(αℓ)) ∈
∏ℓ

j=1 FpD .

– On input ct1, . . . , ctd ∈ R2
q to the HE-IOPP, all honestly produced messages within it decrypt

correctly (with overwhelming probability).

When we want to make the plaintext polynomial and evaluation domain explicit, we write (ct1, . . . , ctd) ∈
EncPoly(f, L).

In other words, (ct1, . . . , ctd) ∈ EncPoly(f, L) if, given those ciphertexts, it is possible both to
compute EncPoly(f,FpD) and to show within the HE-IOPP that there exists such an f .

5.1 The HE-Batched-FRI protocol

The specific HE-IOPP we will employ is the HE transformation (see Definition 13) of the (Batched)
FRI protocol. The batched FRI protocol allows a prover to prove the δ-correlated agreement of
f1, . . . , ft by running the FRI protocol on f =

∑t
i=1 βifi for i.i.d. uniformly random11 βi. In fact,

10 It could happen, for a malicious choice of the cti ∈ R2
q , that f(a) =

∑d
i=0 gia

i ∀a ∈ Rp for some gi ̸= fi. In
practice, this does not give any power to the adversary: it would be equivalent to putting a wrong polynomial of
the right degree within the oracle, which should be caught by the IOP.

11 We use i.i.d uniformly random coefficients, rather than powers of a single β, since otherwise we would incur an
O(n) soundness loss, see [BCI+20, BGK+23].

19

replacing FRI with another IOPP would still result in a δ-correlated agreement test and as we
showed before (Theorems 3 and 4), we could use any other IOPP, to which we would previously
apply our HE-transformation (Definition 13).

The HE-Batched-FRI protocol

Setup: Agree on the following:
– A HE scheme with ciphertext space R2

q and plaintext space Rp
∼=

∏ℓ
j=1 FpD , p ̸= 2, satisfying 2n|(pD−1)

for some positive integer n.
– A multiplicative group L0 = {ω, . . . , ω2n} ⊆ F∗

pD of order 2n, i.e. L0 = ⟨ω⟩.
– The rate of the Reed-Solomon code, ρ = 2−R for a positive integer R.
– A number of rounds r < n−R, each of which will use a domain Li+1 = {x2 | x ∈ Li}, i.e. Li+1 = ⟨ω2i⟩.

Input: For i = 1, . . . , t, alleged ciphertexts (ci,1, . . . , ci,2n/ℓ) ∈ R2
q which allegedly satisfy (ci,1, . . . , ci,2n/ℓ) ∈

EncPoly(fi, L0) for some fi(X) ∈ FpD [X]<2n−R . In other words, it should be that fi
∣∣
L0
∈ RS[FpD , L0, 2

n−R].
V has oracles {JEncPoly(fi, L0)K}ti=1, whereas P has the underlying ciphertexts {EncPoly(fi, L0)}ti=1.

Commit phase: P batches the encryptions of functions f1, . . . , ft into a single encryption of a function f .
Afterwards, it sequentially constructs a series of oracles to “foldings” of encryptions of that function.

1. Obtain challenges β1, . . . , βt
$← FpD from the verifier. Implicitly define the oracle Jf

∣∣
L0

KHE =
∑t

i=1 βi ·
Jfi

∣∣
L0

KHE from the oracles to the encrypted polynomials {EncPoly(fi, L0)}ti=1.
2. For 0 ≤ i < r :

– Obtain a challenge αi
$← FpD from the verifier.

– P computes and sends the oracle JEncPoly(f (i+1), Li+1)K, where Li+1 = ⟨ω2i+1

⟩ and f (i+1) : Li+1 →
FpD is allegedly such that (for j ∈ [2n−i]):

f (i+1)(ω2i+1j) =
f (i)(ω2ij) + f (i)(−ω2ij)

2
+ αi ·

f (i)(ω2ij)− f (i)(−ω2ij)

2 · ω2ij
.

3. The last oracle (to an encryption of) f (r) : Lr → FpD , Lr = ⟨ω2r−1

⟩ is allegedly an encryption of a
polynomial of degree strictly less than ρ · |Lr|, so P can just directly send it as EncPoly(f (r), Lr) to V.

Query phase: V, using the HE secret key sk in order to decrypt the encrypted polynomials within the oracles,
checks the consistency of the messages sent by the prover. If any of the following checks fails, reject and
abort. Otherwise, accept.
1. For 0 ≤ ℓ < m, V does the following in parallel:

– Sample a random µℓ
$← L0.

– For 0 ≤ i < r, using the oracles {JEncPoly(f (j), Lj)K}rj=0 and challenges {αj}r−1
j=0 from the commit

phase, check whether:

f (i+1)(µ2i+1

ℓ)
?
=

f (i)(µ2i

ℓ) + f (i)(−µ2i

ℓ)

2
+ αi ·

f (i)(µ2i

ℓ)− f (i)(−µ2i

ℓ)

2 · µ2i
ℓ

.

Notice that the verifier needs to decrypt the values f (i+1)(µ2i+1

ℓ), f (i)(µ2i

ℓ) and f (i)(−µ2i

ℓ) inside
the oracles in order to do this.

2. Decrypt EncPoly(f (r), Lr) and check whether f (r)
∣∣∣
Lr

?
∈ RS[FpD , Lr, d].

Fig. 3: The HE-Batched-FRI protocol.

Whereas there are new, concretely more efficient IOPs for circuit satisfiability every year [BCR+19,
COS20], a series of variants of the FRI protocol have remained as the most practical choice for an
IOPP until this day. Since this is the most stable component of our overall compilers, we pro-
vide our HE-Batched-FRI protocol in Figure 3. We also adapt the results of [BGK+23] concerning

20

round-by-round soundness of FRI to HE-Batched-FRI. Notice that we only need to consider RBR
soundness, rather than RBR knowledge soundness, since the former is enough for their δ-correlated
hIOP-to-SNARK compiler.

Theorem 5. Let F be a finite field, L0 ⊆ F∗ a smooth multiplicative subgroup of size 2n, d0 =
2k, ρ = d0/|L0| = 2k−n and ℓ a positive integer. For any integer m ≥ 3, η ∈ (0,

√
ρ/(2m)), relative

distance δ ∈ (0, 1 − √ρ − η) and functions f (0)1 , . . . , f
(0)
t : L0 → F for t ≥ 2 such that at least one

of them is δ-far from RS(0), the HE-Batched-FRI protocol (Figure 3) is complete and has round-by-
round soundness error

ϵ = max
{(m+ 1/2)7 · |L0|2

3ρ3/2|F|
, (1− δ)ℓ

}
.

Furthermore, under Conjecture 1 (see Appendix A), the error can be further reduced to

ϵ = max
{ |L0|c2
(ρη)c1 |F|

, (1− δ)ℓ
}
.

Proof. Completeness follows from Theorem 2 and Definition 15. RBR soundness follows from The-
orem 2 and [BGK+23, Theorem 4.2].

6 Optimisations

To make our construction practical, we introduce several optimizations that may have independent
value and applications beyond this work.

6.1 On the choice of HE Scheme

Our construction requires an HE scheme that supports finite fields as the plaintext space, making
it compatible with nearly all modern HE schemes, such as TFHE [CGGI20], BGV [BGV12], and
BFV [Bra12, FV12]. The notable exception is CKKS [CKKS17], which is inherently approximate
(even for a fresh encryption, HE.Dec(HE.Enc(pk,m), sk) ≈ m rather than HE.Dec(HE.Enc(pk,m), sk) =
m). This is incompatible with our verification approach, which requires exact arithmetic. Thus, our
choices are BGV/BFV and TFHE, guided by practical performance and implementation availability,
detailed in Section 7.

6.2 Tensoring

Recall the HE plaintext space structure from Section 2. Ideally, the plaintext ring Rp should split
into ℓ copies of FpD , where D meets FRI security requirements, i.e., |FpD | ≈ 2256. This requires
Fp to contain roots of unity of order at most 2N/D, where N is the cyclotomic ring degree. Given
the HE scheme’s requirement that log(N) ∈ 11, . . . , 17, p would have to be smaller than 2N/D.
Additionally, FRI requires FpD to have a 2n-th root of unity, thus pD > 2n. In practice, using roots
of unity in Fp (requiring p > 2n) allows the NTT (Section 6.3) to run D times faster.

Combining all requirements (FRI, HE, implementation), 2n = dρ−1 < p < 2N/D, restricting
input polynomial size to d < 2Nρ/D. This is feasible with parameter sets like (log(N), ρ,D) =
(17, 1/2, 6), allowing d up to 214. However, better-performing parameters, such as (log(N), ρ,D) =
(14, 1/16, 12), restrict d to around 26, almost entirely restricting the use of FRI use.

21

To address this, we use a field extension FpD of Fp in our HE-FRI protocol. When evaluating
an encrypted polynomial on an element of FpD , we emulate the arithmetic of FpD through a circuit.
This results in D HE ciphertexts, which together encrypt a single value in FpD . Alternatively, an
intermediate approach uses a value d′, with the plaintext space as Fpd′ , and emulates FpD arithmetic
withD/d′ ciphertexts. The ideal value of d′ depends on the application, since increasing the plaintext
modulus increases all HE parameters.

6.3 Shallow Reed-Solomon encoding

Reed-Solomon encoding consists of interpreting data as a polynomial of degree (d − 1) and evalu-
ating it at 2n = dρ−1 independent points. Polynomial evaluation is linear and simply evaluating it
2n times would result in quadratic performance. The Fast Fourier Transform is a staple solution for
this problem, enabling the evaluation in O(2n log 2n) operations. Commonly, however, it is imple-
mented as a circuit with depth log 2n, which poses some challenges for its homomorphic evaluation.
Fortunately, FFTs, and, more specifically, Number-Theoretic Transforms (NTTs), their generaliza-
tion to finite fields, are ubiquitous in the FHE literature, and solutions for evaluating them with
small depth are very well established [CG99, GPvL23]. In this work, we adopt a radix-k NTT of
parametrizable depth for some k ∈ [[2,

√
2n]] optimized based on practical performance.

The NTT can be especially costly when running batched FRI, as the RS codeword needs to
be calculated for each polynomial individually. This cost can be minimized by exploiting the HE
scheme packing to perform the NTT over several polynomials at once. We consider the following
strategies for packing.

– Single polynomial packing: Let k be a single polynomial k =
∑d−1

i=0 kiX
i ∈ Fp[X]. We encrypt k

in an array of d/N ciphertexts ct, such that cti encrypts
∑d−1

j=0 ki·N+jX
j . The main advantage of

this approach is the significantly reduced memory usage, as we process one polynomial at a time.
Conversely, evaluating the NTT algorithm with this packing requires performing permutations
within each ciphertext [CG99], which is an expensive process compared to the other operations
needed for evaluating the NTT.

– Batched polynomial packing: Let k be an N -sized list of polynomials with maximum degree
(d−1), and ki,j be the coefficient of degree j of the i-th polynomial. We encrypt k in an array of d
ciphertexts cti, such that the j-th slot of cti encrypts kj,i. The main advantage of this approach
is avoiding the aforementioned permutations, as each coefficient of a polynomial would be in
different ciphertexts. For large polynomials, the memory requirements to run the NTT with this
packing might be impractical, however.

In both cases, even though FRI is defined over FpD , we perform the entire NTT in Fp by selecting
roots of unity in Fp, as roots of unity in FpD would bring negligible advantage compared to the size of
p (as discussed in Section 6.2). Further, the goal of the NTT is to create a redundant representation
of the polynomial (i.e., the RS codeword), which consumes more memory to be stored. In this way,
storing the codewords could represent a problem, even if storing the original polynomials was not.
This is the main aspect we consider when choosing which type of packing we adopt. Mixed packing
approaches could likely be a better solution for this problem, but developing them is not within our
scope.

22

6.4 Shallow folding

In the commit phase of HE-FRI (Figure 3), P needs to compute a series of oracles JEncPoly(f (i), Li)K.
Let us denote f (i+1) = Fold(f (i), αi). The complexity of producing all such foldings as described
there is O(2n), while the depth12 is n. To reduce depth, we replace the FFT-like algorithm with a
DFT-like algorithm. We compute the first layer of the Fold operation as usual, then pre-compute
constants for the following layers, expressing each as a composition Fold ◦ . . . ◦ Fold. Each layer
can now be expressed as inner products of the original polynomial, reducing the depth to 1, while
increasing the complexity to O(2n log(2n)). This does not affect the overall FRI complexity (dom-
inated by the NTT). The Verifier’s side remains unchanged. The full algorithm is presented in
Appendix D.

6.5 Fast decryption

In RLWE-based cryptography, decrypting small amounts of data may incur a significant overhead
depending on the adopted parameters. An RLWE sample of dimension N encrypts up to N messages
in Fp, which can all be decrypted at once with cost O(N logN). However, if one wants to decrypt just
a single message in Fp, the cost would be at least O(N), which represents a performance overhead
of N/ log(N) times compared to the amortized cost of decrypting all messages at once. During the
commit phase of HE-FRI, the prover performs computation using RLWE samples of dimension N
encrypting N messages in Fp. During the query phase, however, the verifier only needs to learn
two evaluation points in FpD per round for each linearity check. In this way, if the prover provides
these points packed in a ciphertext of dimension N , it would impose a performance overhead of
at least N/(2D) times for the verifier compared to an optimal RLWE decryption (i.e., it would be
decrypting at least N/(2D) more messages than necessary). To improve on this, we propose three
possible approaches. We summarise them here and present the full details in Appendix D.

Repacking The simplest way of minimizing decryption costs is to reduce the ciphertext dimension.
This can be achieved in several ways. In this work, since the prover also needs to arithmetically
manipulate points individually, we choose to extract the points to LWE samples and repack them
using a key-switching algorithm. We pack the two points needed per linearity check in the same
RLWE samples, further minimizing decryption costs.

Decomposition and recomposing While the repacking already enables us to significantly reduce the
ciphertext dimension, we are still limited by the value of p. Specifically, the ciphertext dimension
depends on the ciphertext modulus for security, which, in turn, depends on the plaintext modulus
p. To enable further reductions in the size of N , we introduce a decomposition and recomposing
procedure based on techniques introduced in [CLOT21] and described in [CGGI20]. Our proposal
starts from the observation that since the verifier does not compute any homomorphic operations
on these samples (it only decrypts them), we do not need to preserve any homomorphic properties.
In fact, once the commit phase is finished, the evaluation points can be treated simply as strings of
bits, and the goal becomes to encrypt them in the smallest possible RLWE ciphertext. Considering
this, we homomorphically decompose elements in Fp in digits of size log p̄ for some p̄ < p. This
process enables us to repack the evaluation points in RLWE ciphertexts with smaller moduli and,
hence, smaller dimensions. We present our full recomposition process in Algorithm 3.
12 n is the logarithm of the codeword size. Folding is a linear algorithm.

23

Adding samples Adding samples appears as an alternative to the decomposition. The repacking
procedure mentioned above allows us to reduce the dimension of the RLWE samples that are
sent to the verifier, but we are still not using all the coefficients in the sample. Concretely, our
implementation uses ciphertexts with N = 512 to only encrypt 2D = 32 messages. Considering
this, the verifier can further minimize decryption costs by adding rotations of ciphertexts together
and decrypting messages from multiple ciphertexts at once. We note that rotation can be done
considering coefficient representation, which is inexpensive. While this efficiently minimises the
number of decryptions, it does not, contrary to the decomposition, reduce the cost of hashing
operations or proof size.

7 Experimental Results

Operating over the plaintext space allows compatibility with nearly all HE schemes (except CKKS),
enabling various implementation methods. For this proof of concept, we focus on a simple and
efficient implementation that demonstrates practical execution times for both the prover and verifier.
While we make specific choices of schemes and techniques, our construction remains compatible with
most existing schemes. Appendix E provides a performance characterization based on the number
of basic operations executed by each party, with and without the optimizations in Section 6. This
broader view of HE-FRI performance helps extrapolate the results to other parameters or schemes.

7.1 Practical Parameters

For the security of FRI, we consider parameters established by previous literature [BGK+23], re-
produced in Table 1. There are also practical parameters that are required for functionality, as we
discussed in Section 6.2. Considering this, Table 2 presents the main choices of parameters according
to the maximum size of the input polynomial that they support. We note that, for every parameter,
the maximum size of the input polynomial can be increased by up to D times at the cost of D times
more expensive NTT (as also discussed in Section 6.2).

Table 1: Security parameters we adopt for FRI, based on estimates of [BGK+23] using Conjecture 1.
We approximate the size of the field for practical reasons.

Parameter log2(|FpD |) ρ m δ

FRI0

251-269

1/2 102 0.5
FRI1 1/4 51 0.75
FRI2 1/8 34 0.875
FRI3 1/16 26 0.937

7.2 Proof-of-concept implementation

We build our proof of concept over the implementation of [S+21], a Python-implemented version of
FRI for prime fields. We extend it to work over the extension field FpD and connect it to optimized
FHE libraries to implement the encrypted arithmetic. We consider polynomials of degree up to 215

24

Table 2: Practical parameters for FRI based on the maximum size of the input polynomial d.
Maximum input size log2(d) D p log2(p) log2(|FpD |)

15 16 65537 16.0 256.0
20 11 23068673 24.5 269.1
25 9 469762049 28.8 259.3
30 7 75161927681 36.1 252.9
35 7 206158430209 37.6 263.1
40 6 6597069766657 42.6 255.5
45 5 1337006139375617 50.2 251.2

and present results for parameter sets FRI0 and FRI3, which are optimized for the verifier and the
prover, respectively. We run all the experiments in a c6i.metal instance (Intel Xeon 8375C at 3.5
GHz with 256 GiB of RAM) on AWS. The prover is parallelized to use up to 32 threads and the
verifier is single-threaded.

6 8 10 12 14

Polynomial Size (log2)

0

21

22

23

24

25

26

27

28

T
im

e
(s

)

FRI3

FRI0

(a) Prover (32 threads)

6 8 10 12 14

Polynomial Size (log2)

4

6

8

10

12

14

16

18

T
im

e
(m

s)

(b) Verifier (single-thread)

Fig. 4: Performance of HE-FRI using parameter sets FRI3 and FRI0 for D = 16 for 4096 polynomials
(batched). Detailed results are provided in Appendix F.

Prover performance Figure 4a shows the results for the prover. It includes the execution time of
the RS encoding, batching, and folding procedures. For the RS encoding, we implemented a generic
RNS-based homomorphic NTT implementation built over Intel HEXL [BKS+21]. Its performance
should be similar to most commonly used HE libraries, as HEXL is used for RNS implementations
on libraries such as HELib [HS20] and OpenFHE [ABBB+22]. We use depth-2 NTTs with paral-

25

lelized recursive calls (up to a maximum of 32 threads) and perform batched polynomial packing
(Section 6.3) to compute it on N = 4096 polynomials at once. Our construction is flexible to the HE
encoding, as we may later move to the required encodings during batching, as Appendix C details.

Our folding procedure, on the other hand, has fixed depth (Section 6.4) and is the last procedure
to run before decryption. As such, it requires a much smaller ciphertext modulus and can be evalu-
ated using single-precision (non-RNS) implementations. In this way, whenever possible, we evaluate
it using implementation techniques from TFHE [CGGI20] using the MOSFHET library [GBA24].
Despite being asymptotically quasi-linear, we note that the execution time increases almost linearly
with the polynomial size, which is a result of better parallel efficiency and the overhead introduced
by repacking (which is linear). With FRI0, it takes less than 0.5 seconds to run for polynomials of
degree bound up to 28, going up to 207 seconds for polynomials of degree bound 215.

Verifier performance Figure 4b shows the verifier results. Verification in FRI is sublinear and
typically runs in milliseconds. Hence, Python is not a good fit to showcase practical timings, and we
implemented an optimized version of it in C. We only present a single-threaded version, but we note
that it is trivially parallelizable and could be significantly accelerated for larger parameters. We show
results for FRI0 and FRI3, noting that other parameters can also affect verifier performance, partic-
ularly decryption costs. To minimize these, we only considered repacking without decompositions,
but Appendix D discusses further improvements. Our current setup allows for batched verification
of 4096 codewords in as low as 6ms, with performance scaling linearly with the batch size. Future
work includes optimizing for smaller batches and other parameters.

Acknowledgements

We would like to thank Zvika Brakerski for comments about our repacking optimization for the
HE-Batched-FRI protocol. We also want to thank Alexander R. Block, Albert Garreta, Jonathan
Katz, Justin Thaler, Pratyush Ranjan Tiwari and Michał Zajac for a useful conversation about
their work [BGK+23] and confirming that their analysis does not require finite fields to be prime.

This work was partly done while A. Guimarães was a Ph.D. student at University of Camp-
inas, Brazil. He was supported by the São Paulo Research Foundation under grants 2013/08293-
7, 2019/12783-6, and 2021/09849-5. This work is partially funded by the European Union (GA
101096435). Views and opinions expressed are however those of the author(s) only and do not nec-
essarily reflect those of the European Union or the European Commission. Neither the European
Union nor the European Commission can be held responsible for them.

References

ABBB+22. Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Erabelli, Nicholas
Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah,
Yuriy Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett,
Vinod Vaikuntanathan, and Vincent Zucca. OpenFHE: Open-Source Fully Homomorphic Encryption
Library. In Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryp-
tography, WAHC’22, page 53–63, New York, NY, USA, 2022. Association for Computing Machinery.

ACY23. Gal Arnon, Alessandro Chiesa, and Eylon Yogev. IOPs with inverse polynomial soundness error. Cryp-
tology ePrint Archive, 2023.

26

AHH+24. Nuttapong Attrapadung, Goichiro Hanaoaka, Ryo Hiromasa, Yoshihiro Koseki, Takahiro Matsuda, Yu-
taro Nishida, Yusuke Sakai, Jacob C. N. Schuldt, and Satoshi Yasuda. Privacy-preserving verifiable
CNNs. In Christina Pöpper and Lejla Batina, editors, Applied Cryptography and Network Security, pages
373–402, Cham, 2024. Springer Nature Switzerland.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9(3):169–203, 2015.

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive oracle
proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

BCCW19. Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzynski. nGraph-HE2: A
high-throughput framework for neural network inference on encrypted data. In Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, pages 45–56, 2019.

BCFK21. Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible and efficient verifiable com-
putation on encrypted data. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages
528–558. Springer, Heidelberg, May 2021.

BCI+20. Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps for
reed-solomon codes. In 61st FOCS, pages 900–909. IEEE Computer Society Press, November 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, Heidelberg, May 2019.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg,
October / November 2016.

BGBE19. Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference. In
International Conference on Machine Learning, pages 812–821. PMLR, 2019.

BGK+23. Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari, and Michał
Zając. Fiat-Shamir Security of FRI and Related SNARKs. In Jian Guo and Ron Steinfeld, editors,
Advances in Cryptology – ASIACRYPT 2023, pages 3–40, Singapore, 2023. Springer Nature Singapore.

BGKS20. Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling outside
the box improves soundness. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 5:1–5:32. LIPIcs,
January 2020.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

BKS18. Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case reductions for the
distance to a code. In 33rd Computational Complexity Conference (CCC 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

BKS+21. Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe D.M. de Souza, and Vinodh Gopal. Intel HEXL: Accel-
erating Homomorphic Encryption with Intel AVX512-IFMA52. In Proceedings of the 9th on Workshop
on Encrypted Computing & Applied Homomorphic Cryptography, WAHC ’21, page 57–62, New York,
NY, USA, 2021. Association for Computing Machinery.

BMMP18. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic evaluation of
deep discretized neural networks. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 483–512. Springer, Heidelberg, August 2018.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886.
Springer, Heidelberg, August 2012.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. SIAM Journal on computing, 43(2):831–871, 2014.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019.

CCL15. Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable secu-
rity for standard multiparty computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 3–22. Springer, Heidelberg, August 2015.

CG99. Eleanor Chu and Alan George. Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform
Algorithms. CRC Press, November 1999. Google-Books-ID: 30S3kRiX4xgC.

27

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for arithmetic
of approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 409–437. Springer, Heidelberg, December 2017.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved programmable boot-
strapping with larger precision and efficient arithmetic circuits for TFHE. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 670–699. Springer,
Heidelberg, December 2021.

CMS19. Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random
oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS,
pages 1–29. Springer, Heidelberg, December 2019.

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive
proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020.

CP19. Benjamin R Curtis and Rachel Player. On the feasibility and impact of standardising sparse-secret LWE
parameter sets for homomorphic encryption. In Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pages 1–10, 2019.

DDGR20. Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with side information: Attacks
and concrete security estimation. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 329–358. Springer, Heidelberg, August 2020.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

DS16. Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 294–310. Springer, Heidelberg,
May 2016.

FGP14. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on encrypted data.
In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 844–855. ACM Press,
November 2014.

FNP20. Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable computation on encrypted data.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II,
volume 12111 of LNCS, pages 124–154. Springer, Heidelberg, May 2020.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

GBA24. Antonio Guimarães, Edson Borin, and Diego F. Aranha. MOSFHET: Optimized Software for FHE over
the Torus. Journal of Cryptographic Engineering, July 2024.

Gen09a. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.
stanford.edu/craig.

Gen09b. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, 41st
ACM STOC, pages 169–178. ACM Press, May / June 2009.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
465–482. Springer, Heidelberg, August 2010.

GGW23. Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove statements obliviously? Cryptology
ePrint Archive, Paper 2023/1609, 2023. https://eprint.iacr.org/2023/1609.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

GNS23. Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio: SNARKs for ring arithmetic.
Journal of Cryptology, 36(4):41, October 2023.

GPvL23. Antonio Guimarães, Hilder V. L. Pereira, and Barry van Leeuwen. Amortized bootstrapping revisited:
Simpler, asymptotically-faster, implemented. In Jian Guo and Ron Steinfeld, editors, Advances in Cryp-
tology – ASIACRYPT 2023, pages 3–35, Singapore, 2023. Springer Nature Singapore.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477.
ACM Press, June 2015.

28

https://eprint.iacr.org/2012/144
crypto.stanford.edu/craig
crypto.stanford.edu/craig
https://eprint.iacr.org/2023/1609

Hab22. Ulrich Haböck. A summary on the fri low degree test. Cryptology ePrint Archive, Paper 2022/1216,
2022. https://eprint.iacr.org/2022/1216.

HS15. Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 641–670. Springer, Heidelberg, April 2015.

HS20. Shai Halevi and Victor Shoup. Design and implementation of HElib: a homomorphic encryption library.
Cryptology ePrint Archive, Report 2020/1481, 2020. https://eprint.iacr.org/2020/1481.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Hei-
delberg, May / June 2010.

S+21. Szepieniec et al. Anatomy of a stark - tutorial for starks with supporting code in python, November
2021. https://github.com/aszepieniec/stark-anatomy.

SV14. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. DCC, 71(1):57–81, 2014.

A A conjecture on FRI

Our implementation makes use of the following Conjecture (Conjecture 5.12 from [BGK+23]). Before
presenting it, we introduce the following notation. For an index i ∈ {0, . . . , k}, we let RS(i) :=
RS[F, Li, di], where L0 ⊂ F∗ is a smooth multiplicative subgroup of size 2n, d0 = 2n−R, Li := {z2 :
z ∈ Li−1}, and di = di−1/2. Note that this implies that for every i ∈ {0, . . . , n−R}, Li is a smooth
multiplicative subgroup of size 2n−i. For a function f : Li → F and x ∈ F, we define an “algebraic
hash function" [BKS18] as follows:

Hx[f] : Li+1 → F

Hx[s] :=
x− s′

s′′ − s′
· f(s′′) + x− s′′

s′ − s′′
· f(s′)

s, s′ ∈ Li, s
′ ̸= s′′, (s′)2 = (s′′)2 = s ∈ Li+1.

This hash functionHx has the property that if f ∈ RS(i), thenHx[f] ∈ RS(i+1) for any x. Additionally,
for arbitrary Gi : Li → F and Gi+1 = Hx[Gi], then Gi and Gi+1 will pass all verifier checks during
the Query Phase of the FRI protocol, so long as di+1 > 1.

Conjecture 1. Let F be a finite field, L0 ⊂ F∗ a smooth multiplicative subgroup of size 2n, d0 = 2n−R

and ρ = 2−R. There exist constants c1 and c2 such that for all ν > 0 and any δ ≤ 1 − ρν, for any
function Gi : Li → F that is δ-far from RS(i) we have that

Pr
x

$←−F

[
∆(Hx[Gi], RS

(i)) ≤ δ
]
≤ |L0|c2

(νρ)c1 · |F|
.

Moreover, for any f1, . . . , ft : L0 → F such that at least one fi is δ-far from RS(0), we have

Pr
α1,...,αt

$←−F

[
∆(G0, RS

(0)) ≤ δ|G0 =
∑
i

αifi

]
≤ |L0|c2

(νρ)c1 · |F|
,

Pr
α

$←−F

[
∆(G0, RS

(0)) ≤ δ|G0 =
∑
i

αi−1fi

]
≤ t · |L0|c2

(νρ)c1 · |F|
.

In their work, Ben-Sasson et al. [BCI+20] state the following: “To the best of our knowledge,
nothing contradicts setting c1 = c2 = 2", and when the characteristic of F is greayer than d0 state
that they “are not aware of anything contradicting c1 = c2 = 1". Finally, they do note that if F has
characteristic 2, then c1 = c2 = 1 is impossible, due to an attack of [BGKS20].

29

https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2020/1481

B HE definitions

B.1 Semantic Security

Definition 16 (Semantic Security) Let HE = (HE.KeyGen, HE.Enc, HE.Dec, HE.Eval) be a (public-
key) homomorphic encryption scheme as defined above, let (pp, C)← HE.Setup(1λ,M, Ĉirc), and let
A be an adversary. The advantage of A with respect to HE is defined as follows, with (sk, pk, evk)←
HE.KeyGen(1λ, C, pp).

AdvHE
A (λ) :=

∣∣Pr[A(pk, ct) = 1 : ct← HE.Enc(pk, 1)]

− Pr[A(pk, ct) = 1 : ct← HE.Enc(pk, 0)]
∣∣.

HE is semantically secure if AdvHE
A = negl(λ) for every PPT adversary A.

B.2 The BGV Scheme

Following [HS20], we define the BGV scheme [BGV12] as a levelled FHE scheme based on the
RLWE problem [LPR10]. The ciphertext space is Rq = Zq[x]/(x

n + 1), where q is the ciphertext
modulus. The plaintext space is Rp = Zp[x]/(x

n + 1), where p is the plaintext modulus. Messages
and ciphertexts will be considered as polynomials in Rp and Rq, respectively.

The BGV scheme is parametrised by the following:

– The length L of the moduli chain QL ≫ . . .≫ Q0, where Qi|Qi+1 for i ∈ {0, . . . , L− 1}
– The decomposition base ω, where h = ⌊log(q)⌋+1 is the number of elements in a decomposition

of an element modulo q in base ω.
– The secret key distribution S, typically ternary with a specified Hamming weight
– The error distribution χ, typically a discrete Gaussian of small standard deviation

BGV consists of the algorithms HE.KeyGen, HE.Enc, HE.Dec, HE.Add, HE.PreMult, HE.Relinearize,
HE.KeySwitch and HE.ModSwitch, defined as follows. Below, we assume that a fresh encryption will
be “at the top" modulus L, but note that HE.Enc can be defined at any level i.

HE.KeyGen(1λ): Draw s ← S and set (1, s) := sk as the secret key. Sample a ← RQL
and e ← χ.

Set pk = (pk[0], pk[1]) := ([−as − pe]QL
, a) as the public key. The evaluation key is defined

as follows. For i ∈ {0, . . . , h}, sample ai ← Rq uniformly at random, and ei ← χ. Output
evk = {(−(ais+ pei) + wis

2, ai)}i∈{0,...,h} in Rq. Return (sk, pk, evk).

HE.Enc(pk, m): Let m ∈ Rp be a message. Let Qi, i ∈ {0, . . . , L} be the modulus in the mod-
uli chain of the current level. Sample u ← S and e1, e2 ← χ. Return ct = (ct[0], ct[1]) :=
([m+ pk[0]u+ pe1]Qi , [pk[1]u+ pe2]Qi).

HE.Dec(sk, ct): Let ct = (c0, c1) and sk = (1, s). Return m′ = [[c0 − sc1]Qi]p.

HE.Add(ct0, ct1): Bring ct0, ct1 to the same level by modulus switching the ciphertext at the
higher level to the lower level. Return ct := ([ct0[0] + ct1[0]]Qi , [ct0[1] + ct1[1]]Qi).

30

HE.Mult(ct0, ct1, evk): Bring ct0, ct1 to the same level by modulus switching the ciphertext at
the higher level to the lower level.
Calculate ctmult = (c0, c1, c2) :=
([ct0[0]ct1[0]]Qi , [ct0[0]ct1[1] + ct0[1]ct1[0]]Qi , [ct0[1]ct1[1]]Qi).

HE.ModSwitch((ct,Qi),Qj): Let ct = (ct[0], ct[1]) be at level i. Return ctms :=

(⌊
Qj

Qi
ct[0]

⌉
p
,
⌊
Qj

Qi
ct[1]

⌉
p

)
.

HE.KeySwitch(ct, sk′, evk): Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let evk[i][0] = −(ais +
pei) + wis

2 and evk[i][1] = ai, and express c2 in base ω as

c2 =
h∑

i=0

c
(i)
2 ωi.

Set c′0 = c0 +
∑h

i=0 c
(i)
2 evk[i][0] and c′1 = c1 +

∑h
i=0 c

(i)
2 evk[i][1]. Output ct′ = (c′0, c

′
1).

C Batching from slot encoding

Applications using FHE schemes such as BGV and BFV often employ the CRT encoding [SV14]
to work with “plaintext slots”, which can be multiplied element-wise. HE-FRI doesn’t require such
slots as it doesn’t perform multiplications between ciphertexts. One could choose to employ them
nonetheless, but the LWE extraction procedure needed for the repacking becomes significantly more
expensive when using slot encoding.

The simplest way of approaching this issue would be converting from slots to the standard coef-
ficient encoding before evaluating FRI. Efficient methods for it are well defined in the bootstrapping
literature [HS15] and are composed of linear combinations that are reasonably inexpensive to evalu-
ate. Notwithstanding, we introduce a method for evaluating (batched) HE-FRI directly over the slot
representation that produces evaluation points in coefficient representation at no additional cost.

This method comes from the observation that the first step of the folding is to perform a linear
combination of several codewords, which are packed according to the batched polynomial packing
described in Section 6.3. This process consists essentially of a linear combination of values in the
same ciphertext, which can be obtained directly from the slot representation. More specifically,
let m ∈ Rp be the polynomial encoding the plaintext t = [t0, t1, . . . , tN−1] ∈ Fp × . . . × Fp in slot
representation, which contains the k-th evaluation points of every input polynomial. The process for
converting from slot to coefficients can be implemented as follows, where zi are vectors of constants
and m̂ is the vector of coefficients of m. We can recover t as a coefficient-wise encoded polynomial
as follows.

t = [⟨m̂, z0⟩, ⟨m̂, z1⟩, . . . , ⟨m̂, zN−1⟩]. (2)

In practice, each zi would be a different permutation of a vector of powers of some root of unity
in Rp and the vector t would be encoded as a polynomial (coefficient encoding). For our purposes,
however, the specific details of this process are unimportant. At the beginning of the folding, we
would batch the codewords as follows, to obtain the k-th point of the initial codeword f (0).

31

f (0)(k) =
N∑
i=0

⟨m̂, zi⟩ · βi. (3)

Writing the inner product explicitly and reordering the summations, we have that:

f (0)(k) =

N∑
i=0

 N∑
j=0

m̂j · zi,j

 · βi = N∑
j=0

m̂j ·

(
N∑
i=0

zi,j · βi

)
(4)

In this way, we can pre-compute the inner summation of constants, and obtain f (0)(k) from a
single inner product with m̂, without having to calculate t. As this is a single inner product, we
can evaluate it with just a polynomial multiplication. Let z′j =

(∑N
i=0 zi,j · βi

)
, we have that:

f (0)(k) = ExtractLWE(m ·

z′0 −
N−1∑
j=1

z′jx
N−j

 , 0). (5)

D Further improvements for decryptions

D.1 Shallow Fold

Algorithm 1: Shallow Fold

Input : n′ = 2n, r, f (0), ω.
Output: codewords f (i), for i ∈ [[0, r − 1]].

1 c← [0, . . . , 0] // First pre-compute the constants
2 for k ← 0 to r − 1 do
3 for i← 0 to n′/2− 1 do
4 for j ← 0 to 2k+1 − 1 do
5 ci+jn′/2 ← ci+jn′/2 · 12 ·

(
1 +

(−1)jαj

ωi

)
6 for i← 0 to n′/2− 1 do
7 f

(k)
i ← 0 // Now compute the Fold

8 for j ← 0 to 2k+1 − 1 do
9 f (k)(ωi)← f (k)(ωi) + ci+j·(n′/2) · f(ωi+j·(n′/2))(0)

10 n′ ← n′/2
11 ω ← ω2

12 return f

D.2 Decomposed Repacking

The verifier does not compute any homomorphic operations over ciphertexts in our construction,
hence we do not need to preserve any homomorphisms for them. In fact, once the commit phase
is finished, the evaluation points can be treated as just strings of bits, and our goal becomes to

32

encrypt them in the smallest possible ciphertext. As described in Section 6.5, we define repacking
and recompositions algorithms to improve performance by exploiting this fact. Algorithm 2 shows
the repacking procedure, which requires the subprocedures listed in the following paragraph. We use
techniques introduced in [CLOT21] for the decomposition and described in [CGGI20] for the other
procedures. We note that, although most of these subprocedures are often used with the TFHE
scheme [CGGI20] in previous literature, they are generic for RLWE-based FHE, and we do not rely
on any specific property of TFHE.

Algorithm 2: Repacking
Input : Two vectors of RLWE samples x = [x0, x1, . . . , xd−1] and y = [y0, y1, . . . , yd−1], encrypting N

evaluation points in FpD each;
Input : indices ix, iy ∈ {0, . . . , N − 1} indicating the position of two evaluation points within each element

of x and y, respectively;
Input : input and output parameter sets (p, q,N) and (p, q,N);
Input : decomposition base b = log(p);
Input : a packing key switching key ksk
Output: Repacked ciphertext
// Extract the evaluation points to LWE samples

1 for j ← 0 to d do
2 x̂j ← ExtractLWE(xj , ix)
3 ŷj ← ExtractLWE(yj , iy)

// Decompose each LWE sample in k new samples, each encrypting log(p) bits of the evaluation
points

4 k ←
⌈
log (p) /2b

⌉
5 for j ← 0 to D − 1 do
6 for i← 0 to k − 1 do
7 c̃kj+i ← Decomposep,q (x̂j , i)
8 c̃k(j+D)+i ← Decomposep,q (ŷj , i)

// Pack all LWE samples in a single RLWE
9 return PackingKeySwitching([c̃0, c̃1, . . . , c̃2Dk], ksk)

– ExtractLWE: Given an RLWE sample c encrypting a polynomial m =
∑N−1

i=0 miX
i under

key s, ExtractLWE(c, i) produces an LWE sample encrypting mi under key s′, where s′ is the
vector interpretation (i.e. the array of coefficients) of s.

– Decompose: Given an LWE sample c encrypting a message m ∈ Zp with ciphertext modulus
q, the procedure Decomposep,q (c, i) decomposes the message in base p and produces an LWE
sample encrypting its i-th most significant digit with ciphertext modulus q < q. This procedure
is implemented as modular reduction followed by a real division (ModDown), as shown in
Equation 6:

Decomposep,q (c, i) 7→
[⌈

[c](q/pi) ·
q

(q/pi)

⌋]
q

. (6)

– PackingKeySwitching: Given a list of LWE samples ci encrypting messages mi, respectively,
for i ∈ [[0, N−1]] and a key switching key ksk, the PackingKeySwitching produces an RLWE
sample C encrypting the polynomial m =

∑N−1
i=0 miX

i. In this process, the dimension of C is
defined by ksk.

33

We select p and its associated dimension N as the smallest possible values that allow the en-
cryption of a string of 2 log(|FpD |) bits while providing a 128-bit security level. Additionally, the
decomposition algorithm requires the ciphertext modulus q to be divisible by p, which, for simplic-
ity, we achieve by mod-switching the ciphertext to a power-of-two modulus before the repacking.
Table 3 presents the main practical choices for these parameters. We note that, depending on the
size of p, some of them may not require decomposition but would still benefit from the repacking.

Table 3: Practical choices for FHE parameters for the repacking procedure. In this table, k is the
module-LWE dimension and q is the ciphertext modulus. All parameters are estimated for the
128-bit security level, and the decryption cost is measured in the number of multiplications.

Parameter Set k N log2(q) Size (bytes) Decryption Cost

P0 1 512 12 8192 5120
P1 2 512 25 12288 5632
P2 1 1024 16384 11264
P3 4 512

52
20480 6656

P4 2 1024 24576 12288
P5 1 2048 32768 24576

To minimize the noise generated by the repacking, we always run the PackingKeySwitching
with a larger parameter set and perform another key switching to reduce the dimension at the
end. For example, we could first perform the folding using P5; then, the repacking would extract
and decompose the samples still using P5. PackingKeySwitching would repack them using P1.
Finally, before committing to the codeword, the prover would run another key switching to reduce
from P1 to P0. This final reduction may not improve performance considerably (as decryption in P1

is only 10% slower than in P0), but it would reduce the size of the ciphertext by 33%, accelerating
hash operations and reducing proof size.

D.3 Recomposition

The repacking process is fundamental for minimizing the impact of the HE overhead on FRI, but,
if used with the decomposition, it also introduces some challenges for the verifier to recover the
evaluation points in FpD . Algorithm 3 shows the full recomposition process, and the next paragraphs
describe the main challenges it addresses.

We first recall the definition of the phase function.

Definition 17 ([CGGI20]) Let HE be a Homomorphic Encryption scheme as defined above. For
a concrete instantiation, that is to say, for a fixed key pair (sk, pk, evk), and for a ciphertext ct =
(ct0, ct1) that is the output of the HE.Enc algorithm (and has possibly been computed on) defined
modulo some q. We define the phase function as

ψ(ct)sk = ct1 − sk · ct0 (mod q).

34

Algorithm 3: Recomposition
Input : Repacked RLWE ciphertext ct = (ct0, ct1)
Input : Secret key sk
Input : Decomposition base b = log(p), and message scaling factor ∆
Output: An array of points v̂ ∈ F2D

p

1 v ← ct1−ct0·sk
2b+2 // Calculate the phase

2 k ←
⌈
log (p) /2b

⌉
// Recompose each point in Fp

3 for j ← 0 to 2D − 1 do
4 v̂j ←

⌈ vkj+k−1

4

⌋
5 x←

⌊
v̂j

2b−2

⌋
6 for i← k − 2 to 0 step − 1 do

// Calculate the noise propagated by the previous digit
7 c← SignExtend (x− [vkj+i]4)

// Remove the noise and scale

8 v̂j ← v̂j +
⌊

vkj+i+c

4

⌋
· 2b(k−1−i)

// Extract the two most significant bits to x

9 x←
⌊

(vkj+i+c)

2b

⌋
10 v̂j ←

⌊
v̂j
∆

⌉
11 return v̂
1 Procedure SignExtend(x)
2 if x = 3 then
3 return −1
4 else if x = 1 then
5 return 1
6 return 0

Message recomposition. During the repacking process, we extract digits relying on the fact that p
divides q. Our plaintext space, on the other hand, is defined by a prime modulus p following FRI
requirements, which is not divisible by p. Therefore, we will interpret the extracted digits not as
digits of the message, but as digits of the phase function (Definition 17). Recall that the phase
function is computed modulo q, and we have that p | q. At the time of decryption, the verifier needs
therefore to first remove the noise and recompose the phase before dividing by the scaling factor ∆.

Digit decomposition noise. Considering the decomposition process presented in Equation 6, at the
extraction of the i-th digit, the (i+ 1)-th digit remains in the sample and is treated as noise. This
noise increases the probability of a decryption error significantly once added to the key-switching
noise. To avoid this problem, we select parameters that allow us to encrypt at least two extra bits.
To give a concrete example, if p = 28, we select the HE parameters to encrypt a 10-bit message, so
that we also preserve the bits following the least significant bit (LSB) of our message, as illustrated
in Figure 5). At high level, one can view these two extra bits as “redundant", that allow for a
higher noise growth, without causing a decryption error. Notice that, for the (k− 1)-th digit, these
redundant bits will be zero, as there is no k-th digit, counting from zero. For all other digits, the
redundant bits of the i-th digit should be the two most significant bits (MSBs) of the (i+1)-th digit.
Considering this, the verifier decrypts the digits sequentially from the least to the most significant
and uses the MSBs of the previous digit and the redundant bits to correct for possibly propagated
errors. Notice that these bits are supposed to be the same, and hence this process will not change

35

the redundant bits if there is no propagated noise. Otherwise, if the noise propagates up to the
redundant bits (also shown in Figure 5), it will correct the message to its original value.

Message Noise

Correct

Redundancy Bits

i = 0

i = 1

i = 2

i = 3

i-th Digit

Redundancy Bits

i = 0

i = 1

i = 2

i = 3

i-th Digit

Decompose

Fig. 5: Example of decomposition and error correction. Notice that the process for correcting using
the redundant bit only occurs after the decryption.

D.4 Using bootstrapping

Besides reducing costs for the verifier, the repacking technique also allows us to produce ciphertexts
with a small plaintext modulus, regardless of the size of the base field we adopt for FRI. This
in turn makes it possible to bootstrap these ciphertexts, which would otherwise be prohibitively
expensive for some of the sizes of base fields we consider for FRI (we consider |Fp| ranging from
216 up to 250). Bootstrappings are particularly useful for our construction in two ways. First, they
enable the prover to remove the digit decomposition noise, which leads to better parameters and
hence better performance for the verifier. Bootstrapping also makes the error correction part of
Algorithm 3 unnecessary. Second, it can also enable us to achieve the notion of Circuit Privacy
defined in Definition 14. In particular, we know that we can use bootstrapping as a rerandomization
algorithm [DS16].

E HE-FRI performance in the number of operations

Table 4 shows the impact of our optimizations for FRI with a constant depth equal to 4. While
the number of operations grows for the prover, the growth for the verifier (Query and RS decode

36

procedures) only depends on the RLWE decryption overhead, which is independent of the size of
n. Furthermore, all our optimizations allow for tradeoffs between the number of operations and the
depth of the circuit for the prover.

Table 4: Cost and depth comparison between FRI [BBHR18] and HE-FRI. We only consider the
number of cost-dominant operations, which is the multiplication in FpD for all procedures except
for the Merkle Tree and query phases, where the cost of committing and verifying the Merkle
tree dominates. For HE-FRI, we also include the overhead of RLWE encryption and decryption
operations, given by the factors P0 and P1 which refer to the decryption costs presented in Table 3.
In turn, P′i = Pi log2(p

D)/b is the amortized cost of decrypting each element in FpD using the
repacking method (Section 6.5), where b is the number of bits this parameter set can encrypt.
Finally, to simplify notation, let m′ = ⌈log2(m)⌉, where m is the number of linearity checks defined
by the security parameters of FRI.

Procedure Cost Depth
FRI HE-FRI FRI HE-FRI

RS encode 2n (n) 2n+1
√
2n n 2

Folding 2n+1 − 2m
′+1 2n (n−m′) (n−m′) 1

Merkle Tree 2n+1 − 2m
′+1

(
2n+1 − 2m

′+1
)
P1 0 1

Query 2m (n−m′) m (n−m′)P0/D 0 0
RS decode 2m

′
m′ 2m

′
(m′ +P′

1) 0 0

E.1 Operation counting

As we built HE-FRI over the FRI implementation of Szepieniec et al. [S+21], we extended it with our
proposals and instrumented it to measure the number of operations. We only consider the number
of cost-dominant operations in FpD , and we measure them for each level of depth of the algorithm
individually. We evaluate each phase of the protocol separately, leaving the tradeoffs between them
to be addressed when considering practical instantiations.

Verifier Performance Figure 6-a shows the number of FpD elements received by the verifier during
FRI, a key performance metric since each element requires a Merkle Tree check, the most expensive
verifier operation. In HE-FRI, each element also needs decryption, adding significant overhead, as
shown in Figure 6-b. We define our comparison baseline based on two scenarios:

– Outsourcing: A client (the verifier) wants to outsource a polynomial evaluation to a (usually
more powerful) server. In this case, the baseline for comparison is a local evaluation, i.e., one
in which the verifier receives the entire polynomial encrypted from the server, decrypts it and
evaluates it themselves. For this scenario, HE-FRI provides gains for polynomials larger than
217, as Figure 6-b shows.

– Zero-Knowledge: A client (verifier) wants to know the evaluation of a polynomial P at some
points x, but the server does not want to reveal any information about P besides its evaluation
at x. In this scenario, local evaluation is not an option, and HE-FRI, or some other verifiable
polynomial evaluation method over encrypted data, must be used.

37

8 10 12 14

Polynomial size (log2)

103

104

E
le

m
en

ts
in
F p

D

FRI0 m = 102, ρ = 1/2

FRI1 m = 51, ρ = 1/4

FRI2 m = 34, ρ = 1/8

FRI3 m = 26, ρ = 1/16

Local Evaluation

(a)

16 18 20 22

Polynomial size (log2)

106

107

108

D
ec

ry
p

ti
o
n

co
st

FRI0 m = 102, ρ = 1/2

FRI1 m = 51, ρ = 1/4

FRI2 m = 34, ρ = 1/8

FRI3 m = 26, ρ = 1/16

Local Evaluation

(b)

Fig. 6: Estimated cost for the Verifier in HE-FRI (a) in the number of elements in FpD received and
(b) in the number of multiplications required to decrypt them.

Prover Performance Once we establish the minimum size for which gains with HE-FRI are
possible, our goal becomes minimizing the cost for the prover. Taking, for example, a polynomial
of size 217 and ρ = 1/2, the RS encoding and the folding algorithm would have depths 18 and 17,
respectively in the the original implementation of FRI. Even for a small value of p, let us suppose
p = 220, depth (18 + 17) = 35 would require a ciphertext modulus with at the least 20 · 35 = 700
bits. In turn, this modulus would require dimension N = 215, and each ciphertext would weigh
at least 7 megabytes (MB). If we consider batched FRI, memory could already be a problem for
this size of ciphertext depending on the number of input polynomials. Nonetheless, even in a non-
batched scenario (or one with a small number of polynomials), increasing the ciphertext modulus
has typically a quadratic impact on the HE evaluation performance.

In Section 6, we showed how to solve this problem with a series of optimizations that enable to run
FRI with significantly smaller, fixed depth. In principle, we could evaluate FRI at depth only 1, but
decreasing depth comes at the expense of increasing the total number of operations. Considering
this, we address several trade-offs between depth, performance, and memory use enabled by our
techniques. We present several options of depth that should suit most applications, but choosing
among them is ultimately an application-dependent choice.

For the Folding, as we discussed in Section 6, minimizing depth to 1 only increases complexity
from O(2n) to O(2n log 2n), preserving the overall complexity of FRI. In practice, this increment is
also negligible for the prover as the cost of the folding is dominated by the number of executions of
the repacking, which remains linear in the input size. Therefore, for practical purposes, we always
implement folding with depth 1 and focus our efforts on the trade-offs enabled by the shallow NTT
during the RS encoding phase.

38

Reed-Solomon code encoding Increasing arity is a standard way of enabling shallower NTT
circuits. Finding the optimal arity, however, depends both on the general goal as well as on the
adopted cost model. For HE-FRI, while we want to minimize depth, we only use multiplications by
constants, a procedure in which performance is linear in the depth. Therefore, we model the cost
of our NTT as the number of multiplications weighted according to the depth in which they occur
in the algorithm. Specifically, a multiplication at depth k′ has cost (k − k′), where k is the total
depth of HE-FRI. Notice that operations happening at a higher depth are considered linearly less
expensive, as the ciphertext levels were already consumed by operations from shallower levels.

2 4 6 8

Depth

107

108

Number of Operations

Expected cost

(a) NTT for an input of size 218

10 12 14 16 18 20

Polynomial size (log2)

105

106

107

108

109

E
x
p

ec
te

d
co

st

Depth 2

Depth 3

Depth 4

Depth 6

Depth n

(b) Optimal expected cost

Fig. 7: Expected cost of our NTT implementation.

Figure 7-a shows the results for an NTT with an input of size 218. For each value of maximum
depth, we choose arity to minimize the expected cost (even if it would increase the number of
operations). While the cost decreases quickly with the depth at first, it stabilizes with depth as low
as just 6. Based on this, we selected a few different values for the maximum depth and extended this
analysis to different sizes of polynomials. Figure 7-b shows the results as well as the estimated cost
for a standard depth-n (radix-2) NTT, using the same cost model. This second result explains depth
6 as a stability point for the cost since it reaches essentially the same performance level provided
by the depth-n NTT.

F Complete results

This section presents the complete practical results. Execution times for the verifier are an average
of 100 executions.

39

Table 5: Results for batches of 4096 polynomials, for up to 32 threads.
Polynomial Size

(log2)
FRI3 FRI0

Prover
(s)

Verifier
(ms) λ

Memory
(GB)

Prover
(s)

Verifier
(ms) λ

Memory
(GB)

6 1.33 3.77 120 1.2
7 2.74 4.10 120 2.0 0.20 7.08 120 0.5
8 5.93 4.46 120 3.5 0.48 8.33 120 0.8
9 13.38 4.82 120 6.4 1.16 9.64 120 1.2
10 31.21 5.12 118 12.2 2.59 11.04 120 2.1
11 78.98 5.61 116 23.7 5.45 12.29 120 3.7
12 13.74 13.72 120 6.9
13 33.92 15.36 118 13.2
14 85.96 17.01 116 25.9
15 207.76 18.51 114 51.0

Table 6: Results for batches of 8192 polynomials, for up to 32 threads.
Polynomial Size

(log2)
FRI3 FRI0

Prover
(s)

Verifier
(ms) λ

Memory
(GB)

Prover
(s)

Verifier
(ms) λ

Memory
(GB)

6 2.97 6.66 191 2.4
7 6.24 6.79 191 4.1 0.46 16.64 191 1.0
8 15.46 7.07 191 7.3 1.10 18.04 191 1.6
9 36.27 7.76 191 13.6 2.56 19.35 191 2.5
10 85.73 7.97 191 26.1 6.11 20.93 191 4.3
11 186.69 8.60 191 50.7 13.71 23.13 191 7.8
12 32.49 23.74 191 14.6
13 80.74 26.54 191 28.1
14 188.36 26.99 191 55.0
15 486.71 29.09 191 108.9

40

	HELIOPOLIS: Verifiable Computation over Homomorphically Encrypted Data from Interactive Oracle Proofs is Practical

